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Abstract (english)

The main scope of this thesis work is to compare theoretical models with experimental

observations on particle transport in particular regimes of plasma operation from the

Tokamak à Configuration Variable (TCV) located at CRPP–EPFL in Lausanne.

We introduce the main topics in Tokamak fusion research and the challenging problems

in the first Chapter. A particular attention is devoted to the modelling of heat and

particle transport.

In the second Chapter the experimental part is presented, including an overview of

TCV capabilities, a brief review of the relevant diagnostic systems, and a discussion of

the numerical tools used to analyze the experimental data. In addition, the numerical

codes that are used to interpret the experimental data and to compare them with theo-

retical predictions are introduced.

The third Chapter deals with the problem of understanding the mechanisms that reg-

ulate the transport of energy in TCV plasmas, in particular in the electron Internal

Transport Barrier (eITB) scenario. A radial transport code, integrated with an external

module for the calculation of the turbulence-induced transport coefficients, is employed

to reproduce the experimental scenario and to understand the physics at play. It is shown

how the sustainment of an improved confinement regime is linked to the presence of a

reversed safety factor profile.

The improvement of confinement in the eITB regime is visible in the energy channel and

in the particle channel as well. The density profile shows strong correlation with the tem-

perature profile and has a large local logarithmic gradient. This is an important result

obtained from the TCV eITB scenario analysis and is presented in the fourth Chapter.

In the same chapter we present the estimate of the particle diffusion and convection co-

efficients obtained from density transient experiments performed in the eITB scenario.

The theoretical understanding of the strong correlation between density and temperature

observed in the eITB is detailed in the fifth Chapter. Being the main topic of this work,

it is given more space to introduce the basic theory and to compare the simulation results

with the experimental data.

Impurity transport constitutes the topic of the sixth Chapter, where we demonstrate

the physical mechanisms that can sustain a peaked carbon density profile in TCV L-mode

plasmas.

Finally, the seventh Chapter summarizes the work done with conclusions and a discus-

sion of the possibilities to further improve the results.

Keywords: Tokamak, transport barrier, confinement, turbulence, transport, heat, par-

ticles, electrons, pinch, gyrokinetic theory, impurity accumulation
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Abstract (francais)

Le but principal de ce travail de thèse est de comparer les predictions des modèles

théoriques avec les observations expérimentales pour le transport de particules dans les

plasmas du Tokamak à Configuration Variable (TCV) situé au CRPP–EPFL à Lau-

sanne. Nous présentons d’abord les principaux problèmes encore ouverts dans la recherche

de fusion de tokamak dans le premier Chapitre. Une attention particulière est mise sur

la modélisation du transport de la chaleur et de particules.

Dans le deuxième Chapitre, la partie expérimentale est présentée, y compris une vue

d’ensemble des possibilités de TCV, un bref examen des systèmes diagnostiques, et une

discussion des outils numériques utilisés pour analyser les données expérimentales. En

outre, les codes numériques employés pour interpréter les données expérimentales et pour

les comparer aux prévisions théoriques sont présentés.

Le troisième Chapitre traite le problème de comprendre le mécanisme qui règle le

transport de l’énergie dans les plasmas de TCV, en particulier dans les scénarios avec la

formation de barrières internes de transport d’électrons (eITB). Un code radial de trans-

port intégré avec un module externe pour le calcul des coefficients de transport turbulent

est utilisé pour reproduire le scénario expérimental et pour comprendre la physique en jeu.

On montre comment le soutien d’un régime amélioré de confinement est lié à la présence

d’un profil de facteur de sécurité renversé.

L’amélioration du confinement dans le régime eITB est évidente dans le canal d’énergie

et dans le canal de particules car le profil de densité montre une forte corrélation avec

le profil de température et a un gradient normalisé local élévé. Ceci est un important

résultat obtenu à partir de l’analyse d’eITB de TCV et est présenté dans le quatrième

Chapitre. Dans le même chapitre nous présentons l’estimation des coefficients de diffu-

sion et de convection pour les particules en analysant des évolutions transitoires de densité

obtenues dans des eITBs.

La compréhension théorique des observations montrées dans le Chapitre 4 est detaillée

dans le cinquième Chapitre. Etant le coeur de cette thèse, on lui est dédié plus d’espace

pour présenter la théorie de base et pour comparer les résultats des simulations aux

données expérimentales présentées dans le Chapitre precédent.

Le transport d’impuretés constitue la matière du sixième Chapitre, où nous clarifions

les mécanismes physiques qui soutiennent un profil piqué de densité du carbone dans des

plasmas de TCV en L–mode sans ou avec chauffage électronique additionel.

Enfin, le septième Chapitre récapitule le travail effectué et discute des possibilités pour

améliorer encore les résultats.

Mots cles: Tokamak, barrière de transport, confinement, turbulence, transport, chaleur,

particules, electrons, convection, théorie gyrokinetique, accumulation d’impuretés
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Chapter 1

Introduction to fusion-oriented
transport physics

Transport physics is a fundamental and very complex research domain, spanning from

atmospheric modeling to semiconductors. It assesses the capabilities of a given physical

system to displace mechanical and thermodynamical quantities like energy, momentum,

velocity, particles, and so on. In particular, it is important to have a correct prediction

of the gains/losses and thus the capability of a system to retain or evacuate a certain

amount of, for example, energy, with respect to exchanges with the external environment.

In addition, transport physics allows the scientist to calculate and to predict profiles, i.e.

the spatial variation of local values of the relevant quantities, and their evolution in time.

In the domain of thermonuclear fusion, transport physics is applied to understand the

phenomena that take place in the core of a Tokamak, the toroidal device designed to

magnetically confine the high temperature plasma. The main goal of the fusion–oriented

scientific community is to obtain a steady–state self–sustained burning plasma to produce

low-cost and safe electrical energy from thermonuclear reactions. The burning plasma re-

actor has become, from a mere tool to study fundamental plasma physics, a real necessity

for future times due to the strong increase in energy demand we are facing nowadays, and

the need to cut with polluting and/or dangerous energy sources. The next generation

of fusion reactors, like ITER (acronym for International Thermonuclear Experimental

Reactor) [1, 2], is designed explicitly to show the public opinion that the production of

energy through nuclear fusion is feasible.

This objective has been pursued since the realization that a magnetically confined en-

semble of deuterium and tritium ions can be pushed to sufficiently high temperatures

to react and produce helium and energetic neutrons via nuclear fusion reactions. The

confinement scheme should be able to maintain the quasi-neutral ensemble of ions and

electrons in steady–state conditions without appreciable use of an external energy source.

Indeed, the main limitation to an achievable steady–state energy–producing reactor is,

altogether with some technological limitations regarding the plasma–facing components
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due to high edge temperatures, the fact that a large external energy source is needed in

order to successfully confine the plasma. This last point is crucial since, for the realization

of a fusion reactor for commercial use, it is necessary that the ratio between released and

input energies, called Q factor, satisfies Q ≫ 1. This requires the hot particles to stay

in the core of the plasma for a sufficiently long time to perform a relevant number of

thermonuclear reactions. Indeed the core should have the same reactants concentration

in time, and not become polluted by inert reaction products (essentially ionized He), or

edge–ablated impurities. These problems are at the center of the studies of plasma physics

in the domain of confinement and transport. The transport channels can be divided in

two main categories: the energy channel and the particle channel.

Physicists have since the sixties discovered that different mechanisms regulate energy and

particle transport. In particular it has been observed that inside the tokamak, radial

transport is caused at a very basic level by cross–field collisional transport, where colli-

sions are provided by Coulomb scattering between charged particles. However collisional

transport in a toroidal device (called neoclassical transport, [3]) would result in levels

of transport that are far inferior to the ones observed in the core of Tokamak plasmas.

Experimental observations of core confinement degradation give rates of energy and par-

ticle cross-field diffusion that are ∼ 101 − 102 times larger than what is predicted by

neoclassical transport. On the other hand, it has been known since the development of

fluid dynamics that growing instabilities can form in unfavorable regions of a dynamical

system. For example, the Rayleigh–Taylor instability amplifies small perturbations of an

interface between two fluids at different densities, provided there is a net force perpendic-

ular to the interface whose sign is the same as the density gradient. In a similar way, in

a magnetically confined toroidal plasma, different kinds of fluid and kinetic instabilities

can be excited due to the presence of magnetic field curvature and finite gradients of the

plasma density and temperature profiles [4]. The presence of plasma microinstabilities

results in a turbulent state that strongly enhances radial cross–field transport of energy

and particles. However improved core confinement regimes, where turbulence activity is

reduced or almost completely suppressed, have been found in many tokamaks ([5, 6, 7]

and references therein).

The effect of turbulence on the equilibrium plasma profiles is highly non-trivial with re-

gards to the dependence of the amplitude of radial diffusion on the plasma equilibrium

parameters, the magnetic geometry, and the fact that turbulence can act also as a source

of plasma profile gradients. For example it enables inward convection of particles that

can balance outward diffusion and sustain a finite gradient even in the absence of core

particle source [8]. Nevertheless this is consistent with the second law of thermodynam-

ics [9], because the sustainment of a peaked density profile is indirectly provided by the

coupling with the temperature and current profiles, thus it is not possible in the absence
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of an external power source that sustains the temperature and the current profiles via

an external inductive source or a radio–frequency generated current drive. The fact that

turbulence can provide an inward convection of particles can give rise to a problem since

core pollution by impurity accumulation and helium ash retention are dramatic limita-

tions to the performance of the tokamak plasma.

Different theoretical models, which are based on the assumption of a developed turbulent

state, have been proposed to interpret the experimental observations on particle trans-

port, like the ’TEP’ model [10, 11, 12], or a model based on particle diffusion in energy

phase space [13]. Actually, as we will discuss in this work, a self–consistent gyrokinetic

model can be shown to incorporate, derived from first principles, all these partial models.

In addition to collisional neoclassical transport and turbulence–driven transport, other

phenomena linked to Magneto–Hydro–Dynamic (MHD) macro–instabilities like the Neo-

classical Tearing Mode (NTM) [14], sawtooth crashes [15] or fishbones [16] can have a

strong effect on transport and thus on plasma profiles. Other models are based on com-

pletely different arguments like profiles ’universality’, see Ref. [17] and references therein.

The complexity of plasma transport physics can be very high. Nevertheless, it is possible

to understand the separate mechanisms and compare theoretical predictions with experi-

mental observations through detailed study of the local characteristics of plasma profiles

and their time traces. In this perspective, we will introduce and discuss the tools that

allow us to perform local analysis of the transport phenomena observed in the Tokamak

core, showing in detail the different capabilities of the employed theoretical models and

numerical codes.

The experiments that allow us to perform comparison with theoretical models have been

performed on the TCV Tokamak. Its main characteristics, diagnostics, and the power-

ful electron cyclotron heating and current–driving capabilities will be briefly presented.

Following the experimental tools, we will present the main codes used to perform the

theoretical interpretation of experimental data. We employ a dynamical radial trans-

port code for the calculation of time scales, magnetic equilibrium, and plasma profiles.

This code is coupled with the required modules for the calculation of MHD instabilities

and neoclassical transport coefficients. In addition, two numerical codes are used for the

calculation of turbulence related quantities and the assessment of the effect of turbulence–

induced transport on the plasma profiles in the view of performing an in–depth study of

the electron Internal Transport Barrier (eITB) scenario. The ITB scenario has been pro-

posed for ITER operation in the advanced phases. Thus, the key results obtained in this

thesis work could be helpful to predict the outcomes in future experiments. Indeed we

will present general results on particle transport theory that can help in understanding

existing experiments. We also dedicate some space to the study of impurity transport

in TCV L–modes and analyze the basic mechanisms that provide the observed carbon
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impurity peaking in that scenario.

Although the main scope of the present thesis is to deal with particle transport theory and

comparison with the experimental observations, we present some results on heat trans-

port simulations for TCV plasmas, in particular for the eITB scenario, to show that the

same fundamental mechanism acts synergetically to enhance both energy and particle

confinement.



Chapter 2

Transport simulations for TCV
plasmas

2.1 Introduction

Transport modeling of the Tokamak plasma core is a challenging issue and requires several

tools to be employed to reach the specific goals. Although in general, with the help of the

system symmetries, the global transport problem can be reduced to one spatial dimension,

namely along the radial cross–field direction, the transport itself is known to be driven

by phenomena that intrinsically develop on two, even three, dimensions, covering several

disparate time and length scales. Nevertheless there are several advantages arising from

these scales separation. The cross–field transport that is observed on confinement time

scales can be modeled with global radial transport codes. The transport sources, i.e.

particle and energy fluxes, are calculated with external modules that consider phenomena

happening at a much faster time scale. This is possible since these phenomena are caused

by plasma microinstabilities (turbulence), which are the main responsible for the observed

fluxes, that act on length scales of order of the Larmor radius and on time scales of the

order of the ion sound transit time. For the same reason they can be studied independently

from the phenomena acting on equilibrium scales, with powerful codes that clarify their

behavior.

In this Chapter we first introduce the TCV tokamak, its heating capabilities and the

relevant plasma diagnostics. Then we present the main plasma scenarios, in particular

the electron Internal Transport Barrier scenario (eITB). The theoretical tools that will

be used to analyze global and local transport properties are introduced and discussed.

These tools can be used either to interpret the experimental observations or to predict

the behavior of plasma parameters in artificial parameters scan similar to the experimental

values.
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Parameters Symbol Value

Major radius R0 0.88 m
Minor radius a 0.25 m

Nominal aspect ratio A = R0/a 3.4
Vacuum vessel elongation κTCV 3
Maximum plasma current Ip 1.2 MA

Maximum central magnetic field B0 1.54 T
Maximum loop voltage Vloop 10 V

Discharge duration < 4 s
edge plasma elongation κa 0.9 - 2.82

edge plasma triangularity δa (-0.8) - (+0.9)

Table 2.1: Main TCV parameters.

2.2 Experimental framework

We start by describing the TCV Tokamak, the relevant diagnostics from which data are

extracted, and the Electron Cyclotron system. We briefly present the numerical tools

used to analyze the experimental data. Finally we present the eITB scenario and its

characteristics.

2.2.1 The TCV Tokamak

TCV, acronym for Tokamak à Configuration Variable, is located at the Centre de Recherches

en Physique des Plasmas (CRPP), is an axisymmetric toroidal confinement machine with

the peculiarity of being versatile in obtaining disparate shapes for the plasma column

to study their stability properties [18]. The main design parameters of the machine are

shown in Table 2.1, while figure 2.1 shows a schematic view of TCV. From the parameters

table we can see that the geometry in particular is characterized by the low aspect ratio

(ǫ(a/2) ≈ 0.12).

2.2.2 Main diagnostics

The TCV diagnostic system is composed of different components to measure the main

plasma parameters and obtain core profiles of the relevant quantities. The diagnostics

can be divided in categories depending on the type of data they provide.

For the purpose of performing transport simulations of TCV plasmas, the main diagnostics

used in this work are: the magnetic coils to reconstruct the magnetic equilibrium, the

Thomson Scattering system to measure core density and temperature profiles of electrons,

a system of 14 vertical chords of the Far InfraRed (FIR) interferometer to simultaneously

cross-check the Thomson Scattering measurements and to reconstruct the electron density
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Figure 2.1: The TCV vessel: main structure and coils.
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X3 system (118GHz)

X2 system (82.7GHz)

Launcher 2, 3, 5, 6

Launcher 1, 4

Figure 2.2: Poloidal cross-section of the TCV vessel. The X2 and X3 ECH launching
systems and ray paths are shown.

evolution on a fast time scale, a Charge Exchange Resonant Scattering (CXRS) diagnostic

to measure the main ions and impurity density and temperature profiles, a Compact

Neutral Particle Analyzer (CNPA) to estimate the ion temperature distribution function,

a system of multiple fast X-ray cameras to map the spatio-temporal evolution of the

plasma energy content, and a recently installed Phase Contrast Imaging (PCI) diagnostic

to measure small-scale fluctuations and obtain information on plasma turbulence.

2.2.3 ECH system

TCV is equipped with a ECH system that is characterized by its flexibility [19]. It is

designed to cover a large portion of the poloidal cross section, as it is required to be used

with the wide variety of plasma shapes created in the vessel. The toroidal injection angles

can be changed, allowing the generation of substantial electron cyclotron current drive

(ECCD), either in co or in counter directions. The plasma scenarios we are interested in

are heated through the 2nd harmonic cyclotron resonance in the extraordinary mode X2.

The TCV ECH system provides two clusters of three gyrotrons operating at the second

harmonic frequency, f2ce = 82.7 GHz. The nominal power for each gyrotron is 500 kW,

resulting in a total available RF power of 3 MW. The pulse duration is limited by the

window heat load at about 2 s.
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In figure 2.2 the X2 system launchers geometry is shown in the poloidal plane of the

TCV vessel. Each launcher has two degrees of freedom. One provides steering of the

microwave beam in a fixed plane, changing the poloidal injection angle, even during the

discharge, allowing experiments with a sweep of the power deposition location. The other

degree of freedom allows the rotation of the sweep plane between discharges, permitting

experiments with different amounts of ECCD.

2.2.4 Analyzing experimental data

The main scope of the work is to compare predictions from theory–based numerical codes

with experimental observations. Thus, an important part of the work is to select reliable

data and to process them to be used for the theoretical analysis. Since the present work

deals with heat and particle transport, the relevant quantities that are subject to the

main analysis are the density and temperature profiles of electrons and ions.

Electron temperature and density from Thomson Scattering

The Thomson Scattering system of TCV consists of three YAG lasers firing high power

pulses, each one with a frequency of ∼ 16 Hz. They can be fired alternatively to obtain

profiles with a sampling frequency of ∼ 50 Hz, although this modality requires high

density plasmas, or simultaneously to obtain good quality measurements in low density

plasmas. The acquisition of the scattered light is done by means of 25 detectors aligned

in the vertical direction at a distance of 0.92 meters from the torus axis. The detectors

are symmetrically displaced above and below the equatorial plane z = 0 and they are

distanced by ∼ 3 cm, thus covering almost the whole height of the vessel. From each

scattering measurements the electron temperature Te and density ne can be calculated

and mapped on the radial direction assuming constant quantities on a magnetic flux

surface. To improve the time and spatial precision it is possible to perform slow vertical

movements of the plasma column provided the core parameters are kept constant. With

this technique Te and ne are obtained with more accuracy.

Interferometry

In the context of the study of particle transport, subject of chapter 4 and chapter 5, a

particular attention will be devoted to the study of transient phenomena to characterize

the relevant time scales. However the Thomson Scattering system has a low time sampling,

not suited for transient analysis. An alternative source of density profiles comes from the

inversion of the FIR data. The FIR interferometer consists of 14 vertically oriented equi–

spaced lines of sights traversing the plasma, horizontally placed from R = 0.64 m to

R = 1.12 m, thus covering the radial extension of most of TCV plasmas. The in–vessel
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Figure 2.3: a) Example of SVD inversion for an ELMy H-mode discharge in TCV. ELM
events are marked with vertical dashed green lines. ρ is a radial coordinate defined as ρ =
√

ψ/ψr=a, where ψ is the poloidal magnetic flux; b) For the same discharge, comparison
of fitted Thomson density (black solid) and density profiles obtained from SVD (dashed)
around the sawtooth crash at t = 1.0703 s (blue dashed before crash, red dashed after
crash). Four topos are used for this case.

laser lines are compared with an external reference line and thus the line–integrated

density can be evaluated from the fringe counts. From these measurements, the local

profile can be reconstructed by means of different inversion methods.

In this work we adopt the SVD method proposed by Furno et al. [20]. It will be employed

to reconstruct the dynamical evolution of the density profile on time scales relevant to

estimate the magnitude of diffusion and convection. In figure 2.3(a) we show how the

SVD inversion of FIR measurements leads to a high–sampling time reconstruction of the

density profile evolution. We plot the time traces of the electrons density at three different

radial locations. The selected discharge #24474 is an ELM–y H–mode plasma with both

core sawtooth activity (with an inversion radius ρinv ≈ 0.6) and edge ELM activity. The

ELM events are identified by vertical dashed lines, while the sawtooth crashes are clearly

visible on the density trace at ρ = 0. In figure 2.3(b) we compare the Thomson density

profiles (TS in the legend) at the time t ∼ 1.07 s with two SVD–inverted profiles (SVD

in the legend) before and after the sawtooth crash.

2.2.5 TCV plasma scenarios

TCV is capable of operating in a disparate variety of plasma conditions producing a rich

zoology of scenarios, ranging from Ohmic L–modes to ECH heated H–modes to electron

Internal Transport Barriers (eITBs). As we have seen in subsection 2.2.3, the ECH system
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is particularly suited for experiments with strong electron heating and where a large

fraction of non–inductive current drive is needed. This allows to obtain regimes where a

strong increase in core electron energy confinement is reached, substituting the inductive

Ohmic current drive with an off–axis deposited EC drive, such that the current profile

becomes hollow and an internal transport barrier in the electron temperature (eITB) is

formed [21].

The eITB scenario is very useful to perform fundamental physics studies in a steady–

state regime with strong gradients. In fact, both the electron temperature and density

profiles show a drastic change in their gradients when going into the barrier region [22].

We can distinguish different types of eITB scenarios, depending on the heating/current–

drive configuration. In this work we will concentrate on the fully non–inductive scenario.

Another scenario obtained often in TCV is called Improved Core Electron Confinement

(ICEC) and it is produced injecting central counter ECCD to obtain a total current profile

that is slightly off–axis. In this case the Ohmic component is large and a strong heating is

delivered on–axis. This scenario will not be addressed here. However it has been studied

previously in Ref. [23] where more details on it can be found.

eITB fully non–inductive scenario

The fully non–inductive scenario is obtained substituting the centrally peaked Ohmic

current with an off–axis EC co–current drive (co–CD). In this scenario the Ohmic trans-

former can still be used as an actuator to drive central current perturbations to test the

barrier sensitivity to small changes in the core magnetic shear and q profiles [24]. Under

these conditions, the current profile is characterized by being hollow and peaked off–axis.

An additional central heating and/or counter–current (cnt–CD) component can be added

to enhance the barrier. In this type of plasma the reachable total current Ip is limited by

the capabilities of the ECCD system to values of Ip ≈ 80 ÷ 120 kA. Indeed, it has been

found that it can be sustained mostly by the gradients–driven bootstrap current [25], up

to 100% in some cases as shown in Refs. [19, 26, 27].

To give an idea of the main parameters evolution during and after the formation of the

fully non–inductive eITB scenario we choose an example from the eITB database. In

figure 2.4(a) we show the poloidal cross–section of the TCV vessel and eITB plasma dis-

charge #21655 (the LCFS is drawn in solid green). The off–axis co–CD components are

drawn as green and blue rays and the additional central heating component is drawn as

a red ray. In figure 2.4(b) we plot the time traces of some global quantities for the same

discharge. The formation of the barrier is shown by the strong rapid increase in the figure

of merit HRLW, defined as the ratio between the experimental electron energy confinement

time τEXP
Ee and the scaling law for the same parameter obtained with the Rebut–Lallia–

Watkins model [28] τRLW
Ee : HRLW = τEXP

Ee /τRLW
Ee . This parameter is known to be a good
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Figure 2.4: a) Poloidal cross–section of the TCV vessel with fully non–inductive eITB
plasma of discharge #21655 at t = 1.5 s (represented through the LCFS drawn in solid
green). The ECH–ECCD rays configuration is also shown: the green and blue rays are
the off–axis co–CD components to drive the non–inductive current, the red ray is the
central ECH component to enhance the barrier performance; b) Time traces of total plasma
current Ip, edge loop voltage Vloop, line averaged electron density < ne >lin, and total
ECH+ECCD power for same discharge #21655. The barrier formation is visible in the
increase of the figure of merit HRLW from ∼ 1 to ∼ 4 as the loop voltage drop to zero and
the additional central heating is imposed around t ≈ 1.1 s.
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scaling parameter for the energy confinement in TCV L–mode plasmas. It is of order ∼ 1

in Ohmic L–mode plasmas but it can increase up to ∼ 6 for strong eITBs, indicating a

large improvement in the core energy confinement.

2.3 Theoretical tools

Once the experimental data are processed and mapped on a unique radial coordinate,

they can be inserted in a transport code to simulate the global behavior of the plasma

and compare the outcomes of the simulation with the experimental observations. In this

work different numerical tools will be used:

1) The dynamical transport code ASTRA [29] will be used to simulate the behavior of

the electron temperature and to reproduce the eITB characteristic profile observed in the

fully non–inductive scenario.

2) Turbulence codes: used to analyze properties of steady-state profiles, they are devoted

to understand the mechanisms sustaining the observed profiles.

The latter are employed to understand the behavior of the plasma in terms of micro–

turbulence driven fluxes. To model these phenomena, a class of codes constructed around

the gyrokinetic theory are adopted. They are both fully kinetic (gyrokinetic codes) or

derived in a fluid paradigm (gyrofluid codes).

Since in this thesis work we will concentrate on the study of transport fluxes and equi-

librium profiles, we distinguish between the two main sources of transport: neoclassi-

cal transport and turbulence–driven transport. Neoclassical transport is taken into

account using available formulas from the literature. Turbulence–driven transport is in-

vestigated by means of gyrokinetic and gyrofluid codes. In all the cases, both sources of

transport are taken into account and the relative importance will be discussed.

2.3.1 The ASTRA code

The modelling of a dynamical plasma is a very complex issue due to many different aspects

and phenomena that accompany the evolution of the plasma as a system. However,

different considerations or approximations allow to model the relevant phenomena of

interest, in this case cross–field transport on confinement time scales, in a simplified

geometry. The ASTRA code as it is employed here is used to model 1D radial transport

of heat and particles provided the sources and the boundary conditions with a fixed plasma

magnetic boundary. A detailed description of the code can be found in Ref. [29]. Here we

report the fundamental equations that are useful to understand the following. We note

now that in the version of ASTRA used here, the neoclassical transport coefficients are

implemented according to fitting formulas described in Refs. [30, 31].
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Magnetic equilibrium and current

The plasma magnetic equilibrium is reconstructed at each time step by means of the

Grad–Shafranov equation with a three-moments approximation, i.e. to each flux surface

three degrees of freedom are assigned, which are linked to the geometrical parameters

elongation κ, triangularity δ and mid–plane radial position. The plasma boundary, i.e.

the LCFS, that closes the equation, is represented with these formulas with experimental

boundary values for the geometrical parameters:

R = R0 + ∆ + a
[

cos θ − δ sin2 θ
]

z = ∆z + aκ sin θ (2.1)

where ∆ is the LCFS Shafranov–shift and ∆z the vertical displacement. The experimental

values of κ, δ, a, ∆ and ∆z are retrieved from the magnetic equilibrium reconstruction

performed by the code LIUQE [32]. Once the flux surfaces are computed, the flux func-

tions ψ (poloidal flux) and Φ (toroidal flux) and the metric coefficients are calculated.

The safety factor profile q(ρ) is given by the well known equation q =
dΦ

dψ
and the total

plasma current density, expressed as the averaged parallel component j‖ =< j ·B > /B0,

is calculated as the sum of the resistive inductive contribution σE‖, the bootstrap current

jBS, and the external non–inductive sources (for example RF current–drive) jCD:

j‖ = σE‖ + jBS + jCD (2.2)

This equation is also used in ASTRA for the radial diffusion equation of the poloidal

magnetic flux ψ with jBS and jCD as external sources. The bootstrap current jBS is

evaluated with the neoclassical coefficients reported in Ref. [30].

The magnetic shear s is calculated as s = r/q dq/dr and it is positive for monotonic q

profiles but reverses sign in the core for reversed q profiles obtained for example when

E‖ = 0 and a strong jCD is injected off–axis.

When running ASTRA one has to be careful that the value of the total current density j‖

does not become too low near the magnetic axis. In that case the magnetic equilibrium

solver does not converge anymore and the code crashes. To avoid this problem, which

sometimes arises when simulating the fully non–inductive eITB cases, we adjust the profile

with a small ad–hoc residual component that preserves a non–vanishing on–axis value of

j‖. The problem itself is due to the fact that when j‖(ρ → 0) → 0 then q(ρ → 0) → ∞,

the metric coefficients become infinite and the transport equations are no more solvable.

Heat transport

The transport of energy is modelled by the following 1D flux–surface averaged equation:

1

V ′

∂(V ′njTj)

∂t
+

1

V ′

∂

∂ρ
(V ′g1Qj) = Pj (2.3)
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where V ′ = ∂V/∂ρ is the flux–surface enclosed volume radial derivative, Tj is the jth

species local temperature, g1 =< |∇ρ| > is a metric coefficient, Qj is the local heat flux,

and Pj the local power density source.

The radial coordinate ρ is an arbitrary flux surface label but in the following we will employ

specific definitions: (the square root of) the normalized poloidal flux ρψ =
√

ψ/ψr=a, the

normalized enclosed volume ρV =
√

V/Vr=a, the normalized toroidal flux ρΦ =
√

Φ/Φr=a.

Throughout the following we will employ mainly the volume–related coordinate ρV as

it is closely related to the real space cylindrical–like radial coordinate r. In some cases

the poloidal magnetic flux label ρψ will be used. In all the formulas and equations, the

radial coordinate will be always left ’unspecified’ and indicated with the symbol ρ, being

implicitly defined as ρV if not stated differently.

The heat flux Qj appearing in equation (2.3) is expressed by:

Qj = −njTj
g2

g1

Σiχ
i
jG

i
j (2.4)

where g2 =< |∇ρ|2 > is another metric coefficient, χij is the heat transport coefficient of

species j relative to the thermodynamical force i given by Gi
j =

(

∂Tj
Tj∂ρ

,
∂nj
nj∂ρ

, ...

)

.

Here we neglect the small contribution 3/2ΓjTj coming from energy convection due to

a finite particle flux Γj. We also neglect the so–called heat pinch, i.e. any off–diagonal

contribution appearing in equation (2.4), thus leaving only the diagonal thermodynamical

force
∂Tj
Tj∂ρ

to give Qj = −njχj
g2

g1

∂Tj
∂ρ

. The (only diagonal) heat transport coefficients

χj are provided by neoclassical theory–based formulas implemented in the code, and by

an external module for the turbulence–driven flux calculation. The time evolution of the

temperature is thus self–consistently calculated inserting the external power source as

from the experiment and initiating the simulation with the experimental profiles.

At stationary state, i.e. when ∂/∂t = 0, the temperature profile is given by the solution

of the following differential equation:

∂Tj
∂ρ

= − 1

V ′njχjg2

∫ ρ

0

PjdV (2.5)

In fact, from the experimental measurements of temperature and density, and provided

the magnetic equilibrium and the absorbed power, one can evaluate a ’power balance’

heat transport coefficient, for example for electrons, as:

χPB
e = − 1

V ′ ∂Te

∂ρ
neg2

∫ ρ

0

PedV (2.6)

In general the electron absorbed power Pe is calculated as the sum of the Ohmic power,

the absorbed ECH power and the equipartition power loss:

Pe = PECH + POH − PEQ (2.7)
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The radiated power loss, diagnosed with the bolometers, is negligible in TCV as well as

other minor sources/sinks of energy.

For the ions, a formula similar to 2.6 is used, but only the equipartition power is retained

in the ion power source Pi since no other ions heating source is presently installed in TCV:

Pi = PEQ (2.8)

Particle transport

The particle continuity equation is analogous to equation (2.3):

1

V ′

∂V ′nj
∂t

+
1

V ′

∂

∂ρ
(V ′g1Γj) = Sj (2.9)

where now nj is the local density, Γj the local particle flux, and Sj the local particle

source. The particle flux is decomposed in the following way:

Γj = −nj
(

Dj
g2

g1

∂nj
nj∂ρ

− Vj

)

(2.10)

where the diagonal term is proportional to the density logarithmic gradient through the

diffusion coefficient Dj, and the off–diagonal contributions are contained in the convection

velocity Vj.

In TCV plasmas the core particle sources have been estimated to be very small [33] and

eventually important only in the very edge region ρV & 0.9, which allows us to assume

Sj ≈ 0 for the core region. In this case, contrary to heat transport, where the steady–state

(∂/∂t = 0) transport coefficient χj can be evaluated with a power balance technique, see

equation (2.6), in the case of particle transport the steady–state condition reads

Γj = 0 (2.11)

Therefore, Dj and Vj cannot be evaluated independently. However, from equation (2.10)

and equation (2.11), their ratio is found to be related to the density logarithmic gradient

gradient:
g1

g2

Vj
Dj

=
∂nj
nj∂ρ

(2.12)

To separate diffusion and convection in an unambiguous way, we performed experiments

where density transients are triggered and Dj and Vj are evaluated separately solving

equation (2.9).

Initial and boundary conditions

Current evolution – With regards to the initial and boundary conditions for the current

density profile, different possibilities can be chosen. In fact, ASTRA allows to impose
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either the total plasma current Ip or the edge loop voltage V LCFS
loop . For the fully non–

inductive cases we find better to use the boundary condition V LCFS
loop = 0, while in all the

other cases we fix the current Ip = IEXP
p . A check that the self–consistent current and loop

voltage are close to the experimental values is done for every case to insure stationarity.

The initial condition on the current density profile (or alternatively on the q profile) does

not matter so much and we decide to use the LIUQE q profile, even if the real q profile

is reversed. The current density will diffuse according to the Ampere’s law and thus

ASTRA will converge to the self–consistent steady–state within a few current evolution

characteristic times.

Temperature evolution – The initial electron temperature is provided by the Thomson

Scattering measurements:

Te(ρ, t = 0) = TEXP
e (ρ) (2.13)

The ion temperature profile, if available, is provided by the CXRS diagnostic. However

most of the time the ion temperature measurements are absent and thus we utilize a

simple procedure to provide an initial Ti: it is fitted as a linear function of the electron

temperature with central and edge scaling factor. That is:

Ti(ρ, t = 0) = TEXP
e (ρ, t = 0)

[(

Te

Ti

)

0

(1 − ρ) +

(

Te

Ti

)

b

ρ

]

(2.14)

where the central

(

Te

Ti

)

0

and boundary

(

Te

Ti

)

b

values are chosen by the user.

The boundary conditions are chosen to fix the simulated values to the experimental values:

Tj(ρb, t) = TEXP
j (ρb) (2.15)

where the ’boundary’ ρb can be chosen to be smaller than the edge value ρ = 1.

Density evolution – We choose to simulate the density of electrons, main ions (deuterium,

Z = 1) and one impurity (carbon, Z = 6). The initial values for the three densities

are provided by the electron density measurements from Thomson Scattering or FIR (via

SVD inversion) and the value of the effective charge Zeff . In practice we have:

ne(ρ, t = 0) = nEXP
e (2.16)

ni(ρ, t = 0) = nEXP
e

(

6 − Zeff

5

)

(2.17)

nC(ρ, t = 0) = nEXP
e

(

Zeff − 1

30

)

(2.18)

The boundary conditions for densities follow the same rule as for that of the temperature,

equation (2.15). However in most of the performed simulations the densities are kept fixed

and no evolution is allowed. The reason is that we concentrate on temperature evolution

for the dynamical studies and on steady–state regimes for the study of density profiles.
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2.3.2 Test of ASTRA for TCV plasmas

We now show how the code works presenting several simulations of some TCV plasmas

using exclusively experimental data. In this sense we concentrate on checking the self–

consistent magnetic equilibrium and compare it with the reconstruction obtained from

the LIUQE code, used routinely for the mapping of Thomson Scattering measurements

on the flux surface coordinate ρ, for different cases. For these simulations, the electron

temperature Te is allowed to evolve according to equation (2.3), using the power balance

χe from formula (2.6). The current density j‖ is calculated according to formula (2.2). The

core MHD–driven instabilities, sawtooth crashes in this case, are taken into account in the

simulations with the aid of a Fortran90 sawtooth module [34], based on the Kadomtsev–

Porcelli model [35]. The densities are kept fixed as well as the ion temperature. The EC

current drive is modelled by the Fokker–Planck code CQL3D as done in Ref. [36].

Ohmic L–mode plasmas

We perform ASTRA simulation of Ohmic sawtoothing discharge #28359 at t = 1 s. In

figure 2.5(a) we compare the radial profile of Te [keV] from both the Thomson Scattering

measurements and from the ASTRA prediction, showing also the power balance χPB
e

[m2/s]. In figure 2.5(b) we compare the result for the q profile between LIUQE and

ASTRA, together with the total j‖ [MA/m2] and the bootstrap jBS [MA/m2] current

densities. Note that the LIUQE initial q profile is lower than 1 for a large portion of the

radial interval and thus a cycle of sawtooth crashes takes place to recover q ≥ 1.

Ohmic L–mode ECH heated plasma

In figures 2.6(a,b) we show the simulation results for ECH heated Ohmic discharge

#24883, taking the experimental profiles at t = 1.8 s. The ECH power is injected at

ρV ≈ 0.35, plotted in figure 2.6(a) as a dashed green line. The total injected power is
∫

PECHdV = 1.7 MW. In figure 2.6(b) we show again the current density and the safety

factor profiles compared to the LIUQE reconstruction.

Fully non–inductive eITB plasma

We take as an eITB example discharge #29859 at time t = 1.5 s, for which the total

current is Ip ≈ 95 kA. The current scenario is the fully non–inductive scenario with off–

axis co–CD and a negligible Ohmic component. In figure 2.7 we show the result of the

ASTRA simulation for the electron temperature Te in figure 2.7(a) and for the q profile

and current densities in figure 2.7(b). Note that now the total current density has an

additional component, namely the ECRF driven current density jCD.

It is interesting to observe, in figure 2.7(b), the difference between the q profile predicted
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Figure 2.5: a) Simulation outcomes for #28359 at t = 1 s, comparing Te (shown in keV)
from Thomson Scattering (black, left y–axis) and the ASTRA result (red, left y–axis),
together with the power balance heat transport coefficient χPB

e (blue, right y–axis) in m2/s;
b) Comparison of q profiles from LIUQE (black) and ASTRA (red) on the left y–axis.
The reconstructed total current density j‖ in MA/m2 (blue) and bootstrap component jBS

in MA/m2 (magenta) are plotted on the right y–axis.
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Figure 2.6: a) Simulation outcomes for #24883 at t = 1.8 s, with the same logic as in
figure 2.5. Here we plot also the absorbed ECH power density profile in arbitrary units
(dashed green); b) Comparison of q profiles and current densities as in figure 2.5.
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Figure 2.7: a) Simulated eITB discharge #29859 at t = 1.5 s: Thomson and ASTRA Te

with absorbed ECH power density PECH; b) q profiles and current densities. Here we show
also the current drive component jCD (green).

by ASTRA (red) and the q profile reconstructed by LIUQE (black). The first is reversed

and has a minimum around ρV ∼ 0.4 whereas LIUQE gives a monotonic q profile.

In this discharge, during the eITB phase, the bootstrap current fraction fBS is about 45%

and the ECCD fraction fCD around 50%. In the experimental scenario the Ohmic current

vanishes as the Ohmic transformer is set to zero current slope. In the simulation a 5% of

the current is still inductive as a vanishing Ohmic current would cause the current density

at the axis to go to zero and thus the code would not converge anymore.

2.3.3 The gyrokinetic and the gyrofluid paradigms

The Tokamak geometry and the plasma magnetic and kinetic equilibriums are such that

electrostatic (or electromagnetic) microinstabilities can develop, spreading to form a tur-

bulent state that provides a large source of energy and particle transport. Plasma microin-

stabilities are destabilized by the interplay between the unfavorable magnetic curvature

in the low field side of the Tokamak and the presence of steep equilibrium gradients in

the thermodynamic fields, i.e. temperature and density.

These microinstabilities are usually characterized by their fast time scale (∼ R/vi
th the

ion sound transit time) and their short length scale (∼ ρi the ion Larmor radius) com-

pared to the equilibrium time (∼ τE) and length scales (∼ R). However, the time scale

τturb ∼ R/vi
th is much longer than the cyclotron time scale τturb ≫ (mi,me)/(eB), allowing

to average over the faster gyro–motion. The theoretical framework developed from first
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principle (statistical) kinetic equations, introducing these characteristic time and length

scales separation, is called the ’gyrokinetic theory’. If a fluid closure is introduced to rep-

resent the plasma as a thermodynamical system, ’averaging’ details over the phase space,

then the theory is called ’gyrofluid’. The ultimate goal of these two paradigms is to de-

scribe plasma turbulence such that a reliable calculation of transport fluxes is possible.

In principle the gyrokinetic theory is more complete as it contains single–particle kinetic

effects. However, as done in fluid dynamics for example, to fasten calculation time it is

easier to stick to a fluid model (gyrofluid in the Tokamak case), whose drawback is the

loss of kinetic effects and the relative arbitrariness in the choice of the fluid closure.

In this work we employ tools that have been developed in both the gyrokinetic and the

gyrofluid frameworks. In some cases these tools can be integrated in ASTRA to dynam-

ically simulate the plasma evolution due to the background turbulent activity. To this

purpose, the Gyro–Landau–Fluid GLF23 code [37] is employed in ASTRA for dynamical

simulations. The terminology ’Gyro-Landau-Fluid’ means that GLF23 employs a gyro–

averaged fluid paradigm that allows the user to perform very fast calculation of turbulence

in the linear regime, using a complicated mixing–length rule to emulate the non–linear

saturation phase, but it retains kinetic Landau damping in the fluid closure in the form

of a dissipative heat flux [38]. This code will be used predominantly for heat transport

studies, although it can also provide predictions on particle transport as for example done

in Ref. [39].

In addition, we employ the powerful GS2 gyrokinetic code [40] to analyze in detail the

properties of turbulence in the linear phase for different plasma parameters scans. It

will be shown that relevant information about the dominant microinstabilities and the

induced transport can be obtained from this code. It will be used mainly for the study

of steady–state particle transport presented in chapter 5 and in chapter 6.

To proceed in a proper logical order, we present first the fundamental gyrokinetic theory

and the GS2 code, and then the gyro–Landau–fluid model as implemented in GLF23.

The gyrokinetic equation and GS2

Gyrokinetic theory is founded on the assumption that the kinetic of Tokamak plasma

micro–turbulence follows the physics contained in the Vlasov equation with the addi-

tion of a proper collision operator. The basic assumption is that the relevant time and

length scales must be much larger than the cyclotron time and length scale as previously

discussed. In particular all the fluctuating field X̃ (which equilibrium value is X0) and

parameters must be such that they obey the fundamental gyrokinetic ordering:

X̃

X0

∼ k‖
k⊥

∼ ωturb

Ωcyclo

∼ 1

k⊥L0

∼ ρi

L0

≪ 1 (2.19)
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where L0 is a typical equilibrium length scale. This ordering allows to treat the gyro–

motion as a very fast time scale that can be averaged out. The resulting guiding-center

approximation for the particle trajectory leads to the standard form of the gyrokinetic

equation [41]:
∂f

∂t
+
dR

dt
· ∇f +

dv‖
dt

∂f

∂v‖
= C(f) (2.20)

where f(R, v‖, v⊥, t) is the single–particle distribution function, R is the particle guiding

center position and v‖, v⊥ respectively the particle velocity along and perpendicular to

the magnetic field lines. C(f) is the collision operator. The trajectory of the guiding

center position R is determined by the particle drifts caused by the the presence of an

electromagnetic field in a toroidal geometry. Its evolution equation is given by:

dR

dt
= v‖

B

|B| + ṽE×B + vd
⊥ (2.21)

where ṽE×B is the Ẽ × B drift induced by the fluctuating electric field Ẽ, and vd
⊥ is

the perpendicular drift associated with the curvature of the magnetic field lines. At the

moment we neglect the magnetic fluctuations. The electromagnetic field (E,B) is self–

consistently evaluated with Maxwell’s equations which close the problem.

Equation (2.20) contains nonlinearities in the last two terms at the left. These are classi-

fied as the perpendicular nonlinearity (term
dR

dt
·∇f) and the parallel nonlinearity (term

dv‖
dt

∂f

∂v‖
). It can be shown, through a simple scales separation argument, that the first

one is dominant, while the second does not play a major role [42] except on confinement

time scales as inferred in recent works [43]. The perpendicular nonlinearity arises from

the advection of the perturbed part of f , i.e. f̃ , by the perturbed Ẽ×B velocity, namely

ṽE×B · ∇f̃ . For our purposes we will neglect the nonlinear interactions and study the

properties of turbulence and transport in the linear phase. On the other hand, the non-

linear term is fundamental to obtain turbulence saturation values and fluxes amplitudes.

This can be done in the linear framework introducing mixing length arguments and it will

be done in the following.

From now on we will focus on the linearized gyrokinetic equation for f̃ , namely the per-

turbed part of f = f̃ + f0, where f0 is the equilibrium distribution function:

∂f̃

∂t
+
dR̃

dt
· ∇f0 +

dR0

dt
· ∇f̃ +

dṽ‖
dt

∂f0

∂v‖
+
dv‖0

dt

∂f̃

∂v‖
= C(f̃) (2.22)

Note that
dR0

dt
· ∇f̃ contains the macroscopic gyrocenter drifts and

dv‖0

dt

∂f̃

∂v‖
represents

the parallel mirror force that provides particle trapping. From this equation one can

immediately see that the source of turbulence is given by the resonance between the ad-

vection of the perturbation by the macroscopic drifts in the presence of gradients of the
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equilibrium fields.

The derivation of the non–linear electromagnetic gyrokinetic equation for a toroidal ax-

isymmetric configuration from equation (2.20) is given in Ref. [44]. We show here the

resulting equation in its electrostatic, linearized, collisionless form:
(

∂

∂t
+ v‖∇‖ + ωd

)

f̃ =
Ze

T
F0

(

−v‖∇‖ − ωd + ω∗

)

< Φ̃ >g (2.23)

where f̃ is the fluctuating part of the distribution function f , such that f = F0 + f̃ , F0 is

the equilibrium distribution function (usually assumed Maxwellian), and < Φ̃ >g is the

’gyro–averaged’ electrostatic potential fluctuation. ∇‖ is the parallel gradient operator,

ωd is the magnetic curvature drift frequency operator, which contains poloidal and radial

derivatives, and ω∗ is the diamagnetic drift frequency operator. Taking a simple magnetic

equilibrium with concentric shifted–circles surfaces, their definitions are:

∇‖ =
1

Rq

(

q
∂

∂φ
− ∂

∂θ

)

ωd = − 1

v2
th

(

v2
‖ +

v2
⊥

2

)

T

ZeBR2

(

cos θ

ρ

∂

∂θ
+ sin θ

∂

∂ρ

)

ω∗ =
T

ZeBR2

[

1

n

∂n

∂ρ
+

(

E

Eth

− 3

2

)

1

T

∂T

∂ρ

]

∂

ρ∂θ
(2.24)

where Z is the species to electron charge ratio, e the electron charge, n is the species

density, T the species temperature, E the particle energy and vth, Eth are respectively

the particle thermal velocity and thermal energy. The radial coordinate ρ is defined here

as the local aspect ratio, or normalized minor radius, ρ = r/R.

Equation (2.23) is fully described when the initial and boundary conditions are known.

At each time step its solution is defined on a 4D plane, two spatial dimensions ρ − θ,

and two phase space dimensions v‖ − v⊥. Note also that it is a global problem, due

to the presence of radial coupling in ωd, meaning that the full radial interval must be

solved consistently. However equation (2.23) can be strongly simplified if the dominant

microinstabilities are ballooning modes [45, 48] with high toroidal number n, for which the

relation k‖ ≪ k⊥ holds. This relation can be easily understood as T/(ZeBR2) ∼ vthρi/R
2

and as such the perpendicular wavenumber must scale as 1/ρi to balance parallel damping

∼ vth/R. Ballooning means that the instability develops mainly on the plasma low field

side and its radial extension is much smaller than the equilibrium length scales. In this

case the perturbation can be decomposed into the parallel and perpendicular components

with completely different length scales. The formal procedure is discussed in Ref. [46].

Equation (2.23) can thus be reduced to a 3D differential equation (1D spatial and 2D in

velocity space):
(

∂

∂t
+ v‖∇‖ + iωd

)

f̃ =
Ze

T
F0

(

−v‖∇‖ − iωd + iω∗

)

J0Φ̃ (2.25)
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with now ∇‖ = −1/(Rq)∂/∂θ while ωd and ω∗ become algebraic operators:

ωd = − 1

v2
th

(

v2
‖ +

v2
⊥

2

)

T

ZeBR
[cos θ + (sθ − α sin θ) sin θ] ky

ω∗ =
T

ZeBR

[

1

n

∂n

∂ρ
+

(

E

Eth

− 3

2

)

1

T

∂T

∂ρ

]

ky (2.26)

where ky = nq/(Rρ) is the poloidal wavenumber and J0 is the zero–order Bessel function

arising from Fourier decomposition of the gyro–averaging operator< ... >g, with argument

J0(k⊥v⊥/vth), k⊥ = ρi

√

k2
y + k2

x, kx = kysθ. The angle θ is no more the poloidal angle

but it is here an extended field–aligned coordinate that represents the extension of the

ballooning mode on the magnetic field lines. Note that linearly the single modes with

toroidal wavenumber n are not coupled due to axial symmetry (i.e. einφ is an eigenvector),

while poloidal harmonics are coupled through the perpendicular drift ωd. The definition

for ωd, valid in the low aspect ratio limit for a shifted circles magnetic equilibrium, shows

that the magnetic curvature drift operator becomes a function of the magnetic shear s

and of the Shafranov–shift parameter α. Note also that ωd(θ = 0) is positive for electrons

and negative for ions. The same is true for the density–driven term in ω∗ as, for peaked

profiles,
1

n

∂n

∂ρ
< 0.

The drawback of using the first–order ballooning representation as done here is that

the problem becomes radially localized to ’zero–dimensional’ and thus no information on

non–local or global effects are retained except from the appearance of the magnetic shear

s. This approximation becomes invalid when the magnetic shear approaches zero as for

example near the magnetic axis or near qmin when the q profile is reversed. Nevertheless,

around the s = 0 flux surface the turbulence modelling equations can still be represented

with a ballooning formalism but to higher radial order [47]. Indeed slab modes can be

important in that region. In fact, it has been recently shown that the s = 0 surface

can host slab–like Electron Temperature Gradient (ETG) modes that could provide an

important source of transport for reversed q–profile scenarios [49]. In this work no attempt

to use the higher order formalism is done, and in this perspective we will restrain to

simulation of cases with |s| & 0.2.

We now adopt the ’main ion’ normalization, i.e. we normalize time and length scales to

respectively the ion transit time and Larmor radius ρi. Equation (2.25) is then rewritten

in normalized form:

(

∂

∂t
+ v‖∇‖ + iωd

)

f̃ = ZτF0

(

−v‖∇‖ − iωd + iω∗

)

J0Φ̃ (2.27)
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and for ωd and ω∗:

ωd = −
(

v2
‖ +

v2
⊥

2

)

kyρi

Zτ
[cos θ + (sθ − α sin θ) sin θ]

ω∗ =
kyρi

Zτ

[

1

n

∂n

∂ρ
+

(

E

Eth

− 3

2

)

1

T

∂T

∂ρ

]

(2.28)

where τ = Ti/T is the main ions to species temperature ratio. Note that the Maxwellian

average of ωd is

ωd0 =

∫

F0ωd = −2
kyρi

Zτ
[cos θ + (sθ − α sin θ) sin θ] (2.29)

which can be useful to put in evidence the velocity–dependent part in the form

ωd =
1

2

(

v2
‖ +

v2
⊥

2

)

ωd0 (2.30)

An alternative form of equation (2.25) is conveniently obtained substituting f̃ with a sum

of the adiabatic part −ZτF0J0Φ̃ and the non-adiabatic part g̃:

f̃ = g̃ − ZτF0J0Φ̃ (2.31)

The resulting equation that describes the evolution of g̃ is

(

∂

∂t
+ v‖∇‖ + iωd

)

g̃ = ZτF0

(

∂

∂t
+ iω∗

)

J0Φ̃ (2.32)

The other piece of the physical system is provided by Maxwell’s laws which, in the case of

ion–scale electrostatic microinstabilities, are simplified down to the gyro–averaged quasi–

neutrality condition
∑

i

Ziñi =
∑

i

Ziñ
pol
i (2.33)

with the gyro–center density ñi given by

ñi =

∫

J0if̃idv (2.34)

and the polarization density ñpol
i , produced by finite Larmor radius effects, is given by

ñpol
i = Ziτi

[

1 −
∫

J2
0iF0idv

]

Φ̃ = Ziτi [1 − Γ0i] Φ̃ (2.35)

where Γ0i = I0(bi)e
−bi , I0 is the modified Bessel function of order zero, and bi = (k⊥ρLi)

2.

It is easy to see that for electrons, at the ion scale, Γ0e ≈ 1 and the polarization density

can be neglected in first approximation.

The system described by equations (2.32) and (2.33) is then solved to find the evolution
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of the quantities g̃ and Φ̃. It is then possible to calculate the cross-field flux ΓX for a

thermodynamic field X obtained as a moment of g̃:

ΓX ∼< X̃ṽr
E×B > (2.36)

where ṽr
E×B is the radial component of the fluctuating E×B velocity. Because ṽr

E×B ∝ Φ̃

and, in the linear regime, X̃ ∝ Φ̃, it is found that the flux is defined only if the value of

|Φ̃|2 is known. This is not possible in the linear regime since Φ̃ is exponentially growing

without any saturation mechanism. However, the usual mixing length argument approx-

imates the saturated value of |Φ̃|2 with (γ/ < k2
⊥ >)

2
where γ is a characteristic inverse

linear time scale and < k⊥ >θ a characteristic perpendicular inverse correlation length,

given in the linear regime by the ballooning averaged perpendicular wavenumber [50].

The GS2 code calculates, for a given set of plasma equilibrium parameters, the fastest

growing instability, according to equation (2.32), and the resulting linear normalized flux,

from equation (2.36), defined as ΓX/|Φ̃|2, which is a meaningful quantity for linear calcu-

lations.

The gyro–fluid paradigm and GLF23

The gyro–fluid equations are derived from the ballooning gyrokinetic equation presented

before, assuming a particular closure for the hierarchy of moments equations, such that

some kinetic effects, first of all Landau damping, are retained. With this respect, the

equations obtained with the closure that contains Landau damping effects are called

gyro–Landau–fluid equations. The mathematical method to achieve this goal has been

introduced for the first time in Ref. [38]. The GLF23 code itself is derived following that

scheme and the basic equations are shown and discussed in detail in Refs. [51] and [37].

Here we discuss some of the model basic assumptions:

– The ion species are considered as a whole and averaged over phase space while the

electrons are split into the trapped and passing components in phase space, i.e. divided

into two sub–species. For the trapped particles a simple bounce–averaged approximation

is used, neglecting the parallel motion and keeping only the magnetic curvature operator

on the left–hand side of equation (2.23). The passing electrons are assumed to be massless

such that they are quasi–adiabatic. Non–adiabaticity is provided by collisional coupling

with trapped electrons and by electromagnetic effect, which are in any case neglected

here;

– The geometrical magnetic model is the shifted–circles s− α equilibrium.

– The mixing length formula used in GLF23 for the saturated value of |Φ|2 is:

|Φ|2 = C

(

γ
1/2
net γ

1/2
d

kxky

)2

(2.37)
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where C is an amplitude parameter that is chosen to fit results from non–linear simula-

tions, γnet = γ − γExB, γd = 0.2(3/2)|ωd|τ−1 and kx, ky are respectively the radial and the

poloidal wavenumbers.

Using equation (2.37), the particle and heat transport coefficients are calculated according

to equation (2.36) as shown below, see Ref. [37], equations (9a), (10a) and (11a).

Electron heat transport coefficient

χGLF
e = cs

(

ρ2
s

a

)

LTe

a

∑

k

ℑ





∣

∣

∣

∣

∣

Φ̃Max

Φ̃k

∣

∣

∣

∣

∣

2

ky(3/2)(P̃ t
k + Ñu

k + T̃ u
k )∗Φ̃k



 (2.38)

Ion heat transport coefficient

χGLF
i = cs

(

ρ2
s

a

)

LTi

a

∑

k

ℑ





∣

∣

∣

∣

∣

Φ̃Max

Φ̃k

∣

∣

∣

∣

∣

2

ky(3/2)

(

1

3
P̃ i
‖k +

2

3
P̃ i
⊥k

)∗

Φ̃k



 (2.39)

Particle diffusivity

DGLF = cs

(

ρ2
s

a

)

LNi

a

∑

k

ℑ





∣

∣

∣

∣

∣

Φ̃Max

Φ̃k

∣

∣

∣

∣

∣

2

kyÑ
i∗
k Φ̃k



 (2.40)

Note the evident gyro–Bohm nature [48], i.e. the scaling with csρ
2
s ∼ T

3/2
e , of the transport

coefficients dimensional factor.

As it is clear from these equations, no distinction is done between diffusion and convection,

such that these are ’effective’ diffusivities obtained from a flux to gradient ratio. So, for

example, the particle diffusivity from equation (2.40) should be used in equation (2.10)

with the (turbulent part of the) convection velocity V set to zero. To discriminate between

diffusion and convection in GLF23 one should be able to separately evaluate the diagonal

and off–diagonal contributions to the flux. This will be done specifically to study particle

transport in chapter 5.

Linear spectrum and fluxes: conventions

We now establish some conventions on the calculation of turbulence linear spectrum and

induced quasi–linear fluxes, independently of the use of either codes.

Lengths are normalized to R, the geometrical average of the major radius of the local flux

surface. The reference temperature is the main ions temperature Ti. The energy unit for

the normalization of the electrostatic potential Φ is eTe. The normalization units for the
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Sign Mode type Acronym

ωR > 0 Trapped Electron Mode TEM
Electron Temperature Gradient Mode ETG

ωR < 0 Ion Temperature Gradient Mode ITG

Table 2.2: Mode frequency sign convention.

mode complex frequency is R/cs where cs is the ion sound speed cs =
√

Ti/mi given in

m/s. The wavenumbers are normalized in units of the ion Larmor radius ρi.

The mode complex frequency ω is composed of the growth rate γ (positive for an unstable

mode) and the pulsation (here called ’frequency’ in the following) ωR. The latter is

positive for modes rotating in the electron diamagnetic direction and negative for modes

rotating in the ion diamagnetic direction. This convention is summarized in table 2.2.

Note that this convention is opposite to the one used in GS2.

Given the spectrum and the fields fluctuations, the respective radial flux can be calculated

as in equation (2.36). More precisely, given two real space fluctuations ’density’ n(x) and a

’radial velocity’ u(x) functions of the real space coordinate x (time dependence is intended

implicitly), the local ’flux’ Γ of particles is obtained from

Γ =
1

∆

∫

∆

n(x)u(x)dx (2.41)

where ∆ is a domain sufficiently large to cover several correlation lengths, such that
∫

∆
(n, u)dx is statistically zero. We represent each perturbation X = (n, u) with a Fourier

series:

X =
∑

k

X̃ke
ik·x (2.42)

where the wavenumber k spans from −∞ to +∞ for each component. The reality of

the perturbations imposes X̃−k = X̃∗
k
. Applying some basic Fourier theorem, the flux

calculated in equation (2.41) becomes:

Γ =
∑

k

ñkũ
∗
k

(2.43)

If we now assume the three–dimensional perturbation to be periodic in two dimensions

(x, y) we can use the representation:

X(x, y, z) =
∑

ky=−∞..+∞

∑

kx=−∞..+∞

[

X̃ky,kx(z)e
i(kyy+kxx)

]

(2.44)

In this case the flux is given by:

Γ =
∑

ky=−∞..+∞

∑

kx=−∞..+∞

1

∆z

∫

[

ñky,kx ũ
∗
ky,kx

]

dz (2.45)
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An alternative representation is obtained choosing an expansion of the type:

X(x, y, z) = ℜ
∑

ky=0..+∞

∑

kx=−∞..+∞

[

X̃ky,kx(z)e
i(kyy+kxx)

]

(2.46)

In this case the flux is given by:

Γ =
1

2
ℜ

∑

ky=0..+∞

∑

kx=−∞..+∞

1

∆z

∫

[

ñky,kxũ
∗
ky,kx

]

dz (2.47)

The relation of this formalism with the ballooning representation in axisymmetric systems

is obtained substituting x, y, z with the usual field–aligned coordinates set [52]: radial

coordinate x = r, perpendicular–to–the–field–lines coordinate y = R(φ+qθ), and ’parallel’

(or generalized poloidal coordinate) z = rθ (with ∆z = 2πr). In our case, working with

the linear gyrokinetic equation in the zero order ballooning expansion, we derive the

particle flux substituting for ũ = ṽr
E×B in equation (2.45):

Γ = Γ0

∑

k

ℜ
(

ikyρiñkΦ̃
∗
k

)

(2.48)

where Γ0 is a proper dimensional factor and k = (ky, 0), with ky spanning from zero to

kmax
y . The z dependence and its integral is implicitly stated. In the linear phase, the

fluctuation X̃ is proportional to the electrostatic perturbation Φ̃. Thus

Γ = Γ0

∑

k

|Φ̃k|2ℜ (ikyρiAk) = −Γ0

∑

k

kyρi|Φ̃k|2ℑ (Ak) (2.49)

where Ak =
X̃kΦ̃

∗
k

|Φ̃k|2
. The quantity ’−ℑ(Ak)’ is called the ’phase–shift’ (one for each

wavenumber k) and it is the only meaningful flux–related quantity in a linear calculation.

In fact, |Φ|2 is not known and thus the actual value of the flux has to be approximated

choosing a closure for the saturation value |Φ2|, as discussed above and done for example

in GLF23 as from equation (2.37).

The summation appearing in formula (2.49) can be rewritten with the mode with the

largest |Φ2|:

Γ = −Γ0|Φ̃|2Max

∑

k

kyρi

∣

∣

∣

∣

∣

Φ̃k

Φ̃Max

∣

∣

∣

∣

∣

2

ℑ (Ak) (2.50)

The choice of the summation components and of the weights

∣

∣

∣

∣

∣

Φ̃k

Φ̃Max

∣

∣

∣

∣

∣

2

can be done in dif-

ferent ways depending on the quasi–linear rule employed. GLF23 has its own quasi–linear

rule and it will be kept the same for the following simulations. For example the Weiland

model [53] has also a particular choice of the quasi–linear rule. When using GS2, in the

linear mode, we will adopt different quasi–linear rules. One example is proposed by Jenko
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et al. [54], i.e. only the mode that has the highest value of the mixing length estimate

γ/ < k2
⊥ > is kept. Note that the sum

∑

k

(...) appearing in equation (2.50) requires the

choice of equispaced kys, otherwise it should be replaced by
∑

k

(...)∆kyρi.

In this work the lowest order of the small aspect ratio expansion for the shifted–circles

geometry is employed, which means that no dependence of ωd, see equation (2.28), and

in turns of the turbulence properties, on the elongation and triangularity is kept. In this

respect, we do not cover the problem of the turbulence–driven transport dependence on

plasma shape. Indeed plasma shape, and more recently the triangularity δ, has been

shown to have strong effects on core transport [55].

Note that GLF23 calculates fluid fields and thus the quantity X̃ directly (for example

pressure, or density, fluctuations), while GS2, being a kinetic code, calculates the distri-

bution function from equation (2.32) and then heat, particle and parallel velocity fluxes

are evaluated with the proper phase space integral.

2.4 Summary

This Chapter has been devoted to the introduction of the main tools that will be used in

the following analysis. First, the TCV Tokamak is presented with particular emphasis on

the ECH/ECCD capabilities. The possibility to study scenarios with high core gradients

is guaranteed by the improved eITB regime obtainable in TCV plasmas with different

ECH/ECCD schemes. The most used scenario is the fully non–inductive operation with

off–axis co–CD injection and zero current slope in the Ohmic transformer. In these con-

ditions, the total current is sustained by the ECCD current and the bootstrap current

only.

The numerical tool ASTRA [29] is then introduced. It is a radial transport code that

allows to simulate a discharge evolution and to test different models for heat and particle

transport. The code is tested on different TCV discharges with experimental input pa-

rameters to take confidence with the results.

The effect of turbulence on transport is modelled by gyrokinetic and gyrofluid codes GS2

[40] and GLF23 [37] respectively. Each one has its own capabilities and limitations. We

have shown that the gyrokinetic code, in the linear version, is a powerful tool to accurately

evaluate the phase shift, i.e. the flux normalized to the fluctuation amplitude, and the

turbulence properties taking into account kinetic effects. It will be used for detailed study

of stationary particle transport in chapter 5 and chapter 6. The gyro–Landau–fluid code

GLF23 can predict turbulence–driven fluxes through a choice of the quasi–linear rule,

tuned on non–linear simulations results, and its fluid approach allows rapid calculations

and its use as a module to ASTRA. It will be used for heat transport studies of TCV
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discharges.
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Chapter 3

Heat transport in TCV eITBs

3.1 Introduction

We present now the integration of the experimental data into the transport code ASTRA

[29] to simulate the behavior of the temperature profile in different TCV plasma scenarios.

We employ the GLF23 [37] code to calculate the heat transport coefficients for electrons

χe and for ions χi.

The main goal is to simulate and to understand the physics of the formation of the

eITB in TCV via the gyrofluid modelling and to elucidate the role of local confinement

amelioration due to the reversal of the safety factor profile. First we will benchmark the

code on standard L-modes to evidence the eventual limitations of the model and then we

will try to simulate the eITB scenario.

3.2 ASTRA–GLF23 modelling

In subsection 2.3.2 we have introduced the ASTRA code as the main tool to simulate

TCV plasmas and to retrieve a more reasonable magnetic equilibrium than just simply

relying on the LIUQE code. However, up to now it was run only in the ’experimental

mode’, i.e. without any model for the transport coefficients.

In this section we want to model some TCV discharges using first–principles based trans-

port coefficients to try to understand the physical mechanisms behind a certain scenario.

The modelling paradigm that we will employ to simulate the TCV discharges is the fol-

lowing:

1) The ASTRA transport code is run with experimental profiles as initial conditions;

2) The initial condition for the magnetic equilibrium is provided by the LIUQE code;

3) The electron temperature is evolved assuming a theoretically computed heat transport

coefficient;

4) Densities are kept fixed;

5) The simulations are run for a time sufficient to reach a self–consistent steady–state
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checking the spatial constancy of the loop voltage. In the case sawteeth are present the

steady–state condition is checked outside the mixing radius;

6) We neglect here the ion temperature evolution and concentrate on electron heat trans-

port;

7) The boundary condition is fixed at ρV = 0.8.

The transport coefficients are respectively called: χPB
e for the power balance coefficient

and χGLF
e for the coefficient calculated by GLF23 as in formula (2.38). The neoclassi-

cal contribution to the heat transport coefficient will be called χNEO
e and it is calculated

according to Ref. [56]. Thus the theoretical heat transport coefficient χTH
e is given by:

χTH
e = χNEO

e + χGLF
e (3.1)

3.2.1 Gyro–Bohm or ’isothermal’ scaling ?

Before we start to simulate different TCV cases with the system ASTRA–GLF23, we find

instructive to discuss the agreement between the coefficient shown in formula (2.38) and

the experimental value to assess the validity of the gyro–Bohm scaling. In this perspective

we define an alternative coefficient which has no explicit Te dependence (hence we call it

’isothermal’ scaling):

χGLF−I
e = χGLF

e

(

Te(ρ0)

Te(ρ)

)3/2

(3.2)

such that χGLF−I
e (ρ0) = χGLF

e (ρ0), and ρ0 will be chosen case to case to have the best fit

with the experimental χPB
e .

The reason to introduce this ’isothermal’ scaling is that the explicit gyro–Bohm scaling

appearing in formula (2.38) produces a reduction in χGLF
e when going towards the edge

due to a decrease in Te. However this reduction should be overcome by the strong increase

of the normalized term ∝ χGLF
e /T

3/2
e . We will see later that indeed the GLF23 calculations

give a coefficient that does not grow towards the edge, meaning the T
3/2
e effect is too strong,

and in net contrast to what is seen in the experiment. Another reason to eliminate the

explicit Te dependence is that the scaling provided by formula (3.2) is somewhat similar

to the RLW scaling used to simulate TCV plasmas in Ref. [23], subsection 3.6.2, formula

(3.39). Note that indeed this rescale of χGLF
e with Te(ρ0), where ρ0 is now arbitrary,

brings us back into the semi–empirical domain, while the intention was to compare ’first–

principals based’ calculations with the experiment. At this point this is the best that

can be done to match the theoretical predictions with the experimental observations,

and no further investigation will be done at this stage, but it is worth to mention that

the correct coefficient could be retrieved if, instead of renormalizing to T
3/2
e , the mixing

length estimate was changed to produce a stronger increase of χGLF
e towards the edge, for

example modifying the rule to account for the nonlinear q dependence observed in past
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Current [kA] Discharge Time [s]

320 28395 1.3
200 29765 0.8
110 30078 0.4

Table 3.1: Simulated L–mode discharges with Ohmic heating.

works (for example in Ref. [57]).

In the following we will test both the GLF23 model as expressed in formula (3.1) over the

whole radius and the modified GLF23–I model as expressed in the formula below:

χI
e = χNEO

e + χGLF−I
e (3.3)

3.3 Comparison with TCV L–mode plasmas

We start by comparing the power balance electron heat transport coefficient χPB
e with the

theoretical coefficients χTH
e , χI

e for some L–mode steady–state plasmas with and without

auxiliary ECH heating.

3.3.1 Ohmic L–mode, no ECH

Several L–mode plasmas with Ohmic heating are chosen such to have different total plasma

current Ip as shown in table 3.1. The results of the simulation for the self–consistent

steady–state electron temperature profile Te and for the electron heat diffusivity χe are

shown in figures 3.1, 3.2 and 3.3.

Discharge #28395 is a high–current sawtoothing L–mode plasma with an inversion radius

of ρinv ≈ 0.5. For this reason the power balance χPB
e in figure 3.1(b) becomes very high

for ρV . 0.5, where the sawteeth are dominating the transport.

From figure 3.1(a) we see that both the GLF23 and GLF23–I models give a Te that is in

good agreement with the experimental profile, although from figure 3.1(b) we note that

only the modified GFL23–I χI
e is able to reproduce the χPB

e in the outer region ρV & 0.7.

The neoclassical contribution χNEO
e is practically negligible for ρV & 0.4.

With regard to the underlying turbulence, the code predicts a dominant ITG in the region

0.4 . ρV . 0.8 while it changes to TEM near the edge (compare with table 2.2).

Discharge #29765 is an intermediate–current sawtoothing L-mode plasma with an in-

version radius of ρinv ≈ 0.35. In figure 3.2(a) we see that the GLF23 result is in poor

agreement with the experimental profile for ρV & 0.6, while the GLF23–I is correct all

along the radial interval, due to the different behavior in the region ρV & 0.6. Again χNEO
e

is negligible except near the axis. In this case the dominant instability is predicted to be

a TEM on the whole radial interval.
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Figure 3.1: a) Comparison of temperature profiles in keV for Ip = 320 [kA] discharge
#28395 at t = 1.3: experimental (black with error bars), calculated using the power balance
χPB

e (dashed blue), calculated using the GLF23 model χTH
e (dashed red), calculated using

the modified GLF23–I model (dashed magenta); b) The heat transport coefficients in m2/s
provided by: power balance χPB

e (black), theoretical with GLF23 χTH
e (red), theoretical with

GLF23–I χI
e (green) and the neoclassical contribution χNEO

e (dashed cyan). In blue and
magenta on the right axis we plot respectively the most unstable mode growth rate γ and
the rotational frequency ωR as provided by GLF23, in units of cs/a.

The last discharge analyzed for the current scan is at low–current with very small saw-

teeth. The results in figure 3.3(a) show that the GLF23 model is not able to reproduce

the experimental profile while the modified GLF23–I model is in very good agreement

with it. The reason is visible from figure 3.3(b), where we clearly see that GLF23 devi-

ates significatively from the power balance χPB
e for ρV & 0.4, while inside this value it is

somewhat higher. The dominant mode is predicted to be a TEM in the core while there is

a competition of TEM and ITG near the edge. The modified model catches the behavior

of the experimentally–evaluated χe and thus represents a good model for these cases.

3.3.2 Ohmic L-mode, with ECH

Additional EC heating is injected and the deposition location ρECH is varied along the

radial direction for a fixed current Ip = 220 kA, see table 3.2. The ECH power is delivered

with four gyrotrons divided in two clusters, each one aimed at a different radial position.

Each gyrotron delivers about 450 kW, such that the total power is ∼ 2 MW. We thus

expect the Ohmic power to be negligible from where the power is deposited outward, and

a strong increase in χe with respect to the Ohmic cases.
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Figure 3.2: Ip = 200 kA discharge #29765 at t = 0.8 s [See caption of figure 3.1].
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Figure 3.3: Ip = 110 kA discharge #30078 at t = 0.4 s [See caption of figure 3.1].

Power(1) [MW] Power(2) [MW] ρECH(1) ρECH(2) Discharge Time [s]

1.5 0.5 0.5 0.8 25409 1.1
1 1 0.5 0.8 25409 1.95

2.0 – 0.5 – 24883 1.8

Table 3.2: Simulated L–mode discharges with ECRF heating.
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Figure 3.4: ECH deposition profiles for the three cases of table 3.2.
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Figure 3.5: ECH discharge #25409 at t = 1.1 s [See caption of figure 3.1].
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Figure 3.6: ECH discharge #25409 at t = 1.95 s [See caption of figure 3.1].
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Figure 3.7: ECH discharge #24883 at t = 1.8 s [See caption of figure 3.1].
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In figures 3.5, 3.6 and 3.7 we show the results as previously done for the Ohmic cases.

Again we clearly see that the modified GLF23 model captures the main radial profile of the

heat transport coefficient while the original GLF23 model underestimates the transport

in the outer region, thus predicting larger stationary temperature gradients.

3.3.3 Remarks on the benchmark

From the simulations performed in the previous subsections some general remarks on the

use of GLF23 in calculating the heat diffusivity, and on the results themselves, can be

done. Already from the very first case shown in figure 3.1, but generally as seen in all

the other cases, different regions can be identified in the plasma depending on the type

of transport observed and the agreement between the model predictions and the experi-

mental data. In particular, we can identify:

(1) A central region, close to the magnetic axis, where χe ∼ χNEO
e ; however this region is

eventually dominated by sawtooth–driven transport if the q = 1 surface is present;

(2) A core region, 0.3 . ρV . 0.6, where turbulence–driven transport (and, again, the

eventually sawtooth–driven transport) becomes dominant over the neoclassical transport

and the turbulence is sustained by toroidal instabilities like the ITG and/or the TEM. In

this region the GLF23 model seems to give, depending on the case, reasonable agreement

with the experimental data;

(3) An outer region where turbulence–driven transport is the sole responsible for the

observed flux, but the type of turbulence is not easily recognizable or identifiable, as

the GLF23 model fails to reproduce the experimental flux, generally having the oppo-

site trend/slope. However we have shown that the modified GLF23 model, i.e. where

the explicit gyro–Bohm scaling has been eliminated, reproduces very well the coefficient

χe in this region. This seems to suggest either that turbulence can still be imagined as

dominated by toroidal instabilities but some (non–linear) mechanism is responsible for

the disappearance of the gyro–Bohm scaling, which in turns indicate that the turbulence

is more of a ’global’ nature than a local one (remember that the GLF23 model is based

on a local ballooning expansion as seen in subsection 2.3.3), or that the mixing–length

estimate done in GLF23 does not work over the whole radial interval.

An interesting remark about the fact that a simple rescale, with T
3/2
e of the GLF23 trans-

port coefficient is in good agreement with the experimental diffusivity can be drawn in

the view of the following studies on particle transport (chapter 5). As we will see, the

steady–state density profile is determined by a balance of diffusion and convection in a

way such that it is not important what ’absolute values’ the diffusivity and the convection

have. What only counts is the ’phase–shift’, i.e. the phase relation between the fluctu-

ations, which does not depend on the mixing–length formula nor on the ’normalization
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scaling’ such as the gyro–Bohm scaling appearing in local gyrokinetic theory. This means

that, as soon as the modified GLF23 model we discussed before is in good agreement with

experimental results, we can safely assume that gyrokinetic theory can be used to analyze

particle transport in the plasma from the simulation boundary up to the core ρV ∼ 0.2.

(4) The very edge region, ρV & 0.8, where either experimental data are not avail-

able/reliable or the simulation becomes difficult. It has been chosen not to simulate

this region anyway, since the boundary conditions as well as coupling to the SOL region

become important as well.

3.4 Modeling TCV eITB plasmas

We now use the ASTRA–GLF23 system to simulate and try to understand the formation

and sustainment of steady–state eITBs in the TCV fully non–inductive scenario. We first

introduce the experimental data and the relevant quantities that are used for the following

analysis, then we will present the simulations results.

3.4.1 Experimental dataset

In subsection 2.2.5 we have introduced the eITB scenarios that can be produced in TCV

plasmas. We have discussed the global features of the fully non–inductive scenario, where

a steady–state barrier is created by means of the reversal of the q profile which is beneficial

in locally reducing transport around the qmin surface [58]. We will discuss later on the

theoretical interpretation of this phenomenon.

We have seen that fully non–inductive means that the current profile is sustained ex-

clusively by the ECCD component and the bootstrap current driven by the strong core

gradients of temperature and density. A small Ohmic perturbation is eventually added

to test the barrier sensitivity to the current profile.

In this context we study three cases of fully non–inductive eITB with positive (’counter’–

barrier), null and negative (’pro’–barrier) Ohmic perturbations added when the barrier is

already formed.

Discharges #25957, #25956, #25953

These three eITB discharges are characterized by the same plasma parameters, except

for the application of a Vloop perturbation that is co–current for #25957, null for #25956,

and counter–current for #25953 (Ref. [24] for details).

The main physical quantities characterizing these three shots are evaluated during the

steady–state eITB without perturbation, and near the ’foot’ of the barrier:

Ip ≈ 90 kA, q95 ≈ 12, < ne >V≈ 1.1 × 1019 m−3, Zeff ∼ 3.5, νeff(ρV ≈ 0.4) ∼ 0.02,

R/LTe ≈ 24, R/Ln ≈ 10.
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Figure 3.8: a) Evolution of the figure of merit HRLW for three eITB plasmas where an
Ohmic current perturbation is added at t = 1.4 s respectively of δVloop = +30 mV (black),
no perturbation (blue), and δVloop = −30 mV (red); b) Comparison of the Te profiles in
keV at t = 1.75 s, after the barrier is eventually enhanced (red) or depressed (black) by
the current perturbation. On the right axis we plot the power balance heat diffusivities
χPB

e in m2/s at the same time step.

In figure 3.8(a) we show the time evolution of the HRLW parameter, which represents a

global figure of merit for the barrier performance with respect to the TCV L–mode scaling,

for the three cases. At t = 1.4 s the Ohmic perturbation is applied resulting in either

an enhancement of the barrier (counter–current perturbation of δVloop = −30 mV, red

curve) or a degradation of the core confinement (co–current perturbation of δVloop = +30

mV, black curve). The blue curve without Ohmic perturbation is the reference case with

a HRLW ≈ 3, typical value for many TCV eITBs.

The effect of the perturbation on the confinement is visible in figure 3.8(b) where we

show the Te profiles at t = 1.75 s together with the heat diffusivities obtained from

power balance calculations. We note that the Te profiles are identical in the outer region

ρV & 0.6, while the core values in the region ρV . 0.4 are higher for the red curve,

intermediate for the blue curve, and lower for the black curve, indicating an important

change in the local normalized gradient ∂log(Te)/∂ρ at constant power (the contribution

of the perturbed Ohmic power is negligible). The last observation is confirmed by the

behavior of the heat diffusivities plot on the right axis: at ρV ≈ 0.5 the case with negative

perturbation (red) has the lowest χPB
e , while the case with positive perturbation (black)

has the highest value of χPB
e .

We will assess the understanding of this phenomenon in the next subsection.
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3.4.2 Simulations of eITBs with ASTRA+GLF23–I

From the simulation results obtained in the previous section, we chose to simulate the

eITB cases using only the modified GLF23–I model.

For the cases to be simulated, the experimental ion temperature profiles are not available.

They will be modelled with formula (2.14), using a central value of

(

Te

Ti

)

0

such as to

have a central Ti ≈ 0.6 keV, consistent with many observations from ECH discharges

with available CXRS measurements, and an edge value of

(

Te

Ti

)

b

= 1. In any case the

ion temperature profile (and the density profile) will be kept fixed during the simulation.

The key mechanism that allows the sustainment of an eITB, as we have already discussed

before, is the appearance of a qmin surface with core reversal of the sign of the magnetic

shear. In a recent paper [59] this experimental evidence has been connected to the influ-

ence of a negative magnetic shear and high values of the α parameter, representative of the

pressure profile effect on the Shafranov–shift, on the turbulence properties. In particular,

negative magnetic shear and high α values can reverse the precessional drift of trapped

electrons causing a strong decrease in the TEM growth rate, hence its stabilization [60].

We remind that TEM–dominated turbulence is usually associated with the observation

of a strong outward electron heat transport [61]. The GLF23 model should be able to

catch this property of a reversed q profile scenario through its dependence on s and α on

the magnetic curvature drift frequency as expressed in formula (2.28).

The simulations will be based on the reference case #29859 which is identical to discharge

#25959 but for which the ECCD contribution for the steady–state unperturbed phase has

been calculated with CQL3D. The perturbation δVloop will be imposed during the sim-

ulation, instead of simulating three different discharges which is less precise with regard

to the focusing on one specific parameter effect. To perform this Vloop scan in a precise

way, we rather prefer to impose the total plasma current Ip as the boundary condition

for the current profile and perform a scan in the total ECCD current ICD. In this manner

the total current is conserved and the resulting Vloop depends on ICD through the relation

IOH = Ip − ICD − IBS.

Simulation results

In figure 3.9 we show the simulation results for the test case with the ICD scan mentioned

above. Figure 3.9(a) shows the steady–state Te profiles from: experimental data (black

circles with error bars), simulated from power balance χPB
e (dashed black), and simulated

with the modified GLF23 model in colored solid lines, each one characterized by a defined

ECCD fraction indicated in the plot in percentage of the total current. Each case is

simulated up to steady–state conditions to ensure that the result is not just due to the

temporal evolution of the temperature profile.
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different ECCD currents are used (show in percentage with respect to the total current).
In black: experimental data with error bars and simulated with power balance χPB

e in m2/s
(dashed black). On the right y–axis: calculated χI

e (dashed colours) compared to χPB
e (solid

black); b) Relative variation ∆χe/χe versus magnetic shear variation ∆s for four different
radial positions. Shown are also the values of magnetic shear s at the four radial positions
for the case with ICD = 10%.

The simulated Te becomes more accurate when increasing the ICD fraction because the

heat transport coefficient χe is reduced accordingly. However quantitative agreement is not

robust as during the simulation, when ICD fraction is 40%, the barrier undergoes unstable

numerical oscillations due to the large current hole near the axis and the sensitivity of

confinement to the local changes in the q profile.

In figure 3.9(b) we plot the relative variation ∆χe/χe obtained as the difference of each χe

for each different ICD content, divided by the initial χe, versus the magnetic shear variation

∆s for different radial positions inside and outside the barrier. Each curve is obtained with

points ordered with increasing ICD fraction. Increasing ICD content reduces the magnetic

shear to negative values. We can clearly see that the heat transport coefficient follows

almost linearly the decrease of magnetic shear, such that, for example at ρV ∼ 0.36, there

is a ∼ 60% of reduction of the heat transport when magnetic shear is reduced by −0.3

down to negative values. The experimental evidence of confinement dependence on the

local magnetic shear has been discussed extensively in Refs. [24, 58].
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Figure 3.10: a) Radial profiles of the growth rate (in units of cs/a) of the most unstable
mode at kyρi = 0.1 (solid lines) and of the magnetic shear (dashed lines) for two values of
the ICD fraction; b) For the same mode, profiles of the real frequency ωR (in units of cs/a)
(solid) and the average magnetic curvature drift frequency ωd (in units of cs/a) (dashed).

Role of the magnetic shear on TEMs

The physical mechanism behind the suppression of heat transport and the achievement

of an improved confinement can be undisclosed looking at the behavior of the dominant

microinstabilities as magnetic shear is decreased.

In figure 3.10(a) we plot the radial profile of the growth rate γ of the mode located at

kyρi = 0.1 together with the magnetic shear for two values of the ICD fraction. We see the

correlation between the reversal of the magnetic shear which attains large negative values

with the decrease of the growth rate of the mode, which is almost stabilized, in the region

of negative shear 0.2 . ρV . 0.5. In figure 3.10(b) we plot, for the same mode and the

same values of ICD fraction, the real frequency ωR and the average magnetic curvature

drift ωd.

First note that for low ICD content, i.e. for positive shear, the mode is a TEM (positive

ωR) all along the radial interval, and the average ωd is positive. Going to higher ICD con-

tent, and thus to negative magnetic shear, the TEM branch has now been stabilized (with

a residual ITG in the interval 0.35 . ρV . 0.5) due to the decrease (and even reversal in

sign) of the average ωd up to ρV ∼ 0.6. This also means that in the eITB region transport

is mainly due to modes residing in a wavenumber interval shifted to higher values of kyρi,

thus producing a lower transport level.

We can identify the mechanism for confinement improvement in fully non–inductive eITBs
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in the TEM stabilization due to a decrease in < ωd >, caused by its almost linear depen-

dence on magnetic shear and the Shafranov–shift parameter α. This mechanism has been

discussed in detail and compared to results from a global code in Ref. [59].

3.5 Summary

In this Chapter we have shown the results of heat transport modelling for TCV plasmas

in different scenarios using the GLF23 transport model coupled to the ASTRA transport

code.

We have found that the GLF23 model predictions are in strong disagreement with the

experimental results in the outer plasma region, where a decrease in the predicted heat

transport coefficient found by the code, whereas the experimental coefficient increases.

We have assessed the question of wether this could be related to the intrinsic gyro–Bohm

scaling of the model, which provides a radial dependence on T
3/2
e , giving a lowering of χe

in the outer plasma region, in contrast with the experimental radial trend. To correct this

disagreement we have modified the GLF23 model replacing the local gyro–Bohm scaling

with a ’global’ scaling where the T
3/2
e is now evaluated at one radial location and kept

fixed on the whole interval. However the observed discrepancy might be as well related

to the choice of the mixing–length rule in GLF23. The model is then used to simulate

Ohmic L–mode scenarios, either with a current scan or with a ECH power deposition

scan. In all the cases there is good agreement between the calculated Te profile and the

experimental one using the modified GLF23 model.

The eITB fully non–inductive scenario and its properties of improved core heat trans-

port is introduced through a set of discharges where confinement is shown to be strongly

dependent on the local value of the magnetic shear. To understand this behavior we

have employed the modified GLF23 model coupled to ASTRA. A series of simulations

have been performed at different values of the non–inductive current drive fraction. The

results show that a better confinement is achieved when the off–axis co–CD content in-

creases and thus the current profile becomes more hollow with a consequent decrease of

magnetic shear towards more negative values. A fairly good agreement has been found

between the calculated Te and the experimental Te for realistic values of ICD, using the

modified GLF23, although the ASTRA transport code starts to show numerical instabil-

ities at that point due to the very low central current density. The reason behind the

confinement improvement is the decrease of the heat transport coefficient with decreasing

magnetic shear to negative values.

The basic mechanism is then elucidated tackling the behavior of the background microin-

stabilities which are shown to decrease in amplitude as shear is decreased to negative

values. In particular, the TEM which is responsible for the high levels of electron heat
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transport observed in standard L–modes, is strongly suppressed by negative magnetic

shear through the decrease and/or reversal of the magnetic curvature drift frequency,

decoupling trapped electron motion from the mode evolution.



48 CHAPTER 3. HEAT TRANSPORT IN TCV eITBs



Chapter 4

Particle transport in TCV eITBs:
experimental results

4.1 Introduction

This Chapter shows the new results obtained during this Thesis work in particle transport

for TCV eITBs, from the experimental point of view. We will present the behavior of the

density profile in eITBs obtained with fully non–inductive current source or with partial

inductive source, and even in the case of strong inductive source for the ICEC discharges

described in subsection 2.2.5.

These results have been presented in Ref. [62, 22], and show that a peaked density profile

with non negligible core gradient can be sustained despite the strong central electron

heating delivered to maintain the barrier. This behavior is somewhat different than the

behavior observed in Ohmic L-mode plasmas with ECH deposition, where the density

profile is observed to decrease its logarithmic gradient with respect to the case without

ECH [63].

The physical reason for this difference will be discussed in chapter 5, while here we will

focus mainly on the experimental results for steady-state and transient particle transport

observations.

4.2 Steady–state scenarios

We focus mainly on the fully non–inductive eITB scenario presented in subsection 2.2.5

and study the steady–state regimes.

4.2.1 Static database

To appreciate the steady–state properties of particle transport in TCV eITBs, we start

from showing the behavior of the normalized electron density logarithmic gradient R/Ln
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Figure 4.1: a) Steady–state database of normalized electron density to temperature loga-
rithmic gradient ratio σe = 1/ηe = LTe/Ln versus R/LTe for different value of the figure
of merit HRLW; b) Comparison of density profiles normalized to the value at ρ = 0.8 for:
Ohmic phase (black dashed), ECH without barrier (blue), and with an eITB (red).

for different discharges and different heating/current–drive schemes. To discriminate be-

tween standard L-modes and developed eITBs we use the figure of merit HRLW.

About 200 time slices from steady-state conditions of 21 discharges have been taken into

consideration using profile data obtained with the Thomson Scattering diagnostic, both

for electron temperature and density profiles. Radially dependent quantities are averaged

over the region 0.3 < ρ < 0.6. For all the fully developed eITBs, the maximum of the

electron temperature normalized gradient is located in this region. The parameter range

covered in the database is: Ip ∼ 70 − 120 kA, PEC = 0.9 − 2.3 MW, ρEC ∼ 0.3 − 0.7,

q95 ∼ 8−17 and < ne >V∼ 0.2−1.1 1019 m−3. In these plasmas the effective collisionality

is low, i.e. νeff ∼ 10−2, where νeff ≡ νei/(cs/R), with νei being the electron-ion collision

frequency, cs the ion sound velocity and R the average curvature radius of local flux sur-

face. In figure 4.1(a) we show the quantity σe = 1/ηe = LTe/Ln versus R/LTe for different

values of HRLW. While at low values of HRLW and R/LTe, typical of an Ohmic heated

plasma, R/Ln and R/LTe are essentially independent, at high values of HRLW, the ratio

of the two length scales, represented by σe, approaches a value around σe ∼ 0.35 − 0.5,

indicating a strong coupling of the density and the temperature profiles (a similar results

has been found for FTU eITBs and reported in Ref. [64]). However, for moderate values

of R/LTe ∼ 10 and without the formation of an eITB, i.e. when HRLW . 2.5, the density

profile can be flatter than in the ohmic phase as in that case σe ∼ 0.2 (red points around

R/LTe ∼ 10 for example). The flattening of the density profile with ECH is already a
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Figure 4.2: a) Power balance χe [m2/s] versus R/LTe for different HRLW intervals (in the
legend); b) σe versus HRLW for the static database with a spline fit (dashed line).

well known result Ref. [63] and for TCV plasmas it is documented in Ref. [65]. However,

the eITB scenario is completely different as in that case the density profile can present a

local normalized gradient even larger than the one present in the Ohmic phase as shown

in figure 4.1(b), where we plot three density profiles for:

1) the Ohmic phase (black dashed);

2) a ECH plasma without eITB (solid blue);

3) an eITB with the same ECH configuration as 2) but different current–driving scheme

(solid red).

4.2.2 Confinement properties

In the previous subsection we showed that for improved confinement regimes withHRLW &

3 there is a correlation between R/Ln and R/LTe such that the ration σe = LTe/Ln ∼ 0.45.

Let us now look into more details at the confinement properties of the eITB scenario using

the static database.

In figure 4.2(a) we plot the electron heat transport coefficient χe (in m2/s) obtained from

power balance versus R/LTe for different intervals in HRLW. The radial variables are av-

eraged in the interval 0.5 < ρψ < 0.65. We see that the eITB scenario has the same χe

as for the Ohmic heating scenario but with a doubling of the stationary R/LTe, meaning

a strong improvement in the local confinement. On the contrary, for ECH discharges

without eITB, χe strongly increases at fixed R/LTe, indicating a stiff behavior and a poor

confinement, represented in the figure by the points with χe ∼ 14 and R/LTe ∼ 7.

In figure 4.2(b) we show again σe but now versus HRLW for all the cases, together with a
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portional to T σe

e where the best fit is obtained with σe = 0.45 ± 0.1.

spline fit (dashed line) to look at the main trend. We note that there is a strong profile

flattening when moving from the Ohmic cases at HRLW ∼ 1 to the ECH cases without

barrier at HRLW ∼ 2 ÷ 2.5, which have a high χe and the same R/LTe. On the contrary,

the barrier regime at HRLW & 3 has a strong density peaking provided by σe ∼ 0.45 and

a high R/LTe, and this time χe is at low values.

We thus conclude that there is a correlation between the fact that confinement is im-

proved in the eITB scenario and the appearance of a density barrier correlated with the

temperature barrier with a ratio of LTe/Ln ∼ 0.45.

4.2.3 ne barrier structure

To evidence the barrier structure and demonstrate the strong correlation between Te and

ne we have used a particular experimental technique aimed at this goal. The plasma

undergoes a slow vertical displacement (2.5 cm/0.7 s for 1.1 < t < 1.9 s, which is slow

compared with the time scale of all relevant plasma processes) to allow the Thomson

Scattering diagnostic, which operates on fixed vertical points, to sample intermediate

radii. The aiming of the EC launchers is modified to follow the vertical movement. In

figure 4.3(a,b) we show all the points in the interval 1.1 < t < 1.9 s for the Te and

ne profiles. In figure 4.3(a) we plot the experimental Te points versus ρV with a fit in

the barrier region (solid line). In figure 4.3(b) we plot the ne profile together with a

fit proportional to T σe
e . We see that in the barrier region the best fit is obtained with

σe ∼ 0.45±0.1 consistently with the results from the database shown in figure 4.1(a). The
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Figure 4.4: a) Experimental stationary ne profile (black) with error bars for eITB discharge
#25956 compared with the profile of 0.45T 0.45

e with error bars (red); b) The same for eITB
discharge #25953 which has a small Ohmic cnt–current component.

rapid change in the density gradients inside and outside the foot of the barrier (ρV & 0.5)

is consistent with a rapid change in the local confinement properties. Outside the foot of

the barrier, the density profile follows the usual properties of ECH L-mode plasmas.

4.2.4 Sensitivity to local current profile details

In subsection 4.2.1 we noted that the particular correlation between density and temper-

ature length scales appears in the eITB regime, i.e. when local confinement is strongly

improved. We now show that the relation between R/Ln and R/LTe given by σe ≈ 0.45

is not sensitive on the local characteristics of the current profile, only requiring that the

local confinement stays in the eITB regime. In figure 4.4(a) we plot the stationary density

profile for fully non–inductive eITB discharge #25956 togheter with the profile of ∼ T 0.45
e .

The fit is in good agreement with the experimental profile in the barrier region between

the foot (ρV ∼ 0.5) and the top (ρV ∼ 0.3). In figure 4.4(b) we compare now the density

profile with the fit from the same function ∼ T 0.45
e for eITB discharge #25953 which has

the same characteristics of discharge #25956 but with the addition of a small Ohmic

cnt–current component of Vloop = −50 mV to enhance the core q profile reversal and have

more negative magnetic shear. Again the fit with σe = 0.45 is in good agreement with the

experimental profile in the barrier region, although the maximum of R/Ln has increased

from ≈ 10 to ≈ 12.

We already said that in TCV plasmas, this improvement of local confinement is obtained

in fully non–inductive eITBs through q profile reversal and the creation of a core region
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Discharge Ohmic component [mV]

29863 +90
29859,29867 0

29866 -30
25957 +30
25956 0
25953 -30
29852 -60

Table 4.1: Ohmic current components.
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Figure 4.5: a) Simulation results for stationary eITB discharge #29859 at t = 1.5 s for q,
s, LTe, Ln, and ηe = 1/σe; b) σe versus shear for several discharges with similar heating
and current drive but different Ohmic current components.

with s . 0. Unfortunately in TCV no direct measurement of q is possible and only trans-

port simulations with equilibrium reconstruction allows to study the current properties

of the eITB scenario.

In a recent work [66] a series of discharges, which have similar EC heating and current

drive profiles, but different Ohmic residual components, have been simulated with AS-

TRA to retrieve the stationary current profile. Their Ohmic components are shown in

table 4.1. Note that #29863 and #25957 have positive Ohmic components, resulting in

a final monotonic q profile. Discharges #29859 − #25956 are two fully non–inductive

eITBs, and #29866−#25953−#29852 are eITBs enhanced by a more negative magnetic

shear driven by the negative Ohmic component.

In figure 4.5(a) we show the results of the simulation for fully non–inductive discharge
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#29859. We plot the radial profiles of q, s, the two inverse length scales 1/LTe and 1/Ln,

and of the parameter ηe = 1/σe. For the fully non–inductive barrier the q profile has a

minimum of qmin ≈ 2.7 located at ρV ∼ 0.47 and the ratio of the two length scales is

σe = LTe/Ln ∼ 0.45 in the region where s . 0. We now compare, in figure 4.5(b), the

value of σe for the whole dataset of table 4.1 around the position where 1/LTe is maximum.

We find that this value is decreasing with increasing magnetic shear, and it is minimal

for the monotonic q profile cases. This is also consistent with the improved confinement

with decreasing magnetic shear also shown in Ref. [66].

4.3 Transient analysis

No hints on the levels of diffusivity D and convection velocity V can come from the anal-

ysis of steady–state regimes as already seen from equation (2.12). In this perspective

different experiments have been carried out to obtain transients or oscillations in the den-

sity profile inside the barrier and separately estimate the values of D and V [67, 68]. These

experiments consist in either gas puffing from the edge and studying the resulting density

evolution or performing ECH modulation to drive regular coupled temperature/density

oscillations.

First it is useful to discuss the general methodology employed to evaluate diffusion and

convection from the experimental profile evolution.

4.3.1 Non-harmonic transient analysis

The full electron particle continuity equation with explicit flux expression is given by:

∂V ′
0ne

∂t
+

∂

∂ρ
V ′

0

(

−g2D
∂ne

∂ρ
+ g1V ne

)

= 0 (4.1)

where V ′
0 is the flux surface enclosed volume radial derivative.

Because the density transients are usually quite fast and the time sampling of the Thom-

son Scattering diagnostic is not sufficient to obtain a meaningful result, we employ the

SVD technique described in subsection 2.2.4 to reconstruct the density profile temporal

evolution with sufficient time resolution.
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After some algebra we arrive at these expressions:

y(ρ, δt) =A(ρ)x(ρ, δt) +B(ρ)

y =
1

V ′
0g2ne

∫ ρ

0

∂V ′
0ne

∂t
dρ

A = D

x =
∂ne

ne∂ρ

B = −g1

g2

V (4.2)

where the assumptions that during the time interval δt over which the expression is

valid the diffusivity and convection velocity and the magnetic equilibrium do not change.

Formulas (4.2) allow to evaluate D(ρ) and V (ρ) for each δt chosen with a linear fit.

This is the case if the species under consideration is in very small concentration (trace

species) like for example impurity traces in the bulk. However this is not true for electrons,

for which D and V depend on the plasma parameters in a very complicated way. We

thus expect this procedure to be valid for electrons only when the perturbation is very

small compared to the equilibrium density, or if the perturbation itself does not change

dramatically the mechanism that provides D and V . If the perturbation is too strong or

if the plasma parameters that change strongly affect the physical mechanism behind D

and V , then this procedure is not valid anymore. We will see in the different examples

that this can happen.

A simplification of equations (4.2) occurs if, at steady–state and without source, i.e. when

∂/∂t ∼ 0, the relation ∂log ne/∂ρ
steadyD−g1/g2V = 0 holds, i.e. if D and V do not change

when going from before to after the perturbation, and the initial and final steady–state

are the same. In this case we can rewrite the system (4.2) as:

y(t) =D [x(t) − x0]

y =
1

V ′
0g2ne

∫ ρ

0

∂V ′
0ne

∂t
dρ

x =
∂ne

ne∂ρ

x0 =

[

∂ne

ne∂ρ

]

steady

(4.3)

Where now we evaluate a D that minimizes the error

ǫ =

∫

δt

|y(t) −D [x(t) − x0] |dt (4.4)

over the interval δt during which the density evolves due to the perturbation. Then the

convection velocity is evaluated simply as V = x0Dg2/g1.
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4.3.2 Harmonic transient analysis

We want also to show a simplified method, although it will not be used in the following,

that can be used if the density evolution follows a periodic pattern, for example if the

profile undergoes quasi–sinusoidal oscillations. In this case it is possible to simplify the

procedure shown above and obtain averaged estimates for the averages of D and V over

the oscillations period.

Starting again from equation (4.1), we substitute the density with a simple harmonic

function:

ne(ρ, t) = n0(ρ) + A(ρ) cos (ωt+ φ(ρ)) (4.5)

where n0 is the equilibrium density profile, A is the amplitude of the oscillatory perturba-

tion, ω is the oscillation frequency (imposed), and φ the phase. In this equation the time

enters only in the term ωt, while n0, A and φ are functions of the radial coordinate ρ.

We thus obtain the following linear system:

M11D(ρ) + M12V (ρ) = N1

M21D(ρ) + M22V (ρ) = N2 (4.6)

where the matrix M has the following elements:

M =

(

A′ cosφ− Aφ′ sinφ −g1
g2
A cosφ

−A′ sinφ− Aφ′ cosφ g1
g2
A sinφ

)

(4.7)

and for N:

N = − ω

V ′g2

( ∫ ρ

0
A sinφV ′dρ

∫ ρ

0
A cosφV ′dρ

)

(4.8)

Since A, ω and φ can be calculated fitting the experimental data with function (4.5), D

and V can be evaluated by inversion of linear system (4.6). Note that, inserting expression

(4.5) in equation (4.1), we obtain the additional condition n′
0D − g1/g2n0V = 0 which

must be satisfied independently for consistency. As we said for the non–harmonic analysis,

this method is valid until the perturbation does not change the plasma properties that

affect D and V .

4.3.3 Experimental evaluation of D and V

We now employ the analysis method shown in subsection 4.3.1 to assess the levels of

diffusion and convection present inside the eITB.

#32681: eITB with Ar gas puffing in deuterium plasma

The first case that we analyze is fully non–inductive eITB discharge #32681. In fig-

ure 4.6(a) we plot the experimental time traces of some quantities for this discharge.
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Figure 4.6: a) Experimental time traces for discharge #32681: X–ray signal (black), line
integrated density (blue) and eITB figure of merit HRLW (red circles); b) Time traces of
electron density at different radial locations in ρψ (in the legend) obtained with the SVD
inversion technique. The traces are zoomed in the interval where the three Ar gas puffs
are applied, respectively at t = 1.1 s, t = 1.5 s and t = 1.9 s.

From both the X–rays signal and the figure of merit HRLW we see that an eITB appears

at t ∼ 0.9 s and stays up to the end of the EC phase at t = 2.4 s with a HRLW ∼ 3. During

the eITB phase three edge argon gas puffs are applied at t = 1.1 s, t = 1.5 s and t = 1.9

s, resulting in strong perturbations of the electron (and deuterium for ambipolarity) den-

sity profile. To investigate the effects of the gas puff on the local characteristics of the

density profile and to estimate the diffusivity and convection velocity we first perform an

inversion of the FIR line integrated density signal with the SVD technique. The result for

the evolution of the reconstructed density profile is shown in figure 4.6(b) for four radial

positions. The plot is zoomed in the time interval 1 < t < 2 s to show the clear effect of

the three Ar gas puffs on the density.

We now concentrate on one of the Ar puffs to show the details of the density evolution. In

figure 4.7(a) we show the time traces of the quantities −x and y of system (4.2) together

with the quantity y −D(x− x0) (called ’NL role’ in the figure) from system (4.3) which

gives an idea on the deviation of D and V from their respective steady–state values. All

the quantities are evaluated at ρψ = 0.6. First we note that during the evolution of the

perturbation, the value of −∂log ne/∂ρ decreases down to a minimum and then goes back

to the equilibrium value, indicating an overall local flattening of the profile during the

perturbation. On the other hand, the ’Flux’ term y =
1

V ′
0g2ne

∫ ρ

0

∂V ′
0ne

∂t
dρ undergoes a

complete oscillation between a positive maximum and a negative minimum. This means

that relation y = D(x− x0) is valid only for the initial phase of the evolution where the
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Figure 4.7: a) Time traces of |x| = −∂log ne/∂ρ (’-grad(n)/n’) and y (’Flux’) of expression
equation (4.3) for the gas puff at t = 1.9 s, evaluated at ρψ = 0.6. Shown also is the
differential error ∂ǫ/∂t (’NL role’) derived from equation (4.4); b) Contour of the ’Flux’
term y versus −∂log ne/∂ρ (’-grad(n)/n’) for the same puff. Shown also is the linear
phase where a diffusion coefficient can be evaluated.

flux and the gradient increase together through a proportionality factor (the diffusivity

D). In later phases the system becomes non–linear and a simple positive–definite relation

between flux and gradient can not be found. This is put in evidence in figure 4.7(b) where

we plot the contour of the phase plot ’Flux’ versus ∂log ne/∂ρ which clearly shows the

strongly non–linear behavior of the system. However, a first linear phase can be identified

(large red curve) where a diffusion coefficient D can be effectively calculated.

Tackling the linear phase for each puff we evaluate averaged < D > and < V > which

we show in figure 4.8(a). We also compare the profiles for D against χPB
e and we note

that we almost have D/χe . 0.25 in the barrier region where 1/LTe peaks. Note also the

values of D in the barrier region (ρψ ∼ 0.6) which are of order D ∼ 0.45 m2/s, while for

the convection velocity we have an inward directed V ∼ −4 m/s, giving an equivalent

stationary R/Ln of −RV/D ≈ 8.

We now compare the value of D found with this calculation with the diffusivity induced

by neoclassical transport. In figure 4.8(b) we show the ratio Dneo/D for different values

of Zeff , where the other parameters, taken from the experimental data, are kept fixed. We

clearly see that neoclassical transport is negligible, therefore suggesting that the eITB re-

gion is still dominated by turbulent transport although at lower levels than in the standard

L–mode scenario with ECH heating.
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Figure 4.8: a) Calculated < D > (averaged over the three puffs, diamonds, left y–axis) and
< V > (circles, right y–axis) versus ρψ. Shown also are χPB

e scaled by 4 (cyan dashed, left
y–axis) and the scaled inverse temperature length scale (magenta dashed, left y–axis); b)
Ratio between the neoclassical diffusivity Dneo and the estimated diffusivity D at ρψ = 0.6
as a function of Zeff .

Comparison with an Ohmic case

The non–linear evolution of the flux versus the local gradient shown in figure 4.7(b) is

not a general observation for TCV plasmas. In fact it depends on the strength of the

perturbation and can be different in other cases with different modulation methods. For

example for Ohmic L–mode discharge #26694, where the density perturbation is caused

by small amplitude current modulation, the flux–gradient relationship is completely linear

and can be represented with equation (4.1) with D and V constants in time. To show the

difference between the eITB case shown previously and this L–mode Ohmic scenario we

estimate D and V also for the latter.

Discharge #26694 has a total current Ip ∼ 110 kA, line averaged < ne >∼ 0.8 [1019

m−3], and central Te ∼ 0.8 keV. Current modulation is applied for a certain time interval

resulting in a small perturbation of the density profile. In figure 4.9 we show the flux–

gradient relationship for this Ohmic example for the radial position ρψ = 0.5 where many

oscillations have been taken into account. It is clear that a linear relationship appears and

a diffusivity and a convection velocity can be estimated to be D ∼ 1.2 [m2/s] and V ∼ −8

[m/s]. Note that the gradient excursion during the oscillations is |∆(∂log ne/∂ρ)| ∼ 0.4,

while in the eITB case of figure 4.7(b) it is |∆(∂log ne/∂ρ)| ∼ 1.25, which also means that

the oscillations in the Ohmic case would stay in the ’linear phase’ of the eITB case. The

full D and V profiles, obtained with the same technique for each radial point, are shown
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Figure 4.9: a) Relation between flux and density logarithmic gradient for #26694 during
the density modulation phase at ρψ = 0.6. The fit on the experimental data (dashed line)
gives the estimation for D ∼ 1.2 [m2/s] and V ∼ −8 [m/s]; b) For the same discharge,
estimated profiles of D (black) and V (blue), compared to the profile of χe (red dashed).

in figure 4.9(b), where we also compare the diffusion coefficient D with the heat transport

coefficient χe, the two being of the same order, namely D ∼ χe over the considered radial

interval.

#33235: eITB with ECH modulation and MHD oscillations

We analyze another eITB discharge similar to #32681, where now the centrally injected

ECH power is sinusoidally modulated with a frequency of 10 Hz. During the eITB phase

MHD modes are also observed with frequency and amplitude oscillating during the ECH

modulation period, and which continue after the modulation is stopped and the power

is kept constant. We can look at the interplay of the two, the ECH modulation and the

MHD oscillations, in figure 4.10(a), where we plot the time traces for the ’Flux’ term and

for −∂log ne/∂ρ, at ρψ = 0.6, in a time interval that contains both the types of oscilla-

tions. The ECH modulation is applied between 1.4 < t < 1.8 s, while a high–frequency

MHD mode is already present before and intermittent weak high and strong low frequency

modes are observed from t = 1.4 s without interruption up to the end of the eITB phase

at t = 2.4 s. Note that the density logarithmic gradient oscillates from t = 1.4 s on

with a slightly higher amplitude in the ECH+intermittent MHD phase, namely the ECH

power modulation would provide a small perturbation while the MHD mode is the main

responsible for the density oscillations and local deformations of the profile. The eITB is

at its strongest point when −∂log ne/∂ρ ∼ 2.5, where we observe a HRLW ∼ 3.2. To esti-
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Figure 4.10: a) Time traces of the flux term and of the logarithmic density gradient at
ρψ = 0.6. We evidence the two phases, the first with simultaneous ECH modulation and
MHD oscillations (cyan) and the second with only MHD oscillations (magenta); b) Radial
profiles of estimated D (circles, left y–axis) and V (diamonds, right y–axis) evaluated for
the ECH modulation phase when the MHD mode is absent. Shown also is the electrons
heat transport coefficient χe scaled by 4 (dashed, left y–axis).

mate the eITB diffusivity without the spurious effect of the low frequency MHD mode we

analyze the flux–gradient relationship only in the time intervals where the low frequency

MHD signal is weak, i.e. when the gradient is restoring at large negative values but has

not yet attained the minimum.

The resulting D and V are shown in figure 4.10(b) together with the electron heat trans-

port coefficient χe. In the barrier region, ρψ ∼ 0.6, the values of the coefficients are

D ∼ 0.6 m2/s and V ∼ −5 m/s, in agreement with the order of magnitudes found for the

cases analyzed previously.

Relevance of neoclassical transport

From the results presented before we can argue that for the eITB, in the barrier region,

neoclassical transport is negligible compared to turbulent transport, in particular near

the maximum of the normalized gradients. Note that for this scenario no contribution

from the Ware pinch is expected since Vloop ≈ 0.

The estimated D/Dneo ∼ 50 suggests that the observed correlation between ne and Te in

the eITB is due to turbulence effects, which will be studied in details from the theoretical

point of view in the next Chapter. However neoclassical transport might be important in

the very core, near to the magnetic axis, i.e. from ρV ∼ 0.2 inwards. It is also interesting



CHAPTER 4. PARTICLE TRANSPORT IN eITBs 63

Discharge,type χe [m2/s] D [m2/s] V [m/s]

26694, OH ≈ 1 ≈ 1.2 ≈ −8
32681, eITB ≈ 3 ≈ 0.45 ≈ −4

33235, eITB+modul ≈ 3.2 ≈ 0.65 ≈ −6

Table 4.2: Calculated χe, diffusion coefficient D, and convection velocity V for the three
discharges analyzed in this Section, taken at ρψ = 0.6.

to look at the heat and particle transport relationship through the D−χe relation which

seems to provide D ∼ χe for the Ohmic case and D = aχe, with a ∼ 0.1 ÷ 0.25, for

the eITB case. From this last observation we can conclude that in the eITB scenario

the particle diffusivity is reduced, as well as the energy diffusivity, to lower values, still

much higher compared to the neoclassical values. In addition, it seems that in the eITB

scenario the particle diffusivity is reduced by a higher factor, with respect to the Ohmic

case, compared to the reduction of the heat transport diffusivity. However this last result

needs more investigation and it is should not be considered as a definitive statement on

heat and particle transport relationship for these scenarios. To summarize the results we

show the estimated values for χe, D and V for the three discharges analyzed before in

table 4.2. Note that each coefficient is subjected to errors arising from the calculation of

the density profiles and their gradients, thus they give more an indication of the order of

magnitudes and not on the precise values.

4.4 Summary

In this Chapter we have presented novel results on particle transport characteristics ob-

served during the fully non–inductive eITB scenario achieved in TCV, either in stationary

or in transient regime.

The static database, i.e. the collection of profiles data during stationary phases, shows

a peculiar correlation between the electron density and the electron temperature profiles

for fully developed eITBs with high values of HRLW. This correlation is such that, in the

eITB region, the two normalized gradients are related by R/Ln ∼ 0.45R/LTe. In addi-

tion, the spatial structure of the density profile closely resembles that of the temperature

profile, indicating the creation of a barrier in the particle transport channel. Through a

fine spatial scan with the Thomson Scattering diagnostic we have confirmed the barrier

structure on both Te and ne and the relation ne ∼ T 0.45
e inside the barrier. The effect

of this link between the temperature and density is to provide a peaked electron density

profile despite the strong external ECH heating applied. This peaking can be even higher

than the one observed in the Ohmic phase due to the large temperature gradients achieved

in the eITB. There is an indication that this behavior is linked to the improvement of
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local confinement through the reversal of the q profile and the appearance of a negative

magnetic shear region. In fact it is shown that the ratio LTe/Ln decreases with increasing

magnetic shear in the presence of strong ECH heating, namely when the barrier is weak-

ened.

The analysis of transient phenomena is then carried out to estimate the particle diffusivity

and convection velocity for the eITB scenario. Two cases are taken into consideration: a

stationary eITB perturbed by edge argon gas puffs, and a stationary eITB with central

ECH power modulation. A standard Ohmic L–mode case is also considered to compare

the result with the eITB scenario. In all the cases we find that, at mid–radius, the levels of

energy and particle diffusivity are well above the neoclassical level, although in the eITB

case the values themselves are lower than in the Ohmic case, indicating that turbulent

transport is still the main source of both heat and particle transport inside the eITB. We

also find that the linear flux–gradient relationship with constant diffusivity breaks down

for strong plasma perturbations as observed in the case of edge gas puffing.



Chapter 5

Theoretical study of electron particle
transport in TCV plasmas and eITBs

5.1 Introduction

In the previous Chapter we have discussed the novel experimental results obtained in

TCV fully non–inductive eITB scenario in the framework of electron particle transport.

These results have not been studied yet from the point of view of theoretical understand-

ing and that is the topic that we want to assess here. In particular we search to clarify

the physical mechanisms that provide the observed behavior and the striking differences

between standard L–mode scenarios and the eITB scenario [69].

We start by presenting the general theoretical formulation of particle transport for the

core of Tokamak plasmas to evidence the role of the different sources of transport and

to justify the following assumptions and calculations. The gyrokinetic theory of particle

transport is presented in detail and the transport coefficients for electrons will be calcu-

lated and discussed for several cases. The numerical evaluation of the stationary density

gradient and of the pinch coefficients is performed with the GS2 code [40] presented in

subsection 2.3.3. If not stated differently, the code will be employed in the electrostatic,

linear version with s − α magnetic equilibrium and fully kinetic ions and electrons. The

application of this model will first be the understanding of density peaking behavior

observed in different Tokamaks in standard scenarios like L or H modes with/without

auxiliary heating. Then, the interpretation of the eITB behavior will be presented.

5.2 Basic equations

Electron particle transport is regulated by the fundamental particle continuity equation,

which we write for an axysimmetric system in the flux–surface averaged coordinate system

assuming an equilibrium with circular flux surfaces, and defining ρ = r/R where ρ is the

minor radius measured on the equatorial plane and R is the local flux–surface magnetic
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axis major radius:
1

V ′

∂(V ′ne)

∂t
+

1

RV ′

∂

∂ρ
(V ′Γ) = Se (5.1)

This equation allows to calculate the density profile ne once the expression for the (electron

particle) flux Γ is known. The flux Γ can be written as the sum of different physical

processes:

Γ = Γneo + Γturb + ΓMHD + ..., (5.2)

where Γneo is the flux described by neoclassical transport, Γturb the flux induced by mi-

croinstabilities and turbulence, ΓMHD the flux provided by MHD phenomena like sawteeth

or NTMs, and so on. The different physical mechanisms can also interact in a non–linear

way, thus invalidating the expression of the flux as a linear sum of processes. However the

issue of taking into account the highly complex interplay between, for example, a MHD

island and the local micro–instabilities [70] it is outside the scope of this work. In the

following we will thus neglect any interaction between different sources of transport and

we will consider only the neoclassical and the turbulent terms in the flux, neglecting any

other source.

5.2.1 Neoclassical particle flux

From neoclassical theory, the flux can be shown to be composed by two main contribu-

tions [3]: one is proportional to the neoclassical diffusivity and scales with the electron

poloidal Larmor radius and collisionality, namely the diagonal and off–diagonal contri-

butions arising from density and temperature gradients, the other is proportional to the

toroidal electric field and scales with the plasma resistivity, namely the Ware pinch. Thus

we write the neoclassical flux as:

Γneo = −Dneone
1

R

(

∂log ne

∂ρ
+ Cneo

T

∂log Te

∂ρ
+ Cneo

ni

∂log ni

∂ρ
+ Cneo

Ti

∂log Ti

∂ρ

)

+ neWp (5.3)

where Dneo is the neoclassical diffusivity, Cneo
T , Cneo

Ti the neoclassical thermodiffusion co-

efficients, Cneo
Ni is another off–diagonal coefficients, and Wp is the Ware pinch [71]. The

various quantities are available from analytical or numerical formulas or codes which can

be run very fast. In this respect neoclassical transport can be seen as a well understood

contribution.

In the following we will be using the formulas reported in Ref. [31]. In general it is seen

that, at mid–radius, the electron neoclassical diffusivity is very low, of order Dneo ∼ 10−2

m2/s, while typical values of the estimated heat transport coefficients are ranging from

χe ∼ 0.1 ÷ 10 m2/s, depending on the heating scheme and the confinement properties.

In the previous Chapter we also showed that, for the eITB region, D/Dneo ∼ 10 ÷ 102,

allowing us to neglect the contribution of the term proportional to Dneo in equation (5.3).
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The remaining term proportional to the Ware pinch, namely Wpne, is calculated with

formulas provided by Ref. [31] and Ref. [30].

The Ware pinch itself can be shown to be given by

Wp = F (ft, Zeff , ν∗)
E‖

Bθ

∝ −Vloop

Bθ

(5.4)

where F (ft, Zeff , ν∗) is a function of the trapped particle fraction ft, the effective charge

Zeff and the neoclassical collisionality ν∗. We expect the Ware pinch to play a role in the

core region of inductive current driven plasmas, while for the fully non–inductive driven

plasmas we expect Wp ∝ Vloop ≈ 0 and no effect from the neoclassical source.

5.2.2 Turbulent particle flux

As we showed in subsection 2.3.3, the turbulent flux is given by the correlation of the fields

fluctuations, as from equation (2.36). We rewrite the turbulent particle flux definition as:

Γturb =< ñeṽ
r
E×B > (5.5)

where ñe is the fluctuating density perturbation and ṽr
E×B is the radial component of

the fluctuating E × B velocity. As we will derive from first principles in Section 5.3, the

turbulent particle flux can be written analogously to the neoclassical flux:

Γturb = −Dturbne
1

R

∂log ne

∂ρ
+ neVturb (5.6)

where Dturb is the turbulent particle diffusivity coefficient and Vturb is the turbulent par-

ticle convection velocity.

5.2.3 Stationary condition

We assume stationary conditions, i.e. ∂/∂t = 0 and solve (5.1):

Γ =
1

V ′

∫ ρ

0

V ′SeRdρ (5.7)

The flux will be a function of the density and of its normalized gradient: Γ = Γ(ne, R/Ln).

Thus equation (5.7) gives the self–consistent stationary density profile provided the proper

boundary condition.

We shall ignore here every other mechanism but neoclassical transport and turbulent

transport on which we focalize, thus equation (5.7) becomes:

Γneo + Γturb =
1

V ′

∫ ρ

0

V ′SeRdρ (5.8)
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Substituting the expressions for Γneo and Γturb from equations (5.3) and (5.6) in equa-

tion (5.8) we can evaluate the stationary density logarithmic gradient as:
[

−∂log ne

∂ρ

]

stat

= −RVturb

D
+
Dneo

D
Cneo

T

∂log Te

∂ρ
− RWp

D
+

R

neDV ′

∫ ρ

0

V ′SeRdρ (5.9)

where D = Dneo +Dturb.

We now make some assumptions to concentrate on the turbulence–induced part of the

sustained density gradient, namely −Vturb/D:

- We neglect core particle sources imposing Se = 0. This assumption is generally valid in

the core of Tokamak plasmas except in the presence of NBI heating or pellet injection.

However neither is present in TCV;

- We assume that neoclassical diffusivity is negligible with respect to turbulent diffusivity,

i.e. Dturb ≫ Dneo. This is a realistic assumption for electron transport in plasmas where

core turbulence is not completely suppressed;

- We assume that |Vturb| ≫ |Wp|, which is particularly true for cases where the loop

voltage is small, for example for a high electron temperature plasma or for fully non–

inductive discharges. However, in Ohmic plasmas at low temperature, the contribution

from the Ware pinch can be important and should be taken into account. Since it is

always directed inwards and it is not so sensitive on plasma parameters, it is possible to

take it into account in a straightforward manner. For the eITB scenarios that we want to

study, the assumption of negligible Ware pinch is valid due to the vanishing or very small

edge loop voltage.

With these assumptions, equation (5.9) simplifies to:
[

−∂log ne

∂ρ

]

stat

= −RVturb

Dturb

(5.10)

This equation states that the stationary density profile is tailored by the existence of

a turbulent convection mechanism. Note that when Vturb < 0 (inward convection) the

profile has a negative slope and thus is peaked, while for Vturb > 0 (outward convection)

the profile is hollow.

In the following we introduce the quantity R/Ln = −∂log ne/∂ρ. Then the steady–state

condition equation (5.10) becomes:
[

R

Ln

]

stat

= −RVturb

Dturb

(5.11)

Now we show how the Vturb/Dturb term appears from first principles in linear gyrokinetic

theory and how it can be calculated.

Addition of the Ware pinch

The stationary condition 5.10, which takes into account turbulent transport only, can

be used with the addition of the Ware pinch without too much complication. Taking
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Figure 5.1: a) −RVturb/Dturb versus R/Ln (solid), the stationary point (full square) is
obtained at the intersection of the ys with the diagonal; b) Same plot but with the addition
of the Ware pinch term −RWp/Dturb. The new stationary point is shifted upwards along
the diagonal. The old stationary point is indicated by an empty square.

again formula (5.9), and assuming Dneo ≪ Dturb, and no sources, we obtain (R/Ln =

−∂log ne/∂ρ)
[

R

Ln

]

stat

= −RVturb

Dturb

− RWp

Dturb

(5.12)

which can be written
[

R

Ln

]

stat

=
R

Ln

turb

− RWp

Dturb

(5.13)

It is then possible to evaluate the first term of the right hand side with gyrokinetic theory

as a function of R/Ln and then one can find the total stationary logarithmic gradient

by numerically solving this equation where the Ware pinch contribution is inserted with

an ad–hoc value for Dturb. This procedure is valid only if the newly calculated

[

R

Ln

]

stat
does not modify the value of Dturb itself. This is equivalent to satisfy the condition

Γturb + Wpne = 0 assuming that Γturb is a non–linear function of R/Ln with fixed Dturb

and Vturb = f(R/Ln), see formula (5.6).

We show an example of this procedure in figures 5.1(a,b). In figure 5.1(a) we plot an

example of the function −RVturb/Dturb versus R/Ln. If there is no Ware pinch then the

stationary condition 5.10 is satisfied at the intersection of this curve (solid) with the di-

agonal (dashed); the interesection is shown in the plot as a full square with ’stat’. In this

case the value is [R/Ln]stat = 1.5.

If we now add the Ware pinch, assuming Wp = −1 m/s and Dturb = 1 m2/s, the plot
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is modified to the one shown in figure 5.1(b). The solid curve is the total function

−RVturb/Dturb − RWp/Dturb while the dashed curve is just −RVturb/Dturb. The new in-

tersection (full square with ’stat’) is now located at

[

R

Ln

]

stat

= 4.1. In this case the

new stationary state is not just the old plus 1 because of the non–trivial dependence of

Vturb/Dturb on R/Ln, which is typical of bulk species. Indeed, for a passive species (in very

small concentration) pinch sources ’add–up’ in a linear way as there is no influence of this

species on turbulence itself. Note that the addition of the Ware pinch is straightforward

when evaluating Vturb/Dturb and not Γturb only. However, this requires at least two simu-

lations for each case to evaluate the two constants of the relation Γturb ∝ A∂log ne/∂ρ+B,

where RVturb/Dturb = −B/A.

In a similar way also core sources could be added to the model.

5.3 Linear gyrokinetic theory of particle transport

In subsection 2.3.3 we derived the normalized linear ballooning electrostatic gyrokinetic

equation for a generic species in equation (2.27). We rewrite it here for sake of clarity,

again without collisional operator:

(

∂

∂t
+ v‖∇‖ + iωd

)

g̃ = ZτF0

(

∂

∂t
+ iω∗

)

J0Φ̃ (5.14)

We introduce now the symbol LH which stands for the linear operator of the homogenous

part LH =

(

∂

∂t
+ v‖∇‖ + iωd

)

, and we explicit the density and temperature gradients

dependence of ω∗ to rewrite equation (5.14) as:

LH g̃ = ZτF0

[

∂

∂t
+ i

kyρi

Zτ

∂log n

∂ρ
+ i

kyρi

Zτ

(

E

Eth

− 3

2

)

∂log T

∂ρ

]

J0Φ̃ (5.15)

We formally define the inverse operator L−1
H of LH , such that the equality L−1

H (LH g̃) = g̃

is valid for every solution g̃. We then write the formal solution to equation (5.15) as:

g̃ = ZτF0L
−1
H

(

∂

∂t
J0Φ̃

)

+ ikyρiF0L
−1
H

(

J0Φ̃
) ∂log n

∂ρ

+ikyρiF0

(

E

Eth

− 3

2

)

L−1
H

(

J0Φ̃
) ∂log T

∂ρ
(5.16)

The non–adiabatic part of the density fluctuation ñ is defined by the phase–space integral

ñnon−adiab =

∫

J0g̃d
3v. The adiabatic part does not contribute to the turbulent flux Γturb,

which can now be written substituting the expressions in formula (5.5):

Γturb = Γ0

∑

k

ℜ
[

ikyρiΦ̃
∗
k

∫

J0g̃kd
3v

]

= Γ0

∑

k

[

Ak
∂log n

∂ρ
+Bk

∂log T

∂ρ
+ Ck

]

(5.17)
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where Γ0 = nivth(ρi/R)2 is a dimensional factor, and the three constants Ak, Bk and Ck

are defined as:

Ak = −(kyρi)
2ℑ
[

iΦ̃∗
k

∫

J0F0L
−1
H

(

J0Φ̃k

)

d3v

]

Bk = −(kyρi)
2ℑ
[

iΦ̃∗
k

∫

J0F0

(

E

Eth

− 3

2

)

L−1
H

(

J0Φ̃k

)

d3v

]

Ck = −Zτkyρiℑ
[

Φ̃∗
k

∫

J0F0L
−1
H

(

∂

∂t
J0Φ̃k

)

d3v

]

(5.18)

Comparing with formula (5.6), we can identify the two transport mechanisms driven by

turbulence:

Dturb = −RΓ0

n

∑

k

Ak

Vturb =
Γ0

n

(

∑

k

Bk
∂log T

∂ρ
+
∑

k

Ck

)

(5.19)

where it can be shown that Dturb is positive definite, thus providing outward diffusion,

whereas Vturb can be negative, i.e. inward directed, or positive, i.e. outward directed,

depending on the details of turbulence. Note also that turbulent convection is composed

of two separate mechanisms: thermodiffusion, which depends on diffusion in particle

energy space and provides a pinch proportional to the temperature gradient [13, 72], and

another pinch mechanism. We thus define the two pinch coefficients as:

CT = −
∑

k Bk
∑

k Ak

CP = −
∑

k Ck
∑

k Ak
(5.20)

to rewrite turbulent convection as Vturb = −Dturb
1

R

(

CT
∂log Te

∂ρ
− CP

)

. Looking back at

the stationary condition expressed by equation (5.10), it can now be written:

[

−∂log ne

∂ρ

]

stat

= CT
∂log Te

∂ρ
− CP (5.21)

It is clear now that turbulence can effectively sustain a peaked density profile in absence

of core sources and neoclassical transport due to the two mechanisms identified in ther-

modiffusion (CT) and the other convection pinch term CP. As we said for the convection

velocity Vturb, CT and CP provide an inward directed pinch when they have negative val-

ues, and provide an outward directed pinch in the opposite case. These two coefficients

are defined in terms of the solution of the gyrokinetic equation, which depends on the

equilibrium profiles and their gradients. In this sense equation (5.21) is a non–linear
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equation for the self–consistent value of the stationary ∂log n/∂ρ. One can solve numer-

ically equation (5.21) performing a scan in ∂log n/∂ρ and finding the value that satisfies

equation (5.21), or alternatively the condition Γturb = 0.

The steady–state condition can be rewritten using R/Ln:

[

R

Ln

]

stat

= −CT
R

LTe

− CP (5.22)

When searching for this condition, a scan in R/Ln is performed. Let us call the input

parameter R/LIn
n . Formula (5.22) can be applied anyway to calculate a

[

R

Ln

]Out

= −CT
R

LTe

− CP (5.23)

where CT and CP are functions of R/LIn
n . The difference R/LOut

n −R/LIn
n is proportional

to the particle flux, such that if R/LOut
n − R/LIn

n > 0 there is a net inward flux, while if

R/LOut
n −R/LIn

n < 0 there is a net outward flux. The flux vanishes when R/LOut
n = R/LIn

n .

Note that this point is a stable solution if

[

dXOut

dX In

]

steady

< 1 (5.24)

where X = R/Ln. Namely, the local slope at the stationary point must not be higher

than the 45o degrees diagonal.

In the linear model derived from equation (5.14) the perturbation Φ̃, for unstable modes,

has an exponential growth ∼ eγt, such that the saturated state at equilibrium, in the

non–linear regime, is not known. However from formulas (5.19), it is possible to see that

CT and CP are products of ratios of transport fluxes, the saturation value for each single

Φ̃ is not needed, but their ratio is sufficient. Indeed, if only one single toroidal mode is

chosen, then the two coefficients become independent on the value of Φ̃.

5.3.1 Physics of the pinch coefficients

We now study in details the physics contained in the two pinch coefficients CT and CP

making simplifying assumptions which do not undermine the possibility of understanding

the basic mechanisms. As we said in the introduction, we focalize our attention on elec-

tron transport.

We split the phase space in the passing and trapped particle regions, introducing the ge-

ometrical trapped particle fraction ft(ρ) =

√

1 − Bmin(ρ)

Bmax(ρ)
. For trapped particles, we

can assume a bounce averaged (< ... >b) equation with no parallel component, i.e.

< k‖v
trap
‖ >b= 0, such that phase space is reduced to the particle energy E. For passing

particles we assume fast motion along the field lines, i.e. |k‖vpass
‖ | ≫ |∂/∂t|, |ωd|.
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These two assumptions on the particles phase space, which strongly simplify the calcu-

lations, have the drawback of eliminating the possibility of studying the physics of the

barely trapped particles, whose bounce averaged potential is not the same as the deeply

trapped particles. In addition, they can experience Landau damping and be influenced

by parallel dynamics. Note that this limitation is intrinsic to fluid models where a kinetic

description can be approached but not reproduced genuinely. For example, an effort to

take into account the influence of parallel dynamics on trapped particles in a fluid model

has been done in the new TGLF model [73] which is an improvement of the GLF23 model.

The derivative operator ∇‖ as well as every quantity that depends on θ is replaced with

an averaged value obtained substituting θ → δθ where δθ is the characteristic extension

of the mode along the field line ballooning coordinate. The time evolution operator ∂/∂t

is replaced with its Fourier transform −iω where ω = ωR + iγ is the mode complex fre-

quency. With this simplifications, the linear operator LH becomes an algebraic operator.

We focus on one single toroidal mode kyρi for simplicity. After some straightforward alge-

bra the two pinch coefficients CT and CP can be analytically reduced to these expressions:

CT =
ft

[

∫ +∞

0
dE
(√

Ee−E γ(E−3/2)

γ2+(ωR−ωd0
E

2
)2

)]

+ (1−ft)
4

1
Mk‖

ft

[

∫ +∞

0
dE
(√

Ee−E γ

γ2+(ωR−ωd0
E

2
)2

)]

− (1−ft)
2

1
Mk‖

CP = −τ ωd0

kyρi

ft

[

∫ +∞

0
dE
(

E
2

√
Ee−E γ

γ2+(ωR−ωd0
E

2
)2

)]

− (1−ft)ωR

πMk‖

ft

[

∫ +∞

0
dE
(√

Ee−E γ

γ2+(ωR−ωd0
E

2
)2

)]

− (1−ft)ωd0

πMk‖

(5.25)

where the quantity M =
√

τ(mi)/(me) ∼ 60 for τ = Ti/Te = 1. We now study different

details of the physics contained in these two expressions.

Pure passing electron pinch at ft = 0

If we assume only passing electrons, which can be the case for pure ETG turbulence,

formulas (5.25) reduce to:

CT = −1

2

CP = −τ ωR

kyρi

(5.26)

Namely: thermodiffusion (CT) provides an inward directed pinch that correlates density

and temperature with the simple relation ne ∝ T
1/2
e [13]. Note that incidentally this value

1/2 is found in another model [17] and it also seems to fit the data of edge profiles from

H–modes in ASDEX Upgrade [75]. The other pinch contribution CP is proportional to

the mode real frequency, i.e. it provides an inward directed pinch for TEM dominated

turbulence (see table 2.2) and an outward directed pinch for ITG dominated turbulence;



74 CHAPTER 5. THEORY OF PARTICLE TRANSPORT

its role is decreased if τ = Ti/Te ≪ 1, for example for strongly EC heated discharges

where Te ≫ Ti. The pure passing electron pinch CP is analogous to the impurity pinch

driven by parallel dynamics found in Ref. [74].

Pure trapped electron pinch at ft = 1

In the opposite extreme, namely when there are no passing electrons, CT and CP are given

by:

CT =

∫ +∞

0
dE

√
Ee−E γ(E−3/2)

γ2+(ωR−ωd0
E

2
)2

∫ +∞

0
dE

√
Ee−E γ

γ2+(ωR−ωd0
E

2
)2

CP = −τ ωd0

kyρi

∫ +∞

0
dE E

2

√
Ee−E γ

γ2+(ωR−ωd0
E

2
)2

∫ +∞

0
dE

√
Ee−E γ

γ2+(ωR−ωd0
E

2
)2

(5.27)

In this case, both coefficients are derived from energy phase space integrals with funda-

mentally different kernels. For CT, the kernel is proportional to E − 3/2, which means

that the sign of CT can change depending on the resonant denominator, i.e. depending on

the value of ωR. For CP the kernel is positive definite, which means CP is always inward

directed when the average ωd0 is positive, which is the case for standard monotonic q

profile scenarios.

We evaluate numerically the two coefficients to show the strong dependence on the mode

real frequency ωR. In figure 5.2 we show the plots of CT and CP to evidence their strong

dependence on the mode real frequency ωR and their behavior versus the type of mode.

The fixed parameters are τ = 1, kyρi = 0.12, ωd0 = 0.3. In figure 5.2(a) we see that CT

is inward directed in ITG turbulence and attains its minimum value (read: maximum

inward pinch) at ωR ∼ 0, where ITG and TEM coexist at similar growth rates. In TEM

turbulence CT becomes smaller in absolute value and can change sign, i.e. change direc-

tion from inwards to outwards, with increasing ωR in the TEM regime. There is also a

dependence on the mode growth rate γ, showing that if the mode becomes less unstable

the inward pinch is increased. The behavior of CP is shown in figure 5.2(b), where we

see that, as expected, it is always inward directed. It provides a stronger pinch in TEM

dominated turbulence. Note that, from formula (5.21), CT enters in the stationary profile

together with ∂log Te/∂ρ, which means that at large values of the temperature logarithmic

gradient the contribution from CP can become negligible. Note also that the curvature

drift ωd enters in both the coefficients. In particular one sees that increasing the average

ωd0, the two pinch coefficients are increased in absolute value in an almost linear pro-

portionality. This means that, through the shear dependence of ωd, see formula (2.26),

we could expect a proportionality between the magnetic shear and the stationary density

logarithmic gradient.



CHAPTER 5. THEORY OF PARTICLE TRANSPORT 75

−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

ω
R

C
T

(a)

γ

ITG TEM

In
Out

 0.1
0.35
 0.6

−1.5 −1 −0.5 0 0.5 1 1.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

ω
R

C
P

Figure 5.2: a) Thermodiffusion coefficient CT for the pure trapped electrons case plotted
versus the mode real frequency ωR and for three values of the growth rate γ; b) Same plot
for the other pinch contribution CP.

General situation for 0 < ft < 1

In the core of Tokamak plasmas, both passing and trapped electrons exist due to the

poloidal angle dependence of the magnetic field on a fixed flux surface. For the general

case, the pinch will be carried by both kind of particles in different proportions. Due

to the fast motion of passing electrons along field lines, we can expect their pinch to

be small compared to the trapped electrons pinch for cases with weak non–adiabaticity

of passing electrons. This is visible in formulas (5.25) where we see that the passing

electrons contribution, proportional to 1 − ft scales with |ω/(Mk‖)| compared to the

trapped electrons contribution. The value of M for deuterium plasmas is ∼ 60. However

the role of passing electrons can become important either if k‖ is strongly decreased, for

example if the magnetic shear approaches zero, or if the scaling |ω/(Mk‖)| ≪ 1 breaks

down, for example in the presence of collisions [76].

5.3.2 Choice of the quasi–linear rule

It is evident from formulas (5.18) that one can extract the saturation value |Φ̃k(0)|2 from

Φ̃k to rewrite the coefficients as, for example, Ak = |Φ̃k(0)|2αk where αk contains terms

of the type Φ̃k(θ)/|Φ̃k(0)|. The coefficient αk is thus well defined in the linear stage, and
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the values of |Φ̃k(0)|2 can be extracted to rewrite the pinch coefficients as:

CT = −
∑

k |Φ̃k(0)|2βk
∑

k |Φ̃k(0)|2αk

CP = −
∑

k |Φ̃k(0)|2γk
∑

k |Φ̃k(0)|2αk
(5.28)

where βk and γk are the |Φ̃k(0)|2–normalized Bk and Ck respectively. The linear model

provides the values for αk, βk and γk, while the |Φ̃k(0)|2 have to be given a posteriori

with ad–hoc expressions. In this context, different quasi–linear rules, i.e. the choice of

|Φ̃k(0)|2, can be used. For a rule to be more or less adherent to the real turbulent state,

it has to be compared to the result from non–linear simulations.

In the following we will adopt the rule proposed in Ref. [54]: we choose to retain only the

mode that has the highest value of γ/ < k2
⊥ >, which corresponds to choosing |Φ̃k(0)|2 as

a delta function located at the kyρi with the highest value of γ/ < k2
⊥ >. Other rules could

be adopted, for example as the rule used in GLF23 and shown in equation (2.37), or the

rule proposed in Ref. [77] which prescribes |Φ̃k(0)|2 ∝ e4kyρi−8(kyρi)max for kyρi < (kyρi)max

and |Φ̃k(0)|2 ∝ e−4kyρi for kyρi > (kyρi)max where (kyρi)max is the kyρi at which γ/ < k2
⊥ >

is maximum. This last rule is based on results from both non–linear simulations and

experimental measurements on core plasma turbulence. Note that, while the rules based

on sum over powers of γ/ < k2
⊥ > maintain a memory of the linear spectrum, the rule

proposed in Ref. [77] reflects the idea that there is a mechanism that, in the non–linear

stage, smoothes out turbulence towards a universal spectrum, with a simple exponential

decay, independently of the details of the spectrum in the linear stage (except for the

position of the maximum which is still calculated on γ/ < k2
⊥ >). This last statement

is reported to be consistent with findings from both non–linear simulations and from

experimental measurements. However no general conclusion can be drawn as these cases

do not cover a large parameters set.

The choice of the quasi–linear rule is particularly important for particle transport as

different parts of the kyρi spectrum can have opposite signs in the flux, i.e. in either Bk

and Ck of the convection velocity given in the second of formulas (5.19), and thus the sum

can drastically change result depending on the weight given to the different kyρi modes.

5.4 Understanding the behavior of density peaking

in standard scenarios

Before applying linear gyrokinetic theory to the interpretation of the eITB scenario, we

want to show how this model works for well known scenarios like the Ohmic L/H mode.

Several theoretical models have been proposed to interpret experimental results in differ-
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ent scenarios, for example Refs. [72, 63, 80, 78, 79]. Each work deals with a particular

observation about steady–state particle transport.

In this context we use the linear gyrokinetic model to understand the different observa-

tions as the manifestation of an underlying coherent mechanism arising from turbulence.

5.4.1 Base case and spectrum

We adopt the following set of parameters which resemble a typical monotonic q profile

plasma obtained in TCV and other machines:

- aspect ratio of ǫ = 0.125, representing mid–radius for most of the existing Tokamaks;

- normalized inverse length scales R/LTe = R/LTi = 9;

- Te = Ti, no collisions νeff = νeiR/(
√

2vi
th) = 0, no impurities Zeff = 1;

- safety factor q = 1.4 and magnetic shear s = 0.8, while the Shafranov–shift parameter α

is calculated self–consistently assuming ne = 1019 m−3 and Te = 0.5 keV with a B0 = 1.44

T.

The density normalized inverse length scale R/Ln is scanned to find the steady–state point

and a spectrum in kyρi is calculated for each single case in the range 0.08 < kyρi < 1.5.

In figures 5.3(a,b) we show the result for the turbulence properties for this case: most

unstable mode growth rate γ and real frequency ωR versus kyρi in figure 5.3(a), and tur-

bulence spectrum for the mixing length parameter γ/ < k2
⊥ > and for the phase shift Γ̃k

which is defined as the turbulent particle flux Γturb, for each single mode, normalized to

|Φ̃k(0)|2 since Γturb/|Φ̃k(0)|2 is the only meaningful quantity in a linear model.

Each curve in figures 5.3(a,b) is obtained with a different R/Ln as input to the code.

First of all, we note that there are two completely different type of modes present along

the kyρi axis. At long wavelengths, for kyρi . 0.7 the dominant mode is an ITG, which

frequency becomes more negative going to lower values of R/Ln and to higher values of

kyρi. However, a TEM can become dominant at kyρi ∼ 0.1 for high values of R/Ln. In

general this is the effect of TEM destabilization by R/Ln. For kyρi & 0.7 the dominant

mode is rotating in the electron diamagnetic direction but it is stabilized by increasing

R/Ln. Its structure is different from the modes located at longer wavelength as we can see

from figures 5.4(a,b), where we compare the mode structure along the ballooning angle θ

for some mixed R/Ln−kyρi cases. While for low values of kyρi, shown in figure 5.4(a), the

mode is essentially located between −π < θ < π, for kyρi = 0.9, shown in figure 5.4(b),

there are important structures occupying a large interval in θ, indicating an elongated

mode. The mode associated with these structures has its growth rate reduced by increas-

ing R/Ln.

Looking now at the transport properties of these modes, shown in figure 5.3(b), we see

that for all the R/Ln cases, the spectrum for γ/ < k2
⊥ > (solid lines) peaks at kyρi ∼ 0.1
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Figure 5.3: a) Growth rate γ (solid) and real frequency ωR (dashed), both in units of
vi

th/R, of the most unstable mode for each kyρi, for different values of R/Ln (in the
legend). Indicated also is the type of mode according to the sign convention: a positive ωR

is a TEM, while a negative ωR is an ITG; b) The same type of plot for the mixing length
parameter γ/ < k2

⊥ > (’Mix’, solid) and for the phase shift Γ̃k (Γp in the plot, dashed), i.e.
the turbulent particle flux Γturb of each single mode normalized to the respective |Φ̃k(0)|2.
Indicated also is the direction of the flux according to the sign convention: a positive flux
is outward directed and a negative flux is inward directed.
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and decreases down to negligible values already at kyρi ∼ 0.6. The spectrum does not

change significantly for different R/Ln.

If we now consider the induced particle normalized flux, or ’phase–shift’ (dashed lines),

we see that the long and short wavelengths behave differently:

- for kyρi . 0.6−0.7 the phase–shift is almost constant with respect to kyρi but it strongly

depends on the value of R/Ln as it is inward directed for R/Ln ≤ 4 and becomes outward

directed for R/Ln ≥ 5;

- for kyρi & 0.7 the phase–shift is inward directed and becomes more negative with in-

creasing kyρi, while it shows little dependence on the value of R/Ln.

From the flux behavior shown in figure 5.3(b) we can expect the steady–state [R/Ln]stat
to be located between 4 and 5. We calculate it finding the condition Γturb = 0 using

different rules for the sum over the spectrum.

In figure 5.5(a) we show the predicted R/LOut
n , as calculated from formula (5.23), ver-

sus R/LIn
n , using different quasi–linear rules for the calculation of CT and CP, see for-

mulas (5.28). The rules employed are in the order: retaining only one mode where

γ/ < k2
⊥ > peaks (circles), sum using |Φ̃k(0)|2 ∝ (γ/ < k2

⊥ >)2 (squares), sum using

|Φ̃k(0)|2 ∝ γ/ < k2
⊥ > (stars) and sum using the prescription of Ref. [77] (right triangles)

where |Φ̃k(0)|2 ∝ e−Ckyρi . It is interesting to see that, despite the four rules being differ-

ent in weighting over the wavenumber spectrum, the predicted stationary point is almost
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the same for all and it is [R/Ln]stat ∼ 4.5. Note also that all the identified stationary

points are stable, when looking at condition (5.24), and that the behavior of R/LOut
n ver-

sus R/LIn
n can be divided in two regions at low and high values of R/LIn

n , and that the

stationary point is located in between. In figure 5.5(a), we also show the behavior of the

real frequency ωR of the mode with the highest γ/ < k2
⊥ > versus R/LIn

n (diamonds) with

its own reference zero line (horizontal dashed). Note that the frequency changes sign from

negative (meaning a dominant ITG mode) at low R/LIn
n to positive (meaning a dominant

TEM) at high R/LIn
n . The region where ωR ∼ 0, namely where ITG and TEM coexist at

similar growth rates, is also the region where the stationary point is located.

To understand the mechanisms that drive this behavior we look now at the two pinch

coefficients CT and CP shown in figure 5.5(b), plotted versus R/LIn
n . Here we show also

the stationary value at [R/Ln]stat = 4.5 to check the behavior of the two coefficients at

that point.

The thermodiffusion coefficient CT, figure 5.5(b) on the top, is directed inwards on all

the R/LIn
n range, but it is more negative, i.e. provides a stronger inward pinch, for

R/LIn
n < 4.5, reaching its highest absolute value near the stationary point. Relating this

behavior to the behavior of ωR as shown in figure 5.5(a), we see that the predictions from

subsection 5.3.1, in particular as from figure 5.2(a), are recovered. The same is true for

CP, both with regards to the magnitude and the fact that it increases in absolute value

going to TEM dominated turbulence.

The final result, namely the stationary [R/Ln]stat, is thus an interplay between the role

of the thermodiffusive pinch which is inward directed and maximized in absolute value at

ωR ∼ 0, it becomes small in absolute value in TEM dominated turbulence, and the contri-

bution from CP which becomes more important in TEM dominated turbulence. However,

if R/LTe is high, CP is expected to become negligible compared to CTR/LTe and thus the

stationary point would be dictated by the ITG–TEM transition.

We said before that for high kyρi modes the transport properties are different. However

their role is minimal when using quasi–linear rules where |Φ̃k(0)|2 rapidly decays with

kyρi. In this sense we do not expect a strong difference between different rules of this

kind, as can be seen from figure 5.5(a) looking at the circles, squares and stars. A more

important difference can arise if the spectrum of |Φ̃k(0)|2 decays slowly as for example

using the rule of Ref. [77] (right triangles in the figure). Nevertheless for this case the

stationary point is almost the same.

In the following parameters scan we will concentrate only on the stationary point, again

looking at the basic mechanisms and the effect of using different quasi–linear rules.
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Figure 5.6: a) Stationary R/Ln for different values of R/LTe (x axis) and R/LTi (legend).
Each subplot shows the result of a different rule (see text); b) Cumulative total flux for
the case with R/LTe = 12 and R/LTi = 6, plotted versus kyρi for the R/Ln scan, using
rules < 2 > (solid) and < 4 > (dashed).

5.4.2 Dependence of [R/Ln]stat on temperature gradients

We employ the same parameters as the base case but we perform a parameters scan in

R/LTe and R/LTi to show the dependence of [R/Ln]stat on the two temperature length

scales. For this scan the wavenumbers are retained in the interval 0.08 < kyρi < 1. In

figure 5.6(a) we show the predicted [R/Ln]stat versus R/LTe for three values of R/LTi,

using the four rules presented before, respectively: < 1 > retains only the mode where

γ/ < k2
⊥ > peaks, < 2 > is the sum using |Φ̃k(0)|2 ∝ (γ/ < k2

⊥ >)2, < 3 > is the sum

using |Φ̃k(0)|2 ∝ γ/ < k2
⊥ >, and < 4 > is the sum using |Φ̃k(0)|2 ∝ e−Ckyρi as in Ref. [77].

Several interesting observations can be drawn from these results:

1) The different rules present different details on the predicted [R/Ln]stat. Again this is

due to the different weights given to the wavenumbers, as shown in figure 5.6(b). Here

we plot the cumulative flux, i.e. ∝
∑k=kyρi

k=0.08

[

|Φ̃k(0)|2kΓ̃k

]

, versus kyρi, for rules < 2 >

(solid lines) and < 4 > (dashed lines), for the case with R/LTe = 12 and R/LTi = 6, for

different values of R/Ln. For R/Ln < 5 the inward directed contribution coming from

high values of kyρi is relevant for rule < 4 > while it is small for rule < 2 >. The effect

is to shift [R/Ln]stat to higher values for rule < 4 >;

2) Looking at figure 5.3(a), rule < 1 >, one can note that [R/Ln]stat is maximized, at fixed

R/LTi, when R/LTi/R/LTe ≈ 1. This is also visible in rules < 2 > and < 3 > although

with less evidence as other modes are taken into account. For rule < 4 > this dependence
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⊥ >; b) Same plot for LTe/L
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n .

on R/LTi/R/LTe can be observed on the local slope d [R/Ln]stat /dR/LTe but not on the

value of [R/Ln]stat itself;

3) The mechanism that gives this behavior can be understood looking at the behavior

of [R/Ln]stat versus the real frequency of the dominant mode. In figures 5.7(a,b) we plot

respectively [R/Ln]stat and LTe/L
stat
n for the R/LTe − R/LTi scan, and for rules < 1 >

and < 4 >, versus ωR of the mode with highest γ/ < k2
⊥ > at the value of [R/Ln]stat of

rule < 1 >. In figure 5.7(a), as expected, we see that [R/Ln]stat increases going from ITG

to the ITG–TEM transition region where ωR ∼ 0, while it decreases going into the TEM

region. The behavior is also visible in rule < 4 > although there is no clear reduction

in the TEM branch. However, looking at LTe/L
stat
n , figure 5.7(b), which gives a direct

indication on the strength of the thermodiffusive pinch, we see that the thermodiffusive

contribution is decreased going into the TEM regime also for rule < 4 >.

Collecting all these observations we can make a first general conclusion from this colli-

sionless R/LTe − R/LTi scan, namely that [R/Ln]stat will be maximized, at fixed R/LTi,

when R/LTe ≈ R/LTi, which also gives, for the mode with highest γ/ < k2
⊥ >, ωR ≈ 0.

However the details of the dependences and the values can moderately change depending

on the quasi–linear rule employed, especially if a relevant weight is given to high kyρi

numbers where the flux is found to be inward directed for all the cases.
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Figure 5.8: a) Plot similar to 5.6(a) but for the νeff − Te/Ti scan; b) Mode real frequency
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5.4.3 Dependence of [R/Ln]stat on collisionality and temperatures
ratio

We adopt the same base case parameters as in subsection 5.4.1 with 0.08 < kyρi < 1.

We scan the temperature ratio Te/Ti and the effective collisionality νeff . In figure 5.8(a)

we present the results for the stationary [R/Ln]stat as done in the previous subsection

in figure 5.6(a). [R/Ln]stat is shown versus νeff for the different Te/Ti values and each

subplot shows the result for a different quasi–linear rule. The main observation that can

be drawn from this scan is that the local normalized density gradient is strongly reduced

by increasing collisionality for Te/Ti . 1, while for Te/Ti ≫ 1 the density peaking is not

modified by collisionality (in some cases it can even be slightly increased). This strong

collisionality–driven flattening effect at Te/Ti ≈ 1 is relaxed when more modes are taken

into account as can be seen from the curve at Te/Ti = 1 which attains negative values for

rule < 1 > but stays positive for rule < 4 >. Again this is due to the inward directed

contribution from high kyρi modes. The reduction of |Vturb/Dturb| with collisionality has

also been reported in Ref. [80], and collisionality itself seems to be the most important

parameter for general density scalings in H–modes plasmas of several machines [81].

The positive effect of Te/Ti at high νeff and the reason why collisionality influences the

density peaking in a negative way can be understood from figure 5.8(b) where we plot

the real frequency ωR (solid) and the respective phase shift Γ̃k (dashed) for the mode at

kyρi = 0.12 versus νeff for the three values of Te/Ti, at a fixed R/LIn
n = 4. For all the νeff ,

increasing Te/Ti pushes the frequency from ITGs towards TEMs. This effect is larger at
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low νeff . With regards to the flux sign, we see that at low νeff it is inward directed for low

Te/Ti, i.e. in ITG, and becomes outward directed increasing Te/Ti, i.e. going to TEMs.

At high νeff the flux becomes outward directed and the magnitude increases as Te/Ti is

decreased, i.e. as ωR goes more into the ITG mode. This picture explains why νeff causes

a density profile flattening at low Te/Ti as an effect of an outward directed contributions

from ITG modes. We will see later what is the main mechanism behind this effect.

We focus now on the collisionless case, for which we see that [R/Ln]stat is slightly decreased

with increasing Te/Ti. In figure 5.9(a) we put this in evidence by plotting [R/Ln]stat versus

Te/Ti for the case at νeff = 0 and for the four rules. [R/Ln]stat decrease with Te/Ti. The

reason is shown in figure 5.9(b), where we show the real frequency ωR for the mode at

kyρi = 0.12 versus R/Ln. The dashed vertical lines indicate the position of [R/Ln]stat.

We see that the mode changes from an ITG to a TEM at lower R/Ln with increasing

Te/Ti. Consequently the stationary point adjusts itself to relocate near ωR ≈ 0. This

effect of R/Ln limitation due to TEM destabilization is the same that has been discussed

in subsection 5.4.2. This effect has also been observed in low collisionality plasmas where

the density profile is flattened by application of core ECH in TCV [65] and in ASDEX

Upgrade [63].



CHAPTER 5. THEORY OF PARTICLE TRANSPORT 85

[C. Angioni POP 2005]

Figure 5.10: Figure taken from Ref. [82]. Note that in the right plot ωr is in fact −ωR,
which means that negative values indicate a TEM, while positive values indicate an ITG,
opposite to our convention.

5.4.4 Interpretation of experimental data with a collisionality
scan

We employ the results presented in the previous subsections 5.4.2 and 5.4.3 to interpret

observations from experimental data observed in the ASDEX Upgrade Tokamak. In par-

ticular we refer to the results presented in Ref. [82], figure 3 on page 3, which we report

here in figure 5.10. On the left of this figure we see a collection of stationary points of

R/Ln shown as a collisionality scan for different ASDEX Upgrade L and H modes. On

the right, the most unstable mode frequency for a fixed kyρi is shown, calculated for each

R/Ln point. In this plot ωr is in fact −ωR, which means that a negative value of ωr

indicates a TEM, and a positive value indicates an ITG. We see that the mode changes

from a TEM to an ITG increasing νeff , and that the maximum in R/Ln in the left figure

is located at the νeff where the mode frequency changes sign.

We use now the quasi–linear model discussed in this Chapter to help us in understanding

this behavior. To this purpose we perform a νeff − Te/Ti scan employing a single toroidal

mode kyρi = 0.13, with the other parameters kept fixed at the same values as the base

case except for the choice: R/LTe = 10, R/LTi = 6. The parameter scan is done in

the intervals 0 ≤ νeff ≤ 0.15 and Te/Ti = 1.2 ÷ 2.2. Note that the definition of νeff in

figure 5.10 is such that in our parameter scan we actually scan a 0 ≤ νeff . 1 according

to the definition in figure 5.10.

In figure 5.11(a) we present the results of the code for [R/Ln]stat (circles), plotted versus

−ωR. The arrow indicates that increasing collisionality, at fixed Te/Ti, moves the fre-
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Figure 5.11: a) [R/Ln]stat (circles) versus −ωR for the νeff − Te/Ti scan. The arrow in-
dicates the direction of increasing νeff . Also shown the passing electron pinch fraction
(squares) limited to 0 − 1; b) Pinch coefficients CT (top, circles) and CP (bottom, cir-
cles) versus −ωR for the same scan. In dashed we show their respective passing electrons
contributions.

quency to the right. It is clear that the code is capable of reproducing the experimental

behavior qualitatively, if the result is plotted versus ωR (and not versus νeff) as νeff is

only one of the many parameters that influence ωR but the pinch is essentially driven by

ωR. As expected from previous results, the highest peaking is obtained near ωR ≈ 0, i.e.

when ITG and TEM coexist at similar growth rates. In addition, increasing νeff has also

the effect of increasing the fraction of the pinch carried by passing electrons, as shown

by the squares (’% Pass pinch’) which values go from ∼ 10% in the collisionless case to

∼ 80% at νeff = 0.15. Note that at Te/Ti = 2.2, the stationary points are located more

into the TEM branch, and that for those points an increase in νeff has a positive effect on

the stationary peaking [83]. We also see that the code predicts a faster drop of density

peaking with collisionality than what observed in the experiment. This can be due to the

fact that we are taking only the mode with highest γ/ < k2
⊥ > for the transport analysis

while it has been shown recently that a full spectrum up to the short wavelength region

with kyρi & 1 has to be taken into account to recover a reasonable [R/Ln]stat [84].

To clarify the mechanisms that provide the behavior shown in figure 5.11(a), we evaluate

now the two pinch coefficients CT and CP. They are shown in figure 5.11(b) (the dashed

lines are the respective contributions from the passing electrons).

- CT: the thermodiffusion coefficient is inward directed and maximized in absolute value

near ωR ≈ 0 where it has the value CT ≈ −0.4. It decreases both into the TEM and into

the ITG branch, however the decrease is stronger and more rapid in the TEM branch as
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expected from the analysis of subsection 5.3.1;

- CP: this pinch coefficient is inward directed and important into the TEM branch and

compensates the drop of |CT| in this regime (CP ∼ −2). It is interesting to note that

it changes sign and becomes outward directed in the ITG branch, providing a strong

outward contribution that almost balances the inward contribution of CT, giving the ob-

served [R/Ln]stat ≈ 0 at high νeff . We already showed in subsection 5.3.1 that the passing

electrons part of CP is proportional to ωR and can thus provide an outward pinch in ITG.

However, in this case we see that not all the outward contributions are from passing elec-

trons, but a part is also carried by trapped electrons. It can be shown that this effect is

mainly due to barely trapped electrons for which the parallel dynamics is still important.

Note that the increase of CP to large positive values in ITG could be less rapid and less

strong if more modes are taken into account as mentioned before.

Ware pinch effect

We now insert the Ware pinch as shown in subsection 5.2.3 to see what is its effect de-

pending on the turbulence regime. For the scan performed in this subsection we find the

new stationary state assuming different values for the term −RWp/Dturb which has to be

added to R/LOut
n .

The results are shown in figure 5.12(a) for the stationary state [R/Ln]stat and in fig-

ure 5.12(b) for the value of ωR corresponding to the stationary state. Each figure shows

the respective quantity plotted versus the Ware pinch driven term −RWp/Dturb for dif-
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ferent values of νeff . All the cases reported have Te/Ti = 1. Note that for TCV typical pa-

rameters in low current Ohmic L–modes, we estimate −RWp/Dturb ≈ 0.5÷1 at ρψ ∼ 0.3.

It is interesting to note that in TEM dominated turbulence, and near the transition be-

tween the two modes, i.e. for ωR & 0 (circles and squares), the inclusion of the Ware pinch

does not modify in a substantial way either the value of [R/Ln]stat or the value of ωR. In

the case of strongly ITG dominated turbulence at Wp = 0 (diamonds and crosses), the

inclusion of the Ware pinch has an important effect as it rapidly increases both [R/Ln]stat
and ωR. If the Ware pinch is substantial, it will tend to push the stationary value up

to the ITG→TEM transition, where it will stop to cause any further increase due to the

strong change in the slope of the function. It is interesting to remember that this effect

has in fact already been observed and discussed in Ref. [79] and it is believed to be the

mechanism for the creation of a density barrier in positive magnetic shear scenarios with

off–axis ICRH.

Another characteristic of the Ware pinch effect on the stationary R/Ln is that, as it can

be seen for the crosses in figure 5.12, the relative change δ [R/Ln]stat due to the application

of a certain Ware pinch −RWp/D can be much larger than −RWp/D itself, due to the

particular functional form of Vturb/Dturb. This delicate topic will be inspected in more

detail in chapter 6.

5.4.5 Dependence of [R/Ln]stat on magnetic shear

We adopt the same base case parameters as in subsection 5.4.1 with 0.08 < kyρi < 1. We

scan the magnetic shear s and the safety factor q around the base case parameters. In

addition, we perform the same scan with modified parameters νeff = 0.15, R/LTe = 10

and R/LTi = 6 to check the effect of collisions.

We show the results for the stationary state in figures 5.13(a,b), where we plot [R/Ln]stat
versus magnetic shear for three values of q, adopting the four quasi–linear rules presented

in subsection 5.4.2. In the collisionless case, shown in figure 5.13(a), the stationary density

logarithmic gradient increases monotonically with increasing magnetic shear, and its value

does not show any relevant dependence on q. In addition, the result does not change using

different quasi–linear rules. This dependence is consistent with the findings of Ref. [85]

from LHCD experiments in JET, and of Ref. [86] from LHCD experiments in Tore Supra,

although in those cases Te ≫ Ti.

When collisions are non–negligible, this dependence can be completely destroyed, as shown

in figure 5.13(b), where the same scan is done but with νeff = 0.15, R/LTe = 10 and

R/LTi = 6. Now the stationary density peaking decreases with increasing magnetic shear

and its value shows also some sensitivity on the rule employed. As in the collisionless

case, there seems to be no significant dependence on q.
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subsection 5.4.2; b) Same plot but with modified parameters: νeff = 0.15, R/LTe = 10 and
R/LTi = 6.

To understand this striking difference between the collisionless and the collisional cases,

we plot the results from the two scans for the case with q = 1.4, and for rule < 1 >, versus

ωR in figure 5.14(a). It is clear that the two scans fall in completely different frequency

ranges and this explains also the different shear dependence.

In the collisionless case the stationary state is located near ωR ≈ 0 and the influence of

the shear s on [R/Ln]stat is through the ωd term in the pinch coefficients. ωd contains a

contribution proportional to s. In the collisional case, the stationary state is located in

the ITG branch and the shear has a big effect on the frequency itself, moving the station-

ary state deeper into the ITG regime as shear is increased. As we saw in the previous

subsection, going deeper into the ITG regime with collisions causes a strong flattening of

the density profile.

We can also look at the phase space contribution to the particle flux to observe this differ-

ence between collisionless and collisional scans. In figure 5.14(b), we plot the differential

phase shift dΓ̃k/dλ, in arbitrary units, versus the pitch angle parameter λ, for the station-

ary points shown in figure 5.14(a). The passing/trapped electrons boundary is located at

λ = 1− ǫ = 0.88. For the collisionless case (solid lines) the passing electrons carry a very

small outward contribution. All the flux is essentially carried by the trapped particles,

for which the inward/outward directed contributions are redistributed in λ depending on

the value of the magnetic shear. In any case there is balance between inward and outward

directed fluxes to obtain the stationary condition. In the collisional case (dashed lines)

the trapped electrons move outwards as a whole, but they are balanced by the passing
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Figure 5.14: a) [R/Ln]stat, from rule < 1 >, plotted versus ωR of the mode with highest
value of γ/ < k2

⊥ >, for the case with q = 1.4, for both the base case scan and the modified
scan; b) Differential phase shift dΓ̃k/dλ versus pitch angle parameter λ for the cases shown
in a).

electrons which now contribute with a relevant inward directed flux.

We can conclude that the different behavior between the collisionless case and the colli-

sional case is due to a different distribution of carried flux in phase space and its depen-

dence on the mode frequency and on magnetic shear. However a more detailed study on

these dependencies has to be done to make specific comparisons between these predictions

and the observations of shear dependence of density peaking in collisional plasmas.

5.5 Interpretation of the eITB density profile behav-

ior

In the previous sections we have applied the quasi–linear gyrokinetic model to explore

the behavior of the density logarithmic gradient in scenarios with monotonic q profiles

and moderate gradients. We have seen that the model is able to qualitatively reproduce

different experimental observations and to clarify the background physical mechanisms

in term of the two pinch coefficients CT and CP. The eITB scenario can be analyzed

as well, with the difference that now the core q profile is reversed, the magnetic shear

s is negative, and the equilibrium gradients reach very high values. It is clear that the

gyrokinetic code used here cannot provide any result for the region near s ≈ 0 as the

zeroth–order ballooning approximation is not valid there.

In the following we will analyze several effects and separate details that add up to the

observed density barrier and allow us to understand the behavior shown in chapter 4.
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⊥ > (’Mix’, solid) and phase shift Γ̃k (dashed).

5.5.1 Base case and turbulence spectrum

As for the monotonic q profile case, we define here a base case on which we perform

different parameters scan:

- aspect ratio of ǫ = 0.125;

- R/LTe = 20, R/LTi = 0.8R/LTe, νeff = 0, Zeff = 1;

- safety factor q = 2.8 and magnetic shear s = −0.7, while the Shafranov–shift parameter

α is calculated self–consistently assuming ne = 0.9 [1019 m−3] and Te = 1.5 keV with

B0 = 1.44 T.

For the eITB scenario studied here Ti, and consequently R/LTi, is not known from the

experiment. However an average value for Ti can be grossly estimated from CNPA mea-

surements and will be set such that Te/Ti = 2.5. With regards to R/LTi, its importance

will be assessed in dedicate scans.

As done for the previous scenario, the density normalized inverse length scale R/Ln is

scanned to find the steady–state point and a spectrum in kyρi is calculated for each single

case in the range 0.08 < kyρi < 1.5. We report the results in figure 5.15(a,b) as done for

the monotonic q profile scenario, see figure 5.4.1. Some differences with respect to the first

scenario studied can be seen. In this case we see that the mode frequency ωR is bigger in

absolute value, and that no high kyρi ETG–like mode is now present. In addition we see

that the turbulence spectrum is shifted to higher kyρi, such that the maximum γ/ < k2
⊥ >

is located at kyρi ≈ 0.23. This peak is also less pronounced with respect to the monotonic
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Figure 5.16: a) Stationary σe versus LTe/LTi for different values of R/LTe; b) σe for the
case with R/LTe = 20 decomposed in its thermodiffusion contribution −CT and the other
pinch contribution −CPLTe/R.

q profile case.

The stationary values of R/Ln for this base case are computed to be [R/Ln]stat = 4.7

; 5.4 ; 5.7 ; 5.4, respectively for rules < 1 >, < 2 >, < 3 >, < 4 >. We see that the

main difference arises when using only one mode with respect to using more modes, but

for more modes being employed, the different rules do not exhibit significant differences.

5.5.2 Dominant thermodiffusive contribution

We employ the base case parameters shown in the previous subsection to perform a double

R/LTe − R/LTi scan using a single kyρi = 0.23. In figure 5.16(a) we show the result for

the predicted stationary value of the parameter σe = 1/ηe = [R/Ln]stat /R/LTe plotted

versus the ratio of the two length scales LTe/LTi, obtained varying R/LTi at fixed R/LTe,

for three values of R/LTe. We see that σe is maximized at a value of σe ≈ 0.35 when

LTe/LTi ≈ 1, and that it decreases rapidly on the left for LTe/LTi . 1, while it decreases

slowly on the right for LTe/LTi & 1. The predicted σe is sustained almost entirely by the

thermodiffusive pinch contribution CT as shown in figure 5.16(b), where we plot again the

stationary σe (squares) for the case with R/LTe = 20 versus LTe/LTi, decomposed in the

two contributions −CT (circles) and −CPLTe/R (triangles). The role of CT is dominant

and the other pinch contribution from CP can be neglected in the region where σe has

experimentally relevant values σe & 0.15. The reasons are that: first LTe/R ≪ 1, second

CP depends on the average magnetic curvature drift ωd which is decreased in value due to

the presence of a small or negative magnetic shear compared to the monotonic q–profile
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Figure 5.17: a) Stationary σe versus the mode real frequency ωR; b) Thermodiffusion
coefficient CT plotted versus ωR for all the scan points.

scenario, and finally Te ≫ Ti.

To understand the behavior shown by σe when LTe/LTi is far from unity, we plot it, in

figure 5.17(a), versus the real frequency ωR of the mode at kyρi = 0.23 corresponding

to the stationary state. We recover again that the stationary state is maximized near

ωR ≈ 0. In addition, we again see how σe (i.e. [R/Ln]stat) is strongly decreased in the

TEM branch, while it decreases at a slower pace in the ITG branch.

We have just shown that the dominant contribution is the thermodiffusive part CT. Its

behavior is shown in figure 5.17(b) for all the scan points. We immediately see a strong

similarity with figure 5.2(a), which allows us to understand the behavior of σe in fig-

ure 5.17(a).

We have previously discussed the role of TEM turbulence in limiting the increase of

[R/Ln]stat due to a rapid decrease in the thermodiffusion pinch when TEM are dominant.

However we see here that the [R/Ln]stat is reduced the more we go into the ITG regime.

This is due to a slight decrease of CT in the ITG branch. We find useful to make a simple

sketch of the physical mechanism to clarify this point. In figure 5.18(a) we show three

cases where the transition of the dominant mode from an ITG to a TEM happens at

three different R/LIn
n . In figure 5.18(b) we show the pinch coefficient CT which is a fixed

function of the frequency ωR, and which functional form is based on the previous results.

Applying now the relation R/LOut
n = −CTR/LTe (we neglect CP), where CT is a func-

tion of ωR and thus of R/LIn
n , we find the functional form of R/LOut

n versus R/LIn
n which

is shown in figure 5.18(c) for the three cases with different ITG→TEM transition point.

Note first that the maximum achievable R/LOut
n ≈ 7.3 and it is achieved at the R/LIn

n that
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Figure 5.18: a) Different functional forms for ωR as a function of R/LIn
n showing different

ITG→TEM transition points; b) Functional form of CT versus ωR; c) Resulting R/LOut
n

versus R/LIn
n which provide the stationary state depending on the relative position of the

ITG→TEM transition point in R/LIn
n and the position of the maximal R/LOut

n .

gives ωR = 0 and thus the minimum CT. If we take the first case with R/LITG→TEM
n = 4

(circles), we see that the maximum is in fact achieved before crossing the diagonal line.

Because now CT decreases rapidly in absolute value in the TEM branch, the stationary

value will be lower than the maximal. We obtain [R/Ln]stat ≈ 5.7 and the respective

turbulence regime has a dominant TEM. We take now the case with R/LITG→TEM
n = 8

(squares). In this case the maximal value is reached near to the transition point, and the

stationary value is now [R/Ln]stat ≈ 7.2, because the stationary state is at the transition

where ωR ≈ 0, and that is where CT has the minimum negative value. In the third case,

for which R/LITG→TEM
n = 12 (diamonds), the stationary state is reached well before the

transition point, which provides a lower stationary value of [R/Ln]stat ≈ 5.2.

This simplified picture explains the physical mechanism behind the maximization of the

stationary R/Ln when ITG and TEM have similar amplitudes and no dominant mode

can be defined. For this parameters scan, we find that the parameter that provides the

R/LITG→TEM
n is LTe/LTi, and we find that for LTe/LTi . 1 the dominant mode in the

stationary state is a TEM, while for LTe/LTi & 1, it is an ITG. The maximal [R/Ln]stat
is thus located at LTe/LTi ≈ 1.

5.5.3 s− α TEM stabilization effect

In subsection 4.2.2 it has been shown that the eITB scenario is characterized by enhanced

core confinement properties due to the reversal of the q profile and the appearance of a

core region with magnetic shear s ≤ 0. We now check if the code can reproduce this

behavior via a double s− q scan with the other parameters fixed at the base case.

In figure 5.19(a) we show the results for the stationary state [R/Ln]stat plotted versus
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magnetic shear and for three values of q. We also show the differences between the four

quasi–linear rules discussed before. It is interesting to observe how decreasing shear to

more negative values and/or increasing q produces the effect of increasing the value of

[R/Ln]stat. As already seen for other cases, the values do not differ significantly using

different rules. The highest value of [R/Ln]stat corresponds to a σe ≈ 0.4, similar to the

experimental value.

The mechanisms behind the stabilizing effect of s and q are several. First of all, as can

be seen in figure 5.19(b), more negative shear and/or higher q provide an upshift in the

value of R/Ln where the mode changes from an ITG to a TEM. This has a direct effect

on the respective phase shift (or particle flux), shown with a similar plot in figure 5.20(a)

for quasi–linear rule < 2 >. Note how the particle flux crosses the zero at higher values

in R/Ln according to the behavior of ωR. As we discussed previously, this is due to the

TEM becoming the dominant mode being the limiting factor to the increase of R/Ln.

The safety factor q enters into the gyrokinetic equation in two separate terms: in the

parallel operator k‖ ∝ 1/q and in the magnetic curvature drift ωd through α ∝ q2. We

show now that magnetic shear s and q do not enter in an ’independent’ way in the

stabilizing mechanism of TEMs but they are in fact merged in the magnetic curvature

drift ωd through the sθ − α sin θ factor, equation (2.28). In subsection 3.4.2 we already

presented a similar mechanism via gyro–Landau–fluid modelling of heat transport in the

eITB. Here we obtain essentially the same result with gyrokinetic modelling. These results

on s−α effect in the eITB modelling of particle transport have been reported in Ref. [87].

In figure 5.20(b) we plot the predicted [R/Ln]stat, already shown in figure 5.19(a) versus
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the s− q scan, obtained with quasi–linear rule < 2 >.

shear, versus the parameter (s−α)/q for the case evaluated with quasi–linear rule < 2 >

and the three values of q. Plotted versus this parameter, the points at same shear but

different q become aligned. Namely, q has in fact a negative influence on the stability

of TEM as it provides, through the k‖ term, a mechanism for TEM destabilization [59].

Increasing q, the final result will depend on the interplay between the less stabilizing

s/q ∼ 1/q term (at fixed shear) and the more stabilizing α/q ∼ q term. This is why in

figure 5.19(a), the effect of q is evident on the points at s = −0.7 but it becomes small at

s = −1.5.

We look into more details in the s− α combined effect here with a large s− q scan with

fixed parameters R/LTe = 20, R/LTi = 16 and R/Ln = 0.35R/LTe, for kyρi = 0.23.

In figures 5.21(a,b,c,d) we show the results respectively for the growth rate γ (a), the

frequency ωR (b), the thermodiffusion coefficient CT (c), and the other pinch coefficient

CP (d). To avoid a spurious effect coming from the k‖ term we fix the q entering in the

parallel operator at a single value qk‖ = 2.8. Note that the s − q scan points fall on to

one well defined curve when plotted against (s− α). As we already said this is also true

if k‖ is allowed to change with q if we use the combined parameter (s− α)/q.

Figure 5.21(a,b), γ and ωR: the growth rate has a ’bell’ shape with the maximum located

around (s − α) ≈ 1/2, and decreases both on the left and on the right of this value.

In the negative range of values of (s − α) the growth rate has a sharp drop until, for

(s−α) ≈ −2.5, there is a well defined change in slope. Looking at the real frequency ωR,

we see that it indicates a dominant TEM (full symbols) in the positive range of (s− α),
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Figure 5.21: a) Most unstable mode growth rate γ for kyρi = 0.23 versus s−α (solid circles
are TEM modes, empty circles are ITG modes) for a case with R/LTe = 20, R/LTi =
16, R/LIn

n = 6.1; b) Most unstable mode real frequency ωR versus s − α, again divided
into TEM branch (solid circles) and ITG branch (empty circles); c) Thermodiffusion
coefficient CT from trapped particles Ct

T (squares), from passing particles Cp
T (stars), and

total (circles); d) Pure convection coefficient CP, again with contributions from trapped
(squares) and passing (stars) particles.
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R/LTe = 20), for different values of the effective collisionality νeff . The two plots are
obtained respectively with quasi–linear rules < 2 > and < 3 >.

while it changes to an ITG (empty symbols) for (s− α) . −2.5. We thus conclude that

the TEM is strongly influenced by (s − α), and that for sufficiently negative values it is

reduced in intensity such that the ITG can become the dominant mode.

Figure 5.21(c), CT: the thermodiffusion coefficient is strongly linked to the mode type,

and here we see that it is limited to values of ∼ −0.1 in the TEM branch, while it jumps

to values of ∼ −0.6 in the ITG branch. Namely, decreasing (s− α) sufficiently can cause

an abrupt increase in the density peaking due to the thermodiffusive contribution.

Figure 5.21(d), CP: this coefficient has also a strong dependence on (s− α) through the

curvature drift ωd. We see that it attains low absolute values when (s− α) is sufficiently

negative to obtain a strong stabilization of TEMs. This is also why this pinch contribution

is negligible in the eITB negative shear scenario.

5.5.4 Effect of finite collisionality

The previous simulations have been done at zero collisionality. However the core of the

eITB always presents a finite collisionality, even if it is of order νeff ∼ 10−2. To tackle its

effects we perform a double νeff −R/LTi scan on the base case.

The stationary σe is evaluated as a function of LTe/LTi and shown in the two plot of

figure 5.22, where each plot is obtained with a different quasi–linear rule, written in

the top–left. The curves with circles are obtained at finite collisionality, and they are

compared with the case at νeff = 0 (squares). We see that a finite collisionality causes a

shift of the curves to the left in the LTe/LTi axis, indicating that we need a lower value
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Figure 5.23: a) Mode frequency ωR for wavenumber kyρi = 0.24 versus R/LIn
n for different

values of R/LTi and νeff ; b) Same plot for the phase shift Γ̃k for wavenumber kyρi = 0.24.

of R/LTi at fixed R/LTe to maximize the density peaking. In this case we find that at

finite νeff , σe is maximized at LTe/LTi ≈ 0.6, while for νeff = 0 we find LTe/LTi ≈ 1 for

the maximum σe.

The reason can be understood remembering that the maximal σe is located near the

ITG→TEM transition point, i.e. where ωR ∼ 0. This point, in the R/LTe − R/LTi

parameters space, is located at R/LTi ≈ R/LTe, i.e. when the two modes drivers have the

same strength. Collisionality, even at low levels, can have a significant effect in stabilizing

TEM turbulence and thus pushing the ITG→TEM transition point at higher values of

R/Ln for the same R/LTe and R/LTi, or at lower LTe/LTi at fixed R/Ln.

5.5.5 Impurities effect

Experimental data from X–rays collected from the core of TCV eITB plasmas show quite

high estimations for the value of the effective charge Zeff , which is observed to fluctuate in

the range 1.5 . Zeff . 3.5, depending on the type of eITB plasma, on the wall conditions

and on the accuracy of the estimation. Despite all the uncertainties, it is recognized that

the carbon content in the core of the eITB is larger than in the Ohmic L–mode case.

We address this issue by performing a double parameters scan in Zeff and R/LTi on the

base case. We search for the stationary values of [R/Ln]stat and [R/LC]stat, obtained by

matching both the conditions Γe
turb = ΓC

turb = 0.

We perform these parameters scans at two values of νeff : νeff = 0 and νeff = 0.02, and

using only one mode at kyρi = 0.23. We also set the magnetic shear to s = −1. In



100 CHAPTER 5. THEORY OF PARTICLE TRANSPORT

0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L
Te

/L
Ti

σ e , 
σ C

Z
eff

ν
eff

=0

circles σ
e

diamonds σ
C

(a)

  1
1.3
  2
2.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.05

0.1

0.15

0.2

0.25

L
Te

/L
Ti

σ e , 
σ C

ν
eff

=0.02

(b)

Figure 5.24: a) Stationary values of σe (solid, circles) and σC = LTe/LC (dashed, dia-
monds) versus LTe/LTi for different values of Zeff , at νeff = 0; b) Same plot obtained with
νeff = 0.02.

figures 5.24(a,b) we show the results of the simulations for the collisionless case in (a) and

for the weakly collisional case with νeff = 0.02 in (b). The key result from these plots is

that the effect of carbon on the electron density peaking strongly depends on its charge

concentration:

- when Zeff . 1.6 there is no significant effect from the presence of carbon on the electron

density peaking, i.e. carbon behaves as a passive species;

- when Zeff & 1.6 the presence of carbon reduces the value of the stationary electron

density peaking at fixed LTe/LTi;

- the carbon density peaking is found to be lower than the electron density peaking for

most of the scan points. Its dependence on Zeff is not as large as the one shown by the

electrons;

- The parametric dependence of σe versus LTe/LTi is the same, although it seems to be

shifted, such that at the same LTe/LTi, σe is lower when Zeff increases;

- σC increases with increasing LTe/LTi in the collisionless case, it decreases at finite colli-

sionality.

- The effect of finite collisionality is similar to the previously analyzed cases: the maxi-

mum σe is located at lower LTe/LTi.

We conclude this part on the possible implications of these results for the interpretation

of what the experiment shows: the impurity effect observed here suggests that, in the real

plasma, the core carbon concentration should be limited to values of Zeff . 1.6, otherwise

there would be a relevant reduction of the stationary σe. Indeed in the experiments it
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ρV 0.27 0.37 0.42 0.54 0.72 0.78

ǫ 0.07 0.1 0.12 0.16 0.21 0.23
q 3.9 3 2.7 2.9 4.4 5.2

shear -0.9 -0.6 -0.5 0.9 1.8 2.1
R/LTe 7.8 13.4 14.8 11.7 10.6 12.33
R/LEXP

n 1.9 5.9 6.8 5.3 6.2 6.9
νeff 0.011 0.015 0.019 0.032 0.054 0.063
Te/Ti 3.36 3.03 2.85 2.42 1.82 1.64

Table 5.1: Experimental parameters from #29859 at t = 1.5 s.

seems that Zeff > 2 in the eITB, contradicting the last statement. This paradox is not

clearly solved at the present times and requires more detailed study of the eITB scenario

with high Zeff concentration from both the experimental and theoretical point of view.

The physical mechanism behind the flattening effect driven by high impurity concentration

can be seen in figure 5.25 where, for the case at νeff = 0, we show the contours of ωR plot-

ted in the plane R/Ln −Zeff for different combinations of the parameters R/LC −R/LTi.

We see that the value of R/Ln where the mode changes from an ITG to a TEM, i.e. where

ωR crosses zero, is lower when increasing either Zeff or R/LC. Indeed, increasing R/LTi

has a positive effect on the ITG→TEM transition point, pushing it upwards. The effect

of a high impurity concentration is to have a destabilizing effect on TEMs, thus limiting

the increase of [R/Ln]stat as already discussed before.

5.5.6 Comparison with the experiment

The gyrokinetic model has been applied previously to specific parameters scan to evidence

the single details of the physical mechanism for the density barrier sustainment. However

we want to compare the theoretical prediction against a realistic experimental case where

all the parameters vary simultaneously.

We take as an example TCV eITB fully non–inductive discharge #29859 at t = 1.5 s, for

which a discussion of the relevant profiles has already been presented in subsection 4.2.2.

We analyze the stationary R/Ln at three radial positions for which the relevant parameters

are given in table 5.1.

Note that both R/Ln and R/LTi are scanned to find the stationary state predicted by the

code as a function of R/LTi and then we will compare the result with the experimental

value indicated in the table. For this simulation no impurity is present, i.e. we assume

Zeff = 1. The results are shown in figures 5.26(a), for the stationary R/Ln, and in (b) for

the stationary σe.

The model seems to reproduce the experimental trend along the radial interval although

the value itself is underestimated. No relevant differences between the quasi–linear rules



102 CHAPTER 5. THEORY OF PARTICLE TRANSPORT

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

Z
ef

f

ω
R

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

ω
R

−1

0

1

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

R/L
n

Z
ef

f

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

R/L
n

R/L
C

=−2

R/L
C

=2

R/L
Ti

=11

R/L
Ti

=19

−1

0

1

R/L
C

=2

R/L
C

=−2

R/L
Ti

=11

R/L
Ti

=19

Figure 5.25: Values of the mode frequency ωR as a function of R/Ln and Zeff for different
combinations of R/LC and R/LTi. The dashed line identifies ωR = 0 where ITG and
TEM have similar growth rates.



CHAPTER 5. THEORY OF PARTICLE TRANSPORT 103

0.4 0.6 0.8
0

2

4

6

8

R
/L

n

   0
 0.5
0.65
 0.8

0.4 0.6 0.8
0

2

4

6

8

0.4 0.6 0.8
0

2

4

6

8

ρ
V

R
/L

n

0.4 0.6 0.8
0

2

4

6

8

ρ
V

R
/L

n

R/L
Ti

<1> <2>

<3> <4>

(a)

0.4 0.6 0.8

0.2

0.4

σ e

0.4 0.6 0.8

0.2

0.4

0.4 0.6 0.8

0.2

0.4

ρ
V

σ e

0.4 0.6 0.8

0.2

0.4

ρ
V

R
/L

n

<1> <2>

<3> <4>

(b)

Figure 5.26: a) Simulated R/Ln profile (circles) for different values of LTe/LTi (legend).
The dashed line (’0’ in the legend) is the experimental profile. Each subplot is obtained
with a different quasi–linear rule; b) Same plots but for the stationary σe.

are observed. The value of LTe/LTi modifies the result in the sense that LTe/LTi ≈ 0.65

provides the maximal σe inside the barrier, while it is LTe/LTi ≈ 0.8 that provides the

result closest to the experimental value.

We look now at the behavior of turbulence outside and inside the barrier to understand

in deeper details these results. In figure 5.27(a) we plot the spectrum of the mixing

length estimate for |Φ̃k(0)|2, using quasi–linear rule < 4 > and normalized to the value

of γ/ < k2
⊥ >, for the case with LTe/LTi = 0.65 and at two radial locations ρV = 0.37

(circles), which is inside the barrier, and ρV = 0.72 (crosses), well outside the barrier. We

see that for the radial location inside the barrier the spectrum peaks at a higher kyρi,

resulting in a lower turbulence level in the long wavelength range kyρi ≈ 0.15, usually the

region where the peak is located for monotonic q profile cases.

In figure 5.27(b) we plot the radial profiles of the mode growth rate γ (circles and crosses)

and frequency ωR (right and left triangles) for the mode at kyρi = 0.12 (circles and right

triangles) and for the mode at the kyρi where the value of |Φ̃k(0)|2 peaks (crosses and left

triangles). The case is the same as figure 5.27(a). We can draw the following conclusions:

- The mode growth rate is strongly reduced in the long wavelength range inside the barrier

ρV . 0.45;

- This strong reduction is on the TEM branch, as we observe a residual ITG component;

- Outside the barrier the turbulence is TEM dominated, particularly towards the edge;

All these findings confirm the results obtained in chapter 3 in the case of the study of
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Figure 5.27: a) Spectrum of the mixing length estimate for |Φ̃k(0)|2, from quasi–linear rule
< 4 >, versus kyρi for the case with LTe/LTi = 0.65, at two radial locations (legend); b)
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the mixing length estimate for |Φ̃k(0)|2 is maximal (crosses and left triangles).

electron heat transport inside the barrier. The appearance of a region with negative

magnetic shear and high Shafranov–shift is beneficial on both the energy confinement,

resulting in a higher value for [R/LTe]stat, and the particle confinement, resulting in a

higher value for [R/Ln]stat, through the reduction of TEM activity and the consequent

decrease of the energy diffusivity together with an enhancement of the inward directed

thermodiffusive particle pinch.

5.6 Summary

The theory of particle transport, in particular for stationary conditions, is reviewed and

discussed in detail with regards to the transport driven by background turbulence. The

model adopted is a quasi–linear model based on the linearized electrostatic gyrokinetic

equation developed in the ballooning representation. We show how the two main mech-

anisms which provide the turbulent pinch arise naturally from the theory. These mecha-

nisms are respectively thermodiffusion (CTR/LTe), driven by particle diffusion in energy

phase space due to the turbulent field, and another convective term (CP) which arises

from the parallel and perpendicular particle drifts resonating with the turbulent potential

fluctuations. The physics of these two pinch mechanisms is analyzed and shown to be

different for passing and trapped particles due to the completely different drifts.

The model is then applied to study the physics of the turbulent pinch and the resulting
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stationary state for several parameter scans to also interpret known experimental results.

In particular we show how the theory can predict both the observation of a density profile

flattening with increasing Te/Ti at low collisionality and the flattening with increasing νeff

at low values of Te/Ti, with the observation of a maximal peaking at the ITG–TEM tran-

sition. These effects have been previously observed experimentally and interpreted from

first–principles as discussed in Ref. [63]. We also show the non–trivial effect of adding

the neoclassical Ware pinch, which could lead to a drastic change in both the stationary

R/Ln, determined by Γturb = 0 only, and the turbulence properties.

The eITB scenario is then analyzed to interpret the experimental observations on the

density profile behavior. The code predicts several of the observed features: a dominant

thermodiffusive mechanism through CT, the stabilizing effect of the magnetic shear, of

the α parameter, and of a finite collisionality on the TEM to provide a higher density

peaking. We also discussed the role of impurities through a carbon concentration scan,

showing that when the impurity content increases, a reduction of the density peaking is

observed due to a destabilization of the TEM, suggesting that the impurity content should

be limited to moderate values to explain the density peaking observed in the experimental

scenario. Finally we compare the model predictions against a real eITB discharge and we

find a good qualitative agreement, although the code tends to underestimate the value

of the stationary R/Ln with respect to the experimental value. However it correctly re-

produces the improved confinement features that we already found for the heat transport

studies.
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Chapter 6

Impurity particle transport in TCV
L-modes

6.1 Introduction

Impurity transport is another aspect of particle transport that has relevance for the per-

formance of a Tokamak fusion plasma. In particular, it is necessary to know how the

impurity density profile behaves depending on the other plasma parameters and on the

operational scenario. In TCV, impurities are diagnosed with the CXRS diagnostic. Car-

bon is the main impurity due to the presence of graphite walls and CXRS measurements

provide carbon density, temperature, and toroidal rotation profiles.

This chapter deals with the interpretation of the measurements of carbon density profiles

observed in TCV L–mode plasmas with Ohmic heating, with a brief discussion of cases

with auxiliary electron heating. In particular we assess the role of different transport

sources to explain why at low total plasma currents, or high values of q95, the carbon

density profile shows a stronger peaking than the electron density profile. To accomplish

this goal, we simultaneously model the electrons and the carbon ions behavior, showing

how the interplay of turbulent transport, modelled with quasi–linear gyrokinetic theory

as shown in the previous chapter, and neoclassical transport seem to explain all the ex-

perimental observations in a self–consistent and elegant way.

6.2 Stationary carbon transport in TCV L-modes

It has been reported that in TCV Ohmic L–mode discharges an accumulation of impuri-

ties, in particular carbon, is observed at low plasma currents [88, 89]. We briefly present

here the experimental observations to understand the main issue. We then present in

details some case to clarify the relevant parameters range. Before starting we acknowl-

edge the fact that this phenomenon of impurity accumulation (in particular for high-Z

impurities) in L–mode plasmas has also been reported in other machines [90, 91] and is
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Figure 6.1: a) ne profiles from raw data mapped on ρψ for different values of the total
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Figure 6.2: a,b) Same plots as in figure 6.1(a,b) but for the natural logarithm of the
normalized densities.
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Figure 6.3: Comparison of normalized ne/ne(0.8) and nC/nC(0.8) profiles for different
total plasma currents.

in general believed to be of a neoclassical nature.

6.2.1 Current scan in TCV Ohmic L–mode discharges

In figures 6.1(a,b) we show the electron ne and carbon nC density profiles normalized

to their respective values at ρψ = 0.8 for different plasma currents Ip indicated in the

legend. All the points are taken from raw data and averaged over several profiles with

the same current. We also show the position of the q = 1 surface with a dashed line

of the corresponding color. The value of this radial position, ρinv, is produced with the

simple formula ρinv ∝ 1/Ip, which rudely approximates the experimental trend, where

the proportionality constant is chosen to fit a case where the q = 1 surface location is

known. The profiles with high currents and large sawteeth are strongly flattened up to

the edge region and no significant difference is observed between the two species profiles.

As current is reduced, the inversion radius moves inwards, and the profiles start to show

different structures, in particular a certain degree of peaking is observed. For electrons

this peaking is less pronounced as it can be seen in the two plots looking at the two curves

representing Ip = 155 kA for example. It is also interesting to note that the profiles of

both electron and carbon density, outside ρψ ≈ 0.7 are practically insensitive on the value

of Ip, indicating a stiffness and a completely different regime with respect to the core

region. To have a glance at the behavior of the profiles in terms of local gradients, we

also show the natural logarithm of the normalized profiles, namely log [ne/ne(0.8)] and

log [nC/nC(0.8)], in figure 6.2(a,b). Taking as an example the curve with Ip = 155 kA, we
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can see that in the outer region 0.6 . ρψ . 0.8 the electrons and the carbon ions show

a comparable local logarithmic density (slightly higher for carbon), while from ρψ ≈ 0.6

down to the inversion radius ρinv ≈ 0.3 the carbon logarithmic gradient increases faster,

displaying a larger normalized gradient.

We compare now more closely the electron and carbon density profiles to look at the

differences along the radial interval. In figure 6.3 we present several subplots, each one

reporting the normalized density profiles of ne (circles) and nC (squares) for a fixed plasma

current. We see that for the highest currents of Ip ∼ 250 ÷ 300 kA, the two profiles are

similar with comparable gradients in the edge region. In the core region both profiles are

flattened by sawteeth extending on a large radius.

For intermediate and low currents Ip . 250, sawteeth are smaller and the profiles can

develop their natural gradients inside the core. In this regime we assist at this ’accumula-

tion’ phenomenon for which the carbon density gradient increases well above the electron

density gradient for ρψ . 0.6. However, in the edge region the two gradients seem to fol-

low again without any dependence on the current. Decreasing the plasma current seems

to have a stronger effect on carbon, for which the normalized profile reaches values of

∼ 10 at Ip ∼ 100 kA, while for the electrons the peaking does not increase specifically.

To appreciate the striking difference between the behavior of carbon and electrons with

respect to plasma current, in figure 6.4 we plot the normalized logarithmic gradients of

electrons, R/Ln, and for carbon, R/LC, for different radial positions, versus the current
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density peaking factor jpeak =< jq > /j0q0, where < ... > is the surface integral and

j0, q0 are respectively the on–axis current density and safety factor. Let us start for ex-

ample from the first subplot of figure 6.4 which represents data from ρψ = 0.3. At this

position, transport is dominated by sawtooth activity until the current is sufficiently low

to reduce the inversion radius down to ρinv . 0.3, which happens for jpeak ∼ 0.15, such

that only for the points below this value we have that R/LC > R/Ln, and we find al-

most R/LC ∼ 2R/Ln. This behavior is the same up to ρψ ≈ 0.6. We observe that the

’detachment’ of the carbon logarithmic gradient from the electrons logarithmic gradient

happens at higher values of jpeak, namely we have that R/LC > R/Ln in the following

ranges: jpeak . 0.25 for ρψ = 0.4, jpeak . 0.3 for ρψ = 0.6. As we will also see later,

it is important to not interpret this kind of dependence on jpeak as a pure effect of lo-

cal turbulent/neoclassical transport as this correlation is indeed provided by the global

MHD instability: the sawtooth crash. We can elucidate this crucial point by showing a

2D plot of Ln/LC = (R/LC)/(R/Ln) plotted versus jpeak on y–axis and ρψ on x–axis, in

figure 6.5. We also show the inversion radius position (solid line) and the contour of the

value Ln/LC = 2 (dashed line). We immediately see that the region where R/LC ∼ 2R/Ln

follows the position of the inversion radius, on the left of which no gradient is built. Note

also that in the region ρψ & 0.6 the electrons and carbon have comparable normalized

gradients R/LC ∼ R/Ln.

From these experimental observations we can conclude that the carbon density profile
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behaves differently with respect to the electron density profile in the core of the plasma,

when the core region is not affected by sawteeth, i.e. at low plasma currents, and in

that case we observe ∂log nC/∂ρ & ∂log ne/∂ρ in the interval 0.3 . ρψ . 0.6. However,

because the sawteeth behavior is strongly linked to the value of the plasma current itself,

from these data it is not possible to assess if a real dependence of both ∂log ne/∂ρ and

∂log nC/∂ρ exists on Ip, or if only a dependence through the sawteeth activity appears

and must be accounted for [93].

For the reasons discussed before, we now assess the theoretical model to interpret the two

clear observations that:

1) At low currents, and in the core region, carbon shows a stronger peaking with almost

double of the electron density logarithmic gradient;

2) In the edge region the two logarithmic gradients are comparable and they are not

sensitive to the value of the total plasma current.

ECH effect at low current

When auxiliary ECH heating is applied in the center of the low current plasmas we can

observe a strong flattening of both the electrons and the carbon density profiles. In

figures 6.6(a,b) we show the normalized profile of electrons and carbon density for a case

at Ip ≈ 120 kA with (circles) and without (squares) auxiliary heating. In the former case

the heating is applied on–axis with a total power of 1 MW. We see a flattening of both

profiles, in particular on the carbon profile. This change in the local gradient is evident

up to ρψ ≈ 0.6 while the outer region is essentially unaffected.

6.2.2 Detailed parameters analysis

We extract a set of two discharges from which the relevant plasma profiles are taken and

analyzed to define the parameters range that we will use in the theoretical analysis. To

avoid the problem arising from the core MHD activity we choose two low current plasmas

for which the sawtooth activity is seen to be absent.

In figure 6.7(a) we show the electrons (circles, diamonds) and the carbon (squares, dia-

monds) density profiles normalized to the value at ρψ = 0.8 for two discharges (#30487

and #30073) at low current (Ip ∼ 100 kA), respectively Ohmically heated (solid) and

with auxiliary central ECH heating of 0.9 MW total (dashed). The vertical thin dashed

lines indicate the three spatial positions where the parameters are taken to be used for

the simulations. These parameters, namely q, magnetic shear s, R/LTe, R/LTi, Te/Ti and

νeff , are shown in figure 6.7(b) plotted versus the aspect ratio a/R for the Ohmic (’OH’)

and the ECH (’ECH’) case. They are also summarized in table 6.1.

Looking at the parameters differences in figure 6.7(b) between the Ohmic and the ECH
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Figure 6.6: a) Normalized electron density profile with (circles) and without (squares)
auxiliary ECH heating; b) Same plot for the carbon normalized density profile.
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Case 1 2 3 4 5 6

Type OH OH OH ECH ECH ECH
ǫ 0.1 0.14 0.22 0.1 0.14 0.22
q 1.5 1.7 3 1.26 1.5 2.67
s 0.28 0.64 2.3 0.28 0.7 2.5

R/LTe 7 8.2 9 12.5 11.4 8.5
R/LTi 3.1 4 4.2 3.4 4.5 4.8
Te/Ti 1.7 1.5 1.1 5 3.4 3
νeff 0.2 0.25 0.42 0.07 0.14 0.24

Table 6.1: Parameters set for the theoretical analysis to check for relevant dependencies.

case we see that the most relevant changes are in the local temperature inverse length

scale R/LTe, which slightly increases at a/R ≈ 0.1 ÷ 0.14 and decreases at a/R ≈ 0.22,

in the temperature ratio Te/Ti, which strongly increases all along the considered radial

interval, and in the effective collisionality νeff , which is reduced by a factor of about 2.

6.3 Theoretical analysis

We now discuss the theoretical tools that we adopt to interpret the experimental results

just shown. Both neoclassical transport and turbulent transport will be taken into ac-

count for all the species: electrons, carbon C6+ ions and deuterium ions. The model

adopted here is the same as the one used for electron particle transport and presented in

Section 5.2 but with some modifications.

A scan in the electron density normalized gradient R/Ln is performed for each case.

We take advantage of the low carbon concentration in these experimental scenario, i.e.

1.2 . Zeff . 2, corresponding to a charge concentration factor of ZnC/ne . 20% for

carbon, to assume the carbon species as passive, which means that, while the curve

for electrons of [Vturb/Dturb]
e, as a function of R/Ln, is calculated, the respective quan-

tity [Vturb/Dturb]
C for carbon is assumed to be independent of R/LC, allowing us to

perform only two simulations for each case to evaluate the zero of the linear function

ΓC ∝ ∂log nC/∂ρ − [Vturb/Dturb]
C. If the carbon species is not assumed to be passive,

a full double scan in R/Ln − R/LC should be carried out. We have performed this cal-

culation for a specific case and we confirmed that the presence of carbon does not alter

significantly the turbulence properties for Zeff . 2.

We now analyze separately the neoclassical and the turbulence–driven contributions to

the particle transport of carbon impurity.
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6.3.1 Calculation of stationary values

We employ the GS2 code to check what linear gyrokinetic theory predicts for electron

and carbon density peaking in this kind of scenario. The total turbulent flux is obtained

summing the spectrum over this range with weight (i.e. quasi–linear rule) |Φ̃k(0)|2 ∝
(γ/ < k2

⊥ >)2.

Adopting the procedure for the addition of the Ware pinch that we showed at the end of

subsection 5.2.3 we could, in first approximation, define the stationary state for electrons

and carbon ions density normalized gradient analogously as:
[

R

Ln

]

stat

= −RV
e
turb

De
turb

− RWp

De
turb

[

R

LC

]

stat

= −RV
C
turb

DC
turb

− RV C
neo

DC
turb

(6.1)

The factors V/D can be evaluated as functions of R/Ln and R/LC by means of the linear

gyrokinetic model for each species. Equation (6.1) was obtained assuming De
neo ≪ De

turb

and DC
neo ≪ DC

turb. The latter condition is not evident a priori and may not be true in

realistic conditions. To avoid this approximation we use the fact that the ratio DC
turb/D

e
turb

can be evaluated from the linear simulations. In addition we can approximate De
turb h

λe
Dχe. In this way, and introducing λe

D, we can write the two stationary profiles as:
[

R

Ln

]

stat

= −RV
e
turb

De
turb

(

De
turb

λe
Dχe

)

− RWp

λe
Dχe

[

R

LC

]

stat

= −RV
C
turb

DC
turb

δeCλ
e
Dχe

DC
neo + δeCλe

Dχe

− RV C
neo

DC
neo + δeCλe

Dχe

(6.2)

where δeC = DC
turb/D

e
turb, RV

e
turb/D

e
turb and RV C

turb/D
C
turb are evaluated from the linear

gyrokinetic simulations and χe from experimental power balance considerations. The

quantity in parenthesis, namely De
turb/ (λe

Dχe), is assumed to be ≈ 1 and will not be

calculated.

Note that the only free parameter in this model is λe
D which gives the relationship between

the unknown De
turb and the experimentally estimated χe. However in the literature we

can find experimental estimates of this value, for example in Ref. [92] it is found λe
D ≈ 0.1,

while other studies assume λe
D ≈ 0.25 ÷ 1. We note that to be fully self–consistent we

may take λe
D, defined as λe

D = De
turb/χ

turb
e , from the gyrokinetic simulations, and then

assume χturb
e = χe. In this case there is no ’free’ parameter except for the experimentally

evaluated χe = χPB
e . In the following we will use this last model to have full consistency.

The role of λe
D and of the Ware pinch for TCV L–mode Ohmic plasmas with/without ECH

heating has been addressed, in an empirical way, in Refs. [94, 65, 95]. It was found that the

Ware pinch alone can sustain the density peaking in Ohmic plasmas when λe
D ≈ 0.05÷0.1

and in ECH plasmas when λe
D ≈ 0.01. The latter clearly indicates that the Ware pinch
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should not be relevant for electron heated discharges, while the result for Ohmic heated

discharges is not conclusive as turbulent transport was neglected in that analysis. In the

following we address both transport sources to clarify the mechanism at play in these

Ohmic and ECH heated cases.

6.3.2 Neoclassical contributions

The neoclassical coefficients DC
neo and V C

neo are provided by different effects which role

depends on the impurity collisional regime. In general the coefficients are composed by

three contributions: classical [DCL, VCL], Pfirsch–Schluter [DPS, VPS], and Banana–Plateau

[DBP, VBP]. Following Ref. [96], we want to discuss which could be the relevant one at

play in our experimental cases. In fact, assuming only neoclassical transport, the impurity

density profile nC is provided by a relation of the type:

nC

nC(0)
=

(

ni

ni(0)

)Z (
Ti

Ti(0)

)α1(Z)

(6.3)

where α1(Z) depend on the type of transport: for the classical transport α1(Z) = Z−1, for

the Pfirsch–Schluter transport α1(Z) ≈ −(Z−1)/2, and for the Banana–Plateau transport

α1(Z) ≈ 3(Z − 1)/2. Now, including anomalous transport and assuming that anomalous

transport contribute only with a finite diffusivity D but no convection, and assuming that

the ratio between neoclassical and anomalous diffusivity is constant η = DC
neo/D, we can

modify equation (6.3) as:

nC

nC(0)
=

(

ni

ni(0)

)ηZ (
Ti

Ti(0)

)ηα1(Z)

(6.4)

We have estimated the η required to fit the experimental carbon profiles for the Ohmic

case #30487 in the three different regimes. In practice we find that for the classical trans-

port an η ≈ 0.3 is required, for the Pfirsch–Schluter transport we need an η ≈ 1, while

for the Banana–Plateau transport we need an η ≈ 0.15. Already from this rude estimate

we see that the banana–plateau transport is the good candidate to explain the observed

experimental profile without assuming a too large (eventually unphysical) ratio of neo-

classical to anomalous diffusivity. The reason is that the ion temperature effect is strongly

enhanced, and contributing with positive peaking, due to the power 15/2 (for Z = 6).

We thus speculate that the observed carbon accumulation at low current might be given

by a strong inward neoclassical convection in the banana–plateau regime balancing the

background turbulent diffusion, i.e. small effect from anomalous convection is expected.

To corroborate this hypothesis we have estimated the dominant regime by looking at the

value of the neoclassical collisionality ν∗ for carbon. We find that up to ρψ ≈ 0.5 ÷ 0.6

the collisionality regime is the banana–plateau.
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For the following analysis we take the same equations as in Ref. [96] for the classical diffu-

sivity DCL, the Pfirsch–Schluter contribution DPS, and the Banana–Plateau contribution

DBP. The latter is given by the approximate expression:

DBP = 4.04q

√
ACT

3/2
i

RZ2B2
0

(6.5)

where q is the safety–factor, AC the carbon atomic mass, and the ion temperature Ti is

in keV. The actual equation for DBP (and VBP) is more complicated as it contains cross–

species viscosities which have to be numerically evaluated, for example as it has been done

for some cases using the STRAHL code [97] and it results in somewhat lower values of the

convection term VBP [89]. In fact, the neoclassical pinch VBP found in Ref. [89] for other

discharges similar to the ones analyzed here is about two–three times lower than the one

estimated here. In this sense we intend the following results as preliminary with respects

to more detailed calculations that will be pursued in the future. However, a paradoxical

situation arises if both the anomalous and the neoclassical pinch are found insufficient to

explain the experimental behavior, at least in the linear limit. We like to state that the

results shown in the following, even if they show a discrete quantitative agreement, will

have to be rechecked with more accurate calculations of the neoclassical pinch. Indeed

we find that these results provide a sort of ’upper bound’ to what one should need for

the neoclassical pinch. In the following, for our purposes, we assume the simple estimate

of equation (6.5), leaving more detailed study for the future. The neoclassical convection

velocity VBP is calculated as

VBP = ZDBP

(

∂log ni

∂r
+

3(Z − 1)

2Z

∂log Ti

∂r

)

(6.6)

The total carbon diffusivity and convection velocity are evaluated as sums of the three

contributions. For electrons, we will take into account the Ware pinch in the way explained

at the end of subsection 5.2.3. The neoclassical thermodiffusion–type convection will be

neglected as it is proportional to the electron particle diffusivity.

For Ohmic discharge #30487, characterized by a q95 = 4.7, we report the profiles of the

calculated neoclassical diffusivity DC
neo = DCL +DPS +DBP and convection velocity V C

neo

in figure 6.8 (solid lines), where we also show the electron heat transport coefficient χe

calculated from power balance and the Ware pinch Wp. For this Ohmically heated case,

at mid–radius, we find: DC
neo ≈ 0.1 [m2/s], χe ≈ 1.5 [m2/s], V C

neo ≈ −5 [m/s], Wp ≈ −0.4

[m/s]. The electron neoclassical diffusivity is estimated to be De
neo ∼ 10−3 [m2/s] and will

be neglected. The carbon neoclassical diffusivity is ∼ 0.1χe. The selected ECH case is

discharge #30073 and the same parameters are shown in figure 6.8 in dashed lines. Note

that χe is strongly increased in the outer region ρψ & 0.5, and that the neoclassical Ware

pinch is strongly reduced in absolute value. For carbon: the neoclassical diffusivity is

slightly increased and the neoclassical pinch is slightly reduced.
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Figure 6.8: Radial profiles of the carbon neoclassical particle diffusivity DC
neo, neoclassical

convection V C
neo, the electron heat transport coefficient from power balance χe and the Ware

pinch Wp. The solid lines represents Ohmic discharge #30487 at t = 1.35 s, while the
dashed lines pertain to ECH discharge #30073 at t = 1.31 s.

6.3.3 Linear gyrokinetic impurity transport coefficients

The carbon impurity pinch term [Vturb/Dturb]
C can be shown to have a form analogous to

the one for electrons, see equation (5.21):

[Vturb/Dturb]
C = −CC

Tg1
∂log Ti

∂ρ
+
CC

P

R
(6.7)

where g1 =< |∇ρ| > is a metric coefficient. The two pinch coefficients CC
T and CC

P have

been evaluated analytically and numerically for different type of impurities in Ref. [80]

and Ref. [98]. Qualitative agreement with experimental trends has been found and re-

ported in Ref. [99].

The thermodiffusion contribution has a coefficient CC
T which scales as 1/Z and thus is

expected to be small for carbon with respect to deuterium. The other coefficient CC
P is

composed of a contribution coming from the magnetic curvature drift, analogous to the

CP from trapped electrons, and of another contribution that remains finite at large Z and

scales as 1/q, it is inward directed in ITG dominated turbulence and outward directed

in TEM dominated turbulence. However, this contribution is limited in amplitude and is

not expected to explain the large gradients observed in the low current plasmas in TCV.

In figures 6.9(a,b) we show the range of variation of these two pinch coefficients for carbon.

We plot CC
T in figure 6.9(a) and CC

P in figure 6.9(b) versus the most unstable mode real
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Figure 6.9: a) Carbon thermodiffusion coefficient CC
T versus ωR for the most unstable

mode at kyρi = 0.18 from ∼ 300 GS2 simulations obtained with several parameters scan;
b) The other pinch coefficient CC

P .

frequency ωR for the wavenumber kyρi = 0.18. The points are obtained from ∼ 300 GS2

simulations with several parameters scan to cover both the ITG and the TEM branch.

As expected from theory, we see that the thermodiffusion coefficient CC
T is inward di-

rected in TEMs and becomes outward directed in ITG, contrary to electrons as this pinch

goes like ∼ 1/Z. Its magnitude is also lower than the electrons one and it is limited to

CC
T ≈ −0.1 ÷−0.15 near the minimum.

The other pinch coefficient CC
P can attain large negative (inward directed) values for strong

ITG turbulence due to the k‖–driven term. This contribution goes to zero at ωR ∼ 0 and

in TEM turbulence it can be outward directed. However here we find that the total CC
P

stays inward directed in TEM with values of CC
P ≈ −2 ÷−1.

Considering both the ITG and the TEM branch, and assuming, as observed in the exper-

iment, a R/LTi ∼ 7, we obtain a range of variation of 0 . R/LC(= −CC
TR/LTi −CC

P ) . 3

in the TEM branch and 1.5 . R/LC . 4 in the ITG branch.

We could already speculate that the behavior observed in the experimental current scan

might be ascribed to the effect of the appearance, when sawteeth are small, of a large,

inward directed, CC
P term due to the background, strong ITG turbulence. However in the

core region. i.e. in the range ρψ ∼ 0.1−0.4, the Ware pinch could play a role as discussed

in subsection 5.4.4, such that the stationary state will be located near the ITG–TEM

transition where the CC
P term is not as strong as in ITG dominated turbulence. Or it

might be that the Ware pinch is still not sufficient to produce a relevant upshift of the

stationary state, namely if |Wp| ≪ |V e
turb|; in this case the low current cases can exhibit
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core ITG–dominated turbulence and thus a large inward CC
P pinch contribution to explain

the experimental behavior. In this case however, as we have shown in subsection 5.4.3

and subsection 5.4.4, the total core stationary R/Ln is not at its maximum, and it might

very well be significantly lower than the experimental value.

In the following Section we will put together all these elements and see in what range of

parameters we can have quantitative agreement with the experimental values. However

already from what has been shown in this subsection we expect the turbulent pinch to be

moderate and not sufficient to explain the large peaking observed experimentally.

6.4 Interpretation of the experimental behavior

The set of simulations shown in table 6.1 is run to find the stationary profiles of elec-

trons and carbon density normalized gradients as from equations (6.2), where the only

external parameter is χe = χPB
e . In figure 6.10(a) we show the result for the Ohmic case

(first three cases of table 6.1). In full circles we plot the stationary electron normalized

gradient [R/Ln]stat, while with the empty circles we plot the turbulent part alone given

by −RV
e
turb

De
turb

. With triangles, respectively full and empty, we show the stationary carbon

normalized gradient [R/LC]stat and its turbulent part alone. In figure 6.10(b) we plot the

same quantities for the case with ECH heating (last three cases of table 6.1).

From these two figures we clearly see that for electrons the neoclassical part always pro-

vides a very small contribution. On the other hand, the carbon density profile is almost

entirely sustained by neoclassical transport in the Ohmic case, and partially in the ECH

case, where the profile is flattened all along the radial interval. Indeed, for electrons there

is a flattening effect when going from the Ohmic to the ECH case, and that is mainly

due to a reduction in the turbulence–driven inward pinch plus a small contribution from

a reduced neoclassical pinch. For carbon, the flattening effect with ECH is mainly due to

the reduction in the neoclassical term, namely the second contribution on the right hand

side of equation (6.2), due to a reduction of V C
neo and to an increase of both χe and DC

neo.

We now clarify the behavior of the different quantities in terms of turbulence behavior

with respect to the dominant regime.

6.4.1 Detailed transport analysis

For each radial position of figures 6.10(a,b) we analyze the steady–state diagrams ac-

cording to the definition given in subsection 5.2.3. We show the results for ρ = 0.35

in figures 6.11(a,b), respectively for the Ohmic and the ECH case, for ρ = 0.5 in fig-

ures 6.12(a,b), and for ρ = 0.75 in figures 6.13(a,b). In each figure we plot the behavior

of R/Ln and R/LC as calculated by the theoretical model as a function of R/LIn
n . The
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Figure 6.10: a) Stationary profiles of density normalized gradients for electrons without
Ware pinch (circles, dashed) and with Ware pinch (circles, solid), and for carbon without
neoclassical pinch (triangles, dashed) and with neoclassical pinch (triangles, solid) for the
Ohmic heating case ; b) Same plot for the ECH case.

electron normalized gradient R/Ln is shown as the total of neoclassical+turbulent part

(right triangles, solid line), and as the turbulent part alone (circles, dashed line). The

carbon normalized gradient is shown in the same way: total (diamonds) and turbulent

alone (left triangles). We also show the frequency ωR of the mode with highest transport

parameter γ/ < k2
⊥ > (pentagrams, dashed line). The stationary points are identified

by the crossing of the different lines with the vertical dot–dashed line, determined by

[R/Ln]stat = [R/Ln]out,total = R/LIn
n .

- ρ = 0.35, Ohmic, figure 6.11(a): first of all it is interesting to note the non–trivial effect

when the Ware pinch is taken into consideration. In this case, −RWp/χ
PB
e is not small as

seen by comparing R/Lturb
n with R/Lturb+neo

n . The turbulent pinch alone would provide

a stationary state at R/Ln ≈ 0.9 (circles, dashed line, intersection with the diagonal) in

the ITG regime (ωR < 0), while the total [R/Ln]stat is located at ≈ 2.5 in TEM regime

(ωR > 0). Indeed, at the stationary point: [R/Ln]stat − [R/Lturb
n ]stat ≈ 0.5, i.e. smaller

than ≈ 2.5−0.9 = 1.5. Namely, the self–consistent state with the Ware pinch can be much

larger than the stationary state without the Ware pinch, while at the steady–state point

the portion of R/Ln carried by the Ware pinch can still be relatively small. Note also that

the Ware pinch drastically changes the turbulence regime from an ITG to a TEM through

[R/Ln]stat. With regards to the behavior of carbon, we see that the turbulence provides an

outward directed or very small inward directed pinch which does not sustain any relevant

R/LC. All the observed peaking is provided by neoclassical transport through V C
neo.
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Figure 6.11: a) For the Ohmic heating case and ρ = 0.35, predicted normalized gradients
versus input density gradient for electrons and carbon with and without neoclassical trans-
port. The real frequency ωR of the mode with highest transport is also shown (pentagrams,
dashed line). The vertical dot–dashed line indicates the steady–state point; b) Same plot
for the ECH case.

- ρ = 0.35, ECH, figure 6.11(b): the strong electron heating excites TEM which becomes

the dominant instability all along the R/LIn
n scan. The Ware pinch provides negligible

effect and the stationary state is located at a reduced value of R/LIn
n with respect to the

Ohmic case. The carbon peaking is still mainly provided by neoclassical transport but at

a reduced value through its dependence on ∼ 1/χe.

- ρ = 0.5, Ohmic, figure 6.12(a): in this case the stationary state is not significantly

influenced by the addition of the Ware pinch. On the other hand, carbon neoclassical

transport is still the main source of peaking for the carbon density profile.

- ρ = 0.5, ECH, figure 6.12(b): as for ρ = 0.35, the Ware pinch is negligible, and the

stationary state is in TEM dominated turbulence. Neoclassical transport becomes impor-

tant for carbon in TEM regime, and it provides about half of the observed peaking.

- ρ = 0.75, Ohmic, figure 6.13(a): the stationary state is located near the ITG–TEM

transition region. Note that for carbon, neoclassical transport is negligible in the ITG re-

gion, while it becomes dominant in the TEM region. This behavior is due to the different

behavior of δeCλ
e
D: in ITG it is large and it suppresses the neoclassical part while in TEM

it becomes small and allows neoclassical transport to become relevant.

- ρ = 0.75, ECH, figure 6.13(b): the picture is the same as for the Ohmic case, except

now the neoclassical contribution is smaller due to an increase in χe.

We now look at the behavior of the coefficients ratio DC
turb/χe and De

turb/χe to better
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Figure 6.12: a,b) Same plots as in figure 6.11 but at radial position ρ = 0.5.
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Figure 6.13: a,b) Same plots as in figure 6.11 but at radial position ρ = 0.75.
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Figure 6.14: a) Particle to heat diffusivity ratio for electrons (De/χe)
turb, as calculated

by GS2, in logarithmic scale plotted versus the real frequency ωR of the mode with highest
γ/ < k2

⊥ >. The different symbols represent different radial locations and pertain to the
respective R/LIn

n scan. The full symbols are from the Ohmic case while the open symbols
are from the ECH case; b) Same plot but for the carbon particle to electron heat diffusivity
(DC/χe)

turb.

understand the results shown in figures 6.11-6.13. In figure 6.14(a,b) we plot respec-

tively the ratio (De/χe)
turb for electrons (a) and (DC/χe)

turb) for carbon (b) versus the

real frequency ωR of the mode with highest γ/ < k2
⊥ >. These quantities are such that

δeCλ
e
D = (DC/χe)

turb and λe
D = (De/χe)

turb which enter in equations (6.2). We clearly

see that in the very plasma core ρψ = 0.35 the two quantities are in general lower than

unity. In the outer region they are above unity in ITG–dominated turbulence while they

drop to lower values below unity in TEM–dominated turbulence. In particular the car-

bon particle diffusivity becomes quite high compared to the electron heat diffusivity for

ITG–dominated turbulence. This explains the behavior shown in figures 6.12-6.13, where

we observe a drastic change in the role of the neoclassical pinch when R/LIn
n is sufficiently

high to drive a stronger TEM turbulence.

In conclusion, we see that a complicated behavior is observed with an interplay between

turbulence–driven and neoclassical pinch in frequency space. Depending on the dominant

instability and on the local confinement through χe, neoclassical transport can play a role

for either electrons and impurity, in a non–trivial way. In particular we can conclude that

in Ohmic cases at low current the core region where χe is low is strongly influenced by

Ware pinch, albeit the final state seems to show a small role of the neoclassical pinch for

electrons. As we saw, this is clarified by the detailed analysis in R/LIn
n scan. The outer
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Figure 6.15: a) Mode real frequencies ωR for the most unstable mode at kyρi = 0.18 plotted
for some low current cases with Ohmic (full symbols) and ECH (open symbols) heating, at
three radial positions (in legend); b) For Ohmic and ECH cases of figures 6.10(a,b), radial
profile of the mode real frequency ωR for the mode with highest mixing length estimate.

region, as well as when ECH is present, is dominated by the turbulence–driven pinch.

This is not the case for carbon, for which we see that neoclassical transport is a dominant

source all along the radial interval in Ohmic and ECH cases. In the latter, the flattening

effect is thus simply a reduction of |V C
neo/χe| through an increase of χe with ECH.

6.4.2 Comparison with experimental regime

From the previous subsection it can be deduced that the dominant instability in both

Ohmic and ECH cases should be the TEM all along the radial interval. We compare

this prediction with the outcome of the code calculations on low current cases but with

only experimental input parameters. In figure 6.15(a) we plot the mode real frequency

for wavenumber kyρi = 0.18 versus current for three different radial positions (in the

legend). Full symbols indicate Ohmic cases while the open symbols are from an ECH

case. As we see, the dominant mode is a TEM for all the points in the plasma core, the

frequency being higher in the ECH case. In figure 6.15(b) we compare this result with

the results from the stationary cases analyzed in the previous subsection. We show the

radial profile of ωR for the mode with highest value of γ/ < k2
⊥ > (which is located at

kyρi ≈ 0.2) for the Ohmic (circles) and the ECH (diamonds) case. The values have the

same qualitative trends although the self–consistent state shows a lower frequency due to

an underestimation of [R/Ln]stat with respect to the experimental value.
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6.5 Summary

We have presented characteristic experimental observations on electrons and carbon par-

ticle transport in Ohmic and ECH cases with low plasma current. We find that carbon

density peaking is always larger than electron density peaking in the plasma core, while

the two normalized gradients are comparable in the outer plasma region.

This behavior is analyzed using the quasi–linear model described in Chapter 5, extended

to cover the calculations of transport coefficients ratios for whatever species and to include

neoclassical transport. The main results show that, for electrons, neoclassical transport

plays an important and non–trivial role in the plasma core, in cases where χe is not large,

while it becomes negligible in the outer plasma region or when ECH is applied. For

carbon, the results suggest that the observed peaking is mainly provided by neoclassical

transport in both Ohmic and ECH cases, being lower in amplitude in the latter regime.

However the quantitative agreement is fragile and require more precise calculations of the

neoclassical impurity pinch. In conclusion this study has to be considered preliminary

and stimulating towards a full quantitative comparison. On the other hand, it shows that

the interaction between turbulence–driven and neoclassical pinch is rather complex and

depends not only on χe but also on the main turbulence modes.



Chapter 7

Conclusions

7.1 Main considerations

This thesis work has been devoted to the detailed theoretical understanding of particle and

heat transport in TCV electron Internal Transport Barriers fully non–inductive scenario

[21], with particular emphasis on the general theory of turbulent particle transport in the

linear gyrokinetic theoretical framework.

Through the opening chapters, we have shown that the analysis of experimental data and

their use in numerical codes requires several tools and accurate check of the consistency

between the numerical results and the experimental data themselves. This has been

done in Chapter 2 where we introduced the experimental set, the analysis tools, the

numerical code ASTRA [29] for discharge simulation, and the theoretical tools to interpret

the observed behavior in terms of first principle physics: gyrokinetic code GS2 [40] and

Gyro–Landau–Fluid code GLF23 [37]. The former of the theoretical tools is suited for

the calculation of basic turbulence properties in the linear phase and for calculation of

stationary density profiles, while the latter is suited for fast global discharge simulations

coupled with the ASTRA transport code.

7.2 Heat transport analysis of the eITB scenario

By means of the gyro–Landau–fluid code GLF23 coupled to the ASTRA transport code,

the analysis of different TCV plasma scenarios has been carried out.

Several Ohmic and ECH heated L–mode plasmas are simulated. We find that the GLF23

formulation of the fluxes is not suited to explain the rapid increase of the observed heat

transport coefficient from the core to the plasma periphery. In our analysis we discussed

the possibility that this behavior could be due to the local gyro–Bohm scaling ∝ T
3/2
e

explicit in the GLF23 formulation. In this sense, the GLF23 heat diffusivity, removing

the T
3/2
e dependence, is capable of reproducing different TCV cases over the whole radial

interval with one additional free parameter. However the scaling itself is intrinsic in the
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theoretical formulation, suggesting that the cause for the disagreement should instead be

searched in the choice of the mixing length rule which is a free parameter in GLF23. This

requires a dedicated study and it is not assessed in the present work.

The eITB fully–non inductive scenario is then analyzed with this re–normalized GLF23

model, with the T
3/2
e dependence removed. The simulation is carried out on a typical

stationary eITB through a scan in the total non–inductive current content ICD. Increasing

the percentage of off–axis non–inductive current results in a modification of the local

magnetic shear which eventually becomes negative and attains large negative values. It

is found that the predicted heat diffusivity χe decreases strongly when the local magnetic

shear is decreased to negative values, allowing the sustainment of the eITB. The physical

mechanism behind the improvement of confinement with the reversal of the q–profile

is then elucidated assessing the role of the average magnetic curvature drift ωd on the

Trapped Electron Mode in the low kyρi range [60, 59]. The reduction of ωd due to its

dependence on the magnetic shear s weakens the driver of the TEM and the turbulence

spectrum peak shifts at higher values of kyρi, thus reducing the total energy transport.

7.3 Particle transport in the eITB scenario: experi-

mental results

Novel experimental observations about stationary and transient particle transport in TCV

eITB fully non–inductive scenario are reported in chapter 4.

When local confinement is sufficiently improved by means of the reversal of the safety

factor profile and the creation of a region of negative magnetic shear, a strong correlation

between the electrons density and temperature is observed, indicating that a relevant

inward pinch of thermodiffusive nature might be the basic mechanism [22]. This is con-

firmed by both the global analysis of a large database of Ohmic/ECH L–modes and eITBs,

and by the detailed discussion of several individual profiles on which the characteristics

eITB features of correlated energy and particle barriers are evident. However the static

database does not allow to estimate the particle diffusivity to discriminate the roles of

neoclassical and turbulent transport in driving the observed density profiles.

To this purpose we turn to the analysis of transients, which allow the estimation of the

particle diffusivity and of the off–diagonal convective term in the transport matrix. The

results of this section reveal that neoclassical transport is still much smaller than the

observed level of transport in the barrier region, suggesting that transport in the eITB

region is still dominated by turbulence, although at a lower amplitude than in a standard

L–mode with ECH heating [62].
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7.4 Particle transport theory

The basic equations of particle transport in axisymmetric systems are presented in chap-

ter 5 and a self–consistent model to evaluate the stationary density logarithmic gradient

is built from first principles considering neoclassical and turbulent transport sources.

The turbulence–driven diffusive term, i.e. the diagonal term of the flux, and the turbulence–

driven convective term, i.e. all the off–diagonal contributions, are formally calculated from

the linear gyrokinetic theory. The linear relationship between the flux and the equilib-

rium gradients are such that two fundamental convective mechanisms, which arise from

the background electrostatic microinstabilities, are identified: the thermodiffusion term

(CT), proportional to R/LTe, and a pure convective off–diagonal term (CP). Both contri-

butions are found to be finite for unstable modes and their sign strongly depends on the

type of dominant mode and on phase–space details [100].

The model predictions are then tested against known experimental observations in several

cases through a series of parameter scans. We find that this model can explain qualita-

tively the observed density peaking maximization in the regime where the ITG and the

TEM coexist with similar amplitudes. It also explains both the decrease of peaking in

TEM dominated turbulence [63] and the decrease of peaking in ITG dominated turbu-

lence [80] through different effects of the parameters on the two pinch terms. Specifically,

we find that the thermodiffusive contribution CTR/LTe is responsible for the decrease

of peaking in TEM–dominated turbulence, while the other pinch term CP is responsible

for the flattening observed in ITG–dominated regime. We also find that the results can

change when the quasi–linear rule for the sum over the wavenumber spectrum is chosen

differently. In particular it is found that the result strongly changes for collisional plasmas

when the rule is changed from the single–mode rule to a sum over modes where a large

part of the spectrum is given a relevant role. Actually also for collisionless plasmas the

result can change when modes with high kyρi are given more weight. This is due to the

fact that the particle flux driven by the low kyρi is often of a different sign then the one

driven by higher kyρi. Therefore the global result can depend on the quasi–linear rule

used to take all these contributions together.

The magnetic shear dependence of the density peaking for low collisionality cases, and

the apparent loss of this dependence at high collisionality, i.e. in strong ITG turbulence,

is discussed and compared with known experimental results [85]. The results suggest

that the shear dependence can emerge and play a dominant role only near the ITG–TEM

transition region, i.e. when ωR ≈ 0 where the shear–driven part of the pinch (appearing

in both CT and CP) is more important than the collisionality–driven part (which gives

strong importance to CP).

The quasi–linear model is completed with the inclusion of neoclassical transport through
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an ad–hoc diffusion coefficient to test the qualitative behavior when scanning the strength

of neoclassical transport. In particular it is found that the inclusion of the Ware pinch can

strongly increase the stationary density peaking in the case of dominant ITG turbulence.

Our study indicates that when the Ware pinch is significant, a stationary (at zero flux)

solution without Ware pinch and with ITG–dominated turbulence is shifted towards a

stationary solution, with the Ware pinch included, which is TEM dominated, or near the

ITG–TEM transition point. An example of a significant contribution of the Ware pinch

was also seen in Ref. [79] in positive shear plasmas with off–axis ICRH. On the other

hand, if the stationary solution without the Ware pinch is clearly in a TEM–dominated

turbulence, then the addition of the Ware pinch has little effects.

7.5 Particle transport theory: interpretation of the

eITB scenario

The quasi–linear gyrokinetic theoretical model is then applied to the interpretation of the

eITB fully non–inductive scenario in TCV [69]. The simulations are first performed on a

set of parameter scans.

We find that the model correctly predicts that, for experimentally relevant values of the

stationary logarithmic gradients, a thermodiffusive inward directed pinch is the dominant

mechanism responsible for the sustainment of a large density logarithmic gradient. In

addition, in the collisionless case, the density peaking is found to be maximized when

LTe/LTi ∼ 1, as also found for the monotonic q–profile cases. For regimes with domi-

nant electron heating, with turbulence dominated by the TEM, which limits the value of

R/Ln, one can expect that when the TEM is stabilized by some mechanism the value of

[R/Ln]stat is increased. This explains why R/Ln increases with magnetic shear becoming

more negative, since it stabilizes the TEM in eITBs. We have also shown that with finite

collisionality the maximum value of R/Ln is predicted to be at values of LTe/LTi smaller

than one, of the order of 0.6 − 0.8 for collisionalities consistent with the experiment. We

have seen that this is also due to the stabilizing effect of collisionality on the TEM.

The effect of impurities is then assessed through the inclusion of carbon ions with different

values of the effective charge concentration. We find that when the carbon concentration

is not small, i.e. Zeff & 2, the stationary electron density peaking is reduced.

The theoretical predictions are then tested on one typical TCV eITB case at different

radial points, avoiding the s ≈ 0 region since the ballooning approximation is not valid

there. We find that the model qualitatively reproduces the radial profile of the station-

ary R/Ln, however quantitatively it tends to underestimate its value. Nevertheless, it

correctly predicts the improvement of confinement inside the eITB region and the ap-

pearance of the particle transport barrier with a realistic value for σe = LTe/Ln. Similarly
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to what has been shown for the heat transport studies, we find again that the improved

confinement regime is due to a reduction of TEM turbulence in the low kyρi range.

7.6 Particle transport theory: interpretation of car-

bon behavior in TCV L–modes

Experimental observations from TCV Ohmic L–modes show that, at low values of the total

plasma current when core sawtooth activity is very small or absent, the carbon density

profile can be much more peaked than the electron density profile [88, 89], suggesting

that a completely different physical mechanism is at play. In addition, when core electron

heating is applied, both profiles are flattened, with the carbon density profile showing

a stronger flattening. We address the problem of interpreting these observations again

using the linear gyrokinetic model presented before with now the inclusion of neoclassical

transport for both electrons and carbon ions species. The only free parameter of the

model is the ratio between the electrons particle and heat diffusivity.

Linear gyrokinetic theory predicts two mechanisms for carbon density peaking, similarly

to what has been found for electrons: a thermodiffusive type of pinch, and another off–

diagonal pinch term which contains contributions from the parallel and the perpendicular

dynamics [74]. Contrary to what was found for electrons, for carbon the first pinch is

inward directed in TEM dominated turbulence and outward directed in ITG dominated

turbulence, and it is small in absolute value; the second pinch term is inward directed in

ITG turbulence and, either inward and small, or outward directed in TEM turbulence. It

can be large in absolute value for ITG turbulence with large real frequency.

The gyrokinetic results are put together with neoclassical transport to find the self–

consistent stationary state for both electrons, [R/Ln]stat, and carbon ions, [R/LC]stat.

This formalism is applied to a set of cases, extracted from the experimental database,

representing a typical low current discharge with and without auxiliary heating. The

main results can be divided in two parts:

- the core region where the electron heat diffusivity is small: the electrons local normalized

density gradient [R/Ln]stat is sustained partly by the turbulent pinch and partly by the

neoclassical Ware pinch. However their interplay is shown to be non–trivial and that in

fact the Ware pinch plays an important role in this region, pushing the stationary state

from an ITG–dominated to a TEM–dominated regime, although the final state seems

to indicate a surprisingly negligible contribution from the Ware pinch. The role of the

latter is strongly suppressed when ECH is applied, resulting in a local flattening of the

profile. On the other hand, the carbon stationary [R/LC]stat is found to be almost entirely

sustained by the neoclassical pinch V C
neo with only Ohmic heating. When ECH is applied,

the neoclassical pinch is also strongly reduced, although it still plays an important role.
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- the outer region where the electron heat diffusivity is moderate or large: the electrons

local [R/Ln]stat is now sustained mostly by the turbulent pinch, while the neoclassical

Ware pinch plays no significant role. On the opposite side, the carbon local [R/LC]stat is

still sustained mostly by the neoclassical pinch, and for this reason, when ECH is applied,

the value is strongly reduced all along the radial interval.

Although the picture so far seems to fit the experimental observations, there is still some

discrepancy between the predicted [R/LC]stat and the experimental one in the outer region

of the ECH case. In addition, the required neoclassical pinch is somewhat large and may

not be realistic when more accurate calculations will be performed. Nevertheless we

have shown that the turbulent pinch is largely insufficient to explain the observed carbon

peaking, while it provides an electron density peaking which agrees with the experimental

one. Therefore neoclassical contributions are important when analyzing carbon density

profiles in these plasma conditions.

7.7 Open issues

This work has been devoted to the interpretation of experimental observations adopting

first principles based models. However either of these models have drawbacks and limi-

tations which could explain the discrepancy between the theoretical predictions and the

experimental observations. In particular, for the particle transport modelling, different

issues are still open and the two most challenging are listed here as stimulating for future

works:

- non–linear effects: the model has been built from linear gyrokinetic theory, meaning

that no information on the saturated values for the fields fluctuations is given, and a

quasi–linear approach based on some choice of the mixing–length rule is required. Of

course a benchmark of the rule can be done on non–linear calculations or on experimental

data, but it will always be ’limited’ to the range of parameters on which the benchmark is

done. In addition, non–linear coupling between modes at different wavelengths could have

an effect, especially when high kyρi modes are highly unstable. A crucial point that we

did not consider is the effect of taking only the fastest growing modes as done in linearized

initial value codes like GS2. In fact, at a fixed kyρi, the sub–dominant modes could be as

important for transport as the dominant mode in the non–linear stage. In this respect,

using a spectral code, one could apply the quasi–linear rule to a full spectrum of modes in

kyρi, where at each wavelength all the sub–dominant modes are taken into consideration.

We speculate that this could make a difference in regimes where the dominant mode is of

one type and the first sub–dominant mode is of another type, with the two modes having

comparable growth rates. The resulting transport can be very different choosing both the

modes compared to just taking the dominant mode;
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- global effects: the model adopts the zero–order ballooning theory, which gives no in-

formation on the radial structure of the mode and thus on global effects which could be

important, especially near s = 0 where slab modes are dominant.

In conclusion, there are still many open issues in the field of Tokamak particle trans-

port, in particular with regards to the turbulent regime, for which a complete and closed

mathematical model is difficult to realize, although highly sophisticated codes already

exist and provide the plasma physicists a large amount of detailed understanding of the

turbulent state and the induced transport. Still, the simple models can give deep physical

insight and allow to span over a large range of parameters. In addition they are required

to understand the non–linear results. The present work has hopefully fulfilled the goal

of providing a coherent understanding of some ”mysterious” aspects of electrons particle

transport although the methodology was based on a linearized theory. Nevertheless this

has proven to be an advantage to elucidate the basic mechanisms.
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List of common symbols and definitions

Mathematical

i – Imaginary unit: i =
√
−1

ℜ – Real part of a complex variable

ℑ – Imaginary part of a complex variable

< ... > – Generic average operator (to be contextually specified)

Plasma macroscopic physical quantities

r – Minor radius

a – Plasma boundary, i.e. minor radius of the last closed flux surface

R0 – Major radius of the geometrical magnetic axis of the plasma column

R – Defined as R = R0 +∆s where ∆s is the (mid–plane) Shafranov–shift of the local flux

surface. Another definition is R =
Rmax −Rmin

2
.

B0 – Toroidal magnetic field at R0

ǫ – Local aspect ratio defined as ǫ = r/R

κ, δ – Plasma elongation, triangularity

ψ – Poloidal magnetic flux, defined as ψ =
∫

B · dSθ
ρ – Generic flux surface label (or radial coordinate)

ρψ – Radial coordinate defined as ρ =
√

ψ/ψb

ρV – Radial coordinate defined as ρV =
√

V/Vb

V – Flux surface enclosed plasma volume

Z – Species charge normalized to the fundamental proton charge

Zeff – Effective charge defined as Zeff =
∑

j njZ
2
j /
∑

j nj

mi – Main ion species mass

n – Species density. If not specified: electron density

ne, ni, nC – Electron, main ion, carbon density

R/LX – Normalized inverse length scale of field X: R/LX = − < |∇ρ| > ∂logX/∂ρ

T – Species temperature

Te, Ti – Electron, main ion species temperature

τ – Ion to species temperature ratio τ = Ti/T

νei – Electron–ion collisional frequency, defined as νei = 0.00279Λne/T
3/2
e where Λ is the

Coulomb logarithm, ne is in units of 1019 m−3 and Te is in keV.

cs – Ion sound speed defined as cs =
√

Ti/mi

νeff – Effective collisionality defined as νei/cs

PECH – ECH absorbed power density

ρECH – ECH deposition location in ρ

PEQ – Equipartition power density defined as PEQ = neνei(Ti − Te)
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POH – Ohmic power density

Vloop – Plasma boundary loop voltage

Ip – Plasma total toroidal current

q – Safety factor profile

s – Magnetic shear

q95 – Value of the safety factor at 95% of the enclosed poloidal magnetic flux

β – Normalized plasma pressure β = p/pB where pB = B2
0/(2µ0) is the magnetic ’pressure’.

α – Shafranov–shift parameter defined as α = −Rq2dβ/dr

ρinv – Radial position of the sawtooth inversion radius, i.e. where q = 1.

ρmix – Radial position of the sawtooth mixing radius, i.e. where the modified poloidal

flux ψ∗ = 0.

j‖ – Parallel total current density

jOH, jBS, jCD – Ohmic, bootstrap, ECRF–driven (ECCD) current density

fBS – Bootstrap current fraction

Plasma microscopic quantities

ft – Trapped particle fraction

v‖ – Particle gyrocenter parallel velocity

v⊥ – Particle gyrocenter perpendicular velocity

ρi – Ion Larmor radius

k – Wavenumber vector

ky – Poloidal wavenumber

k⊥ – Perpendicular wavenumber

< k2
⊥ > – Ballooning averaged of the square of the perpendicular wavenumber

k‖ – Parallel wavenumber

ωd – Magnetic curvature drift frequency, equation (2.24)

ω∗ – Diamagnetic frequency, equation (2.24)

ω – Mode complex frequency: ω = ωR + iγ

γ – Mode growth rate

ωR – Mode pulsation or real frequency

Transport related quantities

Γ – Particle flux

Q – Heat flux

χ – Heat transport coefficient

D – Particle diffusivity

V – Particle convection velocity

Acronyms
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’neo’ – Neoclassical–driven transport

’turb’ – Turbulence–driven transport

eITB – electron Internal Transport Barrier

EC – Electron Cyclotron

ECH – Electron Cyclotron Heating

ECCD – Electron Cyclotron Current Drive



144 SYMBOLS AND DEFINITIONS



Acknowledgments
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