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Abstract

The Small-World phenomenon, well known under the phrase “six degrees of separation”, has
been for a long time under the spotlight of investigation. The fact that our social network
is closely-knitted and that any two people are linked by a short chain of acquaintances was
confirmed by the experimental psychologist Stanley Milgram in the sixties. However, it was
only after the seminal work of Jon Kleinberg in 2000 that it was understood not only why such
networks exist, but also why it is possible to efficiently navigate in these networks. This proved
to be a highly relevant discovery for peer-to-peer systems, since they share many fundamental
similarities with the social networks; in particular the fact that the peer-to-peer routing solely
relies on local decisions, without the possibility to invoke global knowledge. In this thesis
we show how peer-to-peer system designs that are inspired by Small-World principles can
address and solve many important problems, such as balancing the peer load, reducing high
maintenance cost, or efficiently disseminating data in large-scale systems. We present three
peer-to-peer approaches, namely Oscar, Gravity, and Fuzzynet, whose concepts stem from the
design of navigable Small-World networks.

Firstly, we introduce a novel theoretical model for building peer-to-peer systems which
supports skewed node distributions and still preserves all desired properties of Kleinberg’s
Small-World networks. With such a model we set a reference base for the design of data-
oriented peer-to-peer systems which are characterized by non-uniform distribution of keys as
well as skewed query or access patterns. Based on this theoretical model we introduce Oscar,
an overlay which uses a novel scalable network sampling technique for network construction,
for which we provide a rigorous theoretical analysis. The simulations of our system validate
the developed theory and evaluate Oscar’s performance under typical conditions encountered
in real-life large-scale networked systems, including participant heterogeneity, faults, as well as
skewed and dynamic load-distributions.

Furthermore, we show how by utilizing Small-World properties it is possible to reduce the
maintenance cost of most structured overlays by discarding a core network connectivity element
– the ring invariant. We argue that reliance on the ring structure is a serious impediment
for real life deployment and scalability of structured overlays. We propose an overlay called
Fuzzynet, which does not rely on the ring invariant, yet has all the functionalities of structured
overlays. Fuzzynet takes the idea of lazy overlay maintenance further by eliminating the need
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vi Abstract

for any explicit connectivity and data maintenance operations, relying merely on the actions
performed when new Fuzzynet peers join the network. We show that with a sufficient amount
of neighbors, even under high churn, data can be retrieved in Fuzzynet with high probability.

Finally, we show how peer-to-peer systems based on the Small-World design and with the
capability of supporting non-uniform key distributions can be successfully employed for large-
scale data dissemination tasks. We introduce Gravity, a publish/subscribe system capable of
building efficient dissemination structures, inducing only minimal dissemination relay overhead.
This is achieved through Gravity’s property to permit non-uniform peer key distributions which
allows the subscribers to be clustered close to each other in the key space where data dissem-
ination is cheap. An extensive experimental study confirms the effectiveness of our system
under realistic subscription patterns and shows that Gravity surpasses existing approaches in
efficiency by a large margin.

With the peer-to-peer systems presented in this thesis we fill an important gap in the
family of structured overlays, bringing into life practical systems, which can play a crucial role
in enabling data-oriented applications distributed over wide-area networks.

Keywords: Peer-to-Peer Systems, Structured Overlays, Small-World Networks, Non-
uniform Key Distributions, Publish/Subscribe Systems.



Résumé

Le phénomène du Petit-Monde, bien connu sous le nom de “six degrés de séparation”, était
l’objet de recherches pendant de longues années. Le fait que notre réseau social est étroitement
ficelé tel que deux individus sont liés par une courte châıne de connaissances a été confirmé
par le psychologue expérimental Stanley Milgram dans les années soixante. Toutefois, c’est
le travail séminal de Jon Kleinberg en 2000 qui nous a aidés à comprendre non seulement la
raison de l’existence de ces réseaux, mais aussi pourquoi il est possible de naviguer efficacement
dans ces réseaux. Cette découverte a été très pertinente pour les systèmes pair-à-pair, comme
ces derniers ont des similitudes fondamentales avec les réseaux sociaux, surtout le fait que le
routage pair-à-pair se base uniquement sur des décisions locales, sans la possibilité d’utiliser
un aperçu global du réseau. Cette thèse a pour but de démontrer comment les conceptions
de systèmes pair-à-pair inspirées par les principes Petit-Monde peuvent résoudre plusieurs
problèmes importants, tel que l’équilibrage de la charge des pairs, la réduction du coût élevé de
l’entretien, ou la diffusion efficace des données dans des systèmes à grande échelle. Nous
proposons trois mécanismes pair-à-pair – Oscar, Gravity, et Fuzzynet – dont les concepts
proviennent de la conception de réseaux Petit-Monde navigables.

Tout d’abord, nous introduisons un nouveau modèle théorique pour la construction de
systèmes pair-à-pair qui prend en considération les distributions inégales de nœuds tout en
gardant toutes les propriétés désirées des réseaux Petit-Monde de Kleinberg. Avec un tel
modèle nous avons établi une base de référence pour la conception de systèmes pair-à-pair
axés sur les données et qui sont distingués par une distribution de clés non-uniforme, ainsi que
des modèles de requête et d’accès non-uniformes. Sur la base de ce modèle théorique nous
introduisons Oscar, un overlay qui utilise une nouvelle technique évolutive d’échantillonnage
pour la construction de réseaux; nous détaillons une analyse théorique rigoureuse d’Oscar.
Les simulations de notre système valident la théorie développée et évaluent la performance
d’Oscar sous des conditions typiques présentes dans des réels réseaux à grande échelle, y compris
l’hétérogénéité des participants, les défauts, ainsi que les distributions de charge non-uniformes
et dynamiques.

En outre, nous démontrons comment l’utilisation des propriétés Petit-Monde permet de
réduire le coût de l’entretien de la plupart des overlays structurés en se débarrassant d’un
élément principal de connectivité – l’invariant de l’anneau. Nous soutenons que la dépendance
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de la structure de l’anneau est un obstacle important au déploiement actuel et à l’évolutivité des
overlays structurés. Nous proposons Fuzzynet, un overlay qui ne dépend pas de l’invariant de
l’anneau et qui conserve néanmoins toutes les fonctionnalités des overlays structurés. Fuzzynet
pousse l’idée de l’entretien paresseux des overlays encore plus loin en éliminant la nécessité
d’opérations explicites de connectivité et d’entretien des données, en s’appuyant uniquement sur
les actions effectuées quand de nouveaux pairs Fuzzynet rejoignent le réseau. Nous démontrons
qu’avec un nombre suffisant de voisins, même avec un taux de rotation élevé, on peut récupérer
les données dans Fuzzynet avec une grande probabilité.

Enfin, nous démontrons comment les systèmes pair-à-pair conçus avec les principes Petit-
Monde et capables de soutenir des distributions non-uniformes de clés peuvent être utilisés
avec succès pour la diffusion de données à grande échelle. Nous introduisons Gravity, un
système de publication/souscription capable de construire des structures de diffusion efficaces,
induisant un temps inactif minimal pour le relais de la diffusion. Ceci est possible parce que
Gravity soutient des distributions non-uniformes de clés, ce qui permet aux souscripteurs de
se regrouper les uns près des autres dans l’espace des clés où la diffusion des données n’est pas
coûteuse. Une étude expérimentale approfondie confirme l’efficacité de notre système dans un
modèle de souscriptions réaliste et montre que Gravity dépasse les techniques existantes par
une grande marge en matière d’efficacité.

Avec les systèmes pair-à-pair présentés dans cette thèse, nous comblons une lacune impor-
tante dans la catégorie des overlays structurés, en rendant possibles des systèmes pratiques
qui pourraient jouer un rôle crucial dans la réalisation d’applications axées sur les données et
distribuées sur des réseaux de grande taille.

Mots clefs: Systèmes Pair-à-Pair, Overlays Structurés, Réseaux Petit-Monde, Distribu-
tions Non-uniformes de Clés, Systèmes de Publication/Souscription.
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Chapter 1

Introduction

There is no reason anyone would want a
computer in their home.

Ken Olsen, president, chairman and founder
of Digital Equipment Corp., 1977

The world has changed dramatically since the famous words of Ken Olsen in 1977. During
the last three decades computers irreversibly conquered our homes. Their ever growing numbers
and extensive connectivity sparkled the growth of the Internet, which rapidly shifted from a
military-oriented application to an integral part of our daily life. The modern world became
flooded with countless interconnected electronic devices – laptops, servers, handhelds, mobile
phones, etc., which are capable of processing, transmitting and storing data. It is estimated
that there already exist over one billion computers in the world and by 2015 this number is
likely to double. The total traffic among these devices reaches 8 terabytes per second and
their combined storage space is estimated to hit a staggering size of 255 exabytes1. Thus, the
effective management and utilization of such sheer numbers of available resources became one
of the main challenges of the XXIst century.

Such vast numbers of interconnected devices became a fertile environment for new kind
of computing substrates in a digital world, such as peer-to-peer systems. The intrinsic idea
behind these systems is to utilize otherwise idle resources dispersed all over the world in a ”for
the end-users from the end-users” fashion. With the appearance of peer-to-peer systems many
novel applications emerged, like large scale distributed computing (e.g., BOINC2), file-sharing
(e.g., BitTorrent3), or peer-to-peer telephony (e.g., Skype4). According to a recent study, peer-
to-peer systems are the biggest consumer of bandwidth in the current Internet, responsible for
between 49 and 84 percent of the overall Internet traffic, which can even be as high as 95% at

1 http://www.kk.org/thetechnium/
2 http://boinc.berkeley.edu/
3 http://www.bittorrent.com/
4 http://www.skype.com/
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2 1. Introduction

nightime5.

However, the design of such decentralized systems poses many challenges. The designers
of peer-to-peer systems have to cope with millions of autonomous resources which operate in
highly dynamic and volatile environments with almost no reliability guarantees. The essential
requirement for most of these systems is to provide an efficient access to any resource in the
system. In other words, any peer-to-peer participant should have the ability to find (i.e.,
navigate to) any other participant or resource without global knowledge, central control, or
dedicated infrastructure. Although, as we will see in the upcoming chapters, there were many
ways devised to navigate in such decentralized systems, the most efficient navigation patterns
resemble those in human social networks, which by their nature are distributed and without
central control. In the following, we will discuss in more detail the concept of efficient navigation
in social graphs, or Small-World networks, and the consecutive impact on the design of peer-
to-peer systems.

1.1. Small-World Inspired Design

Probably every person once in a while finds himself in a situation where the phrase ”Oh,
what a small world!” perfectly describes the astonishment over the discovery of sharing a
common friend or a friend-of-a-friend with a complete stranger. This turns even more bizarre
if that stranger is from another country or from a completely different part of the world. The
awareness of such a fascinating phenomenon is likely to have existed for centuries, but its
scientific investigation started only with the research of the experimental psychologist Stanley
Milgram in the sixties. Milgram devised an experiment with which he wanted to check whether
our social world is indeed small, i.e., that even complete strangers will be linked through friends
of friends in just a few hops. The experiment had very simple rules. He randomly picked a
person from the American mid-west that had to forward a mail-package to a target person
of Milgram’s choice. However, the recipients of the package could not send it directly to the
target but only to somebody they actually knew personally. The results were intriguing if not
surprising. Milgram counted that the average length of the number of steps required for a
package to reach the destination was staggeringly small – only around six forwarding hops.
Thus, it was a clear confirmation that the world is indeed small. Since then, a lot of research
effort has been dedicated for understanding and modeling the Small-World phenomenon.

The first mathematical explanations were attributed to the short diameter of the graph
of the social network. Random graphs, however, failed to model social networks, since it was
known that despite the similarities in diameter, social networks had much higher clusterization
(i.e., one’s two friends are likely to be friends themselves) than random graphs. Watts and
Strogatz [Watts and Strogatz 1998] came up with a network model which could generate net-

5 http://www.ipoque.com/news-and-events/news/ipoque-internet-study-2007-p2p-file-sharing-still-dominates-

the-worldwide-internet.html
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works which had both - high clusterization and low diameter. They proposed to start with a
graph which shows “heavy clustering” (e.g., nearest-neighbor graph) and then to re-wire some
edges by changing one end point to a node picked uniformly at random.

Yet, this model did not completely answer all the questions related to the phenomenon of
Small-Worlds and Milgram’s experiment. It was not unexpected that social graphs had a short
diameter, i.e., the fact that there exists a short acquaintance path between any two persons.
However, it was still unclear why completely decentralized and local (packet forwarding) de-
cisions could find that shortest path by navigating on the underlying social graph. This was
answered by the seminal work of Kleinberg [Kleinberg 2000] where he showed that efficient
navigation based only on local knowledge is not possible on a graph which is generated by
uniform random rewiring or the addition of uniformly distributed shortcuts. However, Klein-
berg proved that there exists a family of Small-World graphs where a decentralized search
algorithm is optimal and cannot perform better. To be able to model such graphs, Kleinberg
had to introduce a distance notion in the model. This family of graphs had a specific property
as the long-range edges were not established uniformly randomly, but the probability that any
two nodes are connected by a long-range link depended on the distance between them. More
specifically, the nodes of Kleinberg’s “routing efficient” Small-World graph were populated on
a r-dimensional lattice where a distance function d(u, v) could be defined between any two
nodes u and v (i.e., the graph was embedded in a r-dimensional metric space). In the model
every node was assigned to have a small (constant) number of short-range links to its immedi-
ate neighbors and at least one long-range link. Kleinberg proved, that a decentralized greedy
routing algorithm performs the best, i.e., the expected length of a search path is polylogarith-
mic in the size of the graph, when the probability of long-range link establishment between
two nodes u and v is proportional to d(u, v)−r , where r is dimensionality of the space. In
such a way, graphs constructed according to Kleinberg’s Small-World model not only have a
small diameter and exhibit high clustering, but are also navigable. This network construction
model is extremely relevant to the field of peer-to-peer, since many peer-to-peer systems have
an underlying metric space and for navigation rely only on local decisions, usually without
having any global knowledge. Indeed, as it was observed later, the topologies of numerous
existing peer-to-peer systems resemble Kleinbergian Small-World graphs and exhibit many of
their properties. Thus, the unveiling of this “routing efficient” Small-World design finally shed
some light on understanding how social networks operate and set a base for the designers of
peer-to-peer systems.

The systems developed within the scope of this thesis, namely Oscar, Gravity and Fuzzynet,
share a common flavor – they are all based on a “routing efficient” Small-World design. As
it will be shown in the upcoming chapters, Small-World networks are unique in their nature,
since on the one hand they provide a structure which is proven to be easy to navigate, while
on the other hand, they provide ample randomization in the system which allows Small-World
based peer-to-peer systems to be flexible enough for adapting to various peer-to-peer settings
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with heterogeneous resources or to harsh high-churn peer-to-peer environments. This thesis is
a display of techniques showing how to deal with several important problems in the field of
peer-to-peer systems with the Small-World network model.

Throughout this thesis we demonstrate how Small-World networks can be effectively em-
ployed to solve problems of peer-to-peer system design such as balancing the load among
heterogeneous peers, reducing high maintenance cost of peer-to-peer topologies, or efficiently
disseminating data in large-scale systems. In the following sections we will introduce these
problems in more detail.

1.2. Motivation

1.2.1. Towards Structured Peer-to-Peer Systems

Although the term “peer-to-peer” was coined relatively recently, the concept itself is a much
older one. Already the rise of the Internet brought the first instances of peer-to-peer architec-
tures like the Domain Name System (DNS), the Simple Mail Transfer Protocol (SMTP) and
USENET. These architectures were intrinsically decentralized and represented the symmetric
nature of the Internet, where every node in the system had equal status and assumed cooper-
ative behavior of the other nodes. The beginning of the file-sharing era and the rise and fall
of the first file-sharing peer-to-peer system Napster6 (2000-2001) paved the way for the second
generation of peer-to-peer overlays like Gnutella7 (2000) and Freenet [Clarke et al. 2001]. Their
simple protocols and unstructured nature made these networks robust and avoided Napster’s
drawbacks like having a single-point-of-failure. Since 2001, these peer-to-peer overlays became
extremely popular and accounted for the majority of the Internet traffic. However, the design
of unstructured networks had an intrinsic weakness because of their reliance on very costly
network flooding. Restricted flooding was not a good remedy either because of the unreliable
resource discovery. To improve this, Gnutella introduced super-peer based hierarchical net-
works which alleviated the problem to a certain extent. However, a fundamental shift in the
design of peer-to-peer systems occurred with the introduction of structured overlays which use
the existing resources more effectively.

Structured overlay networks use more efficient routing techniques and their topology is not
arbitrary. The link establishment among the peers is usually strictly defined by the specific pro-
tocols. The topologies can result in various structures like rings, toruses, hypercubes, de-Bruijn
networks, etc. A particular instance of structured peer-to-peer overlays are Distributed Hash
Tables (DHTs) enabling an efficient lookup service, by using a predefined hashing algorithm
to assign virtual ownership for a particular resource (e.g., P-Grid [Aberer 2001], Chord [Stoica
et al. 2001], DKS [Alima et al. 2003], Symphony [Manku et al. 2003]). In contrast to the
traditional Hash Table, DHTs share the global hash function among all the participating peers

6 www.napster.net
7 http://www.gnutellaforums.com/
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and the DHT protocols ensure that any part of a global hash table is easily reachable (usually
in a logarithmic number of steps). In addition, replication is used to sustain the persistence
and data availability in the system.

1.2.2. DHTs and Data-Oriented Applications

Many popular peer-to-peer systems are designed for data-oriented (or data-sharing) applica-
tions (e.g., Gridella8, KaZaA9). These applications enable transparent access to internet-scale
distributed databases without resorting to a centralized index. Such systems are usually built
on top of structured overlays (e.g., DHTs) and/or hierarchical super-peer networks, where
super-peers are often organized in a structured manner (e.g., FastTrack10). However, as we
will see next, most of the existing DHTs can seriously limit the querying potential of data-
oriented peer-to-peer systems.

Although a vast majority of structured peer-to-peer systems are conceptually similar, they
differ in the rules which describe how to choose neighboring links at each peer to form routing
tables. These rules heavily depend on the nature of the peer identifers (keys), which are ac-
quired by using specific hash functions. To ease the network construction task and to effectively
balance data load, most of the structured peer-to-peer systems use uniform hash functions (like
SHA-1) for assigning identifers to peers and resources (e.g., shared data). The usage of uniform
hash functions ensures that peers in the system are unlikely to be overloaded and enables the
utilization of simple and unambiguous neighbor selection protocols which guarantee a balanced
node degree. The use of uniform hash functions, however, limits the capabilities of data-oriented
overlays to simple identifer lookup. More complex queries like, e.g., range queries, become ex-
tensively ineffective since uniform hash functions disperse otherwise correlated data over many
different peers, thus making the access highly inefficient if not unscalable. Therefore, semantic
data processing cannot be successfully tackled by conventional, uniform hash function based
peer-to-peer systems.

Furthermore, practical scalable peer-to-peer systems need to take into account heterogene-
ity explicitly in the system’s design. For data-oriented overlays, heterogeneity occurs due to
the both the peculiarities of the environment and the application characteristics. Measurement
studies [Stutzbach et al. 2005] of deployed peer-to-peer systems show heterogeneity arising
because of either diverse availability of resources like storage, bandwidth, computation, and
content at peers, or variation in individual willingness to contribute resources to the system, as
well as software artifacts like default configurations. Thus, uniform hash functions are rendered
to be ineffective facing the consequences of heterogeneous environments since under such cir-
cumstances data-oriented applications are inevitably characterized by non-uniform distribution
of keys over the key-space as well as skewed query or access patterns.

8 http://www.p-grid.org/implementation/help.html
9 http://www.kazaa.com/

10 http://www.fasttrack.nu/
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This implies that overlay networks have to be able to handle hash functions which produce
non-uniform key distributions (e.g., order-preserving hashing). The design of such overlay net-
works has to take the resulting skewed key distributions into account and adapt the construction
mechanisms accordingly, which is not a straightforward task. However, most of the existing
peer-to-peer approaches avoid addressing these issues, instead taking advantage of uniformity
assumptions on peers’ capacity in terms of bandwidth consumption and storage capacities,
which might limit the practicality for realistic peer-to-peer environments. Thus, designing
efficient overlay networks for data-oriented applications remains a challenge in peer-to-peer
systems, which we address in this thesis.

1.2.3. Ring Maintenance in Peer-to-Peer Systems

One of the main obstacles to further adoption of structured peer-to-peer systems is mainly
related to their sophisticated and costly maintenance. Many structured overlay networks rely
on a ring invariant as the core network connectivity element. The responsibility ranges of
the participating peers and the navigability principles (greedy routing) heavily depend on the
ring structure. For correctness guarantees, each node needs to eagerly maintain its immediate
neighboring links - the ring invariant. Hence, historically, most existing structured overlays
have de facto considered it necessary [Alima et al. 2003; Manku et al. 2003; Stoica et al.
2001]. However, the ring maintenance is an expensive task and it may not even be possible
to maintain the ring invariant continuously under high churn, particularly as the network size
grows [Freedman et al. 2005].

Unfortunately, the environments in which peer-to-peer systems usually operate are highly
unreliable. Various routing anomalies in the network, peers behind firewalls and the presence
of Network Address Translators (NATs) create non-transitivity effects which might disrupt
the communication among the network participants. It is quite common in real-life networks
that some pairs of alive peers cannot directly communicate to each other (e.g., between two
firewalled peers); however, it is possible for them to communicate indirectly through a third
peer. As it has been shown in [Freedman et al. 2005], such non-transitive connectivity may
misdirect nodes to wrongly set their ring neighbors, thus leading to a violation of the ring
invariant and disrupting the overlay’s functional correctness.

In this thesis we argue that the ring is not only unnecessary, but also relying on such a ring
invariant leads to some undesirable consequences. In certain cases, the existing greedy-routing
mechanisms cannot deal with even a single fault/break in the ring on the routing path. On the
other hand, in a dynamic environment where the peer lifetime is a few minutes for the majority
of them, the ring is susceptible to continuous breakages. This in turn incurs high maintenance
cost, and despite whatever high maintenance effort, there is at no point any absolute guarantee
that the ring is indeed intact. The larger the number of peers, the more likely it is that the
ring invariant is violated. Thus, the reliance on the ring structure is a serious impediment for
real life deployment and scalability of structured overlays.
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In this thesis we deal with this problem by introducing a novel overlay design technique,
which is based on Small-World construction principles and does not rely on the ring invariant,
yet has all the functionalities of structured overlays.

1.2.4. Efficiency in Publish/Subscribe Systems

Another promising area of employing data-oriented peer-to-peer networks nowadays is related
to publish/subscribe systems [Castro et al. 2002; Eugster et al. 2003]. Publish/subscribe is a
popular communication middleware that allows users to subscribe to topics of interest, and then
be notified of posted messages related to any of the topics in their subscriptions. Traditionally,
most uses of publish/subscribe have been limited to building applications integrating multiple
(possibly diverse) data sources, such as event processing engines, live event broadcast, RSS
feed readers, etc. Recently, there has been a growing interest in applying publish/subscribe to
support communication in an emerging class of applications involving fine-grained information
sharing on massive scales [Ostrowski et al. 2007, 2008], such as, e.g., on-line gaming, Internet
chat rooms, Second Life, etc.

In order to adequately address the scaling needs of these applications, a publish/subscribe
solution must be able to effectively deal with large populations of dynamic users, large num-
bers of topics, and arbitrary subscription patterns. However, many traditional solutions con-
centrate the message processing load in a few fixed system components (such as centralized
servers, or fixed hierarchies thereof), and therefore, do not scale well as the system grows in
size. Thus, publish/subscribe approaches became very tempting targets for applying peer-to-
peer techniques. Several decentralized publish/subscribe implementations have been proposed
(e.g., [Bhola et al. 2002; Castro et al. 2002; Voulgaris et al. 2006]), where the nodes are typically
organized in a peer-to-peer network, whose links are then used to propagate published data.

Some of the proposed overlay-based implementations are quite effective in dealing with
scaling issues (such as the number of nodes and geographical spread) mainly because of the
sub-linear degree and low diameter properties of their underlying communication graphs. How-
ever, due to possible lack of connectivity among the nodes sharing the same interests, the
message dissemination overhead could potentially be quite high. The existing peer-to-peer
based publish/subscribe protocols are typically oblivious to the actual node subscriptions, i.e.,
do not exploit correlations among peer-subscriptions. As a result, a message published on a
certain topic needs to traverse a large number of uninterested peers before reaching all of its
subscribers, thus resulting in a high message dissemination cost.

In this thesis, we therefore address this issue by proposing a novel Small-World based
publish/subscribe system that exploits similarity in the individual node subscriptions.
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1.3. Outline and Contributions

In this thesis we introduce a theoretical framework to design structured peer-to-peer overlays
which support non-uniform hash functions. Based on our theoretical findings, we propose a
novel overlay network, called Oscar, which not only is capable of dealing with key distributions
of any complexity but also takes advantage of the heterogeneity of peer environments. Our
approach is based on scalable sampling techniques and the design of peer-to-peer overlays which
are based on the randomized networks exhibiting Small-World properties like high clusterization
and small diameter.

Furthermore, we introduce another Small-World based peer-to-peer design, Fuzzynet, which
allows to reduce the maintenance cost of structured peer-to-peer systems by eliminating the
maintenance intensive structure of the ring. Fuzzynet takes the idea of lazy overlay maintenance
further by dropping any explicit connectivity and data maintenance requirement, relying merely
on the actions performed when new Fuzzynet peers join the network. We show that with
sufficient amount of neighbors (O(log N), comparable to traditional structured overlays), even
under high churn, data can be retrieved in Fuzzynet with high probability.

For efficient handling of publish/subscribe systems we propose the Gravity technique, which
significantly reduces message dissemination cost in the system as compared to the existing
approaches. Gravity is an Oscar-based publish/subscribe system that exploits similarity in
the individual node subscriptions to build efficient dissemination structures while retaining
fixed node degrees. Gravity’s key mechanism is to dynamically cluster the nodes with similar
subscriptions by placing them close to each other on the unit ring, thus resulting in a network
where nodes with similar interests are closely connected. The messages are then disseminated
over multicast trees that preserve peer’s proximity in the network resulting in a low publication
cost. Since such a design results in highly skewed peer-key distributions, Gravity exploits the
advantages of Oscar overlay’s abilities to efficiently handle skewed key distributions of any
complexity.

In the following we provide a short summary of the main thesis chapters:

Part I: Fundamentals

In Chapter 2: Peer-to-Peer Systems, we describe the most important concepts related
to peer-to-peer systems and their design. We present a complete taxonomy of peer-to-peer
systems and familiarize the reader with the most prominent peer-to-peer approaches in each
category. We also discuss different routing and maintenance strategies.

In Chapter 3: Reference Architecture, we propose a reference model for overlay net-
works which is capable of modeling different approaches in the domain of peer-to-peer systems
in a generic manner. It is intended to allow peer-to-peer designers to assess the properties of
concrete systems, to establish a common vocabulary, to facilitate the qualitative comparison of
the systems, and to serve as the basis for defining a standardized API to make overlay networks
interoperable.



1.3. Outline and Contributions 9

Part II: Small-World Inspired Overlays

In Chapter 4: On Small World Graphs in Non-uniformly Distributed Key

Spaces, we show that the topologies of most logarithmic-style peer-to-peer systems like Pas-
try [Rowstron and Druschel 2001], Tapestry [Zhao et al. 2004] or P-Grid [Aberer 2001] resemble
Small-World graphs. Inspired by Kleinberg’s Small-World model [Kleinberg 2000] we extend
the model of building “routing-efficient” Small-World graphs and propose two new models.
We show that the graph, constructed according to our model for uniform key distribution and
logarithmic out-degree, will have similar properties as the topologies of structured peer-to-
peer systems with logarithmic out-degree. Moreover, we propose a novel theoretical model of
building graphs which supports uneven node distributions and preserves all desired properties
of Kleinberg’s Small-World model. With such a model we are setting a reference base for
nowadays emerging peer-to-peer systems that need to support uneven key distributions.

Based on the theoretical model of Chapter 4 we present an overlay network, called Oscar,
in Chapter 5: Oscar: Structured Overlay For Heterogeneous Environments. Oscar
simultaneously deals with heterogeneity as observed in the Internet (capacity of computers,
bandwidth), as well as non-uniformity observed in data-oriented applications, and can deal
with peer key-distributions of any complexity. We demonstrate through simulations that our
technique performs well and significantly surpasses similar techniques like Mercury [Bharambe
et al. 2004] for realistic workloads.

In Chapter 6: Fuzzynet: Ringless Routing in a Ring-like Structured Overlay , we
propose an approach called Fuzzynet, which circumvents the need for a ring and the associated
problems like non-transitivity and costly maintenance. By introducing the Fuzzynet technique,
we set a base for a completely lazy-maintenance design of peer-to-peer systems where the
only maintenance action is taken upon peers joining the network. Fuzzynet is based on the
connectivity principles of navigable Small-World networks [Kleinberg 2000]. It does not require
a ring structure, yet it has all the functionalities of contemporary structured overlay networks.
We validate our novel design principles by simulations, as well as PlanetLab experiments and
compare them with ring based overlays.

In Chapter 7: Gravity: An Interest-Aware Publish/Subscribe System, we consider
the problem of efficient data dissemination in a decentralized publish/subscribe systems in the
presence of large numbers of topics and arbitrary subscription patterns. We introduce Gravity,
our publish/subscribe system based on Oscar overlay that achieves communication efficiency
while preserving fixed node degree by biasing the link creation process so that the nodes
sharing similar interests are more likely to be closely connected (i.e., clustered). A thorough
experimental study confirms the effectiveness of our system given realistic subscription patterns
and shows that Gravity surpasses existing approaches in efficiency by a large margin.
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Chapter 2

Peer-to-Peer Systems

For animals, the entire universe has been
neatly divided into things to (a) mate with,
(b) eat, (c) run away from, and (d) rocks.

Terry Pratchett, Equal Rites

2.1. Taxonomy of Peer-to-Peer Overlay Networks

There are many features of peer-to-peer overlays by which they can be characterized and
classified [Androutsellis-Theotokis and Spinellis 2004; Risson and Moors 2006]. However, strict
classification is not easy since many features have mutual dependencies on each other making
it difficult to identify the distinct overlay characteristics (e.g., overlay topologies vs. routing
in overlays). Although every peer-to-peer overlay can differ by many parameters, each of
them will have to have a certain network structure with distinctive routing and maintenance
algorithms allowing the peer-to-peer application to achieve its purpose. Thus, most commonly,
peer-to-peer overlays can be classified by:

• Purpose of use;

• Overlay Structure;

• Employed routing mechanisms;

• Maintenance strategies.

2.1.1. Purpose of Use

Peer-to-peer overlays are used for an efficient and scalable sharing of individual peers’ resources
among the participating peers. Depending on the type of the resources which are shared, the
peer-to-peer overlays can be identified as being oriented for:

13
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• Data-sharing (data storage and retrieval);

• Bandwidth-sharing (streaming);

• CPU-sharing (distributed computing).

Data-sharing peer-to-peer overlays can be further categorized by their purpose to perform
one or more specific tasks like file-sharing (by-far the most common use of the peer-to-peer over-
lays), information retrieval (peer-to-peer web search), publish/subscribe services and semantic
web applications. Data-sharing peer-to-peer overlays arguably belong to the most popular cat-
egory in the peer-to-peer family. Examples of such data-sharing networks include systems like
BitTorrent1, DKS [Alima et al. 2003], P-Grid [Aberer 2001], publish/subscribe systems such
as Pastry-based Scribe [Castro et al. 2002], peer-to-peer information retrieval systems such as
YaCy-Peer2, AlvisP2P3 [Podnar et al. 2007; Skobeltsyn et al. 2007], etc.

Bandwidth-sharing peer-to-peer overlays are to some extent similar to data-sharing over-
lay networks, however, they mainly aim at the efficient streaming of real-time data over the
network. The efficient overlay design provides the ability to find several disjoint paths from
source to destination and therefore, to significantly boost the performance of the data streaming
applications. Bandwidth-sharing peer-to-peer overlays are mostly found in peer-to-peer tele-
phony, peer-to-peer video/TV, sensor networks and peer-to-peer publish/subscribe services.
For example, currently Skype4 is arguably the most prominent peer-to-peer streaming overlay
application.

For the computationally intensive tasks, when the CPU resources of a single peer cannot
fulfill its needs, a CPU-sharing peer-to-peer network can provide plenty of CPU resources
from the participating idle overlay peers. Currently, only computationally demanding scientific
experiments employ such a strategy for tasks like simulation of protein folding or analysis of
astronomic radio signals. Although not being a pure peer-to-peer overlay, Berkeley Open Infras-
tructure for Network Computing (BOINC) is very popular among such networks, supporting
several distributed computing projects such as SETI@home, folding@home, AFRICA@home,
etc.

In this thesis we will focus on data-sharing overlays like Oscar (Chapter 5), Fuzzynet
(Chapter 6), and Gravity (Chapter 7), the latter belonging to two categories: data-sharing and
bandwidth-sharing.

2.1.2. Overlay Structure and Design

Peer-to-peer overlays significantly differ in the topology of the networks they form. There exists
a wide scope of possible overlay instances, ranging from centralized to purely decentralized ones,

1 http://www.bittorrent.com/
2 http://www.yacyweb.de/
3 http://globalcomputing.epfl.ch/alvis/
4 http://www.skype.com/
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however, most commonly, three classes of network topology are identified:

• Centralized Overlays;

• Decentralized Overlays;

• Hybrid Overlays.

Depending on the routing techniques and whether the resource distribution affects link
establishment methods, overlay networks can be also classified into structured and unstructured
peer-to-peer overlays.

2.1.2.1. Centralized Overlays

Peer-to-peer overlays based on centralized topologies are pretty efficient since the interaction
between peers is facilitated by a central server which stores the global index, deals with the
updates in the system, distributes tasks among the peers or quickly responds to the queries and
gives complete answers to them (Figure 2.1(a)). However, not all applications fit the centralized
network overlay model. Centralized overlays usually fail to scale with an increasing number of
participating peers. The centralized component rapidly becomes the performance bottleneck.
The existence of a single-point-of-failure (e.g., Napster5) also prevents many potential data-
sharing applications from using centralized overlays.

2.1.2.2. Decentralized Overlays

Because of the aforementioned drawbacks, decentralized structured and unstructured overlays
emerged, which use a purely decentralized network model, and do not differentiate peers into
servers or clients, but treat all of them equally - as they were both servers and clients at
the same time (Figure 2.1(b)). Thus, such peer-to-peer overlays successfully deal with the
scalability requirement and can operate without any central authority.

The simplest decentralized overlays are usually unstructured. Unstructured overlay net-
works use flooding-based routing and the distribution of the resources among the peers is
usually unrelated to the network topology.

The most prominent unstructured peer-to-peer system is Gnutella6. Nevertheless, many
other unstructured peer-to-peer systems have been developed. These systems vary broadly
with respect to the underlying topology, the routing techniques, as well as replication and
maintenance cost. E.g., SWAN [Liu et al. 2006] is operating over an underlying Small-World
network, whereas Yappers [Ganesan et al. 2003] provides a peer-to-peer look-up service over an
arbitrary topology. Another unstructured peer-to-peer technique, called Gia [Chawathe et al.
2003] combines biased random walks with one-hop data replication, BubbleStorm [Terpstra
et al. 2007] provides a probabilistic data retrieval over a peer-to-peer network.

5 http://www.napster.com/
6 http://www.gnutellaforums.com/
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(a) Centralized Overlay.

Central peer facilitates

the interactions among

the leaf-peers.

(b) Decentralized Overlay. No

central authority, all peers

treated equally.

(c) Hybrid overlay. Hierar-

chical topology, intercon-

nected super-peers locally

serve the subsets of leaf-

peers.

Figure 2.1. Examples of Peer-to-Peer Overlays

Because of their simplicity, unstructured overlays are pretty robust to network and peer
failures, although they are inefficient due to high bandwidth consumption during querying.

2.1.2.3. Structured Overlay Networks

Structured overlay networks use more efficient routing techniques and the topology of the
structured overlays is not arbitrary but typically exhibit Small-World properties, specifically
high clusterization and low network diameter. The link establishment among the peers is
strictly defined by specific protocols. The topologies can result in various structures like rings
(Chord [Stoica et al. 2001], SkipNets [Harvey et al. March 2003], Hieras [Xu et al. 2003]) ,
toruses (CAN [Ratnasamy et al. 2001]), hypercubes (HyperCuP [Schlosser et al. 2002]), butter-
fly networks (Viceroy [Malkhi et al. 2002]), de-Bruin networks (Koorde [Kaashoek and Karger
2003]) or more loose randomized networks, which do have properties of Small-World networks
(e.g., Freenet [Clarke et al. 2001], P-Grid [Aberer 2001], Symphony [Manku et al. 2003]). A
particular instance of structured peer-to-peer overlays is a Distributed Hash Table (DHT)
enabling an efficient lookup service, by using a predefined hashing algorithms to assign an
ownership for a particular resource (e.g., Chord [Stoica et al. 2001], Kademlia [Maymounkov
and Mazières 2002] etc.). In contrast to the traditional Hash Table, the DHTs share the global
hashing information among all the participating peers and the DHT protocols ensure that any
part of a global hash table is easily reachable (usually in logarithmic steps) and there is enough
replication to sustain the consistency in the system.

Structured peer-to-peer overlays are easily recognizable by a characteristic feature – an
identifier (key) space. Peers and resources are mapped into that identifier space and have
an unambiguous position within it. Furthermore, every peer has a responsibility area within
the identifier space and the peer manages all the resources with the identifiers which fall into
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that area. A more formal description on the identifier space and the related concepts will be
provided in Chapter 3.

We classify structured overlays by the hash function used to map peers and resources into
the identifier space. There are two distinct groups: those that use uniform hash functions
and those that support non-uniform ones. The most basic way to assign identifiers to peers
and resources is using uniform hash functions like SHA-1 because of the load balancing effect
that such hashing provide. Such uniform hashing produces random identifiers on the identifier
space for both: the participating peers and the available resources. This leads to a uniform
distribution of resources on peers, which inherently avoids major load-balancing problems7.
Thus, systems which use uniform hash functions are by far dominant in the field of structured
peer-to-peer systems, like Chord, DKS, Pastry, Tapestry, Symphony, Kademlia and many
others.

However, the use of the uniform hash functions comes with a price as well - the existing
semantic relationship (correlation) between the peers or resources is inevitably lost with the
use of a uniform hash function. This might be a considerable impediment for most of the
data-oriented applications. Thus, despite easy handling of the load, the use of such systems
is limited to applications which operate only with specific single key lookups (point-queries),
i.e., retrieving resources based on their application specific identifier. Yet, most of the existing
data-oriented applications require more sophisticated functionality to be supported (e.g., range
queries) which becomes very inefficient to address when using uniform hash functions.

2.1.2.4. Structured Overlays with Order-Preserving Hashing

To answer complex queries efficiently, peer-to-peer systems are required to use hash functions
which preserve the semantic order among the resource keys in the key space, reflecting the
relationship exhibited by the resources at the application level. Preserving such an order can
significantly boost the performance of data-oriented peer-to-peer systems [Bharambe et al.
2004]. Alas, order-preserving hash functions imply that the resulting resource keys are likely to
produce skewed distributions over the key space because of the non-uniform resource distribu-
tion at the application level. Since the topologies of most structured overlays are built assuming
that peer-keys are distributed uniformly at random, the non-uniform resource hashing destroys
a self-regulating load balancing property of these systems.

In order to balance the load in the system, peer-keys have to follow the distribution of
resource keys. In this way, all peers are responsible for a similar number of resources in the
system. This leads to skewed peer-key distributions in the presence of the skewed resource
key distributions. Thus, most of the data-oriented applications have to rely on structured
overlays which can support such non-uniform key distributions. However, not many peer-to-
peer systems capable of handling such conditions have been developed. The most notable

7 Some load imbalance due to a natural variance of the randomized hashing might still be observed [Stoica et al.

2001].
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examples of these overlays are CAN, P-Grid, Mercury [Bharambe et al. 2004], Skip list based
approaches ( [Aspnes et al. 2004; Aspnes and Shah 2003; Ganesan et al. 2004; Harvey et al.
March 2003]) and Chord# [Schütt et al. 2005]. However, most of them have been suffering
from specific drawbacks such as unbounded routing tables (P-Grid, CAN), failure to deal
with complex skews (Mercury), or inability to work in heterogeneous environments (Chord#,
SkipNets). More details on the problems related to some of these systems will be addressed in
Chapter 5.

2.1.2.5. Hybrid Overlays

There also exist many hybrid peer-to-peer overlays (super-peer systems) which trade-off be-
tween different degree of topology centralization and structure flexibility. Some prominent
examples of such systems include Brocade [Zhao et al. 2002], LH∗ [Litwin et al. 1996], Skype8,
KaZaA9, etc. Hybrid overlays use a hierarchical network topology consisting of regular peers
and super-peers, which act as local servers for the subsets of regular peers (Figure 2.1(c)). For
example, a hybrid overlay might consist of the super-peers forming a structured network which
serves as a backbone for the whole overlay, enabling an efficient communication among the
super-peers themselves. Hybrid overlays have an advantage over simple centralized networks,
since the super-peers can be dynamically replaced by regular peers, hence do not constitute
single points of failure while retaining the benefits of peer-to-peer systems with central com-
ponents.

However, on the down side, allocating peers as super-peers is not a straightforward task.
Moreover, the design of super-peer systems implies that there are only two distinct and pre-
defined classes of peers; whereas in reality there is a wide range of peers with diverse resource
potentials, which continuously change over time. Thus, only the systems which can adapt to
ever-changing heterogeneous peer environments (e.g., Oscar, cf. Chapter 5) can fully employ
the entire potential of the available resources.

2.1.3. Routing

Peer-to-peer overlay networks enable the peers to communicate with one another even if the
communicating peers do not know their addresses in the underlying network. For example,
in an overlay deployed over the Internet, a peer can communicate with another peer without
knowing its IP address. The way this is achieved in the overlays is by routing overlay messages.
Each overlay message originates at a source and is forwarded by the peers in the overlay until the
message reaches one or more destinations. A number of routing schemes have been proposed.

8 http://www.skype.com/
9 http://www.kazaa.com/
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2.1.3.1. Routing in Unstructured Overlays

Unstructured overlay networks use mainly two mechanisms to deliver routed messages: flooding
and random walks. When some peer v receives a flood message from one of its overlay neighbors
w, then v forwards the flood message to all of its neighbors except w. When v receives the
same flood message again, it is ignored. Eventually the flood reaches all of the destinations.
Figure 2.2 illustrates typical routing operations in unstructured overlays. The circles and solid
lines represent the overlay topology. The dashed arrows illustrate the flow of messages. Peers
routing in an unstructured network do not know the exact location of the destinations so
they have to either look in all possible directions via flooding or randomly walk to find the
destination peer.

For example, in Gnutella, a file-sharing peer-to-peer system, a peer s that wants to download
a file floods the network with queries. If some peer d that has the file desired by s is reached by
the query flood, then d sends a response back to s. Flooding consumes a significant amount of
network bandwidth. To reduce it, the flooded messages typically contain a Time-To-Live (TTL)
counter included in every message that is decremented whenever the message is forwarded. This
limits how far the flood can spread from the source but at the same time lowers the chance of
reaching the peer that holds the searched file.

The high bandwidth usage of flooding has led to the design of an alternative routing scheme
for unstructured overlay networks: random walks [Lv et al. 2002]. Instead of forwarding a
message to all of the neighbors, it is only forwarded to a randomly chosen one. Depending
on the network topology random walks provide different guarantees of locating the destination
peer(s), however, all of the random walk approaches share one disadvantage: a significant and
in most cases intolerable delivery latency.

2.1.3.2. Routing in Structured Overlays

As more peers join the overlay network and there are more messages that need to be routed,
flooding and random walks quickly reach their scalability limits. This problem has prompted
the research on structured overlays (and the development of super-peer networks).

In structured overlays each peer has a unique and immutable identifier chosen when the
peer joins the overlay. The peer identifiers enable efficient routing in structured overlays. Each
routed message has a destination identifier selected from the peer identifier set. Instead of
blindly forwarding the message to all neighbors as in the unstructured overlays, a peer in a
structured overlay uses the destination identifier to forward the message only to one neighbor.
The next hop neighbor is selected to minimize the distance in the identifier space from the
current message holder to the destination.

Such routing is possible only in peer-to-peer overlay networks which posses an identifier
space with a notion of distance. For example, in Chord [Stoica et al. 2001] identifiers are selected
from the set of integers [0, 2m − 1] and are ordered in a modulo 2m circle, where m = 160.
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Figure 2.2. Routing in unstructured overlay networks

The distance d(x, y) between two identifiers x and y is defined as the difference between x

and y on that identifier circle, i.e., d(x, y) = (y − x) mod 2m. In another overlay, Kademlia
[Maymounkov and Mazières 2002], the identifiers are 160-bit integers and the distance between
two identifiers x and y is defined as their exclusive bitwise OR (XOR) interpreted as an integer,
i.e., d(x, y) = x ⊕ y. Figure 2.3 illustrates the typical routing procedure in the Chord overlay.
In this figure, the big circle represents the peer identifier space with IDs in the interval [0, 25].
The small circles are the peers and the numbers beside them are their IDs. Peer 7 is connected
(solid arrows) to peers with exponentially increasing distance from 7: 7 + 1 = 8, 7 + 2 = 9,
7 + 4 = 11, 7 + 8 = 15, 7 + 16 = 23. Assume that peer 7 wants to route a message to peer
28. Dashed arrows represent the routing path. Peer 23 is the neighbor of 7 that is closest on
the ring to the destination (28) and that neighbor is chosen as the first hop for the message
delivery. One hop is not enough to reach 28, but peer 23 brings the message closer to the
destination and peer 27 finally delivers it. The greedy routing rule of always selecting as next
hop the one that brings the message as close as possible to its destination is the main building
block of all structured overlay networks.

Although current structured overlays differ in the details of how they make use of the peer
identifiers for routing, they are all based on the same general greedy routing principle. When
some peer v receives a message with a given destination identifier, it forwards the message to
that next hop whose identifier is the closest to the destination identifier. In other words, in
every hop the message gets as close as possible to the destination. Routing terminates when
one of the peers decides it is the destination for the message. This decision is application
dependent. For example, in a Distributed Hash Table each peer knows for which hash table
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Figure 2.3. Routing in Chord

keys it is responsible for. The key space is mapped onto the peer identifier space in DHTs
and the destination identifier of each DHT lookup message specifies the hash table key K the
lookup is querying for. The lookup message is greedily routed hop by hop from the origin until
the message reaches a peer responsible for K. Routing then terminates and the responsible
peer sends a lookup response to the origin. The lookup response contains the hash table value
stored under the key K as long as it exists.

2.1.4. Maintenance

Peer-to-peer systems are commonly deployed in environments characterized by high dynamicity,
peers can depart or join the system at any time. These continuous joins and departures are
commonly referred to as churn. Instead of gracefully departing from the network peers can
also abruptly fail or the network connection with some of its neighbors may be closed. In
all of these cases the changes in the routing tables may adversely affect the performance of
the system. The overlay topology needs to be maintained to guarantee message delivery and
routing efficiency.

There are two main approaches to overlay maintenance: proactive and reactive. In proactive
maintenance peers periodically update their routing tables such that they satisfy the overlay
topology invariants. For example, Chord periodically runs a ”stabilization” protocol to ensure
that every peer is linked to other peers at exponentially increasing distance. This ensures
routing efficiency. To ensure message delivery each Chord peer maintains connections to its
immediate predecessor and successor on the Chord ring.

In contrast to proactive maintenance, reactive maintenance is triggered immediately after
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the detection of a peer failure or peer departure. The missing entry in the routing table is
replaced with a new one by sending a connect request to an appropriate peer.

Failures and departures of peers are detected in two ways: by probing or through usage. In
probe-based failure detection each peer continuously runs a ping-response protocol with each
of its neighbors. When ping timeouts occur repeatedly the neighbor is considered to be down
and is removed from the routing table. In usage-based failure detection when a message is sent
to a neighbor but not acknowledged within a timeout, the neighbor is considered to have failed.

The more neighbors a peer must maintain the higher the bandwidth overhead incurred by
the maintenance protocol. In modern structured overlays maintenance bandwidth typically
scales as O(log(N)) in terms of the network size.

2.2. Peer-to-Peer Reference Model

The success of the peer-to-peer concept has created a huge diversity of approaches. A wide
range of algorithms, structures, and architectures for overlay networks have been proposed,
integrating knowledge from many different communities, such as networking, distributed sys-
tems, databases, graph theory, agent systems, complex systems, etc. The terminologies and
abstractions used, however, have become quite inconsistent, which makes it very hard to assess
and compare different approaches. Although a large number of overlay networks have been
devised, only very few works on unifying architectures exist. Only a few relevant attempts to
remedy this situation exist so far.

For example, JXTA [Gong 2001] defines a 3-layer architecture (kernel, services, application),
XML-based communication protocols, and basic abstractions, such as peer groups, pipes, and
advertisements. JXTA intends to provide a uniform programming platform for peer-to-peer
applications and facilitate interoperability. It provides well-defined APIs and a clear separation
of concerns in its architecture. However, it is not intended to describe the structural and func-
tional properties of overlay networks. Dabek et al. [Dabek et al. 2003] propose a common API
for structured overlays, basically for CAN [Ratnasamy et al. 2001], Chord [Stoica et al. 2001],
Pastry [Rowstron and Druschel 2001], and Tapestry [Zhao et al. 2004]. The API only takes
into account structured overlays and the used abstraction are at a very low level (C program-
ming interface level), so that using it as a general architecture for modeling overlay networks
is not possible. In [Gummadi et al. 2003] classifications for structured overlay networks, e.g.,
deterministic and randomized networks, are introduced, however, it does not provide a general
reference architecture for peer-to-peer networks.

In the following chapter we will present such a reference model for overlay networks which is
capable of modeling different approaches in this domain in a generic manner. It is intended to
allow researchers and users to assess the properties of concrete systems, to establish a common
vocabulary for scientific discussion, to facilitate the qualitative comparison of the systems, and
to serve as the basis for defining a standardized API to make overlay networks interoperable.



Chapter 3

Reference Architecture for Overlay

Networks

Believe me, that was a happy age, before the
days of architects, before the days of builders.

Lucius Annaeus Seneca

3.1. Overview

In this chapter we introduce a reference model for overlay networks which is capable of modeling
all existing approaches in this domain. We focus on decentralized overlay networks such as
Gnutella1, Freenet [Clarke et al. 2001], CAN [Ratnasamy et al. 2001], Chord [Stoica et al.
2001], P-Grid [Aberer et al. 2005b], DKS [Alima et al. 2003], etc., as this class is the most
relevant one. From a modeling point of view, centralized peer-to-peer (P2P) systems, such as
Napster, are simply client-server architectures where the participants can directly communicate
after a discovery phase (similar to a DNS name lookup and then contacting a web server, for
example). Hierarchical P2P systems such as Kazaa, basically consist of a decentralized overlay
network of super-peers for locating resources that are used by the normal peers. Thus, these
system can be modeled by our proposed model with an additional client-server step when
contacting a super-peer.

The model is intended to support the assessment of system properties, establishes a com-
mon vocabulary, facilitates the qualitative comparison of the systems, and can serve as the
basis for defining a standardized API to make overlay networks interoperable. The major con-
tributions of our model are (1) a conceptual model capturing the concept of embedding a graph
into a virtual identifier space, which is fundamental for all overlay networks and (2) a well-
defined peer architecture comprising user-level interfaces for applications wanting to use the

1 http://www.gnutellaforums.com/
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Figure 3.1. Overlay network design decisions

overlay, interfaces for intra-network communication among homogeneous peers, and interfaces
for cooperation among heterogeneous overlay networks.

3.2. Conceptual Model for Overlay Networks

In any overlay network a group of peers P provides access to a set of resources R by mapping
P and R to an (application-specific) identifier space I using two functions FP : P → I and
FR : R → I. These mappings establish an association of resources to peers using a closeness
metric on the identifier space. To enable access from any peer to any resource a logical network
is built, i.e., a graph is embedded into the identifier space. These basic concepts of overlay
networks are depicted in Figure 3.1.

Each specific overlay network is characterized by the decisions made on the following six
key design aspects:

1. choice of an identifier space

2. mapping of resources and peers to the identifier space

3. management of the identifier space by the peers

4. graph embedding (structure of the logical network)

5. routing strategy
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6. maintenance strategy

In taking these design decisions the following key requirements for overlay networks are
addressed:

Efficiency: Routing should incur a minimum number of overlay hops (with minimum
“physical” distance) and the bandwidth (number and size of messages) for constructing and
maintaining the overlay should be kept minimal.

Scalability: The concept of scalability includes many aspects. We focus on numerical scal-
ability, i.e., very large numbers of participating peers without significant performance degra-
dation.

Self-organization: The lack of centralized control and frequent changes in the set of par-
ticipating peers requires a certain degree of self-organization, i.e., in the presence of churn the
overlay network should self-reconfigure itself towards stable configurations. This is a stabiliza-
tion requirement as external intervention typically is not possible.

Fault-tolerance: Participating nodes and network links can fail at any time. Still all
resources should be accessible from all peers. This is typically achieved by some form of
redundancy. This is also a stabilization requirement for the same reason as above. Fault-
tolerance implies that the partial failure property of distributed systems [Tel 1994] is satisfied,
i.e., even if parts of the overlay network cease operation, the overlay network should still
provides an acceptable service.

Cooperation: Overlay networks depend on the cooperation of the participants, i.e., they
have to trust that the peers they interact with behave properly with respect to routing, exchange
of index information, quality of service, etc.

In the following we will provide detailed formal specifications for these key design concepts
of overlay networks and discuss the issues related to the requirements listed above.

3.2.1. Choice of Identifier Space

A central decision in designing an overlay network is the selection of the virtual identifier space
I which has to possess some closeness metric d : I × I → R, where R denotes the set of real
numbers. d must satisfy properties 1–3 below and if possible should satisfy properties 4–5.

∀x, y ∈ I : d(x, y) ≥ 0 (1)
∀x ∈ I : d(x, x) = 0 (2)

∀x, y ∈ I : d(x, y) = 0 ⇒ x = y (3)
∀x, y ∈ I : d(x, y) = d(y, x) (4)

∀x, y, z ∈ I : d(x, z) ≤ d(x, y) + d(y, z) (5)
If d satisfies all the five properties then (I, d) is a metric space. However, in many cases

only the first three properties will be satisfied. In this case we call (I, d) a pseudo-metric space.

The choice of the virtual identifier space is important for several reasons:
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• Addressing: The identifier space plays the role of an address space used for identifying
resources in the overlay network. Each peer and resource in an overlay network receives
a virtual identifier taken from I (explicitly or implicitly).

• Scalability: To support very large systems, I has to be very large. Through a mapping FP

each peer with a physical address in P is assigned a virtual identifier from I. This is an
application of the well-known principle of indirection for achieving numerical scalability.

• Location-independence: The virtual identifier space allows peers to communicate which
each other irrespective of their actual physical location. This addresses physical address
changes and enables mobility.

• Clustering of resources with peers: The closeness metric d enables the clustering of re-
sources with peers based on proximity. This is discussed in detail in Section 3.2.3.

• Message routing: Virtual identifiers and the closeness metric d are essential for realizing
efficient routing.

• Preservation of application semantics: As virtual identifiers can be defined in an
application-specific way, application semantics, for example, “proximity” of resources
(clustering), can be preserved.

Examples: CAN [Ratnasamy et al. 2001] uses a Euclidean space with virtual identifiers be-
ing coordinates in this space. The distance function d is the Euclidean distance. P-Grid [Aberer
et al. 2005b] uses a prefix-preserving hash function on strings, i.e.,

∀s1, s2 : s1 < s2 ⇒ h(s1) < h(s2)

(< denotes lexicographic order). Identifiers in P-Grid are bit strings and d is defined as (for a
k-bit identifier a and an l-bit identifier b):

d(a, b) = min(|
k∑

i=1

ai2
−i −

l∑
i=1

bi2
−i| , 1 − |

k∑
i=1

ai2
−i −

l∑
i=1

bi2
−i|)

while in Chord [Stoica et al. 2001] and DKS [Alima et al. 2003] the identifier space is a
subset of the natural numbers of size N and

d(x, y) = (y − x) mod N.

3.2.2. Mapping to the Identifier Space

The mapping FP : P → I associates peers with a unique virtual identifier from I. Different
approaches can be distinguished by the properties of the chosen functions FP :

• Completeness: FP may be complete or partial. When FP is partial, peers might (tem-
porarily) not be associated with an identifier.



3.2. Conceptual Model for Overlay Networks 27

• Morphism: If no replication (for fault-tolerance) is required, FP will be one-to-one (in-
jective), i.e., ∀p, q ∈ P : p 
= q ⇒ FP (p) 
= FP (q). However, the more typical case is
that the system uses replication and the mapping is not injective.

• Dynamicity: FP can be either statically defined, e.g., by its physical address or other
unique attributes, or dynamically change over time. In order to simplify our notations,
in the following we will focus on the structural aspects and will not explicitly represent
time-dependency in our notations.

Additionally, FP may satisfy certain distributional properties, for example, that the range
of values of FP follows a certain distribution in space I, e.g., uniform. Such properties may
then be exploited, for example, for load balancing. The properties FP satisfies will be denoted
as CFP

in the following.
The mapping FR : R → I associates resources with identifiers from I. The choice of this

mapping can be critical for the application using the resources. Typically “semantic closeness”
of resources, e.g., resources frequently requested jointly, can be translated into closeness of
identifiers. Thus, the possibility of using application-specific identifiers is taking advantage of
this. If the resources should be identified uniquely, FR has to be injective. The distribution of
identifiers generated by FR has an important impact on the load-balancing properties of the
overlay network embedded into the space I.

Examples: A standard example for FP and FR is a uniform hashing function as, e.g.,
used by Chord [Stoica et al. 2001]. This will generate a uniform distribution of peers on
the identifier space and implicitly provides load-balancing as also the resource identifiers are
uniformly distributed. However, clustering of information will not be possible and thus higher-
level search predicates such as range queries will be expensive to process. P-Grid’s mapping
functions on the other hand supports clustering but thus requires an explicit load-balancing
strategy.

3.2.3. Management of the Identifier Space

At any point in time, I is managed by the set of current peers P. The responsibility for peers for
specific identifiers is captured by a function M : I → 2P , which associates with each identifier
of a resource r, i = FR(r) ∈ I, the set of peers that are managing r. Through M, each peer p is
assigned responsibility for the set Mres(p) of identifiers, where Mres(p) =

⋃
Q∈2P ,p∈Q M−1(Q).

Locating a resource r corresponds to finding a peer in M(FR(r)). The lookup operation of
overlay networks typically provides an implementation of M through routing. We may identify
various basic properties for M:

• Completeness: M may be complete or partial. When M is incomplete, identifiers might
(temporarily) not be associated with a peer. Typically the mapping will be complete,
such that each point of the identifier space is under the responsibility of some peers, i.e.,
∀i ∈ I : ∃p ∈ P : p ∈ M(i)
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• Cardinality: To provide fault-tolerance, M typically contains more than one element,
i.e., a set of peers is responsible for managing each identifier (∀i ∈ I : |M(i)| > 1).

• M induced by proximity: A standard way to specify M is that identifiers are associated
with their closest peers, i.e.,

p ∈ M(i) ⇒ d(FP (p), i) = minq∈Pd(FP (q), i).

• Dynamicity: M typically changes dynamically as the set of peers and their mapping to
the identifier space changes.

• Uniformity of replication: The cardinality of M (which corresponds to the degree of
replication) may be constant or uniformly distributed to ensure comparable availability
of resources. Non-uniform distributions can be used to adapt the availability of resources
to application requirements, e.g., popularity of resources.

In the following, CM denotes the properties M satisfies.
Examples: In Chord a peer with virtual identifier a is responsible for the interval
(predecessor(a), a]. In P-Grid a peer with a k-bit path a is responsible for all identifiers
in the interval [

k∑
i=1

ai2−i , 2−k +
k∑

i=1

ai2−i

)
.

3.2.4. Graph Embedding

An overlay network can be modeled as a directed graph, G = (P, E), where P denotes the set of
vertices (i.e., peers) and E denotes the set of edges. Due to the dynamics in overlay networks,
G is time-dependent, but as before we will not explicitly denote this. By virtue of this graph
we define a neighborhood relationship N : P → 2P , such that for a given peer p, N (p) is the
set of peers with which peer p maintains a connection, i.e., there is a directed edge (p, q) in E
for q ∈ N (p).

The properties of the overlay network relate to properties of the directed graph generated
by N and to the properties of the embedding of the graph into the (pseudo-) metric space
(I, d). Purely structural properties of the graph can be further distinguished into local and
global properties, i.e., whether they relate to local characteristics of graph nodes or to global
characteristics of the graph. Typical global properties of the graph are the following:

• Uniqueness: For deterministic systems, e.g., Chord, DKS, for a given set P and map-
ping FP only one valid network N exists. In randomized systems such as P-Grid and
randomized Chord, multiple valid N are possible.

• Graph diameter: A small diameter provides lower bounds on the latency of routing in
the network.
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• Connectivity : Some overlay network approaches may require that the overlay graph is
connected at any time.

• Distributional properties: These are typically distributional properties of node degrees.
A frequently occurring class of graphs are power-law graphs [Mitzenmacher 2001]. Other
distributional properties relate to the clustering coefficient of the graph.

Typical local properties of the graph include:

• Minimal out-degree: This property is beneficial to ensure fault-tolerance, when many
neighbors fail.

• Maximal out-degree: This property is relevant for ensuring bounded maintenance cost for
connections to other peers.

• Distributional properties of in-degree: These are relevant for load balancing in the message
forwarding.

More complex properties refer to relationships of the graph structure to the distance func-
tion. These relationships are tightly intertwined with the strategy for efficient routing in an
overlay network. Typical examples of such constraints are:

• Local connectivity: This property ensures that peers are connected to some specific subset
of their immediate neighbors. An example of such a requirement for a given peer p would
be

∀q ∈ P : d(FP (p), FP (q)) < dmin ⇒ q ∈ N (p).

• Long-range connectivity: Many overlay network designs are structurally similar to Small-
World graphs as introduced by Kleinberg [Kleinberg 2000]. These graphs are constructed
such that long range connections satisfy the condition

P [q ∈ N (p)] ∝ 1
d(FP (p), FP (q))−d

,

where d is the dimensionality of the identifier space. Many overlay networks satisfy more
strict variations of this condition.

The properties N satisfies are denoted by CN in the following. At this point we are able to
completely characterize the structural aspects of overlay networks by the following definition:

Definition. The structure of an overlay network O ∈ O for a set of peers P is given by

O = (I, d, FP , CFP
,M, CM,N , CN ).
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3.2.5. Routing Strategy

The basic service an overlay network provides is to route a request for an identifier i to a peer pr

responsible for it, i.e., pr ∈ M(i). Routing is a distributed process using the overlay network.
We model it by asynchronous message passing: route(p, i,m) forwards a message m to a peer
p responsible for i. A routing strategy can be described by a potentially non-deterministic
function R : P ×I → 2P , which selects at a given peer p with neighborhood N (p) for a target
identifier i the (set of) next peers R(p, i) ∈ N (p), to which the message is forwarded. In
structured overlay networks routing typically is greedy, i.e.,

d(i, FP (q)) < d(i, FP (p))

for all q ∈ R(p, i). In unstructured overlay networks the set R(p, i) may contain several peers.

Properties of routing algorithms are characterized by their associated cost measures, such
as latency, number of hops, and probability of successful routing. Given a routing algorithm
together with an overlay network structure the properties regarding the expected usage of the
peers’ resources can be analyzed.

3.2.6. Maintenance Strategy

Participation of peers in an overlay network dynamically changes over time. Each peer can
freely decide to join or leave an overlay network at any time. These changes, referred to as
churn in the literature, can happen quite frequently. To maintain the structural integrity of
an overlay network a maintenance strategy is required, which compensates for changes to the
network structure due to peers going offline or failure of network connections.

In all overlay networks, joining the network is done explicitly by a join operation, whereas
leaving typically is implicit as peers may simply go offline or crash or their network connection
may drop. Regardless whether peers leave gracefully or not, changes in the participation in an
overlay network typically require the application of a maintenance strategy. Aside from access
control aspects, i.e., who is allowed to participate, this basically requires to repair routing tables
which have been invalidated due to churn, i.e., to maintain the connectivity of the underlying
graph [Ghodsi et al. 2004]. Maintenance strategies can be classified [Aberer et al. 2004] into
proactive correction (PC) using periodic probing or heartbeats to repair inconsistencies, and
reactive mechanisms, with the sub-categories correction on use (CoU), e.g., P-Grid and DKS,
correction on failure (CoF), e.g., P-Grid, and correction on change (CoC), e.g., Chord.

The practical usability of an overlay network critically depends on the efficiency of the
maintenance strategy. The goal is to maintain a “sufficient” level of consistency while mini-
mizing effort. Since a dynamically evolving overlay network on top of a dynamically changing
physical network is a complex dynamical system, the goal is to arrive at a stable dynamic
equilibrium for a variety of conditions while guaranteeing successful routing.
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3.2.7. Other Properties

There are a number of further properties which we can only briefly mention here due to space
limitations.

Constraints, such as those introduced in the previous sections, can be guaranteed at different
levels of strictness: If the constraints are valid all the time, they are invariants of the system;
if the constraints hold eventually, they may be satisfied after self-stabilization of the system
induced by changes to the systems state (e.g., [Dolev et al. 2007; Shaker and Reeves 2005]); if
the constraints hold probabilistically, they are satisfied with a specific probability either all the
time or eventually.

By taking into account the physical characteristics of peers, such as their network location,
their storage capacity, etc., additional properties can be specified which are in particular useful
to obtain insights and control over the performance characteristics of the overlay network, for
example, efficiency of routing and reliability of the network. An important example of such a
property is locality of routing. A possible formulation of such a property is a constraint on the
stretch introduced by the overlay network, i.e., that the physical distance of the path traversed
to reach a node does not exceed the distance of the shortest physical path by a given stretch
factor.

3.3. Reference Architecture

From an application-oriented perspective, any middleware technology—and we see P2P sys-
tems and specifically overlay networks as a form of middleware—should provide powerful
and easy to use abstractions that hide implementation details as much as possible from the
user/implementer while offering enough control and access options to actually meet applica-
tion requirements. Additionally, the abstractions should be defined in a way that the concrete
infrastructure implementing the middleware functionality can be replaced without requiring to
rewrite code.

Given these goals, we see P2P systems based on overlay networks as layered systems as
depicted in in Figure 3.2 (for a single node). From a user’s perspective a P2P system facilitates
to realize a specific application by sharing resources with other users and using services provided
by the P2P layer. One particularly important example of such a service is P2P data storage,
which allows to insert, search, and access data items. This service as well as the applications
take advantage of the basic resource location service provided by the P2P basic layer that
implements the overlay network.

This simple layered architecture supports separation of concern between the application
layer, the generic services of a P2P system and the basic overlay network of a P2P system. It
facilitates to replace a specific implementation of a P2P system, or selected services and layers,
that an application is using by alternative implementations. In order to support this form of
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P2P basic
P2P storage 

Application

Network (TCP/IP)

Figure 3.2. Layered architecture view

modularity it is important to provide a standardized specification of the interfaces among the
layers. In Figure 3.3 we provide a class diagram that provides the core of such an interface
specification. It is based on the conceptual model we have introduced in Section 3.2.

Overlay networks are based on the embedding of a graph into an Identifier Space which
provides a closeness metric. Each Peer is mapped into this space, i.e., it is assigned an Identifier
from the virtual identifier space, which defines its current position in this space and (indirectly)
the subset of identifiers the peer is responsible for as described in Sections 3.2.2 and 3.2.3.
Note that a peer’s position can change over time. How the partitioning of the identifier space
is done, i.e., how a node is assigned a coordinate and responsibility, is subject to the specific
overlay approach. A Peer is uniquely identified by an immutable name (immutableName)
and maintains a neighborhood (neighbors), i.e., references to other peers (PeerReference) for
forwarding. Each PeerReference includes the referenced peer’s immutable name, its position in
the identifier space, i.e., responsibility, and physical network address (IP address or symbolic
name). As this information changes over time, each peer has to apply a maintenance strategy as
discussed in Section 3.2.6 to have a consistent view (depending on the specific overlay network).
The number of neighbors a peer maintains and the strategy how neighbors are selected is defined
by the Constraints of the overlay network which depend on properties of the identifier-resource
and identifier-peer association strategies, the graph embedded in the identifier space, and its
constraints, etc.

As shown in in Figure 3.2, we distinguish two layers of functionality. The basic layer
(P2P Basic Interface) provides the low-level operations which the overlay needs to be able to
function. Its main functionalities, besides the mandatory join and optional leave operations,
are the lookup and route operations. The lookup function allows an application to find a
peer by its identifier to be able to directly communicate with it (point-to-point), for example,
for transferring data items. The route operation, which lookup typically builds on, allows
the user to send a message to any peer responsible for a given identifier. A message can
contain any data specified by the application, for example, the data to be stored by the peer
or a synchronization request among replicas. routeToReplicas propagates a given message to
the set of peers responsible for the same identifier. getLocalPeer returns the administrative
information about the local peer and getNeighbors provides the list of neighbors of a peer, i.e.,
its routing table information.
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Figure 3.3. Conceptual decomposition

The storage layer (P2P Storage Interface) builds on these functionalities and provides the
typical data management functionalities of inserting, updating, deleting, and querying data,
that made the P2P paradigm popular. The resources affected by the functions are specified via
the DataItem abstraction that includes the resource’s data and the application-specific key(s)
to be used by the storage layer to generate a corresponding identifier, i.e., map the data item
to its position in the identifier space. This can then be used by the basic layer to find the
responsible peer(s) and perform the requested operation. The DataItem set returned by search
includes both the application-specific keys and the identifiers of the found resources.

We would like to emphasize that Figure 3.3 provides a minimal model, i.e., it provides what
we identified as the minimal common denominator for different overlay network approaches.
All parts of the architecture can be (and in fact are) extended by concrete systems. For
example, each system will typically have more structured message types. For example, in
Gnutella, as one of the simplest systems, a join operation would mean the issuing of a Ping
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message which has a simple structure holding a descriptor ID (to prevent loops in the routing),
a payload descriptor, a time-to-live counter, a hop counter and a field defining the length of
the payload. Yet, extensions of our model are intuitive and simple: A concrete system can
basically “subclass” and “extend” any of the components in Figure 3.3.

3.4. Interoperability

Up to now we have introduced a conceptual model and abstract interfaces to capture the
specific properties of a given overlay network approach. In practice, multiple overlay networks
will co-exist simultaneously in a physical network, which raises issues of managing multiple
overlay networks and interoperability.

We consider an overlay network as a group of peers P that share the same specification
of their specific overlay network mechanisms. The sharing of this specification is a problem of
group management and can be done either explicitly or implicitly.

With an explicit management explicit group identifiers G (e.g., URIs) are used to identify an
overlay network and are bound to a specific type of overlay network by a mapping T : G → O,
which associates the identifier with a specification of an overlay network. We consider this as
providing the overlay network with a type (or schema in database parlance). Thus, every peer
joining a group g ∈ G obtains the associated type information and adheres to the specification.
The issue of non-complying peers is related to security and trust which we cannot elaborate
further here. As a consequence, joining an overlay network would only be possible if the joining
peer uses the same group identifier as the peers of the network.

With implicit management a group of peers is considered as participating in the same
overlay network if they use the same overlay network specification. Thus, there is no global
knowledge on the existence of a specific overlay network, but the network results from the
cooperation of peers using the same specification. Thus, when joining, a peer obtains/shares
the specification with the peer to which it joins.

Another interesting aspect of group management in an overlay network is the degree of
coupling. In tightly coupled overlay network the overlay graph is at any time connected. This
implies that such an overlay network has to be initiated by a single peer (that could, for exam-
ple, determine the identifier and specification of the network properties, when explicit group
management is used). Chord is an example of a tightly coupled overlay network. In loosely
coupled overlay networks different overlay graphs based on the same specification (e.g., using
implicit group management) can evolve, merge, or split. Gnutella and P-Grid are examples of
loosely coupled overlay networks.

The approach to implicitly manage groups of peers participating in the same overlay net-
work suggests a more general view of how groups of peers constructing overlay networks may
work together. In order to interact, it is in fact not necessary that the type of overlay network is
exactly the same, but it may be sufficient that the specifications are compatible. This approach
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can be observed for some practical overlays systems, such as Gnutella. Multiple versions of
overlay protocols can work together, and different peers may use different policies, e.g., with
respect to network connectivity.

For characterizing the possibilities of interoperability among peers participating in different
overlay networks O1 and O2, we can systematically compare the specifications of the networks.
We assume that at the level of protocols, O1 and O2 are compatible by following the API defined
in Section 3.3 and using compatible protocol messages. This is a purely syntactic agreement.
The classification of interoperability follows the concepts described in Section 3.2 and we can
distinguish the following levels of structural interoperability:

• Compatible Identifiers: The identifier spaces I1 and I2 are the same or can be related to
each other by applying a transformation. Then for identifiers in i ∈ I1 ∩ I2, peers from
both O1 and O2 can route messages to the resources identified by i. Routing would be
processed independently in O1 and O2. Thus, peers can play the role of gateways among
different overlay networks.

• Compatible Identifier Spaces: If additionally the distance functions (possibly after apply-
ing a transformation) are compatible, peers from O1 may use peers from O2 (and vice
versa) and their knowledge on neighbors to integrate them into their own routing tables.

• Compatible Structures: If additionally the structural constraints of two overlay networks
are in a subsumption relationship, i.e., one of the overlay networks is more constrained
but compatible with the more general overlay network, peers of the more constrained
network may participate as peers in the less constrained network by adopting the routing
and maintenance algorithms of the less constrained network.

An important open issue, when exploiting these forms of structural interoperability, are
the effects on the performance of the routing and maintenance mechanisms and the impact
on certain structural properties of the overlay networks, such as distributional properties.
These questions are closely related to the study of overlay networks built by peers with highly
heterogeneous resources, a topic which has been studied only to a very limited degree so far.

3.5. Validation of the Reference Architecture

In this section we will briefly describe key aspects of a representative set of overlay networks—
Chord [Stoica et al. 2001], DKS [Alima et al. 2003], P-Grid [Aberer et al. 2005b], Pastry [Row-
stron and Druschel 2001], Symphony [Manku et al. 2003], Freenet [Clarke et al. 2001], and
Gnutella – in terms of our architecture to demonstrate its validity. Additionally, we provide a
brief qualitative comparison of the systems.
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3.5.1. Identifier Space

The identifier spaces are very similar for all logarithmic-style overlay networks (P-Grid, Chord,
Pastry, Symphony, etc.). In these approaches identifiers are chosen from an alphabet with
radix b, e.g., b = 2 for P-Grid, Chord, and Symphony, b = 16 for Pastry. Some of them limit
the identifier length, e.g., Pastry uses 128-bit, Chord and DKS use 160-bit length identifiers,
whereas in P-Grid identifiers can be of arbitrary length. A similar distance function is shared
by all of these overlays, though there are some subtle differences. In P-Grid, Pastry, and
Symphony the distance d(u, v) of two identifiers u (of length k) and v (of length l) is

min

(∣∣∣∣∣
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−i −

l∑
i=1

vib
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)
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Note that in Pastry’s case k = l, and for these systems d(u, v) is symmetric as d(u, v) =
d(v, u). For example, in P-Grid,

d(“0000”, “10”) = d(“10”, “0000”) = 0.5.

The identifier space in Chord is not symmetric, i.e., d(u, v) 
= d(v, u). d(u, v) can be defined
as ((

k∑
i=1

vi2−i −
k∑

i=1

ui2−i

)
+ 1

)
mod 1.

Thus,

d(“001”, “111”) = 0.75,

but

d(“111”, “001”) = 0.25.

In Freenet the situation is slightly different. Due to the way Freenet identifies nodes, it uses
an r-dimensional 160-bit identifier space. r depends on the data items a peer stores, but usually
r = 50. d(u, v) between two Freenet peers is the Euclidean distance in this multidimensional
space.

3.5.2. Mapping to the Identifier Space

Mapping of peers: The key difference among the overlays with respect to this mapping is
whether the virtual identifier is assigned to a peer randomly or the peer adopts the identifier
depending on environment conditions, e.g., depending on the data a peer and its neighboring
peers store. In Chord, Pastry, and Symphony the virtual identifier is generated using some
random function and assigned to a peer upon joining the overlay and remains stable. In DKS
identifiers can be mapped order-preservingly based on their domain name, e.g., lexicographic
ordering, to ensure that nodes in the same organizational domain are logically close in the
identifier space.
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Most of the logarithmic-style overlay approaches like Chord, Pastry, Symphony, or P-Grid
have a one-dimensional identifier space. In Chord, and Pastry identifiers are assigned by hashing
the node’s IP address using SHA-1. In contrast, in P-Grid each peer initially is responsible for
the whole identifier space and has an empty identifier which grows bit by bit in the lifetime of
the peer depending on which other peers it encounters and what type of data they and the peer
itself store. Similarly in Freenet, each node assigns itself an identifier vector of size r, consisting
of r 160-bit elements representing the r identifiers of data items the peer stores. Additionally,
the identifier of a Freenet peer changes during its lifetime depending on the queries it handles.
Thus, the identifiers in P-Grid and Freenet dynamically change, whereas in Chord, Pastry, and
Symphony they are static.

Mapping of resources: Mapping of resources (data items) is done similarly to mapping
peers. Usually it is done by hashing a data key, e.g., the filename, with SHA-1 (Chord,
Pastry, Freenet). While this implicitly distributes the assigned identifiers uniformly in the
identifier space and thus provides a simple load-balancing mechanism, it destroys the semantics
of keys, e.g., their application-specific clustering, which can be exploited to provide efficient
data access. To prevent this, P-Grid, for example, uses a prefix-preserving hash function, i.e.,
u < v ⇒ h(u) < h(v). This has advantages in query processing but requires an additional
and more complex load-balancing strategy. It is crucial that this mapping of resources is
deterministic, static, and globally known.

3.5.3. Management of Identifier Space

In P-Grid each peer is responsible for resource identifiers that share the largest common prefix
with the peer’s identifier, i.e., a resource identifier is managed by the peer with the closest
identifier in terms of P-Grid’s distance function. For example, peer “0011” is responsible for
resource identifier “001110101”, if no peer with a longer common prefix exists. The situation in
Freenet is very similar: Each peer is responsible for the resource identifiers which are numeri-
cally closest to one of the peer’s elements in its vector identifier. Also in Pastry, and Symphony
a similar condition applies. Data items are managed by the peer with the closest identifier. For
example, identifier “2A83” will be managed by peer “2A84” if no peers “2A82” and “2A83”
exist. As Chord’s and DKS’s identifier spaces are asymmetric, the situation is slightly differ-
ent. A peer is responsible for all identifiers in the interval between its own identifier and the
identifier of its predecessor on the ring. In all these approaches the responsibility of a peer may
dynamically change due to arrivals or departures of peers in the overlay.

3.5.4. Graph Embedding

It has already been shown that peers cooperating in Freenet evolve the graph into a Small-
World graph. For logarithmic-style overlay approaches, [Girdzijauskas et al. 2005] shows that
these approaches form graphs according to Kleinberg’s Small-World principles [Kleinberg 2000].
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It is proven that such graphs belong to the special class of “routing efficient” Small-World net-
works where decentralized, greedy search algorithms provide the best performance. Therefore,
conceptually all of these approaches build similar Small-World graphs with certain constraints
for each case. E.g., Symphony by its nature of construction forms a Small-World graph. In
the other logarithmic-style overlay cases each peer u views the identifier space as partitioned in
log (N) partitions where each partition is b times bigger than the previous one (b is the radix
of the identifier alphabet). The routing table of u in such systems contains logb (N) links to
some nodes from each partition. In Chord’s case the chosen node will be the one with the
smallest identifier of the given partition, while Pastry and P-Grid use any random node in the
partition, which is a more relaxed constraint.

3.6. Conclusions

Based on a stringent analysis of current overlay networks, we discussed and formally described
the key design aspects in the domain of overlay networks. We used our assessments to define
a reference architecture for overlay networks specifically addressing API and interoperability
aspects. This is the first reference architecture for overlay networks which includes a formal
codification and definition of all design aspects. To validate the correctness and general appli-
cability of our approach we applied it to model a representative set of overlay networks.

The reference architecture presented in this chapter, establishes a standardized vocabulary
and facilitates the assessment of properties of overlays for qualitative comparison and can
serve as the basis for the definition of a standardized API. In the next part of the thesis we will
present three peer-to-peer systems, which were developed based on the vocabulary established
in this chapter.
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Chapter 4

On Small World Graphs in

Non-uniformly Distributed Key

Spaces

The greatest challenge to any
thinker is stating the problem in a
way that will allow a solution.

Bertrand Russell

4.1. Overview

Since the appearance of the first generation of structured P2P systems like Chord [Stoica
et al. 2001] and P-Grid [Aberer et al. 2005b] the number of proposed solutions for structured
P2P overlay networks has been growing rapidly, and it became somewhat difficult to quali-
tatively and quantitatively compare them. Still, it was not hard to notice that many of the
proposed solutions share similar properties and were structured in a comparable way. Among
the wide range of proposed structured P2P overlay networks a majority can be characterized
as logarithmic-style P2P overlay networks which, although being different in their mainte-
nance algorithms, share the same structural properties and search algorithm characteristics.
E.g. the expected search cost in P2P systems such as balanced P-Grid [Aberer et al. 2005b],
Chord [Stoica et al. 2001], Pastry [Rowstron and Druschel 2001], Tapestry [Zhao et al. 2004] or
Kademlia [Maymounkov and Mazières 2002] is O(log N) and the peers in each of them maintain
on average O(log N) entries in their routing tables, where N is the size of the network.

In this chapter we provide one way to better understand the common characteristics of these
systems by relating them to the seminal work on Small-World graph construction introduced
by Kleinberg [Kleinberg 2000]. This applies in particular for randomized overlay network
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structures [Gummadi et al. 2003] and randomized variants of deterministic structures such as
randomized Chord [Manku 2003; Zhang et al. 2003]. The first contribution of this chapter is
to clarify the relationship among logarithmic structured overlays and Kleinberg’s model. We
introduce a modified version of Kleinberg’s model where the out-degree of the overlay graph
is logarithmic instead of constant. This not only provides a better insight into the nature of
existing logarithmic-style overlay networks, but also a foundation to develop less constrained
overlay network structures and to trade-off between search and maintenance cost by choosing
the routing table sizes flexibly by varying from constant to logarithmic size.

Furthermore, within the same framework we address a problem that is receiving recently
increasing interest in many data-oriented P2P applications. In this type of applications it is
important to preserve semantic relationships among resource keys, such as ordering or prox-
imity, to allow semantic data processing, such as complex queries or information retrieval.
This implies that the construction of (efficient) overlay networks has to support the case of
non-uniformly distributed resource keys while exhibiting good load-balancing properties. Ex-
amples of overlay networks that have been proposed to address non-uniform key distributions
are CAN [Ratnasamy et al. 2001], P-Grid [Aberer et al. 2005b] and Mercury [Bharambe et al.
2004]. CAN and P-Grid can partition the key-space upto any granularity, such that each parti-
tion has a balanced number of keys assigned to them. In doing so each of the CAN and P-Grid
overlay networks sacrifice some desirable properties. Search efficiency in terms of the number of
overlay hops can’t be guaranteed in CAN for arbitrary partitioning of the key-space (zones). In
contrast, P-Grid’s randomization helps retaining routing efficiency [Aberer et al. 2005a], how-
ever, peers require more than logarithmic routing states. Mercury [Bharambe et al. 2004] uses
heuristics to deal with the presence of skewed key-spaces and utilizes Small-World connectivity.
We provide a formalized theoretical framework that covers the whole class of “routing efficient”
Small-World networks for skewed key-spaces, including Mercury’s heuristics. We prove that in
such an overlay network both routing latency and the number of routing states per peer stay
O(log N) independent of the skew of the key-space partition.

By proposing the extension to Kleinberg’s model we are providing a foundation for a novel
type of structured overlay networks that supports load balancing for unbalanced key and work-
load distributions, tradeoffs routing table size with search cost, and is expected to be robust
due to use of randomization. We will show later in Chapter 5 how such model can be realized
in practice by presenting Oscar overlay building principles.

4.2. Background

As it was mentioned in the Introduction, the investigation of Small-World phenomenon in
social networks started in the sixties [Milgram 1967]. Since then there were numerous works
and proposals to explain and model Small-World graphs. One approach for building Small-
World graphs was presented by Watts and Strogatz [Watts and Strogatz 1998]. The idea was to
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randomly rewire a regular graph. Starting from a regular graph with constant out-degree, with
probability parameter p ∈ [0..1] at each node an edge is re-linked to another randomly chosen
node. With the parameter p = 1, one obtains a completely random graph and with p = 0,
the graph remains regular. When the probability p is between 0 and 1, one obtains a wide
range of Small-World graphs, that have properties of both regular and random graphs: high
clustering coefficient and low diameter. Kleinberg proved [Kleinberg 2000] that among that
wide range of Small-World graphs, there exists only one class of Small-World graphs in which
decentralized (greedy) routing is most efficient. Kleinberg proposed different algorithms for
constructing Small-World graphs. The idea is to rewire the links to other nodes not uniformly
at random, but depending on the distance to the other node.

In Kleinberg’s model nodes populate a regular k-dimensional lattice and each node has a
neighboring link to the neighboring nodes that are a unit distance away from the given node.
Each node also has a constant number of long-range links that are chosen among the whole set
of nodes. Node u chooses to have a long-range link to v with probability inversely proportional
to d(u, v)r , where d(u, v) is the distance between these nodes and r is a structural parameter.
It was proven that to construct “routing-efficient” Small-World graph (where greedy distance
minimizing routing will perform best) is possible iff the structural parameter r is equal to the
space dimension.

Several other works employ various Small-World properties for building P2P systems, e.g.,
Symphony [Manku et al. 2003], Mercury [Bharambe et al. 2004] or SWAM [Banaei-Kashani
and Shahabi 2004] to name a few. There are other works in the area trying to extend Kleinberg’s
model and to use his ideas to improve the performance of P2P networks, like [Franceschetti
and Meester 2006; Zhang et al. 2002].

4.2.1. Notations and Definitions

In the following we will introduce a variation of Kleinberg’s model which shows that the proper-
ties of standard logarithmic cost overlay networks, i.e., logarithmic cost of routing (in terms of
overlay hops) with logarithmic size routing tables, can be achieved under much weaker assump-
tions than usually made. Since many existing DHT proposals are based on one-dimensional key
spaces (e.g., Chord, P-Grid, Pastry), we will give the result for this case, and more precisely
for the case of an interval topology. Analogous result can be given for other topologies, in par-
ticular the ring topology. Unlike as in Kleinberg’s proof, we relax our assumptions such that
we do not need peers to be connected in a grid, but only that they are randomly distributed
in the space according to some probability density function f .

Before introducing the model we will recall some notations and definitions used in this
chapter:

- G: the graph representing P2P overlay network

- N : number of nodes (peers) in the P2P system (the graph G)
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- I: identifier (key) space where nodes (peers) are populated

- FP(p): identifier (key) of node p

- f : the probability density function setting the manner of how identifiers of the nodes
(peers) are distributed in I

4.3. Extended Kleinberg’s Small-World model for Uniform Key

Distribution and Logarithmic Out-degree

First we extend Kleinberg’s Small-World model for Uniform Key Distribution, i.e., f = const.
We model a P2P overlay network as a directed graph G = (P,E) with N nodes. Each peer
of a P2P overlay network corresponds to a node in the graph and the routing table entries of
this peer correspond to the outgoing edges from that node1. The nodes are embedded into the
key-space I by uniformly randomly distributing them on the unit interval [0; 1) such that each
node u obtains an unique identifier FP (u) ∈ [0; 1). The distance among two nodes u and v is
given as

d(u, v) = |FP (v) − FP(u)|. (4.1)

The edges E of the graph G can be classified into neighboring edges NE and long-range
edges LE. Each node u has two neighboring edges: one to the left neighbor and one to the
right neighbor. This condition makes G always connected. Different to Kleinberg’s model we
assume that a node has log2 N long-range edges (instead of a constant number of long-range
edges). Node u can have long-range edge to any node v ∈ LEu for which |FP (v)−FP (u)| ≥ 1

N

and v is chosen such that

P [v ∈ LEu] ∝ 1
d(u, v)

.

With the condition |FP(v) − FP (u)| ≥ 1
N we restrict the choice of long-range edges to

nodes that are not too close. Routing in such an overlay network is based on greedy distance
minimizing routing. In each step a node u forwards a search request for a target key t to the
node with the minimal distance to the target node t among all nodes reachable through an
edge from u. We prove that under this model, the expected search cost in number of overlay
hops is O(log2 N) as in all logarithmic cost P2P overlay networks. The proof is structurally
the same as for Kleinberg’s model, however, the bounds have to be derived differently due to
the changed model.

Theorem 4.1. The expected routing cost in the graph built according to “Model for uniform
key distribution” using greedy distance minimizing routing is O(log2N).

1 We use the terms “peer” and “node” interchangeably.
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Proof. The probability that a node u chooses a node v as a long range contact is
1

d(u,v)∑
v∈LEu

1
d(u,v)

. First we have to calculate the upper bound of
∑

v∈LEu

1
d(u,v) for any node u.

The sum can acquire its highest value when it is calculated for a node u which is at the center
of the key-space. Thus, if we measure the sum for FP(u) = 1

2 , it gives an upper-bound. The
distance from u to the closest node will be at least du ≥ 1

N . We can calculate expected mean of
inverse distance values from the node u to all the other nodes given probability density function
f(x) as 2

∫ 1
2

dh

1
xf(x)dx. Because nodes are distributed uniformly f(x) = 1 and

∑
v∈LEu

1
d(u,v) is

upper-bounded by:

N2
∫ 1

2

1
N

1
x

dx = 2N ln x|
1
2
1
N

< 2N ln N. (4.2)

Hence, the probability that node u will choose v as one of its long-range links is at least

1
d(u, v)2N ln N

. (4.3)

Let us view the key-space as log2 N partitions A1, A2, .., Alog2 N , where each partition Aj

is populated by the nodes whose distance from the target node t is [2− log2 N+j−1; 2− log2 N+j).
During greedy routing after a node forwards the search request to node s we say that the
message is at partition Aj if the distance between the current message holder s and the target
t is within the range 2− log2 N+j−1 ≤ d(s, t) < 2− log2 N+j. We calculate the probability Pnext

that the current message holder has at least one long-range link to some node v in some
partition Al where l < j, i.e., the current message holder can forward the message closer
to the target at least by one partition. There are at least 2N2− log2 N+j−1 such nodes. The
distance from the current message holder to the most distant node in the partition Al is at most
2− log2 N+j−1 +2− log2 N+j = 3∗2− log2 N+j−1. Using (4.3) we can determine that the probability
that node u will choose some v in Al as one of its long-range links is at least

2N2− log2 N+j−1

3 ∗ 2− log2 N+j−1 · 2N ln N
=

1
3 ln N

. (4.4)

Since each node has log2 N long-range links, Pnext is on expectation at least

Pnext ≥ 1 −
(
1 − 1

3 ln N

)log2 N
> 1 − e−

1
3 ln 2 = c. (4.5)

Thus, when each node has log2 N long-range links the lower bound of the probability that
the message will be forwarded closer to the target partition does not depend on N and is a
constant that we denote by c. The probability that the message will stay in the same partition
when node u forwards it to the next node is at most Psame ≤ 1 − c.

Let us denote by Xj the total number of hops and EXj as the expected total number of
hops that greedy distance minimizing routing will make within the partition Aj before jumping
into some partition Al that is closer to the target t, i.e., l < j. If NAj is the number of nodes
in Aj then we have
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EXj =

NAj∑
i=0

iPr[Xj = i] <
∞∑
i=0

i(Psame)iPnext

=
∞∑
i=0

i(1 − c)ic =
1 − c

c
. (4.6)

There exist log2 N partitions of the key-space and the expected number hops in each of
them is less than 1−c

c , so the expected total number of hops that the algorithm will need,
including the long-range hops is at most (1−c

c + 1) log2 N . The expected number of nodes that
algorithm will have to visit using neighboring edges from the partition A1 to the target node
t is N

∫ 1
N

0 f(x)dx = 1. Therefore, the total expected number of hops is 1
c log2 N + 1, i.e.,

O(log2 N).
q.e.d.
Note that a tighter bound can be derived by determining the expected number of long-range

hops, and thus our derivation is gives a pessimistic upper-bound, which nonetheless suffice to
prove that the expected cost is O(log2 N).

4.3.1. Similarities with Logarithmic-Style Peer-2-Peer Overlays

Notice the fact that EXj is a small constant. This means that each logarithmic partition of
the key-space is reached in a constant number of hops. This result can be explained by the
fact, that such a Small-World graph possesses nice “probabilistic partitioning” properties which
are also widely exploited in traditional logarithmic-style P2P overlays. Indeed, in traditional
logarithmic-style P2P overlays each peer u views the identifier space partitioned in log2 N

logarithmic partitions of identifier space where each partition is twice bigger than the previous
one (or k times bigger if we consider base k logarithmic partitioning, e.g., in Pastry k = 16).
The routing table of u in such systems contains log2 N links to some node from every partition.
E.g., in Chord [Stoica et al. 2001] the chosen node will be with the smallest identifier of the
given partition, in Pastry [Rowstron and Druschel 2001] and P-Grid [Aberer et al. 2005b] - any
random node of the partition. While routing, the message in every next hop is being routed to
a node which belongs to a partition, that is at least twice (k times) smaller than the previous
partition where the previous message holder (node) used to be. Therefore, we can imagine such
a P2P network as a space where the message approaches the target with steps of exponentially
decreasing in size.

Overlays based on a graph built according to the above mentioned variation of Klein-
berg’s model, will have a very similar topology and routing properties as logarithmic-style P2P
overlays. Indeed we can partition the identifier space of any node u into log2 N partitions
A1, A2.., Alog2 N , where Aj consists of all nodes whose distance from u is between 2− log2 N+j−1

and 2− log2 N+j (every next partition is twice bigger as the previous one). It is interesting
to observe, that in this case node u has almost equal probabilities to choose the long-range
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neighbor from each of these partitions. Therefore, when each node chooses log2 N long-range
neighbors in the same way, they will be uniformly distributed among the partitions, whereas in
logarithmic-style P2P overlays log2 N neighbors would be chosen strictly from each partition.
We can consider logarithmic-style P2P overlay topologies as one “special case” of Small-World
topology with stronger restrictions. This provides insight into how our modification of Klein-
berg’s model relaxes existing logarithmic cost overlay networks where routing entries have to
point to each logarithmic partition of the key-space. Hence the possibility to generalize and
model the behavior of logarithmic-style P2P topologies from a Small-World model point of
view.

The feature of “Kleinbergian” graphs to model logarithmic P2P topologies suggests a more
flexible manner of maintaining the networks. One of the possibilities would be to maintain
a variable number of entries in routing tables for a tradeoff of logarithmic to polylogarithmic
search cost, an observation that was also made in Symphony [Manku et al. 2003]. It also
implies that the networks built according to “Kleinbergian” style would be more robust and
resistant to network churn. Even in the case of connectivity loss, the routing cost will be at
worst poly-logarithmic given we have at least one long-range link and the neighboring links
intact.

4.4. Extended Small-World Model for Skewed Key Distribu-

tion

The main purpose of P2P overlay networks is to distribute resources among peers, such that
resources can be be efficiently located and the workload is distributed as uniformly as possible
among peers. In most standard P2P overlay networks uniform workload distribution is achieved
by applying randomized hashing functions, such as SHA-1, to resource identifiers such that
the hashed identifiers are uniformly distributed in the key-space. Then by also uniformly
distributing peers in the key-space an approximately uniform load distribution is achieved.
However, in many data-oriented P2P applications it is important to preserve relationships
among resource keys, such as ordering or proximity, to allow semantic data processing, such as
complex queries or information retrieval. Thus, uniform key distribution cannot be assumed,
and in order to achieve uniform workload peers will be distributed non-uniformly in the key-
space. In addition, different resources might be associated with different workload patterns,
e.g., query frequency, which require further adaptations in the distribution of the peers over
the key-space.

In the following we show that the construction we introduced in the previous Section 4.3
can be extended to peers, distributed non-uniformly in the key-space, without loosing routing
efficiency in terms of either the expected routing latency or the number of routing states per
peer. This provides the theoretical foundation for developing a novel class of P2P overlay
networks that are able to deal with non-uniform load distributions.
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4.4.1. Model for Skewed Key Distribution

We assume that there exists a mechanism that assigns peers according to a non-uniform distri-
bution in the key-space adapting to the load-distribution (e.g., storage), such that the balanced
number of data objects are assigned to each peer, irrespectively of their distribution in the key-
space. Several examples of such mechanisms have been recently discussed in the literature
[Aberer et al. 2005a; Ganesan et al. 2004; Wang et al. 2004b]. Thus, each peer acquires its
identifier according to a non-uniform probability density function f . In order to account for
the non-uniform peer distribution peers have to choose their long-range neighbors in graph
G according to the following criterion: a peer u chooses peer v as long-range neighbor with a
probability that is inversely proportional to the integral of probability density function between
these two nodes, i.e.,

P [v ∈ LEu] ∝ 1

|
∫ FP (v)
FP (u) f(x)dx|

. (4.7)

As in the previous model we restrict the choice of long-range neighbors to the peers that are not
too close, therefore, v ∈ LEu for which |

∫ FP (v)
FP (u) f(x)dx| ≥ 1

N . Using these criterions we claim
that routing in the resulting overlay network is as efficient as in the case of uniform (balanced)
key distribution.

Theorem 4.2. The expected routing cost in the graph built according to the “Model for skewed
key distribution” using greedy distance minimizing routing is O(log2N).
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Proof. We have to show that by using the modified selection criterion for long-range
links we are constructing a routing-efficient graph G. The schema of the proof is depicted in
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Figure 4.1. The idea underlying our model is to normalize the space I in such a way that
the normalized space I ′ will have a uniform probability density function f ′. Any node u with
identifier FP (u) in the space I will have a corresponding identifier F ′

P(u) in the space I ′. The
value of identifier F ′

P(u) is chosen as F ′
P (u) =

∫ FP (u)
0 f(x)dx, such that

∫ FP(u)

0
f(x)dx =

∫ F ′
P (u)

0
f ′(x)dx

and peer identifiers are uniformly distributed in I ′. The distance between two nodes u and v

in the space I ′ can be represented as

d′(F ′
P (u), F ′

P (v)) = |
∫ FP(v)

FP (u)
f(x)dx|. (4.8)

As described in the previous section we already know how to construct a “routing-efficient”
graph, i.e., choosing long-range links proportional to 1

d′(F ′
P (u),F ′

P (v)) . As we have already proven,
the resulting graph G′ will be “routing-efficient”, i.e., the expected search cost using greedy
distance minimizing routing will be O(log2 N).

As shown in Figure 4.2 using the original criterion for selecting long-range links for uni-
form key distribution in space I ′, i.e., inverse proportional to d′(F ′

P (u), F ′
P (v)), is equivalent

to choosing long-range links directly in space I using the modified criterion, i.e., inverse pro-
portional to

∫ FP (v)
FP (u) f(x)dx. The resulting graph G in the original space I will have the same

connectivity as the graph G′ constructed in space I ′, although the peers have different iden-
tifiers. The search efficiency depends only on the connectivity of the graph, therefore, the
resulting graph G will have the same search efficiency as graph G′, i.e., O(log2 N). q.e.d.
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4.4.2. Building Efficient Structured Overlay for Non-uniformly Distributed

Key Spaces

The adaptation of our model in practice is straight-forward in the case where each peer in the
P2P network knows the global key distribution, i.e., the probability density function f . In such
a case the following network construction model can be applied.

While joining the network, some peer u generates a value according to probability density
function f and assigns it as its identifier. The peer u contacts any known peer and issues a
query with that identifier. When u gets an answer from some peer v (in this case v has the
closest identifier to u), u announces to v that it will become its immediate neighbor. Both u

and v correct in their routing tables of the immediate neighboring links.
Since the peer u knows the function f it can calculate the pdf hu that satisfies (5.1). The

peer u draws log2 N random values according to hu and queries for these values. The peers
that respond are added to u’s routing table as long-range neighbors. In such a way the peer u

completely joins the network.
The task however, is more complicated for a more realistic situation, where peers do not

have information of the distribution f and have to acquire it locally, by interacting with other
peers. Moreover, the distribution f may vary over time, further complicating the design of
a practical system. In such a case, at each peer an iterative process of revising its routing
table according to the current knowledge on f has to be employed. The above mentioned steps
have to be repeated whenever a peer obtains more precise information about f . Such iterative
process can be performed indefinitely if the function f changes over time in the system. In this
way the topology would be always self-adjusted to the current conditions of the system.

In the next chapter we will investigate in more detail what efforts are needed and what
operations have to be performed at every peer to be able to predict locally a good enough
approximation of the probability density function f for the construction of “routing-efficient”
P2P networks.

4.5. Conclusions

The work of Kleinberg on Small-World graphs caused a stir in P2P community. It boosted the
research towards investigating randomized topologies [Manku 2003; Manku et al. 2004] and
even resulted in new proposals such as Symphony [Manku et al. 2003] and Mercury [Bharambe
et al. 2004]. We used Kleinberg’s model to provide a perspective on existing standard P2P
overlay networks and to explain their nature. In this chapter we introduced two variants
of Kleinberg’s model which allow to model a large class of P2P overlay networks. The first
model for uniform key distribution and logarithmic out-degree allows us to better understand
the behavior of logarithmic-style P2P overlay networks. The flexibility of Kleinberg’s model
demonstrates the possibility of making flexible logarithmic P2P topologies by allowing them to
change routing table size from constant to logarithmic. With our second model we showed that
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with Kleinberg’s principle of building “routing-efficient” networks we can build P2P topologies
for skewed key distributions. With such model we are setting a reference base for P2P systems
that need to support uneven key distributions. In the following chapter we will show how the
ideas behind this model can be implemented in practice.
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Chapter 5

Oscar: Structured Overlay For

Heterogeneous Environments

I was working on the proof of one of my
poems all the morning, and took out a
comma. In the afternoon I put it back again.

Oscar Wilde

5.1. Overview

The first generation of structured overlays realized distributed hash tables (DHTs) which are
ill-suited for anything but exact queries. The need to support range queries necessitates sys-
tems which can handle uneven load distributions. However, such systems suffer from practical
problems - including poor latency, disproportionate bandwidth usage at participating peers
or unrealistic assumptions on peers’ homogeneity, in terms of available storage or bandwidth
resources.

Based on the theoretical work presented in the previous chapter, we consider a system
which is capable not only of supporting uneven load distributions, but also of operating in
heterogeneous environments, where each peer can autonomously decide how much of its re-
sources to contribute to the system. We provide the theoretical foundations of realizing such
a network and present the Oscar system based on these principles. We show that Oscar can
construct efficient overlays given arbitrary load distributions by employing a novel scalable
network sampling technique. The simulations of our system validate the theory and evaluate
Oscar’s performance under typical challenges encountered in real-life large-scale networked sys-
tems, including participant heterogeneity, faults and skewed and dynamic load-distributions.
Thus, the Oscar system presented in this chapter fills in an important gap in the family of
structured overlays, bringing into life a practical internet-scale index, which can play a crucial
role in enabling data-oriented applications distributed over wide-area networks.

53
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This chapter is organized as follows. Section 5.2 motivates the need of structured overlays
capable of supporting non-uniform key distributions and discusses the drawbacks of the existing
solutions. In Section 5.3 we recapitulate the main ideas presented in the previous chapter,
namely the problem of dealing with skewed key spaces. We present the concept and the
algorithms of our proposed system in Section 5.4. In Section 5.5 we give the theoretical analysis
of Oscar and in Section 5.6 we validate the analysis and evaluate the performance of our
proposed approach in the simulation environment. We conclude the chapter in Section 5.7.

5.2. Motivation

DHTs like Chord or Pastry, and later works (e.g. [Hui et al. October, 2006; Manku et al.
2003]) which followed the same paradigm, provide only limited support for data-oriented ap-
plications. Essentially these approaches rely on uniform hashing of resource identifiers to
achieve load-balancing properties for efficient operations. Thus, these systems support only
exact match queries. This spurred research on a next generation of order-preserving overlay
networks. Preserving ordering relationships among keys is essential for data-oriented queries
like range, similarity and sky-line queries. With data distributions as they occur in practice,
these systems face load-balancing problems with respect to the amount of resources individual
peers have to manage. This led to a number of research efforts addressing this problem in
various ways. Systems like CAN [Ratnasamy et al. 2001], Mercury [Bharambe et al. 2004],
P-Grid [Aberer et al. 2005b], skip graphs [Aspnes and Shah 2003; Harvey et al. March 2003]
and derivatives [Aspnes et al. 2004; Ganesan et al. 2004; Guerraoui et al. 2006] looked into
some sub-problems, like addressing load-balance under non-uniform key distributions. How-
ever, these approaches usually take advantage of uniformity assumptions on peers’ capacity
in terms of bandwidth consumption and storage capacity, which limits their practicality for
realistic peer-to-peer environments. Also most of the approaches suffer from shortcomings with
respect to essential properties of operation, e.g., the search efficiency in terms of the number
of overlay hops cannot be guaranteed in CAN for an arbitrary partitioning of the key-space
(zones). Storage-load balanced P-Grid may have highly imbalanced peer degrees. Skip graphs
need to have O(log N) level rings at each peer where level ring neighbors are determined by a
peer’s membership vector and the existing skew in the system. Such a design omits a possibil-
ity to choose routing table entries in a randomized manner. Therefore, Skip graphs lack the
flexibility which is provided by the truly randomized approaches (e.g., based on Small-World
construction principles like Mercury) and cannot address some of the heterogeneity issues, e.g.,
different constraints on storage and bandwidth at each peer. To account for the heterogeneity
in the system and to balance the storage load among the peers the virtual peer concept can
be employed in the overlay network (e.g., [Dabek et al. 2001; Stoica et al. 2001]). However,
virtual peers do not completely solve the problem, since the routing table size of any physical
peer might explode and start growing linearly with the number of virtual peers, regardless the
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bandwidth capacity of that physical peer.

Small-world construction principles [Kleinberg 2000] do not restrain a peer from deter-
mining the size of the key-space based on both storage and bandwidth constraints, or having
limited amount of routing links. The in and out-degrees of a peer can vary depending on
peers’ local decision, still providing guarantees of efficient search globally. Because the links
are chosen randomly the in-degree of a peer can also be easily adjusted, where individual peers
refuse further connections based on a local decision. Such features of Small-World approaches
enable accommodating and exploiting peer heterogeneity - storage as well as bandwidth. Peers
are free to choose the maximum amount of outgoing and incoming links locally, depending on
their bandwidth budget to maintain the links as well as to cater to the query traffic, based on
their locally perceived bandwidth or other constraints. Similarly, peers are free to choose the
key-space to be responsible for. This may be based on their storage capacity and bandwidth
constraint to answer the corresponding queries.

As discussed in the introduction of the thesis, from a more general perspective most struc-
tured overlay networks can be seen as special cases of a small world graph [Kleinberg 2000]
embedded into the key space used for resource identification. In such networks searches are usu-
ally performed by greedy routing, however, other navigation techniques can be implemented,
like routing with “lookahead” [Manku et al. 2004] or “cautious greedy-routing” [Barbella et al.
2007]. In the previous chapter it has been shown that a network embedding into the key space
can be always performed in a way that peers adapt to skews in the key distribution by propor-
tionally partitioning the key space, while retaining the small world graph structure and thus
efficient routing. Mercury [Bharambe et al. 2004] based its approach on the same observation
and proposed a structured overlay network which load-balances among peers and attempts to
construct a Small-World graph based overlay. For properly choosing long-range links Mercury
needs to know about the key distribution, for which a simple sampling procedure is employed.
However, the sampling technique that Mercury uses to determine the candidates for long-range
links does not scale given complex distributions which actually occur in practice. Mercury can
deal with simple monotonous skewed distributions but the sampling technique is inadequate
for real-world distributions which are typically highly complex (cf. Section 5.3). In our initial
work on the Oscar system [Girdzijauskas et al. 2006] we have shown that in certain cases which
occur frequently in reality, Mercury nodes suffer large imbalance in in-degree, which results
in poor search performance and unnecessary congestion. If the originally occurring in-degree
imbalance is prevented by local restrictions at peers, naturally there is a further deterioration
of performance. Differently said, the lower the in-degree imbalance without imposing local re-
strictions, the lesser the performance deterioration when in-degree restrictions are additionally
imposed. In general, the problem with most of the current state-of-the-art approaches dealing
with non-uniform key distributions is the resulting node degree imbalance.

The aforementioned problem with Mercury arises because it uses an approximation of the
global key distribution from a limited set of uniform samples for constructing the network.



56 5. Oscar: Structured Overlay For Heterogeneous Environments

Since it is not possible to correctly approximate a distribution with a limited number of sam-
ples if it is highly complex, the resulting P2P networks will have poor performance. Therefore,
in this chapter we suggest the algorithms for constructing a routing efficient overlay network
based on scalable sampling strategy. We call the resulting system Oscar, which stands for
overlay network built using scalable sampling of realistic distributions. To our knowledge this
is the first scalable sampling approach that has been proposed for construction and mainte-
nance of structured overlay networks for non-uniform key distributions while coping with and
exploiting peer heterogeneity. The Oscar overlay enjoys all the benefits of systems like P-Grid
or Mercury which support complex non-uniform key distributions and hence non-exact queries
(e.g., range or similarity queries) but does not suffer from node in-degree imbalance, while ex-
hibiting comparable lookup performance. We provide a full analysis for the Oscar algorithms
with theoretical guarantees for the performance of the resulting networks. The theoretical re-
sults are validated with simulations with realistic skewed workloads, heterogeneous peers and
network dynamics (churn). Furthermore, we show that the Oscar overlay is capable of deal-
ing with both the heterogeneity observed in the internet, particularly bandwidth and storage
resource heterogeneity at peers, as well as non-uniformity observed in data-oriented applica-
tions, particularly skewed key distributions as well as skewed access loads. Such skews lead to
disproportionate usage of storage and bandwidth at certain peers. Here we explicitly address
the issue of realistic skewed key distributions to build the Oscar overlay network potentially
comprising heterogeneous peers.

5.3. Preliminaries

Before going into the details of our work, we briefly recapitulate the basic concepts and nota-
tions introduced in Chapter 3.

Basic concepts for structured P2P. A structured overlay network consists of set of
peers P (N = |P|) and set of resources R. There exists an identifier space I (usually on the
unit interval I ∈ [0..1), e.g., Chord [Stoica et al. 2001], Symphony [Manku et al. 2003]) and
two mapping functions FP : P → I and FR : R → I (e.g., SHA-1). Thus, each peer p ∈ P and
each resource r ∈ R is associated with some identifiers FP(p) ∈ I and FR(r) ∈ I, respectively.
There exists a distance function dI(u, v) which indicates the distance between a peer u and a
peer v in I. Each peer p has some short-range links ρs(p) ⊂ P and long-range links ρl(p) ⊂ P
which form a peer’s routing table ρ(p) = ρs(p)∪ρl(p). There exists a global probability density
function f characterizing how peer identifiers are distributed in I. Any resource r ∈ R in the
P2P system can be located by issuing a query for FR(r). In structured P2P systems queries
are usually routed in a greedy fashion, i.e., always choosing the link ρ ∈ ρ(p) which minimizes
the distance to the target’s identifier.

Complex Distributions. Using an uniform hash function FR (e.g., SHA-1) in data-
oriented P2P applications is not adequate. It is necessary to deal with order preserving hash
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Figure 5.1. Probability density functions: Monotonous Zipf (solid) vs Gnutella filename(dotted)

functions, which in turn produce highly skewed key distributions.

Let us assume a data-oriented P2P system where the resources are identified and looked-up
by filenames. A widely used technique in P2P systems is the following: each peer p and each
resource r have identifiers FP(p) and FR(r) on a 1-dimensional ring I ∈ [0..1). Each peer is
responsible for all the resources which map to the identifier range D(p) ∈

[
FP (p), FP (psucc)

)
,

where the peer psucc is the successor of the peer p on the identifier ring I. We cannot use
a uniform hash function such as SHA-1, since we want the function FR to preserve ordering
relationships between the resource keys (e.g., enabling the straightforward use of range queries),
i.e., FR(ri) > FR(rj) iff ri > rj. Such an order preserving hash function will lead to a very
skewed distribution of resource identifiers over the identifier ring I. For example, in Figure 5.1
we can see a distribution function of filename identifiers in I extracted from a Gnutella trace
(dotted line) of 20’000 filenames crawled in 2002. Despite the complex skew of key distributions,
we would like that each peer p is responsible for a “fair” (or equal) amount of resources and
be storage-load balanced, i.e., |Rpi | ≈ |Rpj | for any i and j, where Rp ⊂ R and ∀r ∈ Rp

FR(r) ∈ D(p). In this case the peer identifiers will have to reflect the distribution of resource
identifiers. Hence the peer identifier distribution will have a similar shape as the resource
identifier distribution. Since in general the resource identifier distributions are usually non-
uniform and exhibit complex skews, the resulting peer identifier distribution will have to have
a complex skew as well.

Dealing with skewed spaces. The seminal work of Kleinberg [Kleinberg 2000] proposes
“routing efficient” network on a uniform d-dimensional mesh. The follow up works [Barrière
et al. 2001; Manku et al. 2003] showed how to adopt the Kleinbergian network construction
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principles for P2P systems with uniform key distribution. In the previous chapter we have
shown that it is indeed possible to construct “routing efficient” Small-World network in the
1-dimensional space even if the peers are non-uniformly distributed on the unit interval. For
doing so it was shown that a peer u has to choose a peer v as its long-range neighbor with a
probability that is inversely proportional to the integral of the probability density function f

between these two nodes, i.e.,

P [v ∈ ρl(u)] ∝ 1

|
∫ FP (v)
FP(u) f(x)dx|

. (5.1)

However, it is non-trivial to apply this technique in practice because it requires at each
peer the global knowledge about the data load in the system, hence the key distribution f .
A simple approach to obtain the distribution is to randomly sample the network and get an
approximation of the key distribution, e.g., Mercury [Bharambe et al. 2004]. However, the
real-world distributions can be totally arbitrary and the only sufficient approximation of the
distribution would be gathering in a sample set the complete set of values which, of course,
does not scale. In this chapter we show that Mercury (which uses random sampling) fails to
build routing efficient networks given arbitrary distribution functions. Moreover, we also show
that it is not necessary to know the distribution function over the entire identifier space with
uniform “resolution” – it is sufficient to “learn” well the distribution for only some regions of
the identifier space while leaving other regions vaguely explored, making it the base idea of
Oscar algorithms.

5.4. Oscar Overlay

The Insight. According to the continuous Kleinberg’s approach [Barrière et al. 2001; Girdz-
ijauskas et al. 2005; Manku et al. 2003] for construction of a “routing efficient” network in
1-dimensional space, each node u has to choose two short-range neighbors and one or more
long-range neighbors. Short-range neighbors of u are its immediate successor and predecessor
on the unit ring. A peer u chooses its long-range neighbor v in the unit interval with the
pdf g(x) = 1

x lnN on the range [ 1
N , 1], where x = dI(u, v). It has been proven that a network

constructed in such a way is a “routing-efficient” network, where a greedy routing algorithm
on expectation requires O( log2

2 N
l ) hops, where l is the number of long range links at every

peer. This means that a node u will tend to choose a long-range neighbor v rather from its
close neighborhood than from the farther away regions. The pdf g(x) according to which the
neighbors are chosen also has one nice property when partitioned into equally spaced segments
on the logarithmic scale (logarithmic partitions). That is, if we partition the identifier space
into log2 N partitions A1, A2, ..Alog2 N , such that the distance between the peer u and any other
peer v in Ai is bounded by 2−i ≤ dI(u, v) < 2−i+1 the peer v will have equal probability to be
chosen from each of the resulting partitions (Figure 5.2). Indeed, the probability that v will
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Figure 5.2. pdf g(x) (solid bars) and the A1, A2, .., Alog2 N partitions separated by the dotted lines

be chosen by u in some interval Ai is exactly 1
log2 N and does not depend on i:

P (FP (v) ∈ Ai) =
∫ 2i−log2 N

2i−log2 N−1

1
x ln N

dx =
1

log2 N
(5.2)

In practice choosing non-uniformly at random but according to some continuous pdf is
complicated. Thus, equation 5.2 gives us an insight of how to modify a network construction
algorithm, in which the neighbors will be chosen not directly by some continuous pdf g(x), but
uniformly at random in certain regions derived from g(x). That is, if each peer u first chooses
uniformly at random one logarithmic partition and then within that partition uniformly at
random one peer v as a long-neighbor then none of the pdf characteristics will be violated and
all the desirable properties of the “routing efficient” network will be preserved. Of course, this
approach perfectly fits the case with uniform key-distributions. In such cases the partitions
can be recalculated in advance at each peer. However, when assuming skewed key-spaces, it is
not straightforward how to define logarithmic partitions, hence how to choose the long-range
link.

5.4.1. Space Partitioning

In the case of uniformly distributed peer identifiers the expected number of peers within some
range of length d is actually equal to d · N assuming a unit length identifier space. Thus,
the division of such an identifier space into a logarithmic (base-2) number of partitions is
nothing else but recursively halving the peer population. That means a peer u with identifier
0 (FP (u) = 0) will define the partition A1 which will contain half of the peer population,
i.e., all the peers which identifiers are bigger than 1

2 , A2 – all the peers which identifiers are
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bigger than 1
4 and smaller than 1

2 and so on. This technique can be easily adapted to the case
with any identifier skew, so Oscar uses this intuition in order to build its routing network in a
simple and efficient manner. Instead of using the predefined borderlines between the logarithmic
partitions we will use the median values of the exponentially decreasing peer populations. That
is, an Oscar node u with an identifier uid has to partition the identifier space into logarithmic
partitions A1, A2, ..Alog2 N . Each border between neighboring partitions is determined by a
median value of the peer identifiers in the exponentially decreasing subsets of peer population,
i.e., the border between A1 and A2 will be the median m1 of the peer identifiers from the whole
peer population P, the border between A2 and A3 will be the median m2 of the identifiers from
the subpopulation P \ A1 etc. In general the border value between Ai and Ai+1 will be the
median mi of peer identifiers from the subpopulation P \ Bi, where Bi = ∪i−1

j=1Aj. Ideally the
first partition A1 has to contain 1

2 of the initial population, A2 has to contain 1
4 and so on. Since

in practice it is not possible to exactly know the precise members of all the partitions, an Oscar
node has to approximate the key range for each partition. For finding the median values an
Oscar node has to uniformly sample each subpopulation Bi and determine the current median
mi from the acquired sample set. The random sampling technique proposed by Mercury (for
sampling the whole population) is employed. To sample the subsets of the population Bi the
Oscar nodes use random walkers which do not visit nodes with identifiers that do not belong
to the current population Bi. Our simulation experiments show that such a technique yields
very good results in practice even with very low sample sizes.

5.4.2. Oscar Technique

Here we introduce the basis of Oscar’s technique – the long-range link acquiring procedure:
each peer u first chooses uniformly at random one logarithmic partition Ai and then within that
partition uniformly at random one peer v. This peer v will become a long-range neighbor of
u. Thus, for successful building of an overlay we only require each peer to have a snapshot of
the current key distribution by acquiring the knowledge of the positions and sizes of the corre-
sponding partitions A1, A2, ..Alog2 N , i.e., a list of peer keys FP (pm1), FP (pm2), .., FP (pmlog2 N ),
where peers pm1 , pm1 , .., plog2 N represent the boundaries between the partitions. Such knowl-
edge can be gained either by actively sampling the network (cf. Section 5.4.3) or by copying a
snapshot of a “global view” from a ring neighbor (in this case the snapshot has to be adjusted
accordingly by contacting the peers pm1 , pm1 , .., plog2 N and requesting the keys of their ring
neighbors FP (pm1

succ), FP (pm2
succ), .., FP (p

mlog2 N
succ ), which are then included in the snapshot). Such

copying incurs contacting only O(log2 N) peers and is very suitable for the propagation of the
latest knowledge of the key distribution.

The network remains correctly wired if the global key distribution remains stable over time.
However, even if the key distribution is changing the peers can rewire only “on demand”, i.e.,
when a network’s performance starts to deteriorate. One of the indications that a network is
not healthy is high in-degree [Girdzijauskas et al. 2006] of some peers. This is an indication
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that a majority of the peers which are pointing to an overloaded peer have an out-dated “global
view” and wrong distribution estimation. Another indication for out-dated knowledge is an
increased average routing time. Therefore, an overloaded peer can trigger the resampling and
rewiring processes for itself and for its neighbors. Such actions bring the connectivity of the
network to the optimal state. We show in our simulations that the Oscar sampling technique is
not expensive and adapts the network well to changing id-space conditions. Moreover, in our
analysis (cf. Section 5.5) we prove that the error within the partitions can be relatively large
without inflicting considerable damage on the search efficiency, i.e., a network can support
quite high variation in the distribution without actively sampling the network.

Since Oscar is an instance of randomized Small World networks – the number of long-range
links in Oscar is not restricted and can be assigned individually according to the needs of a
particular peer, as long as there exists at least one such link per peer. By allowing different
in/out degree at each peer Oscar can easily adapt to heterogeneous environments (workload
of a peer or local available resources) still guaranteeing efficient global search as long as there
is at least one long-range link maintained per peer. Our simulations show (Section 5.6) that
Oscar performs in heterogeneous environment as good as in homogeneous.

As for the correctness of the system, we rely on the already devised self-stabilizing algo-
rithms (e.g., [Angluin et al. 2005; Ghodsi; Li et al. 2004; Liben-Nowell et al. 2002; Shaker
and Reeves 2005; Stoica et al. 2001]) which maintain the virtual ring (short-range links) un-
der churn. The establishment of short-range links ensures correctness of the greedy routing
algorithm1, while long-range links are specifc to different approaches and serve as “routing
optimization” links. Thus, we will focus mainly on the algorithms for establishing long-range
links.

5.4.3. Oscar Algorithms

Here we will formally describe the Oscar network construction and maintenance algorithms.
The join algorithm. In Oscar, as in many other P2P approaches, to join the network

a peer u has to know at least one peer already present in the system and to contact it. The
joining peer is assigned with some identifier FP (u) which is usually based on the distribution
of the global data in the peer-to-peer system (see the discussion in Section 5.3) and depends
on load balancing algorithms which are orthogonal to our work, e.g., in [Ganesan et al. 2004;
Godfrey et al. 2004; Karger and Ruhl 2004; Rao et al. 2003]. Upon joining the network u issues
a query with its identifer FP (u) and it inserts itself into the unit ring between the responsible
peer for peer u’s key FP (u) peer and its successor. Every peer keeps an estimated state of
the global view as a set of pointers to the peers which mark the boundaries of the logarithmic
partitions (cf. Subsection 5.4.1). A peer u learns about the current key distribution in the
network from its immediate neighbor usuccessor by copying its snapshot set of the “global

1 establishment of short-range links results in a virtual ring topology in such a way ensuring the correctness of

the greedy routing algorithm (a message always can be forwarded closer to a target)



62 5. Oscar: Structured Overlay For Heterogeneous Environments

view” pointers. Afterwards the peer u establishes l long-range links using the longRangeLink
algorithm (Algorithm 5.3).

Algorithm 5.1 Scalable sampling algorithm for learning the key distribution
scalableSampling(u)
1: ρ(u) = �; i = 0;

2: range =
[
FP(usuccessor); FP(u)

)
;

3: notEnoughPartitions = true;

4: while notEnoughPartitions do

5: i = i + 1; Psample = �;

6: for j=1 to k do

7: Psample = Psample ∪ randomBoundedWalk(u, range, TTL)

8: end for

9: m(i) = medianByFP(Psample)

10: if m(i) = FP(usuccessor) then

11: notEnoughPartitions = false;

12: end if

13: if i=1 then

14: partitionsStart(u, i) = m(i); partitionsEnd(u, i) = u;

15: else

16: partitionsStart(u, i) = m(i); partitionsEnd(u, i) = m(i − 1)

17: end if

18: range =
[
FP (usuccessor); FP(m(i))

)
;

19: end while

The scalableSampling algorithm. In case a peer u has an out-dated snapshot of the
key distribution it can acquire an up-to-date one by using Oscar’s scalable sampling technique.
It has to determine O(log2 N) logarithmic partitions (ranges) in the identifier space using
the scalableSampling algorithm (Algorithm 5.1). To find the first partition the algorithm
starts by issuing k random walkers within the defined range of the identifer space using the
randomBoundedWalk algorithm (Algorithm 5.2). Initially the defined range spans the whole
identifier space starting from the identifier of peer u’s successor on the identifier ring up to the
peer u’s identifier itself (Algorithm 5.1, line 2). After the collection of the random samples in
the set Psample the peer u finds the median value of all the peer identifiers of the set Psample

(line 9). Having the median value the peer u can define the first, furthest, partition A1 which
will span the identifier space from the found median value up to the peer u’s identifer value
(line 14). The range value for performing the next random walk within the subgraph P \ A1

is reduced (line 18) and the algorithm continues by repeating the same steps (lines 4- 19) to
find the successive partitions A2, A3, .. etc. The algorithm stops finding the partitions when
the median value is equal to the identifier of the u’s successor FP (usuccessor) (line 10). In such
a way the algorithm acquires on expectation log2 N partitions.

The randomBoundedWalk algorithm. For successful usage of the scalableSampling
algorithm it is necessary to be able to sample not only the whole population of peers P but
also some subpopulation of peers B. Therefore, a specific random walk algorithm is needed.
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Algorithm 5.2 Bounded Random Walk Algorithm [r] =
randomBoundedWalk(u, range, TTL)
1: if TTL > 0 and R �= � then

2: TTL = TTL − 1

3: R = {p ∈ ρ(u)|FP(p) ∈ range};
4: next = chooseRandomly(R)

5: [r] = randomBoundedWalk(next, range, TTL)

6: else

7: r = u

8: end if

The algorithm will produce random walkers which would be able to “walk” only within a
subpopulation of peers B ⊂ P restricted by a predefined scope variable range, such that
pB ∈ B iff FP(pB) ∈ range. Such a randomBoundedWalk algorithm (Algorithm 5.2) is a
modified random walker, where the message is forwarded not to any random link of the current
message holder u, but to a randomly selected link p, which satisfies the condition FP(p) ∈ range

(Algorithm 5.2, line 3). Such link will always exist assuming the underlying ring structure is
in place.

Algorithm 5.3 Long range link construction algorithm [longRangeNeighbors] =
longRangeLink(u, outdegree)
1: for i=1 to outdegree do

2: randPartition =
[
FP(partitionsStart(u, rand));FP(partitionsEnd(u, rand))

)
;

3: [longRangeNeighbors(i)] = queryToRange(u, randPartition)

4: end for

The longRangeLink algorithm. To assign the long-range link, the longRangeLink al-
gorithm is used (Algorithm 5.3) which chooses uniformly at random one of the partitions
Ai(line 2) and then assigns the random peer v from that partition using the queryToRange
algorithm (line 3). The queryToRange algorithm is a greedy routing algorithm, which mini-
mizes distance to the given range Ai and terminates whenever the first peer v in that range is
reached. Since the algorithm requires k samples per each logarithmic partition, the expected
number of needed samples per peer in total is O(k log N).

Note that the algorithm does not require knowledge or estimation of the total number of
nodes in the network. The only place where in principle the estimation of N is needed is the
TTL value of a random walk. As explained in [Bharambe et al. 2004] the TTL should be set
to a value of log2 N . However, the simulations show that it is sufficient to set the TTL value
equal to the number of previously determined partitions (initially, newly joined peers request
the information on the partition size from their ring neighbors). In such a way the Oscar
algorithms are designed to be independent of the estimation of the network size N .

Since churn exists in P2P networks and the peers join and leave the system dynamically each
peer has to rewire its long range links from time to time. This can be done either periodically
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or adaptively. As discussed above we use adaptive techniques for performing the sampling
algorithms if the key distribution in the network has changed considerably, and as an effect
some peers got overloaded and the average routing cost has increased. In practice the sampling
is performed rarely since, as we will show in the next section, Oscar partitioning is robust to
imprecise measurements and distribution fluctuations. In such a way the Oscar system can
self-optimize under dynamically changing network conditions.

In the next Section 5.5 we show that the Oscar overlay is robust to sampling errors and
have logarithmic search performance given a logarithmic number of links per node.

5.5. Analysis

In this chapter we will consider the case of a skewed key-space I by “transforming” it to the
uniform space I ′ and making all the necessary proofs in I ′ (Figure 5.3). Such a transformation
of the problem is at the heart of using Kleinbergian Small-World principles for non-uniform
keyspaces. Let us consider that we have the peer population P where each peer p ∈ P has
an identifier FP(p) ∈ I. Note that for each peer p ∈ P the identifier of a peer p in the
space I ′ is F ′

P (p) =
∫ FP(p)
0 f(x)dx. In such a way the identifier space I ′ will have uniformly

distributed keys on the unit interval [0..1). The important fact here is that any median m in
I and the analogous median m′ of I ′ belongs to the same peer pm such that m = FP (pm) and
m′ = F ′

P (pm). Hence finding the median peer in the uniform space I ′ will be equivalent to
finding it in the skewed space I.
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Figure 5.3. Transforming skewed key space I to uniform space I′ is at the heart of using Kleinberg’s
Small-World principles under real-life workloads.
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5.5.1. Theoretical Performance of Oscar

Let us assume we want to calculate the expected number of routing hops in an Oscar network
constructed on the base-2 technique with one outgoing long-range link per node. Assume a
query from some source node s to some target node t. Let us also divide the entire key-space
I ′ into log2 N partitions B1, B2, .., Blog2 N , where each partition Bj is populated by the nodes
whose distance dI′ from the target node t are bounded by 2− log2 N+j−1 ≤ dI′ < 2− log2 N+j .
Each node u which has the query message tries to forward the message towards the target
node t greedily, i.e., minimizing the distance dI′(u, t). After a node forwards the search request
to node s we say that the message is at partition Bj if the distance between the current
message holder u and the target t is within the range 2− log2 N+j−1 ≤ dI′(u, t) < 2− log2 N+j .
We calculate the probability Pnext that the current message holder has at least one long-range
link to some node v in some partition Bl where l < j, i.e., the current message holder can
forward the message closer to the target at least by one partition. Assume the node u which
belongs to the partition Bj and has the query message is the farthest away from the target t,
i.e., dI′(u, t) = 2− log2 N+j−1. Peer u has its long-range links constructed based on its snapshot
view of the global key distribution, i.e., based on the partitions A1, A2, ..Alog2 N . In this case,
the jth partition Aj of u subsumes all the partitions Bl (where l < j) which are remaining to be
traversed for the message towards target t. Since according to the Oscar’s wiring technique the
probability that peer u will have a long-range link in the partition Aj is 1

log2 N , then probability
Pnext that node u will have a long range link in one of the partitions Bl is also 1

log2 N . Thus, the
probability that the message staid in the same partition Bj is Psame = 1 − Pnext = 1 − 1

log2 N .

Let us denote by Xj the total number of hops and by EXj the expected total number
of hops that greedy distance minimizing routing will perform within the partition Bj before
jumping into some partition Bl that is closer to the target t, i.e., l < j. If NBj is the number
of nodes in Bj then we have

EXj =

NAj∑
i=0

iPr[Xj = i] <

∞∑
i=0

i(Psame)iPnext

=
1 − Pnext

Pnext
= log2 N − 1. (5.3)

There exist log2 N partitions of the key-space and the expected number hops in each of
them is less than log2 N −1, so the expected total number of hops that the algorithm will need,
including the long-range hops is at most log2 N ·log2 N . The expected number of nodes that the
algorithm will have to visit using neighboring edges from the partition B1 to the target node
t is 1 (note that we assume uniform distribution of the peers in I ′). Therefore, the algorithm
will require polylogarithmic number of hops: log2

2 N + 1, i.e., O(log2
2 N). Similarly it can be

proven logarithmic search performance given logarithmic number of long-range links per node.
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5.5.2. Median Estimation Error

The next problem is to determine how precisely we can estimate a median m′ given we have k

uniform samples from the population P. For that we will use Hoeffding’s inequality [Hoeffding
1963]. Consider a subset Psub ⊆ P containing k sample elements drawn uniformly at random
from P. Let us assume a set Pm′

sub consists of all the key values of population Psub and Pm′

consists of all the key values of population P in the normalized space I ′. In this case, a
m′-median peer pm′ from the sample subset Psub will have the expected identifier key value
FP(pm′) equal to the expected value of the set Pm′

sub. Then, according to Hoeffding’s inequality,
the probability that the measured mean E(Pm′

sub) and the real mean E(Pm′
) differs only by

some small ε (ε > 0) is at least 1 − exp(−2kε2), i.e.:

Psample[E(Pm′
sub) − E(Pm′

) > ε] > 1 − e−2kε2
(5.4)

Since the distribution of the keys is uniform in I ′, the mean value is also the median in
Pm′

. Thus, with probability Psample > 1−e−2kε2
, after k samples we will be able to find a peer

pm′ of which the identifier FP(pm′) is the median m′ of the peer population P with ε error.
Note that the sampling error ε is relative to the size of the sampling range in I ′. With the
decrease of the size of the ranges (as Oscar’s sampling algorithm iterates) the sampling error
diminishes. E.g., with k = 30 samples from the full range [0..1) in I ′, it is Psample > 0.977 sure
that the median is FP(pm′) = E(Pm′

)±0.25. Later in the simulations we will show that Oscar
can be successfully constructed having k values as low as 1, resulting in the overall sampling
size of O(log N) (see Section 5.6).

5.5.3. Median Estimation Error’s influence to the Routing Performance

In practice, each imprecise estimation m′
est of the median will result in determining imprecise

partitions A1, A2, ..Alog2 N . In particular there could be two extreme-case scenarios. In the first
case (dense case) the estimation produces more than log2 N partitions, and can be modeled
as a logarithmic partitioning of the base-m′−1

est , where m′
est = 0.5 + ε on the range [0..1),

i.e., the resulting number of partitions is log 1
0.5+ε

N > log2 N . In the second case (sparse
case) the estimation produces less than log2 N partitions, such that m′

est = 0.5 − ε on the
range [0..1), and the resulting number of partitions is log 1

0.5−ε
N < log2 N . The first case

scenario tends towards “high clusterisation” of the resulting network, whereas the second one -
towards “uniform randomness”. This can be interpreted as a shift of the network topology from
clustered to random depending on the dimensionality variable r in Kleinberg’s work [Kleinberg
2000]. Therefore, by calculating the worst upper bound of the search cost of these two extreme-
cases we will provide an upper bound for the performance of the Oscar technique given a
partitioning error ε on the range [0..1).

Proof for upper bound. Each peer splits its space I ′ into partitions A′
1, A

′
2, ..A

′
loga N ,

such that the distance between the peer u and any other peer v in A′
i is bounded by 2i−loga N−1 ≤
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dI′(u, v) < ai−loga N .
Assume a query from some source node s to some target node t. Let us also view the entire

key-space I ′ as logb N partitions B′
1, B

′
2, .., B

′
logb N , where each partition B′

j is populated by the
nodes whose distance dI′ from the target node t are bounded by b− logb N+j−1 ≤ dI′ < b− logb N+j

and a−1 = 1 − b−1 ⇔ b = a
a−1 . Each node u which has the query message tries to forward

the message towards the target node t greedily, i.e., minimizing the distance dI′(u, t). After
a node forwards the search request to node s we say that the message is at partition B′

j

if the distance between the current message holder u and the target t is within the range
b− logb N+j−1 ≤ dI′(u, t) < b− logb N+j. We calculate the probability Pnext that the current
message holder has at least one long-range link to some node v in some partition B′

l where
l < j, i.e., the current message holder can forward the message closer to the target at least
by one partition. The probability Pnext that the node u will have a long range link in B′

j−1

is at least Psample

loga N . Thus, the probability that the message staid in the same partition B′
j is

Psame = 1 − Pnext = 1 − Psample

loga N .
Let us denote by Xj the total number of hops and by EXj the expected total number of

hops that greedy distance minimizing routing will make within the partition B′
j before jumping

into some partition B′
l that is closer to the target t, i.e., l < j. If NB′

j
is the number of nodes

in B′
j then we have

EXj =

NB′
j∑

i=0

iPr[Xj = i] <

∞∑
i=0

i(Psame)iPnext

=
1 − Pnext

Pnext
=

loga N − Psample

Psample
. (5.5)

There exist O logb N partitions of the key-space and the expected number hops in each of
them is less than logb N , so the expected total number of hops that the algorithm will need,
including the long-range hops is at most ( loga N−Psample

Psample
+ 1) logb N . The expected number of

nodes that algorithm will have to visit using neighboring edges from the partition B1 to the
target node t is 1 (I ′ is uniform). Therefore, the upper bound for expected number of hops is:

c log2
2 N + 1, (5.6)

where c does not depend on N and is given as c = (Psample log2 a log2
a

a−1 )−1. For example,
if we have the sampling error ε < 0.25 (on the range [0..1)) and Psample > 0.977 (cf. the example
in Section 5.5.2) the routing cost can increase only by a factor c = 1.23. The behavior of the
coefficient c given different sampling errors and sampling probabilities is depicted in Figure 5.4.
Thus, our result shows that a network built by using Oscar’s partitioning technique is robust to
sampling errors and can sustain reasonable search cost given very high sampling errors. This
can be explained by the fact that the absolute error diminishes as the partitions get smaller
(closer to a peer), i.e., it confirms the property of Small-World that the network can be efficient
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even if peers have a very vague estimation of the regions which are far away whereas as long
as the close-by areas are well estimated.
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Figure 5.4. The behavior of the coefficient c given different sampling errors and sampling probabilities

5.5.4. Expected In-Degree

It can be seen from 5.6 that the networks constructed according to our proposed algorithms
perform well even with quite high estimation errors. However, the connectivity of the network
can be highly affected by the incorrect estimation. Having inaccuracies in measuring the
medians implies the possibility of some peers being highly overloaded by incoming links. Let
us calculate the expected in-degree of any peer in the case of no inaccuracies and the worst
case scenario having some estimation error ε.

Ideal Case (ε = 0). Assume a set of peers Ci consisting of 2−iN members and a peer u,
which belongs to partition A′

i of every peer from Ci. The probability that the peer u will be
chosen as a long range link from any peer p ∈ Ci is equal 2−iN · 1

log2 N · 1
2−iN

= 1
log2 N . Since

there exist log2 N partitions, peer u will have expected in-degree EXin = 1.

Real Case (ε 
= 0). However, having an imprecise estimation of medians there will be
some peers which are more overloaded than others. Let us assume the worst case scenario where
peer u is the most overloaded peer. In such scenario Ci set will have (1 + ε)2−iN peers, which
will have peer u in their A′

ith partitions. Thus, the probability that the peer u will be chosen
as a long range link from any peer p ∈ Ci is at most (1+ε)2−iN · 1

log2 N · 1
(1−ε)2−iN

= 1+ε
1−ε ·

1
log2 N .

Since in the worst case there exist log2(1+ε)−1 N partitions, the peer u will have an expected
upper bound for the in-degree EXin = (1+ε) ln 2

(1−ε) ln 2
1+ε

. E.g., as in the example of Section 5.5.2,

when the error ε = 0.25 (on the range [0..1)) the expected upper bound for the in-degree of
the most loaded peer is EXin = 2.46.
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Figure 5.5. Performance of the networks with various sample parameters k

5.6. Simulations

Here we show that the network built according to our proposed technique performs well and
does not suffer the drawbacks of existing systems. Similarly as in Mercury [Bharambe et al.
2004], we created a discrete-event based network simulator (in Java 1.6) where each application
level hop is assigned a unit delay. Using the simulator we simulate an Oscar network with bi-
directional links starting from the network bootstrap of 2 nodes and simulating the its growth
until it reaches a peer population of 10000. Unless specified otherwise, we set the average
node degree to 13 links per peer, Oscar sampling parameter k to 9 and use Gnutella filename
trace (cf. Section 5.3) to model the key distribution in the network. We have performed
the simulations under various settings, namely varying key and node degree distributions and
performed the simulations under churn where the key distribution changes over time. In the
following, we will describe the simulation settings in more detail.

5.6.1. Oscar’s performance with low sample sizes

First we have investigated the optimal parameters for an Oscar overlay. Figure 5.4 suggests
that the search performance of Oscar should be sufficiently efficient even with very inaccurate
estimations of the medians, i.e., with very small sampling parameters k. Hence we measure
the effect of the size of the sampling parameter k on Oscar’s search performance. We have
grown an Oscar network from scratch to 10000 peers with an average node degree of 7 and
using different values of k. We compared the search performance (Figure 5.5(a)) together with
the distribution of the estimated number of partitions by each peer (Figure 5.5(b)). The latter
suggests how accurate the measurements are since the “perfect” estimation would result in
exactly log N logarithmic partitions (for N = 10000, log N ≈ 13). From the experiments we
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can see that even with very low values of k Oscar peers could estimate well the existing key
distribution in the network (in terms of determining the logarithmic partitions), hence the
search cost did not deteriorate much even with sampling values as low as k = 1. The average
search cost given k = 1 and k = 100 differs by only 2.5 hops. This is a clear indication of the
robustness of the Small-World networks which are built using the Oscar technique.
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Figure 5.6. Simulation Results

5.6.2. Oscar vs. Mercury

As suggested in Mercury [Bharambe et al. 2004], we have set Mercury’s parameters k1 and k2 to
log2 N for constructing a Mercury network. Each peer in our Mercury simulation constructed a
distribution approximation from the sample set of k1·k2 random walks. In this way we simulated
the exchange of Mercury’s distribution estimates in an epidemic manner where each peer issued
k1 random walks and each of the selected nodes reported back the k2 most recent estimates.
Thus, to sample the network each Mercury peer had to issue log2

2 N random walkers. We set
the number of random walkers in Mercury to 169 per peer and Oscar’s sampling parameter k

to 9, which results in the average number of 108 samples per peer for networks of size 10000.
With such a setting it is ensured that the sampling parameters in Oscar are not larger than in
Mercury, which provides fair simulation conditions.

Each peer p in the network had values ρ(p) and ρmax(p) as the preferred and maximal
allowed degree of a peer. During the network construction procedure each peer p was trying to
establish ρ(p) bi-directional connections to other peers using long-range links. However, only
peers which had less than ρmax(p) degree acknowledged to become peer p’s neighbors. This
allowed individual peers to autonomously determine their degree and thus the load incurred by
them for network maintenance and query traffic. Since both Oscar and Mercury are randomized
overlay networks we could employ the power-of-two choice technique [Mitzenmacher et al. 2001]
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Figure 5.7. Distributions of search costs with Gnutella key-distribution

to better load-balance the degree distribution among the peers. During the growth of the
networks we were periodically rewiring long-range links of all the peers and measuring the
performance of the current network.

Different Key Distributions. Since our goal is to show that our proposed technique
results in “routing efficient” networks and dealing with churn is an orthogonal issue, we have
simulated a fault-free environment, i.e., a system without crashes. We simulated three cases
of key distribution: uniform, monotonous Zipf (with parameter α = 1) and Gnutella filename
(as in Figure 5.1). In each case a peer joining the network was assigned an identifier randomly
drawn from the corresponding key distribution. We compare the simulation results also with a
“perfect case”, i.e., Kleinbergian Small-World network [Girdzijauskas et al. 2005; Manku et al.
2003] built based on perfect knowledge of the global key-distribution. The preferred degree
ρ(p) was set to 7 links for every peer. To show the actual capacity of every system to construct
routing efficient overlay networks we did not limit the maximum degree value ρmax(p) for any
peer. We have measured the performance of the resulting networks; specifically, the average
routing cost and the average node degree.

As expected the simulations showed that Mercury performed well given uniform and
monotonous skews, but poorly given a complex Gnutella distribution (Figure 5.6(a)). In con-
trast the Oscar network resulted in a much more efficient network for highly complex key
distributions. Figures 5.6(b)and 5.7 indicate that the Oscar network had a much better dis-
tribution of node degree and lower message cost for the case of Gnutella key distribution. In
contrast the Mercury overlay could not cope with the complex distribution of the keys and
had significantly higher node degree imbalance, which in turn resulted in poorer lookup perfor-
mance. As expected the results have shown that Oscar is robust for realistic skews in the key
distribution. This is what we ideally want and expect for a system to generate routing efficient
Small-World graphs for skewed key-distributions (cf. Chapter 4).

Different Node Degree Distributions. Heterogenous peers. We have also shown
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by simulation that the Oscar technique results in routing efficient networks not only given
homogeneous peers but also assuming node-degree heterogeneity. We performed simulations
of Oscar given three different node degree distributions: “realistic”, “linear” and constant. In
the “realistic” node degree distribution case the maximum degree value ρmax of each peer was
drawn from a predefined synthetic spiky distribution (Figure 5.8) to emulate the behavior of
real P2P systems [Stutzbach et al. 2005]. To match the data from [Stutzbach et al. 2005] we
chose 13 bi-directional links as the mean degree. In the “linear” node degree distribution case,
for each peer the ρmax value was drawn uniformly at random from the range of 6 to 20. In
the constant degree distribution case, for all peers, ρmax was set to 13. Note that for all the
aforementioned cases the average node degree remained 13. The keys for the peers were drawn
from the Gnutella filename distribution.

After performing network construction the results showed that Oscar performed almost
identically for all the degree distribution cases (Figure 5.9(a)). This shows that Oscar can
easily adapt to various degree distributions without any loss in search performance. To measure
how well the potential network connectivity is exploited we calculate for each peer pi the
ratio ρ(pi)

ρmax(pi)
between the actual peer degree and the available (maximal) peer degree. In

Figure 5.9(b) we can see that the node degree distribution ratio was very similar in all three
cases and exploited around 98% of available degree “volume” (100

N

∑
i

ρ(pi)
ρmax(pi)

) in the system
of 10000 peers. We also observed in our experiments that in the Mercury network with the
same setting and constant node degree distribution only 61% of available degree “volume” were
exploited and the Mercury network had an average search cost of 27.3 routing hops per query.
Since Mercury could acquire fewer links than Oscar, naturally the search cost in Mercury was
higher compared to Oscar.

Oscar under churn. Since the data stored on the peers is not static but dynamic, it is
expected that because of the storage load balancing the peer key distribution will be changing as
well. To investigate the robustness of the Oscar network under churn we performed simulations
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Figure 5.9. Oscar’s performance given various key and node degree distributions

of our system in a dynamic environment where the key distribution changes over time. We
have modeled a volatile transition from a simple uniform key distribution to Gnutella filename
distribution. Our simulation starts with the Oscar overlay of 5000 peers with the uniform key
distribution. We model a stable churn rate where every time slot a peer joins or leaves the
network with 50% probability. The simulation has two phases. In the first one the arriving
peers acquire a key drawn from a uniform distribution. After some time the second phase starts
and the new peers start acquiring the keys drawn from the Gnutella filename distribution. We
perform the measurements at every time step and measure the average lookup length in the
network. Upon joining the network a peer has two options for acquiring the global view of the
distribution function: (1) by copying the estimated boundaries of the logarithmic partitions
from a ring neighbor; (2) estimating by using sampling. In our simulations a peer chooses
with the probability p option (1) and with the probability (1 − p) – option (2). We run our
simulations with three different settings, where p = 0, p = 0.5 and p = 0.9. In Figure 5.10
the first dotted vertical line marks the starting time of the 2nd phase (the arriving peers start
acquiring keys from Gnutella filename distribution). As expected, the network adapts very
fast to the dynamic churn when p = 0, but even with p = 0.9 (the network is sampled only
by 10% of the peers) the search cost is still relatively low. This shows that Oscar overlay
can sustain efficient routing properties under volatile and dynamic network conditions, and
changing load-skews.

5.7. Conclusions

In this chapter we have addressed the problem of dealing with skewed key distributions as
encountered in data-oriented applications in a realistic P2P environment characterized by churn
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Figure 5.10. Routing cost of Oscar under churn

and heterogeneity. We have shown that current approaches cannot cope successfully with such
complex workload distributions. Furthermore, most existing structured overlay designs do
not deal with peer heterogeneity, and instead assume homogeneity and aim at achieving load-
balancing. We take a more pragmatic look at the problem. In deployed (unstructured) overlays,
it has been observed that the contribution made by participating peers has large variations, and
is decided autonomously by peers subject to their own physical constraints. Load-balancing
schemes in presence of peer heterogeneity and autonomy is an impractical ideal. What is
pragmatic is instead to respect peers’ autonomy to exploit the resources available from each
of these peers to fulfill the system’s needs adequately and efficiently. External mechanisms
based on incentives or punishments to achieve load-balancing in a manner where peers are
individually deciding to contribute to the system equally is an orthogonal issue, and will work
well in our settings because of the flexible network construction rules. The system design
is based on a fundamental understanding of the Small-World networks, and applicability of
the principles are validated with simulation experiments. In the actual implementation, our
system can borrow a lot of existing design solutions from fine-tuned implementations of ring
based overlay networks like Chord, particularly using existing self-stabilization algorithms for
ring maintenance and content replication. The only required changes to apply our proposed
techniques are the choice of the long range link based on the sampling mechanism.

In the following chapter we will show how to reduce the maintenance cost of Small-World
based overlays like Oscar by abandoning one of the main topological features of structured
overlays – the ring.



Chapter 6

Fuzzynet: Ringless Routing in a

Ring-like Structured Overlay

Everything is vague to a degree you do not
realize till you have tried to make it precise.

Bertrand Russell

6.1. Overview

In the previous chapters we have shown how to use Small-World design principles to construct
structured overlays, capable of supporting non-uniform key distributions and exploiting the
advantages of such networks for building efficient large-scale systems for heterogeneous envi-
ronments. In this chapter we show how the Small-World properties can be utilized to reduce
the maintenance cost of such systems by discarding the necessity to rely on a ring invariant –
a core network connectivity element for most structured overlays. We argue that reliance on
the ring structure is a serious impediment for real life deployment and scalability of structured
overlays. We propose an overlay called Fuzzynet, which does not rely on the ring invariant, yet
has all the functionalities of structured overlays.

This chapter is organized as follows. We discuss ring maintenance challenges in Section 6.2.
In Section 6.3 we describe the basic concepts and the design of Fuzzynet, and in Section 6.4
we present and discuss the relevant algorithms. In Section 6.5 we give a theoretical analysis
of the approach. In Section 6.6 we validate our design based on simulations and experiments
with a Java based Fuzzynet prototype implementation on the PlanetLab1 testbed. We discuss
related systems in Section 6.7 before drawing our conclusions in Section 6.8.

1 http://www.planet-lab.org/
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6.2. Motivation

Most commonly, structured overlays are based on enhanced rings, meshes, hypercubes, etc.,
leveraging on the topological properties of such geometric structures. The ring topology is
arguably the simplest and most popular structure used in various overlays [Bharambe et al.
2004; Girdzijauskas et al. 2007; Manku et al. 2003; Rowstron and Druschel 2001; Stoica et al.
2001]. In ring based overlays, it is necessary and sufficient to set correctly the successor and
the predecessor of each node for correct routing, while additional (long range) links are used
to enhance routing efficiency.

Under churn (peer membership dynamics), the ring is both a blessing and a curse. On
the one hand, an intact ring is sufficient to guarantee correct routing. Hence, historically, all
existing structured overlays have de facto considered it necessary. We argue that it is not
only unnecessary, but also relying on such a ring invariant leads to some undesirable conse-
quences. In certain cases, the existing greedy-routing mechanisms cannot deal with even a
single fault/break in the ring on the routing path. On the other hand, in a dynamic environ-
ment where peer lifetime is a few minutes for the majority of them, the ring is susceptible to
continuous breakages. This in turn incurs high maintenance cost, and despite whatever high
maintenance cost, there is at no point any absolute guarantee that the ring is indeed intact.
The larger the number of peers, the more likely it is that the ring invariant is violated. This is
a serious impediment for scalability and deployment of structured overlays.

Moreover, another well-known challenging issue for the ring invariant is posed by the non-
transitive connectivity and the routing anomalies in the overlay networks. It is quite common
in real-life networks that some pairs of alive peers cannot directly communicate to each other
(e.g., between two firewalled peers); however, it is possible for them to communicate indirectly
through a third peer. As it has been shown in [Freedman et al. 2005], such non-transitive
connectivity may misdirect nodes to wrongly set ring neighbors, thus leading to violation of the
ring invariant. This in turn can lead to the disruption of the overlay’s functional correctness
(e.g., some data items might never be inserted to the peer-to-peer system because of the
erroneously assigned responsibility ranges of the participating peers).

The effect of unreachable nodes has been studied in depth by several researchers. Kong
et al. [Kong and Roychowdhury 2007] investigated the percolation effect in structured peer-
to-peer systems such as Chord [Stoica et al. 2001] and Symphony [Manku et al. 2003] and
measured the size of the reachable network component under failures. In the experiments the
authors expose the drawbacks of these systems, specifically showing that up to 4% of the nodes
are not reachable (where the network size is 106 peers) even though they belong to the same
connected component. Mislove et al [Mislove et al. 2006] found routing anomalies in 9% of
PlanetLab peer pairs, where the peers could not establish direct connection among themselves.
Wang et al [Wang et al. 2004a] measured two real P2P systems and found that even up to
36% of the participating peers were residing behind firewalls and Network Address Translators
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(NATs), which in many cases made direct communication between these peers impossible.
These results show that the inevitable deficiency in the direct communication between any two
peers prevents sustaining the ring invariant in real networks. Therefore, it seems that despite
the great maintenance cost, in reality structured overlay networks have huge challenges meeting
the assumed system invariant. A naive approach to tackle this problem would be to detect and
exclude the firewalled peers from the DHT, however, taking out vast quantities of such peers
would mean wasting the valuable resources, which in turn would inflict a greater strain on the
remaining peers in the system.

The approach presented in this chapter – Fuzzynet, circumvents the need for a ring and
the associated problems like non-transitivity and costly maintenance. By introducing the
Fuzzynet technique we set a base for a completely lazy-maintenance design of P2P systems
where the only maintenance action is taken upon peers joining the network. Fuzzynet is based
on the connectivity principles of navigable Small-World networks [Kleinberg 2000]. It does
not require the ring structure, yet it has all the functionalities of contemporary structured
overlay networks. Fuzzynet peers can “mimic” the ring-behavior by contacting the immediate
key-neighbors through the neighbor cluster with high probability by exploiting Small-World
clusterization. More specifically, the suggested relaxed structure of Fuzzynet has the following
differences compared to tightly structured DHTs: i) No explicit ring maintenance. ii) Peers
are not deterministically responsible for a particular key section but probabilistically. iii) Data
keys are disseminated and replicated in the vicinity of the targeted key. Fuzzynet peers develop
their neighbors according to a policy for optimal routing at the joining phase and this effort
helps older peers update their stale connections. As it is shown later, this suffices assuming
churn rates which have been observed in the deployed applications [Guha et al. 2006].

While Fuzzynet is based on loose connectivity and is much more relaxed in its peer-to-
key bindings, it is not an unstructured overlay. The peer keys and the stored data keys are
highly correlated. The lookup messages in Fuzzynet are never flooded but greedily routed to
the targeted area based on the data keys. Even though our system’s performance guarantees
are probabilistic rather than deterministic, we show that with sufficient amount of neighbors
(O(log N), comparable to traditional overlays), even under high churn the data can be retrieved
w.h.p. from our system. In contrast, traditional overlays which rely on a ring provide a
deterministic guarantee subject to the condition that the ring invariant is met. However, in
reality, this invariant is impossible to meet continuously. As a consequence, systems relying on
the ring invariant have poorer performance over time on the average than a probabilistic system,
as we observe from the experiments (cf. Section 6.6). Moreover, our suggested solution does
not depend on any key distribution, giving Fuzzynet the flexibility to achieve further desired
system properties such as load-balancing.

Thus, in contrast to the related literature which tries to improve the ring maintenance
mechanisms, we take a complementary approach, where we want to ensure functional correct-
ness (of querying and new data insertions) even in case the ring invariant is violated. Whenever
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the ring invariant is met, our approach has no message overheads compared to the traditional
approaches given similar data replication factor (which is anyway needed for fault tolerance).
Therefore, the mechanism can be integrated to work seamlessly in a ring-based P2P network,
while avoiding the non-transitivity problems and obviating the need for any aggressive and
expensive ring self-stabilization. For the purpose of overall efficiency, a low-cost background
self-stabilization mechanism may, however, be employed.

6.3. Ringless Overlay

6.3.1. The Need For the Ring Structure

To begin the quest of “removing the ring” firstly we have to understand why one needs the
ring in the first place. There are plenty of reasons why the ring is an attractive design solution
for distributed indexing systems. We will discuss the most important of them.

Navigability. First of all, the ring2 makes the small world easy to navigate, i.e., using de-
centralized memoryless greedy routing algorithm. The introduction of such a routing technique
necessitates the ring structure to assure the correctness of the routing algorithm. Without the
ring structure the query messages would not have any guarantees of reaching the desired peer
since there will be no assurance for forwarding, i.e., an intermediate peer might not have a
“closer” link to the target, thus failing the query.

Responsibility. Secondly, and even more importantly for data-oriented P2P systems, the
ring structure provides clear responsibility space for every peer. For example, in Chord a peer p

is responsible for all data items which hash into the range
(
FP(ppredecessor), FP (p)

]
. With such

a knowledge every peer certainly knows which identifer range it is responsible for and which
query messages have already “reached the target” and do not need to be forwarded further.
The storing/routing/answering decisions can be made because of the certainty that there is
no other peer between two successive ring neighbors. Since these storing/routing decisions are
basic and essential for any data-oriented P2P system, the ring has to be maintained eagerly
(e.g., periodically). Eager maintenance is required even if the churn rate in the network is high
and the ring connections (which were established with high cost) have never been used before
they are dropped.

Easy Construction of Long-Range Links. Thirdly, having the ring as always-in-place
concept, it is relatively easy to use it as a bootstrap building block of the long-range links of
the P2P system, e.g., Skip graphs with their “multi-dimensional” rings [Aspnes and Shah 2003;
Harvey et al. March 2003], or the hop count technique [Klemm et al. 2007].

Although the ring invariant is a very strong requirement, nevertheless, because of the
aforementioned advantages most of the structured overlays employ this idea and impose the

2 We can generalize the ring to a Kleinbergian lattice [Kleinberg 2000] or any other exact, peer key-dependent

structure like hypercubes [Schlosser et al. 2002], butterfly networks [Malkhi et al. 2002], etc.
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ring structure in their approaches (e.g., [Aspnes et al. 2004; Bharambe et al. 2004; Ganesan
et al. 2004; Manku et al. 2003; Stoica et al. 2001]).

However, as discussed in the Introduction, even with a high maintenance cost it is practi-
cally impossible to meet the ring invariant assuming realistic network conditions, where abun-
dance of participating peers reside behind firewalls and NATs contributing to the frequent
routing anomalies, thus making the direct communication between some ring links impossible.
Hence, we take a completely different standpoint to design a concept which would not require
such a strong assumption as the ring invariant.

6.3.2. Fuzzynet Concepts

In order to be able to drop the ring invariant we need to address the aforementioned functional
requirements which make the ring an attractive solution in the P2P community.

Firstly, Fuzzynet drops the requirement for every peer having a predefined deterministic
responsibility range on the identifier space. Instead, we use a probabilistic responsibility ap-
proach, where a data item will be likely stored on a peer whose key on the identifier space is
close to the hash value of that data item (data key).

Secondly, we employ a data replication concept in Fuzzynet, by disseminating the data
replicas in the vicinity of the data position on the identifier space. Since P2P overlays (Small-
World networks) exhibit a high clusterization effect, the data dissemination in the vicinity of
the desired position can be performed with relatively low effort. Such dissemination of data
replicas does not actually rise the requirements for our system, since all the realistic systems
(which use the ring structure) employ replication for fault tolerance and persistence anyway. A
useful consequence of such data replication in Fuzzynet is the fact that a simple greedy routing
query will find one of the replicas w.h.p. given sufficient network connectivity.

To make the Fuzzynet concept work we need to be able to construct a navigable overlay, i.e.,
a Small-World network. For that we can use some of the existing approaches, e.g., Oscar’s long-
range link acquisition technique presented in Chapter 5 designed for skewed key distributions
or [Galuba and Aberer 2007] for uniform key distributions.

In the following we will discuss in more detail the above described principles of Fuzzynet,
which can be generalized as two types of routing: routing for lookup (read) and routing for
storing or publishing (write).

6.3.2.1. Lookup (Read)

Lookup routing will employ a greedy routing algorithm, where messages will be forwarded
every time minimizing the distance to the target. The routing terminates if the looked-up data
item D is found. However, since there are no ring links and no predefined responsibility ranges,
a peer might end up in a situation where it does not have any links which would lead the query
closer to the target, nor it holds the requested data. In such a case the lookup query would
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Figure 6.1. Greedy-Approach. Routing from the originator peer (P0.56) to the greedy-closest peer
(P0.21) where the greedy approach towards the target key 0.175 (actual-closest peer P0.17) is no further
possible.

terminate unsuccessfully. Nevertheless, we will prove later in the analysis and show with the
experiments that with realistic parameters w.h.p. data is found if it was published before (e.g.,
in the networks with O(log N) degree and typical data replication cost).

6.3.2.2. Publish (Write)

The high guarantees for the lookup lie in the exploitation of a particular Small-World property,
namely the clusterization property, during the data writing phase.

The write operation is performed in two stages and stores data D on r peers (replicas) in
the vicinity of the data key FR(D). The first stage is similar to the lookup (read) phase and
uses greedy routing to find one of the peers which are close enough to the data key FR(D).
Once the write operation reaches the vicinity of the target key location, the data is seeded in
the nearby peers by the self-avoiding multicast (a controlled “Write-Burst”). The underlying
idea is to use the clusterization property of the network and to reach as many peers as possible
in the FR(D) vicinity. The multicast has two parameters - fn (fanout) and depth. A peer
contacts its fn closest neighbors to FR(D) and requests to store the data item D as well as to
continue the multicast process with reduced depth. The multicast avoids the peers which have
been visited (already store data D) and terminates when depth reaches zero. Data D is seeded
(stored) on all the peers reached by the multicast-burst. An example of the publish (write)
procedure is given in Figure 6.1 and Figure 6.2 followed by the example of the successive lookup
(read) operation in Figure 6.3.
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Figure 6.2. Write-Burst. The greedy-closest peer (P0.21) seeds the replicas in the cluster vicinity of
the key 0.175 using the Write-Burst.

In contrast to “classical” decentralized data-oriented systems, the replicas in our proba-
bilistic overlay do not need to be globally aware of each other. Although the write procedure
is more complex than read (lookup), there are no messages wasted, i.e., only peers which will
be storing the data are contacted.

By exploiting the clusterization property, the Write-Burst operations avoid the necessity
of the ring and circumvent the non-transitivity problems. In a way, the bursting technique
finds the bypasses to the “would-be” ring-neighbors by choosing second or third best neighbors
and relying on the fact that in a Small-World network, peers in the same vicinity are highly
connected. Instead of keeping the ring structure alive periodically (as in the classical P2P
systems) the write procedure in the overlay probabilistically “imitates” the ring behavior only
for the storage, whereas the read (lookup) does not actually need the ring if the replication
factor is sufficiently large. For all practical purposes, the minimal amount of replication used
by current systems purely for the purpose of fault tolerance appears to be sufficient.

It is worth emphasizing that Fuzzynet does not flood the entire network, but affects only
a very small neighborhood. By tuning Write-Burst parameters the size of that neighborhood
can be adjusted not to exceed a typical replication count of structured overlay networks. It
will be shown later in Section 6.6 that it is sufficient to have fanout fn = 2 and depth = 3
for successful storage and retrieval in a system with O(log N) average node degree even with
network failures.
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Figure 6.3. After writing the data in the vicinity of the key 0.175, the lookup (read) from any node
will have very high chance finding at least one of the data replicas.

6.3.2.3. Updates

Fuzzynet treats data updates in the same way as data insertions, i.e., using the above described
“Publish” concept. The updates are made when a new (updated) value D′ of the existing data
D is published on the same key FR(D). During publishing, the Write-Burst seeds the updated
data items in the vicinity of the key FR(D), overwriting the existing old data. Although
the replica placement in the vicinity of the FR(D) is non-deterministic, their high degree of
clusterization typically ensures that a suitable implicit write quorum is found to overwrite
the older version. Such non-deterministic placement of replicas of objects in Fuzzynet makes
consistency maintenance subtler, even if not more expensive.

For storage purposes DHTs can be used in two different ways - (i) the DHT routing deter-
mining the peers which store actual objects, (ii) the DHT routing determining the peers which
store pointers to the actual object, making the storage placement an orthogonal issue.

In the latter case which has more flexibility and is often preferable [Bhagwan et al. 2004],
maintenance of consistency of the objects is handled by application layer logic. In this case,
non-deterministic placement of replicas of pointers does not affect the consistency. However,
if some DHT replicas have stale pointers, then they can unnecessarily add to the routing
overheads. In general, DHTs store objects with a time to live, and garbage collect stored
objects unless they are reinserted [Rhea et al. 2005b]. Such a garbage collection mechanism, in
conjunction with a push&pull gossip based probabilistic update mechanism [Datta et al. 2003]
ensures that the pointers that actually stay in the DHT system stay up-to-date. This is also
true when the DHT itself is used for storing objects (instead pointers).



6.4. Algorithms 83

The replicas which receive the new updates (with new values or reinsertion of the same old
value) will persist in the system. However, if some of the replicas don’t receive the updates,
they try to pull it from other random replicas regularly. Since most online replicas already have
the latest update, such random pull provides the latest update w.h.p. [Datta et al. 2003]. The
chances of missing updates using the combined push&pull approach is negligible. But in the
unlikely case that it happens, the affected replica considers that as the equivalent case of the
stored object not being reinforced, and thus simply discards the local copy. As a consequence,
in the long run, only the latest version of stored content (or pointer) actually persists in the
DHT. Note also, that any other P2P system using replication similarly needs to keep these
replicas up-to-date (e.g., the same update mechanism is used in P-Grid [Aberer 2001]), and
hence the replica maintenance overheads are comparable, and does not specifically increase
Fuzzynet’s overheads, but is a price to pay to support mutating content in a P2P network.

6.3.2.4. Maintenance

The basic idea of our approach is to ensure a sufficient performance of the system with no
explicit maintenance. We do not have any assumptions on how peers leave, i.e., we deal
similarly with both the departures and failures. In this way we can provide much stronger
guarantees that our system will be functional given any circumstances. In an environment
where the churn rate is stable, i.e., similar numbers of peers join and leave/crash, it is not
necessary to perform any maintenance of the overlay except the one triggered by peer arrivals.
The churn itself is typically enough to keep the system functioning, i.e., the newcomers with
the fresh links will compensate the lost connectivity due to crashed peers [Klemm et al. 2007].

Similarly, the churn can keep the residing data alive when the newcomers replicate and
republish the data if deemed necessary (cf. Section 6.4.1.3). Every time a new peer joins the
network, it checks all the data which is similar to its identifier key. The newcomer can decide
to refresh the data by performing a new write if it notices that the replication factor is too
small, i.e., a peer does not see enough replicas.

6.4. Algorithms

Here we formally describe the algorithms used in our system. Fuzzynet is a general technique
that can enhance any P2P overlay which is based on Small-World connectivity but has to rely
on the ring integrity for correctness (e.g., [Bharambe et al. 2004; Galuba and Aberer 2007;
Manku et al. 2003], etc). The Fuzzynet algorithms implemented on top of such systems allow
to abandon the ring integrity constrain without loosing any of the functions of a regular DHT.
In this work, for establishing the underlying network of our system we use the Oscar overlay
construction algorithms presented in Chapter 5, which form the Small-World connectivity and
can cope with non-uniform (skewed) key distributions of any complexity.
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6.4.1. Fuzzynet Data Management Algorithms

On the established Small-World network we employ the Fuzzynet algorithms to enable success-
ful data storage and retrieval without the presence of a ring. Here we will describe the core
algorithms of our ringless data-oriented overlay.

6.4.1.1. Write-Burst Algorithm

Algorithm 6.1 Publish (Write) algorithm publish(data2store)
1: [burstPeer] = greedyRoute(FR(D))
2: writeBurst(burstPeer, data2store, FR(D), fanout, depth,�)

To store a data item D a peer initiates a two-phase publish algorithm (Algorithm 6.1).
In the first phase it looks-up the closest peer (currentPeer) to the data key FR(D) it can
find with greedy routing algorithm, and once found, the “Write-Burst” (Algorithm 6.2) is
initiated at the currentPeer. The algorithm contacts the closest neighbors to FR(D) (number
of neighbors defined by fanout) from the currentPeer. Once the closest neighbors are reached
the algorithm stores the data D on the visited peers and recursively continues contacting the
closest peers, until the maximum allowed depth is reached (i.e., depth = 0). Every recursive
thread maintains a set of peers which were already visited (Algorithm 6.2, line 3) and avoids
visiting these peers later on. With the “Write-Burst” algorithm we exploit the clusterization
property of small world networks and recursively visit as many peers in the vicinity of FR(D)
as possible.

Algorithm 6.2 Write-Burst algorithm [visited] = writeBurst(p,D,FR(D), fanout, depth,

visited)
1: depth = depth − 1
2: if depth ≥ 0 then
3: visited = visited ∪ p

4: store D on p

5: notV isitedNeighbors = getNeighbors(p) \ visited

6: fanoutCounter = min(fanout, notV isitedNeighbors)
7: while fanoutCounter > 0 do
8: CloseLink = chooseClosestToTheKey(notV isitedNeighbors, FR(D))
9: [visited] = writeBurst(CloseLink,D,FR(D), fanout, depth, visited)

10: fanoutCounter = fanoutCounter − 1
11: notV isitedNeighbors = notV isitedNeighbors \ visited.
12: end while

13: end if
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6.4.1.2. Lookup (Read) Algorithm

The lookup or read algorithm is fundamentally the same as the traditional greedy routing
algorithm. When a lookup request is issued on FR(D), the query travels greedily towards
the target examining at each peer whether it stores a copy of D. Once terminated (no more
possibility to get closer to the target) the algorithm analyzes the collected information about
the data D and with high probability (cf. Section 6.5) a replica of D is found.

6.4.1.3. Peer Join Algorithm

As discussed earlier in this chapter, the join algorithm uses the original Oscar technique for
long-range link acquisition to wire the network, i.e., to ensure the connectivity and the desired
Small-World properties. Here we will discuss only the second stage of the join process, i.e., the
data management after the network connectivity is established.

Once a peer p joins the network and establishes its connections it needs to copy the data
which is stored in the vicinity of the peer’s key FP (p) in the key space. For this reason the
newcomer peer p performs a Write-Burst algorithm, but instead of writing the data, it collects
all the “visible” neighbors in the vicinity of the joining peer’s key FP (p). Then peer p collects
the data from the neighborhood peers and analyzes it (Algorithm 6.3, line 3). Peer p copies
(becomes a replica) of all the data whose keys are close enough to its own key FP(p) given the
existing replication rate induced by the fanout and depth parameters (Algorithm 6.3, line 5).
The estimation whether a data item D belongs to the peer’s vicinity is easy even for non-
uniform key distributions, since a peer knows in advance the boundaries of the logarithmic
partitions A1, A2, .., Alog N from the overlay building process (cf. Section 5.4) and can estimate
the number of peers residing between FR(D) and FP (p).

Similarly, a joining peer p could estimate how many replicas of a particular data item D

should be visible, taking into account the key of the current data item FR(D) and peer p’s key
FP(p). In case the amount of data items is lower than some predefined threshold, peer p can
initiate the write algorithm to reinsert data item D. In such a way, if peers leave/crash and
arrive independently, it is ensured that the data item will not be lost once it was written in
the P2P system.

6.5. Analysis

In this section we will give lower bounds for the success probability to retrieve a data item D

once it was stored in our system. We will investigate the case of Write-Burst for publishing
data with the parameters fanout = 2 and depth = 3. As our simulations suggest, these are
the smallest values with which the system performs reasonably well (cf. Figure 6.5) having
relatively low average network degree. Although with smaller Write-Burst values the success
rate might still be high enough, there will be much fewer replica copies in the system, thus
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Algorithm 6.3 data acquisition algorithm upon join [targetPeer] = join(p)
1: clusterNeighbors = ∅
2: [clusterNeighbors] = writeBurst(p,�, FP(p), fanout, depth,�)
3: for ∀data D ∈ clusterNeighbors do

4: if estimateIfDataInV icinity(FP (p), FR(D), fanout, depth) then
5: store D

6: end if
7: estimatedNumberOfDataItems = estimateData(FP (p), FR(D), fanout, depth)
8: if estimatedNumberOfDataItems < tresholdNumber then
9: publish(D)

10: end if
11: end for

increasing the risk to loose all of them in case of unexpected increase in churn. Therefore,
with the aforementioned parameters we will establish the general lower bound of the success
probability for acquiring a stored data item in our system.

We will calculate the success probability in three steps. In the first step we will calculate
with what probability a read/write message can reach the vicinity of the data key if the ring
connectivity is not enforced (i.e., when no more greedy routing is possible). In the second step
we will calculate the probability that the Write-Burst will populate the immediate neighbors of
the Write-Burst originator. And in the third step we will combine the two and calculate what
is the general success probability for a read message to reach a peer which holds a written data
item.

6.5.1. Step 1. Routing Without Ring-Links

Here we calculate the probability of a message to be delivered from an originator peer po to
the target peer pt using only the existing Small-World network links without making the ring
connectivity assumption. We assume the worst case scenario when the distance d(po, pt) is
maximal, (e.g., equal to 0.5 in the setting of the unit interval where the links between the peers
are bi-directional and the peer keys are distributed uniformly). Let us divide the space between
peer po and peer pt into logarithmic partitions B1, B2, .., Bi where B1 partition contains the
farthest 1

2 of the peers from the pt(id), residing in the identifier space between po(id) and pt(id),
B2 - the next closer 1

4 of the peers and so on. If the ring links were present and routing tables
at each peer are logarithmic in size, the message from the peer po to the peer pt will have to hop
over log N peers on average, at each peer diminishing the distance to the target exponentially,
i.e., by at least one logarithmic partition Bj [Girdzijauskas et al. 2005]. However, without the
ring links, starting from the second hop there exists a non zero probability that there will be
no links pointing to the peers which would allow a greedy approach to the target, i.e., the ring
neighbor link is missing. The probability of not-getting closer is relatively small in the first
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hops of the query, but it grows significantly when the message approaches the target. It is
because the remaining logarithmic partitions become smaller and smaller, thus the query finds
fewer and fewer links which point into the remaining partitions.

Let us denote with P j
hop the probability that a message in the partition Bj will be able

to approach greedily to the target, i.e., that at the routing algorithm will be able to find at
least one link which can forward the message closer to the target peer. The probability for
a Small-World network building process [Girdzijauskas et al. 2006] to establish a link from
the jth partition to one of the remaining partitions Bj+1, .., Blog N is log N−j+1

log N . Thus, we can
calculate the probability P j

greedy that being at the jth partition a query can find at least one
link pointing into one of the partitions Bj+1, .., Blog N is equal to 1 − ( j−1

log N )ρ(p), where ρ(p) is
the average size of the routing table.

Since we assume the worst case scenario, the probability P 1
hopthat the peer will be able to

leave the partition B1 and traverse closer to the target is at least P 1
hop ≥ 1 − (1 − log N−1

log N )ρ(p).
For every next partition Bj when j > 1 we have to calculate P j

hop recursively. In general we
obtain P j

hop = P j−1
hop · P j

greedy. Hence, we calculate the probability P j
stay = P j−1

hop · (1 − P j
greedy),

where P j
stay is the probability of a greedy routing algorithm terminating in the partition Bj

without the possibility to advance closer to the target.

6.5.2. Step 2. Replication by Write-Burst

When a “write” message for the data item D reaches peer pt from which no more greedy
routing can be performed, the Write-Burst algorithm is initiated to replicate the data in the
surrounding area of pt(id). The peer pt can immediately store the data, i.e., it will be populated
with data D with probability 1; however, the neighboring peers do not have 100% guarantee to
get populated. Here we will investigate the probabilities for the peers in the closest partitions
Blog N and Blog N−1 to get populated by the new data from peer pt.

Firstly, we will calculate the minimal probabilities that pt will be connected to these closest
neighbors by one or two hops. These probabilities will set a lower bound connectivity among
these closest neighbors. According to the Kleinbergian Small-World network construction prin-
ciples the probability that a peer will have a direct long range link to one of its immediate
neighbors in the partition Blog N is 1

log N and in general the probability P ′
1 that one of its long

range links will have a link to the immediate neighbor is P ′
1 = 1− (1− 1

log N )ρ(p). Similarly, the
probability P ′

2 that a peer will have a direct long range link to one of its immediate neighbors’
neighbor (2nd order neighbors in the partition Blog N−1) is P ′

2 = 1−(1− 1
2 log2 N )ρ(p). The proba-

bility P ′′
1 that a peer will be connected to one of its immediate neighbors by two hops is at least

P ′′
1 ≥ P ′2

2 . Likewise, the probability P ′′
2 that a peer will be connected by two hops to one of its

immediate neighbors’ neighbor (2nd order neighbor) is P ′′
2 ≥ P ′

1 ·P ′
2. Therefore, the probability

that peer pt can reach and store data on a peer in Blog N partition is P1 ≥ 1− (1−P ′
1)(1−P ′′

1 ).
Similarly, the probability that peer pt can reach and store data on the peer in the partition
Blog N−1 is P2 ≥ 1 − (1 − P ′

2)(1 − P ′′
2 ).
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Let us assume that peer p′t is the closest peer to the data identifier which has to be writ-
ten. The probability that the write message will stop at that peer is P log N+1

stay . Similarly, the
probabilities that the message will stop a peer on the partitions Blog N and Blog N−1 are P log N

stay

and P log N−1
stay , respectively. In order for the data to be written on the node p′t, the Write-Burst

algorithm had to start either in the p′t node itself or in its neighborhood. On expectation there
exist one node in the partition Blog N and two nodes in the partition Blog N−1. We will calculate
what is the probability PT0 that a data item D was written on node p′t if the write algorithm
stopped on a peer in the partition Blog N or one of the peers in the partition Blog N−1. The
probability that a Write-Burst algorithm started at a node in Blog N and the data item D was
written on the node p′t is P log N

stay · P1. Likewise, the probability that the Write-Burst algorithm
started at a node in Blog N−1 partition and the data item D was written on the node p′t is
P log N−1

stay · P2. Combining three different scenarios of data being stored on p′t (directly or from
Blog N or from Blog N−1) we get PT0 ≥ P log N+1

stay + P log N
stay · P1 + P log N−1

stay · P2. Similarly, we
can calculate the probabilities PT1 and PT2 that the data item D was written on the nodes
in the partitions Blog N and Blog N−1 respectively, assuming the write burst algorithm started
in the vicinity of these nodes. Therefore, PT1 ≥ P log N

stay + P log N+1
stay · P1 + ·P log N−1

stay · P1 and
PT2 ≥ P log N

stay ·P2 + 0.5 ·P log N−1
stay + P log N+1

stay ·P2. It is important to note that for the worst-case
scenario (lower bound) we assume only the most likely connectivity patterns for calculating
PT0, PT1 and PT2.
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Figure 6.4. Lower bound on success probability.

6.5.3. Step 3. Lower Bound on Success Probability (Worst Case Scenario)

Having the probabilities that the data item D was written in the vicinity of the identifier of
D’, we can calculate what will be the lower bound of the success probability Psucc if a “read”
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message will be issued at some peer in the system. Since we know what are the probabilities
for a greedy routing algorithm to advance towards the target without using the ring-links we
can calculate that Psucc is at least Psucc ≥ PT0 · P log N+1

stay + PT1 · P log N
stay + PT2 · P log N−1

stay .

In Figure 6.4 we can see the plot of the lower bound success probabilities with different sizes
of networks and network’s degrees. The above result suggests that given an average network
degree of 2 log2 N , regardless the network size N , the queries in Fuzzynet will be successful
w.h.p. even in the worst case scenario. In practice, the success rate in Fuzzynet is even higher
(cf. Figure 6.5).

6.6. Experimental Results

6.6.1. Simulations

In our simulations we have experimented with the Fuzzynet technique built on top of Small-
World networks. We investigated what the probabilistic guarantees are to retrieve the data
which was stored on the ringless overlays and also compared our approach to ring-based Small-
World networks. We have simulated a network environment with routing anomalies where the
peers behind firewalls and NATs were not allowed to establish a link directly with each other.
Our experiments were carried out on various network connectivity cases, mainly networks with
different node degrees. All the experiments were performed including peer churn as described
next.
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Figure 6.5. Query success rate in Fuzzynet under churn.

In the first part of the simulations we have performed tests with a network of 10000 peers



90 6. Fuzzynet: Ringless Routing in a Ring-like Structured Overlay

on average and a predefined average node degree. For each case of the average degree we have
performed separate experiments on a dynamic network where the peer arrivals (joins) and
departures (leaves) were generated from the trace of the Skype super-peer network [Guha et al.
2006]. Leaving and failing were considered as identical operations, since no action is taken upon
a “graceful” leave. The correctness of the system relies only on the actions taken upon new
peers joining the network: establishing new links and replicating data from the surrounding
areas. We have modeled the behavior of the networks for over 18000 arrival/departure events.
At the beginning of the experiment 100 unique data items were inserted into each peer with
uniform random keys. During the experiments we have captured the snapshots of the network
after every 2000 arrival/departure events. For each snapshot of the network we have performed
a read query from every peer on the identifiers of the previously written data items. The average
success rate and the average search cost (path length) of the queries were measured. Figure 6.5
shows the average query success rates given different fanouts and depths of the Write-Burst
algorithm and various average degrees of the networks. We observe that with a relatively
low average degree ( 15 links per node) the success rate rises up to almost 100%, with the
parameters fanout = 3 and depth = 3. In Figure 6.6 we show the average search cost for
looking up the data.

We experimented with various rates of peer departures superceding the rate of new peers
joining, as a result of which the network shrank (i.e., non-equilibrium scenarios). We studied
the system’s performance until it approximately shrank to half its original size, i.e., 5000 peers
from the original 10000. We varied the shrinking rates from relatively slow ones, taking 5000
time slots to halve the network, up to very rapid ones, lasting only 5 time slots until the network
reached half of its original size. Fuzzynet proved to be resilient against even such drastic peer
population changes. With the average network degree of 20 and with Write-Burst parameters
fanout = 2 and depth = 3, the rate at which the network shrank had a very weak influence on
query success rate, which stayed above 96%. Notice that tolerating such a huge membership
change within a short interval is essentially equivalent to having a correlated failure of the
corresponding number of peers, and hence we conclude from these experiments that Fuzzynet
can deal with a massive correlated failure, even without any repair operations, because it does
not need the ring invariant for functional correctness.

In the second part of the simulations we have compared the Fuzzynet technique to ring-
based approaches performing under the faulty environments. As a ring-based overlay we have
implemented Symphony [Manku et al. 2003] algorithms, where there is only one peer responsible
for a particular data item and the replication of that data (7 replicas). To simulate the effect
of peers under firewalls we have labeled some of the peers as “firewalled” peers. During the
lifetime of the networks we have forbidden the direct communication among any two labeled
peers [Wang et al. 2004a]. We have also simulated sporadic routing anomalies by forbidding
a communication between randomly selected fraction of existing links [Mislove et al. 2006].
In the experiments we have monotonically increased the fraction of firewalled peers and the
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Figure 6.6. Total search cost of both: successful and unsuccessful queries.

probability of routing anomalies, such that the total link failure rate was increasing from 0
to 0.3. We have simulated churn as in the first part of the simulations and measured the
performance of the networks every 2000 arrival/departure events. The results in Figure 6.7
show that even with high link failure rates the Fuzzynet technique with parameters higher
than fanout = 2 and depth = 2, has much higher success rate than a ring-based approach.
With lower values, there are not enough replicas to sustain the data under churn, hence the
queries fail to find some of the previously inserted data items, since they disappear from the
network. However, with higher values of the these parameters, no data is lost, given the
existing replication. Figure 6.8 depicts the data persistence history – the average amount of
data replicas residing in the network during the time of the experiment (10000 peers, 20 links
on average at each peer).

6.6.2. Experiments on PlanetLab

We have also implemented Fuzzynet using the ProtoPeer3 toolkit. The system is deployed on
330 PlanetLab nodes, all communication between the overlay neighbors is done via TCP and
all other communication is done via UDP. For the first 5 minutes we bootstrap the system
into a Small-World ring-based topology with Chord-like connectivity. At the 5 minute mark
all peers insert 50 random and unique key-value pairs into the overlay. At the 10 minute mark
all peers start to periodically look up a randomly chosen key out of the 330 ∗ 50 inserted. We
measure the system-wide failure rate of lookups. A lookup fails if while being routed no greedy

3 http://protopeer.epfl.ch/
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Figure 6.7. Fuzzynet success rate as compared to a Ring-Based overlay.

next hop is possible but the current peer does not contain the desired key. We also measure
the average length of the lookup paths both for successful and failed lookups. In addition, for
each key we count how many times it is replicated, which is summarized as the average, 5th

and 95th percentiles of the number of replicas.

We run the experiment in two different setups (Table 6.1): i) A Chord-like write/read algo-
rithms, where there is only one peer responsible for a particular data item and the replication
of that data (Chord) and ii) Fuzzynet write/read algorithms with a replication induced by
different depth and fanout values (cf. Section 6.4.1.1). The same experiments are repeated for
the network with simulated firewalled peers. Two firewalled (NAT) peers cannot be overlay
neighbors since they cannot directly communicate between each other. We set the fraction of
firewalled peers to 36%, following the results of the study [Wang et al. 2004a] which measured
the number of peers behind firewalls and NATs in large-scale public P2P systems.

In our experiments we have observed that, indeed, due to network anomalies even in the
absence of NAT a fraction of ring links are missing. The results show that in a real live network
deployment the missing ring links cause a considerable number of unsuccessful data insertion
operations and, consequently, failed lookups in Chord’s case (2.15%). Fuzzynet’s write/read
algorithms, however, lowers the failure rate by two orders of magnitude (0.01% in the case of D3
F2) only with an average of 6 replicas. Under realistic assumptions on firewalled hosts [Wang
et al. 2004a], the Chord topology is even more disrupted with 5.2% of failed lookups. The
Fuzzynet approach lowers the loss 10-fold, down to 0.47%.

Some of the WriteBurst branches stall and time out, PlanetLab is notorious for its un-
predictable delays [Rhea et al. 2005a]. We have not implemented any acknowledgements or
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Figure 6.8. Data persistence over time. The solid lines represent the average amount of replicas per
data item at a particular time slot (the error bars represent the 5th and the 95th percentiles of the
replica size distribution).

retries, still our replication scheme is robust under the loss and delay conditions of PlanetLab
and enough replicas are created to significantly reduce lookup failures.

6.7. Related Systems

The vast majority of structured overlays base their topologies and routing techniques on ex-
act, peer key-dependent core structures like rings [Manku et al. 2003; Stoica et al. 2001],
trees [Aberer 2001; Maymounkov and Mazières 2002], de Bruijn graphs [Ganesan and Pradhan
2003], hypercubes [Schlosser et al. 2002], butterfly networks [Malkhi et al. 2002], etc. As dis-

avg # hops failed lookups
# Fuzzynet replicas

avg 5th 95th

Chord 4.27 2.15% - - -

Fuzzynet D2 F2 3.70 0.15% 4.38 3 5

Fuzzynet D3 F2 3.55 0.03% 6.20 5 7

Fuzzynet D14 F1 3.17 0.01% 14.26 8 15

Chord NAT 4.44 5.20% - - -

Fuzzynet D2 F2 NAT 3.79 1.81% 4.64 4 6

Fuzzynet D3 F2 NAT 3.65 0.47% 6.72 5 9

Fuzzynet D14 F1 NAT 3.79 1.16% 4.64 4 6

Table 6.1. Summary of the PlanetLab results. “D” and “F” represent different depth and fanout
values (cf. Section 6.4.1.1)
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cussed in the motivation part - all of them to a very high extent lack the flexibility of choosing
the neighbors on the close neighborhood level, which makes the maintenance more compli-
cated. A substantial amount of work was devoted to tackle the problem of maintaining the
exact structure (e.g., rings) under churn and various stabilization algorithms were developed
to keep the core structures alive [Angluin et al. 2005; Li et al. 2004; Liben-Nowell et al. 2002;
Rhea et al. 2003; Shaker and Reeves 2005]. On the other side, there are unstructured and
semi-structured systems [Clarke et al. 2001; Ganesan et al. 2003; Terpstra et al. 2007] based on
loose topology which require low maintenance, but are rather inefficient in terms of bandwidth
consumption and are suffering from low query recall.

The seminal semi-structured system Freenet [Clarke et al. 2001] requires only loose topology
and low maintenance cost; however, it has no guarantees that the existing data can be retrieved
even in the functioning network. In Fuzzynet data items are placed using the Small-World
clusterization, so, even if they are not placed deterministically, it is easy to perform an “update”
unlike in Freenet where data items are more widely spread in the overlay.

Another semi-structured system Yappers [Ganesan et al. 2003] trades-off between Gnutella-
like flooding and DHT routing. In contrast to Fuzzynet’s greedy routing - the lookups in
Yappers are performed in a broadcast-like fashion. Effectively Yappers is only an improved
version of Gnutella network, though it floods smaller fraction of peers than Gnutella itself.

The recently proposed BubbleStorm [Terpstra et al. 2007] uses “bubblecast” - a data dissem-
ination and querying strategy based on random walks with flooding over random multigraphs.
BubleStrom is designed in such a way that the “data bubble” and the “query bubble” are very
likely to intersect. Because of its unstructured nature BubbleStorm requires low maintenance
cost; however, the exhaustive flooding-based querying is far too costly compared to Fuzzynet.

To the best of our knowledge Fuzzynet is the first structured overlay based on loose connec-
tivity, which while providing good recall guarantee (in fact, under real networking conditions
it is better than the current ring based DHTs) while not requiring any exact-structure main-
tenance, thus drastically saving on maintenance overheads at a marginal overhead for overlay
operations like data read and write.

6.8. Conclusions

In this chapter we presented the Fuzzynet technique which allows building structured ringless
overlays without requiring any explicit maintenance under churn. Unlike traditional ring-based
overlays, Fuzzynet can successfully cope with non-transitivity problems and routing anomalies
in realistic networks. Our technique can be employed on loose network topologies, permitting
to avoid the eager maintenance strategies of the “heavy”, peer key-dependent structures as
e.g., the rings. We show that despite bearing a loose topology, Fuzzynet can still perform
efficient publishing (write) and greedy lookups (read) with probabilistic guarantees and surpass
ring-based overlays like Chord and Symphony in faulty environments as encountered in real
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life [Guha et al. 2006; Wang et al. 2004a]. We have analytically calculated the lower performance
bounds of Fuzzynet and evaluated it with simulations, as well as with implementation and
deployment of our system on PlanetLab.

We believe that Fuzzynet is ideal for high churn environments, and will successfully fill
in the gap between the bandwidth wasting unstructured and high maintenance cost classical-
structured overlays that rely on the integrity of the ring, and nevertheless perform worse under
real life churn conditions than our probabilistic system based on fuzzy data placement.

Because of the intrinsic flexibility, the same Fuzzynet technique has a potential to address
other load-balancing issues, particularly query-load balancing, which can be tackled by chang-
ing the replication rate for each individual data item. Also, Fuzzynet can possibly address
trust and reputation issues by adapting the “Write-Burst”-like mechanisms to serve as a peer
voting technique in an asynchronous environment.

In the following chapter we will show how Small-World based overlays which have an
intrinsic property to support key distributions of any complexity can be successfully employed
for building efficient publish/subscribe systems.
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Chapter 7

Gravity: An Interest-Aware

Publish/Subscribe System

Gravity is a habit that
is hard to shake off.

Terry Pratchett

7.1. Overview

In this chapter we consider the problem of efficient data dissemination in a decentralized pub-
lish/subscribe (pub/sub) system in the presence of large numbers of topics and arbitrary sub-
scription patterns. Overlay networks are an attractive solution from the scalability standpoint
as they provide routing guarantees with limited bandwidth load (fixed node degrees) and only
rely on partial membership information for the maintenance. However, the existing overlay
construction protocols are typically oblivious to the actual node subscriptions and, as a result,
a message published on a certain topic will need to traverse a large number of uninterested
peers before reaching all of its subscribers, thus resulting in a high message dissemination cost.
In this chapter we introduce Gravity, a pub/sub system that exploits similarity in the indi-
vidual node subscriptions to build efficient dissemination structures while retaining fixed node
degrees. Gravity’s topology is based on the Small-World overlay design principles described in
Chapter 5. Gravity’s key insight is to dynamically cluster the nodes with similar subscriptions
by placing them close to each other on the unit ring, thus resulting in a network in which
nodes with similar interests are closely connected. The messages are then disseminated over
multicast trees that preserve the peer’s proximity in the network resulting in a low publication
cost. Our thorough experimental study confirms the effectiveness of our system given realistic
subscription patterns and shows that Gravity surpasses existing approaches in efficiency by a
large margin.

97
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The rest of the chapter is organized as follows. Section 7.2 motivates and describes the
current challenges in pub/sub systems. In Section 7.3, we discuss the prior work relevant to
Gravity’s context. Section 7.4 gives an insight to Gravity’s design, while Section 7.6 describes
Gravity’s main building blocks, which are the node placement strategy and the dissemination
tree maintenance algorithms, in more detail. Section 7.7 presents the results of the experimental
evaluation. Finally, Section 7.8 concludes the chapter.

7.2. Motivation

Publish/Subscribe is a popular communication paradigm [Eugster et al. 2003] useful for sup-
porting group-based interaction in distributed settings. A typical pub/sub system supports
an abstraction of a logical multicast channel, or topic, along with the three basic primitives
allowing the users to (1) subscribe to a topic of interest, (2) publish data on a topic, and (3)
receive notifications whenever a new data is posted on some of the topics in their subscrip-
tion. In this chapter, we introduce Gravity, a pub/sub system, specifically designed to support
efficient information sharing in large-scale group based applications. In particular, we target
two application domains: The first one is the emerging class of massive scale collaborative
applications in which large populations of human users collaborate over a large collection of
shared artifacts. Examples of such applications include on-line gaming, collaborative editing,
live objects [Ostrowski et al. 2007], etc. The second one is associated with runtime manage-
ment of large pools of hardware resources (such as those found in emerging data centers and
compute clouds) where a pub/sub system is instrumental to provide the necessary monitoring
functionality.

To effectively deal with the problems of scale which are characteristic of the above appli-
cation domains, Gravity employs a dynamically constructed structured overlay topology as its
underlying communication fabric. A novel aspect of Gravity, which sets it apart from the other
existing peer-to-peer pub/sub systems [Castro et al. 2002; Chockler et al. 2007b; Voulgaris
et al. 2006], is the ability to exploit correlation in the individual peer subscriptions to reduce
the communication overhead of the message publication. Intuitively, the necessary pre-requisite
for communication efficient message dissemination, is to ensure that the peers interested in the
same topics are well-clustered in the underlying overlay, that is, separated by a small number
of peers not interested in those topics. Ideally, the nodes interested in the same topic t form
strong clusters, i.e., the subgraph induced by those nodes is connected (in [Chockler et al.
2007a], this property is referred as topic-connectivity). Clearly, however, strong clustering is
impossible to achieve for all possible input subscriptions unless the node degree is unbounded.

In Gravity, we therefore, opt for best-effort clustering in which the fixed degree budget
is utilized to produce the best possible clustering of the nodes in the overlay. Consequently,
the effectiveness of this method for reducing the communication costs is determined by the
extent to which the individual peer subscriptions are clustered in the input. As indicated by
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recent studies of the connectivity patterns exhibited by real-world large-scale pub/sub systems
as well as confirmed by our own empirical study of the Gravity performance (cf. Section 7.7),
the individual subscriptions do indeed tend to form clusters to the extent sufficient for being
effectively exploited even by overlays with relatively small degree budgets. For example, as our
experiments show (using Wikipedia editing statistics as the approximation of the subscription
patterns), in an Internet-scale pub/sub system show even with a modest network degree of 12,
it is possible to achieve 77% improvement in the message dissemination cost compared to a
strawman implementation that does not employ similarity-based peer clustering. Hence, the
similarity-based clustering could indeed improve performance of peer-to-peer pub/sub systems
in realistic settings.

The key idea of Gravity’s best-effort clustering algorithm is to ensure that the nodes sharing
similar interests will be brought as close together (or “gravitate” towards each other) as it is
possible under the given degree constraint. More specifically, we position the nodes subscribed
on topic t in a continuous cluster on the ring of structured overlay. Our Gravity technique
builds the spanning tree for that topic using greedy routing paths from the root node (which
can be any node in the network) to every subscriber in that cluster. Because Gravity’s topology
is based on a Small-World design we prove (cf. Section 7.5) that for reaching every subscriber
greedy routing processes will traverse at most O( log2 N

k ) distinct peers outside the cluster,
regardless the size of the cluster itself, where k is the average node degree. Thus, the overhead
of disseminating messages in the spanning trees built in such fashion will never exceed O( log2 N

k )
relay peers.

To assess the impact of the subscription similarity-based clustering technique employed
by Gravity on the message dissemination cost, we conducted two sets of experiments using
a simulated implementation. In both sets of the experiments, our strawman was a pub/sub
system similar to [Castro et al. 2002] in which the dissemination trees are constructed on top
of a ring-based DHT with uniformly chosen peer identifiers.

The goal of the first set of the experiments was to assess the message dissemination cost
as a function of various degrees of the subscription correlation in the input. For that, we
fed Gravity with synthetically generated subscriptions data using the model described in [Tock
et al. 2005]. Our experiments show that the improvement in the cost compared to the strawman
does indeed depend on the clustering in the input being as high as 10-fold better for strongly
clustered subscriptions.

In the second set of the experiments, we used the subscription data collected from two
real-world pub/sub systems which we believe are representative of the two application domains
being considered. The first data set was the editing statistics for the Wikipedia pages, and
the second one, was obtained by logging the subscription requests generated by the clients of
the internal monitoring infrastructure employed by the WebSphere1 application management
middleware. The simulations show that Gravity significantly reduces dissemination cost as

1 www.ibm.com/websphere/
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compared to the strawman implementation (cf. Section 7.7.2).

7.3. Related Work

The simplest way to cluster subscribers in an overlay network is to maintain a separate com-
munication structure for each individual topic with a non-empty set of subscribers. This
approach was realized in [Voulgaris et al. 2006] where clustering is achieved by overlaying an
unstructured overlay topology with rings spanning the subscribers of each particular topic.
The idea of exploiting subscription similarity to reduce the space per node requirements of
the subscription-based clustering was introduced in [Chockler et al. 2007b] in the context of
unstructured overlays. The theoretical feasibility of constructing perfect clustering while min-
imizing average node degree was studied in [Chockler et al. 2007a]. Other pub/sub systems
like DPS [Anceaume et al. 2006] focus on content filtering which, however, are less relevant for
topic-based pub/sub systems, such as Gravity.

Wong et al. [Wong et al. 2007] introduce E-llama technique for embedding an edit distance
metric into a small world overlay that can potentially be useful for subscription clustering
through embedding the topic similarity metric. However, their approach assumes that the
distribution of the subscriptions in the input as well as dimensionality thereof can be estimated
with a sufficient accuracy ahead of time, which is infeasible in a general purpose pub/sub
system.

Topic clustering [Adler et al. 2001; Ostrowski et al. 2007; Tock et al. 2005; Vigfusson et al.
2008] looks into amortizing overheads associated with message dissemination in large pub/sub
systems by aggregating multiple topics into larger groups (or channels) based on the similarity
of their subscriber sets. It was first introduced in [Adler et al. 2001] in the context of optimal
assignment of multicast groups to multicast addresses, and subsequently generalized to pub/sub
in [Tock et al. 2005; Vigfusson et al. 2008]. The existing solutions to topic clustering rely on
approximation techniques (such as K-means [Tock et al. 2005]) whose convergence depends on
the accurate common knowledge of the current assignment of topics to channels. They are
therefore not easily implementable in a decentralized fashion [Shraer et al. 2007].

Bayeux [Zhuang et al. 2001] and Scribe [Castro et al. 2002] are the first multi-group mul-
ticast systems based on DHTs. Pastry overlay [Rowstron and Druschel 2001] is used as the
underlying topology for Scribe, while Bayeux employs Tapestry [Zhao et al. 2004]. Both Bayeux
and Scribe are conceptually similar and utilize the existing DHT links to construct and main-
tain spanning trees on every existing topic for efficient data dissemination. In Bayeux, the
spanning trees follow the greedy routing paths from the root node to every subscriber, while in
Scribe – from every subscriber to the root node. To balance the bandwidth (node degree) and
storage load such pub/sub systems use a uniform hash function to distribute the nodes evenly
on the key space. As a consequence, the same interest peers (subscribed to the same topic)
are dispersed uniformly on the key space. Such dispersal of similar peers (i.e., the peers which
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Figure 7.1. Spanning trees on uniform (unclustered) and skewed (clustered) structured overlays (black
peers represent unsubscribed nodes, grey - subscribed; spanning trees are represented by dashed lines).

exhibit high interest correlation) apart from each other on the key space results in an inclusion
of many uninterested nodes to the spanning trees, which in turn leads to a logarithmic factor
increase in the message dissemination cost compared to the optimal one. (See Figure 7.1(left)
for graphical representation). Since the topic popularity is known to follow a power-law dis-
tribution, depending on the distribution parameters and the total number of topics, the low
popularity topics can represent as much as 50% of the total topic population2, which are ex-
pected to suffer from high dissemination cost. The dissemination cost can be considerably
reduced if the tree-leafs (nodes with the similar interests) are clustered (Figure 7.1(right)).
In the following, we will discuss the possibility of employing a peer clustering technique to
drastically reduce dissemination cost in pub/sub systems.

7.4. Insight to Gravity

Intuitively, the necessary condition for reducing the dissemination cost is to make sure that
the peers sharing the same interest form clusters in the overlay. That is, for each topic, any
two subscribers to this topic are separated by a small number of peers not interested in this
topic. Ideally, the peers interested in the same topic would form a strong cluster, that is, the
subgraph induced by these nodes is connected. That however, is not always feasible if the nodes
have a limited degree budget, which is important for scalability. Our approach to clustering is
therefore, based on exploiting similarity in the node subscriptions so that the nodes with closer
interests are more likely to be well-clustered than the nodes with far away or disjoint interests.
More specifically, we introduce a metric over the node subscription space so that the distance
between any two subscription sets is proportional to their intersection size (see Section 7.6.1

2 E.g., if the topic popularity follows a Zipf distribution with α = 1, more than 50% of the topics will have

popularity below 10%, if the total number of topics is 1000; and more than 70% for 10000 topics.
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for the precise definition of the subscription distance). The subscribers are then organized into
a logical ring in a way, that the distance in the subscription space relates to the distance on
the ring. More specifically, a newcomer peer is always assigned to become a ring neighbor
of the most similar peer in the subscription space. For achieving this, every peer needs the
ability to compare its own subscription set to the subscription sets of the peers with overlapping
interests, i.e., a sufficient peer view has to be available for every peer in the network. There
are multiple ways to collect the information on the peer view, e.g., by random sampling, by
employing centralized directory approach, etc. We, however, propose an aggregation method
where the necessary information on the current peer view is stored in the related spanning
trees and the peer view maintenance is performed pro-actively, using the existing tree topology
(see Section 7.6.5 for more details). Furthermore, for optimizing peer location on the ring,
a number of strategies can be employed; e.g., (i) joining the ring with partial peer view but
never changing the location, or (ii) allowing the change of location later on, when more precise
information on the peer view is collected. Such a flexible choice of strategies enables Gravity
to successfully adapt to many different application scenarios, where different trade-off costs
are associated on the topology changes and data dissemination. Our experiments show that
Gravity performs reasonably well even with very small peer views (cf. Section 7.7.1.2).

The ring structure is further augmented with a few long range links assigned in a Small-
World construction manner so that the probability of creating a link from node u to node v

is inversely proportional to the ring-neighbor distance between u and v in the overlay. It is
inevitable that peer identifier distributions become arbitrarily skewed due to the fact that the
peers are placed on the ring based on their actual subscriptions and not in a uniform fashion.
For handling this task we utilize the previously introduced Oscar technique (cf. Chapter 5)
for maintaining the underlying topology. As we have shown earlier, Oscar’s scalable sampling
technique can cope with identifier distributions of any complexity and produce topologies which
are proven to belong to the class of routing efficient Small-World networks [Kleinberg 2000]. The
topology of Gravity therefore, possesses several important properties of those networks, such as
limited degree, logarithmic routing latency, and amenability to a distributed implementation.
Furthermore, by construction, the Small-World networks preserve peer clustering, that is, the
nodes with closer identifiers are also close in the resulting overlay. We therefore, conclude that
the resulting network is also preserving clustering in the interest space, and therefore, satisfies
the necessary condition for efficient publication routing.

The only remaining piece is to construct the multicast trees which would preserve the
clustering in the overlay. We do that by assigning to each topic a unique home location,
which is a peer whose identifier is chosen by uniformly hashing the topic name into the node
identifier space. The topic home locations can be found efficiently by keeping the nodes in
an additional overlay structure on which uniform hashing can be applied (utilizing the same
Oscar algorithms). Subsequently, the multicast trees for each topic are rooted in the topic
home location, and constructed by following the greedy routing paths from the home location
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to the topic subscribers. In particular, each new subscriber to a specific topic joins the tree
for that topic by following the greedy routing path towards the topic home location until a
grafting point in the tree is found, or the topic’s home location is reached. We define the
grafting point as a node lying on the greedy routing path from the root node to the newcomer
node and belonging to the topic tree. At that point, the network is traversed downwards, back
to the newcomer peer by following the greedy routing path. Such a tree construction process
ensures rapid join and does not overload any single node in the system. The details of the tree
construction algorithm are given in Section 7.6.3.

We prove that the trees constructed in this way would indeed preserve the node clustering
in the overlay. More specifically we show that the following theorem holds3:

Theorem 7.1. Given any node u and the continuous range R on the ring of a Small-World
based structured overlay, the total amount of the nodes involved in greedy routing processes
for reaching every peer in R from u, will not exceed O(r + log2 N

k ), where r = |R| and k is the
average network degree.

In other words, a spanning tree for topic t, consisting of the greedy routing paths from a
home location to the nodes interested in t and occupying a contiguous range on a ring would
include at most O( log2 N

k ) nodes outside of this range, and therefore, dissemination on that tree
would involve at most O( log2 N

k ) nodes uninterested in t.
This property is especially well suited for spanning tree construction when the applications

exhibit strong correlation in the interest subscription patterns allowing large interest clusters to
emerge. In reality, the peer clusters might have some gaps in the ranges, which could potentially
increase the number of uninterested nodes in the spanning tree’s topic, thus increasing the
dissemination cost. However, our simulations show that for a realistic setting (cf. Section 7.7)
this cost is not significant and Gravity surpasses existing approaches in efficiency by a large
margin.

7.4.1. Preliminaries and Notation

Before going into the details of our work, we briefly recapitulate the basic concepts and nota-
tions introduced in Chapter 3 together with several other notations.

We fix a universe of nodes P = {p1, . . . , pn} subscribing to the topics chosen from the
set T = {t1, . . . , tm}. For each topic ti, we write λi to denote the rate of the traffic being
posted on ti. We define an interest function Int, to be the function mapping P × T to {0, 1}
such that Int(p, t) = 1 iff p is subscribed to t. Likewise, we say that p is interested in t

iff Int(p, t) = 1. Every Gravity peer p bears two keys (FPIcontrol
(p) and FPIskewed

(p)) and
belongs to two ring structures: (i) to a control ring in Icontrol space for unambiguously finding

3 For the proof please refer to Section 7.5.
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“home locations” of the topics; and (ii) to a skewed ring in Iskewed space for clustering peers
according to their interests. Every peer p is responsible for a range on both rings Mres

I (p) =[
FPI

(p), FPI
(psuccessor)

)
, from its own key to the key of its successor on the ring. Every peer p

manages all the data items ζ with identifier FR(ζ) ∈ Mres(p). There exists a distance function
dI(FP (u), FP (v)) which indicates the distance between a peer u and a peer v in the identifier
space I. Furthermore, p maintains a routing table ρ(p) consisting of the links of the Icontrol

space and Iskewed space, i.e., ρ(p) = ρcontrol(p)
⋃

ρskewed(p).

7.5. Dissemination Cost on a Range in Small-World networks

Let us name the parallel greedy routing processes from node p reaching all the nodes belonging
to a continuous range R a shower algorithm on range R. The pseudocode of the showering
process is given in Algorithm 7.1. Thus, in order to prove Theorem 7.1 we need to show that
the number of nodes involved in shower algorithm will not exceed O(r + log2 N

k ).

Algorithm 7.1 Brodcast showering algorithm in Small-Worlds: shower(p,R, payload)
1: if Mres(p) ∩ R 
= ∅ then
2: acquire payload

3: end if
4: R = R \Mres(p)
5: if R 
= ∅ then
6: define Z(f) ⊆ I such that ∀f ∈ ρ(p) and ∀ζ : FR(ζ) ∈ Z(f), �f ′ ∈ ρ(p) \ f such that

dI(FP (f ′), FR(ζ)) < dI(FP (f), FR(ζ))
7: ZR(f) = Z(f) ∩ R,∀f ∈ ρ(p)
8: define F ⊆ ρ(p) such that ∀f ∈ F, �ZR(f) = ∅

9: shower(f, ZR(f), payload),∀f ∈ F

10: end if

The shower algorithm is executed in the following way. Current showering message holder
p acquires the payload if it belongs to the range R (line 2). If the peer was responsible
for all that range - the algorithm terminates (line 5). Otherwise the algorithm defines the
forwarding ranges Z for each routing table entry (finger) f , such that greedy routing algorithm
issued for identifier FR(ζ) would take a path via finger f which is responsible for forwarding
into the identifer range Z(f), where FR(ζ) ∈ Z(f) (line 6). If range R does not fall under
complete forwarding responsibility of a particular finger then the algorithm partitions range
R into smaller chunks ZR, such that every new chunk can be covered by a single forwarding
responsibility partition Z(f) of a finger f . (line 7). The showering message is then recursively
passed to these fingers which are responsible for forwarding the respective ZR parts of range
R (line 9).



7.5. Dissemination Cost on a Range in Small-World networks 105

p
|R|/2

Range R

2|R|

fLR1

fLR2fring

Figure 7.2. Visualization of the proof of Theorem 7.1

Proof of Theorem 7.1 We will calculate the amount of peers involved in the execution
process of Algorithm 7.1. Let us assume that peer p issues a range query for a range R of a
length |R|. Let us also assume that this peer p resides in the range R since because of the
navigability property of Small-World networks peer p can be reached in O( log2 N

k ) steps from
any node in the network (where k is the average degree of the network).

Let us assume that peer p is on the edge of the range R (see Figure 7.2). Because of the
overlay properties peer p will always have at least one link in the range (the ring link fring).
The furthest link outside range R which can participate in the next showering phase is fLR1,
at at most 2|R| distance away. The closest link outside range R which can participate in the
next showering phase is fLR2, at at most |R| distance away. Thus, even if p indeed has a finger
fLR2 and no more long-range links in the range R, ZR(fring) will have to be at least half of the
initial range R, i.e., |ZR(fring)| ≥ |R|/2.

In the next showering step for the the subrange ZR(fring) peer fring is guaranteed not to
use any of the existing links outside |R| because this violates the greedy routing principle, since
a ring neighbor of fring would be closer to any point in ZR(fring) than any possible finger
outside R. As a result, all the subsequent showering messages for the subpartitions of range
ZR(fring) will not be able to leave the initial range R.

Let us denote by EX the expected number of hops that greedy distance minimizing routing
will reach partition Zback = R\ZR(fring) from the current message holder fLR1, i.e., the number
of hops that takes to halve the distance between fLR1 and the furthest peer in range Zback.
It has been proven in Chapter 4 that EX does not depend on N and is a constant c. Thus,
the range showering algorithm can leave the range only for a constant number of hops at each
showering level (more precisely 2c, since in the worst case peer p can be in the middle of the
range R). There are at most O( log2 N

k ) levels, thus the expected number of peers involved
in the algorithm, but not belonging to range R will also be only O( log2 N

k ). Together with r

peers of range R (r = |R|) and O( log2 N
k ) peers which are required to reach the range from the

shower originator, the total number of peers that will be involved in the showering process is
O(r + log2 N

k ).

q.e.d.
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7.6. Implementation of Gravity

7.6.1. The Placement Strategy

In Gravity, the node placement on the ring is determined by pairwise similarity of their sub-
scriptions weighted by the traffic intensity. We capture that formally as follows: Let p1 and
p2 be any two nodes. We define the similarity between p1 and p2, denoted sim(p1, p2), as the
weighted size of the intersection of their respective subscriptions normalized by the weighted
size of the union thereof. Formally,

sim(p1, p2) =
∑m

i=1(Int(p1, ti) ∧ Int(p2, ti))λi∑m
i=1(Int(p1, ti) ∨ Int(p2, ti))λi

(7.1)

Given the above distance function, the node placement algorithm would proceed as follows.
Each Gravity node p maintains a variable view(p) ⊆ Int, which is a partial view of the nodes’
subscriptions known to p. By a slight abuse of notation, we write q ∈ view(p) to denote the
fact that q is in the domain of view(p).

The partial views are maintained at the home locations of each topic, and are propagated
to the other nodes in the system in a lazy fashion using a lightweight gossip protocol. A newly
joining node can bootstrap its view using the views available at the nodes through which it is
joining the overlay. The view maintenance protocol is discussed in more detail in Section 7.6.5.

Algorithm 7.2 Peer key acquisition algorithm FPIskewed
(p) = getLocation(p, view(p))

1: if view(p) 
= � then
2: find q, such that sim(p, q) = max{sim(p, q′) : q′ ∈ view(p)}
3: FPIskewed

(p) = mean(FPIskewed
(q), FPIskewed

(qsuccessor))
4: else

5: FPIskewed
(p) = rand

6: end if

7: return FPIskewed
(p)

Whenever a node p joins Gravity, or changes its interest, it acquires its new location on
the skewed ring by performing key acquisition algorithm getLocation (Algorithm 7.2). The
algorithm inspects view(p) to discover a node q such that sim(p, q) = max{sim(p, q′) : q′ ∈
view(p)} (if several such nodes q exist, then one of them is chosen uniformly at random). Node
p then joins the ring between q and the q’s ring successor. If p fails to contact q (e.g., due
to a failure), then q is excluded from view(p), and the entire join algorithm is executed once
again. If at some point, view(p) becomes ∅, then p will join the ring at an arbitrary location.
If later on, view(p) gets populated, p can attempt to improve its location by re-executing the
join protocol.
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7.6.2. The Overlay Construction

In order to enable efficient routing, in addition to the two ring links, each Gravity node is also
maintaining connections (fingers) to a few (usually O(log N) ) additional long-range neighbors.
In our implementation we use the Oscar technique described in Chapter 5 for link creation
among peers. However, Gravity is a general technique and can be used on top of any other
overlay which can support non-uniform key distributions and which topology exhibits Small-
World properties.

7.6.3. Spanning Tree Construction

As discussed earlier, in Gravity, a spanning tree for topic t is constructed using the paths which
are employed by the showering process on range R (described in Algorithm 7.1), where the
peers interested in t belong to one or several (n) continuous ranges R1, R2, .., Rn on the ring,
such that R =

⋃n
i=1 Ri. In such a way, a spanning tree for topic t involves only a small fraction

of peers not interested in t (cf. Theorem 7.1). For building such a dissemination structure, a
joining node needs to find a grafting node, from which the spanning tree would be built using
simple greedy routing path towards the joining node. The grafting point is either the home
location of the topic or a least common ancestor responsible for routing to the id of the joining
node. Thus, the spanning tree joining protocol consists of three phases (Algorithm 7.3): (i)
finding a spanning tree node, (ii) finding a grafting point on the tree and (iii) grafting a new
branch on it.

Algorithm 7.3 Spanning tree join algorithm joinTree(pjoining, t)
1: ps = findTreeNode(pjoining, t);
2: pg = findGraftingPoint(ps, pjoining, t);
3: graft(pg, pjoining, t);

After a newcomer node pjoining decides on a key using the above mentioned getLocation

algorithm (Algorithm 7.2), it needs to join the spanning trees for every topic it is interested in.
To find a spanning tree node ps, the joining node pjoining issues a look-up request in the control
space Icontrol on the hash value of the interested topic t (Algorithm 7.4). The lookup traverses
the network towards the “home location”, i.e., to a peer responsible for hash(t). On the way
towards the target, the lookup either encounters some node belonging to the spanning tree of
topic t, or it arrives at the root of the tree (i.e., the home location responsible for hash(t) - the
target of the lookup request).

Having reached a spanning tree node, the join process enters the phase (ii) by continuing
traversing towards the root node on the spanning tree until the grafting point is found. The
grafting point is either the most common ancestor which has a spanning tree link responsible
for the key of pjoining in Iskewed or the root node itself (Algorithm 7.5). It is important to
mention, that every node in the pub/sub system knows which ranges of the key space each
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Algorithm 7.4 Finding a node on a spanning tree ps = findTreeNode(p, t);
1: if t 
∈ topics(p) ∧ hash(t) 
∈ Mres

Icontrol
(p) then

2: pnext = p′ ∈ ρ(p) : d(FPIcontrol
(p′), hash(t)) < d(FPIcontrol

(p′′), hash(t))∀p′′ ∈ ρ(p)\p′

3: p = findTreeNode(pnext, t);
4: end if
5: return p

long-range link (finger) is responsible for, i.e., which link is used if a routing request on a
particular key arrives (it is a universal property of structured P2P overlays used for greedy
routing). Hence, every node on a spanning tree knows which are the ranges of the key space
Iskewed which its child nodes of the spanning tree are responsible for.

Algorithm 7.5 Finding a grafting point on the spanning tree pg =
findGraftingPoint(p, pjoining, t);
1: pclosest = p′ ∈ ρ(p) : d(FPIskewed

(p′), FPIskewed
)(pjoining)) <

d(FPIskewed
(p′′), FPIskewed

(pjoining)∀p′′ ∈ ρ(p)\p′

2: if (pclosest ∈ spanningTreeNodes(t)) ∨ (hash(t) ∈ Mres
Icontrol

(p)) then

3: return p

4: else

5: pparent = parent(p, t);
6: p = findGraftingPoint(pparent, pjoining, t);
7: end if

Once on the grafting point, the join process proceeds to the phase (iii) to graft a new branch
to the spanning tree with pjoining as a leaf node of that branch. It is done by a greedy route
message issued from the grafting node towards the newcomers key in Iskewed requesting all the
nodes on the path to join the spanning tree (Algorithm 7.6).

Algorithm 7.6 Grafting a spanning tree branch graft(p, pjoining, t);
1: pclosest = p′ ∈ ρ(p) : d(FPIskewed

(p′), FPIskewed
(pjoining)) <

d(FPIskewed
(p′′), FPIskewed

(pjoining))∀p′′ ∈ ρ(p)\p′

2: add pclosest as a child of p in the spanning tree of t;
3: if pclosest 
= pjoining then

4: graft(pclosest, pjoining, t);
5: end if

Spanning tree maintenance. The spanning tree is maintained with the heartbeat mes-
sages periodically propagating in the tree, ensuring the early discovery of inaccessible parent
nodes. Once a child node discovers that it cannot access its parent, it issues a new joinTree

request which reconnects the node to the nearest available branch of the tree.
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7.6.4. Gravity Join

To join Gravity network a newcomer peer executes gravityJoin (Algorithm 7.7) algorithm
which utilizes the aforementioned components. Initially a joining peer p joins the control ring
at a random location (line 1) and acquires the knowledge on the existing topics (line 2) by
updating its peer view. According to the view the peer then gets a suggestive location of the
place to join in the skewed ring (line 3). After joining the skewed ring (line 4), peer p becomes
a member of all the spanning trees to which topics it is interested in (line 5).

Algorithm 7.7 Join algorithm of gravity gravityJoin(p)
1: Join Icontrol ring at random location and establish Oscar connectivity with ρcontrol

connections.
2: acquire the information about the existing topics view(p)
3: FPIskewed

(p) = getLocation(p, view(p))
4: Join Iskewed ring at FPIskewed

(p) location and establish Oscar connectivity with ρskewed

connections.
5: ∀t ∈ T (p), joinTree(p, t)

7.6.5. Data Aggregation on the Spanning Trees

As one of the solutions for peer view acquisition we propose for every node on a spanning tree
for topic t to bear an information about a subset of peers interested in t. Specifically, a leaf
node of the tree for topic t propagates towards the root the info about itself and all its interests,
while the intermediate nodes propagate upwards only the info on a random subset of k peers
Pk. Upon receiving this aggregated information about the subscribers, the root propagates it
downwards, hence, making every node in the spanning tree to acquire a peer view consisting of
a set of k random peers of the spanning tree. The propagation of this information can be done
in a lazy fashion, and updated periodically with the spanning tree maintenance messages. In
such a way no node in the spanning tree is overloaded. Our simulations show that the subset
k can be as small as 1 peer (cf. Section 7.7.1.2).

7.7. Performance Evaluation

We implemented Gravity in a simulated setting and conducted extensive experimental study
to validate our performance and scalability claims. In our simulations Gravity was built on a
Oscar-based skewed structured overlay. We compared our system to a strawman – a regular,
unclustered DHT based implementation (similar that of Scribe [Castro et al. 2002]). In the
first part of our experiments we were using synthesized subscription models that have been
demonstrated in the prior work [Liu et al. 2005; Tock et al. 2005] to be a truthful representation
of correlated subscription patterns occurring in many real-world scenarios. Meanwhile, in the
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Figure 7.3. Adaptivity to the subscription correlation

second part of the experiments we used actual subscription models, namely Wikipedia users’
editing patterns and and pub/sub interest data set collected from IBM WebSphere4 application
management middleware.
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Figure 7.4. Peer degree distribution histogram.

7.7.1. Simulations using Synthesized Subscription Models

Unless stated otherwise, for the first part of the simulations we were experimenting with the
network, consisting of 10′000 nodes, where each node had on average 19 links (the peer degree
distribution is depicted in Figure 7.4) and Oscar sampling parameter (number of random-
walks) was k = 5. Every node could subscribe to a subset of 1000 unique topics. The Gravity
algorithm used a peer view of 10 samples as described in the section on data aggregation on
the spanning trees (cf. Section 7.6.5). Throughout the simulations Gravity was consistently
outperforming the strawman approach by considerable margins. In the following we will discuss

4 www.ibm.com/websphere/
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Figure 7.5. Bandwidth consumption.

the simulations in more detail.
To capture the correlation among the peer subscriptions we utilized the category-model

described in [Tock et al. 2005]. The overall collection of topics was first partitioned into a
fixed number bn of fixed size categories, and then, every peer had to choose bp categories
u.a.r. out of bn. Within each individual category the topics were assigned based on a power-
law distribution. In such a way we capture the peer subscription correlation behavior while
avoiding the shortcomings of the simple power-law model, namely the overpopulation of the
nodes with the most popular topics. The maximum amount of nodes that the most popular
topic can have is bp ∗ |bn|max, where |bn|max is the size of the biggest category. The degree of
correlation between the peer interests can be adjusted by changing the bp and bn parameters
while keeping the bp/bn ratio intact. That is, the resulting topic frequencies will be the same,
however, the correlation between the peer subscriptions will be the highest when bp → 1 and
the lowest (uncorrelated) when bp → bn.

7.7.1.1. Adaptivity to the Subscription Correlation

We performed extensive simulations to verify whether Gravity can exploit the subscription
correlation in the system. We used the above described category model and fixed the ratio of
bp/bn to 0.1 and 0.2. We were changing the bp and bn values from the most correlated (every
peer chooses one category out of 10 and 5 categories respectively) to the least correlated (5
categories out of 50 and 25 respectively). Following this model, every peer had been assigned
50 unique topics on average. We have tested our system with different publication rates for
each topic. In one experiment every topic was assigned a different publication rate, which was
drawn from a power-law distribution with α = 0.75, while in the other the publication rate
was uniform. Figure 7.3 shows that Gravity outperforms strawman implementation with both
publication rate scenarios even with very low subscription correlations. As expected, Gravity
performed better with non-uniform publication rate, because the rate is always taken into
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account by Gravity’s peer placement algorithms upon calculating similarity distance among
the peers.

Figure 7.5 shows the bandwidth consumption of Gravity as compared to the unclustered
DHT based implementation for the most correlated (Figure 7.5(a), bp = 1, bn = 10) and the
least correlated case (Figure 7.5(b), bp = 5, bn = 25) with the power-law topic publication rate
(α = 0.75). The expected bandwidth consumption volume is calculated as |t|λt, i.e., amount of
peers involved for publishing on a topic t, normalized by the expected publication rate on that
topic λt. The graphs reveal almost no overhead for the most popular topics, thus confirming
that Gravity is able to do efficient peer placement in the identifier space, which in turn results
in compact, bandwidth-efficient spanning trees.

7.7.1.2. Adaptivity to Incomplete Knowledge

In our experiments we also show that Gravity is robust enough to deal with the insufficient
or partial information on the existing topic information, i.e., not complete peer view. We
performed two sets of simulations, one with a peer view representing a uniform sample of the
whole population (e.g., a sample collected with random walkers) and the second a sample rep-
resenting a random subset of the related topics, as described in Section 7.6.5. Our simulations
reveal (Figure 7.7) that Gravity can make the right peer placement decisions with as low as
only 1 sample for each related topic per peer.

7.7.1.3. Other Results

We have also measured Gravity’s performance given different subscription sizes at each peer and
the impact of different topic distribution scenarios, where we were changing α parameter of the
power-law distribution, which influences the amount of the most popular topics in the system.
Figure 7.6(a) shows the performance of Gravity given different α values with the category model
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(bp = 1 and bn = 5) and uniform publication rate. Naturally, Gravity performs better with
the higher α values, since steep power-law function has an inherit correlation quality, i.e., more
peers tend to choose the same popular topics, thus increasing the topic correlation among them.
Figure 7.6(b) shows the performance of Gravity with uniform publication rate as compared to
the non-uniform (power-law with α = 0.75) one while changing the peer subscription sizes.
The results show that Gravity’s algorithms consistently outperforming unclustered DHT based
pub/sub systems given any subscription size.

7.7.2. Simulations using Wikipedia and WebSphere Subscription Patterns

In the second part of the simulations we have analyzed the behavior of Gravity performance
under realistic pub/sub scenarios. We used the trace of Wikipedia edits as the subscription
pattern inputs for our simulations. In this experimental setup every entry of the encyclopedia
was treated as a topic in our pub/sub system and unique wiki-users handled as Gravity peers.
The user edits on the encyclopedia entries were in turn interpreted as the respective peer
interests.

For our experiments we have selected 3000 random topics from the whole encyclopedia set,
which were edited by nearly 10′000 unique users. The topic popularity varied from 1 to 348
subscribers per topic, and on average every topic had 5.4 subscribers. Such subscription data
was fed to Gravity and to a pub/sub system based on unclustered DHT. Average peer degree
for both P2P networks was set to 12. We have measured the cost of publishing for each of
the topics in the network. The experiments showed that strawman implementation on average
involved 77% more uninterested peers for data publication than Gravity.

We have also obtained the subscription requests generated by the clients of the internal
monitoring infrastructure employed by the IBM WebSphere application management middle-
ware. From these WebSphere data traces we had extracted 6145 topics and 79 users. On
average every topic had 10.25 subscriptions, however, the divergence was quite extreme – there
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were topics with only one subscriber, as well as the topics populated on all the peers. Average
peer degree for Gravity and for our strawman implementation was set to 6. After the publish-
ing on all the topics, the experiments showed that unclustered DHT had on average to route
through 37% more uninterested peers than Gravity.

7.8. Conclusions

In this chapter we have presented Gravity, a Small-World overlay based infrastructure for
scalable topic-based pub/sub. Gravity takes advantage of the existing subscription correla-
tion patterns among the pub/sub users. The proposed technique allows the clusters of similar
interest peers to form in the underlying topology which enables the construction of efficient dis-
semination structures (spanning trees). Since clustering process leads to the non-uniform peer
identifer distributions, Gravity employs previously introduced Oscar overlay (cf. Chapter 5) as
the underlying topology. Because of the inherent Small-World design, Gravity scales well with
the number of nodes, and ensures fixed network degree regardless the number of topics or the
size of subscriptions.

In our experimental study we show that Gravity is able to achieve significant reduction
in the message dissemination cost, which under certain combination of parameters, can be as
high as 10-fold compared to the pub/sub systems based on DHTs with uniform node placement
(such as [Castro et al. 2002]). Furthermore, we demonstrate that this cost reduction is adaptive
to both the extent to which the individual node subscriptions correlate, and the amount of
information about the other node subscriptions available to each node. In particular, in the
worst case scenario, when the subscriptions are completely uncorrelated and/or unknown, the
message dissemination cost would not be worse as that of the uniform DHT based systems.



Chapter 8

Conclusions

Every solution breeds
new problems.

Arthur Bloch

The main focus of this thesis was to look into the design of the peer-to-peer systems from the
perspective of Small-Worlds. We have presented several novel overlay network design solutions
which harness the most useful properties of navigable Small-World topologies in order to address
many important problems in the field of data-oriented peer-to-peer systems. In this thesis we
have mostly concentrated on issues of resource load-balancing, effective data dissemination and
reduction of overlay maintenance costs.

To address these problems, we have presented a theoretical model for constructing struc-
tured overlays that supports non-uniform hash functions, which builds on the seminal research
of Jon Kleinberg [Kleinberg 2000] on navigable Small-World networks. Based on that model,
we designed a peer-to-peer system called Oscar, which besides supporting key distributions of
any complexity, has also the ability of seamlessly adapting to heterogenous peer environments.
We base our Oscar construction algorithms on a novel scalable sampling technique, supported
by a rigorous theoretical analysis. The experiments on Oscar validate the theory and show
that Oscar deals well with load-balancing issues.

Furthermore, we argue that the utilization of structured overlays which support non-
uniform key distributions is not limited to only supporting complex queries in data-oriented
peer-to-peer systems. We show that the flexibility of Small-World based overlays like Oscar can
be successfully exploited to address the problem of efficient data dissemination. Our novel pub-
lish/subscribe system called Gravity is a good example of such design solution and is verified
to be highly effective for large-scale data dissemination tasks.

In the thesis we have also approached the largely unexplored issue of abandoning mainte-
nance intensive topology structures (e.g., rings, hypercubes, toruses etc.) in structured overlays.
With our Fuzzynet technique, we show how by using the model of Small-Worlds it is possible
to drop the reliance on the widely used ring structure, while still retaining all the necessary
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properties of structured overlays.

8.1. Outlook

The overlay network design solutions presented in this thesis have well defined identifier spaces,
i.e., it is assumed that every peer has an unambiguous view of the identifier space in which
the decentralized routing is performed. However, more and more often, new types of applica-
tions emerge where the identifier space is not, or cannot be, defined precisely. For example,
for applications based on real-life social networks it becomes increasingly difficult to identify
the dimensionalities and the distance functions of the identifier spaces in which the networks
are embedded. Designing efficient navigational algorithms that are effective in such type of
environments is essential to produce even more flexible peer-to-peer systems which would be
well adapted for the upcoming Web 3.0 applications of the future.

There are a number of other aspects which have to be addressed as well. One of them is the
locality-awareness problem in building peer-to-peer systems, which becomes increasingly im-
portant in many real-life decentralized systems. Addressing this issue can result in a significant
boost of the performance of the peer-to-peer systems. Moreover, security and trust are critical
issues which should be considered in the design of peer-to-peer systems. Large-scale systems
are extremely vulnerable to the behavior of malicious or uncooperative peers, which ranges
from innocuous free-riding problem to malevolent Byzantine behavior or Sybil attacks. Failure
to address them might render many otherwise effective overlay networks nonoperational.

Although the aforementioned problems were not explicitly touched in this thesis, there are
good reasons to believe that the ideas behind Small-World based algorithms which we used to
design flexible heterogenous peer-to-peer systems and to reduce their maintenance cost, can be
also potentially applied for addressing locality, trust and reputation issues.
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