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Le but de la fusion thermonucléaire est de construire des centrales électriques qui seront ca-

pables de produire un gigawatt d’électricité. Parmi les différentes méthodes pour produire

la fusion, le tokamak, basé sur le confinement magnétique, est le moyen le plus promet-

teur. Un gaz est chauffé jusqu’à cent millions de degrés et se transforme en plasma, qui

est maintenu - ou confiné - dans une chambre torique par des lignes de champ magnétique

hélicöıdales. Puis, du deutérium et du tritium sont injectés et fusionnent, créant une

particule alpha et un neutron energétique. Pour avoir un bilan de puissance favorable,

la puissance dégagée par les réactions de fusion doit excéder la puissance nécessaire au

chauffage du plasma additionnée aux pertes. Ceci peut-être traduit dans une expres-

sion très simple qui stipule que la multiplication de la densité, de la température et du

temps de confinement de l’énergie doit être plus grande qu’une certaine valeur donnée.

Malheureusement, les tokamaks actuels ne sont pas capables d’atteindre cette condition,

notamment à cause de la turbulence dans les plasmas. Ce phénomène accrôıt les pertes

de chaleur et dégrade le temps de confinement de l’énergie, qui ne peut pas être prédit

par des théories analytiques telles que la théorie dite ”néoclassique”, dans laquelle les

pertes de chaleur sont provoquées par les collisions Coulombiennes. Par conséquent, des

simulations numériques sont développées pour modéliser la turbulence dans les plasmas,

principalement due aux instabilités de gradient de température ionique et d’électrons

piégés. L’état du plasma est décrit par une fonction de distribution, dont l’évolution est

régie par l’équation de Vlasov. Les champs électromagnétiques créés par les particules

sont calculés de façon consistante au travers des équations de Maxwell. Le système ainsi

obtenu, appelé système Vlasov-Maxwell est grandement simplifié en utilisant la théorie

gyrocinétique, qui consiste, par un ”ordering” approprié, à éliminer le mouvement rapide

(comparé aux fréquences typiques des instabilités considérées) de gyration autour des

lignes de champ. Néanmoins, il est toujours extrêmement difficile de résoudre ce système

numériquement, dû à la grande gamme d’échelles spatiales et temporelles impliquées.

Dans cette thèse, le système Vlasov-Maxwell est résolu de façon globale dans la limite

électrostatique et non-collisionnelle à l’aide du code ”Particle-In-Cell” ORB5 pour une

géométrie de type tokamak. Cette approche de type Monte-Carlo est affectée par la

présence de bruit statistique qui dégrade inévitablement la qualité de la simulation. Par

conséquent, la première partie de ce travail a été consacrée à l’optimisation du code en
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vue de réduire le bruit numérique. Le code a été réécrit dans un nouveau système de

coordonnées qui utilise l’anisotropie de la turbulence, qui est principalement alignée avec

les lignes de champ magnétique. Le résultat global de l’optimisation est que pour une

précision donnée, le temps CPU a décru d’un facteur deux mille, la mémoire totale a été

réduite d’un facteur dix et le bruit numérique a été réduit d’un facteur deux cents. De

plus, le scaling du code en fonction de la taille du plasma est à présent optimal, ce qui

laisse présager que ORB5 pourra calculer le transport de chaleur des futurs installations

de fusion telles que ITER. La deuxième partie de cette thèse présente la validation du

code au travers de différents tests de convergence ainsi que des comparaisons linéaires (y

compris des relations de dispersion) et non-linéaires. En outre, le code a été appliqué à

d’importants problèmes liés à la théorie gyrocinétique. Il est démontré pour la première

fois qu’un code delta-f global PIC à cinq dimensions est capable d’atteindre un équilibre

thermodynamique à condition que le système contienne de la dissipation. Il s’agit d’un

résultat fondamental étant donné que le principal reproche émis à l’encontre des codes

delta-f PIC est leur incapacité à effectuer de longues simulations. Puis, le rôle de la non-

linéarité parallèle a été étudié et il est montré dans ce travail que ce terme n’a pas de

réelle influence sur la turbulence à condition que le bruit numérique soit faible. Ce résultat

devrait mettre un terme à la controverse qui est née récemment, dans laquelle des simu-

lations gyrocinétiques utilisant diverses approches numériques ont obtenus des résultats

contradictoires. Finalement, grâce à l’optimisation du code, le modèle gyrocinétique a été

élargi pour inclure la réponse cinétique des électrons piégés à la place de l’approximation

adiabatique (Boltzmann) habituelle. Pour la première fois, des simulations non-linéaires

globales de la turbulence de type TEM sont présentées, et le rôle des écoulements zonaux

sont analysés. Cette étude permet d’acquérir des connaissances supplémentaires sur la tur-

bulence TEM, qui est moins connue que la turbulence ITG. En conclusion, cette thèse est

l’une des étapes principales du développement de ORB5 qui est maintenant un des codes

à la pointe pour l’étude de la turbulence ITG et TEM dans la limite non-collisionnelle, et

elle a apporté plusieurs contributions utiles à la compréhension de ce phénomène.

Mots clés: plasma, tokamak, fusion, gyrocinétique, turbulence
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Abstract

The goal of thermonuclear fusion research is to provide power plants, that will be able

to produce one gigawatt of electricity. Among the different ways to achieve fusion, the

tokamak, based on magnetic confinement, is the most promising one. A gas is heated

up to hundreds of millions of degrees and becomes a plasma, which is maintained - or

confined - in a toroidal vessel by helical magnetic field lines. Then, deuterium and tri-

tium are injected and fuse to create an α particle and an energetic neutron. In order

to have a favorable power balance, the power produced by fusion reactions must exceed

the power needed to heat the plasma and the power losses. This can be cast in a very

simple expression which stipulates that the product of the density, the temperature and

the energy confinement time must exceed some given value. Unfortunately, present-days

tokamaks are not able to reach this condition, mostly due to plasma turbulence. The latter

phenomenon enhances the heat losses and degrades the energy confinement time, which

cannot be predicted by analytical theories such as the so-called neoclassical theory in

which the heat losses are caused by Coulomb collisions. Therefore, numerical simulations

are being developed to model plasma turbulence, mainly caused by the Ion and Elec-

tron Temperature-Gradient and the Trapped-Electron-Mode instabilities. The plasma

is described by a distribution function which evolves according to the Vlasov equation.

The electromagnetic fields created by the particles are self-consistently obtained through

Maxwell’s equations. The resulting Vlasov-Maxwell system is greatly simplified by using

the gyrokinetic theory, which consists, through an appropriate ordering, of eliminating

the fast gyromotion (compared to the typical frequency of instabilities). Nevertheless,

it is still extremely difficult to solve this system numerically due to the large range of

time and spatial scales to be resolved. In this thesis, the Vlasov-Maxwell system is solved

in the electrostatic and collisionless limit with the Particle-In-Cell (PIC) ORB5 code in

global tokamak geometry. This Monte-Carlo approach suffers from statistical noise which

unavoidably degrades the quality of the simulation. Consequently, the first part of this

work has been devoted to the optimization of the code with a view to reduce the numerical

noise. The code has been rewritten in a new coordinate system which takes advantage of

the anisotropy of turbulence, which is mostly aligned with the magnetic field lines. The

overall result of the optimization is that for a given accuracy, the CPU time has been

decreased by a factor two thousand, the total memory has been decreased by a factor
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ten and the numerical noise has been reduced by a factor two hundred. In addition, the

scaling of the code with respect to plasma size is presently optimal, suggesting that ORB5

could compute heat transport for future fusion devices such as ITER. The second part of

this thesis presents the validation of the code with numerical convergence tests, linear (in-

cluding dispersion relations) and nonlinear benchmarks. Furthermore, the code has been

applied to important issues in gyrokinetic theory. It is shown for the first time that a 5D

global delta-f PIC code can achieve a thermodynamic steady state on the condition that

some dissipation is present. This is a fundamental result as the main criticism against

delta-f PIC codes is their inability to deal with long time simulations. Next, the role of the

parallel nonlinearity is studied and it is demonstrated in this work that this term has no

real influence on turbulence, provided the numerical noise is sufficiently low. This result

should put an end to the controversy that recently occurred, in which gyrokinetic simula-

tions using different numerical approaches yielded contradictory results. Finally, thanks

to the optimization of the code, the gyrokinetic model has been extended to include the

kinetic response of trapped-electrons, in place to the usual adiabatic (Boltzmann) approx-

imation. For the first time, global TEM nonlinear simulations are presented, and the role

of the zonal flow on heat transport is analyzed. This study will help in acquiring some

knowledge on the less-known TEM turbulence (as compared to ITG). In conclusion, this

thesis is one of the main steps of the development of ORB5, which is now a state-of-the-

art gyrokinetic code for collisionless ITG and TEM turbulence, and has brought several

contributions to the understanding of these phenomena.

Keywords: plasma, tokamak, fusion, gyrokinetics, turbulence
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Chapter 1

Introduction

1.1 Anomalous transport

Thermonuclear fusion is undoubtedly one of the most promising energy sources for the

future. The cross section of the nuclear reaction, through which two nuclei of Deuterium

and Tritium combine into an α-particle and a neutron, becomes important at very high

temperatures, typically 10 KeV. At this temperature, the nuclei and the electrons are not

bound anymore. This is called the plasma state and it can be viewed as a gas of charged

particles. The sun is an example of a plasma confined by gravitational forces. A plasma is

also sensitive to electromagnetic fields. This property has led to the concept of tokamak:

in a toroidal vessel, twisted magnetic fields are used to confine charged particles. The

toroidal magnetic field is obtained with magnetic coils. A toroidal current is produced by

induction, resulting in a poloidal magnetic field. It averages out the vertical drifts of ions

and electrons due to the curvature and the inhomogeneity of the toroidal magnetic field.

A vertical field is applied to stabilize the plasma. Another alternative for magnetic fusion

is the stellerator, in which the poloidal magnetic field is produced by external magnetic

coils. In a fusion reactor, several mechanisms are used to heat the plasma: the toroidal

current (Ohmic heating), external Radio-Frequency (RF) wave heating, Neutral Beam

Injection (NBI) and Coulomb collisions of α-particles. A large power input is needed

to create the plasma. Part of this power is lost through various mechanisms such as

turbulence or radiation, but power will be produced through the fusion reactions. It is

naturally required to have a positive power balance. This is summarized in the Lawson
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criterion [1]:

neTτE ≥ 1021[keVs/m3] (1.1)

where ne is the electron density, T is the temperature and τE is the energy confinement

time. The left hand side of this formula is also called the triple product. It simply means

that the plasma has to be dense and hot enough for a sufficiently long time. Future reactors

such as the International Thermonuclear Experimental Reactor (ITER) [2], should satistfy

the Lawson criterion. Then, the ultimate goal of fusion would be to reach ignition, for

which the plasma temperature is maintained with α-particles heating only. In a tokamak,

the density is limited by the Greenwald density limit [3]. The temperature and the energy

confinement time are limited by radial heat losses. The latter is linked to a diffusion

coefficient D, which can be expressed as a random walk coefficient D = ∆x2/∆t, where

∆x (resp. ∆t) are the characteristic size (resp. time) of the diffusive process. The

neoclassical estimate, which takes collisions and particle trapping into account, gives, in

the low collisionality limit:

D ∼= ρLiq
2ν

(
R0

a

)3/2

(1.2)

Where ρLi is the ion Larmor radius, q is the safety factor, measuring the helicity of the

magnetic field lines, ν is the collision frequency, R0 and a are the major and minor radius

of the tokamak. Unfortunately, the perpendicular diffusion coefficient measured in exist-

ing tokamaks exceeds the neoclassical estimate by up to 2 orders of magnitude for the

low confinement regime (L-mode) [4]. This phenomenon is called anomalous transport

and is one of the most active fields of research in magnetic confinement fusion. Even

in the high confinement regime (H-mode) where transport is reduced near the plasma

edge, anomalous transport still persists in the core. Anomalous transport is attributed to

plasma turbulence [5], which is driven by microstabilities [6]. The latter are mainly gen-

erated by free sources of energy in the plasma such as density and temperature gradients.

There is a large variety of microstabilities, classified in different ways. Ion instabilities

are the Ion-Temperature-Gradient (ITG) modes (often called ηi modes), driven by the

ion temperature gradient. They can be divided into the slab-ITG mode, the toroidal-ITG

mode (interaction between the temperature gradient and the magnetic field curvature)

and the Trapped Ion Mode (TIM). The main electron instabilities are the electron drift
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waves, the Electron-Temperature-Gradient (ETG) modes, which are also divided into slab

and toroidal branches, and the Trapped-Electron-Mode (TEM) (divided into dissipative

and collisionless branches), due to the precessional drift of trapped electrons in a toka-

mak. In addition to electrostatic instabilities, electromagnetic instabilities such as Kinetic

Ballooning Modes (KBM) [7], Alfvenic-Ion-Temperature-Gradient Mode (AITG) [8], and

Neoclassical Tearing Modes (NTM) [9] play an important role. Finally, fluid-like instabil-

ities such as resistive ballooning modes may have a significant contribution to the anoma-

lous transport. This brief overview already points out the complexity of the problem of

turbulence in magnetised plasmas, as many parameters must be taken into account.

A first simplified approach to study turbulence is given by the Hasegawa-Mima equa-

tion [10], which further leads to improved models (see for example [11]). The radial

transport is then described as a diffusive process with the heat diffusivity χ estimated

from a mixing length argument χ ∼= γ/k2
⊥, where γ is the maximum growth rate and k⊥

is the typical perpendicular wave number of the instability. In other words, it means that

the transport depends on the eddy size of the instability. The validity of the mixing-

length estimate is controversial [5]. This issue is of considerable importance: transport

coefficients, and therefore the energy confinement time, depend on many factors. For

ITER, τE is determined with empirical scaling laws, such as the ITER reference scaling

ITERH-98P(y,2) [4]:

τE = 0.0562HH98(y,2)I
0.93B0.15n̄0.41

1 9P−0.69R1.97
0 κ0.78

a ǫ0.58M0.19 (1.3)

where HH98(y,2) is some constant of order unity, I is the plasma current [MA], B is the

toroidal magnetic field [T], n̄19 is the electron density (in 1019m−3 units), P is the net

heating power [MW], R0 is the major plasma radius [m], κa is the plasma elongation,

ǫ = a/R0 is the inverse aspect ratio and M the average hydrogenic atomic mass number.

Other scalings exist, depending on the scenario. Microturbulence affects this scaling,

establishing the need for a fundamental understanding of its characteristics. However, the

exponents of these scalings are constrained. For example, the Kadomstev constraint [12]

leads to:

BτE ∼ (ρ∗)−2.7 β−0.9 (ν∗)−0.01 q−3 (1.4)

where ρ∗ = ρs/a, ρs is the ion sound gyroradius, β is the normalized plasma pressure, ν∗ is

the normalized collisionality and q is the safety factor. This shows the importance of the
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plasma size in ρs units. Scalings are designed from existing tokamaks experiments that

are much smaller than ITER. First principles simulations, i.e. simulations whose model

is derived from a Lagrangian or a Hamiltonian approach will be in this sense a useful

tool to assess the validity of these scalings: if the eddy size is microscopic (comparable

to ρs), then the transport scaling is gyro-Bohm, in other words inversely proportional to

the plasma size. On the contrary, if the eddy size is macroscopic, the scaling is said to

be Bohm-like, i.e. χi ∝ Te/B and the heat transport will scale with the plasma size.

Although ρ∗ scaling determination leads to different results [13, 14, 15, 16], it is now

widely believed that self-organization of turbulence plays a crucial role. It refers to a

process in which the internal organization of a system increases without being guided or

managed by an outside source. In magnetised plasmas, self-organization mainly appears

through two different structures: zonal flows and large-scale transport events (avalanches

and streamers).

Zonal flows are linearly stable convective cells elongated in the poloidal and toroidal di-

rections. They can be generated through different processes: the radial gradient of the

Reynold stress [17], a secondary instability of the Kelvin-Helmholtz type [18] or by pres-

sure asymmetries on a flux surface due to the geodesic curvature [19]. It is known that

zonal flows are stabilizing, since they receive energy from the drift wave and shear the

eddies. An overview of zonal flows can be found in [20]. Zonal flows can be experimentally

observed by density fluctuations, potential or radial electric field measurements. The main

difficulty comes from the poor radial and temporal resolution of the different diagnostics.

For example, it is very hard to distinguish between the zonal flow and the mean ~E × ~B

flow. Large-scale events appear in the form of avalanches [21] and streamers [22, 23] which

enhance anomalous transport.

Despite all the progress made in the experiments and the turbulence modeling, the devel-

opment of first-principles simulations remains a crucial point to understand anomalous

transport. Its effect affects the whole scaling (1.3). Therefore, there is a need to develop

models that contain as many relevant effects as possible, such as collisionality, electron

dynamics, impurities, α-particles and diverted geometry, and then to understand the

physical processes that control plasma turbulence. Because experimental uncertainties

are large and because most of the transport models do not take turbulence effects prop-

erly into account, first principles based numerical simulations are very much required.
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They are able to isolate the influence of a single physical quantity and operate in a wide

range of time and length scales, whereas it is a great challenge to vary only one param-

eter in a series of experiments and to keep the remaining parameters fixed. Moreover,

simulation models can be verified by means of analytical studies, but are only valid over

a certain spatio-temporal window.

1.2 Numerical treatment of microinstabilities

There is a wide variety of approaches to describe microinstabilities: the fluid approach

consists of computing the time evolution of moments of the distribution function (see for

example [24, 25]). Fluid equations have then been modified to include kinetic effects. It is

called the gyrofluid approach [26], and is able to handle Landau damping [27], FLR [28]

and toroidal drift resonances [29]. Note that gyrofluid codes are also able to study edge

turbulence [30], [31]. Unfortunately, fluid and gyrofluid simulations with standard closure

artificially damp the zonal flows (a component of which, the Rosenbluth-Hinton residual,

is undamped in the collisional limit). Since zonal flows are regulating ITG turbulence,

the fluid and gyrofluid models generally overestimate ion transport. Various closures have

been proposed to solve this problem.

Obviously, a full kinetic treatment of microinstabilities is needed. In this framework, the

gyrokinetic model [32] is the most suitable method: the aim is to get rid of the gyoran-

gle dependence in the original equations, thus reducing the phase space from 6D to 5D.

Various gyrokinetic equations can be found in [33, 34, 35, 36]. Three different numerical

approaches are used to solve the gyrokinetic equations. In the Eulerian scheme [37, 38, 39],

the distribution function is discretized on a fixed grid and is solved with spectral or finite

difference methods. The main difficulties come from the Courant-Friedrich-Levy (CFL)

condition and the convergence with respect to the 5D grid size, which can be difficult

to show. The semi-Lagrangian method [40, 41, 42, 43] uses a fixed grid in time whereas

the Vlasov equation is integrated along trajectories. This method removes the CFL con-

straint, but can, as for Eulerian simulations, lead to negative values of the distribution

function. Finally, the Particle-In-Cell (PIC) method [32, 44, 45, 46, 47, 48, 49] is one

of the most promising schemes to study microinstabilities in the gyrokinetic framework:

the distribution function is sampled along trajectories with numerical particles (markers).
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This approach is conceptually simple, easily generalized to multi-dimensional simulations,

more adapted for complex geometries such as stellerators [50, 51] and computationally less

expensive than the Eulerian and the semi-Lagrangian methods. The disadvantage of the

PIC method is the unavoidable statistical noise associated with the sampling using mark-

ers. However, significant progresses have been made to limit this numerical noise [52, 53].

In addition to the solving methods, another important distinction between the different

models is the simulated domain. In local simulations, turbulence is studied on a single

magnetic surface. A less restrictive method is to simulate a flux-tube following a given

magnetic-field line. This approach reduces the computer resources needed, but imposes

inconsistent T and ∇T profiles (i.e. T = const,∇T = const). The global approach is cer-

tainly the most realistic model, because it contains the whole radial domain and therefore

the effects of profile variation.

Independently of the numerical method used, many assumptions are made for global sim-

ulations to keep the CPU time reasonable. In the simplest global ITG model, electrons are

adiabatic, turbulence is electrostatic, collisions are neglected and the magnetic surfaces

are approximated as circular. However, with the rapid increase of large-scale computers,

one is progressively able to relax these assumptions and to take more and more effects

into account.

1.3 Contribution of this thesis

The aim of the thesis is the development and the application of the ORB5 code, orig-

inally written by Parker [45] and further developed by Tran [44]. ORB5 is a nonlinear

gyrokinetic global code which solves the Vlasov-Poisson system in the electrostatic and

collisionless limit and has the capability of handling true MHD equilibria [54, 55]. When

this work was started, the main weakness of the code was that it did not take advantage of

the alignment of turbulence with the magnetic field. The consequences were that numer-

ical noise was exceedingly large and the scaling of computing resources with plasma size

was bad. Therefore, the code has been rewritten with a new system of coordinates and an

improved Fourier filtering technique. There are numerous benefits: for ITG turbulence,

the scaling of CPU time required to simulate a whole plasma of minor radius a = ρs(ρ
∗)−1

goes from (ρ∗)−4 to (ρ∗)−2, resulting in massive CPU savings: it will be shown why the
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time step can be increased and why the number of particles needed for a noise-reduced

simulation can be reduced. An acceptable energy conservation has been obtained. The

memory has been strongly reduced by developing new solvers for the Poisson equation.

Furthermore, a very good scaling with the number of processors has been shown.

When this work was started, electrons were approximated as adiabatic. This underesti-

mates transport of ITG modes, which are destabilized by trapped electrons. Adiabatic

electrons do not allow the study of TEM modes. Nonlinearly, it is difficult to study these

modes because it is required to solve both the fast electron and the slow ion dynamics.

In addition, passing electrons are not adiabatic on rational surfaces and a large radial

resolution is needed. For these reasons, a kinetic trapped electrons model has been de-

veloped, in which passing electrons remain adiabatic. This model has been applied to

study nonlinear physics associated to TEM turbulence. While it is well known that zonal

flows shearing acts as a saturation mechanism for ITG turbulence, their effect on TEM

turbulence remains unclear [56, 57]. However, these simulations were done in flux-tube

geometry. For the first time, the effects of zonal flows on TEM heat transport in a global

model are investigated. These huge simulations were possible thanks to the numerous

optimizations brought to ORB5.

The improved version of the code has also been used to revisit the impact of the parallel

nonlinearity, which has been controversial. Results prove that the differences observed

with the old version of ORB5 were due to numerical noise. When this issue is properly

treated, the parallel nonlinearity does not significantly modify the zonal flow structure.

Finally, one of the most original result presented in this work concerns the entropy. Stan-

dard δf PIC simulations reach a quasi-steady state for which the entropy (proportional

to numerical noise) grows linearly in time in the late nonlinear phase, making them

inadequate for quantitative predictions. In ORB5, a noise-control algorithm has been

implemented [58] which has been designed in order to make long simulations. In this

thesis it is shown, through the numerical study of a fluctuation entropy balance equation,

that ORB5 simulations employing this noise-control algorithm reach a steady-state. This

result is a key step towards the reliability of gyrokinetic PIC simulations with the view

of comparing them with fusion experiments.
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1.4 Outline

The thesis is organized as follows. The basic linear physics of microinstabilities is ex-

plained in Chapter 2 with the help of dispersion relations. In Chapter 3, the gyrokinetic

model of ORB5 is described. The detailed discretization of the model equations is derived

in Chapter 4, and in particular the new implementation using magnetic coordinates. The

numerical aspects of ORB5 are shown in Chapter 5, such as noise reduction through the

new Fourier filtering technique, linear convergence, comparisons with linear dispersion

relations, and benchmark with other gyrokinetic codes. In Chapter 6, ORB5 is applied

to two important issues in the gyrokinetic theory: the notion of steady state and the role

of the parallel nonlinearity. In Chapter 7, the trapped electron model implemented in

ORB5 is presented, together with numerical convergence studies, comparisons with linear

dispersion relations and other gyrokinetic codes. The final part of Chapter 7 deals with

nonlinear studies of TEM turbulence, in particular the role of the zonal flows. Finally,

the conclusions and the future perspectives are presented in Chapter 8.
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Chapter 2

A local linear model for

microinstabilities

Microinstabilities are electromagnetic perturbations driven through free energy channels

such as temperature and density gradients. Although these turbulent processses are fun-

damentally nonlinear, an analytical study of their linear properties is a good starting

point to understand the basic physical phenomena leading to these instabilities. In this

Chapter, several dispersion relations originally developed in [59] are presented and the

influence of the main parameters are discussed. A comparison with ORB5 will be given

in Chapter 5 for the case of adiabatic electrons and in Chapter 7 for the case of kinetic

trapped electrons. S.I. units will be used.

2.1 Basic concepts

Before discussing properties of microinstabilities, some basic concepts of plasma physics

are introduced.

2.1.1 Particle drifts

The projection of the particle motion on a plane perpendicular to a straight and homo-

geneous magnetic field ~B is called the cyclotron motion. Particle have a helix motion

around the field lines. The associated radius is called the Larmor radius, ρL = mv⊥/(qB)

, where m is the mass, q is the charge, and v⊥ is the velocity perpendicular to the mag-
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netic field. The associated frequency is the cyclotron frequency Ω = qB/m. However,

this motion changes when the particle is submitted to an external force or if the magnetic

field becomes curved or inhomogeneous. If the particle is submitted to an external force

~F , supposed constant, then the motion is:

v‖(t) = v‖(t0) +
F‖

m
(t− t0) (2.1)

~v⊥ = ~vD + ~̃v⊥ (2.2)

~vD =
1

qB2
~F⊥ × ~B (2.3)

with ṽ⊥ is the perpendicular velocity of the cyclotron motion. In addition to its cyclotron

motion, the particle has a drift velocity ~vD perpendicular to the magnetic field. For

example, if the particle is submitted to a constant electric field ~E, the drift velocity will

be ~vD = ( ~E⊥ × ~B)/B2, independent of the electric charge. The left plot of Fig. 2.1

displays such a trajectory. During one half of its giration, the particle is slowed down

by the electric field, resulting in a smaller Larmor radius. During the other half, the

particle is accelerated by the electric field, resulting in a larger Larmor radius. Electrons

and ions would drift in the same direction because both their gyromotion and the electric

force change directions. A similar effect occurs if the magnetic field has a perpendicular

gradient. Suppose ~B = Bz(y)~ez. The change of the magnetic field during the particle’s

gyration modifies the Larmor radius and causes particles to drift. The problem is too

complex to be solved analytically; if the magnetic field is sligthly inhomogeneous, that is

if ρL ≪ B/|∇B|, one can expand Bz(y) around y = 0, Bz
∼= B0 + y∂Bz/∂y + O(y2), and

so at first order:

Fy = −qvxBz(y) ∼= −qB0v⊥ cos(Ωt) ∓ qρLv⊥ cos2(Ωt)
∂B

∂y
(2.4)

This force is not constant; however by averaging it on an orbit gyration, one have Fy =

∓1
2
qρLv⊥∂B/∂y. The choice of the y axis for the gradient was arbitrary and so using (2.3):

v∇B =
m

qB2

v2
⊥

2

(
~B

B
×∇B

)
(2.5)

For this kind of drift, ions and electrons drift in opposite directions.

If the magnetic field is curved with a radius of curvature Rc, it is of the form ~B = Bθ~er.

Particles will experience a centrifugal force ~F = mv2
‖
~Rc/R

2
c , giving rise to a drift:

vR =
m

qB2
v2
‖

(
~B

B
×∇B

)
(2.6)
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Figure 2.1: The ~E × ~B drift (left) and the confinement loss in a tokamak (right).

In the vacuum, ∇ × ~B = 0, yielding ~Bθ ∝ 1/r: a curved magnetic field must have a

gradient, which means that both v∇B and vR contribute to the drift. In particular, it is

impossible to confine a plasma with a purely toroidal magnetic field: ions and electrons

would rapidly drift in opposite directions, creating a vertical electric field which would

give rise to an outward radial ~E × ~B drift for all charged particles. All particles would

hit the edges of the vessel within a few milliseconds. This situation is summarized on the

right plot of Fig. 2.1.

2.1.2 Particle trapping

In this Section, the case of a gradient parallel to the magnetic field is examined. Suppose

~B = Bz(z)~ez , Bθ = 0, ∂/∂θ = 0. Because of ∇ · ~B = 0, the magnetic field must have a

radial component:

Br = −1

r

∫ r

0

r′
∂Bz

∂r′
dr′ (2.7)

If the gradient does not vary much with r:

Br
∼= −1

2
r
∂Bz

∂z

∣∣∣∣
r=0

(2.8)
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Figure 2.2: Picture of the diamagnetic drift in the case of a density gradient.

This will give a force Fz parallel to the gradient of the magnetic field. Averaging this

force on a gyration:

Fz = −mµ∂Bz

∂z
(2.9)

Where µ = v2
⊥/(2B) is the magnetic moment of the particle. The magnetic moment is an

adiabatic invariant, i.e. it is constant provided the magnetic field does not vary too much

in time. This parallel force can cancel the parallel velocity of the particle, which is given

by v‖ =
√

2E −mµB where E = 1/2mv2 is the kinetic energy. When a particle moves

up the gradient, v‖ decreases. If the initial parallel velocity is small enough, one can have

v‖ = 0, and then v‖ < 0. The particle will go down the gradient and accelerate. It is then

easy to figure out a way to create a magnetic mirror, in which some particles are reflected

back and forth. The particle is said be trapped in the magnetic field. The condition for a

particle to be trapped is:

sin λ >

√
B0

Bmax

(2.10)

Where λ = tan−1(v⊥/v‖) is the pitch angle of the particle.

2.1.3 Fluid drift

Many plasma phenomena can be explained by using a fluid representation. If this fluid

has a density or a temperature gradient, the fluid will drift perpendicularly to ~B and

∇n,∇T . This drift is called the diamagnetic drift and is explained on Fig. 2.2. Inside a

small fluid element, because of the density gradient there will be more particles going to
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the right, leading to a net flow. The same phenomenon occurs for a temperature gradient:

particles in the high temperature region have a larger velocity and so the fluid will drift.

2.2 The drift wave

In this Section, a simple fluid model is derived to show that the presence of a density

gradient leads to a new class of waves called drift waves. The equations are:

∂Ni

∂t
+ ∇ · (Ni~ui) = 0 (2.11)

mi

(
∂~ui
∂t

+ ~ui · ∇~ui
)

= e
(
~E + ~ui × ~B

)
(2.12)

Ne = Ne0 exp

(
eφ

Te

)
∼= Ne0

eφ

Te
(2.13)

Ne0 +Ne0
eφ

Te
= Ni0 + δNi (2.14)

where φ is the electrostatic potential, Ni is the ion density, Ne is the electron density, Te is

the electron temperature and ~ui is the ion velocity. The first equation is the ion continuity

equation, the second equation is the ion momentum equation. Ions are assumed to be

cold so there is no pressure gradient term. The third equation expresses the adiabaticity

of electrons and the fourth equation is the Poisson equation written in the quasineutrality

limit (this approximation will be described in Section 3.6.3). At equilibrium, Ne0 = Ni0 =

N0. Assuming perturbations of the form exp(−iωt) and linearizing to first order:

−iωδNi = −N0∇ · ~ui − ~ui · ∇N0 (2.15)

−iωmi~ui = e
(
−∇φ + ~ui × ~B

)
(2.16)

δNe =
eφ

Te
= δNi (2.17)

By taking the cross product of the momentum equation with ~B, the ion velocity becomes:

~u ∼= −∇φ× ~B

B2
+

iω

ΩiB
∇⊥φ− iΩi

ωB
∇‖φ~e‖ (2.18)

having assumed low frequencies, i.e. ω ≪ Ωi and where ∇‖ = ~B/B ·∇ is a scalar operator.

The ion velocity is the sum of the ~E × ~B drift, the polarization drift and the oscillatory

parallel motion. Inserting this equation in the continuity equation and replacing δNi in

the quasineutrality equation, one obtains an equation for φ:
(

1 − ρ2
s∇2

⊥ +
c2s
ω
∇2

‖ −
1

iω
~vNe · ∇

)
φ = 0 (2.19)
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Where cs =
√
Te/mi is the sound speed, ρs is the ion sound radius and the diamagnetic

velocity is ~vNe = Te/B
2(∇ lnN0 × ~B). The potential is written as exp(i~k · ~r), with

~k = ky~ey + kz~ez. The wave vector must have a small parallel component otherwise the

adiabatic assumption is not valid anymore. The dispersion relation finally is:

[
1 + (kyρs)

2
]
ω2 − ωNeω − c2sk

2
z = 0 (2.20)

with ωNe = ~k · ~vNe is the diamagnetic frequency. If there is no density gradient, the

solution is:

ω2 =
k2
zc

2
s

1 + (kyρs)2
(2.21)

which is the the dispersion relation of the ion sound wave in homogeneous magnetized

plasmas. With a density gradient, the solution is:

ω =

ωNe ±
√
ω2
Ne + 4(kzcs)2

[
1 + (kyρs)2

]

2
[
1 + (kyρs)2

] (2.22)

In the large gradient limit |ωNe| ≫ |kzcs|, the solutions become:

ω =
ωNe

1 + (kyρs)2

{
1 +

(
kzcs
ωNe

)2 [
1 + (kyρs)

2
]
}

(2.23)

ω = − ωNe
1 + (kyρs)2

{(
kzcs
ωNe

)2 [
1 + (kyρs)

2
]
}

(2.24)

The physical mechanism for the drift wave is explained on Fig. 2.3. An electrostatic

perturbation is propagating in the horizontal direction. This will create local electric

fields which will induce ~E× ~B drifts. Convection cells will rotate clockwise for a potential

maximum and counterclockwise for a potential minimum. The adiabatic electrons ensure

that the density and the potential are in phase. Due to the density gradient direction, the

density will increase on the left of a maximum and will decrease on the right of a maximum:

the density will propagate on the left, in the same direction as in the diamagnetic drift.

The fluid model exposed in this Section does not show any instability. Although it is

possible to develop fluid models that predict unstable waves, the kinetic theory is a more

appropriate tool because it accounts for wave-particle interactions. This is the topic of

the next Section.

14



− + −
E

Ev
ExB

v
ExB

∇  n

B

v
Ne

Figure 2.3: Physical mechanism of the drift wave.

2.3 A dispersion relation for slab-ITG instability

In this Section, a simple standard kinetic model, based on [59] is presented to show how

density and temperature gradients can lead to instabilities in the plasma. As they degrade

the confinement in tokamaks, an understanding of their physical properties is of primary

importance. The case of a slab geometry is considered. Let (~ex, ~ey, ~ez) be a orthonormal

coordinate system. The magnetic field is uniform along the z axis, i.e. ~B = B~ez. The

system has temperature and density gradients along the x direction. In addition, this

system is submitted to an external force ~F = F~ex, perpendicular to ~B. The Lagrangian

of a particle of charge q and of mass m is:

L =
1

2
m~v2 + Fx+ qvyxB (2.25)

y is a cyclic coordinate and so X = x+ vy/Ω is a constant of motion. The plasma state

is described with a distribution function f(~x,~v, t). f(~x,~v, t)d~xd~v provides the number of

particles whose position is between ~x and ~x + d~x and whose velocity is between ~v and

~v + d~v, at time t. Assuming a collisionless plasma1, the Vlasov equation that gives the

temporal evolution of f is:

df

dt
=
[ ∂
∂t

+ ~v · ∂
∂~r

+
1

m
(q~v × ~B + ~F ) · ∂

∂~v

]
f = 0 (2.26)

where m is the particle mass and q is the particle charge. A perturbative approach is used,

i.e. f is separated into an equilibrium part f0 and a perturbed part δf with |δf | ≪ |f0|.
1The plasma collisionality goes as T−3/2. Future fusion devices will create very hot plasmas, which is

why the collisionless approximation is often used.
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At equilibrium, the plasma is supposed to be Maxwellian, i.e.:

f0(X,H) =
N (X)

(2πT (X)/m)3/2
exp

(
− H

T (X)

)
(2.27)

Where H is the Hamiltonian given by:

H = ~v · ∂L
∂~v

− L =
1

2
m~v2 − Fx (2.28)

N(X) is the density and T (X) is the temperature. In order to have d
dt
f0 = 0, f0 must

be function of constants of motion only. The Maxwellian form is, according to the H-

theorem, a stationary solution of the collisional Vlasov equation. The gyrokinetic theory

assumes that the inhomogeneities related to N (X) and T (X) are weak compared to the

Larmor radii:

ǫ =
ρL
LA

≪ 1, ρL =
vth

Ω
, LA =

( |∇A|
A

)−1

, A = N , T (2.29)

LA is the characteristic length of the equilibrium quantity A.

Now an electrostatic perturbation is introduced in the system in the form of a small

electrostatic potential φ ∼ O(ǫ). Writing the Vlasov equation to first order in ǫ:

d

dt

∣∣∣∣
u.t.p.

δf =
q

m
∇φ · ∂f0

∂~v
(2.30)

where d
dt

∣∣
u.t.p.

is the derivative along the unperturbed trajectories of the particles. δf is

given by:

δf(~r, ~v, t) =
q

m

∫ t

−∞

dt′∇φ · ∂f0

∂~v

∣∣∣∣
~r′(t′),~v′(t′),t′

(2.31)

Local perturbations on the x = 0 surface will be considered, and so a plane wave decom-

position can be used:

{
φ(x, y, z, t), δf(x, y, z, t)

}
=

{
φ̂(x), δ̂f(x)

}
exp

[
i(kyy + kzz − wt)

]
(2.32)

and introducing the unperturbed trajectories:

v′x(t
′) = (~v − ~vF ) · ~ex cos

[
Ω(t′ − t)

]
+ (~v − ~vF ) · ~ey sin

[
Ω(t′ − t)

]
+ ~vF · ~ex (2.33)

v′y(t
′) = (~v − ~vF ) · ~ey cos

[
Ω(t′ − t)

]
− (~v − ~vF ) · ~ex sin

[
Ω(t′ − t)

]
+ ~vF · ~ey (2.34)

v′z(t
′) = (~v − ~vF ) · ~ez (2.35)
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x′(t′) = x+
1

Ω
(~v − ~vF ) · ~ex sin

[
Ω(t′ − t)

]

+
(~v − ~vF ) · ~ey

Ω

{
1 − cos

[
Ω(t′ − t)

]}
+ ~vF · ~ex(t′ − t) (2.36)

y′(t′) = y +
1

Ω
(~v − ~vF ) · ~ey sin

[
Ω(t′ − t)

]

−(~v − ~vF ) · ~ex
Ω

{
1 − cos

[
Ω(t′ − t)

]}
+ ~vF · ~ey(t′ − t) (2.37)

z′(t′) = z + ~v · ~ez(t′ − t) (2.38)

~vF =
~F× ~B
qB2 is the drift velocity. One can after some algebra integrate (2.31) to get:

δ̂f = −qφ̂
T

{
1 − (ω′

d − ω)

+∞∑

n,n′=−∞

Jn

(
kyv⊥

Ω

)
Jn′

(
kyv⊥

Ω

)

ωF − ω + nΩ + kzvz
exp

[
iθ(n′ − n)

]}
f0 (2.39)

where:

ω′
d = ωN + ω′

T + ωF (2.40)

ωN =
Tky
qB

dlnN
dx

, ω′
T =

Tky
qB

dT

dx

∂

∂T
, ωF = −kyF

qB
= ~k · ~vF (2.41)

Jn is the Bessel function of the first kind of order n and θ is the gyroangle. The following

property has been used:

exp
(
ix sin θ

)
=

+∞∑

n=−∞

Jn(x) exp(−inθ) (2.42)

The Poisson equation in Fourier space reads:

−∆φ̂ = k2φ̂ =
1

ǫ0

∑

α

qαδ̂Nα (2.43)

where α represents the different species and δ̂Nα =

∫
d~vδ̂fα. The dispersion relation

solution is obtained by solving the dielectric function:

ǫ(~k, ω) = 1 −
∑

α

qα

k2ǫ0φ̂
δ̂Nα (2.44)

Gyrokinetics only considers low frequencies in the sense that ω ≪ Ωα ∀ α and finally the

dielectric function is:

ǫ(~k, ω) = 1 +
∑

α

1

k2λ2
Dα

{
1 − (ω′

dα − ω)
Λ0(k

2
yρ

2
Lα)

ω − ωFα

[
W

(
ω − ωFα
|kz|vthα

)
− 1

]}
(2.45)
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Where λDα =
√
ǫ0Tα/(q2

αNα) is the Debye length of the species α, Λ0(x) = I0(x) exp(−x2)

is the scaled modified Bessel function of the first kind of order 0, ρLα = vthα/Ωα is the

Larmor radius and W (z) is the dispersion function:

W (z) =
1√
2π

∫ ∞

−∞

x

x− z
exp

(
−1

2
x2

)
dx (2.46)

To get (2.45), the following property has been used (see [60]):

∫ ∞

0

dx exp(−ρ2x2)Jp(αx)Jp(βx) =
1

2ρ2
exp

(
−α

2 + β2

2

)
Ip

(
αβ

2ρ2

)
(2.47)

The following expansions will be used:

W (z) = 1 + iz

√
π

2
exp

(
−1

2
z2

)
+

+∞∑

n=0

(−1)n+1

(2n+ 1)!!
z(2n+2) |z| ≪ 1 (2.48)

W (z) = iz

√
π

2
exp

(
−1

2
z2

)
−

+∞∑

n=1

(2n− 1)!!

z2n
|z| ≫ 1 (2.49)

Note that causality is expressed by imposing Im(ω) > 0. Although many approximations

have been used, Eq. (2.45) contains all the basic physics of the slab-ITG mode. The effects

of density and temperature gradients are contained in the operator ω′
dα. The FLR effects

are contained in Λ0(k
2
yρ

2
Lα), and the wave-particle interaction, in this case the Landau

damping, is contained in the dispersion function W . To get a deeper understanding of

this instability, further approximations need to be made: suppose a plasma made of ions

and electrons, and no force is applied to the system so ωF i = ωFe = 0. The frequencies of

interest are in the range |kz|vthi ≪ |ω| ≪ |kz|vthe so that W
[
ω/(|kz|vthi)

] ∼= k2
zv

2
thi/ω

2 and

W
(
ω/(|kz|vthe)

) ∼= 1 (the exponentially decreasing imaginary part has been neglected).

This last assumption means that electrons are adiabatic. The wavelengths of interest are

in the range kyρLi ∼ 1 such that kyρLe ≪ 1 and so Λ0(k
2
yρ

2
Le) ∼ 1. Finally quasineutrality

is assumed, in other words k2λ2
Dα ≪ 1, because the Debye length is much smaller than the

Larmor radius which is the typical spatial scale of the system, so the plasma is considered

to be quasineutral. (2.45) becomes:

ǫ(~k, ω) =
1

k2Λ2
De

+
1

k2Λ2
Di

{
1 +

(
1 − ωNi + ω′

T i

ω

)
[W (zi) − 1] Λ0(ξi)

}
(2.50)
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where ξi = k2
yρ

2
Li and zi = ω/(|kz|vthi). Using W ′(z) = (1/z − z)W (z) − 1/z and Λ′

0(ξ) =

Λ1(ξ) − Λ0(ξ), one has:

ǫ(~k, ω) =
1

k2Λ2
De

+
1

k2Λ2
Di

(
1 +

(
1 − ωNi − ωT i/2

ω

)
[W (zi) − 1] Λ0(ξi)

− ωT i
ω

{
ξi

[
Λ1(ξi) − Λ0(ξi)

][
W (zi) − 1

]
+
z2
i

2
W (zi)Λ0(ξi)

})
(2.51)

where ωT i = Tky/(qB)d lnT/dx. To identify the instability boundary, ǫ(~k, ωB) = 0 must

be solved separately for the real and imaginary parts: by solving for z2
i in the first equation

and for ωB/ωT i for the second, one gets:

z2
i =

2(1 + τ−1)

Λ0(ξi)

ωB
ωT i

> 0 (2.52)

ωB
ωT i

=
Λ0(ξi)

2
[
τ−1 + 1 − Λ0(ξi)

]
(

1 − 2

ηi
− 2ξi

Λ1(ξi) − Λ0(ξi)

Λ0(ξi)

)
(2.53)

From these two equations, one sees that an instability can develop only if:

ηi > 2

(
1 − 2ξi

Λ1(ξi) − Λ0(ξi)

Λ0(ξi)

)−1

(2.54)

|k‖| <
kyρLi
2LT i

Λ0(ξi)√
1 + τ−1

√
τ−1 + 1 − Λ0(ξi)

√
1 − 2

ηi
− 2ξi

Λ1(ξi) − Λ0(ξi)

Λ0(ξi)
(2.55)

and therefore the ITG instability has a gradient treshold and a maximum k‖ beyond which

the instability is suppressed by Landau damping. An estimate of the growth rate and real

frequencies can be obtained by assuming that FLR effects are weak such that ξi ≪ 1 ⇒
Λ0(ξi) ∼= 1, and that resonant effects are weak such that zi ≫ 1 ⇒W (zi) ∼= 1− k2

zv
2
thi/ω

2

and the dispersion relation finally is:

1 −
(
kzcs
ω

)2 (
1 − ωT i

ω

)
(2.56)

The slab-ITG instability can be viewed as a deformation of the sound wave branch ω =

±kzcs. In the strong gradient ωT i ≫ ω, (2.56) gives:

ω =

(
1

2
+ i

√
3

2

)
|wT i(kzcs)2|1/3 (2.57)

which is true if |kzcs| ≪ |ωT i| or if:

|kz|
|ky|

≪ Ti
Te

ρLi
LT i

(2.58)
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The intuitive picture that a strong gradient leads to a stronger instability is recovered. In

addition, one sees that the wave needs a finite parallel wavenumber much smaller than the

perpendicular one. If kz = 0, then the electron adiabaticity assumption becomes wrong.

Note also that if the perpendicular wavelength becomes of the order of the electron Larmor

radius, then ξi = (kyρLi)
2 ≫ 1, Λ0(ξi) → 0 : ions have an adiabatic-like response. One

then speaks of the ETG-instability, which is isomorphic to the ITG instability from the

linear point of view.

2.4 A dispersion relation for toroidal-ITG instability

Tokamaks and stellerators have curved magnetic fields, whose main effect is to introduce a

drift velocity on the particles. This Section shows how a new branch, namely the toroidal-

ITG branch appears. To model the curvature of the magnetic field, an external force is

introduced:

~F = −m
(
v2
⊥

2
+ v2

z

)
∇⊥ lnB (2.59)

This force models the curvature and gradient of the magnetic field. It is important to

take into account the velocity dependence of this force as resonant effects become impor-

tant near the marginal points. Defining R = |∇⊥ lnB|−1, ~F leads to the characteristic

frequency:

ωF = ~k · ~vF = −kyF
qB

=
kym

qBR

(
v2
⊥

2
+ v2

z

)
(2.60)

One goes back to equation (2.39):

δ̂f = −qφ̂
T

{
1 − (ω′

d − ω)

+∞∑

n,n′=−∞

Jn

(
kyv⊥

Ω

)
Jn′

(
kyv⊥

Ω

)

ωF − ω + nΩ + kzvz
exp

[
iθ(n′ − n)

]}
f0 (2.61)

Because ~F models the effect of a non-uniform magnetic field, it does not modify the

energy of the system. The ωF appearing in the ω′
d in the numerator can be dropped

because it is related to the modification of energy by the external force. However the

ωF term appearing in the denominator is related to the particles velocity and must be

retained. The dielectric response becomes:

ǫ(~k, ω) = 1+
∑

α

1

k2Λ2
Dα

[1 + (ω − ωNα − ω′
Tα)]

∫
d~v
f0α

Nα

J2
0

(
kyv⊥
Ωα

)

kzvz + ωFα(vz, v⊥) − ω
(2.62)
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Having considered again only the n = 0 harmonics and vz ∼= v‖. The temperature deriva-

tives appear in f0 only. Invoking a plasma made out of ions and electrons, quasineutrality

and adiabatic electrons, one gets:

0 =
1

τ
+

[
1 + (ω − ωNi)

∫
d~v
f0i

N

J2
0

(
kyv⊥

Ω

)

ωF i(vz, v⊥) − ω + kzvz

]

− ωT i

∫
d~v
f0i

N

(
E

Ti
− 3

2

) J2
0

(
kyv⊥

Ω

)

ωF i(vz, v⊥) − ω + kzvz

]
(2.63)

This equation can be solved numerically to obtain the real frequency and the growth rate

of the instability. To get a physical picture of the toroidal ITG instability, a fluid limit

|ω/(kzvthi)| ≫ 1, |ω/ωF | ≫ 1 is considered, as well as negligible FLR effects ξi ≪ 1. The

Bessel function and the denominator can be expanded and the integral can be performed,

yielding the following dispersion relation:

1

τ
+
ωNi
ω

−
(

1 − ωNi + ωT i
ω

)[
k2
zv

2
thi

ω2
+

〈ωF i〉
ω

− (kyρLi)
2

]
= 0 (2.64)

where 〈ωF i〉 = 2Tiky/(eBR). Considering the effect of a temperature gradient and ne-

glecting FLR effects:

1 −
(
1 − ωT i

ω

)[(kzcs
ω

)2

+ τ
〈ωF i〉
ω

]
= 0 (2.65)

This equation is very similar to equation (2.56): the slab-ITG dispersion relation is further

deformed by a non-uniform magnetic field. Taking a perpendicular propagation kz = 0

and a large temperature gradient, the solution is:

ω = ±
√

−2τ

(
kyTi
eB

)2

∇ lnTi · ∇ lnB (2.66)

This leads to one of the fundamental property of the toroidal-ITG mode: it is unstable

only if the gradients of temperature and magnetic field are in the same direction. In

tokamaks, this is the case in the Low-Field-Side (LFS) region: one says that the mode

has a ballooning character. ITG modes can have a slab-like or a toroidal-like character,

depending on the ratio between the terms (kzcs/ω)2 and Te/Ti · 〈ωF i〉/ω: the pure toroidal

ITG mode appears in the limit kz → 0. Finally, a stability condition can be derived for

kz → 0 and kyρLi. The dispersion relation (2.65) gives:

ω

ωNi
=

(
2ǫN − 1 ±

√
(2ǫN − 1)2 − 8ǫN

τ
(1 + ηi)

)
τ

2
(2.67)
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where ǫN = LN/R. Thus if ǫN > 0 the mode is unstable if:

ηi >
τ

8

(2ǫN − 1)2

ǫN
− 1 (2.68)

Like for the slab-ITG instability, the toroidal ITG has a treshhold behaviour.

With this very simple model, many properties of ITG modes have been derived. The

main missing effect is the effect of the magnetic shear defined by (for circular geometry):

ŝ = ρ
q′(ρ)

q(ρ)
(2.69)

The shear describes the variation of the safety factor across magnetic surfaces. To include

it, the ballooning transform [61, 62] is the most appropriate formalism. It exploits the

fact that toroidal ITG modes tend to align with the field lines, i.e. ~e‖ · ∇φ ∼= 0 and so:

φ =
∑

n

∑

k

φ̂n(nq, θ − θ0 + 2πk) exp
{[
inϕ− nq(θ − θ0 + 2πk)

]}
(2.70)

For circular magnetic surfaces:

~k = i∇ = i
n

r
~eϕ −

nq

ρ
~eθ −

nq

ρ
θŝ~eρ (2.71)

where n is the toroidal mode number, q is the safety factor, ϕ is the toroidal angle, θ

is the poloidal angle. This representation contains the effects of the shear but is more

complicated to solve as a 1D eigenvalue equation has to be solved for φ̂n(θ).

2.5 A dispersion relation for TEM instabilities

In the tokamak, the magnetic field is mainly toroidal, i.e. ~B ∼= B0R0/r~eϕ, and is in

particular non-uniform, which means that particles can be trapped. A typical trapped

orbit is shown on Fig. 2.4. When a particle goes from the LFS to the HFS, the per-

pendicular velocity increases because of magnetic moment conservation and the parallel

velocity decreases due to energy conservation. The parallel velocity can then change sign.

In the poloidal plane, the particle will go to the LFS and then to the HFS where it

will be reflected again. However, after a banana the particle has moved toroidally. This

motion is the precessional drift and can enter in resonance with a wave, leading to the

so-called Trapped Ion Mode (TIM) or Trapped Electron Mode (TEM) instability. The
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Figure 2.4: Typical banana orbit in the poloidal plane (left) and 3D orbit of a trapped

particle (right).

following model, based on a bounce-average method is able to catpure the TIM or the

TEM instability. The starting point is again the linearized Vlasov equation:

d

dt

∣∣∣∣
u.t.p.

δf =
q

m
∇φ · ∂f0

∂~v
(2.72)

In a tokamak geometry, the Maxwellian is a function of kinetic energy and toroidal angular

momentum ψ0 = ψ+mrvϕ

q
where ψ is the poloidal magnetic flux. The ordering is done with

respect to the small parameter ǫ = ρLi/a, assuming ω/Ωi ∼ O(ǫ), k‖ρLi ∼ O(1), k⊥ρLi ∼
O(1). Two orthonormal, right-handed systems of coordinates are used, (~en, ~ep, ~eϕ) and

(~en, ~eb, ~e‖), with ~en = ∇ψ/|∇ψ| and ~e‖ = ~B/B. By expanding Vlasov up to O(ǫ), one

gets:

d

dt

∣∣∣∣
u.t.p.

δg =
qf0

T

∂φ

∂t
− 1

B
∇bφ∇nf0 + O(ǫ2) (2.73)

with δg = δf + qφ/Tf0 the non-adiabatic part of the perturbed distribution function and

with the notations ∇n = |∇ψ|∂/∂ψ = −rBp∂/∂ψ and ∇b = ~eb · ∇. To get the previous

equality, the property ~eϕ = Bϕ/B~e‖ +Bp/B~eb has been used. From now on the mass will

be set to 1. The next step is to write the operator d
dt

∣∣
u.t.p.

in the guiding center variables

(~R,E, µ, α, σ) defined by:

~v = v⊥ (cosα~en + sinα~eb) + v‖~e‖ (2.74)

~R = ~r +
1

Ω

(
~v × ~e‖

)
(2.75)

µ =
v2
⊥

2B
, E =

1

2
(v2

‖ + v2
⊥), σ = sign(v‖) (2.76)
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After some algebra, one gets d
dt

∣∣
u.t.p.

= L(0) + L(1), with L(0) ∼ O(1) and L(1) ∼ O(ǫ)

defined by:

L(0) = −Ω
∂

∂α
, L(1) =

∂

∂t
+
[
~v‖ + ~vd

]
· ∂

∂ ~R
+

dµ

dt

∂

∂µ︸ ︷︷ ︸
=0

+
dα

dt

∂

∂α
(2.77)

and ~vd = 1/Ω~e‖ ×
(
v2
‖~e‖ · ∇~e‖ + v2

⊥/2∇ lnB
)
. By expanding δg = δg(0) + δg(1), at order

0 one has L(0)δg(0) = 0 and so δg(0) 6= δg(0)(α). Finally, gyroaveraging the first order

equation yields the gyrokinetic equation:

d

dt

∣∣∣∣
u.t.g.

δg(0) =
q

T

∂〈φ〉
∂T

f0 −
1

B
∇b〈φ〉∇nf0 (2.78)

〈φ〉 =
1

2π

∫ 2π

0

dαφ

(
~r = ~R− ~v × ~e‖

Ω
, t

)
(2.79)

Due to their small mass, the electron Larmor radius effects can be ignored, and so 〈φ〉 ∼= φ.

This is the drift-kinetic approximation. The subscript 0 will be omitted. For a potential

of the form φ exp(−iωt+ inϕ), this equation becomes:

d

dt

∣∣∣∣
u.t.g.

δg = −iqf0

T
φ(ω − ω∗) (2.80)

where:

ω∗ = ωN

[
1 + η

(
E

v2
th

− 3

2

)]
, ωN = − T

qB
∇n lnN

B

Bp
kϕ (2.81)

Note that the definition of ωN in this Section is equivalent to the definition (2.41) to first

order in ǫ. To get the bounce-averaged drift kinetic equation, one expands the distribution

function with the small parameter ǫb = ω/ωb ≪ 1 where ωb ∼ v‖/(qsr)
√
ǫ. ωb is the bounce

frequency and ǫa = a/R is the inverse aspect ratio. Let δg = δg(0)+δg(1). The drift kinetic

equation becomes:

∂

∂t

(
δg(0) + δg(1)

)
+

(
dψ

dt

∂

∂ψ
+

dχ

dt

∂

∂χ
+

dϕ

dt

∂

∂ϕ

)(
δg(0) + δg(1)

)
= −iqf0

T
φ(ω−ω∗) (2.82)

Let 〈...〉b be the bounce-average operator. It is known from guiding center theory that

〈dψ/dt〉b = 〈dχ/dt〉b = 0 because the orbits are closed in the poloidal plane, due to

the conservation of the canonical momentum. Moreover, 〈dϕ/dt〉b ∼= 〈dϕ/dt|‖〉b ∼
〈Bϕv‖/(Br)〉b ∼ ωb. At order 0, assuming ω ∼ ω∗

(
~vg ·

∂

∂ ~R
− 〈ϕ̇〉b

∂

∂ϕ

)
δg(0) = 0 (2.83)
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At order 1:
(
~vg ·

∂

∂ ~R
− 〈ϕ̇〉b

∂

∂ϕ

)
δg(1) − i(ω − n〈ϕ̇〉b)δg(0) = −iqf0

T
φ(ω − ω∗) (2.84)

Bounce averaging this equation:

δg(0) =
q

T
f0

ω − ω∗

ω − n〈ϕ̇〉b
〈φ〉b (2.85)

With:

〈φ〉b =
1

τb

∫ τb

0

dtφ(~R′), ~R′(t = 0) = ~R (2.86)

The non-adiabatic density is now:

δ̂N
n.a.

b =

∫

trapped

d~vδg(0) = 4παb

∫
dE

√
2Eδg(0) (2.87)

where αb is the fraction of trapped particles. In equation (2.85), both ω∗ and 〈φ〉b depend

on the energy E. The next step is to compute 〈ϕ̇〉 for a circular, large aspect ratio

tokamak. One finds:

〈ϕ̇〉 = −m
q

∂I‖
∂ψ

∂I‖
∂E

, I‖ = 2

∫ θ2

θ1

dθJB|v‖| (2.88)

I‖ is the longitudinal invariant, expressed here for a trapped particle, θ1 and θ2 being the

turning points. The proof can be found in [59]. The longitudinal invariant is:

I‖ = 16Rqs
√
Eλǫ

[
(X − 1)F (X) + E(X)

]
(2.89)

where qs is the safety factor, X = (1 − λ + λǫ)/(2λǫ), λ = µB0/E, ǫ is the local aspect

ratio and E(X) and F (X) are the complete elliptic integral of the first and second kind.

After some algebra, the toroidal precessional drift is:

〈ϕ̇〉 = − 1

Ω

qs
ρ

E

R
G (2.90)

Where G is:

G = 4λ

{
ŝ

[
(X − 1) +

E(X)

F (X)

]
+

1

2

[
E(X)

F (X)
− 1

2

]}
(2.91)

Eq. (2.90) and (2.91) reveal the effect of the shear. Fig. 2.5 shows that for a strong reverse

shear, the averaged value of G on a magnetic surface < G > changes sign and so the

25



−2 −1 0 1 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

shear

<
G

>

Figure 2.5: 〈G〉 as a function of ŝ for ǫ = 0.2.

toroidal precessional drift is reversed, which has a stabilising effect: a wave can propagate

only if it rotates in the same direction as 〈ϕ̇〉. Inserting Eq. (2.90) into Eq. (2.87), the

non adiabatic density reads:

δ̂N
n.a.

b = −2αbN
qφ

T

1

ωϕ

{[
ω − ωN

(
1 − 3

2
η
)]
W (zb) − ωNη

[
ω

ωϕ
W (zb) +

1

2

]}
(2.92)

Where ωϕ = ωNǫNG, zb = sign(ωϕ)
√

2ω/ωϕ. This definition is due to the causality and

the fact that Im(ωϕ) > 0.

In order to isolate the TEM, the ion-drive is neglected, by assuming slab-like ions, no

temperature gradient and kzvz = kyv⊥ = 0 so that ni = −Neφ
Ti
ωNe/ω. The dispersion

relation is:

−ωNe
ω

+ 1 +
2αb
ωφe

{[
ω − ωNe

(
1 − 3

2
ηe
)]
W (zbe) − ωNeηe

[
ω

ωϕe
W (zbe) +

1

2

]}
(2.93)

Setting τ = 1 and expanding W (z) according to (2.49), one gets:

0 = 1 + αb

[
−1 +

ωNe − 3ωϕe/2

ω
+

3

2

ωϕeωNe(1 + ηe)

ω2

]
− ωNe

ω
(2.94)

In case of ηe ≫ 1, the growth rate is:

γ =

√
3
2
αbωϕeωNe(1 + ηe)

1 − αb
(2.95)

From this equation it can be concluded that the growth rate increases with the trapped

fraction of electrons. As ωϕeωNe ∼ 1/LN , the growth rate increases with increasing density

and temperature gradients.
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2.6 Coupling of the TEM to the ITG instability

Assuming kinetic trapped electrons and including the ion drive, the following dispersion

relation is obtained:

0 =
1

τ
+

1

τ

2αb
ωϕ,e

{[
ω − ωNe

(
1 − 3

2
ηe

)]
W (zbe) − ωNeηe

[
ω

ωϕe
W (zbe) +

1

2

]}

+ 1 + (ω − ωNi)

∫
d~v
f0i

N

J2
0

(
kyv⊥

Ω

)

ωF i(vz, v⊥) − ω + kzvz

− ωT i

∫
d~v
f0i

N

(
E

Ti
− 3

2

) J2
0

(
kyv⊥

Ω

)

ωF i(vz, v⊥) − ω + kzvz
(2.96)

Kinetic trapped electrons reduce the adiabatic response of electrons and can therefore

destabilize ITG modes. Fig. 2.6 shows the real frequencies and the growth rates, obtained

from Eq. (2.96), as a function of kyρLi. The parameters are τ = 1, ǫN = 0.2, ηi = 2, ηe =

2, qs = 2, ŝ = 1, ǫ = 0.15, αb =
√

2ǫ. G ∼= 〈G〉(ŝ, ǫ) has been used. An ITG mode and a

TEM coexist. At short wavelength, the ITG mode is stabilized by FLR effects. The TEM

is not sensitive to FLR effects and remains unstable. Comparison with the adiabatic case

shows a strong destabilization of ITG modes.
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Figure 2.6: Real frequency (top) and growth rate (bottom) of disp. rel. (2.96) as a function

of kyρLi for τ = 1, ǫN = 0.2, ηi = 2, ηe = 2, qs = 2, ŝ = 1, ǫ = 0.15, αb =
√

2ǫ. A TEM mode

(red, dashed line) and an ITG mode (blue, solid line) coexist. Positive real frequencies

indicate the electron diamagnetic direction. Black dotted curved shows adiabatic results,

solution of (2.62).
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Chapter 3

The ORB5 gyrokinetic model

In this Chapter, the 5D gyrokinetic model solved by ORB5 is presented.

3.1 Geometry and magnetic field

In this Section, general properties of the magnetic equilibrium are presented. The tokamak

is supposed to be axisymmetric. The most general axisymmetric magnetic field satisfying

∇ · ~B = 0 is:

~B = F (ψ)∇ϕ+ ∇ψ ∧∇ϕ (3.1)

Where ψ is the poloidal flux, constant on each magnetic surface, ϕ is the toroidal angle

and F (ψ) is the poloidal current flux function, therefore ~B · ∇ψ = 0. The axisymmetric

equilibria is determined by three of the ideal MagnetoHydroDynamic (MHD) equations:

∇p = ~j ∧ ~B, ∇∧ ~B = µ0
~j, ∇ · ~B = 0 (3.2)

Where p is the pressure and ~j is the current density. The ideal MHD equations suppose

the plasma to be a single fluid with no resistivity. The first equation describes the balance

between the magnetic force and the plasma pressure. The second equation is one of the

Maxwell’s equations where the displacement current has been neglected. From the first

MHD equation, ~B · ∇p = 0 and so the pressure is a flux function. Taking the cross

product of the second MHD equation with ~B and inserting the third one leads, in the

radial direction, to the Grad-Shafranov equation:

∇2ψ − 2

r

∂ψ

∂r
= −F ′(ψ)F (ψ) − r2p′(ψ) = −rjϕ (3.3)
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Figure 3.1: System of coordinates used in ORB5

For given F (ψ) and p′(ψ) profiles, the Grad-shafranov equation gives the form of the

magnetic field.

ORB5 is coupled to the CHEASE code [63] which solves this equation. Instead of using

a real magnetic equilibria, adhoc equilibrium are often used. The magnetic surfaces are

approximated as circular and concentric. In this case the magnetic field is given by:

~B =
B0R0

r
~eϕ −

B0ρ

q̄(ρ)r
~eθ (3.4)

Where B0 is the magnetic field at axis, R0 is the major radius of the tokamak, r is the

cylindrical radial coordinate, ρ is the polar radius coordinate and q̄(ρ) is the pseudo-

safety factor. ψ′(ρ) = B0ρ/q̄(ρ) for this configuration. The tokamak geometry in the

case of adhoc equilibria is summarized on Fig. 3.1. Analytical Grad-Shafranov solutions

can be obtained, for example when F (ψ) and p′(ψ) are constant: they are called Solovev

equilibria [64] and are defined by:

ψ =
ψedge

(R0a)2

[
(rz)2 +

1

4
(r2 − R2

0)
2
]

(3.5)

In the large aspect ratio limit, i.e. R0/a ≫ 1, the Solovev solution reduces to ψ =

ψedgeρ
2/a2, i.e. magnetic surfaces are circular. The adhoc equilibrium can be viewed as
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a Solovev solution with a pseudo safety factor profile, but it is not a true solution of the

Grad-Shafranov equation. The real safety factor profile, measuring the helicity of the field

lines, is defined by:

q(ψ) =
1

2π

∫ 2π

0

~B · ∇ϕ
~B · ∇θ

dθ (3.6)

Inserting the magnetic field (3.4), one finds:

q(ψ) =
q̄(ρ)√
1 − ρ2

R2
0

(3.7)

q̄(ρ) is therefore called pseudo safety factor because it is very close to the real safety

factor. The straight-field-line angle is defined by:

θ∗ =
1

q(ψ)

∫ θ

0

~B · ∇ϕ
~B · ∇θ′

dθ′ (3.8)

It is easy to show that ~B · ∇θ∗ = q(ψ) ~B · ∇ϕ. It means that if one unwraps a magnetic

surface in the (θ∗, ϕ) plane, the field lines are straight: θ∗ is better suited than θ to

describe microinstabilities because it is constructed to align with the field line. The

magnetic surfaces can be labelled with s, defined by:

s =

√
ψ

ψedge
(3.9)

In this work, s and ψ will equivalently label radial surfaces. For circular geometry, mag-

netic surfaces can also be labelled with ρ. It is convenient to describe physical quantities

in Fourier space:

φ(~x, t) =
∑

m,n

φ̂m,n(ψ, t)e
imθ∗einϕ (3.10)

where m is the poloidal wave number and n is the toroidal wave number. Due to the

gyrokinetic ordering k‖ ≪ k⊥, m and n cannot take arbitrary values. By assumption

~B · ∇φ→ 0:

~B · ∇φ = i(n~B · ∇ϕ+m~B · ∇θ∗) = inBϕ

(
1 − m

nq(ψ)

)
∼= 0 ⇒ m ≈ nq(ψ) (3.11)

Note that strictly speaking m relates to the poloidal angle and should formally be written

mθ∗ . The latter relation does not hold with mθ as q(ψ) 6= ~B · ∇ϕ/( ~B · ∇θ)
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3.2 Gyrokinetic theory

In this Section, the general framework of gyrokinetic theory is given. The most advanced

way to study microinstabilities is to use kinetic theory. Each plasma species is described

by a distribution function fα(~x,~v), which provides the probability to find a particle at

position ~x with velocity ~v. The Vlasov equation is:

dfα
dt

=
∑

β

Cαβ[fα, fβ] + S(fα) (3.12)

where Cαβ[fα, fβ] is the collision operator between the species α and β and S is a source

operator. Electromagnetic fields are external but are also generated by the particles. They

must be computed self-consistently with Maxwell’s equations, with the charge density and

the current given by (in the absence of external contributions):

ρ =
∑

α

qα

∫
d~vfα(~x,~v, t) (3.13)

~j =
∑

α

qα

∫
d~v~vfα(~x,~v, t) (3.14)

It is a 6D problem which cannot be solved analytically and which is too large to be solved

numerically, due to the wide range of spatial and temporal scales: the typical size of

microinstabilities is of the order of the ion Larmor radius ρLi ∼ 10−3 m, but the size of

a tokamak is of the order of 100m. The typical frequencies of microinstabilities are of

the order of the drift frequency, which is around 106s−1 for fusion-type plasmas, but the

cyclotron frequency of ions (resp. electrons) is around 108s−1 (resp. 1011s−1). In order

to be able to study microinstabilities with reasonable computing time, the most efficient

way is to go from the kinetic to the gyrokinetic theory. In Section 2.5, an example of

a gyrokinetic equation has been given. It relies on the fact that the typical frequency

of the wave is much smaller than the cyclotron frequency of ions: the microinstability

wave perturbation does not ”see” the cyclotron motion of ions and electrons. It can be

averaged out and the trajectories of the guiding centers of particles are solved instead of

the trajectories of the particles. The problem goes from 6D to 5D and the numerical time

step can be strongly increased, thus allowing massive CPU savings. This approximation

is alone not enough to have a reasonable problem size. In fact, the gyrokinetic theory as-

sumes different small parameters. This is called the gyrokinetic ordering. The gyrokinetic

ordering used here is taken from [33]:
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Figure 3.2: Guiding center coordinates.

ω

Ωi

∼ k‖
k⊥

∼ eφ

Te
∼ ρLi
Ln

∼ ρLi
LT i

∼ ρLi
LTe

∼ O(ǫg),
ρLi
LB

∼ O(ǫB), k⊥ρLi ∼ O(1) (3.15)

where ω is the characteristic fluctuation frequency, Ωi = qiB0/mi is the ion cyclotron

frequency k‖ and k⊥ are the parallel and perpendicular components of the wave vector

with respect to the magnetic field, φ is the fluctuating electrostatic potential, ρLi is the ion

gyroradius, and Ln, LT i, LTe, LB are the characteristic lengths associated with the density,

ion temperature, electron temperature and magnetic field profiles. ǫg and ǫB are small

parameters, ǫg ∼ ρ∗, ǫB ∼ ǫaǫg, with ρ∗ = ρs/a ≪ 1 and ǫa is the inverse aspect ratio. In

addition to the fundamental assumption of the gyrokinetic theory, the gyrokinetic ordering

used here states that the turbulence essentially aligns with the field line, its energy is small

compared to the plasma thermal energy, the density and temperature profile variations

are small on the scale of the Larmor radius, the characteristic length of the magnetic

field is much larger than the Larmor radius and the perpendicular wavelength can be

comparable to the ion Larmor radius.

3.3 Hahm’s gyrokinetic equations

There are several approaches for deriving a gyrokinetic equation. A first intuitive approach

is to average the Vlasov equation over the gyroangle. An example is given in [34]. However

this formulation does not have an energy conservation property. From a theoretical point

of view, it is more appropriate to have a model based on a a Lagrangian or a Hamiltonian

approach, for which one or several conservation properties are automatically satisfied.
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Simulations based on such models are called first principles simulations. These models

are obtained with the help of the Lie perturbation technique. The latter has been used

in slab geometry [65] and then been extended in toroidal geometry [33] in the case of

electrostatic perturbations in collisionless plasmas. The idea of Lie transform is to find a

new appropriate set of variables, with a right choice of gauge such that the Lagrangian

containing an electrostatic perturbation written in these new variables does not depend

on the gyroangle. The equations for ions are:

d~R

dt
=

1

B∗
‖

(
v‖ ~B

∗ +
v2
⊥

2Ωi

~h×∇ ~B + ~h×∇〈φ〉
)

(3.16)

dv‖
dt

= −
~B∗

~h · ~B∗
·
(
v2
⊥

2B
∇B +

qi
mi

∇〈φ〉
)

(3.17)

dµ

dt
= 0 (3.18)

with:

~h =
~B

B
, ~B∗ = ~B +

mi

qi
v‖∇×~h (3.19)

B∗
‖ = B +

mi

qi
v‖

(
∇×~h

)
· ~h (3.20)

µ =
v2
⊥

2B
(3.21)

µ is the magnetic moment. These equations have been derived by assuming Ψ ∼= 〈φ〉,
where Ψ is the renormalized potential [33]. ~B∗ can be written as:

~B∗ = B∗
‖
~h+

miv‖
qi

(
~h× ∇B

B

)
− miv‖

qi
~h×

[
~h×

(
∇× ~B

B

)]
(3.22)

The final form of the equations of motion are:

d~R

dt
= v‖~h+

1

ΩiB∗
‖

(
v2
‖ +

v2
⊥

2

)(
~h×∇B

)
−

v2
‖

ΩiB∗
‖

~h×
[
~h× (∇× ~B)

]

+
〈 ~E〉 × ~B

B∗
‖B

(3.23)

dv‖
dt

=
1

2
v2
⊥∇ · ~h+

v2
⊥v‖

2B∗
‖ΩiB

{
~h×

[
~h× (∇× B)

]}
· ∇B

+〈 ~E〉 ·
{
qi
mi

~h+
v‖
BB∗

‖

(
~h×∇B

)
− v‖
BB∗

‖

{
~h×

[
~h× (∇× B)

]}}
(3.24)

dµ

dt
= 0 (3.25)
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Eq. (3.23) contains the parallel motion ∼ O(1), the curvature and ∇B drifts ∼ O(ǫB), the

diamagnetic drift ∼ O(ǫB) and the ~E × ~B drift ∼ O(ǫg). Eq. (3.24) contains the mirror

term∼ O(ǫB) and the parallel electric field acceleration term ∼ O(ǫ2g). The last term, of

order ∼ O(ǫgǫB), is an interaction between the electric field and the parallel component

of the curvature and diamagnetic drifts. The diamagnetic drift appears more explicitly

when using MHD equations (3.2):

~h×
[
~h×

(
∇× ~B

)]
= −µ0

B
~h×∇p (3.26)

Because adhoc equilibria are not true solutions of the Grad-Shafranov equation, one could

question the inclusion of the diamagnetic drift (computed with the magnetic field) in the

equations of motion. For real equilibria, CHEASE provides the pressure gradient.

Eq. (3.25) is the conservation of the magnetic moment. The equations of motion can be

written as:

d~R

dt
=

d~R

dt

∣∣∣∣∣
0

+
d~R

dt

∣∣∣∣∣
1

,
dv‖
dt

=
dv‖
dt

∣∣∣∣
0

+
dv‖
dt

∣∣∣∣
1

(3.27)

Where ...|1 describes the terms with the electric field (the nonlinear terms of the equations

of motion) and ...|0 describes the other terms, i.e. the linear terms of the equations of

motion. In addition to the magnetic moment, particles have two other constants of

motion at order 0, the kinetic energy ǫk = 1/2(v2
‖ + v2

⊥)2 and the canonical momentum ψ0

defined by:

ψ0 = ψ +
mi

qi
v‖
F (ψ)

B
(3.28)

The conservation of ψ0 is a consequence of the axisymmetry of the tokamak. It implies

that orbits are closed in the poloidal plane.

3.4 The gyro-averaged electric field

The gyro-averaged electric field is computed from the gyro-averaged electric potential:

〈φ〉(~R, µ, t) =
1

2π

∫ 2π

0

dαφ
(
~R + ~ρLi(α, ~R, µ), t

)
(3.29)

⇒ 〈 ~E〉 = −∇~R〈φ〉(~R, µ, t) = − 1

2π

∫ 2π

0

dα∇~R φ
(
~x(α, ~R, µ, t)

)
(3.30)
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The positions of the guiding center and the particle are linked through:

~x(α, ~R, µ, t) = ~R(t) + ~ρLi(α, ~R, µ, t) (3.31)

Therefore:

∇~R φ(~x, t) = ∇~xφ(~x, t) − (~ρLi · ∇~x φ(~x, t))︸ ︷︷ ︸
O(ǫg)

∇~R lnB︸ ︷︷ ︸
O(ǫB)︸ ︷︷ ︸

→0

(3.32)

It means that the gradient of the gyro-averaged potential is approximated by the gyro-

average of the gradient and finally

〈 ~E〉(~R, µ, t) ∼= −〈∇~x φ(~x, t)〉(~R, µ, t) = − 1

2π

∫ 2π

0

dα∇~x φ(~x, t) (3.33)

3.5 The δf method

The δf method [52] consists in separating the full guiding center distribution function

into an analytically known, equilibrium part f0 and a time dependent perturbed function

δf . For the species α:

fα(~R, v‖, µ, t) = fα0(~R, v‖, µ) + δfα(~R, v‖, µ, t) (3.34)

fα0 is the background equilibrium function, and must be solution of the equilibrium

gyrokinetic equation. In other words, fα0 is any function which depends only on the

constant of motions. It is common to choose a canonical Maxwellian for fα0:

fα0(ǫk, µ, ψ0) =
nα0(ψ0)

(2π)3/2v3
thα(ψ0)

exp

(
− ǫk
Tα(ψ0)

)
(3.35)

vthα is the thermal velocities of the species α

vthα(ψ0) =

√
eTα
mα

(3.36)

nα0(ψ0) and Tα(ψ0) are input profiles for the specie α. It is common to prescribe profiles

with a radial coordinate such as ψ. In that case, fα0(ǫk, µ, ψ) is called local Maxwellian

and the following equality holds:

nα =

∫
d~vfα0

[
ǫk(~v), µ(~v), ψ

]
(3.37)
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But:

nα 6=
∫

d~vfα0

[
ǫk(~v), µ(~v), ψ0(~v)

]
(3.38)

Where nα is the equilibrium density profile. This is due to the θ and v‖ dependence of

ψ0. This is problematic because the input profiles used in f0α are given as a function of

ψ, but f0α needs to be a function of constants of the unperturbed motion. The profiles

reconstructed with the canonical Maxwellian are flatter. A way to overcome this is to

choose another constant of motion ψ̂ defined by:

ψ̂ = ψ0 + ψ0,corr(ǫk, µ) (3.39)

ψ0,corr(ǫ, µ) = −sign
[
v‖(t0)

] qα
mα

R0

√
2(ǫk − µB0)H(ǫk − µB0), (3.40)

where H(x) is the Heavyside function, therefore ψ0,corr is nonzero only for passing particles

and trapped particles that have B > B0, i.e. particles trapped with their turning point

at the HFS of the magnetic axis. For this class of particles, ψ̂ is not a constant of motion

because the sign of the parallel velocity changes after a turning point. Other definitions

for ψ̂ exist, for exampe by taking Bmax instead of B0 [66]. ψ̂ can be seen as the closest

constant of motion to ψ. For passing particles one has:

ψ0 − ψ =
mα

qα
v‖
F (ψ)

B
=
mα

qα
sign(v‖)

√
2(ǫk − µB)

F (ψ)

B

∼= mα

qα
sign(v‖(t0))

√
2(ǫk − µB0)

B0R0

B
∼= −ψ0,corr(ǫk, µ) (3.41)

From now on, the equations will apply on ions and the subscript α → i will be neglected.

Inserting the δf Ansatz in the Vlasov equation gives:

dδf

dt
= −df0

dt
= τ( ~E) =

∂f0

∂t︸︷︷︸
=0

− ∂f0

∂Υ

)

ǫk,µ

dΥ

dt
− ∂f0

∂ǫk

)

Υ,µ

dǫk
dt

− ∂f0

∂µ

)

Υ,ǫk

dµ

dt︸︷︷︸
=0

(3.42)

For the next steps of the derivation, let us assume that the profiles appearing in the

Maxwellian are functions of a variable Υ, which is not necessary a constant of motion.

The Vlasov equation finally is:

dδf

dt
= τ( ~E) (3.43)

τ( ~E) = −f0κ(Υ)
dΥ

dt

∣∣∣∣
1

+
qif0

Ti(Υ)
〈 ~E〉 · d~R

dt

∣∣∣∣∣
0

(3.44)
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Where

κ(Υ) =
∂ln f0

∂Υ
=
n′

0(Υ)

n0(Υ)
− 3T ′

i (Υ)

2Ti(Υ)
+

miǫk
Ti(Υ)2

T ′
i (Υ) (3.45)

and the term dΥ/dt|0 has been dropped out. This is correct when Υ = ψ0, ψ̂ but not for

Υ = ψ. A local Maxwellian can lead to spurious zonal flow oscillations [49], since it is not

a true equilibrium distribution function, as df0(ψ)/dt|0 ∝ dψ/ t|0 6= 0. When using a

canonical Maxwellian, the quasineutrality equation is no longer satisfied as electron and

ion equilibrium densities are different. In order to enforce quasineutrality, a radial electric

field quickly develops. To eliminate this spurious field generation, the electron equilibrium

density is further integrated from the ion distribution function after the particle loading

(see Section 4.3) and averaged over the poloidal angle:

ne0(ψ) =
1

2π

∫ 2π

0

(∫
fi0(ψ0, ǫk, µ)δ(~R + ~ρLi − ~x)B∗

‖d
~R dv‖ dµ dα

)
dθ, (3.46)

which minimizes the difference between ne0 and ni0. Note that for small ρ∗ plasmas,

there is little difference between ψ and ψ0 and the local Maxwellian becomes close to the

canonical Maxwellian. Issues related to this choice are discussed in details in Ref. [67]

and [66]. When Υ = ψ̂, the approximation dψ̂/dt
∣∣∣
1

∼= dψ0/dt|1 is done:

dψ̂

dt
=

∂ψ̂

∂t︸︷︷︸
=0

+
∂ψ̂

∂ψ0

∣∣∣∣∣
ǫk,µ︸ ︷︷ ︸

=1

dψ0

dt

∣∣∣∣
1

+
∂ψ̂

∂ǫk

∣∣∣∣∣
ψ0,µ

dǫk
dt

∣∣∣∣
1

+
∂ψ̂

∂µ

∣∣∣∣∣
ψ0,ǫk

dµ

dt

∣∣∣∣
1︸ ︷︷ ︸

=0

(3.47)

The term ∂ψ̂/∂ǫk is singular for ǫk = µB0; this term is nonetheless small for resonat-

ing particles. For ITG turbulence they are characterized by
√
ǫk − µB0 ∼ vthi. In the

Vlasov equation it would introduce an additional term proportional to dǫk/dt that is small

compared to ∂f0/∂ǫk:

∣∣∣∣∣∣
f0κ(ψ̂) ∂ψ̂

∂ǫk
∂f0
∂ǫk

∣∣∣∣∣∣
∼ κ(ρ)R0Timi

|∇ψ|miqi
∼ κ(ρ)ǫa

ρs
q̄(ρ)ρs

√
τ−1 ∼ O(ǫgǫa) (3.48)

The RHS of Eq. (3.43) describes the growth and/or damping of the instability. The first

term is the driving term. One has:

κ(Υ)
dΥ

dt

∣∣∣∣
1

= κ(Υ)
〈 ~E〉 × ~B

BB∗
‖

· ∇ψ + O(ǫ2gǫB , ǫ
3
g) (3.49)
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The growth of δf is in fact due to the advection of the ~E × ~B velocity down the gradi-

ents, and is proportional to κ(Υ), i.e. mainly dependent on the temperature and density

gradients as well as the kinetic energy of the particles. The second term of Eq. (3.43)

describes the wave-particle interaction, as f0
dǫk
dt

∣∣
1

= qif0〈 ~E〉 · d~R
dt

∣∣∣
0
∼ ~j · 〈 ~E〉. This term

contains the Landau damping.

δf can be obtained in a different way by using the fact that f is constant along trajectories:

δf(~R, v‖, µ, t) = f
[
~R(t0), v‖(t0), µ(t0)

]
− f0

[
Υ(t), v‖(t), µ(t0)

]
. (3.50)

Details of this scheme, called direct δf , are given in Refs. [68] and [67]. ORB5 can be used

with the standard or the direct δf scheme. In this work, only the standard δf scheme

has been used because it allows a larger time step. A final important remark is that the

approach used here in ORB5 is not a δf model valid for small perturbations only. No

assumption |δf | ≪ |f0| is made. Finally, note that from the numerical point of view it is

desirable to have |δf | as small as possible in order to minimize the discretization errors

but formally |δf | ≪ |f0| is not required. The δf method is an example of control variates

methods which are widely used in the Monte-Carlo approach [69].

3.6 Poisson equation

The Vlasov equation is valid for any species. It must be closed with the Poisson equation.

ORB5 assumes that the plasma is composed of an ion species of charge qi = Zie and

of mass mi and electrons, who have a charge −e and a mass me. The Poisson equation

reads:

∇2φ(~x, t) =
e

ǫ0

[
ne(~x, t) − Zini(~x, t)

]
(3.51)

3.6.1 Ion density

According to Hahm’s equation [33], the ion density is:

ni(~x, t) =

∫
B∗

‖fi(
~R, v‖, µ, t)δ(~R+ ~ρLi − ~x)d~Rdv‖dµdα

+

∫
B∗

‖

q2
i

m2
iΩi

{(
φ(~x, t) − 〈φ〉(~R, µ, t)

) ∂fi(~R, v‖, µ, t)
∂µ

+
1

miΩi

[
∇ (φ− 〈φ〉) ×~h

]}
· ∇fiδ(~R + ~ρLi − ~x)d~Rdv‖dµdα (3.52)
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The second integral appears when applying the Lie transform to the density and is a Finite

Larmor Radius effect. Both terms of the second integral are of order O(ǫ2g). However, the

Poisson equation will be linearized. So ∇fi will be replaced by ∇fi0, which is now of order

O(ǫg), because of the gradients of density and temperature. The following approximation

is done:
∣∣∣∣

1

miΩi

[
∇(φ− 〈φ〉) ×~h

]
· ∇fi0

∣∣∣∣≪
∣∣∣∣
qi
Ωi

(φ− 〈φ〉) ∂fi
∂µ

∣∣∣∣ (3.53)

The term on the l.h.s. of this inequality is ǫg smaller than the term on the r.h.s. and will

neglected. Finally, the ion density is:

ni(~x, t) = 〈ni〉(~R, t) + ni,pol(~x, t) (3.54)

〈ni〉(~x, t) =

∫
d~Rdv‖dµdαB∗

‖fi(~R, v‖, µ, t)δ(~R+ ~ρLi − ~x) (3.55)

ni,pol(~x, t) =
q2
i

m2
i

∫
d~Rdv‖dµdαB∗

‖

1

Ωi

(
φ(~x, t) − 〈φ〉(~R, µ, t)

)

∂fi
∂µ

δ(~R + ~ρLi − ~x) (3.56)

ni,pol is called the polarization density. Physically, it comes from the fact the guiding center

and the particle densities are not equal. Therefore it describes the shielding associated

with the finite ion Larmor radius. Its expression is further simplified by assuming that

the typical wavelength of the instability is smaller than the ion Larmor radius:

k⊥ρLi ≪ 1 (3.57)

The gyro-averaged potential can be written:

〈φ〉(~R, µ, t) =
1

(2π)3

∫
d~kφ̂(k, t)J0

(
k⊥v⊥
Ωi

)
ei
~k·~R (3.58)

By expanding J0(x) for x ≪ 1 up to second order, J0(x) = 1 − 1/4x2 + O(x3), one has:

〈φ〉(~R, µ, t) = φ(~R, t) +
µm2

i

2B2q2
i

∇2
⊥φ(~R, t) + O

[(
k⊥v⊥
Ωi

)4
]

(3.59)

A similar expansion for the Dirac function can be performed
∫ 2π

0

δ(~R− ~ρLi − ~x)dα = 2π

[
δ(~R− ~x) +

µm2
i

2Bq2
i

∇2
⊥δ(

~R− ~x)

]

+O
[(

k⊥v⊥
Ωi

)4
]
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By integrating ni,pol(~x, t) by parts and inserting the last two relations and their µ deriva-

tive in the the polarization density:

ni,pol(~x, t) = ∇⊥ ·
(
〈ni〉(~R, t)
BΩi

∇⊥φ(~x, t)

)
(3.60)

The ion density can be written:

ni(~x, t) = 〈ni0〉(~x) + ni,pol(~x, t) + δni(~x, t) (3.61)

Where:

〈ni0〉(~x) =

∫
d~Rdv‖dµdαB∗

‖fi0(
~R, v‖, µ)δ(~R+ ~ρLi − ~x) (3.62)

δni(~x, t) =

∫
d~Rdv‖dµdαB∗

‖δfi(
~R, v‖, µ, t)δ(~R + ~ρLi − ~x) (3.63)

3.6.2 Electron density

The electron density ne can be evaluated by assuming adiabatic (or Boltzmann) electrons.

Using a fluid model for the electrons, the equation of motion reads:

mene
dve‖
dt

= ene∇‖φ− Te∇‖ne (3.64)

The adiabaticity means that the inertia of electrons is neglected: me → 0. The solution

of this first order differential equation is:

ne(~x, t) = C(ψ) exp

(
eφ(~x, t)

Te(ψ)

)
(3.65)

C(ψ) can be fixed by saying that the number of electrons is conserved on each flux surface:

n̄e(ψ, t) ≡

∫
ne(ψ, θ∗, ϕ, t)Jθ∗ψϕ(ψ, θ∗)dθ∗dϕ

∫
Jθ∗ψϕ(ψ, θ∗)dθ∗dϕ

= ne0(ψ) (3.66)

Where Jθ∗ψϕ(ψ, θ∗) is the Jacobian for the coordinates (θ∗, ψ, ϕ), defined by:

Jθ∗ψϕ(ψ, θ∗) =
1

(∇θ∗ ×∇ψ) · ∇ϕ =
r2q(ψ)

F (ψ)
(3.67)

Inserting (3.65) in (3.66):

C(ψ)

∫
exp

(
eφ

Te

)
Jθ∗ψϕ(ψ, θ∗)dθ∗dϕ

∫
Jθ∗ψϕ(ψ, θ∗)dθ∗dϕ

= ne0(ψ) (3.68)
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With the help of the gyrokinetic ordering the exponential in the previous equation can

be expanded to find:

C(ψ) = ne0(ψ) − ene0(ψ)

Te
φ̄+ O

[(
eφ

Te

)2
]

(3.69)

φ̄(ψ, t) is the flux-surface-averaged potential and is given by:

φ̄(ψ, t) =

∫
φ(ψ, θ∗, ϕ, t)Jθ∗ψϕ(ψ, θ∗)dθ∗dϕ
∫
Jθ∗ψϕ(ψ, θ∗)dθ∗dϕ

(3.70)

Replacing (3.69) in (3.65) gives:

ne(~x, t) = ne0(ψ) +
ene0(ψ)

Te(ψ)

(
φ(~x, t) − φ̄(ψ, t)

)
+ O

[(
eφ

Te

)2
]

(3.71)

Expressing φ̄ in Fourier space with (3.10), yields:

φ̄(ψ, t) =
1∫

dθ∗Jθ∗ψϕ(ψ, θ∗)

∑

m

∫
dθ∗φ̂m,0(ψ, t)Jθ∗ψϕ(ψ, θ∗)e

imθ∗ (3.72)

φ̄(ψ, t) only gives a contribution to the n = 0 mode. In a cylinder geometry, the Jacobian

would be a function of the radial coordinate only and φ̄(ψ, t) would be a function of the

n = 0, m = 0 mode only. In tokamak geometry, there is a poloidal coupling between the

modes (m, 0) due to the poloidal dependence of the r2 term in the Jacobian. For adhoc

equilibria, it can be written in the form:

Jθ∗ψϕ =

∞∑

m′=0

Cm′(ψ)ǫm
′

cos(m′θ∗) (3.73)

Where ǫ is the local inverse aspect ratio. The main poloidal coupling for the n = 0, m = 0

mode is with the n = 0, m = ±1 modes, which are called the Geodesic Acoustic Modes

(GAM). For shaped equilibria the coupling between n = 0, m = 0 and n = 0, m = ±2

may also be important. The purely radial mode n = 0, m = 0, called the zonal flow as

well as the GAM play an important role in regulating turbulence, as shown for example

in [67, 70].
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3.6.3 Quasineutrality equation

Using Eqs. (3.51), (3.61) and (3.71) gives:

∇2φ(~x, t) =
e

ǫ0

{
ne0(ψ) +

ene0(ψ)

Te(ψ)

[
φ(~x, t) − φ̄(ψ, t)

]

− Zi〈ni0〉(~x) − Zini,pol(~x, t) − Ziδni(~x, t)

}
(3.74)

First, it is assumed that the gyro-averaged equilibrium density is equal to the guiding

center density.

〈ni0〉(~x) ∼= ni0(~x) (3.75)

Using a long wavelength approximation, it is easy to show that:

〈ni0〉(~x) ∼= ni0(~x) +
m2
i

q2
i

∇2
⊥

[
ni0(ψ)v2

th(ψ)

B2

]
(3.76)

The correction is clearly a second order term and can be neglected. The density ni0 which

comes from the ions is in fact constructed with the Maxwellian f0(Υ, ǫk, µ), so in general

ne0(ψ) and Zini0(~x) cannot be canceled out, except for the case Υ = ψ. But in the latter

df0(ψ)/dt 6= 0 and so f0 would not be an equilibrium function. Therefore it is assumed

that:

Zini0(Υ) ∼= ne0(ψ) (3.77)

In this approximation, the Poisson equation becomes:

∇2φ(~x, t) +
Te(ψ)

Ti(ψ)

ρ2
Li

λ2
Di

∇2
⊥φ(~x, t) +

qi
ǫ0
∇⊥

(
ni(~x, t)

BΩi

)
· ∇φ(~x, t)

=
e

ǫ0

ene0(ψ)

Te(ψ)

(
φ(~x, t) − φ̄(ψ, t)

)
− qi
ǫ0
δni(~x, t) (3.78)

where the ion Debye length is here defined as:

λDi =

√
ǫ0kBTe
q2
i ni

(3.79)

For typical tokamak parameters λDi ≪ ρLi and the term ∇2φ(~x, t) can be dropped out.

This approximation is called the quasineutrality constraint, and is equivalent to setting

ne = Zini. As just mentionned the final step is to linearize the Poisson equation, i.e. to

set ni(~x, t) ∼= ni0(ψ) in (3.78). The Poisson equation is then:

en0(ψ)

Te(ψ)

[
φ(~x, t) − φ̄(ψ, t)

]
−∇⊥ ·

[n0(ψ)

BΩi
∇⊥φ(~x, t)

]
= δni(~x, t) (3.80)

with n0(ψ) ≡ ni0(ψ).
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3.7 Energy conservation

Despite all the approximations made in the previous Sections, a particle number and an

energy invariant can be derived (see Ref. [53] for the proof). The kinetic energy of the

plasma is

Ekin =

∫
mi

(
µB +

v2
‖

2

)
fB∗

‖ d~R dv‖ dµ dα. (3.81)

Its time derivative is

dEkin

dt
= qi

∫
d~R

dt
· 〈 ~E〉fB∗

‖ d~R dv‖ dµ dα. (3.82)

In this model, the electrostatic energy is defined as

Ef =
qi
2

∫
d~x
[
〈ni〉(~x, t) − n0(~x)

]
φ(~x, t). (3.83)

The energy and particle number conservation are written:

dEkin

dt
= −dEf

dt
, (3.84)

dNph

dt
=

d

dt

∫
fB∗

‖ d~R dv‖ dµ dα = 0. (3.85)

It is important to mention that the energy conservation written here depends on the

approximation used here, i.e. the long wavelength approximation, and on the fact that

the quasineutrality equation has been linearized.

3.8 Noise control and sources

ORB5 solves the collisionless Vlasov equation. Profiles are computed self-consistently.

Typical runs will be explained in Section 5.1. The simulations experience profile re-

laxation: heat is transported (generally outwards) by the particles, which flattens the

temperature gradient and so the turbulence decays. The relaxation rate depends on the

plasma size ρ∗: the smaller ρ∗ is, the longer the relaxation rate will be, but the final state

of the simulation is a quasi-steady state with vanishing turbulence and an equilibrium

radial potential. This potential evolves on a long time scale as compared to the turbulent

modes. As it will be seen in Section 4.3, the gyrokinetic model presented in this Section
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will be solved with a Particle-In-Cell method, which suffers from the accumulation of sta-

tistical noise. It is therefore difficult to make quantitative predictions with such a method.

Clearly, an algorithm that is able to control the noise on long times is highly needed. A

noise-control algorithm has been implemented by B. F. McMillan with a Krook operator

(see [58]), based on the idea of a W-stat proposed by Krommes [71]. The Krook operator

implementation will be detailed in this work for completeness. In addition, a study on the

notion of steady state in PIC simulations will be presented in Section 6.1, which is based

on the noise-control algorithm. It is therefore crucial to understand the physics behind

the Krook operator. The basic idea behind it is to introduce an artificial damping term

γK :

dδf

dt
= τ( ~E)−γKδf(~R, v‖, µ, t)︸ ︷︷ ︸

≡SK(~R,v‖,µ,t)

(3.86)

Evidently, the coefficient γK must be small not to affect significantly the turbulence.

This mechanism obviously brings back the distribution function to its equilibrium state

by slowly damping all the modes of the system. A small damping is acceptable for the

non-axisymmetric modes that are Landau damped. However this damping will affect the

undamped component of the zonal flow perturbation m = 0, n = 0 (as noted in [71]), and

will modify the turbulence by attenuating the Dimits shift effect (see Sec. 5.1). This is

why the Vlasov equation has then been modified in such a way that the density and the

long-time zonal flow structure given in Ref. [72] are conserved:

dδf

dt
= τ( ~E) + SK(~R, v‖, µ, t) + SRH(~R, v‖, µ, t) + Sn(~R, v‖, µ, t)︸ ︷︷ ︸

=≡S

(3.87)

With the following properties:

0 =

∫
d~vS(~R, v‖, µ, t)

(
v‖
B

−
(̃v‖
B

))
(3.88)

0 =

∫
d~vS(~R, v‖, µ, t) (3.89)

Where the overbar is the flux-surface-average and the tilde is the bounce-average, defined

for a quantity A by:

Ã =

∫

orbit

Adt
∫

orbit

dt

=

∫

orbit

A

v‖
dl

∫

orbit

1

v‖
dl

(3.90)
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In addition, one would eventually like that the Krook operator conserves any moment of

the distribution function on magnetic surfaces. The general form of the Vlasov equation

becomes:

dδf

dt
= τ( ~E) + SK(~R, v‖, µ, t) + Scorr(~R, v‖, µ, t) (3.91)

where:

Scorr(~R, v‖, µ, t) =
Nmom∑

i=1

gi(s, t)f0

[
~R(t), v‖(t), µ(t0)

]
Mi(~R, v‖, µ) (3.92)

Where s =
√
ψ/ψedge is the radial label and {Mi(~R, v‖, µ)} are a set of given moments

(for example the density is obtained with M = 1). At each time step, the gi(s) functions

are the unknowns. They are obtained through the property:

∫
d~vMj(~R, v‖, µ)

(
Scorr(~R, v‖, µ, t) + SK(~R, v‖, µ, t)

)
= 0 (3.93)

By inserting the definitions of Scorr and SK a linear system is obtained:

Nmom∑

i=1

Sij(s, t)gi(s, t) = δSj(s, t) (3.94)

With:

Sij(s, t) =

∫
d~vMj(~R, v‖, µ)Mi(~R, v‖, µ)f0

(
~R(t), v‖(t), µ(t0)

)
(3.95)

δSj(s, t) = γK

∫
d~vδf(~R, v‖, µ, t)Mj(~R, v‖, µ) (3.96)

Physical consequences of this algorithm are reviewed in [58]. In particular, the Krook

operator prevents the weights increase and controls the signal to noise ratio which now

scales proportionally to γK instead of 1/tsim where tsim is the total simulation time. How-

ever, by restoring f towards its equilibrium value, the Krook operator acts like a heating

operator. By choosing to conserve the kinetic energy on magnetic surfaces, the Krook

operator will not add thermal energy into the system and the restoring process of the

temperature gradient is blocked: the heating effect disappears. This leads to transient

simulations, similar to the one without the Krook operator, with the important difference

that they are noise-controlled. As a rule of thumb, the value of γK is generally set to

one tenth of the maximal linear growth rate. It does not modify significantly the linear
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phase of the simulation and it allows high signal to noise ratios. One can then introduce

a heating operator to control separately the temperature gradient:

dδf

dt
= τ( ~E) + SK(~R, v‖, µ, t) + Scorr(~R, v‖, µ, t) + SH(~R, v‖, µ, t) (3.97)

Where the heating operator SH is defined by:

SH(~R, v‖, µ, t) = −γH(s)


δ̆f(ǫk, s, t) − f̆0(ǫk, s)

∫
dǫkδ̆f(ǫk, s, t)
∫

dǫk f̆0(ǫk, s)


 (3.98)

Where:

Ă(ǫk, s) =

√
2ǫkdǫkds

∫
dθ∗dϕdλ

2πB∗
‖

B
J(s, θ∗) sinλA(s, θ∗, ϕ, ǫk, λ, t)

√
2ǫk4πΣ(s)dǫkds

(3.99)

This operator is constructed in such a way as to conserve the density on magnetic surfaces:
∫

d~vSH(~R, v‖, µ, t) = 0. Furthermore, it is built by averaging δf on all dimensions of phase

space except the energy and the radial direction. It means that this operator does not

influence the noise caused by phase space filamentation in v (or equivalently in ǫk): the

temperature profile can be controlled with the heating operator independently of the

Krook operator. The heating amplitude is characterized by γH(s). The radial bounds

of the heating are controlled with two input parameters sHmin and sHmax which define a

radial step function for γH(s). In conlusion, there are therefore two ways of heating the

plasma: the Krook operator and the heating operator. In theory, the heating operator

conserves the long time zonal flow structure as the latter is odd in v‖. It is a smooth

quantity that will not remove the small velocity scales. Its effect is therefore slightly

different to the Krook operator where all scales are treated equally.
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Chapter 4

Numerical implementation

This Chapter presents a detailed derivation of the discretized equations solved by ORB5.

This code contains about 40000 programming lines, and has been developed by several

persons. Some algorithms, developed and implemented by other scientists have been

used or improved in this work. They will nevertheless be presented in this Chapter for

completeness, and the names of the persons who originally wrote them will be mentioned.

4.1 Initial status of the code

This thesis is the result of four years and a half of work. The goal was to implement a

kinetic electron response into ORB5. The CPU time needed for such simulations increases

by roughly 2
√
mi/me compared to an adiabatic simulation and becomes extremely long.

This is why the first part of this work has been devoted to the optimization of ORB5.

The first paper on ORB5 has been published by T.M. Tran [44] in 1998. At this time, the

code could simulate nonlinear ITG turbulence with adiabatic electrons without the zonal

flow response, using a PIC approach, for CHEASE equilibria only. The quasineutrality

equation, which reduces to a linear system, was solved with a sparse iterative solver using

a SSOR preconditioned conjugated-gradient method. The code was parallelized along the

toroidal direction for both the particles and the electrostatic potential. The major prob-

lem was the bad conservation of energy, Eq. (3.84), due to the statistical noise inherent

to the PIC method. Then, from 1998 to the beginning of this work in June 2004, many

improvements have been done. Adhoc equilibria have been implemented by A. Bottino,

the zonal flow response and a diagonal Fourier filter have been introduced by P. An-
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gelino [73]. The latter needed a direct solver, also introduced by P. Angelino. Numerical

improvements have been achieved with noise optimization techniques such as optimized

loading and adaptive gyro-average, originally developed in a bumpy pinch geometry [53],

and further introduced in ORB5 by A. Bottino and R. Hatzky [74]. Although massive

amelioration in the energy conservation was obtained, a high level of numerical noise was

still observed, hence the need for further improvements. During this work, the paral-

lelization of the code has been improved with a domain cloning algorithm, introduced in

ORB5 by A. Bottino and R. Hatzky [75]. The noise measurement diagnostic has been

introduced by A. Bottino and results on ETG turbulence published in [76]. The Krook

and heating operators have been implemented by B. F. McMillan and results on ITG

turbulence published in [58].

4.2 Normalization

Normalization quantities are summarized in table 4.1. It is assumed that the plasma

contains electrons and an ion species with a mass mi and a charge qi = eZi.

4.3 PIC discretization

The Particle-In-Cell (PIC) method [77] is commonly employed in gyrokinetic simula-

tions [32, 78, 49, 53, 47]. The perturbed distribution function is discretized in the 5D

phase space along trajectories with N markers (also called tracers), carrying a weight w.

In ORB5, δf is discretized as:

δf ≈ δfs =
Nph

N

N∑

p=1

1

2πB∗
‖

wp(t)δ
(
~R− ~Rp(t)

)
δ
(
v‖ − v‖p(t)

)
δ
(
µ− µp(t0)

)
(4.1)

where Nph = n̄V is the number of physical particles, n̄ = 1/V

∫
dsn(s)Σ(s) is the

volume averaged density. δfs is in fact the sampled perturbed distribution function and

must formally be differentiated from the true perturbed distribution function δf because

δfs is singular but δf is smooth. From now on the subscript ”s” will be omitted. Each

marker is characterized by its weight wp(t) and by its location
(
~Rp(t), v‖p(t), µp(t0)

)
in

phase space. Note that a marker is not a physical particle, but describes a portion of the
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charge qi

mass mi

time Ω−1
i

length ρs

speed cs = ρsΩi

temperature Te(s0)

electric potential Te(s0)
qi

electric field Te(s0)
ρsqi

magnetic field B0

Table 4.1: Normalisation quantities in ORB5. s0 labels a given reference magnetic surface.

phase space. This discretization does not give the pure local information for δf because

δfs is singular. Instead, 5D integrals can be computed for arbitrarily small volumes, such

as the gyro-averaged density in the quasineutrality equation. The physical information

is therefore obtained by doing binnings with the markers. Integrating Eq. (4.1) over a

volume Ωp :

∫

Ωp

δfB∗
‖d
~Rdv‖dµdα =

∫

Ωp

B∗
‖d
~Rdv‖dµdα

Nph

N

N∑

r=1

1

2πB∗
‖

wr(t)

δ
(
~R − ~Rr(t)

)
δ
(
v‖ − v‖r(t)

)
δ
(
µ− µr(t0)

)
(4.2)

In the limit Ωp → 0, δf can be assumed as constant, δf ∼= δfp , where δfp is the average

value of δf over Ωp:

lim
Ωp→0

∫

Ωp

δfB∗
‖d
~Rdv‖dµdα = δfp

∫

Ωp

B∗
‖d
~Rdv‖dµdα = δfpΩp (4.3)

In addition to this, in the limit Ωp → 0 it is always possible to find a small enough Ωp,

centered around a single (~Rr, v‖r, µr) which does not cross any other small volume Ω.

Then the property

∫ b

a

f(x)δ(x− x′)dx = 0 when x′ is outside [a : b] is used such that:

δfpΩp =
Nph

N
wp(t) ⇔ wp(t) =

N

Nph
δfpΩp (4.4)

Ωp is the phase space volume occupied by one marker, in other terms:

Ωp =
B∗

‖d
~Rdv‖dµdα

dN
(4.5)
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where dN is the number of markers in an infinitesimal volume of the phase space. dN

describes the distribution according to which the markers are loaded, and can be freely

specified. Eq. (4.4) is the link between the numerical and the physical number of particles.

After discretization, the temporal evolution of δfp is obtained by solving the gyrokinetic

equation integrated over Ωp for each weight:

dδfpΩp

dt
=
Nph

N

dwp
dt

= τ( ~Ep)Ωp (4.6)

with τ( ~Ep) given by (3.44). At the same time the weights are evolved, the equations of

motions for ~Rp and v‖p are solved.

4.3.1 Equations of motion

Introducing the magnetic field (3.1) in Eqs. (3.23) and (3.24), and projecting along

(s, θ∗, ϕ) according to dA/dt = d~R/dt · ∇A gives:

ds

dt

∣∣∣∣
0

=
mi

(
v2
‖ +

v2⊥
2

)

qiB
∗
‖B

2Jθ∗sϕ
F (ψ)

∂B

∂θ∗
(4.7)

ds

dt

∣∣∣∣
1

= 〈Eϕ〉
∇ψ · ∇s
r2BB∗

‖

− 〈Eθ∗〉
F (ψ)

Jθ∗sϕBB
∗
‖

(4.8)

dθ∗
dt

∣∣∣∣
0

=
v‖

Jθ∗ψϕB
−
mi

(
v2
‖ +

v2⊥
2

)

qiB∗
‖B

2Jθ∗sϕ
F (ψ)

∂B

∂s
−
miv

2
‖µ0p

′(ψ)F (ψ)

qiB∗
‖B

3Jθ∗ψϕ
(4.9)

dθ∗
dt

∣∣∣∣
1

= 〈Eϕ〉
∇ψ · ∇θ∗
r2BB∗

‖

+ 〈Es〉
F (ψ)

Jθ∗sϕBB
∗
‖

(4.10)

dϕ

dt

∣∣∣∣
1

=
v‖F (ψ)

Br2
+
mi

(
v2
‖ +

v2⊥
2

)

qiB∗
‖B

2r2

(
∂B

∂s
∇ψ · ∇s+

∂B

∂θ∗
∇ψ · ∇θ∗

)

+
miv

2
‖µ0p

′(ψ)|∇ψ|2
qiB∗

‖B
3r2

(4.11)

dϕ

dt

∣∣∣∣
1

= −〈Es〉
∇ψ · ∇s
r2BB∗

‖

− 〈Eθ∗〉
∇ψ · ∇θ∗
r2BB∗

‖

(4.12)
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dv‖
dt

∣∣∣∣
0

= − v2
⊥

2B2Jθ∗sϕ

∂B

∂θ∗
+
miv

2
⊥v‖

2qiB∗
‖

µ0p
′(ψ)F (ψ)

Jψθ∗ϕB
4

∂B

∂θ∗
(4.13)

dv‖
dt

∣∣∣∣
1

= 〈Es〉
v‖
B∗

‖

F (ψ)

B2Jθ∗sϕ

∂B

∂θ∗
+ 〈Eθ∗〉

(
qi
mi

1

Jθ∗ψϕB
− v‖
B∗

‖

F (ψ)

B2Jθ∗sϕ

∂B

∂s

− v‖
B∗

‖

µ0p
′(ψ)F (ψ)

B3Jθ∗ψϕ

)
+ 〈Eϕ〉

[
qi
mi

F (ψ)

r2B
+
v‖
B∗

‖

(
∂B

∂s
∇s · ∇ψ +

∂B

∂θ∗
∇ψ · ∇θ∗

)
1

B2r2

+
v‖
B∗

‖

µ0p
′(ψ)|∇ψ|2
B3r2

]
(4.14)

At each time step and for each marker, the new phase space coordinates and the weight

are obtained. This operation is called the particle pushing.

The electric field is expressed as:

〈 ~E〉 = 〈Es〉∇s+ 〈Eθ∗〉∇θ∗ + 〈Eϕ〉∇ϕ (4.15)

The Jacobian is:

Jθ∗sϕ =
dψ

ds
Jθ∗ψϕ = 2sψedge

r2q(ψ)

F (ψ)
(4.16)

B∗
‖ is:

B∗
‖ = B +

miv‖
qi

(
F ′(ψ) +

F (ψ)µ0p
′(ψ)

B2

)
(4.17)

The magnetic field derivatives are given by:

∂B

∂s

)

θ∗

=
∂B
∂r

)
z
∂θ∗
∂z

)
r
− ∂B

∂z

)
r
∂θ∗
∂r

)
z

∂ψ
∂r

)
z
∂θ∗
∂z

)
r
− ∂ψ

∂z

)
r
∂θ∗
∂r

)
z

,
∂B

∂θ∗

)

s

=
∂B
∂z

)
r
∂ψ
∂r

)
z
− ∂B

∂r

)
z
∂ψ
∂z

)
r

∂ψ
∂r

)
z
∂θ∗
∂z

)
r
− ∂ψ

∂z

)
r
∂θ∗
∂r

)
z

(4.18)

All the coefficients needed can be computed from the metric and with p′(ψ), F (ψ), F ′(ψ).

For adhoc equilibria, F (ψ) = B0R0, F
′(ψ) = 0 and p′(ψ) is:

µ0p
′(ψ)AH = − 1

r2

(
∇2ψ − 2

r

∂ψ

∂r
+ F ′(ψ)F (ψ)

)
(4.19)

The poloidal flux is given by:

ψ(ρ) =

∫ ρ

0

B0ρ
′

q̄(ρ′)
dρ′ (4.20)
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This integral is computed numerically. For a parabolic profile q̄(ρ) = q0+(qedge − q0) ρ
2/a2

it can be computed analytically:

ψ(ρ) =
a2B0

2(qedge − q0)
ln

(
1 +

qedge − q0
q0a2

ρ2

)
(4.21)

s =

√√√√√
ln
(
1 +

qedge−q0
q0a2

ρ2
)

ln
(
1 +

qedge−q0
q0

) (4.22)

ρ = a

√√√√ q0
qedge − q0

[(
1 +

qedge − q0
q0

)s2
− 1

]
(4.23)

The first derivatives of ψ are given by:

∂ψ

∂r
=
B0ρ

q̄(ρ)
cos θ,

∂ψ

∂z
=
B0ρ

q̄(ρ)
sin θ (4.24)

The second derivatives of ψ are given by:

∂2ψ

∂r2
= ψ′′(ρ) cos2 θ +

ψ′(ρ)

ρ
sin2 θ,

∂2ψ

∂z2
= ψ′′(ρ) sin2 θ +

ψ′(ρ)

ρ
cos2 θ (4.25)

∂2ψ

∂r∂z
= ψ′′(ρ) sin θ cos θ − ψ′(ρ)

ρ
sin θ cos θ, ψ′′(ρ) =

B0

q̄(ρ)

(
1 − ρq̄′(ρ)

q̄(ρ)

)
(4.26)

θ∗ can be computed analytically for adhoc equilibria:

θ∗ = 2 arctan

(√
1 − ǫ√
1 + ǫ

tan(θ/2)

)
⇔ θ = 2 arctan

(√
1 + ǫ√
1 − ǫ

tan(θ∗/2)

)
(4.27)

Where ǫ = ρ
R0

The θ∗ derivatives are given by:

∂θ∗
∂θ

=
1 − ǫ cos θ∗√

1 − ǫ2
,

∂θ∗
∂ψ

= − 1

B0R2
0

q̄(ρ)

ǫ

sin θ

1 + ǫ cos θ

1√
1 − ǫ2

(4.28)

∂θ∗
∂r

=
∂θ∗
∂ψ

∂ψ

∂r
− 1

ρ
sin θ

∂θ∗
∂θ

,
∂θ∗
∂z

=
∂θ∗
∂ψ

∂ψ

∂z
+

1

ρ
cos θ

∂θ∗
∂θ

(4.29)

Equilibrium coefficients are stored on a (s, θ∗) grid whose dimensions are input parame-

ters. During the marker pushing, coefficients are then obtained by linear interpolation.

For adhoc equilibria, equilibrium coefficients could be directly computed at the amerker

position but it would strongly slow down the simulation. For shaped equilibria, the values

of s, ∂ψ/∂r, ∂ψ/∂z, ∂2ψ/∂r2, ∂2ψ/∂r∂z, ∂2ψ/∂z2, F (ψ) and F ′(ψ) are read from CHEASE

and stored on a (s, θ∗) grid. For each point on the equilibrium (s, θ∗) grid, these values

are obtained by linear interpolation, and all the remaining coefficients can be computed.

The only difference is the coefficient ∂θ∗/∂ψ, which is obtained with a cubic spline inter-

polation with tension [79]. This procedure has been adopted due to the original version
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Figure 4.1: Example of (ξ, η) (left) and (s, θ∗) coordinates (right) in the poloidal plane

for an aspect ratio of 2.

of ORB5 which pushed the tracers in cartesian coordinates. It would be better to read

equilibrium coefficients from CHEASE directly on a (s, θ∗) grid to avoid multiple inter-

polations. This work will be done in the future.

In the poloidal plane, particles are pushed in (s, θ∗). At the magnetic axis s = 0, it causes

a numerical instability because dθ∗/dt ∝ 1/s diverges. This problem is solved by using

pseudo-cartesian coordinates (ξ, η) coordinates defined by:

ξ = s cos θ∗ η = s sin θ∗ (4.30)

and so:

dξ

dt
=

ds

dt
cos θ∗ −

dθ∗
dt
s sin θ∗,

dη

dt
=

ds

dt
sin θ∗ +

dθ∗
dt
s cos θ∗ (4.31)

The singularity disappears because sdθ∗/dt is not divergent. An example of (s, θ∗) and

(ξ, η) coordinates is given on Fig. 4.1. The lower the aspect ratio, the more the θ∗ lines

are dense in the HFS region. The effect is the same for a high shear or shaping effects

such as positive triangularity and elongation. For negative triangularity, the θ∗ lines are

more dense in the LFS region. The integration of trajectories with these coordinates has

also been implemented in the linear global code LORB5 [80]. Particles are pushed in

(ξ, η) if s < spush, where spush is an input parameter, otherwise they are pushed in (s, θ∗).

A reasonable value for spush can be estimated with the condition ds/d|0 ∆t = spush wich
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defines a circle that a marker can cover in one time step ∆t with no electric field. The

previous relation, evaluated at magnetic axis in the case of adhoc equilibria, gives an

estimation of spush. The following approximations are done: v2
‖ + v2

⊥/2 ∼ κ2
vvthi(0)2 =

κ2
vc

2
sTi(0)/Te(s0), ∂B/∂θ∗ ∼ B0ρ/R0, Jθ∗sϕ ∼ R0q0/B02sψedge. Then, with (4.7):

ds

dt

∣∣∣∣
0

∆t ∼= 1

2

κ2
v

R0
c2s
mi

qi

Ti(0)

Te(s0)
lim
s→0

ρ

sq0ψedge
(4.32)

By furthermore assuming a parabolic safety factor, using Eqs (4.21), (4.22), (4.23), spush

is finally approximated by:

spush =
(
ρ∗
)2
κ2
vǫa

Ti(0)

Te(s0)

√
qedge − q0

q0

1√
ln
(
1 +

qedge−q0
q0

)Ωi∆t (4.33)

The larger the plasma is, the smaller spush can be. Nonlinear effects should not modify

this estimation because the turbulence is weak on axis.

Equations of motions and Vlasov equation are integrated with a Runge-Kutta integrator

of order 4. It is possible to run ORB5 with integrators of order 2 or 3 but they have not

been used in this work. Finally, a marker can leave the plasma, i.e. it can have s < sf,min

or s > sf,max. Since the gyrokinetic model is collisionless, the number of particles is

conserved. So when a marker leaves the plasma, it must be reintroduced somewhere. In

ORB5, if a particle is outside the domain, it is reflected: θ∗ → −θ∗. This scheme may

lead to some problems: if the equilibrium is not up-down symmetric, this reflection does

not conserve any of the three constants of motion: B(s, θ∗) 6= B(s,−θ∗), the magnetic

moment µ = v2
⊥/2B is changed but is, by default, supposed constant. The perpendicular

velocity will change and the energy conservation will be violated. The change in the

magnetic field also leads to the violation of the toroidal angular momentum. It would be

more realistic to reinject the particle at (s,−θ∗, ϕnew) where (−θ∗, ϕnew) is on the same

field line, in order not to change the phase of the potential, but this scheme would be too

consuming in terms of CPU, because particles are parallelized in the toroidal direction.

The particle pushing is speeded up (by up to 40 %) by using a cache sorting algorithm [81]:

particles are sorted in the poloidal plane every nCS time steps, where nCS is given on input.

Sorting the particle in s and θ∗ allows cache reuse as all the equilibrium coefficients

are stored on a (s, θ∗) grid. It is also efficient for the charge assignment, described in

Section 4.5.3.
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4.3.2 Loading of phase space volumes

The number of markers in an infinitesimal phase space volume dN can be freely specified.

Markers are loaded independently in space and velocity such that:

dN =
N

Nph

(
fL(~R)d3x

)(
fv(v‖, v⊥)d3v

)
(4.34)

=
N

Nph
fL(~R)Jθ∗sϕ(s, θ∗)dsdθ∗dϕfv(v‖, v⊥)v⊥dv‖dv⊥dα (4.35)

Inserting this relation in (4.5), Ωp becomes:

Ωp =
Nph

N

B∗
‖

B

1

fL(~R)fv(v‖, v⊥)
(4.36)

In ORB5, fL is

fL(~R) = fL(s) = K

{
1 − fg + fg exp

[
−
(
s− s0L

∆sL

)2 ]}
≡ Kp(s) (4.37)

This scheme is called the specified loading. s0L and ∆sL are input parameters. fg is a

input parameter between 0 and 1. K is the normalisation constant:

1 = K

∫
fL(~R)Jθ∗sϕ(s, θ∗)dsdθ∗dϕ = K

∫ sf,max

sf,min

dsΣ(s)p(s) (4.38)

sf,min and sf,max are the inner and outer boundaries of the annulus and Σ(s) is the flux-

surface-averaged Jacobian Σ(s) =
∫

dθ∗dϕJθ∗sϕ. fL is then:

fL(~R) =

1 − fg + fg exp

{
−
(
s−s0L

∆sL

)2
}

∫ sf,max

sf,min

dsΣs(s)p(s)

(4.39)

In the special case where fg = 0 (⇒ p(s) = 1), the scheme is called uniform loading :

the number of markers in a given cell is proportional to its volume. Note that for linear

simulations the specified loading is more appropriate because one can load more markers

in the vicinity of the magnetic surface with the highest temperature gradient, i.e. where

ITG modes develop. However, fg should not be too close to 1 as poorly discretized

regions of phase space may degrade the convergence of the results. Two options exist for

the loading of fv. In the first option, fv(v‖, v⊥) is defined as:

fv(v‖, v⊥) =
M

v⊥
(4.40)

57



M is a normalization constant:

1 =

∫
fv(v‖, v⊥)v⊥dv⊥dv‖dα = M

∫ +∞

0

dv⊥

∫ +∞

−∞

dv‖ (4.41)

With fv ∼ 1/v⊥, the loading is uniform in (v‖, v⊥). The problem is that the integral in

the last equation diverges. Markers obviously cannot be loaded with an infinite veloc-

ity. However, the distribution function is close to a Maxwellian, which is proportional to

exp{− (v/vthi(s))
2}. Markers with a high velocity will have an extremely small contribu-

tion to the distribution function. The following approximation is done:

∫ +∞

0

dv⊥

∫ +∞

−∞

dv‖ ∼= π

∫ κvvthi(s)

0

vdv =
π

2

[
κvvthi(s)

]2
(4.42)

κv is a constant defined on input, usually κv = 5. This approximation means that markers

are loaded in a half sphere of radius κvvthi(s). fv(v‖, v⊥) is then:

fv(v‖, v⊥) =
1

v⊥
[
πκvvthi(s)

]2 (4.43)

Ωp is finally:

Ωp =
Nph

N

B∗
‖

B

v⊥
p(sp)

[
πκvvthi(sp)

]2 ∫ sf,max

sf,min

dsΣ(s)p(s) (4.44)

A disadvantage of this loading is that it is not specifically optimized for δf in velocity

space. In the nonlinear phase, the amplitude of the weights may vary significantly. During

the charge assignment, noise will be produced where large weights (in absolute value) are

present, which, due to its cumulative character, will alter the quality of the simulation.

A way to overcome this difficulty is to apply an optimized loading scheme [53], based

on the statistical method of importance sampling [69] of |δf |. The basic idea is to load

markers with a probability function fOL(s, v) proportional to |δf | at a time tNL in the

nonlinear phase. A first simulation is done with a uniform loading. fOL(s, v) is obtained

by binning the markers at their initial position at a given time tNL in the nonlinear phase.

A second simulation is then performed using this new fOL(s, v), which determines initial

phase space coordinates (~Rp, v‖p, µp) and phase space volume Ωp of the markers. In the

nonlinear phase of this restarted simulation, the statistical variance of the weights will be

smaller, hence the numerical noise will have a lower level (see Eq. (4.134)). The reason

is that the optimized loading avoids the appearance of large weights in the nonlinear

stage of a simulation. This technique has been successfully applied in cylindrical [53] and
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tokamak [74] geometry.

The phase space loading can be checked with the following identity:

Vps =
4π

3
κ3
v

∫ sf,max

sf,min

Σ(s)v3
thi(s)ds =

N∑

p=1

Ωp (4.45)

Vps =

∫
B∗

‖d~Rdv‖dµdα is the phase space volume. The integral containing the term

B∗
‖ −B vanishes because it is odd in v‖. The velocity loading can further be checked with

the following identity:

Ekin,ps =
3

2

∫ sf,max

sf,min

dsΣ(s)n0(s)v
2
thi(s) =

N∑

p=1

1

2
miv

2
pΩp (4.46)

Where Ekin,ps =
∫
f0(~R, v‖, µ)(v2

‖/2+µB)B∗
‖d
~Rdv‖dµdα is the unperturbed kinetic energy

of the phase space. The integral containing the term B∗
‖ − B vanishes because it is odd

in v‖. Eqs. (4.45), (4.46) are true in the limit of an infinite number of markers and for

κv → ∞. In practice, the relative error is typically of the order of 10−2%.

4.3.3 Weight evolution

The time evolution equation for the weights is Eq. (4.4) with τ( ~E) given by:

τ( ~E) = −f0κ(Υ)
dΥ

dt

∣∣∣∣
1

+
qif0

Ti(Υ)
〈 ~E〉 · d~R

dt

∣∣∣∣∣
0

(4.47)

For Υ = ψ0, one has:

dψ0

dt

∣∣∣∣
1

=
1

B∗
‖

(
1 +

miv‖
qi

F ′(ψ)

B

)(
~h×∇ψ

)
· 〈 ~E〉

−miv‖
qiB

∗
‖

F (ψ)

B3

(
~B ×∇B

)
· 〈 ~E〉 +

mi

qi

F (ψ)

B

dv‖
dt

∣∣∣∣
1

(4.48)

(
~h×∇ψ

)
· 〈 ~E〉 = − F (ψ)

Jθ∗ψϕBB
∗
‖

〈Eθ∗〉 +
|∇ψ|2
r2BB∗

‖

〈Eϕ〉 (4.49)

−F (ψ)

B3

(
~B ×∇B

)
· 〈 ~E〉 = − F (ψ)2

B3Jθ∗sϕ

∂B

∂θ∗
〈Es〉 +

F (ψ)2

B3Jθ∗sϕ

∂B

∂s
〈Eθ∗〉

−F (ψ)

B3r2

(
∂B

∂s
∇s · ∇ψ +

∂B

∂θ∗
∇ψ · ∇θ∗

)
〈Eϕ〉 (4.50)
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d~R

dt

∣∣∣∣∣
0

· 〈 ~E〉 = 〈Es〉
ds

dt

∣∣∣∣
0

+ 〈Eθ∗〉
dθ∗
dt

∣∣∣∣
0

+ 〈Eϕ〉
dϕ

dt

∣∣∣∣
0

(4.51)

For Υ = ψ, one has:

dψ

dt

∣∣∣∣
1

=
d~R

dt

∣∣∣∣∣
1

· ∇ψ =
1

B∗
‖

(
~h×∇ψ

)
· 〈 ~E〉 (4.52)

4.3.4 Discretization of the noise control and heating operators

The linear system that has to be solved for the source operator, Eq. (3.94), is discretized

with markers, integrated over a small phase space volume and solved on NS flux surfaces.

The unknown functions gi(s), once discretized are noted gki , k = 1, ..., NS and are obtained

through the system:

Nmom∑

i=1

Skijg
k
i = δSkj ∀k = 1, ..., NS (4.53)

Skij =
1

Vk

∑

1≤r≤N
r:sr∈[sk−1:sk]

f0(~Rr, v‖r, µr)ΩrMi(~Rr, v‖r, µr)Mj(~Rr, v‖r, µr) (4.54)

δSkj =
1

Vk

∑

1≤r≤N
r:sr∈[sk−1:sk]

wrΩrγKMj(~Rr, v‖r, µr) (4.55)

And the weights are modified after the usual RK integration using a 1st order approxi-

mation. It means that the sources are computed once every time step:

wrΩr = wrΩr − γK∆twrΩr + ∆t

Nmom∑

i=1

f0(~Rr, v‖r, µr)Mi(~Rr, v‖r, µr)g
kr

i Ωr (4.56)

where kr is the index of {gi} for the marker r.

The bounce-average of v‖/B is pre-computed on a (ψ0, µ) grid using a 0th order approxi-

mation, i.e. assuming that ions follow their magnetic surface such that:

Ã =

∫
A

B

v‖ ~B · ∇θ∗
dθ∗

∫
B

v‖ ~B · ∇θ∗
dθ∗

(4.57)
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Nǫk intervals in ǫk, labelled with v, and NsH intervals in s, labelled with w, are used for

the heating operator SH(~R, v‖, µ, t). For each marker r it gives a contribution Sv,wH,p:

Sv,wH,p = −γH(sp)

Vvw

∑

1≤r≤N
r:ǫkr∈[ǫk,v−1:ǫk,v]

r:sr∈[sw−1:sw ]

wrΩr −

f v,w0 Ωr

∑
1≤p≤N

p:sp∈[sw−1:sw]
wpΩp

∑Nǫk

v=1 f
v,w
0

(4.58)

Vvw =
∑

1≤r≤N
r:ǫkr∈[ǫk,v−1:ǫk,v ]

r:sr∈[sw−1:sw ]

Ωr, f v,w0 = f0(sw+1/2, ǫk,v+1/2) (4.59)

The upper bound of the binning in energy is 1/2κ2
vTi(0). Like for the noise-control oper-

ator, the heating is applied once at each time step using a 1st order approximation:

wpΩp = wpΩp + Sv,wH,p∆t (4.60)

4.3.5 Loading of initial conditions

At the beginning of a simulation, markers are loaded ”randomly” with the help of Ham-

mersley sequences (which is a particular case of the more general Halton sequences,

see [82]), defined by:

Hr(p) =

Np∑

j=0

aj
rj+1

(4.61)

Where r is a prime number and p a natural number written in base r:

p =

Np∑

j=0

ajr
j, Np = [logr(p)] (4.62)

The Hammersley sequence ensures that if r is a prime number, Hr(p) 6= Hr(j) for p 6= j.

Besides, 0 < Hr(p) < Hmax(r, p):

Hmax(r, p) = 1 −
(

1

r

)Np+1

(4.63)

In the limit of an infinite number of particles, Hmax(r, p) = 1. The Hammersley sequence

gives a standard deviation proportional to 1/N , which is much better than the standard
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deviation produced by the Fortran implemented random generator, proportional to 1/
√
N .

For the marker p, sp and θ∗p are loaded by solving the following equations:

Hr1(p) =

∫ sp

0

∫ 2π

0

fL(s
′, θ∗)Jθ∗sϕ(s

′, θ∗)ds
′dθ∗ (4.64)

Hr2(p) =

∫ θ∗p

0

fL(sp, θ
′
∗)Jθ∗sϕ(sp, θ

′
∗)ds

′dθ′∗ (4.65)

ϕ can be loaded uniformly or with a Hammersley sequence. The magnetic moment and

the parallel velocity are obtained through:

λ = πHr3(p), |v| = κv
√
vthi(s)Hr4(p) (4.66)

ORB5 has two ways of initializing the weights. For the random noise initialization:

δfp(t0) = Hr5(p)f0

[
~Rp(t0), v‖p(t0), v⊥p(t0)

]
(4.67)

Hr5(p) is such that:

−A0 < Hr5(p) < A0,
1

N

N∑

p=1

Hr5(p) = 0 (4.68)

A0 is given on input. The initial perturbation is a small number, A0 ∼ 10−5 − 10−3. This

scheme has the disadvantage that the initial perturbation is inversely proportional to the

number of markers in the simulation. The simulation takes an increasing time, roughly

proportional to the number of markers, until the physical modes emerge of the initial

noise. Instead, the idea is to build a physical initialization, called mode initialization,

independent of the number of markers:

δfi(t0) = Ωi

A0f0

(
~Ri(t0), v‖i(t0), µi(t0)

)

(m2 −m1 + 1)(n2 − n1 + 1)

∣∣∣∣∣
Ti
(
s0

)

∇Ti
(
s0

)
∣∣∣∣∣

∣∣∣∣∣
∇Ti

(
si(t0)

)

Ti
(
si(t0)

)
∣∣∣∣∣

×
m2∑

m=m1

n2∑

n=n1

cos
[
mθ∗i(t0) − nϕi(t0)

]
. (4.69)

where m1, m2, n1, n2 are input parameters. For linear simulations it is convenient to

choose m0 = m1 = m2 = [−n0q(s0)] with n1 = n2 = n0, where [...] denotes the integer

part, which corresponds to a mode with k‖ → 0, as ITG modes are aligned with the field

lines. This initialization has the advantage that the initial perturbation converges with

the number of markers and the initial phase of the simulation, until the physical modes

develop, is independent of the number of markers.
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4.4 Parallelization

Good convergence requires a high number of particles and therefore large memory and

number of processors. Physical simulations also need a high resolution grid for the Pois-

son equation, which leads to high memory requirements. That is the reason why ORB5

is massively parallelized with MPI [83].

Initially, the code had a 1D toroidal decomposition based on the so-called general con-

current PIC algorithm (GCPIC) [84]. A new 2D parallelization algorithm based on the

domain cloning algorithm [85, 75] has been implemented. The P processors used in a

simulation are decomposed as:

P = PC × Pϕ (4.70)

where Pϕ is the number of processors in the ϕ direction, and PC is the number of clones.

When PC = 1, the domain cloning algorithm is equivalent to the GCPIC algorithm. The

density is computed on a 3D grid. The torus grid is divided into toroidal slices and dis-

tributed among the different processors. The memory size of all arrays defined on this

3D grid is then divided by Pϕ.

The Poisson equation is solved in real or Fourier space. Nϕ toroidal slices or toroidal

Fourier modes need to be solved. Each processor will have Nϕ/Pϕ modes to solve. Each

of the PC clone contains Pϕ processors. All the clones are equivalent in the sense that

they contain the whole toroidal domain for the field quantities. The particles are evenly

distributed among all the processors. Each processor will own N/P particles (with some

small differences since N modulo P maybe not equal to 0). During the time evolution,

particles move in the toroidal direction and must be sent to the corresponding proces-

sors. Field quantities such as the perturbed density must be summed over the clones

at each time step. The general picture of domain cloning is displayed on Fig. 4.2. This

2D decomposition is obviously better than a 1D toroidal decomposition as the latter is

constrained by P ≤ Nϕ (one must have at least one Fourier mode per processor). As the

plasma size increases, more and more toroidal modes need to be solved. In order to have

a reasonable memory for the field arrays such as electric potential, many toroidal slices

must be used. But in that case more and more particles must be sent to other processors

as they move toroidally. The same problem appears when kinetic electrons are added

to the simulation: because their toroidal motion is much faster than the ion one, more
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Figure 4.2: The domain cloning scheme for ORB5.

particles must be sent. When using PC = 1, the time needed for parallel communication

can strongly dominate the simulation. In conclusion, an optimum decomposition can be

found, depending on the memory and the inter-connection of the processors.

4.5 Poisson equation

4.5.1 The Galerkin method

The Poisson equation is solved with a finite element method [86]. The fundamental idea

is to discretize the potential as follows:

φ(~x, t) =
∑

µ

φµ(t)Λµ(~x) (4.71)

Where φµ(t) are real numbers, and {Λµ(~x)} are the tensor product of B-splines [87] (see

annex A.1). B-splines are polynomial functions of order p. In ORB5, p = 1, 2 or 3 is

implemented. The discretization of φ, Eq. (4.71) and the discretization of δf , Eq. (4.1)

are inserted in the quasineutrality Eq. (3.80). The Galerkin method consists of two steps.

First, the equation is multiplied by a test function Λν(~x) which has the same shape as

the B-spline used for the potential discretization. Second, the equation is integrated over
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the whole plasma. The quasineutrality equation turns into a linear system:

∑

µ

(
Aµν + AZFµν

)
φµ = biν (4.72)

With:

Aµν =

∫
d~x

{
en0(ψ)

Te(ψ)
Λν(~x)Λµ(~x) +

n0(ψ)

BΩi
∇⊥Λν(~x) · ∇⊥Λµ(~x)

}
(4.73)

AZFµν = −
∫

d~x
en0(ψ)

Te(ψ)
Λν(~x)Λ̄µ(s) (4.74)

biν =
Nph

Ni

Ni∑

r=1

1

2π

∫
dαΛν(~Rr + ~ρLir)wr(t) (4.75)

Both A and AZF matrices are symmetric and positive definite. To get to this equation,

an integration by parts has been done on the polarization density by using the divergence

theorem. The surface term is:

∑

µ

φµ

∫

σ

Λν
n0(ψ)

BΩi
∇⊥Λµ ·

−→
dσ (4.76)

At s = sf,max, φ = 0 is imposed so that the surface term is 0. When sf,min = 0, the surface

term is 0. For sf,min 6= 0, the surface term is not 0 but has been neglected.

The computation of biν , Eq. (4.75), is called the charge assignment : the charge density is

obtained by assigning the weights to gyro-rings and projecting them on the splines. The

details are presented on annex A.3. The charge assignment is a Monte-Carlo integral and

will contain statistical noise. More details on this topic will be given in Section 4.5.6

4.5.2 Determination of the grid size

Depending on the physical case under study, the ORB5 numerical parameters should be

set up as follows. The radial mesh resolution depends on the maximum ksρLi that should

be resolved, where ks is the radial component of the wave number. With cubic B-spline

finite elements there should be at least 3 points per wavelength. Thus

Ns >
3

2π
(ksρLi)max

a

ρLi
(4.77)

Similarly, for a maximum kθ∗ρLi that should be resolved up to the magnetic surface smax,

where kθ∗ is the poloidal component of the wave number, the poloidal mesh should be set
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to

Nθ∗ > 3smax (kθ∗ρLi)max

a

ρLi
. (4.78)

Since the perturbations tend to be aligned with magnetic field lines the toroidal mesh

should be chosen as

Nϕ ≈ Nθ∗/q(s) (4.79)

4.5.3 Expression for the matrix and the RHS

Before discretizing in more details the linear system, an additional approximation is done.

The ∇⊥ operator can be written:

∇⊥ = ∇s ∂
∂s

+ ∇θ∗
∂

∂θ∗
+ ∇ϕ ∂

∂ϕ
−~h

[
F (ψ)

r2B

] [
∂

∂ϕ
+

1

q(ψ)

∂

∂θ∗

]
(4.80)

The operator in the square brackets can be neglected due to the alignment of microinsta-

bilities with the field line:

∂

∂ϕ
∼= − 1

q(ψ)

∂

∂θ∗
(4.81)

Finally:

∇⊥
∼= ∇pol = ∇s ∂

∂s
+ ∇θ∗

∂

∂θ∗
(4.82)

Where |∇ϕ ∂
∂ϕ
| has been neglected over |∇θ∗ ∂

∂θ∗
|. The ratio of these term is equal to

ρ/r ∼ O(ǫa). This assumption could be avoided by using (4.81) for ∇⊥:

∇⊥
∼= ∇s ∂

∂s
+

(
∇θ∗ −

1

q(ψ)
∇ϕ
)

∂

∂θ∗
(4.83)

This option has been implemented in ORB5 but has not been used in this work, as it

has been checked that is does not give any significant difference on the results. Note that

for a field-aligned-solver (see Section 4.5.7), the true ∇⊥ operator could in principle be

implemented.

The quasineutrality equation must be solved on a 3D grid. However, due to the axisym-

metry of the tokamak, the linear system can be transformed into a 2D system by writing

φµ and biµ in Fourier space:

φµ = φj′,k′,l′ =

Nϕ−1∑

n=0

φ̂
(n)
j′,k′ exp

(
2πi

Nϕ
nl′
)

(4.84)

biν = bj,k,l =

Nϕ−1∑

n=0

b̂
(n)
j,k exp

(
2πi

Nϕ
nl

)
(4.85)
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With this Ansatz, the integral over ϕ that only involves B-splines can be computed

analytically. The quasineutrality equation written in Fourier space is simply:

∑

µ

(
Aµν + AZFµν

)
φ̂(n)
µ =

b̂
(n)
ν

M (n)
(4.86)

where (µ, ν) = (jk, j′k′) now stand for 2D indices and:

Aµν =

∫
dsdθ∗Jθ∗sϕ(s, θ∗)

{
en0(s)

Te(s)
Λν(s, θ∗)Λµ(s, θ∗)

+
n0(s)

BΩi
∇polΛν(s, θ∗) · ∇polΛµ(s, θ∗)

}
(4.87)

AZFµν = −
∫

dsdθ∗Jθ∗sϕ(s, θ∗)
en0(s)

Te(s)
Λ̄µ(s)Λν(s, θ∗) (4.88)

Nϕ−1∑

l′=0

∫
dϕΛl′(ϕ)Λl(ϕ) exp

(
2πi

Nϕ
nl′
)

= M (n) exp

(
2πi

Nϕ
nl

)
(4.89)

A generic formula can be given for M (n) (see Annex A.1). For linear, quadratic and cubic

splines M (n) is given by:

M (n) =
2π

Nϕ





2
3

+ 1
3
cos
(

2π
Nϕ
n
)

for p = 1

11
20

+ 13
30

cos
(

2π
Nϕ
n
)

+ 1
60

cos
(

2π
Nϕ

2n
)

for p = 2

151
315

+ 397
840

cos
(

2π
Nϕ
n
)

+ 1
21

cos
(

2π
Nϕ

2n
)

+ 1
2520

cos
(

2π
Nϕ

3n
)

for p = 3

(4.90)

When the zonal flow matrix is included, the system is solved in toroidal Fourier space

to avoid communication among processors. When it is not included, the system can be

solved equivalently in real or Fourier space. The discretized form of the matrices is given

in Annex A.2. In order to compute the RHS biν , the integral over α is done through a Ngr

points sum, where:

Ngr = min
[
32,max(4, 4ρLir/ρLi)

]
(4.91)

ρLir is the ion Larmor radius at the marker’s position. The number of points used for the

gyro-average depends on the Larmor radius of the marker’s guiding center. This technique

is called the gyro-adaptative method and reduces noise [53]. It is also assumed that the

Larmor ring lies in the poloidal plane:

ϕr(α) ∼= ϕrGC + ~ρLir(α) · ∇ϕ|rrGC ,zrGC
∼= ϕrGC (4.92)
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where:

~ρLi = ρLi

(
∇s
|∇s| cosα +

~B ×∇s
| ~B ×∇s|

sinα

)
(4.93)

The neglected term goes like ρ∗ǫa and is therefore ǫa smaller than the other terms appear-

ing in the gyro-average. To get the position of the marker on the Larmor ring, one uses

a Taylor expansion:

ξrα ∼= ξrGC + ~ρLi · ∇ξ|GC , ηrα ∼= ηrGC + ~ρLi · ∇η|GC (4.94)

And then srα, θ∗rα are obtained analytically. This is done to avoid (r, z) → (s, θ∗) trans-

formations. ~ρLi · ∇ξ and ~ρLi · ∇η are obtained by linear interpolation and are given

by:

~ρLi · ∇ξ = ρLi

[(
|∇s| cos θ∗ −

∇s · ∇θ∗
|∇s| s sin θ∗

)
cosα

+
F (ψ)

Jθ∗sϕB|∇s|s sin θ∗ sinα

]
(4.95)

~ρLi · ∇η = ρLi

[(
|∇s| sin θ∗ +

∇s · ∇θ∗
|∇s| s cos θ∗

)
cosα

− F (ψ)

Jθ∗sϕB|∇s|s cos θ∗ sinα

]
(4.96)

The gyropoints are not located exactly on a circle but the error is small, even at the

magnetic axis (see Fig. 4.3). When computing the gyropoints, a random phase, different

for each tracer but constant in time can be added. This option has not been used in this

work as no noise reduction has been observed. The following boundary conditions are

applied. At the plasma edge, φ(sf,max, θ∗, ϕ) = 0 ∀ θ∗, ϕ is imposed. When sf,min = 0,

the unicity of the potential is imposed, φ(s = 0, θ∗, ϕ) = φaxis ∀θ∗, ϕ. When sf,min 6= 0,

one can either impose nothing or impose φ(sf,min, θ∗, ϕ) = 0 ∀ θ∗, ϕ. The details of the

boundary conditions implementation are presented in Annex A.4

4.5.4 Solving methods

The initial solver in ORB5 was an iterative sparse solver, using a SSOR preconditioned

conjugated-gradient method. The sparse solver if useful for Aµν because most of its
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Figure 4.3: Gyropoints for a marker at s = 0.5, θ = π/2 (left) and at s = 0 (right).

elements are 0. By storing the row pivot, the location, the value and the number of

non-zero elements, the total memory size required by the solver for splines of order p is:

Msparse =
5

512
(Ns + p)

Nθ∗

512
[Mb] (4.97)

This solver has the advantage to use very few memory, but its iterative character makes

it slow. A further disadvantage is that in practice it cannot be used for AZFµν because this

matrix is not sparse and so the advantage of a low memory is lost.

Another possibility is to use a direct LAPACK [88] solver. In that case the band matrix

is stored, whose memory size is:

MLAPACK = 2(p+ 1)

(
Nθ∗

256

)2

(Ns + p)[Mb] (4.98)

This solver is faster than the iterative solver, but requires one order of magnitude higher

memory. The zonal flow matrix requires the same memory. In order to avoid storing two

matrices per processors, processors containing the n = 0, ..., Nϕ/Pϕ − 1 density Fourier

modes send the n = 1, ..., Nϕ/Pϕ − 1 modes to other processors. The solutions for these

modes are then sent back to the original processors. Although the matrix memory is

reduced by a factor 2, the direct solver rapidly becomes inadequate in terms of memory

as the plasma size increases. Actual tokamaks have a size of about ρ∗ = 1/200. Solving up

to (k⊥ρLi) = 1 at mid-radius means solving up to m = 1
2ρ∗

= 100, which means that Nθ∗

should be around 400. Ns should be of the order of 1/ρ∗, which gives, according to (4.98),

a memory of about 1GB. The direct solver for tokamaks of the size of ITER would require

a memory of several tens of GB. In addition the time needed per time step for the system
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solve would be around 10 minutes with present days computers, clearly demonstrating the

need for a more efficient solver. With the aim of reducing the memory and the CPU time

of the solver, a parallel solver using ScaLAPACK [89] has been developed. The matrix is

parallelized in the clone direction, i.e. PC processors are used for the parallelization. The

size of the matrix is:

MScaLAPACK = 2
(p+ 1)

(
Nθ∗

256

)2

(Ns + p)

PC
[Mb] (4.99)

The number of unknowns Nu = (Ns + p)Nθ∗ is also divided by PC . Each processor will

contain part of the solution vector. Unfortunately, ScaLAPACK requires the local number

of unknowns to be larger than the total bandwidth of the matrix:

(Ns + p)Nθ∗

PC
> 2 [(p+ 1)Nθ∗ − 1] (4.100)

This gives an upper limit for PC :

PC <
(Ns + p)Nθ∗

2 [(p+ 1)Nθ∗ − 1]
.

Ns

2(p+ 1)
(4.101)

where the limit Nθ∗ ≫ 1, Ns ≫ p has been used. ScaLAPACK requires additional arrays

of size approximately equal to MScaLAPACK. For the upper limit of PC , the total memory

is approximatively:

M tot
ScaLAPACK

∼= 8(p+ 1)2

(
Nθ∗

256

)2

[Mb] (4.102)

The gain of memory when going from the serial to the parallel direct solver is approxima-

tively Ns/(4p+ 4). For the typical plasma sizes used in this work, Ns is 128 and the gain

is 8. However, one sees that this solver will not be sufficient for ITER-size plasmas. A

better solver will be presented in Section 4.5.7. The RHS must be distributed in PC parts

among the different processors. After the backsolve, the whole solution must be reassem-

bled, which is done through a MPI GATHER operation. Note that the ScaLAPACK

solver imposes a limit on the number of processors for a given simulation:

P <
Ns

2(p+ 1)
Nϕ (4.103)

A proper detailed scalability study of the ScaLAPACK solver is beyond the scope of

this work. Instead, the use of this solver in practical situations is presented. The CPU
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Figure 4.4: Time per iteration for solving the quasineutrality equation vs number of clones

PC for the serial LAPACK solver (solid line) and the parallel ScaLAPACK solver (dashed

line).

time per time step devoted to the field equation is due to several parameters: the size

of the matrix per processor (depending on Ns and Nθ∗), the number of Fourier modes

per processor (depending on Pϕ) and the parallel communication due to the toroidal

Fourier transform: the information for ϕ being local on each processor, the density has

to be transposed such that each processor owns the whole toroidal domain. After this

operation the arrays are parallelized in the poloidal direction. If the matrix computed

with the LAPACK solver can enter into the memory, then the optimal parallelization

will be Pϕ = Nϕ, because there will be one mode per processor to be solved. The case

Pϕ > Nϕ is impossible. By increasing PC more processors can be used, the scalability

of the code in the clone direction being almost perfect. If the toroidal communication

for particles becomes dominant, then Pϕ should be decreased in favour of PC , but this

situation is, in practice, quite unlikely.

Figure 4.4 presents the time per iteration for the ”fields” part (system solve+ Fourier

transforms) at fixed P = 128 versus the number of clones PC for the LAPACK and

ScaLAPACK solvers. The grid size is Ns = 64, Nθ∗ = 256, Nϕ = 128. For the LAPACK

solver, the time per iteration increases linearly with PC because more RHS need to be
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solved. The same applies for the ScaLAPACK solver from PC = 2. For PC = 1, both

methods are identical but the ScaLAPACK solver becomes faster (up to a factor 2) as

soon as PC > 2.

4.5.5 The Fourier field-aligned filter

With the purpose of reducing numerical noise, a Fourier filter is applied to the perturbed

density such that the quasineutrality equation reads:

∑

µ

(
Aµν + AZFµν

)
φµ = F

(
biν

)
(4.104)

where:

F
(
biν

)
= F

(
bij,k,l

)
=

Nθ∗−1∑

m=0

Nϕ−1∑

n=0

bi,m,nj fm,nj exp

(
2πi

Nθ∗

mk

)
exp

(
2πi

Nϕ
nl

)
(4.105)

bi,m,nj =

Nθ∗−1∑

k=0

Nϕ−1∑

l=0

bij,k,l exp

(
2πi

Nθ∗

mk

)
exp

(
2πi

Nϕ

nl

)
(4.106)

The filter acts in toroidal and poloidal Fourier space. A first naive option is to use a

rectangular filter defined by:

fm,nj = H(m−mmin)H(mmax −m)H(n− nmin)H(nmax − n) (4.107)

where H is the Heavyside function andmmin, mmax, nmin and nmax are input parameters. It

means that a rectangular window of Fourier modes is selected and all the modes outside

this window are dropped out of the simulation. This filter is aimed at filtering high

harmonics. For example, the maximum poloidal mode in a simulation is m = Nθ∗/2.

It will not be solved accurately with Nθ∗ grid points. Although this filter considerably

reduces numerical noise, it is not a good choice because it contains modes that are not

consistent with the gyrokinetic ordering. The highest k‖ mode contained in the filter will

be:

k‖,max =

(
m+ nq(s)

q(s)r

)max

∼=
(

2mmax

q(s0)R0

)
(4.108)

For this mode k⊥ ∼= mmax/ρ0 (where ρ0 is a reference radius) and so:

(
k‖
k⊥

)max

∼= 2ρ̃0ǫa
q(s0)

(4.109)
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Figure 4.5: Example of rectangular filter (top) and field-aligned filter at a given magnetic

surface (bottom).

Where ρ̃0 = ρ0/a. Gyrokinetic ordering implies that (k‖/k⊥)max ∼ ρ∗, but the above

expression gives a much higher value than typical ρ∗ values (∼ 102−103): for CYCLONE

parameters [90] it is 0.26. A better way to filter the density is to use a field-aligned filter,

defined by:

fm,nj = H
(
m−(−nq(sj)−∆m)

)
H
(

(−nq(sj)+∆m)−m
)
H(n−nmin)H(nmax−n) (4.110)

Where ∆m is an input parameter. In this case, the filter is rectangular in the toroidal

direction and diagonal in the poloidal direction, with the diagonal width equal to 2∆m+1.

In particular, the filter follows the safety factor profile: it depends on the magnetic surface.

Rectangular and field-aligned filters are represented on Fig. 4.5. Filters can be combined.

In practice, ORB5 uses a field-aligned filter superposed with a rectangular filter. The

width of ∆m can be estimated with k‖ ∼= ∆m/q(s0)R0 by using the expression for the

cut-off in k‖ in the case of slab-ITG turbulence, Eq. (2.55), which gives, with ξi ≪ 1.

∆m ∼= q(s0)
kyρLi

2

R0

LT i

1√
1 + τ−1

√
τ−1

√
1 − 2

ηi
(4.111)

Note that ∆m does not depend on the plasma size as it is independent of ρ∗. With this

expression one gets:
(
k‖
k⊥

)max

∼= ǫaρ
∗

2

R0

LT i

1√
1 + τ−1

√
1 − 2

ηi
(4.112)
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which is consistent with the gyrokinetic ordering. Note also that ∆m should be large

enough so that the filtered perturbed density does not have discontinuities across magnetic

surfaces. Mathematically, it is expressed as:

∆m >
nq′(s)

Ns

∼= ak⊥ŝ

Ns

∼= 2π

3

ŝ(k⊥ρLi)max

(ksρLi)max
(4.113)

Note that these expressions are only valid when using the straight-field-line angle. It is

possible to give a quantitative estimation of ∆m when the geometrical poloidal angle θ

is used. Suppose a single toroidal mode n0 representing the most unstable linear mode of

the system propagating locally in a circular plasma. The k‖ = 0 component is such that:

φ(s0, θ∗, ϕ) = φ̂(s0)e
in0(ϕ−qθ∗) (4.114)

In the large aspect ratio approximation, θ∗ can be written as:

θ∗ =
q̄(ρ)

q(ψ)

∫ θ

0

1

1 + ǫ cos θ′
dθ′ = θ − ǫ sin θ + O(ǫ2) (4.115)

Inserting this in Eq. (4.114):

φ(s0, θ∗, ϕ) = φ̂(s0)e
in0(ϕ−qθ)

n=+∞∑

n=−∞

Jn(−ǫn0q)e
inθ (4.116)

Where Jn are the Bessel functions and Eq. (2.42) has been used. This expression shows

that the spectrum is broadened in θ space. Fig. 4.6 shows the coefficients Jn(ǫn0q) as a

function of n for different values of n0. n0 = 15 corresponds to the most unstable linear

ITG mode for a plasma of size ρ∗ = 140 (smaller than actual tokamaks), and n0 = 120

could correspond to the most unstable linear ITG mode for a plasma size comparable to

ITER. As the argument of the Bessel function increases, the broadening becomes more

and more important. The same effect appears when shaping is introduced: for instance,

for a large aspect ratio tokamak with elliptic surfaces characterized by an elongation

κ, θ∗ ∼= θ − ǫκ sin θ. The argument of the Bessel function would be multiplied by κ,

thus enhancing the broadening. The broadening becomes formally infinite for an infinite

plasma size, i.e. when ρ∗ → 0. Using the asymptotic form of the Bessel function:

Jn(x) →
√

2

πx
cos
(
x− nπ

2
− π

4

)
(4.117)

φ(s, θ∗, ϕ) =

√
2

πǫn0q
φ̂(s0)e

in0(ϕ−qθ)

n=+∞∑

n=−∞

cos
(
x− nπ

2
− π

4

)
einθ (4.118)

74



−10 −5 0 5 10
−0.5

0

0.5

n

J n(ε
 n

0q)

−50 0 50
−0.4

−0.2

0

0.2

0.4

n

J n(ε
 n

0q)

Figure 4.6: Jn(ǫn0q) as a function of n for ǫ = 0.18, q = 1.4, n0 = 15 (left) and n0 = 120

(right).

These expressions clearly show that when the poloidal angle θ is used a very large value

of ∆m must be used. This has extremely harmful consequences on the numerical noise,

which is closely related to the number of markers per Fourier modes included in the

simulation (see Section 4.5.6).

The time step of a simulation is closely linked with the Fourier filter. The general time

step criterion writes:

ω∆t = δ ≪ 1 (4.119)

Where ω is the fastest relevant frequency of the system. For ITG turbulence in a toka-

mak, there are mainly 3 frequencies of interest: the transit frequency ωt = v‖/q(s)r, the

frequency related to the ~E × ~B velocity, ω⊥ = k⊥v ~E× ~B
∼= Mk⊥vthi, where M is the Mach

number and the frequency related to the parallel velocity, ω‖ = k‖v‖. Using previous

estimates of kmax
‖ for both kinds of filter, the time step criterion for ω‖ becomes:

∆tr‖Ωi
∼= δ

2

a

ρ0

1

q(s0)
ǫa rectangular filter (4.120)

∆tfa‖ Ωi
∼= δ

√
τ

a

2LT i√
1 − 2

ηi

(ρ∗)−1 field − aligned filter (4.121)

The (ρ∗)−1 dependence of Eq. (4.121) clearly shows the beneficial influence of the field-

aligned filter in the parallel direction. However, quantitative estimates of ωt and ω ~E× ~B

are needed to see if the field-aligned filter has an influence on the global time step of
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Figure 4.7: Time step criterion as a function of (ρ∗)−1 for CYCLONE parameters.

the simulation. Fig. 4.7 shows estimates of the different time steps for modes having the

maximum k‖/k⊥ with the CYCLONE parameters and M = 5 · 10−3, which is the typical

value observed in these simulations. The value of ∆ts‖ is extremely small. Since usual

time steps are of the order of 5Ω−1
i , the evolution of many modes in the rectangular filter

will be inaccurate and will impair the quality of the simulation. On the other hand, in the

limit of small-ρ∗ plasmas, simulation using a field-aligned filter could be run, according

to our estimate, with a one order of magnitude higher time step, thus decreasing CPU by

the same amount. Note that the Mach number has been taken as independent of ρ∗. Its

dependence versus ρ∗ should be studied theoretically to provide a more accurate picture

of the maximal frequency of the system.

4.5.6 Numerical noise

The PIC method is a Monte-Carlo approach, and introduces numerical statistical noise

- roughly proportional to σ/
√
N where σ is the standard deviation of the markers - in

the density. Unfortunately, collisionless δf PIC simulations unavoidably end up noise-

dominated: in the nonlinear phase, due to the absence of dissipation, the fluctuation

entropy, related to the variance of the weights, increases linearly with time. The reasons

will be presented in more details in Section 6.1. In a linear simulation, the electric field
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is not included in the trajectories. The noise does not propagate and the noise problem

becomes less important. An interesting discussion on Monte-Carlo methods is presented

in [69]. In particular, it is shown that the δf method, widely used in the fusion community,

is nothing but a control variates method: the idea is to replace as much as possible of the

distribution function by an analytical expression.

Estimating the amplitude of the noise and comparing it with the physical signal is a tricky

task. An expression has been derived by A. Bottino in [76]. The details of the computation

are presented below for the sake of completeness. For simplicity, FLR effects, the profiles

variation and the zonal flows will be neglected. The quasi-neutrality equations writes:

en0

Te
φ(~x) =

n̄V

N

N∑

r=1

wrδ(~x− ~xr) (4.122)

The Fourier transform of the potential is:

φ̂(~p) =

∫
d~xφ(~x) exp (−2πi~p · ~x) (4.123)

Applying a Fourier transform on the density and squaring this expression:
∣∣∣∣
en0

Te
φ̂(~p)

∣∣∣∣
2

=
n̄2V 2

N2

N∑

r=1

w2
r +

N∑

r=1

N∑

q=1
q 6=r

wrwq exp

[
2πi~p · (~xq − ~xr)

]
(4.124)

The second term represents correlations between markers positions and weights, and de-

scribes the contribution of waves and turbulence to the spectral density [91], and is there-

fore neglected in the estimate of an upper bound for the numerical noise. Going to a

Discrete Fourier Transform (DFT), d~x ∼= ∆x∆y∆z ∼= V/Nm, where Nm is the number of

Fourier modes in the system such that:
∣∣∣∣
en0

n̄Te
φ̂k

∣∣∣∣
2

∼= N2
m

N2
〈w2〉, 〈w2〉 =

N∑

r=1

w2
r (4.125)

Note that each radial grid point is considered as a Fourier mode, although it is formally

not correct due to non-periodic boundary conditions. The noise estimate must be refined

to take into account FLR effects and the numerical schemes employed into account, such

as splines and Fourier filtering. The discretized perturbed density from Eq. (4.75) can be

written as:

bν =
n̄V

N

N∑

r=1

wr
1

2π

∫ 2π

0

dαd~xΛν(~x)δ(~Rr + ~ρLir − ~x)

=
n̄V

N

N∑

r=1

wr

∫
d~xΛν(~x)

∫
d~p exp (2πi~p · ~x) exp(−2πi~p · ~Rr)J0(~p · ~ρLir) (4.126)
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This expression has a velocity dependence. It can be removed by averaging the contribu-

tion of the Bessel function with a Maxwellian distribution:

1

n0

∫
v⊥dv⊥dv‖dαf0(v‖, v⊥)J0

(
k⊥v⊥

Ω

)
= exp

(
− k2

⊥ρ
2
Li

2

)
(4.127)

Where this integral has been obtained with Eq. (6.31.1) of [60]:

∫ ∞

0

xµe−αx
2

Jν(βx)dx =
βνΓ

(
1
2
ν + 1

2
µ+ 1

2

)

2ν+1α1/2(µ+ν+1)Γ(ν + 1)
Φ

(
ν + µ+ 1

2
, ν + 1;−β2

4α

)

Φ(α, γ; z) = 1 +
α

γ

z

1!
+
α(α + 1)

γ(γ + 1)

z2

2!
+
α(α + 1)(α+ 2)

γ(γ + 1)(γ + 2)

z3

3!
+ ...

Inserting this result in bν , multiply by the complex conjugate and neglecting again the

correlation terms:

|bν |2noise =
n̄V

N

N∑

r=1

w2
r

∫
d~pd~p ′ exp

[
− 2πi(~p− ~p ′) · ~Rr

]
(4.128)

exp

{
−

[
k2
⊥(p⊥) + k′2⊥(p′⊥)

]
ρ2
Li

2

}
Λ̃ν(−~p)Λ̃†

ν(−~p ′) (4.129)

With:

Λ̃(−~p) =

∫
d~xΛν(~x) exp(2πi~p · ~x) (4.130)

Due to the randomization of the position of the markers, one can approximate:

exp

[
− 2πi(~p− ~p ′) · ~Rr

]
∼= 1

V

∫
d~R exp

[
− 2πi(~p− ~p ′) · ~R

]
∼= 1

V
δ(~p− ~p ′) (4.131)

And so:

|bν |2noise =
V 2

N2
〈w2〉S, S =

1

V

∫
d~p|Λ̃ν(−~p)|2 exp

(
− k2

⊥ρ
2
Li

2

)
(4.132)

This formula is similar to (4.125) but contains an extra term S which characterizes the

filtering due to FLR and spline representation effects. Another effect is still missing:

the splines do not allow for the representation of arbitrary small scale lengths. The

finite number of grid points cut the spectrum at a certain wavelength and reduce the

noise. To simplify the mathematics one assumes non-overlapping elements and neglect

the polarization density and the FLR effects:

Aµν ∼=
n0e

Te

∫
d~xΛ2

νδµν ⇒
∑

µ

Aµνφµ =
n0e

Te

∫
d~xΛ2

ν(~x)φν (4.133)
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Gathering this result with (4.125), (4.132):

δn2
i,noise(t)

∼= Nm

N
〈w2〉(t)G (4.134)

G =

∫
d~p|Λ̃(−~p)|2 exp

(
− k2

⊥ρ
2
Li

2

)

∣∣∣∣
∫

d~xΛ2
ν(~x)

∣∣∣∣
2 (4.135)

Eq. (4.134) reveals how the noise can be decreased: by increasing the number of markers,

by reducing the number of Fourier modes in the simulation, by using sampling methods

such as optimized loading [53] to reduce the statistical variance of the weights or by

improving the projection algorithm, for example by increasing the order of the splines.

The value of the noise alone is not representative, but must be compared to a physical

signal. Recall that Eq. (4.134) is an upper bound of the numerical noise. In ORB5, the

noise is defined as the sum of |b(m,n)
i |2 (components of the perturbed density in toroidal and

poloidal Fourier space) for a subset F2 of non-resonant modes (outside the field-aligned

filter F) divided by the number of modes inside F2. These modes are Landau damped

and their growth is due to numerical noise only. The value of the noise is in fact the noise

per mode. It is approximated that each mode in F2 contributes equally to the noise.

noise =

∑Ns+pr−1
i=−pl

∑
m,n∈F2

|b(m,n)
i |2

∑Ns+pr−1
i=−pl

∑
m,n∈F2

(4.136)

F2 is made of two diagonal bands of width 2∆m + 1, shifted poloidally from the field-

aligned filter by ±3∆m. The modes inside this filter have high k‖ modes which do not

belong to the physical modes. The signal is obtained as the sum of |b(m,n)
i |2 (components

of the perturbed density in toroidal and poloidal Fourier space) for the resonant modes

(inside the field-aligned filter F) divided by the number of modes inside F :

signal =

∑Ns+pr−1
i=−pl

∑
m,n∈F |b(m,n)

i |2
∑Ns+pr−1

i=−pl

∑
m,n∈F

(4.137)

The definition of F2 is not unique and can be questioned. Recall that the noise is nor-

malized by the number of modes inside the filter that defines it: different levels of noise

are obtained depending on the definition of F2. Nevertheless, what matters is to define

a threshold for the signal to noise ratio below which the results will be considered as not

converged. Such a rule of thumb is obtained by looking at the physical fluxes, somehow
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independently of F2. However, a meaningful requirement is that the modes inside F2

must be sufficiently far from the modes belonging to the signal. A better noise estimate

could be obtained by looking at the relation between the noise and the wave number.

The link between Eqs. (4.134) and (4.136) has been demonstrated in [76] by choosing

F2 as two small rectangles containing the modes with the highest k‖ allowed by the finite

element grid. In ORB5, the way to compute the noise is directly related to the field-

aligned filter. The same definition could be used with a rectangular filter but in this case

Nm ∝ NsNθ∗Nϕ ∼ (ρ∗)3 and for the field-aligned filter Nm ∝ Ns(2∆m+ 1)Nϕ ∼ (ρ∗)2. It

means that when going from a rectangular to a field-aligned filter, the number of particles

can be reduced by approximatively two orders of magnitude and its scaling with ρ∗ is

one order of magnitude more favorable, provided that the straight-field-line angle is used.

If the poloidal angle is used, ∆m must be increased (see Section 4.5.5) and the noise

reduction will be much lower.

This ”signal to noise ratio” procedure can be summarized as follows. It is assumed that

the system contains physical modes that are inside the field-aligned filter. These modes

are physical in the sense that k‖/k⊥ ≪ 1 or equivalently |m − nq(s)| ≤ ∆m. Here the

modes relate to the perturbed density. The signal to noise ratio could also be computed

from the potential, but it would not be possible with the Fourier field-aligned solver (see

Section 4.5.7). Density modes (computed from the phase space coordinates and the weight

of the markers) that are outside the field-aligned filter can have a non-zero contribution.

Some of these modes (as defined by F2) are interpreted as resulting from discrete particle

noise. These definitions of noise are not universally applicable: they neglect the noisy

part contained inside the filter F , therefore they are valid only for signal to noise ratios

much larger than one.

A final remark on the numerical noise concerns collisionless full − f PIC simulations. In

this case, the weights of the markers describe f and are not evolved on time because f is

constant along the orbits. The main advantage is that the noise does not increase with

time because 〈w2〉(t) = 〈w2〉(t0), but the main disadvantage is that more markers are

required compared to the δf method [69] because 〈w2〉full−f/〈w2〉δf ∼ (f/δf)2 ≫ 1.
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4.5.7 The Fourier field-aligned solver

In Section 4.5.4, different solvers have been presented. All of them have inconvenients:

they are either too slow or require too much memory. Even if the ScaLAPACK solver is

able to reduce the memory, it is still quite large, relatively slow and not very scalable. In

the previous Section, it is shown how the density (the r.h.s. of the quasineutrality equation)

reduces to very few modes in Fourier space by taking advantage of the alignment of the

perturbations with the field lines. A similar method can be applied to the potential (the

l.h.s. of the quasineutrality equation). The Fourier field-aligned solver has been initially

developed by B. McMillan. Its implementation has been furthermore optimized in this

work. The idea is closely related to the field-aligned filter. The linear system describing

the quasineutrality equation can be written in toroidal and poloidal Fourier space:

Ax = b⇒
(
FAF−1

)

︸ ︷︷ ︸
Ã

(
Fx
)

︸ ︷︷ ︸
x̃

= Fb︸︷︷︸
b̃

(4.138)

where F is the discrete Fourier transform (DFT) operator. The discretized form of Ã is

presented in Annex A.5, and the implementation of the boundary conditions is presented

in Annex A.6. The idea is then to apply a field-aligned filter of width 2∆̃m+1, where ∆̃m

is an input parameter generally equal to ∆m, to the Finite-Element-Matrix expressed in

poloidal Fourier space Ã. It means that several poloidal Fourier modes will not be solved,

but according to the gyrokinetic ordering their contribution should be negligible provided

that ∆̃m is large enough. Note also that this technique neglects the poloidal couplings

between the modes inside and outside the matrix filter, but they should be very small if

∆̃m is large enough.

Without any filtering, the matrix can be viewed as Ns + p blocks of size Nθ∗ ×Nθ∗ . With

the field-aligned filtering, the matrix can be viewed as Ns + p blocks of size (2∆̃m+ 1)×
(2∆̃m+1). The matrix is still a band matrix because the radial couplings are not modified

in poloidal Fourier space. The memory required is:

MFAS =
Nϕ

Pϕ
(Ns + p)(p+ 1)

(
2∆̃m+ 1

256

)2

[Mb] (4.139)

The factor Nϕ/Pϕ comes from the fact that there must be a different matrix for each

toroidal wave number n. If not, then the results will depend on the parallelization because
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∆̃m would have to cover all the toroidal modes in a given processor. In practice, Nϕ/Pϕ

is equal to 1 or sometimes 2 and ∆̃m is usually between 5 and 7. The gain of memory is:

G =
MScaLAPACK

MFAS

=
2(p+ 1)N2

θ∗
Pϕ

Nϕ(Ns + p)(2∆̃m+ 1)2
(4.140)

Orders of magnitude are gained compared to the ScaLAPACK solver. For a typical

CYCLONE test case with p = 3, Ns = 128, Nθ∗ = 512, Pϕ = Nϕ and ∆̃m = 5, the gain

of memory is 132. In addition, the matrix becomes so small (typically 1-4 Mb) that the

CPU time required to solve the linear system becomes insignificant: it represented 40%

for largest cases that could be run with the ScaLAPACK solver but it is now less than

1‰. The last advantage is that there is practically no limit on Pc anymore, hence no limit

on P .

The matrix is now composed of Ns+p blocks (2∆̃m+1)× (2∆̃m+1) that are full. There

is no structure difference with the zonal flow matrix. The spline basis transformation and

the boundary condition at the edge are similar to the normal direct solver. Unicity on

axis is expressed in Fourier space by zeroing all poloidal modes except m = 0. It is in fact

similar to the unicity condition in real space, Eq. (A.51).

4.5.8 Shielding of the potential at the edge

At the plasma edge, the boundary condition imposed is φ = 0, which is done by imposing

δni to 0. Markers near the plasma boundary carry some density which is set to 0 just

before the Poisson equation is solved, without changing the markers’ weight. Moreover, if

a marker or a gyro-point lies outside the plasma, it is not taken into account. Therefore,

near the edge, the quasineutrality condition is violated and a charge accumulation is

observed. In nonlinear simulations, a numerical sheath region is observed near the plasma

edge: a spurious radial electric field develops, which can be one order of magnitude higher

than the physical electric field. In order to remove this spurious field, the quasineutrality

equation is modified as follows:

eñ0(ψ)

Te(ψ)

(
φ(~x, t) − φ̄(ψ, t)

)
−∇⊥ ·

(
ñ0(ψ)

BΩi

∇⊥φ(~x, t)

)
= δni(~x, t) (4.141)
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Figure 4.8: Shielding of density near the edge for typical density profiles with a/Lnsh = 9.0

and ∆nsh = 0.02. x is the radial coordinate.

With:

ñ0(ψ) = ñ0(s) = n0(s)nsh(s) (4.142)

nsh(s) = 1 +
a

Lnsh

sinh
(

s−sf,min

∆nsh(sf,max−sf,min)

)

sinh
(

1
∆nsh

) (4.143)

Lnsh and ∆nsh are input parameters, and sf,min, sf,max are the radial boundaries of the

plasma. An example of the shielding factor is given in Fig. 4.8. The shielding profile is 1

except near the plasma edge (this is controlled by the input parameter ∆nsh). This model

becomes questionable if the turbulence reaches the edge. For a small but finite ∆nsh,

the gradient is slightly modified at the axis, and becomes very large at the edge. This

modification of the density can be viewed as a change of the dielectric constant near the

plasma edge. By artificially increasing the density in this region, the electric potential will

have a much weaker response to a numerical increase of the density. This modification

still enables the global energy conservation of the system (see Section 3.7).

4.6 Temperature and density profiles

Three different temperature profiles have been used during this work, which will be named

profiles 1,2,3. Examples for typical parameters are given in Figs. (4.9), (4.10) and (4.11).
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4.6.1 Profile 1

1

Ti

dTi

dψ̃
= KT i

{
cosh−2

(
s− s0i

∆Ti

)
− cosh−2

(
s0i

∆T i

)}
(4.144)

KT i = − a

LT i

(
1 − cosh−2

(
s0i

∆Ti

)) (4.145)

and ψ̃ = ψ/ψedge. LT i,∆T i and s0i are input parameters. After integration:

Ti(s)

Ti(s0i)
=

[
cosh

(
s− s0i

∆T i

)]−2KTi∆
2
Ti

exp

[
KT i cosh−2

(
s0i

∆T i

)
(s2 − s2

0i)

+2KT i∆T is tanh

(
s− s0i

∆T i

)]
(4.146)

The density profile is defined in a similar way with input parameters Ln, s0i and ∆n and

the electron temperature profile with LTe,∆Te, s0e. The density profile is normalized with

the volume-averaged density. These profiles are such that the gradient is 0 at axis.

4.6.2 Profile 2

dlnT (ρ̃)

dρ̃
= − a

LT i
cosh−2

(
ρ̃− ρ̃0i

∆T i

)
(4.147)

where ρ̃ = ρ/a and ρ̃0i is an input parameter. After integration:

T (ρ̃)

T (ρ̃0i)
= exp

[
− a∆T i

LT i
tanh

(
ρ̃− ρ̃0i

∆T i

)]
(4.148)

Profiles 2 are useful for benchmarks because many gyrokinetic codes use ρ as radial

coordinate. For MHD equilibria, profiles 2 are not defined.

4.6.3 Profile 3

1

Ti(ρ̃)

dTi
dρ̃

= − a

2LT,i

[
tanh

(
ρ̃− ρ̃0i + ∆ρ̃

∆T i

)
− tanh

(
ρ̃− ρ̃0i − ∆ρ̃

∆T i

)]
(4.149)

Where ∆ρ̃ is an input parameter. After integration:

Ti(ρ̃)

Ti(ρ̃0i)
= exp



−a∆T i

2LT,i
ln




cosh
(
ρ̃−ρ̃0i+∆ρ̃

∆Ti

)

cosh
(
ρ̃−ρ̃0i−∆ρ̃

∆Ti

)





 (4.150)
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Figure 4.9: Profiles 1, Eqs. (4.144) and (4.146) for a
LTi

= 2.516,∆T i = 0.3 and s0 = 0.5.

! !"# !"$ !"% !"& '
!#"%

!#"$

!#"#

!#

!'"&

!'"%

!'"$

!'"#

!'

!!"&

!!"%

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 4.10: Profiles 2, Eqs. (4.147) and (4.148) for a
LTi

= 2.516,∆T i = 0.3 and ρ̃0 = 0.5.

Profiles 3 are not very convenient for linear simulations: there can be a wide region where

the gradients are high. It is impossible to know in advance where the most unstable

linear mode will grow. In fact, beatings are observed with such profiles as many linear

modes grow together. Very long simulations might be needed until the most unstable

mode emerges from the simulation.
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Figure 4.11: Profiles 3, Eqs. (4.149) and (4.150) for a
LTi

= 2.516,∆T i = 0.04,∆ρ̃ = 0.4

and ρ̃0 = 0.5.
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Chapter 5

Code validation

5.1 Description of typical runs

In this Section, the basic physics of linear and nonlinear runs is presented. During the

initialization phase of a simulation, the code computes the magnetic equilibrium, the

finite element matrices, loads the initial attributes of markers and computes the initial

electrostatic potential. Then the main temporal loop of the code is the following: the

weight and the phase space coordinates of the markers are pushed with the Runge-Kutta

integrator. At each sub-step, parallel computations are needed to send the tracers to

their corresponding processors due to toroidal motion. Then a charge assignment is

performed to obtain the perturbed density and through the quasineutrality equation the

corresponding electrostatic potential is obtained. From the latter, the electric field acting

on each marker can be computed. It is then used for the phase space attributes and the

weights pushing. After each time step, the boundary conditions, the Krook and heating

operators are applied. This loop is then repeated until the given number of time steps is

reached.

The ORB5 code can be run in linear mode. The Vlasov equation then reads:

dδf

dt

∣∣∣∣
0

+
dδf

dt

∣∣∣∣
1︸ ︷︷ ︸

neglected

= − df0

dt

∣∣∣∣
0︸ ︷︷ ︸

≡0

− df0

dt

∣∣∣∣
1

(5.1)

Concretely, it means that the nonlinear terms in the trajectories, i.e. terms containing the

electric field are not retained. It implies that the distribution function f is not conserved

for a linear simulation and there is no energy conservation relation (see Section 3.7).
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Figure 5.1: Typical φm(s), normalized to the maximum component (left) and poloidal

section of the potential (right) for a typical toroidal-ITG simulation.

However, one can compute the power transfer from the particles to the electric field and

so Eq. (3.84) can be checked numerically:

− 1

V

dEk
dt

=
1

V

∫
qiδfi

d~R

dt
· 〈 ~E〉B∗

‖dv‖dµdα =
1

N

N∑

r=1

qiwrΩr

(
d~R

dt
· 〈 ~E〉

)

~Rr ,µr ,v‖r

(5.2)

1

V

dEf
dt

=
1

V

d

dt

qi
2

∫
d~xδni(~x, t)φ(~x, t) =

1

V

d

dt

∑

µ

φµbµ (5.3)

where the time derivative of Ef is computed numerically.

Initially, markers a small density perturbation is given to the markers, yielding a small

electric field. As the tracers move along their unperturbed trajectory, their weight is

modified according to the Vlasov equation, changing the density, the electric potential and

the electric field. Depending on the profile gradients, either no instability will develop and

the simulation will be stable, or an instability will develop, preferably in the LFS region

for toroidal ITG modes. There can be several unstable modes. However, ORB5 is an

initial value code so the most unstable mode will inevitably emerge and will dominate. In

linear mode, only one toroidal mode is usually evolved, the rest being Fourier filtered. The

resulting potential is a superposition of poloidal modes φm(s), giving for e.g. toroidal ITG

ballooning-like structure in real space (see Fig. 5.1). The growth rate (local or global) and

the real frequency (local) can be extracted. The growth rate can be decomposed in several

parts by expliciting the d~R/dt term in Eq. (5.2) from Eq. (3.23),γ = γ‖+γ∇B+γcurv +γ∇p

(see Fig. 5.2). On this figure, the ∇B-drift is the higher destabilizing component, showing
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Figure 5.2: Growth rate fraction of different compontents for a typical toroidal-ITG sim-

ulation (usually γ∇p is very small and has not been inserted in this figure).

the toroidal character of the instability. The parallel component, describing mostly the

Landau damping, is stabilizing. Linear simulations generally require less markers because

there are less Fourier modes to solve compared to a nonlinear simulation.

Nonlinear physics is much more complex. In this case, the trajectories depend on the

electric field and in particular the ~E × ~B drift. At the beginning of the simulation, the

electric field is very small and so nonlinear effects are weak. The simulation starts with

a linear phase. The exponentially growing instability generates a mainly poloidal and

toroidal electric field. The resulting ~E× ~B drift will mainly be radial, ∇s ·~v ~E× ~B ∼ Eθ∗Bϕ.

A radial electric field, corresponding to the (0, 0) zonal flow is excited nonlinearly by ITG

modes. The zonal flows are generated by the turbulence itself and are purely nonlinear

effects. Zonal flows are linearly stable because the driving term ∝ 〈 ~E〉 × ~B · ∇Υ in the

Vlasov equation is extremely small for a radial perturbation: it does not causes any radial

~E × ~B motion and, because the gradients are radial, there is no energy channel for the

particles. After the linear phase, the simulation will saturate. This can be seen in the

field energy of the toroidal modes, left plot of Fig. 5.3. For ITG turbulence, the main

saturation mechanism is the ~E× ~B shearing of the eddies (see Fig. 5.3). The radial electric

field generates a poloidal drift velocity via ∇θ∗ ·~v ~E× ~B ∼ EsBϕ which depends on the radial

position of the plasma. If the electric field has a sufficiently high radial derivative, the

eddies will be sheared by the zonal-flow induced poloidal rotation and the ITG turbulence

will be suppressed. Mathematically, the turbulence suppression through ~E × ~B shearing
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scale for a typical ITG simulation. The dashed line is the n = 0 mode. Right: basic

mechanism of ExB shearing.

Figure 5.4: Poloidal section of the potential in the linear phase (left), at the beginning of

the nonlinear phase (middle) and in the end of the nonlinear phase (right) for a typical

ITG simulation.

is expressed via the shearing rate criterion [92, 93]:

γ ' ωs =

∣∣∣∣
∆ψ

∆ϕ

∂2φ0(ψ)

∂ψ2

∣∣∣∣ (5.4)

Where ∆ψ/(R0Bθ) and R0∆ϕ are the correlation length of the ambient turbulence in the

radial and toroidal directions. This criterion has been further extended to time dependent

~E × ~B flows [94].

Typical poloidal sections of the potential are displayed on Fig. 5.4. During the whole

simulation, the numerical particles transport heat, mesured by the volume-averaged heat
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flux :

Q =
1

V

∫
δfi

1

2
miv

2 〈 ~E〉 × ~B

BB∗
‖

· ∇ψ
|∇ψ|B

∗
‖d~Rdv‖dµdα (5.5)

Other fluxes can be measured such as the particle and the momentum fluxes, but this

work will focus on heat transport only. After the saturation, the system undergoes a

transient phase, consisting of local bursts. These bursts locally decrease the temperature

gradient: the heat transport leads to profile relaxation. A measure of the transport is

given by the heat diffusivity :

χi =
Q

ni|∇Ti|
(5.6)

As it is defined, the heat flux and so the heat diffusivity could be in principle nega-

tive, meaning that the heat flows inward. The χi is often normalized to the gyro-Bohm

transport coefficient [95]:

χGB =
ρ2
scs
a

(5.7)

Because there is no mechanism to restore the distribution function towards the initial

Maxwellian, the temperature gradient relaxes towards a critical value for which ITG

modes are stable. There is a linear critical gradient value, R0/LT i ∼ 4 − 5 and a non-

linear critical gradient value which is generally higher. In a famous paper by Rosenbluth

and Hinton [72], it is shown that linear collisionless processes do not completely damp

the radial zonal flow component of the potential. This residual zonal flow suppresses

turbulence which implies that the critical gradient is nonlinearly shifted to a higher value,

R0/LT i ∼ 6. This phenomena is called the Dimits shift [90]. Typical time evolutions of

R0/LT i and χi/χGB are shown on Fig. 5.5.

In toroidal geometry, the poloidal coupling induced by the Jacobian transfers energy

from the n = 0, m = 0 zonal flow mode to the n = 0, m = ±1 modes, called the Geodesic

Accoustic Modes (GAMs) [96]. These modes have k‖ 6= 0 and are therefore Landau

damped. The GAMs have a finite real frequency and their oscillating nature makes the

zonal flow shear less efficient to suppress turbulence [92]. The decaying rate of these

modes is proportional to exp−q2; in general they are present in the edge of the plasma

where the safety factor is large. Typical GAMs are shown as vertical quasi-periodic strips

on the top part (s > 0.7) of Fig. 5.6.
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Figure 5.5: Typical time evolution of R0/LT i (left) and χi/χGB (right), radially averaged

between ρ = 0.3a and ρ = 0.7a, in the case of a decaying simulation.

Figure 5.6: ∇φ̄ as a function of (s, t) for a typical ITG simulation.
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Figure 5.7: Typical time evolution of R0/LT i (left) and χi/χGB (right), radially averaged

between ρ = 0.25a and ρ = 0.75a,for the case of a heated simulation.

The main problem associated with nonlinear PIC simulations is the generation of nu-

merical noise. If the noise is not carefully diagnosed, the transport levels can be purely

numerical. In ORB5, the signal to noise ratio is greatly improved by using the noise con-

trol operator (see Section 3.8). The use of the noise control and/or the heating operator

heats the plasma and therefore maintains the temperature gradient above its nonlinear

critical value. In this situation the turbulence does not fade away, but exhibits an endless

series of bursts. This is represented on Fig. 5.7.

5.2 Scalability

This Section presents the performance of the code parallelization described in Section 4.4.

To measure the scalability, short CYCLONE simulations were performed on the BG/L

cluster of the Ecole Polytechnique Fédérale de Lausanne. This cluster contains 4096 nodes

that can be used with one processor and 512 Mb of memory (CO mode) or 2 processors

with 256 Mb of memory each (VN mode). The grid size is fixed (Ns = 128, Nθ∗ =

256, Nϕ = 512 for the VN mode and Ns = 128, Nθ∗ = 256, Nφ = 256 for the CO mode).

The ScaLAPACK parallel solver with 16 clones is employed. Simulations with 512, 1024,

2048 and 4096 processors have been made by varying the number of processors in the

ϕ direction Pϕ. In the VN mode, simulations with 8K, 16K, 32K, 64K, 128K and

256K markers per processor have been done. In the CO mode, beacuse more memory

93



is available, simulations have been done with 64K, 128K, 256K, 512K, 1M and 1.5M

markers per processor. Thus, for the VN mode, the total number of markers goes from

222 ∼= 4M up to 231 ∼= 2G, whereas in the CO mode it goes from 225 ∼= 32M up to

1.5 · 232 ∼= 6.4G.

Since the size of the matrix is fixed, the time dedicated to the solver (backsolve and

Fourier transforms) should be proportional to the number of toroidal slices per processor.

The time dedicated for the particles (pushing + charge assignment) is assumed to scale

linearly with the number of markers per processor. Finally, the communication time

is mainly due to the ϕ-partition of the markers. It is hard to give a simple estimate

for the communication time, since it depends on the time step, the cluster architecture

and the ion temperature. For the largest simulation done (1.5M markers/processor), the

communication time represents 10% of the total simulation time. Therefore, the time per

iteration is modeled as:

tfit = Ks
NϕPc
P︸ ︷︷ ︸

solver

+Km
N

P︸ ︷︷ ︸
markers

+ tcomm︸ ︷︷ ︸
communication

(5.8)

where Ks and Km are constant to be determined. Fig. 5.8 displays the time per iteration

tit as a function of the number of markers per processor N/P . The dependence is linear,

as expected. However, the slope of these fits, namely Km seems to slowly increase with

P , which illustrates a slight deviation from a non ideal scaling. In fact, a super-scaling

can be observed from Fig. 5.8: for a fixed number of markers per processor, the time

per iteration decreases when the number of processors increases. This is because P is

increased by keeping PC fixed, and so according to Eq. (5.8) the time per iteration dedi-

cated to the solver decreases. Constants Ks and Km have been obtained by a linear fit of

tit as a function of N/P at fixed P = 512. Therefore, the measured time per iteration can

further be compared to the fitted time tfit. Fig. 5.9 shows the ratio tit/t
f
it as a function of

P . The maximum value of the relative degradation due to the increase of the number of

processors is only 12%. Effects of tcomm can be included by fitting tit − tcomm instead of

tit. In that case, the maximum relative degradation falls down to 10%.

Globally, these results show the excellent scaling properties of ORB5 up to 4096 proces-

sors, summarized on Fig. 5.10. The speedup at P = 4096 is 3.8, i.e. the degradation of

the speedup is only 5%.
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Figure 5.8: Time per iteration as a function of N/P for the VN mode (left) and the CO

mode (right).
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5.3 The field-aligned filter

The field-aligned filter has been tested with the following input parameters: mi = mp, a =

40ρ∗, B0 = 1 [T ], R0 = 1 [m], R0/a = 5. The density profile is flat, profiles 1 (Eqs. (4.144)

and (4.146)) have been used with Ti = Te, R0/LT i = 12, ∆T i = 0.208, s0 = 0.5 and

∆t = 40 Ω−1
i . N = 224 ∼= 16 M markers unless specified otherwise. The initial distribu-

tion f0 is a canonical maxwellian with correction. δf is obtained through the conventional

δf scheme and is initialized with white noise. The quasineutrality equation is solved with

cubic B-splines on a Ns = 128, Nθ∗ = 128, Nϕ = 64 grid with the parallel direct solver.

Fig. 5.11 displays the volume-averaged radial heat flux Q for field-aligned and rectangular

simulations. The simulation starts with the linear phase, in which the perturbation grows

exponentially. Then nonlinear effects become important and saturation occurs. A tran-

sient phase consisting of avalanches and bursts occurs, while the turbulence further decays

and the system finally evolves towards a quasi-steady state in which the gradients are re-

laxed and there is a vanishing perpendicular transport. In Fig. 5.11, for the simulation

with the rectangular filter, a numerical heat flux develops in the late nonlinear phase. This

kind of phenomenon is typical when too few markers are used. A good indicator of the
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Figure 5.11: Volume-averaged radial heat flux for a rectangular filter simulation (black,

solid) and a field-aligned simulation (red, dashed) with ∆m = 7, keeping all other physical

and numerical parameters fixed.

quality of a simulation is the energy conservation described by Eq. (3.84). Fig. 5.12 shows

the relative energy conservation ∆E/E(t0), where ∆E = Ekin(t)+Ef(t)−Ekin(t0)−Ef (t0)
for simulations with rectangular and field-aligned filters. In a noise-free simulation, or

equivalently in the limit of an infinite numerical accuracy, ∆E/Ef should be zero. By

looking simultaneously at Figs. 5.11 and 5.12, one sees that the energy conservation for

the rectangular filter simulation starts to degrade after the top of the overshoot, when

nonlinear effects become important. During the burst phase (from t = 0.8 · 104 Ω−1
i to

t = 3 ·104 Ω−1
i ), the energy deviation increases and reaches 1% of the total plasma energy,

which is an unacceptable value. From t = 3 · 104 Ω−1
i to the end of the simulation, the

system should reach a quasi-steady state but both the heat flux and the energy deviation

continue to grow: at the next time step, the simulation explodes due to an unphysical

electric field pushing some particles completely out of the simulation domain. On the

other hand, a gain of two orders of magnitude in the relative energy conservation is ob-

tained as the filter goes from rectangular to field-aligned: in this case, the relative energy

conservation does not exceed 10−4. However, the energy deviation is of the order of the

field energy of the system so a good simulation in terms of energy conservation should

have |∆E(t)| < ǫEEf(t) in the nonlinear phase, with ǫE ≪ 1. Simulations presented in

this Section have a large ρ∗ which implies a very fast relaxation. It is indeed difficult

to obtain good energy conservation for these parameters. The origin of the unphysical
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Figure 5.12: Relative energy conservation for a rectangular filter simulation (black, solid)

and a field-aligned simulation (red, dashed) with ∆m = 7, keeping all other physical and

numerical parameters fixed.

behaviour observed on Fig. 5.11 can be observed on the left plot of Fig. 5.13: the energy

of all toroidal modes is growing in time. However, for the field-aligned filter, the energy

of n 6= 0 modes is constant for late times (see right plot of Fig. 5.13). On Fig. 5.14, the

radially averaged energy spectrum of the n = 6 mode in the poloidal space, normalized to

its maximum m component, is shown at different times for a rectangular filter simulation.

In the linear phase, the mode is peaked near m = −12 = −nq(s0) as n = 6 and q(s0) = 2.

After the saturation, the peak energy becomes smaller but the spectrum broadens: it

is no longer peaked and m components which are far away from nq(s0) contain a very

significant part of the total toroidal mode energy. This causes the field energy of all n 6= 0

modes to grow in time: it is a clear evidence that numerical noise is created because of

high k‖ modes. The bad quality of the rectangular filter can also be observed in Fig. 5.15

(left), which shows the electrostatic potential on a magnetic surface. The resulting struc-

ture is clearly a superposition of high k‖ modes, whereas the field-aligned (right) filter

naturally preserves the field-aligned structure of ITG modes.

These results show that a field-aligned filter instead of a rectangular one must be em-

ployed in ORB5, but it is still crucial to show how to fix the width ∆m, and more

important to show that this filter will contain all the relevant modes of the system. As

the field-aligned filter acts locally on a magnetic surface, a look on the local poloidal

energy spectrum is necessary. It must be checked that no physically relevant poloidal
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Figure 5.13: Energy of toroidal modes for a rectangular filter simulation (left) and a

field-aligned filter with ∆m = 7 (right). Dashed line is the n = 0 mode.
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Figure 5.14: Radially averaged poloidal spectrum of energy for toroidal mode n = 6,

normalized to the largest component, at time t = 0.8 · 104 Ω−1
i (linear phase, black,

crosses), t = 2.4 · 104 Ω−1
i (red, circles) and t = 4.8 · 104 Ω−1

i (green, triangles) for a

rectangular filter simulation. Dashed lines show −nqaxis + ∆m and −nqedge − ∆m.
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Figure 5.15: Perturbed electric potential along s0 = 0.5 at t = 5 · 104 Ω−1
i in the (θ∗, ϕ)

plane for a rectangular filter (left) and a diagonal filter with ∆m = 4 (right). All other

physical and numerical parameters are fixed.

harmonics are locally removed from the simulation. A too small value of ∆m will obvi-

ously cut some relevant physics, whereas a too large ∆m quickly introduces additional

numerical noise. A necessary but not sufficient condition to fix ∆m is to converge the

growth rate of toroidal modes in the linear phase. Fig. 5.16 shows the evolution of the the

field energy of the mode n = 6 for a field-aligned filter with different values of ∆m and

a rectangular filter. Small ∆m cases yield lower growth rates and linear convergence is

reached with ∆m = 5. A careful look at the local energy spectrum during the nonlinear

phase is still needed, in order to account for a possible broadening of the spectrum. The

problem is that for late times, numerical noise also grows inside the field-aligned filter and

it becomes hard to separate the physical signal from the noise. The idea to overcome this

difficulty is to identify the noisy components of the local energy spectrum by choosing

a larger ∆m and by varying the number of markers. Fig. 5.17 shows the local energy

spectrum, averaged between t = 1.5 · 104 Ω−1
i and t = 2.4 · 104 Ω−1

i , of the mode n = 6

for two simulations with ∆m = 15 but with 16 M and 67 M markers. In both cases, two

noise plateaus are visible near the edges of the filter, where high k‖ modes are present.

The plateau corresponding to the 67 M markers case is lower but the central parts of both

spectrums are very similar. Therefore, from Fig. 5.17 one can conclude that ∆m = 9
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Figure 5.16: Field energy of the n = 6 mode for a field-aligned filter with different values

of ∆m and a rectangular filter.
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Figure 5.17: Local poloidal spectrum of energy for toroidal mode n = 6 at s = s0 = 0.5,

normalized to the largest component, for a simulation with 16 M markers (black, crosses)

and 67 M markers (red, circles). Both simulations have a field-aligned filter with ∆m = 15.

The spectrum is averaged between t = 1.5 · 104 Ω−1
i and t = 2.4 · 104 Ω−1

i . The vertical

dashed lines show −nq(s0) ± 15.
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Figure 5.18: Local poloidal spectrum of energy for toroidal mode n = 6 at s = s0 = 0.5,

normalized to the largest component, for a simulation with 16 M markers (left, crosses)

and 67 M markers (red, circles). Both simulations have a field-aligned filter with ∆m = 9.

The spectrum is averaged between t = 1.5 · 104 Ω−1
i and t = 2.4 · 104 Ω−1

i . The vertical

dashed lines show −nq(s0) ± 9.

is a reasonable value. Fig. 5.18 shows that for a sufficiently high number of markers a

field-aligned filter with ∆m = 9 will contain all the locally relevant poloidal modes. The

same conclusion can be drawn from Fig. 5.19 for the global energy spectrum. Note that it

has also been checked that changing the averaging times of the spectrum does not modify

this conclusion. Finally, Fig. 5.20 shows the radial heat flux as a function of ∆m for sim-

ulations with constant noise, in the sense that the number of markers per Fourier mode

is kept constant [76]. One sees that ∆m = 9 is a reasonable value and that using a large

∆m does not modify the final state of the system but requires a higher number of markers.

The value of ∆m fixes the maximal k‖ wave number in the simulation. This value can be

compared to the maximal k‖ wave number allowed in an Eulerian gyrokinetic simulation

with field-aligned coordinates. The field-aligned coordinate α = ϕ − θ∗/q(s) usually de-

scribes one connection length Lα = 2πq(s)R0. Nα grid points are employed. Four points

per wavelength is a reasonable accuracy, thus wavelengths up to 4Lα/Nα will be correctly

resolved. Usual resolution in the parallel direction is Nα = 16 ∼ 32, which means that the

maximal parallel wave number that is accurately solved is 4/qR0 ∼ 8/qR0, corresponding
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Figure 5.19: Global poloidal spectrum of energy for toroidal mode n = 6, normalized to

the largest component, for a simulation with 67 M markers. and a field-aligned filter with

∆m = 9. The spectrum is averaged between t = 1.5 · 104 Ω−1
i and t = 2.4 · 104 Ω−1

i . The

vertical dashed lines show −nqaxis + ∆m and −nqedge − ∆m.
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Figure 5.20: Volume-averaged radial heat flux, time-averaged between t = 4 · 104 and

t = 5 · 104 Ω−1
i as a function of ∆m. The number of markers has been varied to keep the

number of markers per Fourier mode constant.
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to ∆m = 4 ∼ 8. In the example presented above, ∆m = 9 was the converged value, but

usual nonlinear simulations at lower ρ∗ are converged by using ∆m = 5. Therefore the

value of ∆m is consistent with the parallel resolution of Eulerian gyrokinetic codes.

To summarize, smart Fourier filtering is a powerful numerical scheme to improve the

quality of a PIC simulation: by relaxing the time step criterion and by decreasing the

number of Fourier modes in the simulations, CPU time is reduced by 2 orders of magni-

tude. In addition, the field-aligned filter should even be more efficient in the limit of small

ρ∗ plasmas relative to the rectangular filter. Its width ∆m is set through the procedure

applicable to any set of physical parameters described above.

5.4 Comparison with linear dispersion relation

In an effort to validate the code, ORB5 has been compared to the dispersion relation for

toroidal ITG modes (2.63) that depends on the dimensionless parameters kyρLi, ηi, τ, R/LN

and q(s0) through kz ∼= 1/q(s0)R. The plasma parameters are ρ∗ = 2
113

, B0 = 1T ,

q̄(ρ) = 1.25 + 0.67ρ̃2 + 2.38ρ̃3 − 0.06ρ̃4, ρ̃0 = 0.6 such that q(ρ̃0) = 2, R0 = 2[m] (R0 in

ORB5 is equivalent to R used in the dispersion relations), a = 0.5[m] such that the aspect

ratio is 4. The numerical parameters are Ns = 32, Nθ∗ = 128, Nϕ = 64, p = 3. A diagonal

filter with ∆m = 5 is used, N = 217 ∼= 131K and ∆t = 20Ω−1
i . Temperature profiles 2

are used with ∆T i = 0.2.

Fig. 5.21 shows the growth rate and the real frequency for a ηi scan (by varying LT i)

with kyρLi = 0.354, τ = 1, R/LN = 5.0, q(s0) = 2. The global tendency is similar, i.e. in-

creasing growth rates and increasing real frequency (in absolute value) when ηi increases.

This is expected as an increase of ηi means a higher temperature gradient and so a higher

ωT i. Quantitative differences are due to the numerous approximations employed to derive

the dispersion relation. In particular, it does not contain the effect of the shear.

Fig. 5.22 presents the growth rate and the real frequency for a kyρLi scan with ηi =

2.0, τ = 1, R/LN = 5.0, q(s0) = 2. The global shapes of both curves are similar: at high

kyρLi, FLR effects attenuates the growth rate. ORB5 finds a stabilization of the modes

at kyρLi ∼= 0.8 For this value, the long wavelength approximation might not give accurate

results. Instead, a Padé approximation (see [97]) or a Monte-Carlo solver (see [98]), valid

for arbitrary kyρLi should be used. The curves also differ at low kyρLi: the dispersion
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Figure 5.21: Growth rate and real frequency as a function of ηi given by dispersion relation

Eq. (2.63) (solid line) and ORB5 (solid line,crosses) for kyρLi = 0.354, τ = 1, R/LN =

5.0, q(s0) = 2.
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Figure 5.22: Growth rate and real frequency as a function of kyρLi given by dispersion

relation Eq. (2.63) (solid line) and ORB5 (solid line,crosses) for ηi = 2.0, τ = 1, R/LN =

5.0, q(s0) = 2.
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Figure 5.23: Growth rate and real frequency as a function of R/LN given by dispersion

relation Eq. (2.63) (solid line) and ORB5 (solid line,crosses) for kyρLi = 0.354, τ = 1, ηi =

2.0, q(s0) = 2.

relation does not take trapped ions into account.

Fig. 5.23 shows the growth rate and the real frequency for a R/LN scan with kyρLi =

0.354, τ = 1, ηi = 2.0, q(s0) = 2. Like for the ηi scan, both curves have a similar behaviour:

for R/LN & 6, the growth rate slowly decreases with R/LN . Fig. 5.24 shows the growth

rate and the real frequency for a τ scan with kyρLi = 0.354, R/LN = 5, ηi = 2.0, q(s0) = 2.

In ORB5, one can vary τ by changing Ti or Te. In the second case, varying τ means

varying ρ∗. The real frequency and the growth rate are not affected by the way τ is varied

except for the growth rate at τ = 0.5. When Te is increased it means that ρ∗ is decreased:

global effects become less important and the growth rate tends to the flux-tube value

which is larger. When τ is decreased, the adiabatic response of electrons is enhanced and

the growth rate is lowered. When τ is increased, there is less adiabatic response but it

lowers the normalized ηi, ωF and kzvz. The overall result is a smaller growth rate. The

dispersion relation predicts a faster stabilization of the instability for an increasing τ than

ORB5. The relatively large discrepancy between both methods is in line with the fact

that global effects are important when the plasma size is small, i.e. at large ρ∗ (high τ).

In summary, although the dispersion relation involves many simplifications, the overall

qualitative comparison with ORB5 is good. All the global trends are in agreement. Bench-

marks with other gyrokinetic codes are needed to prove that the growth rates and real

frequencies of ORB5 are correct. This will be presented in Section 5.6.
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Figure 5.24: Growth rate and real frequency as a function of τ = Te

Ti
given by dispersion

relation Eq. (2.63) (solid line) and by varying Ti (solid line,crosses) and by varying Te

(solid line, circles) in ORB5 for kyρLi = 0.354, R/LN = 5, ηi = 2.0, q(s0) = 2.

5.5 Convergence with number of markers

In collisionless gyrokinetic simulations, nonlinear convergence is a subtle notion. For PIC

simulations, not only the time step and the grid resolution need to be carefully chosen,

but the number of markers plays a crucial role as well. Indeed, numerical noise inherent

to the PIC method may determine the level of transport in ETG simulations [91]. In ITG

PIC simulations, due to the strong influence of the zonal flow the situation is different

(see Section 7.1 for a more detailed discussion); however, the question of the required

number of markers for convergence still remains. By measuring the level of numerical

noise in ETG simulations, it has been established that the number of markers required

is linked to the number of Fourier modes in the simulation [99]. Here, the question of

convergence is approached by means of physics diagnostics. The left plot of Fig. 5.25

shows the evolution of the volume-averaged heat flux for different numbers of markers

and the white noise initialization. The overshoot is shifted in time, as the initial level of

the perturbation is inversely proportional to
√
N . This plot alone is not sufficient to say

if a reasonable convergence is reached or not. This difficulty can be overcome by using

the mode initialization with a single mode (m0, n0). The right plot of Fig. 5.25 shows

again Q for a marker number scan performed with the mode initialization. As the number

of tracers is increased, the different curves look more and more alike during the whole

simulation and the top of the overshoot occurs always at the same time and converges to
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Figure 5.25: Time evolution of radial heat flux for different markers number with a field-

aligned filter, a white noise initialization (left) and a single mode initialization (right).

the same level. Fig. 5.26 shows the volume-averaged heat flux Q, time-averaged between

t = 4 · 104 and t = 5 · 104 Ω−1
i , i.e. when the system has reached a quasi steady-state,

for the two different initializations. For the white noise initialization, it is harder to say

for which number of markers the simulation is converged. This is because the system

relaxes differently when N is increased, which implies different series of bursts. When

the mode initialization is used, the convergence curve is smoother because the different

simulations have in this case a more similar nature, and the error bars representing the

standard deviation over the averaging times tend to decrease as N is increased, which is

not the case for the white noise initialization.

In addition, note that these two initializations give quite different overshoots and there-

fore quite different profile relaxations: for the mode initialization, a single toroidal mode

strongly dominates since the beginning of the simulation, whereas all toroidal modes have

approximatively the same initial energy when the white noise initialization is employed.

In this context, a multiple mode initialization would be more appropriate, but in prin-

ciple the quasi-stationary state of a simulation should not depend on the initialization

(i.e. it must lie within the intrinsic variation of the system due to the chaotic nature of

turbulence). The important point is that by initializing the system independently of the

number of markers, the notion of convergence with respect to the number of markers

becomes easier to handle.

108



0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

−6

N/10
6

<
Q

>
/(

n
ic

s
T

e
(s

0
))

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

−6

N/10
6

<
Q

>
/(

n
ic

s
T

e
(s

0
))

Figure 5.26: Radial heat flux as a function of the number of markers for the white initial-

ization (left) and for the mode initialization (right). The heat flux is averaged between

t = 4 · 104 and t = 5 · 104Ω−1
i . Error bars represent the standard deviation.

5.6 The CYCLONE benchmark

In Ref. [90], several fluid, gyrofluid and gyrokinetic codes are compared for the so called

CYCLONE test case, which represents local parameters from an ITER-relevant DIII-D

H-mode shot [100]. The physical parameters used here are ρ∗ = 1/175, a = 0.48 [m],

B0 = 1.91 [T], R0 = 1.32 [m], s0 = 0.624 (corresponds to ρ0 = 0.5a), q(s0) = 1.4, Ti = Te,

R0/LT i = 6.9, ηi = Ln/LT i = 3.12, ŝ = 0.78, ∆T i = 0.3. The value of ρ∗ has been

decreased by increasing the electron and ion temperatures to 2.52 keV to avoid a too fast

relaxation and to approach the flux-tube limit ρ∗ → 0 without going beyond the available

computational resources. The numerical parameters are the following: N = 226 ∼= 83 M

markers, ∆t = 40 Ω−1
i . The quasineutrality equation is solved with cubic B-splines on a

Ns = 128, Nθ∗ = 448, Nϕ = 320 grid and a field-aligned filter with ∆m = 5 is applied.

Benchmarking ORB5 for these parameters is crucial in order to have confidence in the

code.

A first simple test is presented on Fig. 5.27, where the growth rates obtained with the

ORB5 code run in linear mode are compared with GT3D [49]. ρ∗ has been changed to

1/140, a local maxwellian and the exact same equilibrium profiles have been employed

in an effort to have similar parameters between the two codes, which show excellent

agreement.

The numerical quality of CYCLONE nonlinear simulation is shown on Fig. 5.28 through
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Figure 5.27: Linear growth rates for GT3D and ORB5.

ǫE(t) = ∆E(t)/Ef(t) which has a meaning only in the end of the linear phase and in the

nonlinear phase, where Ef (t) is not too small. For this CYCLONE simulation, energy is

conserved up to very long times as |ǫE| < 0.3 up to t = 5 · 104 Ω−1
i , a time at which the

temperature profile is relaxed (see Fig. 5.29). This is a remarkable value for a global PIC

code. This energy deviation represents 10−5 of the total initial energy of the system. As

the quasi-equilibrium state establishes, numerical noise grows and slowly leads to the loss

of energy conservation. However, for late times the system is close to marginal stability

because of profile relaxation so the state of the system will not provide any new physical

information. Hence it is useless to continue a PIC simulation up to very long times without

sources and sinks. The situation could be different if collisional sources were added to the

simulation.

Nonlinear benchmark is usually performed by plotting the ion diffusivity versus R0/LT i.

Note that no assumption is done on Q, ni and ∇Ti: these profiles are reconstructed with

appropriate moments of the Vlasov equation and then smoothed using splines with tension

interpolation [79]. In [90], Dimits proposed a fit to express χi as a function of R0/LT i

when the system has reached (quasi-)steady state:

χi
χDimits

∼= 15.4

(
1 − 6

LT i
R0

)
, (5.9)

with χDimits = χGBa/Ln and χGB is defined by (5.7). There are two difficulties in bench-

marking ORB5 against the Dimits fit, which has been obtained with a flux-tube code.

First, spatial averaging must be applied since ORB5 is a global code. Second, the tem-

perature profile and consequently R0/LT i are not frozen as in flux-tube codes and relax
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i . The

solid blue curve is the Dimits fit (5.9).

during the simulation. It is therefore better to characterize the radial transport by a cloud

of points (χi, R0/LT i) representing the time evolution of space-averaged values rather than

with a single point. Such a procedure has been applied in Ref. [31]. ORB5 results are

displayed in Fig. 5.30. At the beginning of the simulation, the radial transport is null and

the logarithmic gradient variation is very weak. Then the turbulence establishes, leading

to profile relaxation. Finally, the system is in quasi-equilibrium state. The cloud of points

taken from the relaxation phase is well located near the Dimits fit. The dispersion is more

important for small averaging widths ∆s. This quantity should be large enough to aver-

age bursts, but a too large value would move the temperature gradient too far away from

the local value. Remark on Fig. 5.29 how fast the profile relaxes to a quasi-equilibrium

state. A way to prevent this phenomenon would be to decrease ρ∗, thus reducing global

effects. Unfortunately simulations at lower ρ∗ were not possible because of the limited

computational power.

Note at the time this benchmark has been performed, the code did not have the noise-

control algorithm. Based on the number of markers, the final state of this simulation is

quite noisy and that the location of the cloud of points characterizing the final quasi-steady

state might be incorrect. Another ORB5 benchmark using the noise-control algorithm,

performed in the frame of the EFDA Task Force on Integrated Tokamak Modelling, has

been published in [101].
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Chapter 6

Application of ORB5 for ITG

turbulence: evolution of entropy and

parallel nonlinearity

6.1 Steady state: evolution of entropy

6.1.1 The fluctuation entropy equation

In a gyrokinetic simulation, one of the key points to make quantitative predictions is the

establishment of a steady state. In δf PIC simulations, a steady state is reached if the

fluctuation entropy is constant. In 1999, Krommes [71] showed that in order to get a

steady state some dissipation must be present in the system. Whereas in Eulerian codes

dissipation is present [102] due to numerical discretization, this effect is absent in colli-

sionless δf PIC simulations. In particular, it means that collisionless δf PIC simulations

cannot achieve a steady state. The weights, and consequently the fluctuation entropy,

proportional to the sum of the weights squared 〈w2〉 grow together with the turbulence

and one observes that low order moments saturate but the fluctuation entropy continually

increases in time. Therefore, on top of the physical nonzero value of the fluctuation en-

tropy there is a numerical growth of this quantity. This is known as the entropy paradox

and is due to the Monte-Carlo approach used in PIC codes. This situation is problematic

as the noise is proportional to 〈w2〉, see Eq. 4.134. One solution to resolve this entropy

paradox is to introduce physical dissipation by implementing a collision operator. A brief

113



review of collisional methods is presented.

The most general form of a collision operator is usually described with the Landau oper-

ator which contains second order velocity derivatives. Its implementation in PIC code is

particularly complex as the distribution function is not known on a velocity grid. Instead,

some approximations are made. For electron-ion collisions, it is common to use a Lorentz

operator, i.e. ions remain fixed due to their large inertia while the effect on electrons

is modeled by a pitch-angle scattering [103]. For like-species, two different approaches

exist: the weight and velocity of markers are modified in such a way to conserve density,

momentum and energy [104], or a binary scheme can be employed, where the random ac-

celerations and displacements of spatially nearby pairs of markers are correlated so as to

exactly conserve the energy and momentum of each pair. Unfortunately these methods are

noisy, hence inaccurate: the randomization of weights and/or velocities introduces noise

in the simulation. The weights must be interpreted statistically; in particular two markers

can have different weights at the same location in phase space, which breaks the direct

link between the local value of δf and the weight. In this respect, collisional δf meth-

ods have been improved by considering the weight as an additional dimension [105], but

it induces weight spreading and ultimately leads to the breakdown of the δf method. A

possible solution to limit this phenomena has been proposed in [106]. A general collisional

scheme has also been proposed by Krommes in [71], recovering the scheme proposed by

Chen [105]. Note that a deterministic algorithm has been proposed by Lewandowski [107],

although this scheme has not been implemented in a 5D gyrokinetic code.

This brief review reveals that implementing collisions in a PIC code is a difficult task.

Alternatively, one can remain collisionless and introduce numerical dissipation. In ORB5,

this is done with the Krook operator exposed in Sec. 3.8, following the idea of the thermo-

stat W -stat proposed by Krommes [71], with the difference that no restriction is imposed

to fix the entropy. The idea of a W -stat has been tested on a simple 2D gyrokinetic slab

code in Ref. [71], but it has not been tested on a more realistic 5D global PIC code. One

of the main criticism adressed to δf PIC codes is their inability to perform long time sim-

ulations due to the increase of the sum of squared weights: this phenomenon equivalently

relates to numerical noise and a quasi-steady state. Considering this, it is consequently

obvious that the demonstration of a global steady state in a 5D gyrokinetic δf PIC code

represents a big step in the gyrokinetic community. Note that other types of numerical
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dissipation are possible: in the particle-continuum method [108], [109], the weights and

the phase space coordinates are periodically reseted on a phase space grid. In the coarse-

graining method [110], the weights are binned on a 5D grid and the distribution function

is coarse-grained by replacing the Dirac function appearing in the Klimontovitch distri-

bution by shaping functions. This scheme is more complicated to implement compared to

the W -stat: it requires large additional memory and computing time, but it preferentially

removes small velocity scales of the distribution function, whereas the W -stat does not

distinguish them.

The fluctuation entropy is defined according to Ref. [111]:

δS =

∫
f(~R, v‖, µ, t) ln

[
f(~R, v‖, µ, t)

]
− f0(~R, v‖, µ) ln

[
f0(~R, v‖, µ)

]
B∗

‖d~Rdv‖dµdα

∼= 1

2

∫
δf 2(~R, v‖, µ, t)

f0(~R, v‖, µ)
B∗

‖d
~Rdv‖dµdα (6.1)

where the assumption |δf | ≪ |f0| has been made. The flucuation entropy means a

difference between microscopic and macroscopic entropy. The entropy balance has been

studied with an Eulerian code in the case of collisionless [111] and collisional [112] plasmas

with non-dissipative methods, meaning that the dissipation has a purely physical origin.

The general form of the entropy balance equation reads:

d

dt
(δS +W ) = ηiQi + C (6.2)

where W is the potential energy, Qi is the ion heat flux and C is the collisional dissipation.

In the collisionless limit C = 0, the system can reach a steady-state by two different ways.

First, the trivial case is when dδS
dt
, dW

dt
and Qi are 0 (no transport). This scenario is

impossible to reach with PIC simulations due to the noise increase which always produces

a finite numerical transport. The second case is when dW
dt

= 0 and dδS
dt

is balancing Qi.

This is the scenario happening in collisionless δf PIC simulations. The low moments of

δf saturate but the growth of fine-scale velocity structures contributes to the monotonical

increase of δS. This is the general picture of entropy production produced by turbulent

transport. An analytical study of the entropy production rate due to turbulence can be

found in [113]. Note that entropy production can also be studied in the frame of classical

and neoclassical transport. This topic is studied in Ref. [114].

The study of entropy balance has been performed with the Eulerian codes G4D [115]

in cylindrical geometry and GYRO [102] in toroidal geometry, but no study has been
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done with a global PIC code (in [110], the entropy balance equation is derived but it is

not checked numerically). For the first time, the demonstration of a steady state with

artificial dissipation in a 5D global gyrokinetic PIC code is presented. The entropy balance

equation is obtained by multiplying the Vlasov equation (Eq. 3.91) by δf/f0, integrating

over phase space and normalizing the result over the plasma volume.

The discretized fluctuation entropy balance equation can be written as:

dδS

dt
= Dflux +Dfield +Dnc +Dheat (6.3)

with

δS =
1

N

N∑

p=1

(
1

2

w2
p

f0p

)
(6.4)

Dflux = − 1

N

N∑

p=1

[
wp +

w2
p

2f0p

]
κ(Υp)

dΥ

dt

∣∣∣∣
1,~zp

(6.5)

Dfield =
1

N

N∑

p=1

[
wp +

w2
p

2f0p

]
qi

Ti(Υp)
〈 ~E〉 · d~R

dt

∣∣∣∣∣
~zp

(6.6)

Dnc = − 1

N

N∑

p=1

γK
w2
p

f0p

+ wp

Nmom∑

i=1

g
kp

i (~zp)Mi(~zp) (6.7)

Dheat =

N∑

p=1

wp
f0p

Sm,kH,p (6.8)

where the property d
dt

(
1
2

w2
p

f0p

)
= wp

f0p

dwp

dt
− 1

2

w2
p

f2
0p

df0p

dt
has been used. Dflux describes the

fluctuation entropy production by the profile gradients. It is instructive to see how Dflux

relates to the heat diffusivity in the flux tube limit ρ∗ → 0 with constant profiles and

gradients:

Dflux =
1

V

∫
B∗

‖d
~Rdv‖dµdαδf

(
n′

0(Υ)

n0(Υ)
+
T ′
i (Υ)

Ti(Υ)
+

miv
2

2Ti(Υ)

) 〈 ~E〉 × ~B

BB∗
‖

· ∇Υ (6.9)

Note that the second term entering in definition 6.5 has been neglected because it is δf/f0

smaller than the first one. In the local limit, Υ → ψ and B∗
‖ ∼ B will be assumed for the

phase space Jacobian. The first two terms of the integral are proportional to the particle

flux which is assumed to be 0 for adiabatic ITG turbulence, the potential being in phase

with the density. In practice, there is a finite particle diffusivity of numerical origin which

is 102 − 103 times smaller than the heat diffusivity peak. The third term gives:

Dflux =
1

V

∫
dψ

T ′
i (ψ)

T 2
i (ψ)

∫
|∇ψ| ~Q · −→dσ (6.10)
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where:

~Q =

∫
d~v

1

2
miv

2 〈 ~E〉 × ~B

BB∗
‖

δf,
−→
dσ = Jθ∗ψϕdθ∗dϕ

∇ψ
|∇ψ| (6.11)

For circular surfaces Dflux can be further simplified:

Dflux =
1

V

∫
dρ

[
T ′
i (ρ)

Ti(ρ)

]2
1

|∇Ti(ρ)|

∫
~Q · −→dσ (6.12)

If all profiles are approximated as radially constant, then one finally has:

Dflux =
a

V

(
a

LT

)2

n0χi (6.13)

This equation is similar to the equation (52) of Ref. [102] and shows that Dflux (positive in

case of an outward flux) is the driving term, somehow proportional to the heat diffusivity

and responsible for the entropy increase.

The second term of Eq. (6.3) describes the rate of entropy created by the transfer of

energy from the particles to the field perturbation. From the power balance equation in

the case of constant profiles one simply has:

Dfield
∼= − 1

Ti(ψ)

dEf
dt

(6.14)

where the second term entering in definition (6.6) has also been neglected and Ef is the

total field energy defined in Eq. (3.83). It means that when the electrostatic potential

acquires energy, the entropy is reduced. This term should therefore be negative during

the linear phase, and then oscillate around 0 during the nonlinear phase for both the

quasi-steady and the steady states. The third term of Eq. 6.3 is the dissipative noise

control term which is always negative, thus reducing the entropy:

Dnc =
N∑

p=1

−γK
w2
p

f0p

+

NS∑

k=1

∑

1≤p≤N
p:sp∈[sk−1:sk]

wp

Nmom∑

i=1

Mi(~Rp, v‖p, µp)gi(sp, t) (6.15)

By using 4.53, one has:

Dnc =

NS∑

k=1

∑

1≤p≤N
p:sp∈[sk−1:sk]

1

γKf0p

[
− γ2

Kw
2
p +

(Nmom∑

i=1

Mi(~Rp, v‖p, µp)f0pgi(sp, t)

)2
]

(6.16)

Therefore Dnc can be negative if for at least one marker the following identity is satisfied:

|γKwp| <
∣∣∣∣∣
Nmom∑

i=1

Mi(~Rp, v‖p, µp)f0pgi(sp, t)

∣∣∣∣∣ (6.17)
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It means that for this marker the contribution of the Krook operator is smaller than the

contribution of the correction to the Krook operator. This is of course not possible as

Scorr is a projection of SK over a finite number of velocity moments. In extreme cases

where the number of markers per bin is of the order unity Dnc could be positive, but

in practice this never happens as NS is typically equal to 1/ρ∗ which is obviously much

smaller than the total number of markers.

The fourth term of the fluctuation entropy balance equation describes the contribution

of the heating operator to the entropy. The same argument can be used to show that

Dheat < 0, but contrary to the noise control operator, this term should not contribute

significantly to the reduction of the fluctuation entropy. The heating operator is built

with different binnings of markers in energy and radius that are smooth in velocity space:

it does not affect the filamentation (in the |v| dimension) of the velocity phase space and

thus the heating operator should not help reducing the noise. This should be reflected in

the evolution of the fluctuation entropy.

6.1.2 Simulation results

The equality 6.3 should be perfect in the limit of infinite numerical accuracy. In order

to test it, CYCLONE simulations have been performed with the following parameters:

ρ∗ = 1/184.7, mi = 2mp, a = 0.625 [m], B0 = 1.91 [T], R0 = 1.70 [m], s0 = 0.624

(corresponding to ρ̃0 = 0.5), q(s0) = 1.4, Ti = Te, R0/LT i = 6.9, ηi = Ln/LT i = 3.12,

ŝ = 0.78. Profiles 3, Eqs. (4.149), (4.150) have been used with ∆T i = 0.04 and ∆ρ̃ =

0.25 (see Fig. 6.1). The numerical parameters are the following: N = 80M markers,

∆t = 40 Ω−1
i . The quasineutrality equation is solved with cubic B-splines on a Ns =

128, Nθ∗ = 512, Nϕ = 256 grid and a field aligned solver with ∆̃m = 5. A field-aligned

filter with ∆m = 5 is applied combined with a rectangular filter n1 = 0 < |n| < n2 = 57,

m1 = −128 < m < m2 = 128. Poloidal modes above kθρLi = 1.0 are filtered out. Five

simulations have been performed. The first one has no Krook and no heating operators.

The second one has no heating operator but a Krook operator with γKi = 9 · 10−5Ωi with

conserved density, zonal flow structure and energy, i.e. the Krook operator allows the

relaxation of the temperature gradient. The third simulation is similar to the second one

except for the conservation of energy which is turned off: the Krook operator acts as a

heating. The fourth simulation has no Krook operator but the heating operator is turned
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Figure 6.1: Logarithmic temperature gradient and temperature profiles used in Sec-

tions 6.1 and 6.2.
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Figure 6.2: Temporal evolution of dδS
dt

(solid line), Dflux (dotted line), Dfield (dashed

line) and Dnc (dash-dotted line) for the transient (left), noise-controlled (middle) and

fixed-gradient-noise-controlled (right) simulations with 80M markers. For these three

simulations the heating contribution Dheat is zero.

on with γH = 9 · 10−5Ωi. Finally the fifth simulation have both operators turned on with

γKi = γH = 9 · 10−5Ωi and the Krook operator conserves the energy. These simulations

will be called transient, noise-controlled, fixed-gradient-noise-controlled, heated and noise-

controlled-heated.

Fig. 6.2 shows the different components of the entropy balance equation for the first

three simulations. The transient simulation exhibits a quasi steady-state: in the end of

the simulation, the entropy production rate is constant and almost equal to Dflux, while

Dfield is close to 0. This is the situation with saturated low-order moments and a growing

entropy δS ∝ χi · t. This simulation rapidly becomes dominated by numerical noise (the
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signal to noise ratio is almost equal to 1 in the end of the simulation).

The noise-controlled simulation shows the beneficial effect of Dnc on the entropy balance.

This term is always negative, balances Dflux (although the bursts of Dnc are slightly shifted

in time with those of Dflux). Like for the transient case, Dfield is again extremely close to

0. Consequently, the noise-controlled simulation exhibits a steady-state character: in the

end of the simulation, the fluctuation entropy is constant while there is a finite heat flux

(see left plot of Fig. 6.3). This proves that a W -stat allows for a true steady state. Note

that the signal to noise level drops below 10 near t = 7 · 104Ω−1
i and ends up at around 4,

but the simulation seems to remain in a steady state. However, by looking more carefully

at the noise-controlled fluctuation entropy evolution (Right plot of Fig. 6.3), one sees that

it slowly increases with time (from δS = 1.5 · 10−3 at t = 1 · 105Ω−1
i to δS = 2.15 · 10−3

at t = 3.2 · 105Ω−1
i ). In this decaying simulation, the heat diffusivity goes to 0 as the

temperature profile relaxes. It becomes more and more difficult to accurately represent

this low signal with markers and the noise increases. The entropy production due to noise

cannot be compensated by the dissipative Krook term anymore and so the fluctuation

entropy increases: the system undergoes a transition from steady to quasi-staedy. This

is better seen on the right plot of Fig. 6.3: for 20M markers, the growth of the noise is

more important and the Krook damping rate is clearly not large enough to counteract

this effect, while the growth of the fluctuation entropy is smaller for the 80M and the

320M cases. Increasing the dissipation will delay this phenomena but one must then

be careful about physical convergence. The important conclusion is that decaying PIC

simulations cannot be run for infinitely long times, even when dissipation is introduced

in the system. However one hopes to run them for the longest possible time in order to

approach the critical gradient. In practice, the signal to noise ratio and the fluctuation

entropy diagnostic provides a meaningful way to determine when the simulation becomes

flawed and must be stopped. One can then look at the desired physical quantities such as

heat diffusivity and temperature gradients. The number of markers and the dissipation

are then modified depending on how close is the final state of the system to the marginal

point.

Fig. 6.4 shows the time evolution of Dflux and χi/χGB (averaged between ρ̃ = 0.3 and

ρ̃ = 0.7). The latter quantity has been rescaled by a constant factor to match the maxi-

mum value of Dflux. It is remarkable how these curves overlap despite the approximations
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Figure 6.3: Left: time evolution of δS for the transient (solid line), noise-controlled

(dashed line) and fixed-gradient-noise-controlled (dotted line) simulations. Right: time

evolution of entropy for noise-controlled simulations with 20M (solid line), 80M (dashed

line), and 320M (dotted line) markers.

made to obtain Eq. (6.13) and the fact that the heat diffusivity is radially averaged (one

cannot average over the whole plasma because χi goes to infinity when ∇T goes to zero

at the magnetic axis and at the plasma edge).

In the fixed-gradient-noise-controlled simulation, because the gradient is kept almost

fixed, the heat diffusivity and consequently the three components Dflux, Dfield and Dnc

have a burstier character. Nevertheless, the entropy production rate approaches to 0 on

time-average and a true steady state is reached. The state of these simulations is better

seen on Fig. 6.3. The transient simulation shows a linearly growing entropy, while the

noise-controlled and the fixed-gradient-noise-controlled simulations have, in the end, a

constant entropy on average. Note that the fluctuation entropy also provides an addi-

tional way to check the numerical convergence of the simulation. This is uniquely defined,

in opposite to the signal to noise diagnostic: the latter is obtained by manually defining

which modes belong to the noise and which modes belong to the signal, and depends on

the field-aligned filter. The criterion of a signal to noise ratio higher than 10 is of course

empirical only, because it depends itself on the definition of noise and is based on experi-

ence. The fluctuation entropy diagnostic has the advantage that it does not rely on any

assumption. It is in fact strongly connected to the sum of the weights squared and has, in

addition, a physical interpretation (as seen above, Dflux connects to the heat diffusivity,
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Figure 6.4: Time evolution of Dflux (solid line) and χi/χGB (dashed line, radially averaged

between ρ̃ = 0.3 and ρ̃ = 0.7) for a noise-controlled simulation with 80M markers. χi/χGB

has been rescaled by a constant factor to match the maximum of Dflux.

Dfield connects to the energy transfer between the field and particles and Dnc connects to

the dissipation artificially introduced in the system). Moreover, the fluctuation entropy

is defined in a universal way and helps to determine the correctness of the dissipative

damping coefficient without any arbitrary choice. It is therefore an extremely useful tool

for gyrokinetic PIC simulations.

Finally, the influence of the heating operator on the fluctuation entropy is examined.

On Fig. 6.5, the different components of the fluctuation entropy balance equation are rep-

resented for the heated and the noise-controlled-heated simulation. By looking at Dheat,

one sees that this term, although slightly negative, is small and as expected does not

significantly reduce the fluctuation entropy. Like the transient case, the heated case also

exhibits a quasi-steady state, where δS ∝ χi · t. χi is much higher than its counterpart in

the transient simulation, reflecting the effect of the heating, but the noise accumulates:

the signal to noise ratios of the transient and heated case are very similar and are around

2 which clearly demonstrates that these two simulations are noise-dominated. This is why

Dflux (and equivalently the heat transport) has some fast frequency oscillations and no

burst activity. It must be emphasized that the average value of Dflux which is proportional

to the average value of the heat diffusivity is, in that case, probably not converged.

The situation is fortunately much better in the noise-controlled-heated-case. Dheat is

again very small and slightly negative, but here the noise-control component prevents
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Figure 6.5: Temporal evolution of dδS
dt

(thick solid line), Dflux (dotted line), Dfield (dashed

line), Dnc (dash-dotted line) and Dheat (thin solid line) for the heated (left) and noise-

controlled-heated (right) simulations with 80M markers.

the entropy from growing. On average, dδS/dt is zero which demonstrated that the

noise-controlled-heated has reached a steady state. The striking difference between both

simulations with heating can be observed on Dflux. In the noise-controlled-heated case,

the system undergoes an endless series of heat bursts while in the heated case the bursts

phenomenon stops and is replaced by fast noise-oscillations. This shows that quasi-steady

states obtained with PIC codes not only predict incorrect transport (in the average sense)

but lack also at predicting the correct physics. On the contrary, steady states do al-

low for quantitative predictions. This statement is confirmed by the results depicted on

Fig. 6.6, where the radial and temporal evolution of R0/LT i is represented. In the noise-

controlled-heated case, inward propagating avalanches of temperature bursts are clearly

visible. When the noise control algorithm is turned off, these bursts disappear and the

amplitude of the temperature gradient fluctuations become smaller. This is the manifes-

tation of the filamentation of the velocity phase space.
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Figure 6.6: Radial and temporal profile of R0/LT i for a heated (left) and noise-controlled-

heated (right) simulation at the end of the simulations.

Figure 6.7: Radial and temporal evolution of ∇φ̄ for a 80M transient simulation with

(left) and without (right) the VNL.
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Figure 6.8: Radial structure of ∇φ̄ averaged between t = 105 and t = 1.5 · 105Ω−1
i (left)

and χi/χGB as a function of R0/LT i (both profiles are radially averaged between ρ̃ = 0.4

and ρ̃ = 0.6) for a 80M transient simulation with (solid line) and without (dashed line)

the VNL.

6.2 The influence of the v‖ nonlinearity

6.2.1 General considerations

In this Section, the role of the v‖ nonlinearity is examined. Including the v‖ nonlinearity

(VNL) means retaining the term
dv‖
dt

∣∣∣
1

in the equations of motion. Historically, this

term did not appear when the gyrokinetic equation was obtained by averaging over the

gyro-angle [34], but appeared in the Hamiltonian and Lagrangian approach [65]. From

the physical point of view, this term produces nonlinear Landau damping. The role of

this term is still controversial. It is of order O(ǫ2g): from the gyrokinetic ordering, its

contribution should be small. Significant differences have been observed on the zonal

flow structure by the ORB5 code in toroidal geometry [116] at ρ∗ = 1/96. The same

effects were found by the global PIC code UCAN [117] at ρ∗ = 1/90, where the saturation

level was found to be reduced with the v‖ nonlinearity. However this effect was ”strongly

diminished” at ρ∗ = 1/180. In [118], two CYCLONE simulations with and without the

VNL with the global PIC code GTC are presented. It is found that the field energy of the

zonal flow is two times larger when the VNL is included (in agreement with the UCAN

results) and that the relaxation is much faster. The authors invoke possible influence of

the VNL, although the study is not very detailed. Unfortunately, all these PIC simulations
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used relatively few markers per cell: the UCAN simulations used 4 particles/cell, GTC

simulations used 10 and ORB5 simulations used 32. These are quite low numbers for

collisionless simulations and no convergence studies have been performed for these cases.

In addition, ORB5 simulations did not have the field-aligned Fourier filter technique

but had a rectangular filter, thus increasing the number of Fourier modes by 25, but

used an optimized loading technique. Later on, ORB5 simulations without optimized

loading but with a field-aligned filter revealed few differences when retaining or dropping

the VNL [119]. Unfortunately these simulations did not have the noise diagnostic; it

is likely that they became noisy during the late nonlinear phase, where differences are

observed in the zonal flow structure with and without the VNL (see Fig. 7 of [119]). In

Ref. [115], 4D and 5D simulations in slab geometry with the global PIC code G3D and

the global Eulerian code G5D revealed an insignificant contribution of the VNL. Finally,

local Eulerian simulations using the Eulerian code GYRO and the flux-tube PIC code

GEM [120] showed no measurable effects of the VNL.

Now that the numerical properties of ORB5 have been drastically improved with the

field-aligned filter, the fluctuation entropy and the noise-control algorithms, the influence

of the VNL can be revisited with more confidence in the results. Standard CYCLONE

simulations (transient, noise-controlled and fixed-gradient-noise-controlled) presented in

the previous Section have been run by dropping the VNL term
dv‖
dt

∣∣∣
1

in the equations of

motion. The value of ρ∗ has been set to 1/184.7 which is a moderate value. For large

ρ∗ the VNL may play an important role but no simulations have been performed as such

small plasmas are unrealistic.

6.2.2 Results for decaying turbulence

Fig. 6.7 shows the radial and temporal evolution of the gradient of zonal flows ∇φ̄ for 80M

transient simulations with and without zonal flows. It can be seen that these structures

start to differ after the first burst. In the end of the simulation, the zonal flow profiles

are quite different. This is better seen on the left plot of Fig. 6.8 where they are averaged

between t = 105 and t = 1.5 · 105Ω−1
i . The values at the edge are of different sign and

∇φ̄ is peaked at mid-radius for the case without VNL. From these plots, it could be con-

cluded that the VNL has a strong influence on the zonal flow structures. However, a look

at the heat diffusivity as a function of the normalized temperature gradient (right plot of

126



Figure 6.9: Radial and temporal evolution of ∇φ̄ for a 320M transient simulation

with(left) and without(right) the VNL.

Fig. 6.8) indicates that the simulations end up completely dominated by noise: R0/LT i

decreases while χi/χGB stays at a relatively constant value. The signal to noise ratio of

these simulations falls below 10 at t = 4 · 104Ω−1
i and is only around 2 at the end of the

simulation (see Fig. 6.11). These simulations have 250 particles per Fourier mode. In the

following, the possibility that the differences observed with and without the VNL are due

to noise is investigated.

First, transient simulations with 320M markers have been performed. The 2D zonal flow

gradient structure is plotted on Fig. 6.9 and its time-averaged profile is represented on

Fig. 6.10. From these figures, the VNL seems to have very little influence on the zonal

flow profile. The comparison between 320M and 80M transient simulations tend to con-

firm that the differences in the zonal flow structure previously attributed to the absence

of VNL are due to numerical noise. Note that for all transient simulations, the signal

to noise ratio for the averaging times of Figs. 6.8 and 6.10 is below 3, indicating that

the quality of these simulations for late times is extremely poor. This is also seen in the

χi/χGB vs R0/LT i plot of the 320M transient simulation (see right plot of Fig. 6.10). In

the end of the simulation the temperature profile flattens while the heat diffusivity stays

constant. Therefore it is desirable to have noise-controlled simulations to further look at

the effects of the VNL.

Unsurprisingly, the noise-controlled simulations show a much better signal to noise ratio

(see Fig. 6.11) compared to the transient simulations. However it continually decreases:

the noise control algorithm allows to run a simulation much longer before it gets domi-
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Figure 6.10: Radial structure of ∇φ̄ averaged between t = 105 and t = 1.5 · 105Ω−1
i (left)

and χi/χGB as a function of R0/LT i (both profiles are radially averaged between ρ̃ = 0.4

and ρ̃ = 0.6) for a 320M transient simulation with (solid line) and without (dashed line)

the VNL.
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Figure 6.11: Signal to noise ratio vs time for a a transient simulation with (solid line)

and without (dashed line) the VNL, for a 80M markers noise-controlled simulation with

(dotted line) and without (dashed-dotted line) the VNL, and for a 320M makers noise-

controlled simulation with (thick solid line) and without (thick dashed line) the VNL.

The horizontal line shows a signal to noise ratio of 10.
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Figure 6.12: Radial and temporal evolution of ∇φ̄ for a 80M noise-controlled simulation

with (left) and without (right) the VNL.

nated by statistical noise. At the end of the simulation, the signal to noise ratio increases:

when it becomes too small, there is a spurious growth of the zonal flow which in turn

affects the signal to noise ratio. This is of course purely numerical and gives the indication

that it is useless to pursue the simulation. Like for the transient simulation, including

the VNL or not does not significantly modify the signal to noise ratio.

Fig. 6.12 presents the radial and temporal evolution of ∇φ̄ for 80M noise-controlled sim-

ulations, and Fig. 6.13 shows the radial structure of ∇φ̄ averaged between different times

of the simulation. Between t = 105 and t = 1.5 · 105Ω−1
i , the time-averaged structures

with and without the VNL are different: the simulation without the VNL has two peaks

while the simulation with the VNL has one. Later in time, these two peaks merge to form

only one and there are much less differences in the zonal flow structure compared to the

transient case. The main difference can be observed near the edge where a negative radial

potential appear for the case with the VNL, which could explain the late time increase

of the signal to noise ratio. According to the empiric rule that this quantity should be

higher than 10, the conclusion is that the results are still questionable. Therefore, noise-

controlled simulations with 4x80M = 320M markers have been performed.

Fig. 6.15 shows the radial and temporal evolution of ∇φ̄ for noise-controlled simulations

with 320M markers, with and without the VNL. These structures are very similar even

at the end of the simulations. Fig. 6.16 shows the same time-averages of ∇φ̄ than for the

80M case. There is no numerical growth of the zonal flow near the edge and the VNL

seems to play a very little role. This shows that noisy PIC simulations may predict a
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Figure 6.13: Radial structure of ∇φ̄ with (solid line) and without (dashed line) the VNL,

averaged between t = 105 and t = 1.5·105Ω−1
i (left), between t = 1.5·105 and t = 2·105Ω−1

i

(middle) and between t = 2 · 105 and t = 2.5 · 105Ω−1
i (right) for a 80M markers noise-

controlled simulation.

completely wrong structure of the zonal flow. In this respect, it is extremely likely that

the influence of the VNL previously reported has no physical origin but is the consequence

of statistical noise.The χi/χGB vs R0/LT i plots (Fig. 6.14) reveal that the VNL does not

affect the transport much with 320M markers. With 80M markers, these curves are sim-

ilar to those observed in the transient case (Fig. 6.8): the heat diffusivity is constant but

the temperature gradient is flattening below the critical value of R0/LT i = 6, indicating

that noise is dominating the simulation.

The most striking result of these simulations is the different zonal flow structures between

the 80M and the 320M cases. Even if the VNL does not affect the zonal flow structure

it does not imply that the latter is correct. Therefore, one can argue that the irrelevance

of the VNL on the zonal flow structure is a necessary, but not sufficient condition for

convergence.

Finally, previous works on the VNL are discussed. In the publications dealing with the

influence of the VNL with PIC codes in tokamak geometry [117], [118], the noise problem

was not mentionned. For PIC simulations in slab geometry [115], the entropy balance

equation is derived and the influence of the VNL is thoroughly studied. The simulations

used 67M markers, did not have dissipation but were run in slab geometry. In the ab-

sence of toroidal effects the VNL is proportional to ~E‖ which is insensitive to zonal flows.

Because the latter are dominant in ITG collisionless simulations, this may explain why

the VNL should have little effect. This is not what has been found in Ref. [121] with

the TORB code. The simulations done in Ref. [121] have been revisited and new con-
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Figure 6.14: χi/χGB as a function of R0/LT i (both profiles are radially averaged between

ρ̃ = 0.4 and ρ̃ = 0.6) for a 80M markers (left) and a 320M markers (right) noise-controlled

simulation with (solid line) and without (dashed line) the VNL.

clusions have been found. This is due to the different choice of optimized loading. The

one used in [121] originates from the markers distribution at a given time in the nonlin-

ear phase and is consequently highly structured in the radial direction due to the zonal

flow structure. This was unfortunately an inappropriate choice as this radial structure

is indeed time evolving. On the contrary, the optimized loading used in this work has

been constructed based on the results of several ITG simulations, is a smoother one and

does not degrade the quality of the simulation. Therefore if it is not properly applied,

the optimized loading can lead to erroneous conclusions. For ORB5 simulations in toka-

mak geometry [116], an optimized loading is applied but the numerical properties have

only been checked with the energy conservation theorem which is a second order moment:

it does not capture the filamentation of phase space in velocity, but it is not sufficient

to correctly diagnose a simulation. Although the optimized loading tries to solve this

problem by putting more markers in regions where the distribution function has a strong

velocity dependence, it is likely that the optimized loading was not sufficient to remove

the numerical noise. When using the optimized loading, the sum of the weights squared

and consequently the noise, (4.134), is usually decreased by a factor 10. This reduction

is much less than the one obtained by going from a rectangular to a field-aligned filter

which is approximatively ρ∗. It means that roughly, old ORB5 simulations in Ref. [116]

would have needed at least 1/10(ρ∗)−1 ∼ 10 times more particles to reach convergence.

In addition, the relatively large value of ρ∗ for these simulations may have enhanced the
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Figure 6.15: Radial and temporal evolution of ∇φ̄ for a 320M markers noise control

simulation with(left) and without(right) the VNL.

Figure 6.16: Radial structure of ∇φ̄ with (solid line) and without (dashed line) averaged

between t = 105 and t = 1.5·105Ω−1
i (left), between t = 1.5·105 and t = 2·105Ω−1

i (middle)

and between t = 2 · 105 and t = 2.5 · 105Ω−1
i (right) for a 320M markers noise-controlled

simulation.

role of the VNL. Fortunately, it is now proved with the help of the numerous numerical

improvements in ORB5 that the VNL has very little influence on decaying turbulence

simulations provided the numerical noise is sufficiently small.

6.2.3 Results for driven simulations

The final case studied is the fixed-gradient-noise-controlled case, where the noise-control

operator allows the system to maintain an average temperature gradient above the non-

linear critical value. The stronger turbulence is reflected in higher electric fields, which

means that the influence of the VNL could be bigger. It contains two terms: the first one

is proportional to E‖ and is therefore insensitive to zonal flows as discussed above. The
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Figure 6.17: Signal to noise ratio vs time for a 320M markers noise-controlled simula-

tion with (solid line) and without (dashed line) the VNL and for a 80M noise-controlled

simulation with (dotted line) and without (dashed line) the VNL.

second term is a toroidal effect of order ǫgǫB (which is ǫa smaller than the first term) that

is sensitive to zonal flows.

Noise-controlled-fixed gradient simulations have high and constant signal to noise ratios,

as can be seen from Fig. 6.18. With 80M markers, the signal to noise ratios oscillate

around 20. The radial electric field structure is displayed on Fig. 6.19. From these plots

the VNL does not seem to play an important role. Although local bursts happen at

different times, the global structure of the zonal flow looks the same: on the left plot

of Fig. 6.20, the peaks in the radial electric field are radially slightly shifted and have

different amplitudes. Such differences are reasonable considering the chaotic character of

turbulence. The main discrepancy is located at the edge of the plasma. The only notable

difference observed in these simulations is in the zonal density. Fig. 6.21 shows a time

average of the radial profile of the zonal density δn
(0,0)
i . These profiles are similar except

in the edge region the charge builds up with a different sign depending on whether the

VNL is included or not. This phenomenon has also been observed in decaying turbulence.

When the VNL is turned on, a positive charge accumulates at the plasma edge but when

the VNL is turned off a negative charge builds up. On the other hand, the zonal flow does

not follow this behavior as it is shielded near the plasma edge (see Section 4.5.8). The

important point is that this unphysical behavior does not affect regions where turbulence

is present.
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Figure 6.18: Signal to noise ratio vs time for a 80M fixed-gradient-noise-controlled simu-

lation with (solid line) and without (dotted line) the VNL. The horizontal line indicates

a signal to noise ratio of 10.

Figure 6.19: Radial and temporal evolution of ∇φ̄ for a 80M markers noise-controlled-

fixed-gradient simulation with (left) and without (right) the VNL.
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Figure 6.20: Radial structure of ∇φ̄ with (solid line) and without (dashed line) averaged

between t = 105 and t = 1.5 · 105Ω−1
i (left), between t = 1.5 · 105 and t = 2 · 105Ω−1

i

(middle) and between t = 2 · 105 and t = 2.5 · 105Ω−1
i (right) for a 80M markers

fixed-gradient-noise-controlled simulation.
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Figure 6.21: Radial profile of the zonal density for 80M fixed-gradient-noise-controlled

simulations with (solid line) and without (dashed line) the VNL, averaged between t =

1.5 · 105 and t = 2 · 105Ω−1
i .
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6.2.4 Variability with initial conditions

Up to now, the impact of the VNL on the zonal flow structures has been studied for both

decaying and fixed-gradient simulations. The influence on the heat diffusivity has been

checked for decaying simulations, which are not suited for quantitative predictions. On

the other hand, driven simulations reach a steady state and are therefore able to quantify

the heat transport. It is of course desirable to provide an error bar on the measured

heat fluxes or heat diffusivities. This is closely related to the intrinsic variability of the

turbulence, which will be defined as the statistical variation of a physical quantity due to

a change of initial conditions. Preferentially, a large number of simulations with different

initial states but same physical and numerical parameters must be run to be able to

make an ensemble average. This becomes especially important as the critical gradient

is approached: the measured transport can have large relative variations. Consequently

the variability of these simulations must be estimated as accurately as possible for both

cases with and without the VNL. This is done as follows. For a given set of numerical

and physical parameters, nsim simulations are run with different initial states. The aim

of these simulations is to measure a given physical quantity such as the ion diffusivity χi.

For each individual simulation, a moving time-average of χi, starting at time ti and of

width ∆tma is performed and will be written χ̃i. The width ∆tma must be large enough to

include a typical life time of a burst. In this work, ∆tma = 400a/cs has been used, based on

Ref. [16]. Then, for each time, the average (resp. the sample standard deviation) of χ̃i over

the different simulations can be calculated, which will be written 〈χ̃i〉n(t) (resp. sn(χ̃i)(t)

). One distinguishes the sample standard deviation with the standard deviation (the

difference is a factor
√
nsim/

√
nsim − 1) as in practice nsim ' 3. The intrinsic variability

of the heat diffusivity, noted Vχi
, is then the average over time of sn(χ̃i)(t):

Vχi
= 〈sn(χ̃i)〉t (6.18)

The error bar of χi for a given set of physical parameters is chosen to be twice standard

error of the mean, i.e. 2Iχi
= 2Vχi

/
√
nsim in order to have a 95.45% confidence interval.

The procedure to fix the error bars on the heat diffusivity assumes that the simulations

are numerically converged. Here, the convergence is based on Ref. [58]. The number of

markers is sufficient as the signal to noise ratio is around 20. The Krook damping coef-

ficient is one tenth of the maximum linear growth rate and is small enough. Simulations
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Figure 6.22: Left: radial structure of ∇φ̄ with white noise (solid line) and mode (dashed

line) initialization, averaged between t = 105 and t = 1.5 · 105Ω−1
i for a 80M markers

transient simulation. Right: radial structure of ∇φ̄ with and (dashed line) and without

(dotted line) the VNL and with a mode initialization, averaged between t = 1.5 · 105 and

t = 2 · 105Ω−1
i for a 80M markers noise-controlled simulation. The solid line is the same

quantity for a white noise initialization with the VNL.

presented in Section 6.2.1 have been run with three different initializations: a white noise

initialization, a mode initialization (see Eq. (4.69)) with n1 = 10, n2 = 30, m1 = 14 and

m2 = 42 and a mode initialization with n1 = 15, n2 = 25, m1 = 21 and m2 = 35. They

will be called initialization 1,2 and 3.

The left plot of Fig. 6.22 shows the radial structure of ∇φ̄, averaged in the end of the

nonlinear phase between t = 105 and 1.5 · 105Ω−1
i for 80M transient simulations with

white noise and mode initializations (both with the VNL). These profiles are very similar,

demonstrating that the results for transient simulations presented in Sec. 6.2.2 do not

depend on the type of initialization. The right plot of Fig. 6.22 shows again the radial

electric field profile for a 80M markers noise-controlled simulation with mode initializa-

tion, with and without the VNL. The differences are very small and the other initialization

used here does not modify the conclusions exposed in Section 6.2.2.

Finally, the role of the initial state is examined for fixed-gradient-noise-controlled sim-

ulations. Six simulations (three different initializations, with and without the VNL)

at an initial R0/LT i = 6.9 have been performed. The global moving time averages
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Figure 6.23: Moving time averages χ̃i for a 80M noise-controlled-fixed-gradient simulation

with initial R0/LT i = 6.9 with (left) and without (middle) the VNL for the three different

initializations. The thin lines are 〈χ̃i〉n(t) ± 2Iχi
. The right plot displays 〈χ̃i〉n(t) ± 2Iχi

for a 80M noise-controlled-fixed-gradient simulation with (black, solid line) and without

(red, dashed line) the VNL.
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Figure 6.24: Moving time averages R̃0

LTi
for a 80M noise-controlled-fixed-gradient simula-

tion with initial R0/LT i = 6.9 with (left) and without (middle) the VNL for the three

different initializations. The thin lines are 〈 R̃0

LTi
〉n(t) ± 2IR0/LTi

. The right plot displays

〈 R̃0

LTi
〉n(t)±2IR0/LTi

for a 80M noise-controlled-fixed-gradient simulation with (black, solid

line) and without (red, dashed line) the VNL.
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〈χ̃i〉n(t), 〈 R̃0

LTi
〉n(t) with the corresponding error bars 2Iχi

, 2IR0/LTi
are represented on

Figs. 6.23 and 6.24. When the VNL is included, the χi/χGB curves corresponding to

the three different initializations are very close. The intrinsic variability is slightly higher

when the VNL is removed. However, by looking at the right plot of Fig. 6.23, one sees

that the VNL has no significant influence on the heat transport, as the two regions en-

closed by 〈χ̃i〉n(t) ± 2Iχi
with and without the VNL overlap. The same conclusions hold

for R0/LT i. The same exercise has been done with an initial gradient of R0/LT i = 7.6.

Here, the intrinsic variability is slightly higher when the VNL is included, however the

comparison betweeen the two cases (right plots of Figs. 6.25 and 6.26) indicates a small

influence of the VNL, as the two regions spanned with the error measure are almost over-

lapping. Note that the simulation without the VNL predicts a smaller heat diffusivity

with a higher gradient, but one cannot conclude that the VNL has a significant effect

on the transport. Therefore, the same set of simulations has been rerun with an initial

normalized temperature gradient of R0/LT i = 8.4. In this case the VNL impact is almost

negligible. Note that due to the high turbulent activity it is more difficult to reach a

steady state.

In conclusion, with the help of the procedure originally used in [58] for quantifying the

intrinsic variability of physical quantities, it has been shown that the effect of the VNL for

collisionless ITG fixed-gradient-noise-controlled simulations, if any, is small. The major

difference between decaying and driven simulations is that the latter exhibit a constant

burst activity that has to be measured in an average sense, hence the need for an es-

timation of the intrinsic variability. In the future, it will be interesting to see if these

conclusions still hold for parallel momentum transport.

6.2.5 The influence of the VNL on the fluctuation entropy

Next, the influence of the VNL on the numerical properties of the model is studied. First,

as previously observed, the VNL has no influence on the noise to signal ratio for all the

cases considered. For transient simulations, the energy conservation theorem, Eq. 3.84, is

not valid anymore when the VNL term is dropped out. This can be seen on the left plot of

Fig. 6.29. The case with the VNL has a relative conservation of energy of about 30% up

to t = 4.6 · 104Ω−1
i which is a good value for a transient PIC simulation. After this time,

the relative energy conservation degrades linearly. It is interesting to note that this curve
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Figure 6.25: Moving time averages χ̃i for a 80M noise-controlled-fixed-gradient simulation

with initial R0/LT i = 7.6 with (left) and without (middle) the VNL for the three different

initializations. The thin lines are 〈χ̃i〉n(t) ± 2Iχi
. The right plot displays 〈χ̃i〉n(t) ± 2Iχi

for a 80M noise-controlled-fixed-gradient simulation with (black, solid line) and without

(red, dashed line) the VNL.
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Figure 6.26: Moving time averages R̃0

LTi
for a 80M noise-controlled-fixed-gradient simula-

tion with initial R0/LT i = 7.6 with (left) and without (middle) the VNL for the three

different initializations. The thin lines are 〈 R̃0

LTi
〉n(t) ± 2IR0/LTi

. The right plot displays

〈 R̃0

LTi
〉n(t)±2IR0/LTi

for a 80M noise-controlled-fixed-gradient simulation with (black, solid

line) and without (red, dashed line) the VNL.
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Figure 6.27: Moving time averages χ̃i for a 80M noise-controlled-fixed-gradient simulation

with initial R0/LT i = 8.4 with (left) and without (middle) the VNL for the three different

initializations. The thin lines are 〈χ̃i〉n(t) ± 2Iχi
. The right plot displays 〈χ̃i〉n(t) ± 2Iχi

for a 80M noise-controlled-fixed-gradient simulation with (black, solid line) and without

(red, dashed line) the VNL.
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Figure 6.28: Moving time averages R̃0

LTi
for a 80M noise-controlled-fixed-gradient simula-

tion with initial R0/LT i = 8.4 with (left) and without (middle) the VNL for the three

different initializations. The thin lines are 〈 R̃0

LTi
〉n(t) ± 2IR0/LTi

. The right plot displays

〈 R̃0

LTi
〉n(t)±2IR0/LTi

for a 80M noise-controlled-fixed-gradient simulation with (black, solid

line) and without (red, dashed line) the VNL.
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Figure 6.29: Time evolution of relative energy conservation (left) and fluctuation entropy

(right) for a 80M markers transient simulation with (solid line) and without (dashed line)

the VNL. The dotted lines mean a relative conservation of energy of 30%.

starts to rise at the time where the signal to noise ratio falls below 10 (Fig. 6.11). Fig. 6.29

also reveals that the relative energy conservation is completely lost when the VNL is not

included, even if this term is of order ρ∗ smaller than the others. First, this shows the

importance of deriving analytically a conservation theorem without any approximation in

order to check the correct implementation of the model and the quality of a simulation.

Second, it means that although it has a negligible effect on transport, the VNL should be

preferentially kept in transient simulations for numerical reasons.

The right plot of Fig. 6.29 shows the time evolution of the fluctuation entropy δS for

transient simulations. These quantities start to differ at around t = 5 · 104Ω−1
i , when the

signal to noise ratio falls below 10. Then the noise becomes dominant and δS linearly

grows. The VNL does not seem to have any effect on the growth of entropy. It reflects

the fact that the VNL has no influence on numerical noise.

When the Krook operator is turned on, the energy conservation theorem is not valid

anymore but the fluctuation entropy balance equation still holds. This equation becomes

no longer valid when the VNL is removed. More specifically, the term ∂δf
∂v‖

dv‖
dt

∣∣∣
1

is ne-

glected in the LHS of Eq. (6.3). This situation is equivalent to a gyrokinetic equation

with a spurious source term [115]. In the notations presented above, neglecting the VNL

means dropping the curvature and the diamagnetic drift term that appear in Dfield. This

term reaches his maximum around the first peak of the nonlinear phase but is one order

of magnitude smaller than Dflux; in the late nonlinear phase, this term goes to zero. It
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Figure 6.30: Time evolution of fluctuation entropy for a 80M (left) and 320M (right)

markers noise-controlled simulation with (solid line) and without (dashed line) the VNL.

The moving time-averages of width 400a/cs (which corresponds to 7.4 · 104Ω−1
i ) and

starting at t = 1 · 105Ω−1
i are represented.

is therefore expected that the VNL should not significantly affect the fluctuation entropy

balance equation. Fig. 6.30 shows the fluctuation entropy for 80M and 320M markers

noise-controlled simulations, with and without the VNL. For the 80M case, δS is differ-

ent depending on whether the VNL is retained or not, but these differences are much

less pronounced for the 320M case. Again, the noise is the candidate to explain these

discrepancies. In the case of fixed-gradient-noise-controlled simulation, due to the bursty

character of the fluctuation entropy the moving time average is represented. Differences

are relatively small. The non-conservation of the fluctuation entropy can be measured

with the following quantity:

δSbal(t) =

δS(t) − δS(0) −
∫ t

0

dδS

dt′
dt′

δS(t)
(6.19)

It is represented on the right plot of Fig. 6.31. This quantity is much higher for the case

without the VNL. This feature has been observed in all the driven simulations. The non-

conservation of fluctuation entropy increases due to the violation of the quasi-neutrality

condition which leads to a systematic error between δS and
∫

(dS/dt′)dt′. When the VNL

is dropped off of the equations of motion, it acts like a source term in the Vlasov equation

and the systematic error increases.
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Figure 6.31: Time evolution of the fluctuation entropy (left) and the relative entropy

conservation (right) for a 80M markers fixed-gradient-noise-controlled simulation with

(solid thick line) and without (dashed thick line) the VNL. On the left plot, the moving

time-averages of width 400a/cs (which corresponds to 7.4 · 104Ω−1
i ) and starting at t =

7.5 · 104Ω−1
i are represented.

6.3 Conclusions

In Section 6.1, it has been shown through the noise to signal ratio and the entropy di-

agnostics that decaying PIC simulations cannot be run for infinitely long times because

they become unavoidably noise-dominated. Consequently, it is of primary importance for

PIC codes to develop ways for estimating numerical noise to avoid erroneous conclusions.

The example of the v‖ nonlinearity is in this sense representative. Its influence in previous

reported works was, in fact, certainly the manifestation of numerical noise. Results pre-

sented here show that in reality this term does not play a significant role when the noise

problem is correctly treated. It confirms the analytical picture that the VNL is orders of

magnitude smaller than the leading terms in the gyrokinetic equation. This work is also in

adequacy with Ref. [120]. In this paper, the Eulerian simulations obviously do not suffer

from noise issues and no numerical noise study for the flux-tube PIC simulations (which

used 32 markers per cell) has been presented. This is the same number used in ORB5

old results [116]. There are three arguments to explain those differences. First, flux-tube

simulations do not experience profile relaxation, which could mean that the noise does not

accumulate as rapidly as in global simulations where the fluxes go to zero. Second, the
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key parameter that determines the noise in ORB5 is the number of markers per Fourier

mode [76]: when going from a rectangular to a field-aligned Fourier filter without changing

the number of markers the results are strongly improved. It is unclear how this translates

in a flux-tube PIC code, but since they use field-aligned coordinates it could be that

using a field-aligned filter in a global code is equivalent to using field-aligned coordinates

in a flux-tube code. Reversely, one could imagine a flux-tube code in cartesian coordi-

nates: more cells, hence more particles would be needed. Finally, GYRO simulations in

Ref. [120] have a small ion-ion collisionality, which tends to isotropize the distribution

function in the velocity space and could diminish the effect of the VNL. Unfortunately it

is not mentionned whether GEM simulations had some collisions.
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Chapter 7

The trapped electron model

7.1 General considerations

All the results presented up to here assumed adiabatic electrons, i.e. a fluid like character

neglecting their inertia. From a physical point of view, this assumption is of course wrong

at rational surfaces, wrong for trapped electrons and incompatible with electromagnetic

perturbations. Another specificity of the Boltzman hypothesis is that the electron density

perturbation is in phase with the electric potential. Due to the quasineutrality equation

ne = ni, assuming adiabatic electrons implies that there is no particle transport. Exper-

imentally, both electron anomalous heat and particle transport in tokamaks have been

observed [122], [123]. An unexplained phenomenon is the profile stiffness: above a given

treshold, the electron temperature gradient reacts very weakly to further increase in elec-

tron heating power [124]. Microinstabilities are one of the proposed candidates to explain

this. The presence of a threshold for the trapped electron mode has been found in exper-

iments [125], as well as well as a stabilization by collisions. The treatment of collisions

with PIC code is beyond the scope of this work. However, as a first step towards compar-

ison between experiments and gyrokinetic codes, a kinetic model in ORB5 for electrons

is highly desirable.

As already pointed out, electron microinstabilities are composed of the Electron Temper-

ature Gradient mode and the Trapped Electron Mode. The first case can be in general

treated with ITG codes. ETG turbulence is unstable at kyρLe ∼ 0.3 ⇔ kyρLe ∼ 13. At

these wavelengths, ions are modeled as adiabatic due to their large Larmor radius, so
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in principle there is no modification to do to the code when going to ETG simulation if

one switches to electron units. In practice, there are only two modifications: the zonal

flow term must be dropped out because the adiabaticity of ions is valid everywhere in

the plasma and not only on magnetic surfaces, and the value of ρ∗ in ions units must be

strongly decreased to be significant in electrons units. Consequently ETG simulations are

often run in annular geometry. ETG have often been thought to have negligible contri-

bution: from a mixing length argument, χe ∼
√
me/miχi. However, due to the different

nature of the adiabaticity between ions (resp. electrons) for the ETG (resp. ITG) case,

the saturation mechanism of ETG turbulence is different, and the nonlinear behavior, not

predictable with a mixing-length argument, can lead to anomalous transport comparable

to the ion one. Numerically, this has been proven for the first time in [23] (see also [126])

using the Eulerian codes GENE and GS2 [37]. However, Lin et al. showed, in [127], neg-

ligible ETG transport usng the GTC code [48]. Later, numerical noise has been proposed

to explain this discrepancy [91] and a benchmark involving several gyrokinetic Eulerian

and PIC codes has been performed [128]. GEM [129] and ORB5 simulations [76] support

this hypothesis.

The situation for TEM turbulence is more difficult because TEMs are usually unstable

at ion scale, kyρLi ∼ 1: even if the frequencies of interest are comparable to those of ITG

turbulence, the fast electron dynamics must be solved on an ion timescale. The parallel

motion of electrons is
√
mi/me times faster than that of ions and becomes the dominant

constraint on the applicable time step: a Courant-like condition k‖v‖∆t ≪ 1 must be

satisfied. In fact, the situation is even worse because when considering the kinetic motion

of passing electrons the electrostatic limit of the shear Alfvén modes [130] appears, whose

frequency ωH = k‖/k⊥ ·
√
mi/meΩi is even larger. The condition ΩH∆t ≪ 1 has been

checked in linear gyrokinetic simulations in a bumpy pinch [131]. The time step criterion

can be estimated with k‖ = ∆m/(q(s0)R0):

∆tΩi = δωH∆t = δ

√
me

mi

k⊥ρLi
q(s0)∆mǫa

a

ρ∗
(7.1)

with δ ≪ 1. A typical value is obtained by setting k⊥ρLi = 0.3, q(s0) = 1.4,∆m = 5, ǫa =

0.36, a/ρ∗ = 140, mi/me = 100 and δ = 0.2 (see Fig. 4.7). It yields ∆tΩi = 0.33 which

is 120 times smaller than the usual time step for an ITG simulation. Various algorithms

or simplifications have been made to circumvent these high frequencies. The global PIC
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code GTC uses a fluid-kinetic hybrid model based on the small electron-to-ion mass ratio

parameter. The flux-tube PIC code GEM [45] uses a split-weight scheme [103], [132]. Note

that similar algorithms can be developed in the more general frame work of Monte-Carlo

techniques via the adjustable control variates method [133], which is also extremely useful

in electromagnetic simulations in order to resolve the cancellation problem in Ampere’s

law [134]. Kinetic electrons can also be implemented with a bounce-average model [135].

This has been done for the GT3D code [136]. A bounce-average model uses the bounce-

kinetic ordering ω/ωbe ≪ 1, and the time step can be relaxed to values comparable to

ITG turbulence.

7.2 Implementation

In the previous Section, the general problematic of kinetic electrons has been introduced

and various models have been briefly described. In this Section, another model is pre-

sented. This model assumes an adiabatic response for the passing electrons and a drift

kinetic (neglecting FLR effects) response for trapped electrons. It has been used for lin-

ear simulations in GT3D [137] and in LORB5 [138], and for nonlinear simulations in the

UCAN code [47], but very few results are presented. Technically, it consists of adding a

kinetic species. The equations are similar to those of ions; the only changes to make are

to replace qi by −e and 〈 ~E〉 by ~E. The equations of motion are given by:

d~R

dt
= v‖~h− 1

ΩeB∗
‖

(
v2
‖ +

v2
⊥

2

)(
~h×∇B

)
+

v2
‖

ΩeB∗
‖

~h×
[
~h× (∇× ~B)

]

+
~E × ~B

B∗
‖B

(7.2)

dv‖
dt

=
1

2
v2
⊥∇ · ~h− v2

⊥v‖
2B∗

‖ΩeB

{
~h×

[
~h× (∇× B)

]}
· ∇B

+ ~E ·
{
− e

me

~h+
v‖
BB∗

‖

(
~h×∇B

)
− v‖
BB∗

‖

{
~h×

[
~h× (∇× B)

]}}
(7.3)

With: Ωe = eB
me

. The Vlasov equation is:

dδfe
dt

= τe( ~E) (7.4)

τe( ~E) = −fe0κ(Υ)
d~R

dt
· ∇Υ − efe0

Te(Υ)
~E · d~R

dt

∣∣∣∣∣
0

(7.5)
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For electrons it is assumed that ψ0 → ψ as me/mi ≪ 1. The Poisson equation is now:

[1 − ᾱb(ψ)]
en0(ψ)

Te(ψ)

[
φ(~x, t)−φ̄(ψ, t)

]
−∇⊥·

[n0(ψ)

BΩi

∇⊥φ(~x, t)
]

= δni(~x, t)−
1

Zi
δne(~x, t) (7.6)

ᾱb(ψ) is the flux-surface-average of the local trapped fraction of electrons:

ᾱb(ψ) =

∫
αb(ψ, θ∗)Jθ∗ψϕdθ∗dϕ
∫
Jθ∗ψϕdθ∗dϕ

(7.7)

and αb(ψ, θ∗) is defined by:

αb(s, θ∗) =

√
1 − B(ψ, θ∗)

Bmax(ψ, θ∗)
∼=
√√√√1 − B(ψ, θ∗)

B
[
ψ, θ∗(θ = π)

] (7.8)

This last approximation means that electrons follow their magnetic surface and that they

feel their maximum magnetic field at θ = π. The latter assumption is only valid for

up-down symmetric equilibria. A analytical expression can indeed be obtained for adhoc

equilibria:

ᾱb(ψ) =
ǫ+ 1

4
− ǫ+ 1

2π
arcsin

(
1 − 3ǫ

1 + ǫ

)
+

1

π

√
2ǫ(1 − ǫ) (7.9)

An interesting result is to find the angle θ0 such that ᾱb(ψ) = αb(ψ, θ0):

cos θ0 =
ᾱ2
b(ψ) − ǫ

ǫ
[
1 − ᾱ2

b(ψ)
] ⇒ θ0 = arccos

(
ᾱ2
b(ψ) − ǫ

ǫ
[
1 − ᾱ2

b(ψ)
]
)

(7.10)

The left plot of Fig. 7.1 shows that the flux-surface-averaged fraction of trapped electrons

is approximatively equal to the local fraction at θ = π/2.

One can also derive the flux-surface-averaged fraction of trapped electrons in the limit of

a small ǫ to find:

¯̃α(ψ) =
2
√

2

π

√
ǫ ∼= 0.9

√
ǫ (7.11)

¯̃α(ψ) and ᾱb(ψ) are indeed very similar as can be seen from the right plot of Fig. (7.1)

For MHD equilibria, the maximum magnetic field on a given magnetic surfaces should be

computed numerically. Finally note that the model is slightly different from the LORB5

one: in LORB5, αb(s, θ∗) instead of ᾱb(ψ) is used in the quasineutrality equation. This is

somehow inconsistent with how the electron density is derived: the coefficient in front of
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Figure 7.1: θ0 as a function of ρ/a (left). ᾱb(ψ) (blue) and ¯̃αb(ψ) as a function of ρ/a

(right) for an aspect ratio of 2.75.

eφ/Te must be a flux function according to Eq. (3.65). In addition, the zonal flow matrix is

not symmetric anymore when using αb(s, θ∗). Note that linear calculations can yield up to

30% higher growth rates when αb(s, θ∗) is used, because the TEM instability is caused by

deeply trapped electrons located around θ∗ = 0. Because αb(s, θ∗ = 0) > αb

[
s, θ∗(θ = π)

]
,

the adiabatic response is decreased and the growth rate increases.

The electron perturbed density is given by:

δne(~x, t) =

∫

trapped

δfe(~R, v‖, µ, t)δ(~R− ~x)B∗
‖d
~Rdv‖dµdα (7.12)

In practice, it means that the charge assignment must be done for all ions and trapped

electrons only. Linearly, a trapped electron will stay trapped during its whole life. Non-

linearly, an electron can be detrapped, i.e. it can go from the trapped region of phase space

to the passing region of phase space, or it can go the other way and it will be retrapped.

Another difficulty comes from the fact that the trapping condition changes in the presence

of an electric field: it is derived from momentum conservation and kinetic energy, which

is modified in the presence of an electric potential:

1

2
me

[
v2
‖(t) + v2

⊥(t)
]
− eφ

[
~R(t)

]
=

1

2
me

[
v2
‖(t0) + v2

⊥(t0)
]
− eφ

[
~R(t0)

]
(7.13)

v2
⊥(t)

2B(t)
=

v2
⊥(t0)

2B(t0)
(7.14)

The particle will be trapped when v‖(t) = 0, happening when:

λ(t0) = sin−1

[√
B(t0)

B(t)

{
1 − eφ

[
~R(t0)

]
− eφ

[
~R(t)

]
1
2
mev2(t0)

}]
(7.15)
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Because the electric potential is computed self-consistently, it is impossible to determine if

a particle will be trapped or passing from its initial conditions. However, Eq. (7.15) reveals

that the nonlinear trapping condition is almost equivalent to the linear one. Assuming∣∣∣φ
[
~R(t0)

]∣∣∣≪
∣∣∣eφ
[
~R(t)

]∣∣∣, the difference comes from a factor which is the ratio of the field

energy to the thermal energy. According to the gyrokinetic ordering, this factor is of order

O(ǫg) and should be small. Therefore, ORB5 always uses the linear trapping condition

to determine whether a particle is trapped or not. This is also supported by the fact

that TEM turbulence mainly comes from the deeply trapped electrons, less subject to

nonlinear detrapping. The maximum electrostatic potential is reached at the nonlinear

saturation. At this time it might be unclear whether a particle is trapped or passing.

The trapped electron model is implemented in two different ways. In the first one, only

trapped electrons are loaded. In the second one, trapped and passing electrons are loaded

but the charge assignment is done only with the trapped population. Passing electrons

are passive: they do not contribute to the perturbed density but they are pushed with the

electric field of the ions and the trapped electrons. In nonlinear simulations, if a passing

electron becomes trapped, it will become active. If a trapped electron becomes passing, it

will become passive. Both models are equivalent for linear simulations, but the first model

is faster because it is not necessary to push the passive passing electrons. For nonlinear

simulations, the first model is somehow inconsistent because only detrapping is allowed.

It is clear that this model would not be suited if electrons-electrons collisions were to be

added in the model; in this respect the second one is more realistic. The same conclusion

applies for electrons-ions collisions.

Special care must be put on the phase space volumes when loading trapped electrons only.

The following identity must hold in the limit of an infinite number of markers:

Vps,trapped =

N∑

p=1
p trapped

Ωp =
4π

3
κ3
v

∫ sf,max

sf,min

αb(s, θ∗)Jθ∗sϕ(s, θ∗)v
3
the(s)dsdθ∗ (7.16)

Where Vps,trapped =
∫
trapped

B∗
‖d
~Rdv‖dµdα is the phase space volume of trapped particles.

The integral containing the term B∗
‖ − B vanishes because it is odd in v‖. To check the

velocity loading, the following identity must hold:

Ekin,ps,trapped =

N∑

p=1
p trapped

1

2
miv

2
pΩp =

3

2

∫ sf,max

sf,min

αb(s, θ∗)Jθ∗sϕ(s, θ∗)n0(s)v
2
the(s)dsdθ∗ (7.17)
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Where Ekin,ps,trapped =
∫
trapped

f0(~R, v‖, µ)v2/2B∗
‖d
~Rdv‖dµdα is the kinetic energy of the

trapped phase space. The integral containing the term B∗
‖ − B vanishes because it is

odd in v‖. Because there are no or very few trapped electrons at θ∗ ∼ π, the loading

of electrons in the poloidal plane will be more adequate if another loading distribution

function is used:

f tL(
~R) = Kp(s)αb(s, θ∗) (7.18)

The phase space volumes are then:

Ωp =
Nph

N

B∗
‖

B

v⊥
[
κvvth(sp)

]2
π(π − 2λp)

p(sp)αb(sp, θ∗p)

∫ sf,max

sf,min

∫ 2π

0

dsdθ∗Jθ∗sϕ(s, θ∗)p(s)αb(s, θ∗) (7.19)

For the sake of completeness, the discretized form of the Poisson equation is given:

∑

µ

(
ATEMµν + AZF,TEMµν

)
φ̂(n)
µ =

b̂
i,(n)
ν − b̂

e,(n)
ν

M (n)
(7.20)

where (µ, ν) = (jk, j′k′) stand for 2D indices and:

ATEMµν =

∫
dsdθ∗Jθ∗sϕ(s, θ∗)

{[
1 − ᾱb(s)

]en0(s)

Te(s)
Λν(s, θ∗)Λµ(s, θ∗)

+
n0(s)

BΩi
∇polΛν(s, θ∗) · ∇polΛµ(s, θ∗)

}
(7.21)

AZF,TEMµν = −
∫

dsdθ∗Jθ∗sϕ(s, θ∗)
[
1 − ᾱb(s)

]en0(s)

Te(s)
Λ̄µ(s)Λν(s, θ∗) (7.22)

b̂e,(n) is the toroidal Fourier transform of beν :

beν =
Nph

NeZi

Ne∑

r=1
r trapped

Λν(~Rr)wr(t) (7.23)

7.3 Linear convergence with numerical parameters

With the aim of checking the correct implementation of the trapped electron response,

the convergence with respect to the main numerical parameters has been thoroughly

checked for linear simulations. The test case is inspired by the CYCLONE benchmark [90].

The physical parameters are ρ∗ = 1/140, mi = 2mp, a = 0.47 [m], B0 = 1.91 [T ],

R0 = 1.30 [m], s0 = 0.624 (corresponds to ρ0 = 0.5a), q(s0) = 1.4, Ti(s0) = Te(s0),
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R0/LT i = 2.23, R0/LTe = 6.9, ηi = Ln/LT i = 1, ηe = Ln/LTe = 3.12, ŝ = 0.78,

∆T i = 0.3. The only difference with the CYCLONE test case is the ion temperature

gradient which has been lowered such that the most unstable mode is a TEM. If not

mentioned otherwise, the numerical parameters are Ns = 128, Nθ∗ = 512, Nϕ = 256,

∆m = ∆̃m = 5, Ni = Ne = 219 ∼= 500K, kθρLi = 0.3, κvi = κve = 5, me = 0.01mi and

∆t = 8Ω−1
i .

Growth rates are computed by looking at the exponentially growing field energy. The

measured growth rate is the time-average of the instantaneous (measured between two

successive time steps) growth rate γi = 1/2∆t·log [Ef (t+ ∆t)/Ef (t)]. The first important

convergence is the electron mass. This parameter can be set artificially to any value.

Obviously, a higher electron mass allows a higher time step. A large amount of CPU time

can be saved when heavier electrons are considered, but it must be checked that linear

growth rates are converged with respect to the mass ratio. This is shown in Fig. 7.2.

The growth rate is converged for mi/me = 100. Note that the time step has been scaled

proportionally to
√
me/mi. The lower growth rates observed at higher electron mass can

be explained by the energy transfered from the particles to the perturbation. When kinetic

trapped electrons are added to the simulation, the transfer of energy can be written, by

analogy with (5.2):

− 1

V

dEk
dt

=
1

V

∫
qiδfi

d~R

dt
· 〈 ~E〉B∗

‖d
~Rdv‖dµdα− 1

V

∫

trapped

eδfe
d~R

dt
· ~EB∗

‖d
~Rd~Rdv‖dµdα

=
1

Ni

N∑

ri=1

qiwriΩri

(
d~R

dt
· 〈 ~E〉

)

~zi

− 1

Ne

N∑

re=1
trapped

ewreΩre

(
d~R

dt
· ~E
)

~ze

(7.24)

At low electron mass, the parallel electron contribution −
∫
trapped

eδfev‖~h· ~EB∗
‖d
~Rdv‖dµdα

vanishes, because trapped electrons oscillate between their turning points ±θ0, roughly

on the same magnetic surface, with half of the orbit at positive v‖ and the other half at

negative v‖. When the electron mass is increased, the radial drift of electrons become non-

negligible: half of the electrons will drift inward and the other half will drift outward. The

overall contribution is not zero anymore but gives a stabilizing contribution, hence a lower

growth rate. At constant number of markers Ne, the energy transfer signals are noisier

for low electron mass, but it has been checked that the growth rates are nevertheless

converged for each value of the mass ratio considered in the scan.

The growth rate as a function of electron marker number Ne is represented on the left
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Figure 7.2: Growth rate vs electron mass. Growth rates are normalized to the growth

rate at real mass ratio.

plot of Fig. 7.3. The variation of the growth rate is very small such that Ne = 219 ∼= 500K

is sufficient. The right plot of Fig. 7.3 shows the relative power balance defined by:

Pbal =

∣∣∣∣∣
dEk

dt
− dEf

dt
dEf

dt

∣∣∣∣∣ (7.25)

as a function of 1/Ne. The dependence is linear as expected. In the limit of an infinite

number of markers, Pbal does not go to zero: this would only be true if all the numerical

parameters simultaneously tend to their optimal value. The convergence with respect

to the time step ∆t is displayed on Fig. 7.4. In the poloidal plane, two different sets

of coordinates, (s, θ∗) or (ξ, η) have been used. A much better convergence is obtained

with (s, θ∗). This is because electrons have a very small radial drift: the s coordinate

is more suited for the trajectory integration. When using (ξ, η), the fast parallel motion

has a non-zero component for both coordinates and a smaller time step must be used.

This is clearly visible in the middle plot of Fig. 7.4: the number of particle leaving the

outer plasma boundary is increasing in time, indicating inaccurate trajectory integrations.

This also leads to numerical particle detrapping (see right plot of Fig. 7.4). For the (s, θ∗)

integration, the convergence is of order 4, which is the order of the Runge-Kutta integrator.

For the (ξ, η) integration, the order of convergence is of order lower than 4. Note that

both methods give same growth rates (relative difference of 10−4) for a sufficiently small

time step ∆t = 4Ω−1
i . Another important convergence is the convergence with the field-

aligned filter width ∆m. The runs were done by simultaneously varying ∆m and ∆̃m.
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Figure 7.3: Growth rate vs log2(Ne). Growth rates are normalized to the growth rate for

Ne = 220 ∼= 1M markers (left). Power balance Pbal vs 1/Ne (right). Dashed line is the

linear fit.

Figure 7.4: Left: growth rate vs ∆t4 for (s, θ∗) (solid line) and (ξ, η) (dashed line) inte-

gration. Growth rates are normalized to the growth rate at ∆t = 4. Middle: percentage

of electrons leaving the outer plasma boundary. Right: fraction of trapped and passing

electrons for (s, θ∗) and (ξ, η) integration.
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Figure 7.5: Growth rate vs ∆m. Growth rates are normalized to the growth rate at

∆m = 7.

Figure 7.6: Growth rate vs κve. Growth rates are normalized to the growth rate at κve = 7

Like for the ITG case presented in Sec. 5.3, a very small number of k‖ components are

needed, typically ∆m = 5.

Finally, the last important parameter is the velocity cut-off κve. In the r.h.s. of the

Vlasov equation, Eq. (7.4), the driving term proportional κ(Υ) depends on v2. It means

that electrons with different velocities will have a different influence on the instability.

Fig. 7.6 reveals that κve = 5 is sufficient, a value similar for ITG turbulence.
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Figure 7.7: Growth rate and real frequency as a function of kyρLi given by dispersion

relation Eq. (2.96) (solid line) and ORB5 (solid line,crosses) for ηi = 1.0, ηe = 2.0, τ =

1, R/LN = 5.0, q(s0) = 2, ǫa = 0.15 and ŝ = 1.

7.4 Comparison with a linear dispersion relation

Like for the ITG case, ORB5 can be compared to a linear dispersion relation for cou-

pled TEM-ITG instability, Eq.(2.96), that depends on the dimensionless parameters

kyρLi, ηi, ηe, τ, R/LN , ǫa, ŝ and q(s0). The plasma parameters are ρ∗ = 2/113, B0 = 1T ,

q̄(ρ) = 1.25+0.67ρ̃2+2.38ρ̃3−0.06ρ̃4, ρ̃0 = 0.6 such that q(ρ̃0) = 2, R0 = 2[m], a = 0.5[m]

such that the aspect ratio is 4 and the local aspect ratio is 6.66. The numerical param-

eters are Ns = 32, Nθ∗ = 128, Nϕ = 64, cubic splines. A diagonal filter with ∆m = 5 is

used, N = 217 ∼= 131K, me/mi = 0.01 and ∆tΩi = 8. Temperature profiles 2 are used

with ∆T i = 0.2. The solution of the dispersion relation has been obtained by setting G ∼=
〈G〉(ŝ, ǫa). The trapped fraction of electrons is αb = 0.9

√
ǫ (instead of the usual αb =

√
2ǫ)

to match ORB5 definition (7.11). Focus has been put on TEM modes, i.e. the value of

ηi has been adjusted to get a TEM mode. Fig. 7.7 shows the comparison between ORB5

and (2.96) for a kyρLi scan with ηi = 1.0, ηe = 2.0, τ = 1, R/LN = 5.0, q(s0) = 2, ǫa = 0.15

and ŝ = 1. There is a good qualitative agreement except for low kyρLi. ORB5 shows a

faster stabilization when going to high kyρLi, but in this region a solver without the long

wavelength approximation should be used. However, the persistence of the growth rate

up to kyρLi ∼ 1 because TEMs are not sensitive to FLR effects is still captured by ORB5.

Fig. 7.8 shows the comparison between ORB5 and (2.96) for a R0/LN scan with

ηi = 1.0, ηe = 2.0, τ = 1, kyρLi = 0.354, q(s0) = 2, ǫa = 0.15 and ŝ = 1. There is an

158



2 3 4 5 6 7 8
0

0.5

1

1.5

2

R/L
N

ω
r/ω

N
e

 

 
ORB5
disp. rel

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

R/L
N

γ/
|ω

N
e|

 

 
ORB5
disp. rel

Figure 7.8: Growth rate and real frequency as a function of R/LN given by dispersion

relation Eq. (2.96) (solid line) and ORB5 (solid line,crosses) for ηi = 1.0, ηe = 2.0, τ =

1, kyρLi = 0.354, q(s0) = 2, ǫa = 0.15 and ŝ = 1.

excellent qualitative agreement over the whole range considered. In particular, there is a

constant behavior of the growth rate for large R/LN . Like for the ITG case, the quan-

titative differences are of course due to the numerous approximations done to obtain the

dispersion relation.

Fig. 7.9 compares ORB5 and the dispersion relation for the interesting case of a ηi scan at

fixed R/LN . As ηi is increased, one observes a transition from TEM to ITG mode, clearly

visible from the real frequency plot. The transition ηi value of the dispersion relation is

slightly higher but the agreement is good. In the TEM region, a decrease of ηi interestingly

leads to a destabilization of the TEM: the energy transfer diagnostic reveals that the grad-

B drift component of electrons −
∫
trapped

eδfev
2
⊥/2(ΩiB

∗
‖)
(
~h×∇B

)
· ~EB∗

‖d
~Rdv‖dµdα in-

creases and the stabilizing effect of ion Landau damping decreases as ηi → 0.

The inclusion of trapped electrons includes two additional parameters: the aspect ratio

and the magnetic shear. When normalized to ωNe, the dispersion relation for toroidal ITG

mode, Eq. (2.63) does not contain an explicit dependence on the aspect ratio. Toroidal-

ITG modes are stabilized when the aspect ratio is increased because the toroidicity be-

comes smaller. At large aspect ratio the ITG modes have a slab character. The shear

also has an important effect on ITG modes: locally, the shear modifies the guiding center

frequency and acts somehow like the toroidicity. Globally, a shear variation can increase

or decrease the number of rational surfaces inside the unstable region and twists the ed-

159



0 1 2 3 4 5
−2

−1

0

1

η
i

ω
r/ω

N
e

 

 
ORB5
disp. rel

0 1 2 3 4 5
0

0.5

1

1.5

η
i

γ/
|ω

N
e|

 

 
ORB5
disp. rel

Figure 7.9: Growth rate and real frequency as a function of ηi given by dispersion relation

Eq. (2.96) (solid line) and ORB5 (solid line,crosses) for R/LN = 5, ηe = 2.0, τ = 1, kyρLi =

0.354, q(s0) = 2, ǫa = 0.15 and ŝ = 1.

dies. All these effects were not retained in the dispersion relation (2.63). Instead, the

ballooning formalism [61], [62] should be used. TEMs are sensitive to ǫa through the

trapped fraction of electrons αb, and through the G factor, Eq. (2.91) (see Fig. 7.10). The

scan is done with parameters for which ITG modes are stable. When the aspect ratio

increases, the trapped fraction decreases which should lead to a stabilization of the TEM.

This is confirmed on Fig. 7.11, with a good qualitative agreement.

The comparison between the ITG-TEM dispersion relation and ORB5, shown in Fig. 7.12,

is not very concluding: both models predict a stabilizing effect when going to negative

shear, but it is quantitatively very different. The magnetic shear introduces many effects:

it bends the eddies, it changes the drift frequencies1, and modifies the distance between

rational surfaces (the latter effect will be absent in any local model).

7.5 The CYCLONE linear benchmark

Like for ITG turbulence, the ORB5 code needs to be benchmarked against other gyroki-

netic codes. This has been done with the global PIC code GT3D [49] and the Eulerian

flux-tube code GENE [38] for the CYCLONE base case parameters. The benchmark has

been based on Ref. [137]. The numerical parameters are inspired by the convergence study

1It can be seen in the framework of the ballooning formalism, in which ~k⊥ ∝ m/ρ(~eθ + ŝθ~eρ)
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Figure 7.11: Growth rate and real frequency as a function of ǫa given by the dispersion
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2.0, τ = 1, kyρLi = 0.354, q(s0) = 2 and ŝ = 1.
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Figure 7.12: Growth rate and real frequency as a function of ŝ given by dispersion relation

Eq. (2.96) (solid line) and ORB5 (solid line,crosses) for R/LN = 5, ηi = 1.0, ηe = 2.0, τ =

1, kyρLi = 0.354, q(s0) = 2 and ǫa = 0.15.

in Section 7.3: Ns = 128, Nθ∗ = 512, Nϕ = 256, ∆m = ∆̃m = 5, Ni = Ne = 219 ∼= 500K,

kθρLi = 0.3, κvi = κve = 5,me = 0.01mi and ∆t = 8Ω−1
i .

First, a kθρLi scan has been performed for the nominal CYCLONE value of ηi = 3.12

(see Fig. 7.13). The unstable mode is an ITG mode. Comparing with the results of the

adiabatic electrons case, Fig. 5.27, one can observe a strong destabilization of the ITG

mode by trapped electrons. The agreement between ORB5 and GT3D is excellent up to

kθρLi = 0.8. Note, however, that GT3D uses a Padé approximation for the quasineutrality

equation, valid up to k⊥ρLi ∼ 2 whereas ORB5 results use a long wavelength approxi-

mation that becomes incorrect at large k⊥ρLi. When FLR effects become important, the

mode undergoes a transition from ITG to TEM at kθρLi ∼ 0.6 − 0.7. The GENE code

gives a transition at k⊥ρLi ≈ 0.5 and the agreement is reasonable. The difference can be

explained by the global effects that are absent in GENE and by the difference between

s− α and adhoc equilibria [139]. In fact, GENE results agree well with the radially-local

linear continuum eigenvalue FULL code [140], [141] published in [137], whereas ORB5 re-

sults agree better with the results from the global PIC code GTC [48] published in [137].

Fig. 7.14 presents a kθρLi scan for CYCLONE parameters with ηi = 1.0. For these pa-

rameters, the most unstable mode is a TEM. The agreement between ORB5 and GT3D

is excellent up to kθρLi ≈ 0.7. The comments made above on the solver are also valid

in these cases. Again, global effects and/or equilibrium approximations made in GENE
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Figure 7.13: Real frequency (left) and growth rates (right) vs kθρLi for CYCLONE pa-

rameters.
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rameters with ηi = 1.0.
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Figure 7.15: Real frequency (left) and growth rates (right) vs ηi for CYCLONE parameters

with kθρLi = 0.33.

yield a difference between ORB5 and GENE, mostly for the real frequency.

The final step of the benchmark is a ηi scan at fixed kθρLi = 0.33. As ηi is increased, one

observes a transition from TEM to ITG. ORB5 and GT3D predict the transition at the

same ηi value and the agreement is quasi perfect, while GENE predicts a transition at a

slightly higher value of ηi.

7.6 Implementation of noise control and heating op-

erators on electrons

In Section 3.8, a source model has been introduced. It contains a Krook and a heating

operator in order to control the noise and the temperature gradient. This model has been

implemented in a similar way for electrons. The only difference is the absence of the

zonal flow conservation term: it is in fact a radial orbit width expansion term [72], which

can be neglected for electrons. A first simple test consists in looking at the effects of the

Krook operator on linear simulations. The parameters are those described in Section 7.5.

Intuitively, the growth rate should be γK smaller when the naive Krook operator is intro-

duced. This is true for adiabatic ITG simulations. When trapped electrons are taken into

account, the picture may be a little more complex, as two Krook damping rates γKi and

γKe can be varied separately. The left plot of Fig. 7.16 shows a CYCLONE simulation

with ηi = 1.0, dominated by a TEM mode. ITG modes are completely stable. Introduc-
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Figure 7.16: Field energy of the toroidal mode as a function of time for a TEM dominated

simulation (left) and an ITG dominated simulation (right), with various applications of

the naive Krook operator

ing a Krook operator on ions does not modify the growth rate, and applying a Krook

operator on electrons reduces the growth rate by γKe. The right plot of Fig. 7.16 shows a

CYCLONE simulation with ηi = 3.12 dominated by ITG modes. Electrons contributes to

14% of the growth rate. When the Krook operator is applied to both ions and electrons

with γKi = γKe, the growth rate is reduced by γKi. But in the situation γKi = 0, γKe 6= 0,

one sees that the growth rate is slightly amplified (by 5% of its original value for the

case considered here, i.e. γKe = 4 · 10−4Ωi). The same phenomenon appears when going

from γKi 6= 0, γKe = 0 to γKi 6= 0, γKe 6= 0. This can be explained by the destabilization

mechanism of ITG modes by trapped electrons: the adiabatic response is decreased by a

factor
[
1− ᾱb(ψ)

]
, and is not influenced by the electron Krook damping rate. The slight

difference of the growth rate can be observed by looking at the grad-B drift contribution

of electrons
∫
v2
⊥/(2ΩiB

∗
‖)
(
~h×∇B

)
· ~EB∗

‖d
~Rdv‖dµdα of the power balance diagnostic.

Another way to check the correct implementation of the noise control algorithm is

to perform a so-called Rosenbluth-Hinton test (see [72] for tokamak geometry and [142]

for helical geometry), which consists in computing the time evolution of a plasma with

constant profiles and initialized with an axisymmetric and poloidally symmetric density

perturbation (m = 0, n = 0). It is shown in [72] that there is an undamped residual

of the m = 0, n = 0 component of the associated ~E × ~B flow. An analytical formula

is given for large aspect ratio tokamaks, circular geometry and adiabatic electrons. The

standard ORB5 Rosenbluth-Hinton test and the comparison with the analytical formula
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can be found in [73]. In this Section, the effects of kinetic trapped electrons on the Rosen-

bluth Hinton test are analyzed. Because the profiles are constant, the driving term of the

Vlasov equation is 0 (first term of the RHS of Eq. (3.44)) and only the term proportional

to ~E · d~R/dt remains. For electrons, this term should be small because the electric field

is mostly radial and the radial drift of electrons is extremely small. The parameters are

mi = 2mp, a = 63.84ρ∗, B0 = 1.91 [T], R0 = 1.3 [m], R0/a = 5.88. The density and tem-

perature profiles are flat, Ti = Te. q̄(ρ) = 1.24−0.22ρ̃+2.36ρ̃2−2.83ρ̃3 +2.56ρ̃4. The grid

is Ns = 64, Nθ∗ = 16, Nϕ = 16, the number of markers is Ni = 4 · 105. Passing electrons

are passive and Ne = 2 · 106 markers are loaded in order to have 4 · 105 trapped electrons.

The mass ratio me/mD = 5.446 · 10−4 is used. The time step is ∆t = 1Ω−1
i and the am-

plitude of the initial (m = 0, n = 0) density perturbation is A0 = 1 · 10−2. An example

of such test is presented in Fig. 7.17. Initially an axisymmetric perturbation is applied

to the density. Due to the toroidal geometry and the poloidal dependence of the ~E × ~B

velocity, the m = 0, n = 0 zonal flow perturbation will transfer part of its energy to the

GAMs m = ±1, n = 0 that will be subsequently Landau damped. This gives rise to the

oscillations in Fig. 7.17. In the end, a residual zonal flow is found to persist in the system.

As anticipated, the inclusion of kinetic trapped electrons is almost not distinguishable on

the damping and the real frequency of the GAMs. On the right plot of Fig. 7.17, the

test is performed with a Krook operator on ions. The residual zonal flow level damps to

zero. The inclusion of electrons and a Krook operator does not modify this conclusion.

When the zonal flow correction is turned on, the zonal flow residual does not go to zero,

as can be seen from the left plot of Fig. 7.18. The right plot of Fig. 7.18 summarizes the

test: when the Krook operator is turned on on ions, the zonal flow correction is needed

to have a finite residual level. The zonal flow correction does not recover the residual

obtained without the Krook operator: this is due to the bounce-average operator which

is approximated as a flux-surface-average operator, and finite orbit width effects [143].

Simulation at smaller ρ∗ would be required to reduce them.

7.7 Nonlinear detrapping

The electron model presented in this chapter is completely relevant for linear simula-

tions, because trajectories are such that a trapped electron will stay so during its lifetime.
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Figure 7.17: Rosenbluth-Hinton test with trapped kinetic electrons without (left) and

with (right) ion Krook operator, without electron Krook operator (solid line) and with

electron Krook operator (dashed line). The adiabatic electrons case is shown in dotted

line.
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However, when moving to nonlinear simulations a problem occurs: turbulence induces de-

trapping and a treatment for detrapped electrons must be found. Intuitively, detrapped

electrons should not contribute to the instability, which is drived by deeply trapped elec-

trons, but this statement must be checked to assess the validity of the model. Nonlinear

CYCLONE simulations have been performed with a loading of trapped electrons only.

The physical parameters are ρ∗ = 1/184.7, mi = 2mp, a = 0.625 [m], B0 = 1.91 [T ],

R0 = 1.70 [m], s0 = 0.624 (corresponds to ρ0 = 0.5a), q(s0) = 1.4, Ti(s0) = Te(s0),

R0/LT i = 2.23, R0/LTe = 6.9,ηi = Ln/LT i = 1, ηe = Ln/LTe = 3.12, ŝ = 0.78.

Profiles of type 3, Eqs. (4.149) and (4.150) have been used with ∆T i = ∆Te = 0.04,

ρ̃0 = 0.5 and ∆ρ̃ = 0.25. The numerical parameters are Ni = 1 · 107, Ne = 32.5 · 106,

∆t = 8Ω−1
i , Ns = 128, Nθ∗ = 512, Nϕ = 256, ∆m = ∆̃m = 5. The filter boundaries

are nmin = 0, nmax = 57 (corresponding to kθρLi = 0.86 at ρ̃ = 0.5 and kθρLi = 0.88 at

ρ̃ = 0.75, from which the profile gradients decrease). Poloidal modes having kθρLi > 1

(mostly near magnetic axis) are filtered out. The simulations use a Toroidal Mode Filter

(TMF) of order 4, meaning that modes n = ±4k, k ∈ N have been retained. It can

be viewed as running in a quarter-torus wedge. Less particles are needed because the

number of Fourier modes is reduced. Solving only part of the toroidal modes should not

affect the results qualitatively. A Krook operator is applied to ions and electrons with

γKi = γKe = 1 ·10−4Ωi. A correction to the Krook operator is applied to conserve the den-

sity, temperature and late time structure of the zonal flow such that profiles decay. Two

models for detrapped electrons are considered. In the first model, referred to as model

1, electrons that are detrapped are still pushed and are taken into account in the charge

assignment. In the second model, referred to as model 2, electrons that are detrapped

are normally pushed but do not contribute to the charge assignment. These electrons are

taken again into account if they become retrapped by the turbulence.

Nonlinear detrapping is caused by two mechanisms. First, electrons drift radially be-

cause of the ~E × ~B velocity. If they drift inward, the local aspect ratio will be larger and

detrapping will occur. Second, the v‖ nonlinearity can accelerate trapped electrons and

detrap them. The detrapping mechanisms are of course more efficient for barely trapped

electrons. Fig. 7.19 shows how electrons are detrapped. A binning in (λ, θ) of the phase

space volume at s = 0.61 is presented for different simulations times. In the linear phase,

the electric field is weak and most electrons remain trapped. In the late nonlinear phase,

168



1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

θ

λ

 

 

0

0.5

1

1.5

2

2.5

x 10
8

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

θ

λ

 

 

0

0.5

1

1.5

2

x 10
8

1 2 3 4 5 6

0.5

1

1.5

2

2.5

3

θ

λ

 

 

0

1

2

3

4

5

6

7

8

9

x 10
7

Figure 7.19: Binning of phase space volume at s = 0.61 in the linear phase of the simu-

lation (left) and in the late nonlinear phase (middle). Binning of passing region of phase

space in the late nonlinear phase (right). Black line shows trapped-passing boundary.
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Figure 7.20: Fraction of electrons (left) and δf 2 (right) in passing region of phase space

as function of time for model 1 (crosses) and model 2 (circles).

many electrons have moved to the passing region. The right plot of Fig. 7.19 shows the

repartition of the phase space volume of detrapped electrons: most of them are located

near θ = π, where barely trapped electrons are present.

The left plot of Fig. 7.20 shows the fraction of detrapped electrons. In the linear phase,

these fractions are zero but as nonlinear effects become important they increases. They

reach a maximum at the saturation, where the electric field is the largest. At the end of

the simulation, they remain small. This is also valid for the fraction of δf 2 in the passing

region of the phase space. It means that detrapped electrons do not carry a significant

part of the perturbation. In addition both models yield roughly the same values, which is

the sign that detrapped electrons have a very light contribution to the instability indepen-

dently of how they are treated. A look at the profiles is nonetheless needed. This model
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Figure 7.21: Time evolution of the electron heat diffusivity (left) and normalized temper-

ature gradient (right) for models 1 and 2, with or without including detrapped electrons.

Profiles are radially averaged between ρ̃ = 0.2 and ρ̃ = 0.8.

is hybrid in the sense that the contribution of passing electrons is analytic. Due to the

nonlinear detrapping, moments of δf can be reconstructed with or without the detrapped

kinetic electrons. The left plot of Fig. 7.21 shows the time evolution of the heat diffusivity

in gyro-Bohm units, averaged between ρ̃ = 0.2 and ρ̃ = 0.8. For both models, detrapped

electrons have a negligible contribution. There are no significant differences between the

two models. The chaotic nature of turbulence implies that the burst phases of the two

models are different, however the heat diffusivities are on average the same. The right

plot of Fig. 7.21 shows the time evolution of the normalized temperature gradient, aver-

aged between ρ̃ = 0.2 and ρ̃ = 0.8, where it can be seen that both models are equivalent.

However, the inclusion of detrapped electrons tends to increase the temperature gradient.

This reveals the conceptual problems when loading only trapped electrons. Another lack

of this model is the absence of trapping: passing electrons may become trapped. The aim

of these simulations was to see if the trapped-passing boundary in phase space is difficult

to handle. From the results presented it seems not to be the case. Having only kinetic

trapped electrons seems to be a reasonable model, because barely trapped electrons do

not contribute to the instability. However, it is more adequate to load and push both

trapped and passing electrons and to retain only the trapped electrons in the charge as-

signment. First, this model allows the detrapping and the trapping of particles. Second,

it is conceptually simpler to reconstruct the profiles. This model will be presented in the

next Section.
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7.8 The role of zonal flows in TEM simulations

7.8.1 Review of nonlinear results

In Section 7.1, the need for a kinetic electron model as well as the numerical difficulties

have been presented. Here, gyrokinetic nonlinear results from the literature are briefly

summarized. There are obviously many features that could be studied. The first pioneer

works included kinetic electrons for experimental comparisons [144], [15], benchmarks

with other gyrokinetic codes [39] and electromagnetic simulations [145], but these works

did not specifically deal with the effects of kinetic electrons. The first observations were

done by Sydora [47] with the global PIC code UCAN with a model similar to the one

used in ORB5. The ion heat flux increased by a factor of 2-3 when drift kinetic trapped

electrons were turned on. A more detailed study was done by Dannert et al. [56] with

the flux-tube continuum code GENE, where basic features of CTEM turbulence were

studied. The parameters were similar to the CYCLONE parameters except for τ that

was set to 3 to stabilize ETG modes and R/LT i = 0 to stabilize ITG modes, and the

density (R/Ln = 3) and temperature gradients (R/LTe = 6) were slightly different. For

these parameters, the influence of the zonal flow was found to be small and it was observed

that the linear mode structure persisted in the nonlinear regime. A larger parameter scan

was performed by Lang et al. [57] with the flux tube PIC code GEM which revealed

that the influence of the zonal flows depends on physical parameters such as τ, R/Ln and

R/LTe. Recently, it was shown that the zonal density seems to be the physical saturation

mechanism leading to saturation when zonal flows are unimportant [146], while flux-tube

continuum GENE simulations found that the saturation mechanism was due to particle

diffusion [147]. Finally, a study of TEM turbulence inside an internal particle transport

barrier with the continuum flux-tube code GS2 revealed a nonlinear upshift of the density

gradient [148]. As a consequence of this review, it is noted that there has been no detailed

study of TEM turbulence with a global model, mostly due to the huge computational time

required. In what follows, global TEM nonlinear simulations with ORB5 are presented.

7.8.2 Simulation model

The electron model presented in Section 7.2 divides the electron phase space into two

regions, the trapped and the passing one. The boundary is set by the linear criterion.
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In the trapped region, markers are active, i.e. they contribute to the perturbed density,

while there are no markers in the passive region: the latter is treated analytically. This

separation has been introduced for computational reasons and poses a problem for markers

that cross the trapped-passing boundary. This model has shown that the treatment of

detrapped electrons does not really matter, but one must be careful about how moments

are computed. Results in Section 7.7 were aimed at showing the effects of nonlinear

detrapping. However, this model does not describe the trapping of the markers (except

the retrapping, i.e. initially trapped markers that have become passing and then trapped

again). In particular, it would be impossible to model electron-ion or electron-electron

collisions due to the analytical passing region. Therefore, another model is needed.

The new model presented here still divides the electron phase space into trapped and

passing regions. In the trapped region, markers are active whereas the passing region is

described with passive markers, i.e. not contributing to the electron perturbed density.

The phase space coordinates and the weight of these passing markers are evolved with the

usual equations of motion and the Vlasov equation. The idea behind is to conserve the

distribution function of all markers, active or passive, but it has the drawback of producing

a passive, possibly non-adiabatic perturbed distribution function δf pe for passing electrons.

Non-adiabaticity of δf pe could be further enhanced by trapped markers entering the passing

region. δf pe can be written as:

δf pe (
~R, v‖, µ, t) = δf p,adiab

e (~R, v‖, µ, t) + δ̃f p,non−adiab
e (~R, v‖, µ, t) (7.26)

δf p,adiab
e ≡ [1 − αb(ψ)] f0(~R, v‖, µ)

eφ(~R) − φ̄(ψ)

Te(ψ)
(7.27)

One expects that the non-adiabaticity of passing electrons is small. In practice, this is

checked by looking at different moments of δf p,adiab
e and δ̃f p,non−adiab

e . The model is also

validated if, for a given moment of interest, the passing contribution is small compared

to the trapped one.

For all the simulations performed with this model, it has been observed that the fraction

of passing electrons slowly increases by 1% during the total simulation time, which means

that the trapping is almost compensated by the detrapping, at least in terms of number

of markers. However, it has been observed that some passing electrons are continuously

accelerated by the electric field and reach intolerable parallel velocities for the time in-

tegrator. Therefore a cut-off in velocity has been introduced. If an electron reaches 1.2
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times the maximum initial velocity it will not be pushed anymore. The fraction of elec-

tron markers for which the cut-off is applied is of the order of 1%. These highly passing

electrons do not contribute to the instability and so removing them from the simulation

should not modify significantly the results.

7.8.3 Parameters and convergence

The physical parameters of the simulations presented here mostly follow the CYCLONE

parameters [90], ρ∗ = 1/184.7, mi = 2mp, a = 0.625 [m], B0 = 1.91 [T], R0 = 1.70 [m],

s0 = 0.624 (corresponds to ρ0 = 0.5a), q(s0) = 1.4, Ti(s0) = Te(s0), R0/LT i = 2.23,

R0/LTe = 6.9, ηi = Ln/LT i = 1, ηe = Ln/LTe = 3.12, ŝ = 0.78. Profiles of type 3,

Eqs. (4.149) and (4.150) have been used with ∆T i = ∆Te = 0.04, ρ̃0 = 0.5 and ∆ρ̃ = 0.25.

Linearly, this situation corresponds to stable ITG modes and unstable TEM modes. In

order to limit CPU time consumption, many limitations have been introduced and will be

briefly discussed. The electron mass ratio has been set tome/mD = 0.01. It corresponds to

the value for which linear growth rates are converged. The field-aligned solver uses the long

wavelength approximation, i.e. k⊥ρLi ≪ 1. For ITG turbulence this choice is appropriate

because the short wavelength modes are stabilized by FLR effects. For TEM turbulence,

the short wavelengths are linearly more unstable than the long ones. Therefore a cut-

off at a low k-value may seem inappropriate. For ITG turbulence, there is a downward

cascade of the modes field energy, meaning that the long wavelength modes dominate in

the nonlinear regime. This phenomenon has also been observed in CTEM turbulence [57].

Therefore, it is a prori expected that the short wavelength tail of the spectrum should

not play a big role in the final state of the simulation. Of course this assumption will have

to be relaxed in the future. Theoretically, the different microinstabilities regimes have

been studied separately for numerical convenience. The ITG spectrum lies in the long

wavelengths (k⊥ρLi ∼ 0.3), the ETG spectrum lies in the short wavelengths (k⊥ρLe ∼ 0.3)

and the TEM spectrum lies in between. The issue of which part of the spectrum is actually

relevant is of course crucial. Recently, the advances in computational power made it

possible to study global ITG and ETG turbulence at electron scale resolution [149], [150],

where it is found that most of the electron energy transport arises from ion scales in

cases for which ion-scale instabilities are not suppressed. Flux-tube simulations have

also started to study ion and electron scale [151], for which it seems that high-k modes
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may have a significant contribution when ETG modes are linearly unstable. In what

follows, due to computational limitations the question of the spectrum cut-off is left out

for future studies. Note also that for very high density gradient (R/Ln = 10) and zero ion

temperature gradient, it has been observed with the flux-tube code GEM [57] that modes

with kyρLi > 0.8 do not seem to play any significant role in electron heat transport.

The Krook damping rates have been set to γKi = γKe = 1 · 10−4Ωi which corresponds

to one tenth of the maximum linear growth rate. Finally, the code has been run in an

annular region 0.1 < s < 1.0, with a Toroidal Mode Filter (TMF) of order 4. The

number of particles is reduced by a factor 4 while the same signal to noise ratio is kept,

without affecting the heat transport too much. The other numerical parameters are

∆t = 4Ω−1
i , Ns = 128, Nθ∗ = 512, Nϕ = 256, ∆m = ∆̃m = 5. The filter boundaries

are nmin = 0, nmax = 57 (corresponding to kθρLi = 0.86 at ρ̃ = 0.5 and kθρLi = 0.88 at

ρ̃ = 0.75, beyond which the profile gradients decrease). Poloidal modes having kθρLi > 1

are filtered out. All simulations are such that Ni = N t
e, where N t

e is the number of initially

trapped electron markers.

Figure. 7.22 shows the signal (without the zonal component2) to noise ratio vs time for

different particle numbers. One can see that this quantity is proportional to N = Ni+Ne.

The simulation of a full torus at 40M markers and the simulation of a 1/4-torus and 10M

markers have the same signal to noise ratio. This plot shows that when a TMF of 4 is

used, 20M trapped electrons and ions are needed to get a satisfactory signal to noise ratio

(i.e. above 10). Fig. 7.23 shows the time evolution of the electron heat flux and normalized

temperature gradient. The 10M simulation exhibits a 15% smaller diffusivity compared

to the 40M one, and the 20M is extremely close to the 40M. The temperature gradients

behave in the same way: after the first heat burst, the temperature gradient sharply

decrases. Note that the slow increase of the temperature gradient is yet unexplained. It

might be an indication that the simulations have not yet reached full steady state due to

the presence of very long time scales in the response of the system. From these results,

2Removing the zonal component of the signal defines a more stringent criterion for the noise level.

First, the zonal flow generally dominates in the nonlinear phase: its field energy is generally two orders

of magnitude higher than each of the non-axisymmetric modes. Second, the zonal flow does not cause

any heat and particle transport: it is seemingly appropriate not taking it into account in the signal as

the fluxes are one of the most important physical quantities to determine the physical convergence of a

simulation.
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Figure 7.22: Signal (without the zonal component) to noise ratio vs time for different

marker numbers and one simulation with all toroidal modes.

it seems that 20M markers is a reasonable marker number. Note that such a simulation

requires 4 days with 2048 PEs on a BG/P machine, which is 2 · 105 CPU hours. It is

therefore impossible to span the whole space of numerical parameters. A simulation with

γKi = γKe = 7 · 10−5Ωi, i.e. 30% smaller than the original value has been performed. The

lower value of the damping rates implies that the number of particles had to be doubled

to have a satisfactory signal to noise ratio. The normalized temperature gradient for the

γKi = γKe = 7·10−5Ωi, Ni = N t
e = 40M simulation is smaller by 0.1 and the heat flux is, on

average, smaller by 15% compared to the simulation γKi = γKe = 1·10−4, Ni = N t
e = 20M

which is analog to the intrinsic variability observed in ITG simulations [58]. It means that

the value of the Krook damping rate should not be higher.

7.8.4 Analysis

Starting from the parameters described in the previous Section, four different simulations

have been performed, for τ = Te/Ti = 1, τ = 3 with and without zonal flows. The

simulations ”without zonal flows” mean that the n = 0 mode has been artificially filtered

out. The number of markers is Ni = N t
e = 20M . Note that a bug has been found in the

code after the simulations were run. Unfortunately, due to the high CPU required there

was not enough time to rerun all the simulations. However, the two simulations at τ = 3

could be rerun and it was found that the simulations were qualitatively similar, and it

is therefore expected that the same conclusions holds for the τ = 1 cases. Because no
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Figure 7.23: Time evolution of the electron heat flux (left) and normalized temperature

gradient (right) for simulations with different marker numbers and one simulation with

all toroidal modes. Profiles are radially averaged between ρ̃ = 0.4 and ρ̃ = 0.6.

quantitative analysis is presented, this bug does not modify any of the statements exposed

in what follows. First, the linear phase of the simulations is examined. Fig. 7.24 shows the

growth rates vs kθρLi computed at the very start of the simulation (left plot) and at the end

of the linear phase (right plot). Initially, the growth rate spectrum resembles the typical

linear spectrum of TEM modes, with more unstable modes at large k. Note that the long

wavelength approximation of the solver may affect the spectrum for kθρLi > 0.6. In the

end of the linear phase, nonlinear effects are visible: first the zonal flow kθρLi = 0 mode

has a high growth rate, approximatively twice the growth rate of the bulk of spectrum.

Also, low kθρLi modes have become nonlinearly unstable. To understand this nonlinear

coupling, consider the Vlasov equation:

dδf

dt

∣∣∣∣
0

+
dδf

dt

∣∣∣∣
1

= τ( ~E) (7.28)

dδf

dt

∣∣∣∣
1

=
∂δf

∂t

∣∣∣∣
1

+
∂δf

∂s

ds

dt

∣∣∣∣
1

+
∂δf

∂θ∗

dθ∗
dt

∣∣∣∣
1

+
∂δf

∂ϕ

dϕ

dt

∣∣∣∣
1

+
∂δf

∂v‖

dv‖
dt

∣∣∣∣
1

(7.29)

The toroidal Fourier decomposition is:

δf(s, θ∗, ϕ, v‖, µ, t) =
∑

n

δ̂f
(n)

(s, θ∗, v‖, µ, t)e
inϕ (7.30)

〈φ〉(s, θ∗, ϕ, µ, t) =
∑

n

〈φ̂〉(n)(s, θ∗, µ, t)e
inϕ (7.31)
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If one looks at the relation between the R.H.S. τ( ~E) and, say, the part of the L.H.S. that

contains the θ∗ derivative, one has:

∑

n+n′=n′′

F (ψ)

Jθ∗sϕBB
∗
‖

∂〈φ〉(n′)

∂s

∂δf (n)

∂θ∗
+ ... = − F (ψ)

Jθ∗ψϕBB
∗
‖

∂〈φ〉(n′′)

∂θ∗
+ ... (7.32)

δf (n) and 〈φ〉(n) are directly coupled through the quasineutrality equation. There are

no direct toroidal couplings in the quasineutrality equation due to axisymmetry, as they

would for example appear in stellerator geometry. The true coupling mechanisms are

complicated processes and are beyond the scope of this work. However, the last equation

contains the basic idea of nonlinear couplings. First, the n = 0 zonal flow is produced

nonlinearly by all the couplings (n ↔ −n). Recall that the zonal flow is linearly stable

because this radial perturbation is advected perpendicularly to the profile gradients by

the ~E× ~B velocity. The growth rate of the zonal flow should be approximatively twice the

maximum linear growth rate because the nonlinearity is the product of two terms with

similar growth rates. The strength of the coupling is directly proportional to the product

of the amplitudes of the n and n′ components. It can be anticipated that the nonlinear

coupling will be stronger for low n modes during the linear phase, as the dominant linear

modes have contiguous n values. This is confirmed on Fig. 7.25. The mode n = 36 is the

most dominant mode during the linear phase: its field energy is one order of magnitude

higher than the other modes. This mode, as well as all the others, nonlinearly couple with

themselves to induce the zonal flow. The second dominant linear mode ±n = 32 couples

with the ∓n = 36 modes to excite the n = 4 mode which is the lowest allowed in the

simulation. This mode is very weakly linearly unstable, but starts to grow when nonlinear

effects start to become important. Note also that the high-k modes are nonlinearly excited,

notably through the nonlinear couplings of low n modes.

When the nonlinear terms become important, more and more couplings come into

play: the simulation saturates. For ITG turbulence, an energy cascade towards long

wavelength modes usually takes place. This is also the case for TEM turbulence as can

be seen from Fig. 7.26. During the linear phase, one toroidal mode is dominating the

simulation, but in the nonlinear phase the spectrum is peaked at kθρLi ∼ 0.2 − 0.4. This

phenomenon as well as the effect of zonal flow can be seen on the poloidal section of

the potential (without the zonal component), displayed on Fig. 7.27. In the left plot, the

linear mode consisting of streamers is clearly visible. After the saturation, these structures
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Figure 7.24: Growth rate vs kθρLi for the simulations τ = 1 with ZF (solid line, crosses),

τ = 1 without ZF (dashed line, circles), τ = 3 with ZF (dotted line, squares) and τ = 3

without ZF (dash-dotted line, triangles). The left plot shows growth rates computed

between t = 16.2 and t = 32.4a/cs and the right plot shows growth rates computed

between t = 32.4a/cs and t = 48.7a/cs.
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are progressively sheared by the zonal flow (middle plot). In the end of the simulation,

the linear structure of the mode is completely destroyed, and the radial and poloidal

wavelengths become comparable: the zonal flows tend to isotropize the perturbations

in the direction perpendicular to ~B. The same quantity is represented on Fig. 7.28 for

the τ = 1 simulation with zonal flows artificially filtered out from the simulation. In the

linear phase, the structure of the potential is similar to the case with zonal flow, but in the

nonlinear phase the streamers survive (right plot) and have even extended radially: in the

linear phase, the logarithmic gradient of the temperature profiles is strong between s = 0.4

and s = 0.8 and rapidly decreases to 0 outside this interval. Therefore the instability is

supposed to develop within this region. As nonlinear effects become important, heat is

transported radially, modifying the temperature profile: the logarithmic gradient profile

may extend and so could the streamers. This is represented on Fig. 7.29. After the

saturation, the radial spreading of the temperature gradient is clearly visible (up to s = 0.2

and s = 0.85) and its width in the nonlinear phase corresponds well to the width of the

streamers. However, near s = 0.2 and s = 0.85 the gradient is very small (right plot of

Fig. 7.29) such that no linear instability could develop, but there is a very small heat

flux. Therefore the presence of streamers in this region is the manifestation of a global

nonlinear effect.

Next, the heat transport is analyzed. In these simulations, heat is transported by two

species, ions and electrons. Passing electrons are passive but react to an electric field

and can, in practice, transport heat. In theory, adiabatic electrons do not carry heat

radially. Therefore, the passing electron contribution to the heat flux should be small.

Fig. 7.30 shows that when the zonal flow is artificially removed from the simulation, the

ratio between the passing and the trapped electron heat flux is 50% at the first saturation

(overshoot) peak, while in the steady state this ratio goes down to 25%. When the zonal

flow is included, this ratio is around 15%. At the saturation, the electric field is maximal

and can be quite large. Therefore, according to Eq. (7.15), the distinction between passing

and trapped particles becomes difficult to make. This is one of the drawbacks of the model.

The heat flux instead of the heat diffusivity is further used to compare the heat transport

quantitatively. This turns out to be more convenient as the ion and electron temperature

gradient differ (|∇Te|/|∇Ti| = 3.12): the use of χi and χe could be misleading. Moreover,

because two species are involved, particle transport is no longer negligible. The transport
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Figure 7.26: Field energy vs kθρLi for the simulations τ = 1 with ZF (solid line, crosses),

τ = 1 without ZF (dashed line, circles), τ = 3 with ZF (dotted line, squares) and τ = 3

without ZF (dash-dotted line, triangles). The left plot shows field energies computed

between t = 32.4a/cs and t = 48.7a/cs (end of linear phase), and the right plot shows

field energies time-averaged during the late nonlinear phase.

Figure 7.27: Electrostatic potential on the poloidal plane in the linear phase (left), just af-

ter the saturation (middle) and in the late nonlinear phase (right) for the τ = 1 simulation

with zonal flow. The zonal component has been removed.
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Figure 7.28: Electrostatic potential on the poloidal plane in the linear phase (left) and in

the late nonlinear phase (right) for the τ = 1 simulation without zonal flow.
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Figure 7.29: Left: radial and temporal evolution of R0/LTe for the τ = 1 simulation

without zonal flows. Right: radial profile of R0/LTe at t = 0 (solid line) and t = 105[Ω−1
i ]

(dashed line). The dotted line shows the radial profile of the heat flux in arbitrary units.
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is then measured by looking at a matrix equation which relates for example the fluxes

Qi, Qe,Γe (although parallel and impurity fluxes may also be taken into account) to the

thermodynamical forces ∇Ti,∇Te,∇n (the ion particle flux Γi is obtained through quasi-

neutrality). The diagonal terms are the most important, but off-diagonal terms, leading

to so-called pinches (neoclassical or anomalous), may play an important role [152]. Such

kind of study is beyond the scope of this paper and consequently only the heat flux will

be studied.

Figures 7.31 and 7.32 show the time evolution of the radial heat flux, averaged between

ρ̃ = 0.3 and ρ̃ = 0.7, for ions and electrons and for the four different simulations. A

common feature of all these curves is that the saturation of the heat flux occurs at a

higher level when the zonal flows are artificially suppressed: the ion heat flux is increased

by a factor 2 and the electron heat flux by a factor 3 for both the τ = 1 and τ = 3

cases. Then one can observe that the ion heat flux is always smaller than the electron

one by approximatively one order of magnitude, which is consistent with the fact that the

instability is caused by the electron temperature gradient. Finally, one can see that the

absence of zonal flows yields a higher electron heat flux (factor of 2) in the late nonlinear

phase for the τ = 1 case but the ion heat flux is less altered. For the τ = 3 case, although

the first burst is higher, the absence of zonal flows has no real impact on the level of heat

flux. This is consistent with the observations in [146], where similar simulations (except

for R0/LTe = 6) have been performed in flux tube geometry.

Next, the time evolution of the temperature gradient, Figs. 7.33 and 7.34, is analyzed.

First, one can see that R0/LT i is barely modified, due to the fact that the ion heat flux is

much smaller. Also, the initial drop is always stronger when the zonal flows are suppressed,

consistently with the higher heat fluxed observed for the first overshoot. For both τ =

1 and τ = 3, and for both ions and electrons, the gradients are consistently smaller

when zonal flows are artificially supressed. The role of zonal flows is often quantified by

computing its shearing rate, which has been derived for cylindrical geometry [153], for

high aspect ratio tokamak geometry [93], for arbitrary shaped tokamak plasmas [92], for

quasisymmetric plasmas [154] and by taking the oscillatory behavior of the zonal flow into

account [94]. In the following, this last effect will be neglected for simplicity. Here, an
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Figure 7.30: Time evolution of the volume-averaged trapped and passing electron heat
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Figure 7.31: Time evolution of ion (left) and electron (right) heat flux for the τ = 1

simulation with (solid line) and without (dashed line) zonal flow. All the curves are

radially averaged between ρ̃ = 0.3 and ρ̃ = 0.7.
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Figure 7.32: Time evolution of ion (left) and electron (right) heat flux for the τ = 3

simulation with (solid line) and without (dashed line) zonal flow. All the curves are

radially averaged between ρ̃ = 0.3 and ρ̃ = 0.7.
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Figure 7.33: Time evolution of ion (left) and electron (right) normalized temperature

gradient for the τ = 1 simulation with (solid line) and without (dashed line) zonal flow.

All the curves are radially averaged between ρ̃ = 0.3 and ρ̃ = 0.7.
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Figure 7.34: Time evolution of ion (left) and electron (right) normalized temperature

gradient for the τ = 3 simulation with (solid line) and without (dashed line) zonal flow.

All the curves are radially averaged between ρ̃ = 0.3 and ρ̃ = 0.7.

approximation from [92], taken from [155], is used:

ωE×B
∼= sdψ

ds

q

d2

dψ2
φ0(ψ) (7.33)

It is generally accepted that zonal flows suppress turbulence once their shearing rate

exceeds the maximum linear growth rate. This is by no means an exact criterion but a

rough estimate. Fig. 7.35 shows the time evolution of |ωExB|, averaged between ρ̃ = 0.4

and ρ̃ = 0.6 for two CYCLONE adiabatic ITG simulations with R0/LT i = 6.9 and

R0/LT i = 7.6. On top of these curves, the linear growth rate of the most unstable linear

mode as a function of the radially-averaged, time varying normalized temperature gradient

is plotted. It has been obtained with a quadratic fit from linear simulations. One can

observe a small drop of the growth rate, corresponding to a decrease in the temperature

gradient at the same time where the shearing rate becomes comparable, thus validating

the shearing criterion. In the nonlinear phase, the shearing rate is 1.5 to 2 times larger

than the linear growth rate. Note also that the shearing rate is higher for the R0/LT i case,

reflecting a stronger, hence more difficult turbulence to suppress. The same curves for

the two TEM simulations at τ = 1 and τ = 3 are represented on Fig. 7.36. For this case,

the shearing rate value is on average comparable to the largest linear growth rate. For

the τ = 3 case, the linear growth rate is even slightly higher than the average shearing

rate. From Figures 7.35 and 7.36, one can conclude that the shearing rate turbulence

suppression criterion holds as well for the TEM simulations presented here. However,
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Figure 7.35: Time evolution of |ωExB|, averaged between ρ̃ = 0.3 and ρ̃ = 0.7 for a

CYCLONE ITG simulation with initial R0/LT i = 6.9 (left) and R0/LT i = 7.6 (right).

The dashed line is γ
(
R0/LT i(t)

)
, where R0/LT i(t) is the radially-averaged value (between

ρ̃ = 0.4 and ρ̃ = 0.6) at time t and γ(x = R0/LT i) is obtained from a quadratic fit of the

growth rate of the most unstable linear mode as a function of R0/LT i.

in the ITG case, the shearing rate is approximatively twice the growth rate whereas for

the TEM case it is comparable. This could be related to the fact that the heat flux for

ITG turbulence is four times higher when zonal flows are filtered out, while this factor

is strongly reduced for TEM turbulence. Therefore, another saturation mechanism may

also be responsible for the turbulence suppression.
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Figure 7.36: Time evolution of radial maximum of |ωExB| rate for TEM simulations with

τ = 1 (left) and τ = 3 (right). The dashed line is γ
(
R0/LT i(t)

)
, where R0/LT i(t) is the

radially-averaged value (between ρ̃ = 0.4 and ρ̃ = 0.6) at time t and γ(x = R0/LTe) is

obtained from a quadratic fit of the growth rate of the most unstable linear mode as a

function of R0/LTe. Horizontal solid lines are the time averages of |ωExB|.
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Chapter 8

Conclusions and future work

8.1 Conclusions

In this work, a 5D global gyrokinetic model aimed at studying microturbulence in Toka-

maks has been presented and its implementation in a Particle-In-Cell code has been

detailed. The originality lies in the use of the straight-field-line angle. The singularity at

the magnetic axis is circumvented by using pseudo-cartesian coordinates. The straight-

field-line angle is more adapted for this model because the turbulence is by assumption

aligned with the magnetic field lines. It has led to a very efficient Fourier filtering tech-

nique. Its consequences have been thoroughly studied, both analytically and numerically.

The weaknesses of the initial implementation (a rectangular Fourier filter and the im-

plementation with the poloidal angle) have been identified. The great advantages of the

new implementation have been clearly demonstrated. First, the energy conservation and

the signal to noise ratio have been massively improved. Second, the time step of the

simulation has been increased by one order of magnitude for the case of ITG turbulence.

Third, a new field solver has been implemented which reduces the total memory by a

factor 10. Altogether, a gain of CPU time of two to three orders of magnitude has been

achieved for a given accuracy. Last but not least, the scaling of the code with respect to

the plasma size, one of the most important parameter for future fusion devices, is now

optimal. Coupled to the excellent parallel efficiency and other algorithms implemented in

ORB5 by different persons during the time period of this work, this code is now able to

simulate global ITG turbulence in ITER-size plasmas.
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The new version of the code has been benchmarked in several ways. First, ORB5 has

been compared to a simple toroidal ITG dispersion relation. The qualitative agreement

is excellent. The quantitative comparison is of course delicate due to the numerous ap-

proximations done to obtain the dispersion relation. The code has also been linearly

benchmarked against the global PIC code GT3D. The well-known CYCLONE nonlinear

benchmark has been successfully performed.

Then, the code has been applied to two issues of the gyrokinetic theory. First, δf PIC

codes are constantly criticized due to their inability to reach a thermodynamical steady

state. Due to the linear growth of the numerical noise in time inherent to the δf PIC

scheme, it is difficult, not to say inadequate, to make quantitative predictions based on

this method. It has been theoretically argued that dissipation must be present in order

to prevent this unphysical phenomenon. This thesis has shown for the first time that a

Krook-based noise-control algorithm allows the simulations to reach a steady state. More

specifically, the time evolution equation of the fluctuation entropy has been derived and

examined, both analytically and numerically. A steady state is achieved because the fluc-

tuation entropy is, on average, constant. For decaying turbulence, the steady state is

temporary because the system gets closer and closer to the marginal state, with a tur-

bulence decaying to zero, and therefore an unbounded signal to noise ratio. For driven

simulations, the system remains in a turbulent state and the steady state is permanent.

Second, the importance of the v‖ nonlinearity (VNL) has been re-examined with the opti-

mized version of ORB5. While previous transient simulations with the old implementation

of the model found a difference in the radial profile of the zonal flow, simulations using

the field-aligned Fourier filter now prove that this difference was due to numerical noise,

and that the VNL has in fact no significant impact on the heat transport and on the

zonal flow structure for collisionless ITG simulations. This statement remains valid in the

previously unexplored situation of driven simulations. These results show that although

the noise issue is often discussed in the frame of ETG turbulence, it must be carefully

diagnosed and measured in ITG turbulence as well.

The first part of this thesis has been devoted to the optimization of the code and has lead

to new contributions on ITG turbulence. However, these improvements are also aimed

at developing the physical model beyond the usual ITG picture. To be specific, the adia-

batic assumption employed in the ITG model is not able to capture the TEM instability,
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caused by the precession drift of trapped electrons. From the computational point of

view, simulating simultaneously electrons and ions at a kinetic level is a challenging task.

The optimized version of ORB5 has been extended to include the drift-kinetic response of

the trapped electrons, the passing ones being still adiabatic. The first stage of the model

validation dealt with the convergence of several numerical parameters in the linear regime.

The second stage included linear benchmarks against a dispersion relation and against the

global PIC code GT3D. The third stage of the validation treated the nonlinear detrapping

caused by turbulence. The passing-trapped boundary of the phase space is modified by

the presence of an electric field. However, by invoking the gyrokinetic ordering is has been

shown that the displacement of this boundary is indeed small. It has further been shown

that the heat flux carried by detrapped electrons is small. Finally, long, driven nonlinear

simulations of TEM turbulence have been performed and, in particular, the heat flux and

the role of zonal flows have been studied. For the parameters considered, the shearing rate

criterion seems to be valid for TEM simulations, although another saturation mechanism

yet unknown might also play a role.

8.2 Future work

In a long term perspective, it is desirable that gyrokinetic codes contain as much physical

effects as possible for two reasons. First, the fundamental understanding of microtrubu-

lence is not complete yet. The starting point of most of gyrokinetic codes is the collision-

less, electrostatic ITG turbulence case for circular geometry. Many important features of

turbulence have been discovered such as the Dimits shift and saturation through zonal

flow shearing. These issues are currently re-examined with more physics included in the

model. Second, the fundamental purpose of gyrokinetic codes would be to recover the

experimentally measured transport, and in a further step to test the actual scaling laws in

view of predicting the performance of future tokamaks. These predictions will obviously

be more realistic if all the relevant physical effects are included.

In parallel with the physical model, there are still some numerical improvements to be

made. In terms of CPU time, the code scales as (ρ∗)−2 except for the Fourier transforms

that are done on a (Ns, Nθ∗ , Nϕ) ∼ (ρ∗)−3 grid. The Fourier transforms are rather fast

compared to the markers pushing, but the parallel transpose operation (i.e. going from an
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array parallelized in the ϕ direction to an array parallelized in the θ∗ direction) becomes

rapidly dominant for large system size ρ∗ ∼ 1/1000. Optimization of the whole Fourier

transform/parallel transpose process is highly desirable for simulations of ITER-size plas-

mas.

Another necessary modification concerns the coefficients for MHD equilibria: they are

interpolated on a (s, θ∗) grid from a (r, z) grid given by CHEASE. Because this code is

able to provide the equilibrium directly in (s, θ∗) coordinate, it is possible to avoid these

cumbersome interpolations.

Finally, the numerical noise problem is still a hot research topic. New methods like

Proper Orthogonal Decomposition (POD) have been implemented in lower dimensional

PIC codes [156] and showed promising results. The use of POD methods in a 5D gy-

rokinetic code could be useful for radial filtering, which is absent in ORB5, and collisions

operators.

There are several essential physical effects missing in ORB5. One of the most important is

collisions: even if the temperature in ITER will be extremely high, there remains a small

but finite collisionality. Ion-ion collisions have a damping effect on the zonal flow [157] and

are needed to retrieve neoclassical transport from gyrokinetic codes [158]. Electron-Ion

collisions have a clear effect on TEM through the detrapping effect: this mode is often

divided into a collisionless and a dissipative branch.

Another important effect presently missing in ORB5 is the impurities. The presence of

impurities in the core can lead to radiative losses which will lower the power of fusion

reactions. Burning plasmas will contain helium ashes which can dilute the deuterium and

the tritium. In addition, the so-called impurity mode [159] can be be driven unstable

when the impurity density profile is outwardly peaked while the main ion species and the

electrons density profiles are inwardly peaked. There has been some linear [160], [161]

and nonlinear [162] studies on this topic.

This work has been done by assuming electrostatic turbulence, i.e. β = 0. However, at

finite β a new electromagnetic mode can become unstable, the shear-Alfvénic ion tem-

perature gradient (AITG) mode [163], [164], sometimes called Kinetic Ballooning Mode

(KBM) [141]. It is very difficult to study nonlinear electromagnetic simulations with PIC

codes due to the cancellation problem [132], [134]. A split-weight scheme [130] or a hybrid

fluid-kinetic model [165] can suppress this problem. First global PIC electromagnetic gy-
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rokinetic simulations have been published recently [166]. In ORB5, the development of

electromagnetic perturbation is in progress, while a model for static magnetic islands has

already been implemented [167].

Burning plasmas will contain energetic α-particles. These particles have extremely wide

orbits and are very fast such that a special treatment is needed. For instance, energetic

particles are treated as passive in the flux-tube code GENE [168].

These examples, as well as this work, show that plasma turbulence is a huge, relatively

unexplored and extremely complex field. However, the massive development of analyti-

cal models and gyrokinetic codes will hopefully provide solid theoretical foundations for

increasing the predictive capability for turbulent transport in future fusion devices.
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Appendix A

Discretization with splines

This annex gives the detailed expressions of splines quantities computed with ORB5.

These technical details are useful to understand the implementation of the quasi-neutrality

equation in ORB5. In particular, they provide a solid basis for people who would like to

add additional physics in the quasi-neutrality equation directly in ORB5.

A.1 Splines notations

B-splines are piecewise polynomial functions on a finite support. They are generated via

the relation:

Λn+1(x) =

∫
Λ0(x− x′)Λn(x

′)dx′ (A.1)

Where Λ0(x) is defined by:

Λ0(x) = H(x)H(1 − x) =





1 if 0 < x < 1

0 else
(A.2)

where H(x) is the Heavyside function. A spline of order p > 0 is therefore composed of

p+ 1 contiguous piece-wise polynomials of order p, named P p
k (x), k = 0, 1, ..., p, that can

be reduced to the interval [0 : 1]. For cubic splines the P 3
k are given by:

P 3
0 (x) =

1

6
x3 (A.3)

P 3
1 (x) =

1

6
+

1

2
x+

1

2
x2 − 1

2
x3 (A.4)

P 3
2 (x) =

2

3
− x2 +

1

2
x3 (A.5)

P 3
3 (x) =

1

6
− 1

2
x+

1

2
x2 − 1

6
x3 =

1

6
(1 − x)3 (A.6)
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Figure A.1: Cubic splines (left) and {P 3
k (x)} (right).

This polynomial decomposition is for example useful to compute the generic expression,

valid for any spline order p, of M (n) (see Eq. (4.90) for p = 1, 2, 3):

M (n) =
2π

Nϕ

{
p∑

k=1

2 cos

(
2π

Nϕ
nk

)
Cp
k + Cp

0

}
(A.7)

Cp
k =

p−k∑

j=0

∫ 1

0

dxP p
j (x)P p

j+k(x) (A.8)

Cubic splines are displayed on Fig. A.1. Splines are very convenient to solve integro-

differential equations because operators act on polynomial functions that are very easy

to handle. It is obvious that the higher the order, the smoother the potential will be.

B-splines have the important property that for any spline order:

∫ ∞

−∞

Λi(x)dx = 1 ∀i (A.9)

ORB5 can use linear, quadratic or cubic splines. The splines are tensor products of

B-splines:

Λµ(~x) = Λj(s)Λk(θ∗)Λl(ϕ) (A.10)

where Ns, Nθ∗ and Nϕ are the number of intervals in the s, θ∗ and ϕ directions. The

lengths of the intervals are ∆s = (sf,max − sf,min)/Ns, ∆θ∗ = 2π/Nθ∗ and ∆ϕ = 2π/Nϕ.

The intervals are numbered from 0 to Ns − 1, Nθ∗ − 1, Nϕ − 1, giving Ns + 1, Nθ∗ + 1

and Nϕ + 1 grid points, numbered from 0 to Ns, Nθ∗ and Nϕ. In the periodic directions

θ∗ and ϕ, the first and the last grid points are the same. Therefore there are Nθ∗ and
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Nϕ different splines, numbered from 0 to Nθ∗ − 1, Nϕ − 1. In the radial direction, due

to the non-periodicity pl splines must be added to the left of the domain, numbered

Λ−pl
,Λ−pl+1, ...,Λ−1 and pr splines must be added to the right of the domain, numbered

ΛNs,ΛNs+1, ...,ΛNs+pr−1, with:

pl = floor(p/2), pr = ceiling(p/2) (A.11)

In the radial direction there are pl+pr = p additional splines. The following convention is

used for the splines numbering. For odd spline order, a spline Λj(s) is centered on point

sj. For even spline order, a spline Λj(s) is centered on point sj+1/2 = (sj + sj+1)/2.

The sum over µ in (4.71) is in fact a sum over three indices:

∑

µ

=

Ns+pr−1∑

j=−pl

Nθ∗−1∑

k=0

Nϕ−1∑

l=0

(A.12)

A.2 Discretization of Finite-Element-Matrices

The analytical form of the matrix is given by Eq. (4.87):

Aµν =

∫
dsdθ∗Jθ∗sϕ(s, θ∗)

{
en0(s)

Te(s)
Λν(s, θ∗)Λµ(s, θ∗)

+
n0(s)

BΩi
∇polΛν(s, θ∗) · ∇polΛµ(s, θ∗)

}
(A.13)

First, the matrix is divided into nA = 5 terms depending on the derivative order of the

splines:

w = 1 → Λj(s)Λj′(s)Λk(θ∗)Λk′(θ∗)

w = 2 → Λ′
j(s)Λ

′
j′(s)Λk(θ∗)Λk′(θ∗)

w = 3 → Λj(s)Λ
′
j′(s)Λ

′
k(θ∗)Λk′(θ∗)

w = 4 → Λ′
j(s)Λj′(s)Λk(θ∗)Λ

′
k′(θ∗)

w = 5 → Λj(s)Λj′(s)Λ
′
k(θ∗)Λ

′
k′(θ∗)

The matrix can therefore be decomposed as:

Aµν =

nA∑

w=1

Awµν (A.14)
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The integrals are performed with a Gaussian integration formula of order ng:

∫ sf,max

sf,min

dsf(s) →
Ns−1∑

J=0

ng∑

qs=1

gqsf(sJqs)∆s (A.15)

∫ 2π

0

dθ∗f(θ∗) →
Nθ∗−1∑

K=0

ng∑

qθ∗=1

gqθ∗f(θ∗Kqθ∗ )∆θ∗ (A.16)

where sJqs = (J + pqs) ∆s, θ∗Kqθ∗ =
(
K + pqθ∗

)
∆θ∗, {gi, i = 1, ..., ng} are the Gaussian

weights and {pi, i = 1, ..., ng} are the Gaussian points: the integral is divided into intervals

containing ng Gauss points. For convenience, the derivation of the discretized form of the

matrix A1
µν is presented, and then the complete form is easily generalized.

A1
jk,j′k′ =

∫
dsdθ∗Jθ∗sϕ(s, θ∗)

en0(s)

Te(s)
Λj(s)Λj′(s)Λk(θ∗)Λk′(θ∗)

= ∆θ∗∆s

Ns−1∑

J=0

Nθ∗−1∑

K=0

ng∑

qs,qθ∗=1

gqθ∗gqsJθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)
×

Λj(sJqs)Λj′(sJqs)Λk(θ∗Kqθ∗ )Λk′(θ∗Kqθ∗ ) (A.17)

According to the spline notation, i and i′ go from −pl to Ns − 1 + pr and j, j′ go from 0

to Nθ∗ − 1. The convention adopted is that global indices µ, ν are in [1 : (Ns+ p)Nθ∗ ] and

so:

µ = (j + pl)Nθ∗ + k + 1, ν = (j′ + pl)Nθ∗ + k′ + 1 (A.18)

In order to get a convenient discretized form, the key point is to realize that all the

splines have the same shape. Therefore the spline number can be shifted together with

the evaluated location. Mathematically this is expressed as:

Λk(θ∗Kqθ∗ ) = Λk

(
(K + pqθ∗ )∆θ∗

)
= Λmod(k−K,Nθ∗)(pqθ∗∆θ∗) (A.19)

The same applies in the radial direction (without the modulo operation). If one assumes

that each interval goes from 0 to 1, this property means that the matrix can be written

in terms of the polynomials {P p
k }, k = 0, ..., p evaluated at the Gauss points.

A1
jk,j′k′ = ∆θ∗∆s

Ns−1∑

J=0

Nθ∗−1∑

K=0

ng∑

qs,qθ∗=1

gqθ∗gqsJθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)
×

Λj−J(pqs)Λj′−J(pqs)Λmod(k−K,Nθ∗)(pqθ∗ )Λmod(k′−K,Nθ∗)(pqθ∗ )
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Note that the indexing of splines in the radial direction is slightly wrong in order to lighten

the notations. However the final form of the discretized matrix will be correct. Once that

the splines and the coefficient Jθ∗sϕ(s, θ∗)en0(s)/Te(s) have been computed at the Gauss

points, one needs to add 4 loops containing p + 1 elements and to find the p + 1 values

of j, j′, k, k′ that will have a non zero contribution. At this point it is important to know

the indexing of the splines and the matrix. The indexing convention is such that for an

interval J,K, there will be a contribution from splines j, j′ = J − pl to j, j′ = J + pr, and

splines k, k′ = K − pl to k, k′ = K + pr, so (pl + pr + 1)4 = (p+ 1)4 contributions in total.

The final step to understand the matrix construction is the matrix indexing, which differs

from the spline indexing. The matrix can be viewed as a (Ns + p) × (Ns + p) blocks of

size Nθ∗ × Nθ∗ . For a given interval J,K where J ∈ [0 : Ns − 1], K ∈ [0 : Nθ∗ − 1], the

indexes of the splines that will receive a non-zero contribution are the following:

j = J − pl + u, u = 0, 1, ..., p

j′ = J − pl + u′, u′ = 0, 1, ..., p

k = mod(K − pl + u,Nθ∗), u = 0, 1, ..., p

k′ = mod(K − pl + u′, Nθ∗), u
′ = 0, 1, ..., p

The matrix can be rewritten as:

A1
jk,j′k′ = ∆θ∗∆s

Ns−1∑

J=0

Nθ∗−1∑

K=0

ng∑

qs,qθ∗=1

gqθ∗gqsJθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)

p∑

uj ,uj′ ,uk,uk′=0

Λj−J(pqs∆θ∗)Λj′−J(pqs∆s)Λmod(k−K,Nθ∗)(pqθ∗∆θ∗)

Λmod(k′−K,Nθ∗)(pqθ∗∆θ∗)δj,J−pl+uj
δj′,J−pl+uj′

δk,mod(K−pl+uk,Nθ∗)

δk′,mod(K−pl+uk′ ,Nθ∗ ) (A.20)

Each spline of order p is composed of p + 1 polynomials P p
k (x), k = 1, ..., p + 1, which

for simplicity are defined in the interval [0 : 1]. When the (p + 1) different splines Λj

are evaluated on a given interval J , it is in fact the p + 1 polynomials P p
k (x), k = 0, ..., p

that are evaluated at the different Gauss points. For a given spline, the polynomials are

numbered from left to right, but on a given interval, the contribution from the left most

spline J − pl is given by the right most polynomial P p
p+1. In this way the splines Λ can
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be replaced with the polynomials P p
k (x).

A1
jk,j′k′ =

Ns−1∑

J=0

Nθ∗−1∑

K=0

ng∑

qs,qθ∗=1

∆s∆θ∗gqsgqθ∗
en0(sJqs)

Te(sJqs)

p∑

uj ,uj′ ,uk,uk′=0

P p
p−uj

(pqs)P
p
p−uj′

(pqs)P
p
p−uk

(pqθ∗ )P
p
p−uk′

(pqθ∗ )

δj,J−pl+uj
δj′,J−pl+uj′

δk,mod(K−pl+uk,Nθ∗) δk′,mod(K−pl+uk′ ,Nθ∗)

Now the whole expression of A can be written. Because the polynomials {P p
k } are defined

between 0 and 1, a derivative in the s direction will introduce a factor ∆s−1 and a

derivative in the θ∗ direction will introduce a factor ∆θ−1
∗ . The discretized form of the

matrix is then:

Ajk,j′k′ =
Ns−1∑

J=0

Nθ∗−1∑

K=0

ng∑

qs,qθ∗=1

nA∑

w=1

∆s1−aw
i −aw

i′∆θ
1−aw

j −aw
j′

∗ gqsgqθ∗C
w(sJqs, θ∗Kgθ∗

)

p∑

uj ,uj′ ,uk,uk′=0

da
w
j

dxa
w
j
P p
p−uj

(pqs)
d
aw

j′

dx
aw

j′
P p
p−uj′

(pqs)
da

w
k

dxa
w
k

P p
p−uk

(pqθ∗ )

da
w
k′

dxa
w
k′
P p
p−uk′

(pqθ∗ )δj,J−pl+uj
δj′,J−pl+uj′

δk,mod(K−pl+uk,Nθ∗) δk′,mod(K−pl+uk′ ,Nθ∗)

(A.21)

With:

C1(sJqs, θ∗Kqθ∗ ) = Jθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)
(A.22)

C2(sJqs, θ∗Kqθ∗ ) = Jθ∗sϕ(sJqs, θ∗Kqθ∗ )
n0(sJqs)

B(sJqs, θ∗Kqθ∗ )Ωi(sJqs, θ∗Kqθ∗ )
(A.23)

Ci(sJqs, θ∗Kqθ∗ ) = C2(sJqs, θ∗Kqθ∗ ), i = 3, ..., 5 (A.24)

awj = {0, 1, 0, 1, 0}, awj′ = {0, 1, 1, 0, 0}, awk = {0, 0, 1, 0, 1}, awk′ = {0, 0, 0, 1, 1} (A.25)

The construction of the matrix is parallelized: each processor has a fraction of the (J,K)

intervals. The final matrix is obtained by summing the elements over all the processors.

The code does not compute directly the coefficients, but loops over the intervals and

progressively fills in the different matrix elements. The structure of A is show on Fig. A.2.

The matrix can be viewed as Ns+p blocks of size Nθ∗ ×Nθ∗ , The matrix is a band matrix

whose bandwidth increases with the spline order.
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Figure A.2: Structure of A.

The zonal flow matrix is given by:

AZFµν = −
∫

dsdθ∗Jθ∗sϕ(s, θ∗)
en0(s)

Te(s)
Λ̄µ(s)Λν(s, θ∗)

= −
∫

ds
2πen0(s)

Σ(s)Te(s)
Λj(s)Λj′(s)Λ̃k(s)Λ̃k′(s) (A.26)

Λ̃k(s) =

∫
dθ∗Λk(θ∗)Jθ∗sϕ(s, θ∗) (A.27)

The expression for Λ̃k(s) can be obtained by using (A.19):

Λ̃k(s) =

Nθ∗−1∑

K=0

ng∑

qθ∗=1

p∑

uk=0

∆θ∗ gqθ∗Jθ∗sϕ(s, θ∗Kqθ∗ )P
p
p−uk

(pqθ∗ )δk,mod(K−pl+uk,Nθ∗) (A.28)

This expression can be simplified by noting that:

k = mod(K − pl + uk, Nθ∗) ⇔ K = mod(k + pl − uk, Nθ∗) (A.29)

The Kronecker function can be changed to give:

Λ̃k(s) =

ng∑

qθ∗=1

p∑

uk=0

∆θ∗ gqθ∗J(s, θ∗mod(k+pl−uk,Nθ∗ )qθ∗
)P p

p−uk
(pqθ∗ ) (A.30)

The discretized form of AZF can be written as:

AZFjk,j′k′ = −
Ns−1∑

J=0

ng∑

qs=1

p∑

uj ,uj′=0

∆s gqsC
ZF (sJqs)Λ̃j(sJqs)Λ̃j′(sJqs) ×

P p
p−uj

(pqs)P
p
p−uj′

(pqs)δj,J−pl+uj
δj′,J−pl+uj′

(A.31)
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with:

CZF (sJqs) =
2πen0(sJqs)

Te(sJqs)Σ(sJqs)
(A.32)

The zonal flow matrix has a different structure: the flux-surface-averaged operator cou-

ples all θ∗: all θ∗ blocks are full.

A.3 Discretization of the perturbed density and elec-

tric field

Both the perturbed density and the electric field are splines quantities that depend on

the markers position. The perturbed density is:

biν =
Nph

Ni

Ni∑

r=1

1

2π

∫
dαΛν(~Rr + ~ρLir)wr(t) (A.33)

The integral is written as a finite sum:

bij,k,l =
Nph

N

N∑

r=1

wr(t)

Ngr
Λl(ϕr)

Ngr∑

β=1

Λj

(
srβ

)
Λk

(
θ∗rβ

)
(A.34)

With srβ = sr

(
2π
Ngr

(β − 1)
)

and θ∗rβ = θ∗r

(
2π
Ngr

(β − 1)
)
. The same procedure as in

Sec. A.2 is used, with the difference that the polynomials P p
u (x), u = 0, ..., p are evaluated

on [0 : 1] depending on where the markers lie in their respective (s, θ∗, ϕ) intervals. One

finds:

bij,k,l =
Nph

Ni

Ni∑

r=1

wr(t)

Ngr

Ngr∑

β=1

p∑

uj ,uk,ul=0

P p
p−ul

(ϕ̃r)P
p
p−uj

(s̃rβ)P
p
p−uk

(θ̃∗rβ) ×

δj,Jrβ−pl+uj
δk,mod(Krβ−pl+uk,Nθ∗)δl,mod(Lr−pl+ul,Nϕ) (A.35)

Where:

Jrβ =

[
srβ − sf,min

∆s

]
, Krβ =

[
θ∗rβ
∆θ∗

]
, Lr =

[
ϕr
∆ϕ

]
(A.36)

s̃rβ =
srβ − sJrβ

∆s
, θ̃∗rβ =

θ∗rβ − θ∗Krβ

∆θ∗
, ϕ̃r =

ϕr − ϕLr

∆ϕ
(A.37)
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The indexing of the RHS is slightly different from the matrix indexing. Instead of doing

modulo operations in the poloidal and toroidal directions, pl cells are added to the left and

pr cells are added to the right of the poloidal and toroidal domains. Applying modulo

operations would require to send information between processors in the toroidal direc-

tion, and would slow down the computation in the poloidal direction. After the charge

assignment, the following operations are done:

bj,k−1,l = bj,k−1,l + bj,Nθ∗+k−1,l, k = 1, ..., pr (A.38)

bj,Nθ∗−k,l
= bj,Nθ∗−k,l

+ bj,−k,l, k = 1, ..., pl (A.39)

bj,k,l−1 = bj,k,l−1 + bj,k,Nϕ+l−1, l = 1, ..., pr (A.40)

bj,k,Nϕ−l = bj,k,Nϕ−l + bj,k,−l, l = 1, ..., pl (A.41)

The last two operations require communications between neighboring processors.

The electric field is obtained in a similar way except that a derivative must be applied on

the splines:

〈 ~E〉 =
1

Ngr

Ngr∑

β=1

~Esβ + ~Eθ∗β + ~Eϕβ (A.42)

~Esβ =
1

∆s

p∑

uj ,uk,ul=0

φuj ,uk,ul

dP p
p−uj

(s̃rβ)

dx
P p
p−uk

(θ̃∗rβ)P
p
p−uj

(ϕ̃r) ∇s|srβ ,θ∗rβ

~Eθ∗β =
1

∆θ∗

p∑

uj ,uk,ul=0

φuj ,uk,ul
P p
p−uj

(s̃rβ)
dP p

p−uk
(θ̃∗rβ)

dx
P p
p−ul

(ϕ̃r) ∇θ∗|srβ,θ∗rβ

~Eϕβ =
1

∆ϕ

p∑

uj ,uk,ul=0

φuj ,uk,ul
P p
p−uj

(s̃rβ)P
p
p−uk

(θ̃∗rβ)
dP p

p−ul
(ϕ̃r)

dx
∇ϕ|srβ,θ∗rβ

φuj ,uk,ul
= φJrβ+pl−uj ,Krβ+pl−uk,Lr+pl−ul

(A.43)

The summation must be done in cartesian coordinates, yielding 〈 ~E〉 = 〈Er〉∇r+〈Ez〉∇z+
〈Eϕ〉∇ϕ. 〈Eϕ〉 would need complicated parallel communications if the gyropoints were

not lying in the poloidal plane. The electric field is then transformed back to 〈 ~E〉 =

〈Es〉∇s+ 〈Eθ∗〉∇θ∗ + 〈Eϕ〉∇ϕ via:

〈Es〉 =
〈Er〉∂θ∗∂z − 〈Ez〉∂θ∗∂r

∂s
∂r

∂θ∗
∂z

− ∂s
∂z

∂θ∗
∂r

, 〈Eθ∗〉 =
〈Ez〉 ∂s∂r − 〈Er〉 ∂s∂z
∂s
∂r

∂θ∗
∂z

− ∂s
∂z

∂θ∗
∂r

(A.44)

For drift kinetic electrons, the electric field is obtained by setting Ngr = 1 and by replacing

the particle position by the guiding center position.
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A.4 Boundary conditions

Boundary conditions are applied at s = sf,min and s = sf,max. It is a priori not obvious

to express any type of boundary conditions with splines, as the value of the potential

at a given magnetic surface depends on p + 1 spline elements. For simplicity, the case

s = sf,min is presented. At any grid point there are p splines that are non zero. The idea

is to introduce a new spline basis {Λ̃µ(x)} on the first interval starting at s = sf,min such

that Λ−pl
(0) = 1 and Λi(0) = 0, i = −pl + 1,−pl + p. In this way only one spline has

a non-zero value at the first grid point and it becomes much easier to apply boundary

conditions. The new basis can be found by writing that
∑

µ φµΛµ =
∑

µ φ̃µΛ̃µ on the first

p grid points. The new basis is Λ̃µ = SLΛµ, with:

SL =




1
P p

p (0)
0

−~w I


 (A.45)

~w =
(
Pp−1(0)

P p
p (0)

Pp−2(0)

P p
p (0)

... P2(0)
P p

p (0)

)
(A.46)

The same method applies for the right boundary of the domain. If SL is the transformation

matrix on the left side of the domain, then the transformation matrix on the right side of

the domain, SR is simply given by:

(sr)ij = (sl)(−i+p+1)(−j+p+1) (A.47)

For cubic splines, SL and SR are:

SL =




6 0 0

−4 1 0

−1 0 1


 , SR =




1 0 −1

0 1 −4

0 0 6


 (A.48)

On Fig. A.3, the new cubic spline basis is represented. The linear system in the new basis

is:




SLBS
t
L SLC SLDS

t
R

EStL F GStR

SRHS
t
L SRI SRJS

t
R







~̃u

~̃v

~̃w


 =




SL~c

~d

SR~e


 (A.49)
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Figure A.3: Modification of cubic splines at s = sf,min.

Where the finite element matrix A and the charge assignment vector ~b have been formally

written as:

A =




B C D

E F G

I J K


 ,~b =




~c

~d

~e


 (A.50)

When s = 0 is included in the simulation domain, unicity of the potential is applied:φ(s =

0, θ∗, ϕ) = φaxis ∀θ∗, ϕ. The linear system is modified as follows:




1 0 ... 0 0 0 ... 0

0 1 ... 0 0 0 ... 0

... ... ... ... ... ... ... ...

0 0 ... 1 0 0 ... 0

0 0 ... 0
∑Nθ∗

i,j=1 ai,j
∑Nθ∗

i=1 ai,Nθ∗+1 ...
∑Nθ∗

i=1 ai,Ntot

0 0 ... 0
∑Nθ∗

j=1 aNθ∗+1,j aNθ∗+1,Nθ∗+1 ... aNθ∗+1,Ntot

... ... ... ... ... ... ... ...

0 0 ... 0
∑N

j=1 aNtot,j aNtot,Nθ∗+1 ... aNtot,Ntot







φ̂1

φ̂2

...

φ̂Nθ∗−1

φ̂Nθ∗

φ̂Nθ∗+1

...

φ̂Ntot




=




0

0

...

0
∑Nθ∗

i=1 bi

bN+1

...

bNtot




(A.51)

Where Ntot is the total number of unknowns. It has been obtained after defining a matrix

transformation that leaves the φ̂Nθ∗
coefficient unchanged and cancels the coefficients φ̂1

205



to φ̂Nθ∗−1. After the solve the coefficient φ̂Nθ∗
is copied into the coefficients φ̂1 to φ̂Nθ∗−1.

At s = sf,max, the Dirichlet boundary condition φ(sf,max, θ∗, ϕ) = 0 is applied. The system

is modified as follows:


B 0

0 I




~u
~v


 =


~c

0


 (A.52)

where ~v contains the Nθ∗ unknowns at s = sf,max and I is the Nθ∗ ×Nθ∗ identity matrix.

A.5 Discretization of the FEM matrix for the field-

aligned-solver

A general matrix A = {{a}jk} of size Nθ∗ ×Nθ∗ reads in Fourier space:

ãmm′ =
1

Nθ∗

Nθ∗−1∑

j,k=0

ajk exp

(
−2πi

Nθ∗

(jm− km′)

)
(A.53)

Using the decomposition (A.14), the derivation is presented for A1 and will be gener-

alized to the whole matrix A. The Fourier representation of A1 is computed starting

from Eq. (A.17):

Ãlwa,1
jm,j′m′ =

∆θ∗∆s

Nθ∗

Ns−1∑

J=0

ng∑

qs,qθ∗=1

gqθ∗gqsΛj(sJqs)Λj′(sJqs)B̃
1
mm′(sJqs, qθ∗) (A.54)

B̃1
mm′(sJqs, qθ∗) =

Nθ∗−1∑

K=0

Nθ∗−1∑

k=0

Nθ∗−1∑

k′=0

Jθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)
Λk(θ∗Kqθ∗ )Λk′(θ∗Kqθ∗ ) ×

exp

[
− 2πi

Nθ∗

(mk −m′k′)

]
(A.55)

By using Eq. (A.19), one has:

B̃1
mm′(sJqs, qθ∗) =

Nθ∗−1∑

K=0

Nθ∗−1∑

k=0

Nθ∗−1∑

k′=0

Jθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)
Λmod(k−K,Nθ∗)(∆θ∗pqθ∗ ) ×

Λmod(k′−K,Nθ∗)(∆θ∗pqθ∗ ) exp

[
− 2πi

Nθ∗

(mk −m′k′)

]
(A.56)
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Now the index substitution k → k + K, k′ → k′ + K is applied. The modulo can be

removed:

B̃1
mm′(sJqs, qθ∗) =

Nθ∗−1∑

K=0

Nθ∗−1∑

k=0

Nθ∗−1∑

k′=0

Jθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)
Λk(∆θ∗pqθ∗ )Λk′(∆θ∗pqθ∗ ) ×

exp

[
− 2πi

Nθ∗

(mk −m′k′ +mK −m′K)

]
(A.57)

The J dependence in the splines has been removed. It is in fact the convolution theorem.

B̃1
mm′(sJqs, qθ∗) =

Nθ∗−1∑

K=0

Jθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)
exp

[
− 2πi

Nθ∗

K(m−m′)

]
×

Nθ∗−1∑

k=0

Λk(∆θ∗pqθ∗ ) exp

[
− 2πi

Nθ∗

km

]
×

Nθ∗−1∑

k′=0

Λk′(∆θ∗pqθ∗ ) exp

[
− −2πi

Nθ∗

k′m′

]
(A.58)

The construction of B̃1
mm′(sJqs, qθ∗) has been reduced to three separate Fourier transforms.

The splines are evaluated at ∆θ∗pqθ∗ , which is in the first interval. Therefore the sums

over k, k′ reduce to p+ 1 terms:

B̃1
mm′(sJqs, qθ∗) =

Nθ∗−1∑

K=0

Jθ∗sϕ(sJqs, θ∗Kqθ∗ )
en0(sJqs)

Te(sJqs)
exp

[
− 2πi

Nθ∗

K(m−m′)

]
×

Nθ∗∑

k=0

p∑

uk=0

P p
p−uk

(pqθ∗ ) exp

[
− 2πi

Nθ∗

km

]
δk,mod(−pl+uk,Nθ∗ ) ×

Nθ∗∑

k′=0

p∑

uk′=0

P p
p−uk′

(pqθ∗ ) exp

[
2πi

Nθ∗

k′m′

]
δk′,mod(−pl+uk′ ,Nθ∗) (A.59)

which gives:

B̃1
mm′(sJqs, qθ∗) = C̃1

mm′(sJqs, qθ∗)Z̃
0
m(qθ∗)Z̃

0†
m′(qθ∗) (A.60)

With:

C̃w
mm′(sJqs, qθ∗) =

Nθ∗−1∑

K=0

Cw(sJqs, θ∗Kqθ∗ ) exp

[
− 2πi

Nθ∗

K(m−m′)

]
(A.61)

Z̃a
m(qθ∗) =

p∑

uk=0

da

dya
P p
p−uk

(pqθ∗ ) ×

exp

[
− 2πi

Nθ∗

mod(−pl + uk, Nθ∗)m

]
(A.62)
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It is now easy to generalize the discretized version of Ãjm,j′m′ :

Ãjm,j′m′ =

nA∑

w=1

Ns−1∑

J=0

ng∑

qs,qθ∗=1

p∑

uj ,uj′=0

∆s
1−aw

j −aw
j′∆θ

1−aw
k −aw

k′
∗

Nθ∗

gqsgqθ∗ Z̃
aw

k
m (qθ∗)Z̃

aw
k′
†

m′ (qθ∗)

da
w
j

dxa
w
j
P p
p−uj

(pqs)
d
aw

j′

dx
aw

j′
P p
p−uj′

(pqs)C̃
w
mm′(sJqs, qθ∗)δj,J−pl+uj

δj′,J−pl+uj′

(A.63)

Where the {awj }, {awj′}, {awk }, {awk′} coefficients are defined in (A.25). The zonal flow matrix

ÃZFjm,j′m′ is obtained in a similar way:

ÃZFjm,j′m′ = −∆s∆θ2
∗

Nθ∗

Ns−1∑

J=0

ng∑

qs,qθ∗ ,rθ∗=1

p∑

uk,uk′=0

gqsgqθ∗grθ∗
2πen0(sJqs)

Σ(sJqs)Te(sJqs)
×

P p
p−uk

(pqs)P
p
p−uk′

(pqs)J̃
†
m′(sJqs, qθ∗)J̃m(sJqs, rθ∗)Z̃

0†
m′(qθ∗)Z̃

0
m(rθ∗) ×

δj,J−pl+uk
δj′,J−pl+uk′

(A.64)

J̃m(sJqs, rθ∗) =

Nθ∗−1∑

K=0

Jθ∗sϕ(sJqs, θ∗Kqθ∗ ) exp

[
− 2πi

Nθ∗

K(m−m′)

]
(A.65)

Both matrices Ã and ÃZF are hermitian and positive definite. In practice ORB5 computes

and stores the poloidal modes inside a field-aligned filter of width 2∆̃m + 1: Ã depends

on the toroidal mode number.

A.6 Boundary conditions for the field-aligned solver

The boundary conditions must be revisited when the matrix is expressed in Fourier space.

In fact, the spline transformations using SL and SR matrices (see Annex A.4) remain valid

because they act in the radial direction, which is not affected by the poloidal Fourier

transform. The boundary conditions at the plasma edge are also not modified. One must

however express the unicity at the magnetic axis in Fourier space. In real space, the
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system must be modified according to Eq. (A.51):




1 0 ... 0 0 0 ... 0

0 1 ... 0 0 0 ... 0

... ... ... ... ... ... ... ...

0 0 ... 1 0 0 ... 0

0 0 ... 0
∑Nθ∗

i,j=1 ai,j
∑Nθ∗

i=1 ai,Nθ∗+1 ...
∑Nθ∗

i=1 ai,Ntot

0 0 ... 0
∑Nθ∗

j=1 aNθ∗+1,j aNθ∗+1,Nθ∗+1 ... aNθ∗+1,Ntot

... ... ... ... ... ... ... ...

0 0 ... 0
∑N

j=1 aNtot,j aNtot,Nθ∗+1 ... aNtot,Ntot







φ̂1

φ̂2

...

φ̂Nθ∗−1

φ̂Nθ∗

φ̂Nθ∗+1

...

φ̂Ntot




=




0

0

...

0
∑Nθ∗

i=1 bi

bN+1

...

bNtot




(A.66)

The term
∑Nθ∗

i,j=1 ai,j is equal to Nθ∗ ã00 and the term
∑Nθ∗

i=1 is equal to Nθ∗b
(0): imposing

unicity on the axis means retaining only the m = 0, m′ = 0 component of the matrix and

the m = 0 component of the perturbed density at m = 0 at s = 0. Then, the unicity

boundary conditions introduce additional terms of the form

Nθ∗−1∑

k′=0

Ajk,j′k′ =

Nθ∗−1∑

m=0

exp

[
− 2πi

Nθ∗

km

]
Ajm,j′0 (A.67)

The Fourier transform of this vector is Ajm,j′0, therefore the linear system must be mod-

ified as follows:




ã0,0 0 ... 0 ã0,N+1 ... ã0,Ntot

0 1 ... 0 0 0 ... 0

... ... ... ... ... ... ... ...

... 0 ... 1 0 0 ... 0

0 0 ... 0 1 0 ... 0

ãN+1,0 0 ... 0 0 aN+1,N+1 ... aN+1,Ntot

... ... ... ... 0 ... ... ...

ãNtot,0 0 ... 0 0 aNtot,N+1 ... aNtot,Ntot







û1

û2

...

ûN−1

ûN

ûN+1

...

ûNtot




=




b̃0

0

...

0

0

bN+1

...

bNtot




(A.68)

This is true only if m = 0 is included in the field-aligned filter. If it is not, then ã0,0 must

be replaced by 1 and ã0,N+1, ..., ã0,Ntot as well as ãN+1,0, ..., ãNtot,0 must be replaced by 0.

The conclusion is that the unicity condition in real space is equivalent to retaining only

the m = 0 component in Fourier space.
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