
Automated Exploration of Pareto-optimal Configurations in Parameterized
Dynamic Memory Allocation for Embedded Systems

Stylianos Mamagkakis 1, David Atienza 2,3, Christophe Poucet 4,
Francky Catthoor 4, Dimitrios Soudris 1 and Jose M. Mendias 2

1 VLSI Center-Democritus Univ., 67100 Xanthi, Greece. {smamagka, dsoudris}@ee.duth.gr
2 DACYA/UCM, Juan del Rosal 8, 28040 Madrid, Spain. mendias@dacya.ucm.es

3 LSI/EPFL 1015-Lausanne, Switzerland. david.atienza@epfl.ch
4 IMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium. {poucet, catthoor}@imec.be

F. Catthoor also professor at ESAT/K.U.Leuven-Belgium.

Abstract

New applications in embedded systems are becom-
ing increasingly dynamic. In addition to increased dy-
namism, they have massive data storage needs. Therefore,
they rely heavily on dynamic, run-time memory alloca-
tion. The design and configuration of a dynamic mem-
ory allocation subsystem requires a big design effort,
without always achieving the desired results. In this pa-
per, we propose a fully automated exploration of dynamic
memory allocation configurations. These configura-
tions are fine tuned to the specific needs of applications
with the use of a number of parameters. We assess the ef-
fectiveness of the proposed approach in two representative
real-life case studies of the multimedia and wireless net-
work domains and show up to 76% decrease in memory ac-
cesses and 66% decrease in memory footprint within the
Pareto-optimal trade-off space.

1. Introduction
Many Dynamic Memory (DM) allocation solutions are

available today for general purpose systems. These are ac-
tivated with the standardized malloc/free functions in C
and the new/delete operators in C++. Support for them is
already available at the Operating System (OS) level [2].
Each one of those DM allocators provides a general so-
lution that ignores the special de/allocation behavior and
fragmentation outlook of the application that needs them
or the underlying memory hierarchy. The same approach
is followed in embedded system designs, which rely solely
on their embedded O.S. for DM allocation support. The
use of OS-based, general-purpose DM allocation usually
has an unacceptable overhead in embedded designs, con-
sidering the limited resources and hard real-time constraints

of embedded systems. Therefore, to achieve better results,
application-customized DM allocators are needed [3, 1].
Note that they are best realized in the middleware and not in
the platform hardware which would require undesired plat-
form changes for each application (domain) target. In this
paper, we introduce a novel tool support to automatically
create and explore the trade-offs in the DM allocation pa-
rameters. With our new fully automated technique we gen-
erate Pareto-optimal DM allocator configurations for the
embedded system designer to use according to the appli-
cation’s specific needs. For the first time, our automation
support gives embedded system designers a real choice be-
tween tens of thousands of highly customized DM alloca-
tors instead of the very restricted group of a few OS-based
DM allocators.

2. Automated Exploration Tool Overview

The most significant contribution of this paper is the de-
velopment of a framework to automatically create, map in
the memory hierarchy and test any number of DM alloca-
tion configurations (see Figure 1). The only input that our
tool requires is the list of arrays with the parameter values
to be explored for the different configurations. Addition-
ally, our tool can map the DM allocator pools in any mem-
ory hierarchy. For example, we can declare that a dedicated
pool for 74-byte blocks must be placed onto the L1 64 KB
scratchpad memory, while a general pool and a dedicated
pool for 1500-byte blocks must use the 4 MB main mem-
ory. Then, our tool takes care of the DM allocator imple-
mentation to support the mapping of these pools in the cor-
responding memory hierarchy layers. To this end, we have
developed a C++ library that includes more than 50 mod-
ules, which can be linked in any way with the use of tem-
plates and MIXINS inheritance to create custom DM alloca-

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 

874



Figure 1. Automated Exploration Tool Flow

tors. The tool works in a plug-and-play manner and the dy-
namic application’s source code is not altered to call the ap-
propriate DM allocator from the library.

The next step of our tool is the automated selection of
Pareto-optimal configurations and involves the simulation
(i.e. execution) of our dynamic application for each one of
the different DM allocator configurations. These configu-
rations were already defined, constructed and implemented
automatically in the previous step. We have implemented
profiling tools to test and profile all the different DM alloca-
tor configurations for the defined memory hierarchy, and get
results for mem. accesses, mem. footprint and energy con-
sumption for each level of the memory hierarchy. The re-
sults are provided either on a GUI or in a format easy to im-
port to Excel or Gnuplot. Then, the Pareto-optimal curves to
evaluate the tradeoffs of the configurations can be provided
automatically with the use of our tool (as shown in the up-
per part of Figure 1). The tool (written in Perl and O’Caml)
parses all the experimental results data and provides Pareto-
optimal curves for the chosen metrics (as shown in the lower
part of Figure 1). Note the importance of our fast parsing of
the profiling data (less than 20 seconds), which can reach
Gigabytes for one single configuration.

3. Case Studies and Experimental Results
Our first case study is the Easyport wireless network

application produced by Infineon [4]. We have obtained a
range in the total memory footprint of a factor 11 and for
the memory accesses of a factor 54 within all the available
DM allocator configurations. Then, we have used our tool
to parse all the configurations to produce the Pareto-optimal
configurations. We conclude that we have 15 Pareto-optimal
configurations. We can decrease the total amount of mem-
ory footprint up to a factor of 2.9 and the memory ac-
cesses up to a factor of 4.1 within all the Pareto-optimal
DM allocator configurations (as shown in Figure 1). Also,
we can decrease the total memory energy consumption up
to 71.74% and the execution time up to 27.92% within
all the Pareto-optimal DM allocator configurations. Our
second case study is the MPEG4 Visual Texture deCoder
(VTC) [5], which deals with still texture decoding. We have
managed a reduction of up to 82.4% for energy consump-
tion and up to 5.4% for execution time within the available
Pareto-optimal configurations.

4. Conclusions
New design tools must be available to the designer in or-

der to explore the tradeoffs between various DM allocation
configurations and to suitably use the resources in final em-
bedded devices. In this paper we have presented a full au-
tomation support (including GUI) to explore the parame-
ters of DM allocation subsystems and evaluate their possi-
ble tradeoffs in a Pareto-based fashion.

5. Acknowledgements
This work is partially supported by the European pro-

gram AMDREL IST-2001-34379 and the Spanish Govern-
ment Research Grant TIN2005-5619. We want to thank
Matthias Wohrle (Advanced Systems and Circuits group,
Infineon Tech) and Arnout Vandecappelle (IMEC) for their
help with the Easyport application.

References

[1] D. Atienza et al. Dynamic Memory Management Design
Methodology for Reduced Memory Footprint in Multimedia
and Wireless Network Applications, DATE ’04, France 2004,
IEEE Press, ISSN: 1530-1591/04, pp. 532 - 537.

[2] P. R. Wilson, et al. Dynamic storage allocation, a survey and
critical review. In Int. Workshop on Mem. Manag., UK, 1995.

[3] E. D. Berger, et al. Composing high-performance memory al-
locators. In Proc. of ACM SIGPLAN PLDI, USA, 2001.

[4] Infineon Easyport. http://www.itc-
electronics.com/CD/infineon

[5] MPEG-4. http://www.chiariglione.org/mpeg/standards/mpeg-
4/mpeg-4.htm

875




