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Abstract 9 10 11 12 13 14 15 16 17 18 

Laboratory column experiments involving steady flow in homogeneous soil are often analyzed assuming that the flow is spatially uniform in any plane transverse to the longitu-dinal axis aligned with the column centerline. Axisymmetric steady flow in such a column was analyzed to determine the impact of radially nonuniform boundary conditions at the column entrance and exit planes. A general solution to the governing Laplace equation was derived taking into account arbitrary functional forms of the imposed head and flux boundary condi-tions. Specific solutions were deduced for smoothly varying and abrupt disturbances at the boundaries. The solutions were used to derive expressions for the length scale over which the induced flow nonuniformities are dissipated within the column. For soil columns with an as-pect ratio (column radius/length) less than about ଵଷ, the maximum dissipation length scale is 
in all cases less than ଷଶ

19 
ܴ, where ܴ is the column radius. For practical purposes it is sufficient to take ܴ as the dissipation length scale. Consequently, no matter what the radial variation in the boundary condition, flow will be uniform within the column if at each end a baffle zone with length equal to ܴ is incorporated into the soil column design. The results can be applied to homogeneous anisotropic soil via a simple scaling. Published experimental results showing nonuniform flow near the entrance and exit boundaries were found to be consistent with the theoretical results. 

20 21 22 23 24 25 26 
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 1. N
ଶ   otation 31 ܥଵ, Coefficients appearing in the separationn a Fourier-Bessel series  ܥ -of-variables solution ܦ௜ ݅୲୦ coefficient iE  Relative error ourier-Bessel seriesܧ௜  ݅୲୦ coefficient in a F L݂  Arbitrary function series௜࣠  ݅୲୦ coefficient in a Fourier-Bessel  function݃  Head gradient, arbitraryeaH  H viside step function,on of the first kindJ௩  ݒ୲୦-order Bessel functiܭ  

כ
Hydraulic conductivity כ LT

-1
௥ܭ1-   

ݎ Hydraulic conductivity in the  כ direction (anisotropic soil) uctivity in the כݖ direction (anisotropic soil) LTT-1ܭ௭  Hydraulic cond Lܮ Column length r an anisotropic soil LLכܮ  Same as ܮ except foܯ  Dissipation factor ݍ௥    Darcy flux in the ݎ direction LT
-1
௭ݍ1-

଴௩   Darcy flux in the ݖ direction LTT-1ݍ௭ୀ௔ Average Darcy longitudinal flux at ݖ = 0 Lݎ  Radial distance from column centerline  boundary Lݎ௡   Radius of the orifice at the ݖ = 0 columnt for an anisotropic soil Lכݎ   Same as ݎ excep Lܴ  Column radius LLܴכ ࣬  Same as ܴ except for an anisotropic soilIntermediate function used in the separation-of-variables solution 
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ݖ     Distance from end of soil columnropic LLכݖ ܼ  Same as ݖ except for an anisot soilermediate function used in the separation-of-variables solution IntGreek   root of Jଵߙ௜   ݅୲୦ non-negative߶    

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

Hydraulic head  ydraulic head applied at ݖ = ܮ L߶௅ ௩  Boundary condition, h L߶௅௔߰  Average head at ݖ = Stokes stream functionܮ LL3T-1
2. Introduction Laboratory soil columns are used frequently to determine experimentally vadose zone and aquifer hydraulic and chemical transport properties (e.g., [8][15][21][25][38]). Soils used in such experiments can be undisturbed field samples or, alternatively, samples that are pre-treated and, perhaps, homogenized prior to use. Data collected from laboratory experiments are usually analyzed assuming one-dimensional flow conditions exist in the soil column (e.g., [4][24][33][34][37]), i.e., variations in hydraulic and other properties, as well as the flow within the column, are taken as negligible. Despite a large body of research and applications of soil column experiments dating back at least 50 y (e.g., [7][10][17]), research on their use continues. For instance, Massabò et al. [26] reported a laboratory column method for deter-mination of transverse solute dispersivity. Their method relies explicitly on uniform back-ground flow. Recently, Wang and Persaud [36] investigated solute injection into an already estab
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lished spatially uniform flow field in a soil column. Uniform steady flow throughout a laboratory column, although conceptually simple and of great practical value, is difficult to attain in practice. This is particularly so for experiments where a high water flux is specified at a boundary since intuitively it would be expected that 
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 any spatial variability in the applied flux would persist a substantial distance into the soil. Specification of the steady water flux through a soil column is beneficial to investigate, for ex-ample, velocity-dependent dispersion in porous media (e.g., 
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 
66 67 68 69 70 71 

[2][13][28][29]) or water phase/soil reactive chemistry (e.g., [3][27][35]). For specified-flux experiments, water is in-jected into the column at a fixed rate, typically using a supply tube with a diameter less than the column apparatus (Fig. 1). Unless the injected flow is baffled before entering the soil, the flux into the soil will be nonuniform [22]. Even experiments that are designed with fixed hy-draulic head conditions at the column entrance and exit can be affected by nonuniformity in the flow field due to local variability in the materials comprising the boundaries of the column apparatus through which the water flows [32], or because water in the supply reservoir ad-joining the column is not hydrostatic. Given that soil column experiments utilizing homogeneous media are common, it is beneficial to understand quantitatively factors that affect the results obtained from them. Here, the flow patterns at the soil column entrance and exit are investigated. The specific goal of this study is to model explicitly nonuniform boundary conditions in steady-flow soil column experiments and, based on the model, examine features of induced nonuniform flow fields within the soil column, in particular the spatial extent over which disturbances introduced at the boundaries dissipate. 
3. Theoretical model Axisymmetric flow in a cylinder containing a homogeneous soil, as depicted in Fig. 1, is considered. The assumption of symmetry about the ݖ-axis means that, for planes at fixed ݖ, radial, but not angular, variations are permitted. Steady flow in homogeneous soil is governed by Laplace’s equation (e.g., [6]), which in axisymmetric cylindrical coordinates is given by (e.g., [31]): 
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ݎ∂ 172  ݎ∂ ൬ݎ ൰߶∂ݎ∂ + ߶ଶ∂ଶݖ∂ = 0, 0 < ݎ < ܴ, 0 < ݖ < ,ܮ (1)where ߶ ؠ ,ݎ)߶ ,ݎ) and radius ܴ [L], and the coordinate system origin is located at [L] ܮ is the longitu-dinal distance. The soil column has length [L] ݖ is the radial distance and [L] ݎ ,is the hydraulic head [L] (ݖ (ݖ = (0,0), as shown in Fig. 1. Eq. 

 Fig. 1. Diagram of the soil column, coordinate axes and boundary conditions used in the analytical model. The head and flux conditions are constant in time, but vary arbitrarily with ݎ. In addition to the general head and flux conditions, at ݖ = 0 a particular flux condition is indicated, i.e., an inlet/exit port of radius ݎ௡, within which the longitudinal flux is spatially uniform and steady. For this case, in the region ݎ௡ ൑ ݎ < ܴ, the longitudinal flux is zero. 

73 74 75 (1) is solved subject to: 
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ݎ∂߶∂  = 0, ݎ = 0, 0 < ݖ < ,ܮ ݎ∂߶∂ (2) = 0, ݎ = ܴ, 0 < ݖ < ߶∂ (3) ,ܮ = ,(ݎ)݃ 0 < ݎ < ܴ, ݖ =  76ݖ∂ (4) 0
77 78 79 80 81 82 83 84 85 86 87 88 89 90 

and ߶ = ߶௅(ݎ), 0 < ݎ < ܴ, ݖ = ݖ Eq. (2), arising from the axial symmetry, states that there is zero flux across the centerline of the column, while Eq. (3) accounts for the column’s solid wall where the radial flux is zero (Fig. 1). At (5) .ܮ = 0 the gradient is specified. Since this is proportional to the flux in the ݖ-direc-tion, using Eq. (4) the longitudinal flux at ݖ = 0 is specified as an arbitrary function of ݎ. The sign of the flux can be positive or negative, thus in Fig. 1 either column end can be the column entrance or exit, or flow can enter and exit both ends simultaneously, depending on the func-tions in Eqs. (4) and (5). Since, for steady flow, the total flux across any plane defined by a fixed value of ݖ is constant, it is redundant to specify the flux at both ends of the column. Thus, at ݖ = ݖ direction, where the principle directions are assumed to be aligned with the column’s longitudinal and transverse axes. If the aniso-tropic homogeneous medium variables are identified with an asterisk, then the mapping be-tween the scaled and asterisked models is given byכݎ in the כ௥ܭ direction and כݖ in the כ௭ܭ in Eq. (5). Eqs. (1) – (5) are written for an isotropic medium. However, the same model can be considered as being a scaled version of an anisotropic homogeneous medium with hydraulic conductivity ݎ the hydraulic head is given as an arbitrary function of ܮ = ,כݖ ܮ = ,כܮ ඥܭ௥ݎכ = ඥܭ௭כݎכ and ܭ௥91ܴכ = ඥܭ௭כܴכ. The solution satisfying Eqs. 92 93 (1) – (5) is detailed in Appendix 1 as: 
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 ߶ܴ = 2ܴଶ න ቈ߶௅(ݎ)ܴ െ ܮ) െ ܴ(ݖ ቉(ݎ)݃ ோݎdݎ
଴

െ ෍ ௜ߙ௜ܦ  sinh ቀߙ௜ ܮ െ ܴݖ ቁ െ ௜ܴܧ cosh ቀߙ௜ coshܮቁݖܴ ቀߙ௜ ܴቁ J଴ ቀߙ௜ ቁݎܴ ,ஶ  ௜ୀଶwhere J଴ is the zero-order Bessel function of the first kind and ߙ௜ is the ݅୲୦ nonnegative root of the first-order Bessel function of the first kind, Jଵ. As mentioned in Appendix 

(6) 

94 95 96 97 
 ,.respectively, in Eqs. (4) and (5), i.e ,(ݎ)and ߶௅ (ݎ)݃ ௜ in Eq. (6) can be calculated from Eq. (40) upon specification of the functional forms ofܧ ௜ andܦ ,1

௜ܦ = 2J଴ଶ(α௜)ܴଶ න J଴(ݎ)݃ ቀߙ௜ ቁݎܴ ோݎdݎ
଴ , ݅ = 2, 3, ڮ (7) 

98 and 
න ߶௅(ݎ)ܧ௜ܴ = 2Jଶ( ) ଶ଴ α௜ ܴ ܴோ J଴ ቀߙ௜ ݎ
଴ ܴቁ ,ݎdݎ ݅ = 2, 3, .ڮ (8) 

All variables with dimensions of length become dimensionless by scaling with ܴ, e.g., geometric variables controlling the solution can be taken as ௭ோ
99 , ௅ோ and ௥ோ. An alternative would be to use ܮ as the normalizing length, although ܴ is preferred here. The dimension of time enters the problem specification via the hydraulic conductivity, ܭ, and the applied flux (resulting from specifying the gradient) at the ݖ = 0 boundary. Therefore, the natural scaling variable to remove the time dimension is ܭ. The results are presented in dimensional form to facilitate their physical interpretation. However, for analysis of the results presented below, the scaling with bles and hydraulic head is useful, as is the scaling of flux by ܭ. 

100 101 102 103 104 105 106 107 108 109 

 ܴ of geometrical varia3.1. Stokes stream function The Darcy flux components in the ݖ and ݎ directions are calculated from ߶ in Eq. (6) as, respectively (e.g., [6]): 
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ݍ  ,ݎ) (ݖ = െܭ ߲Ԅ߲ݖ = ݎ1 ݎ߲߲߰  (9) ௭110 and 
,ݎ)௥ݍ (ݖ = െܭ Ԅ߲ݎ߲ = െ 1ݎ ݖ߲߲߰ . (10) The second equalities in Eqs. (9) and (10) define the Stokes stream function, ߰ ؠ ,ݎ)߰ Contours of constant ߰ are perpendicular to contours of constant ߶. From Eqs. (6), (9) and (10), ߰ (or ట௄ோమ in dimensionless for .(e.g., 111 112 [5][19]) (ݖ  m) is:
െ ଶܴܭ߰

113 
= ଶܴସݎ න ݎdݎ(ݎ)݃ + ݎܴ ෍ ௜ߙ௜ܦ  cosh ቀߙ௜ ܮ െ ܴݖ ቁ + ௜ܴܧ sinh ቀߙ௜ ቁcoshݖܴ ቀߙ௜ ቁܮܴ Jଵ ቀߙ௜ ቁݎܴ .ஶ

௜ୀଶ
ோ

଴  (11) 

4. Applications The above results are used to provide exact solutions for hydraulic head and Stokes stream function for two applications involving nonuniform boundary conditions. The first in-volves smooth variations at ݖ = 0 and ܮ and the second an abrupt variation. In both cases the longitudinal length scale of the variations induced on the flow in the soil column is evaluated analy

114 115 116 117 118 119 120 121 122 123 124 125 

tically. 4.1. Smooth variation in boundary conditions In this section a simple special case is used to provide some insight into the above ana-lytical results. Because Bessel functions are orthogonal (e.g., [39]), choosing boundary condi-tions in the form of a suitable Bessel function means that the summations appearing in the coefficient equations (7) and (8) are zero except for a single term. For this purpose, the head at ݖ =  is t ken n E . ܮ( a  i q  (5  as: 
,ݎ)߶ (ܮ െ ߶(ܴ, )(ܮ = J଴ ቀߙ௜ ݎܴ ቁ െ J଴(ߙ௜) , 0 < ݎ < ܴ, (12)߶(0, (ܮ െ ߶ ܴ, (ܮ 1 െ J଴(ߙ௜)
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where ߶(0, ,ܴ)߶ and (ܮ ,ݎ)߶ denote the imposed values of (ܮ ݎ at (ܮ = 0 and ܴ, respectively. The most useful case is perhaps for ݅ = 2, for which case the right side of Eq. 126 127 (12) varies mo-
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 notonically with ݎ and lies in the range (0,1). Consequently, the applied head at ݖ = ,lies in the range bounded by ߶(0 ܮ ,ܴ)߶ and (ܮ ,By adjusting ߶(0 .(ܮ ,ܴ)߶ and (ܮ  Eq. 128 129 130 131 132 133 134 135 136 ,(ܮ

(12) gives a monotonically increasing or decreasing head profile with increasing ݎ. For ݅ = 3, 4, ,the function on the right side of Eq. (12) is nonmonotonic. To analyze the effect of the boundary conditions, it is sufficient to take the monotonic case in Eq. (12). Note that, in applying the boundary condition (12), the absolute values of ߶(0 ,ڮ ,ܴ)߶ and (ܮ are irrelevant since the flow is governed by head differences and, in any case, the head is measured relative to an arbi-trary ndreference pressure a (ܮ  elevation. The averag  ߶௅௔௩, appl d to rface at ݖ = ,is given by: e head ܮ ie  the su
߶௅௔௩ܴ = ଶܴߨ1 න න ,ݎ)߶ ோଶగܴ(ܮ dθݎdݎ = 2ܴଶ න ,ݎ)߶ ோܴ(ܮ

଴ .ݎdݎ (13)଴଴137 U g n Eq. sin Eq. (12) i )߶௅௔௩ െ ߶(ܴ, )(ܮ
(13  gives: 

= െ J଴(ߙ௜)߶(0, (ܮ െ ߶ ܴ, (ܮ 1 െ J଴(ߙ௜), (14)where ߶(0, ,ܴ)߶ and (ܮ ݖ are the imposed heads at (ܮ = 0 and ܮ, respectively. For ݅ = 2, the right side of Eq. 138 139 140 141 142 143 

(14) is approximately 0.3. Due to the circular geometry and the monotonic change for this case, the average head is dominated by the head applied at ݎ = ܴ rather than that at ݎ = 0. The same functional form as for the head boundary condition is chosen for the flux con-ditio  a plied at ݖ = 0. F m , 9)n p ro  Eqs. (4) (
െ(ݎ)݃ܭ െ ,ܴ)௭ݍ 0)( (

 and (12) this flux is: 
= J଴ ቀߙ௝ ݎܴ ቁ െ J଴൫ߙ௝൯ , 0 < ݎ < ܴ. ௭ݍ(15) 0,0) െ ௭ݍ ܴ, 0) 1 െ J଴൫ߙ௝൯
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In Eq. (15), the applied longitudinal flux ݍ௭(ݎ, 0) = െ(ݎ)݃ܭ lies in the range bounded by ݍ௭(0,0) and ݍ௭(ܴ, 0), where ݍ௭(0,0) is the imposed longitudinal flux at ݎ = 0 and ݍ௭(ܴ, 0) is that at ݎ = ܴ. In the solution presented below, ߙ௜ and ߙ௝ are allowed to take different values in Eqs. 

144 145 146 147 (12) and (15) although in the analysis this is not particularly useful. The flow direction 
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 depends on the signs of ݍ௭(0,0) and ݍ௭(ܴ, 0). If both are positive then the flow is in the direc-tion of increasing ݖ and vice versa. The interpretation of average flux calculated from Eq. 148 149 150 151 
(15) is the same as that for the average head discussed above. In particular, corresponding to Eq. (1  flux, ݍ௭ୀ௔௩4), the average ଴, is: ݍ௭ୀ଴௔௩ െ ,ܴ)௭ݍ ௭(0,0ݍ(0 = െ J଴(ߙ௜)) െ ,ܴ)௭ݍ 0) 1 െ J଴(ߙ௜). (16)152 With the ߶ െ ߶(ܴ, ,0)߶(ܮ (ܮ െ ߶(ܴ, (ܮ

boundary conditions as specified in Eqs. (12) and (15), Eq. (6) becomes: 
= ܮ) െ ,0)߶](ݖ (ܮ െ ߶(ܴ, [(ܮ ,ܴ)௭ݍ ܭ(0
+ 11 െ J଴(ߙ௜) ቎cosh ቀߙ௜ ቁcoshݖܴ ቀߙ௜ ቁܮܴ J଴ ቀߙ௜ ቁݎܴ െ J଴(ߙ௜)቏
+ ௭(0,0)ݍ] െ ,ܴ)௭ݍ ,0)߶]ܭܴ[(0 (ܮ െ ߶(ܴ, 1ൣ[(ܮ െ J଴൫ߙ௝൯൧ ቎sinh ቀߙ௝ ܮ െ ܴݖ ቁcosh ቀߙ௝ ቁܮܴ J଴ ቀߙ௝ ௝ߙቁݎܴ
െ ܮ) െ ܴ(ݖ J଴൫ߙ௝൯቏. 

(17) 

153 F m Eqro . )
ଶܴܭ߰

(11 , the stream function corresponding to Eq. (17) is: 
= ଶ2ܴଶݎ ቊݍ௭(ܴ, ܭ(0 െ ௭(0,0)ݍ] െ ,ܴ)௭ݍ 0)]J଴൫ߙ௝൯1ൣܭ െ J଴൫ߙ௝൯൧ ቋ

+ ݎܴ ቐ[ݍ௭(0,0) െ ,ܴ)௭ݍ 1ൣܭ[(0 െ J଴൫ߙ௝൯൧ߙ௝ cosh ቀߙ௝ ܮ െ ܴݖ ቁcosh ቀߙ௝ ቁܮܴ Jଵ ቀߙ௝ ݎܴ ቁ
െ [Ԅ(0, (ܮ െ Ԅ(ܴ, 1]ܴ[(ܮ െ J ߙ) )] Jଵ ቀߙ௜  .ቁቑݎܴ

(18) 
sinh ቀߙ௜ coshܮቁݖܴ ቀߙ௜ ܴቁ଴ ௜

154 155 Eq. (17) is now used to evaluate the effect of the nonuniform boundary conditions at ݖ = 0 and ܮ. The solution is analyzed for the case where the soil column is assumed to have a 
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 156 157 158 
small aspect ratio, i.e., ோ௅ ا 1, so that the nonuniformities introduced by the boundary condi-tions do not interact. This assumption means that each boundary condition can be examined independently, with the other boundary condition considered as being uniform. An estimate of the ோ value of ௅ for which the boundary conditions do not interact is deduced also. Consider first the head condition, Eq. 159 160 161 162 163 164 

(14). As noted above, for ݅ = 2 the right side of this condition has a range of unity. The disturbance is at its maximum at ݖ = ݖ For fixed .(i.e., in-creasing distance away from the boundary) ݖ where the boun-dary condition is applied. Inside the column, the head differences induce flow leading to dissi-pation of the disturbance, the magnitude of the latter decreasing with decreasing ,ܮ ൑ ௭(0,0)ݍ the range of the head variation normalized by the initial disturbance is థ(଴,௭)ିథ(ோ,௭)థ(଴,௅)ିథ(ோ,௅). Taking ,ܮ = ,ܴ)௭ݍ 0) to remove the impact of variations in the boundary condition at ݖ = 0, and using the aspect ratio condition,  r ݅ = 2: 
165 166 167 Eq. (17) yields fo߶(0, (ݖ െ ߶(ܴ, (ݖ ൎ exp ൬െߙ ܮ െ ,0)߶ݖ (ܮ െ ߶(ܴ, (ܮ ଶ ܴ ൰. (19)An exact expression for this quantity is derived in Appendix 3. If the initial disturbance is con-sidered as dissipated when it is reduced by, say, a factor of ܯ, then from Eq. 168 169 170 (19) this occurs at: 

ݖ = ܮ െ ܴ ln(ܯ). (20)ߙଶ171 
172 173 174 175 

Taking, e.g., ܯ = 50 gives the remarkably simple result: ݖ ൎ ܮ െ ܴ, (21)i.e., the disturbance propagates a longitudinal distance ܴ from the boundary at ݖ = ܯ into the column. For ܮ = 100, Eq. (21) becomes ݖ ൎ ܮ െ 1.2ܴ. The disturbance due to a nonuniform flux condition at ݖ = 0 and a uniform head condi-tion at ݖ =  :is treated similarly. The result is (Appendix 3) ܮ
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 g h

Fig. 2. Darcy flux vectors (arrows), hydraulic head contours and streamlines (lines parallel to flux vectors) calculated for the solution presented in §4.1, Eqs. (17) and (18). Parameters used: ݅ = ݆ = 2, ௤೥(଴,଴)௄ = െ3, 
௤೥(଴,ோ)௄ = 2, థ(଴,௅)ோ = െ2.3 and థ(ோ,௅)ோ = െ1. The sequence of plots a-h shows the effect of decreasing the aspect 
ratio, ோ௅. From ௅ோ = 2 to ௅ோ = 2.5 (plots d and e) the disturbances from each boundary no longer interact whe-
reas the interaction is clear for plots a – c. For ௅ோ ൒ 3 (plots f – h), the disturbed zones at each end of the flow domain do not, for practical purposes, interact, and in each case a zone of uniform flow is evident within the column. ߶(0, (ݖ െ ߶(ܴ, (ݖ ൎ exp ቀെߙ (0,0)߶ݖ െ ߶(ܴ, 0) ଶ ܴቁ. (22)Perhaps not surprisingly given Eq. (19), Eq. (22) gives the characteristic distance that the rm flow persists in the column from the boundary at ݖ = 0 is: 176 177 

178 179 180 

nonunifoݖ ൎ ܴ, where (23), as above, a factor of 50 reduction has been used. Below Eqs. (1) – (5) the scaling to an anisotropic homogeneous medium (denoted by an asterisk) was given. For that case, Eq. (23) becomes: 
כݖ ൎ ඨܭ௭ܭכ௥כ (24) .כܴ
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 181 182 183 184 185 186 187 

As the transverse hydraulic conductivity, ܭ௥כ, increases relative to the longitudinal hydraulic conductivity, ܭ௭כ, the dissipation length scale decreases. Physically, this is in agreement with intuition, i.e., as the longitudinal flux decreases relative to the radial flux, the disturbance at-tenuation length scale decreases also. The same interpretation applies to the anisotropic ver-sion of Eq. (21). An example of the head contours, Darcy flux vectors and Stokes stream function calcu-lated from the results in this section is presented in Fig. 2. The plots show the effect of de-creasing the aspect ratio ோ௅ (plot headings show the value of the inverse of the aspect ratio, ௅ோ), with other parameter values given in the caption held constant. The imposed flux at ݖ = 0 changes sign in order to display an extreme case of variability in the flux boundary condition, wherein each boundary acts as both an inflow and outflow boundary. Clearly, both boundary conditions 

188 189 190 191 192 193 194 195 196 197 198 199 200 201 

(12) and (15) induce a degree of complexity in the flow patterns in the regions ad-jacent to each boundary. However, as given by Eqs. (21) and (23), at a distance ݖ ൎ ܴ away from each boundary a uniform flow pattern is established for small enough aspect ratios. In order to evaluate in more detail the dissipation length scale estimates given above, the reduction in maximum radial flux, ݍ௥, with ݖ was examined for the case in Fig. 2. The re-sults were normalized by the corresponding value at ݖ = 0, with results plotted in Fig. 3. This metric was chosen because the maximum radial flux will monotonically decrease as the flow becomes more uniform with ݖ, independent of the form of the disturbance at ݖ = 0. As men-tioned in the Fig. 3 caption, this example was constructed such that the head difference at the ݖ = ݖ ௥ there as atݍ boundary induces the same maximum ܮ = 0. This simply facilitates the interpretation of the plot. The plots in Fig. 3 confirm what is shown in Fig. 2, i.e., up to ௅ோ ൎ 2.5, the boundary disturbances interact, but as the boundaries separate further, the presence of a zone of uniform flow emerges. For example, in Fig. 3, the curve for  ௅ோ

202 203 = 3 shows that there is a zone of uniform flow (as defined by the factor 50 reduction) in the region  1 < ௭ோ
204 < 2.  205 
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4.2. Abrupt variation in the flux condition In §4.1 the boundary conditions modeled smooth variations in the applied head and flux. In this section the extreme case of a discontinuous longitudinal flux at ݖ = 0 is considered, the origin of which is depicted in Fig. 1. This situation arises, of course, when water is added or removed from the column through an orifice with a radius less than the column radius. The 

Fig. 3. Reduction of the maximum radial flux, ݍ௥, normalized by the maximum radial flux at the ݖ = 0 boun-dary, for the plots presented in Fig. 2, as identified by the curve labels showing the values of ௅ோ. Note that the 
case in Fig. 2 was constructed so that the maximum radial flux at ௭ோ = 0 is very close to that at ௅ோ. The factor 50 used in the vertical axis translates the results along the vertical axis such that the horizontal axis marks the transition between a reduction factor of less than 50 (zone below the horizontal axis) and greater than 50 (zone above the horizontal axis). The straight segments of each curve have slopes that are close to േαଶ ൎ േ3.8, confirming the exponential dissipation behavior given by Eqs. (19) and (22). 206 207 208 209 210 
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 discontinuity in flux occurs at the orifice boundary (ݎ = ݖ ௡). Sometimes, experimental col-umns include a baffle region between the column end and the soil. Here, it is assumed that no baffle region exists so that the nonuniform flow induced by the boundary condition can reach its maximum extent within the column. That is, depending on the flow direction, atݎ = 0 the flow enters or exits the column directly in the zone 0 < ݎ < ௡ݎ ௡ (Fig. 1), with the rest of the boundaryݎ ൑ ݎ < ܴ impervious to flow. Variability in the head condition at ݖ =  .is not con-sidered since, as seen in §4.1, for small aspect ratios, the boundary conditions can be ex-amined separately. Thus, the case of the orifice shown in Fig. 1 can be modeled by solving Eq ܮ

211 212 213 214 215 216 217 218 219 (1) subject to Eqs. (2), (3) and: 
െܭ ∂߶ = ܳ ܴଶ [1 െ H(ݎ െ ݎ )], ݖ = 0, 0 < ݎ < ܴ, ݖ∂(25) ௡ଶݎ ௡

 the Heaviside step function, along with: 220 
221 222 223 

where ܳ is constant and H is߶ = ߶௅, ݖ = ,ܮ 0 < ݎ < ܴ, (26)where ߶௅ is a constant. In Eq. (25), the factor containing the Heaviside step function ensures the longitudinal flux in the region ݎ௡ ൑ ݎ < ܴ is zero, as desired. In this same equation, the to-tal flux entering the column is ܴߨଶܳ. The supply/drainage orifice has an area of ݎߨ௡ଶ, so the flux per unit area entering the column is ܳ ோమ௥೙మ, as given in Eq. (25). The solution is again de-
rived from Eq. 

224 
225 (6): 

(߶ െ ߶௅)ܮ ܭܳ = 1 െ ܮݖ + 2ܴଶݎܮ௡ ෍ Jଵ ቀα௜ ௡ܴቁαଶJଶ(αݎ )௜ ଴ ௜
ஶ sinh ቀα௜ ܮ െ ܴݖ ቁ

௜ coshܮܴ ቀα௜ୀଶ ቁ J଴ ቀα௜ ݎܴ ቁ, (27)
with the correspond n tokes stream function: i g S

ܴ߰ܳ ଶ
226 

= ଶ2ܴଶݎ + ݎݎ2 ෍ Jଵ ቀα௜ ௡ܴቁαଶJ଴ଶ(αݎ )௡ ௜ ௜
ஶ cosh ቀα௜ ܮ െ ௜ୀଶܴݖ

ቁܮ Jଵ ቀα௜ .ቁݎܴ (28)cosh ቀα௜ ܴቁ227 228 The semi-infinite solutions corresponding to Eqs. (27) and (28), found for the limit ܮ ՜ ∞, are, respectively: 
 17



 

 

 

ACCEPTED MANUSCRIPT 

 

+ ݖܴ = ௡ݎ2ܴ ෍ Jଵ ቀα௜ ௡ܴቁα௜ଶJ଴ଶ(α௜)ஶݎ
௜ୀଶ exp ቀെα௜ ቁݖܴ J଴ ቀα௜ ቁݎܴ (29)߶ ܴܭ ܳ229 and 

෍ Jଵ ቀα௜ ௡ܴቁଶݎ ଶ߰ ଶ = ଶଶݎ + ܴܳݎ2 2ܴ ௡ݎ α௜ J଴(α௜)ஶ exp ቀെα௜ ݖ
௜ୀଶ ܴቁ Jଵ ቀα௜ ݎܴ ቁ. (30)

Eqs. (29) and (30) show that the disturbance introduced at the boundary ݖ = 0 dissipates away from the boundary according to exp ቀെα௜ ௭ோ
230 ቁ. Since the α௜ are strictly positive and in-crease with ݅, to a first approximation this dissipation is controlled by the first term in the summ ௭
231 232 ations in  Eqs. (29) and (30), i.e., exp ቀെαଶ ோቁ, consistent with what was found in §4.1 Returning to the finite length column, it is assumed as before that it has a small aspect ratio, in which case the summation in Eq. 
233 234 235 236 237 238 239 240 241 242 243 244 

(27) is rapidly convergent except in the vicinity of the boundary at ݖ = 0. This is not surprising since the boundary condition there is a step func-tion. Although this creates a computational issue in calculating solutions in the vicinity of the ݖ = 0 boundary, it does not affect the estimation of the persistence of the nonuniform flux condition within the soil column some distance from it. At ݖ = 0, the discontinuous boundary condition (25) introduces a monotonic head variation of magnitude |߶(0,0) െ ߶(ܴ, 0)|. As shown in the following, the characteristic longitudinal decay length turns out to be identical to that calculated previously, i.e., Eqs. (22) and (23).  This is consistent with Eq. (29), which indi-cates that the first term in the summation dominates its convergence, a property that is checked in some detail below. The result that the dissipation is approximated by exp ቀെαଶ ௭ோቁ is, perhaps, counter-intuitive since the boundary condition 245 246 247 (25) shows that the flux into the column becomes un-bounded as the orifice size decreases, i.e., ݎ௡ ՜ 0. However, the dissipation of this disturbance as it propagates into the column is controlled by the radial flux, which is proportional to డథడ௥ . Because the radial gradient is very large for a large flux, so too is the dissipation rate. 248 249 
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Nonetheless, the conditions given in Eqs. (22) and (23) are based on the magnitude of the dis-turbance relative to its initial magnitude. In the extreme case of a small orifice (ݎ௡ small), the magnitude of disturbance at some distance from the boundary in the column could be large in absolute terms, even though it is small relative to the magnitude of the disturbance at ݖ = 0. This i

a b

c Fig. 4. Darcy flux vectors (arrows), hydraulic head contours (approximately horizontal lines) and streamlines (lines parallel to flux vectors) calculated for the solution presented in §4.2, Eqs. (27) and (28). Parameters used in all plots: ௅ோ = 2, ொ௄ = െ1 and 
థಽோ = 20. The plots show the effect of varying the ra-dius of the orifice, ௥೙ோ , at ݖ = 0 (Fig. 1). Values of ௥೙ோ  used are a: 0.25; b: 0.5; c: 0.75. 

250 251 252 253 254 255 256 257 258 
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mportant case will be considered shortly. An example of the exact results presented in this sub-section can be found in Fig. 4. As described in the figure caption, three cases of the orifice radius (Fig. 1) are considered. Recall that, even though ݎ௡ is varying, the total flux is the same for all cases, i.e., ܴܳߨଶ. Thus the mag-nitude of the flux exiting the column increases with decreasing ݎ௡. In each case, however, visu-



 

 

 

ACCEPTED MANUSCRIPT 

 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 

al inspection of the head contours and streamlines suggests that the dissipation length scale is of the order of the column radius, ܴ. Nevertheless, it is also clear that the spatial variability in the applied flux disappears as ݎ௡ ՜ ܴ. As mentioned above, this figure is based on the decay of disturbances within the column relative to the maximum variation at the ݖ = 0 boundary. In order to examine further the behavior of the orifice-induced disturbance, the relative change in maximum longitudinal flux was calculated analytically. The result is given in Eq. (50). As suggested by the plots in Fig. 4, at any fixed ݖ the maximum longitudinal flux magni-tude is at ݎ = 0, with the minimum at ݎ = ܴ, independent of the flow direction. Eq. (50) was derived for the semi-infinite column solution Eq. (29) rather than the finite domain solution Eq. (27) as the boundary condition at ݖ = ݖ in the latter enforces uniform flow at that boun-dary. That is, this boundary condition acts to reduce any disturbances in the flow. On the oth-er hand, for the semi-infinite domain solution the disturbances emanating from the ܮ = 0 boundary are influenced only by the flow domain, and so represents the worst case in terms of their dissipation. Fig. 5 shows the dissipation of the maximum of the relative longitudinal flux difference as it varies with distance ݖ from the ݖ = 0 boundary, where this quantity is defined by 
଴ஸ௥೙ஸோݔܽ݉ ݈݊ ቂ50 ௤೥(଴,௭)ି௤೥(ோ,௭)௤೥(଴,଴)ି௤೥(ோ,଴)ቃ. Again, the factor 50 included in the natural logarithm scales the re-sult such that the horizontal axis defines a factor 50 reduction from the maximum disturbance at ݖ = 0. The plot shows that the maximum length to achieve a factor 50 reduction is ௭ோ

275 276 ൎ 1.12. Note also that the slope of the line is close to ߙଶ ൎ 3.8, showing again the dominance of the first t
277 278 279 280 281 282 283 284 
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erm in the summation on the right side of Eq. (29). Although the relative difference metric used above provides insight into the dissipation length scale, it was noted above that another applicable criterion is the absolute head differ-ence. That is, if the maximum head difference at a given ݖ is less than a specified value, then the flow is deemed to be uniform. This condition was investigated, again using the semi-infinite solution Eq. (27) so as to consider the maximum propagation of the boundary distur-
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bance. Eq. (27) suggests the appropriate dimensionless form of the head difference as – ݈݊ ቂథ(଴,௭)ିథ(ோ,௭)ோ
285 

௄ொቃ for a centrally located orifice, recalling that at fixed ݖ the maximum and 
minimum heads occur at ݎ = 0 and ܴ. Fig. 6 plots this function as it varies with ௥೙ோ

286 
. As before, the slope of each line in the plot is close to ߙଶ. As ݎ௡ decreases the magnitude of the distur-bance at the orifice boundary increases, and so the dissipation length scale increases also. The 

Fig. 5. Maximum relative difference in longitudinal flux as it varies with ௭ோ, relative to that at ݖ = 0, for the orifice boundary condition considered in §4.2. The flux was calculated using Eq. (29). For any ݖ, the maximum is taken over ݎ௡ in the range 0 ൑ ௥೙ோ ൑ 1. The factor 50 in the relative flux causes the horizon-tal axis to locate where a factor 50 reduction in the maximum flux is achieved, here at ௭ோ ൎ 1.12. No mat-ter what the size of the orifice (i.e., value is used for ௥೙ோ ), for ௭ோ 1.12  ذ the reduction in the relative maxi-mum flux is always in excess of 50. 

Fig. 6. Normalized maximum head difference at given ݖ for different values of the orifice size, ௥೙ோ , based on Eq. (29). The values for each line in the plot are, from top to bottom, ௥೙ோ . = 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.25, 0.001. The horizontal line within the plot shows where the normalized head difference equals 0.02. Note that the various curves for each value of ௥೙ோ  are close to linear with slopes close to ߙଶ ൎ 3.8 

287 288 289 

 21



 

 

 

ACCEPTED MANUSCRIPT 

 290 291 horizontal line in Fig. 6 shows where this normalized head difference is 0.02, which could be taken as a realistic criterion for effectively uniform flow. The smallest value of ݎ௡ used in Fig. 6 is ௥೙ோ = 0.001. However, the maximum length scale occurs in the limit of ݎ௡ ՜ 0. In this limit, the normalized head difference of 0.02 (െ݈݊(0.02) ൎ3.9) is reached at ௭ோ

292 293 ൎ 1.24. For the same case of ݎ௡ ՜ 0, the normalized head difference of 0.01 
(െ݈݊(0.01) ൎ 4.6) is reached at  ௭ோ

294 
ൎ 1.42. At ௭ோ = ଷଶ, the minimum normalized head difference is about 0.0072  (െ݈݊(0.0072) ൎ 4.9). All these values are virtually the same as the case of ௥೙ோ

295 296 = 0.001 in Fig. 6. Thus, Fig. 6 covers the complete range of ௥೙297 ோ . 
It was noted above that, in Fig. 3, for ௅ோ ذ 2.5 the boundary disturbances do not interact to any significant extent (in Fig. 3 both boundaries produce disturbed flow). Consistent with this and as just mentioned in the foregoing paragraph, the horizontal line in Fig. 6 shows the maximum length scale of about ௭ோ

298 299 300 ൎ 1.24 for a disturbance emanating from the ݖ = 0 boun-dary. This result was checked for a finite, rather than a semi-infinite, column, by recalculating the normalized head difference with Eq. 
301 302 303 (27) rather than Eq. (29), again for the worst case of ݎ௡ ՜ 0. For the case of ௅ோ = 2.5 there is no numerical difference with the results presented in 

Fig. 6 for ௥೙ோ
304 

= 0.001. For ௅ோ = 2 the differences with the values presented above are only in the 
final digit, while for ௅ோ

305 
= ଷଶ, for which the boundary disturbances are expected to interact, the normalized head differences of 0.02 and 0.01 were reached at ௭ோ

306 ൎ 1.21  and 1.33, respectively. These calculations confirm the validity of the results in Fig. 6 to small-aspect-ratio soil col-umns, not just the semi-infinite case. 
307 308 309 
310 311 312 

5. 
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Discussion Experiments involving Magnetic Resonance Imaging (MRI) provide detailed measure-ments of flow and transport within laboratory columns, at spatial scales of the order of pore 
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 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 

diameters [14][20]. Here, two experiments reported previously in the literature are consi-dered. Greiner et al. [18] used MRI to trace water and solute tracer movement in saturated la-boratory columns filled with glass beads. Data were collected with a spatial resolution of 2.34 mm. One column used uniform glass beads of radius of about 0.5 mm, the other column com-prised a heterogeneous medium. The column dimensions were 282 mm length with a radius of 95 mm. At the column entrance water and solute were injected pseudo-uniformly through an array of 19 injection tubes, each having a radius of 2 mm. The column exit, however, drained through a single orifice. Thus, the experimental setup is consistent with the layout and boundary conditions used in §4.2, except that their drain location was at the top of the experimental apparatus, rather than at the bottom as displayed in Fig. 1. Greiner et al. [18] reported that a “nonuniform velocity profile is seen in each of the columns (Plates 1-4). The nonuniform profile is emphasized in the upper third of the column, where the single discharge exit does not permit a cross-sectionally homogeneous flow distribution (Plates 1 and 3, steps 11-15; Plates 2 and 4, steps 7-13).” Plate 3 (Step 13) [18] shows a tracer moving into the exit orifice, which had a radius of about 10 mm (estimated by eye). The flow convergence towards the orifice extended to about 100 mm longitudinally. That is, the disturbance to the flow was of order of the column radius, in agreement with the above analysis. Although this estimate is imprecise, it is clear that the length scale evident in the experimental results is consistent with the th
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eoretical estimate. Deurer et al. [16] carried out a thorough analysis of flow in a column of length 46 mm and radius 7 mm, filled with glass beads of radius 1 mm. Tubes supplying and draining the column had a radius of 0.865 mm, leading to disturbed flow patterns in the regions near each end of the experimental column. The spatial resolution of the data presented was 156 μm. The analysis in [16] evaluated the impact of the measurement scale by considering data based on increasing sample volumes of the porous medium, with all samples centered on the column 
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 mid-point. Thus, with increasing volume size, the impact of the disturbed flow regions at each end of the column became evident, although the flow patterns in these zones were not re-ported. Based on these spatially integrated observations of the spatially distributed local flow velocities, Deurer et al. 

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 

[16] concluded that the disturbed flow patterns influenced about half the column, i.e., to a distance of about 11.5 mm from each of the entrance and exit surfaces, which is about 50% larger than the estimate of 7 mm based on the column radius alone. Deur-er et al. [16] based their estimate on their Fig. 1A, which shows the average velocity as it va-ries with sample volume. However, it is clear from this figure, as well as the velocity variances presented in their Fig. 2, that their estimate of the disturbed zone length of 11.5 mm is not a precise value, and that a smaller disturbed zone length could also be consistent with the data presented. An additional consideration is the size of the glass beads (radius 1 mm) relative to the column radius (7 mm) and the radius of the supply and drainage tubes (0.865 mm). Deurer et al. [16] estimated the length scale at which flow can be considered as a continuum to be around 4 – 5 mm. Since this is the order of the column radius, it is possible that the flow at the entrance and exit regions did not behave as continua governed by Laplace’s equation, which is a fundamental assumption in the analysis presented here. Referring to solute transport, Deur-er et al. [16] distinguished the transition between stochastic-convective transport and convec-tive-dispersive transport at the length scale of a few mm. Since the continuum assumption is fundamental to application of the governing model, one viewpoint could be to take the plane at 4 or 5 mm from the boundary to be the location of the continuum boundary condition. Then, adding the column radius of 7 mm gives a total disturbed zone very close to the esti-mate of Deurer et al. [16]. Irrespective of this, the theoretical estimate of about one column radius as the dissipation length scale and the experimental analyses of Deurer et al. [16] are consistent in that they are of similar magnitude. 
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 Solute dispersivity is a key parameter derived from soil column experiments. The ques-tion of the factors affecting dispersion estimates from such experiments, as well as that of “apparatus-induced” dispersion, was examined by Bromly et al. 
364 365 366 367 368 369 370 371 372 
373 374 375 376 377 378 379 380 

[12]. They carried out an ex-haustive statistical examination of 216 published experiments focusing on the reported dis-persivities and their relation to a range of experimental factors, including flow velocity, clay and silt content, bulk density, and column diameter and length. They reported increased dis-persivity with column diameter, opining that the “increased dispersivities could be an ex-pression of a lateral scale effect.” This view and the statistical evidence presented in [12] are consistent with the influence of the column radius found here. 
6. Conclusion A general exact solution for axisymmetric steady flow in a soil column filled with homo-geneous soil has been used to analyze theoretically the effect of nonuniform boundary condi-tions on flow within the column. The analysis enables an estimation of the longitudinal dissi-pation length scale arising from radially symmetric disturbances introduced at the column entrance or exit. In all cases, and regardless of the flow direction, the analysis reveals that this length is, for practical purposes, of the order of the column radius. In the most extreme case examined, that of a very narrow tube supplying/removing water through an orifice at one end of the column, at a distance of ଷଶ column radii from the orifice the normalized absolute head 
difference reduced to 0.0072. It is suggested that this distance, ଷଶ

381 
 column radii, represents the extreme upper bound of the region of boundary condition-induced disturbed flow in a col-umn. This means that, independent of the boundary conditions, a column with a length to ra-dius ratio in excess of 3 will have a region on uniform flow within it. These results can be adapt

382 383 384 385 386 387 388 
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ed to the case of a homogeneous anisotropic soil via a simple scaling. An immediate practical consequence is that flow in soil columns will be uniform if at each end of the column a baffle region, with a length of about the column radius, is incorpo-
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 389 390 391 392 393 394 395 396 397 398 399 400 401 

rated. The theory shows it is irrelevant what material is in the baffle zone, so long as (i) the flow there satisfies Laplace’s equation and (ii) the boundary between the two zones is per-pendicular to the longitudinal axis. Because of (i), as the flow passes through the baffle region, nonuniformities in the flow are attenuated such that the head profile perpendicular to the longitudinal axis becomes effectively uniform, at least compared with the profile at the col-umn boundary (location of the maximum disturbance magnitude). As a result of (ii), the streamlines exiting the baffle zone are not refracted since they are essentially perpendicular to the boundary between the two zones. Furthermore, if the baffle zone is separated from the soil by a perforated plate, then as the flow passes through the plate, any residual radial com-ponents of the flow will be physically further attenuated by the perforations. Finally, while the use of a baffle zone will provide a uniform flow within the soil column, if the column is used to investigate solute transport phenomena, the nonuniform flow introduces “apparatus-induced” dispersion, which should be accounted for in the solute data analysis.  
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 Appendix 1. General solution to the Laplace equation model for axisymmetric flow in a c402 403 404 405 
406 

ylinder containing a homogeneous soil Here the solution satisfying Eqs. (1) – (5) is derived based on separation-of-variables  this end, let: following, e.g., [11]. To߶(ݎ, (ݖ = then Eq. (31) (1)1 ,(ݖ)ܼ(ݎ)࣬  becomes: dݎd ൬ݎ dd࣬ݎ ൰ + 1ܼ dଶܼdݖଶ = L 407ݎ࣬ (32) .0 t:dଶܼe  
dݖଶ = ܴଶߙଶ ܼ, 
i  wh  case Eq (32) (33) 408 n ich . d  is: 

൬ݎ d࣬dݎ dݎ ൰ + ݎ࣬ ଶߙ = 0. (34) ܴଶ409 The general solution to Eq. (33) is: ݖ exp ቀെߙ (ݖ)ܼ ቁ (35)ݖܴ = ଵexpܥ ቀߙ ܴቁ + ଶ410 and that forܥ (34) i࣬(ݎ) = ܥ J ቀߙ  :Eq. s ݎ
ଷ ଴ ܴቁ, (36)where J௩ is the ݒ୲୦-order Bessel function of the first kind. Eq.  411 (36) ensures the solution satis-r arbitrary ఈோfies Eq. (2) fo412 

413 
. However, to satisfy Eq. (3) values of ߙ are limited to solutions of: Jଵ(ߙ) = 0. (37) Denote the nonnegative values of ߙ satisfying Eq. (37) as ߙଵ, ଵߙ :ଶ, etc. The first four values areߙ = 0, ଶߙ ൎ 3.8317, ଷߙ ൎ 7.0156, ସߙ ൎ 10.173 . The asymptotic form of α௜ is ቀ݅ െ ଷସቁ  e.g., 414 415 416 417) ߨ

[9]). The first nonnegative value, ߙଵ= 0, cannot be used in any meaningful way in the so-lution  .in Eq.  [11] as it is identically zero for anyA solution is proposed of the form: (36) ݎ 
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,ݎ)߶ (ݖ = ଵܣ + ݖଵܤ + ෍ ቂܣ௜exp ቀߙ௜ ቁݖܴ + ௜expܤ ቀെߙ௜ ቁቃݖܴ J଴ ቀߙ௜ ቁஶݎܴ , (38) ௜ୀଶwhere the values of ߙ are defined by Eq. (37). Eq. (38) satisfies Eqs. (1) – (3), with the coeffi-cients ܣ and ܤ chosen to satisfy Eqs. 418 419 420 421 422 423 
424 425 

(4) and (5). The main step in determining the coefficients is expanding the boundary condition functions ݃(ݎ) and ߶௅(ݎ) in Eqs. (4) and (5), respec-tively, as Fourier-Bessel series following Eqs. (39) and (40). To distinguish each expansion, the coefficients – i.e., ௜࣠  in Eqs. (39) and (40) – corresponding to the expansion of ݃(ݎ) are denoted as ܦ  while those for ߶ ܧ are denoted as (ݎ) . ௜ ௅ ௜
Appendix 2. Background on Fourier-Bessel series and Bessel functions The function, ݂(ݎ), 0 ൑ ݎ ൑ ܴ, can be expanded in a Fourier-Bessel series [11] as: 
(ݎ)݂ = 2ଶ ݎd(ݎ)݂ + ෍ ௜࣠J଴ ቀߙ௜ නݎ ோܴݎ ଴ ܴቁஶ , 0 ൑ ݎ ൑ ܴ, (39) ௜ୀଶwhere th  c n ,  given by: 426 e oefficie ts ௜࣠, are

௜࣠ = 2ܴ ׬ ோ଴ݎ J଴(ݎ)݂ ቀߙ௜ ቁݎܴ dݎ , ݅ = 2, 3, .ڮ (40) J଴ଶ(ߙ௜)ଶ427 O hedJ଴ ቀߙ௜ tݎܴ r results used are (e.g., [1]): ቁdݎ = െ ௜ܴߙ Jଵ ቀߙ௜ ݎܴ ቁ, (41) 

ݎ dJଵ ቀߙ௜ ݎܴ ቁdݎ = ௜ߙ ݎܴ J଴ ቀߙ௜ ቁݎܴ െ Jଵ ቀߙ௜ ቁݎܴ and (42) 

d ቂݎJଵ ቀߙ௜ ݎቁቃdݎܴ = ௜ߙ ݎܴ J଴ ቀߙ௜  ቁ. (43)ݎܴ
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 Appendix 3. Dissipation length metrics 428 
As described in §4.1, the quantity థ(଴,௭)ିథ(ோ,௭)థ(଴,௅)ିథ(ோ,௅) is used to determine the length scale over which variations in the boundary condition at ݖ = ௭(0,0)ݍ dissipate. Eq. 429 430 431 (17) is written, with ܮ = ,ܴ)௭ݍ 0), as: 

߶(0, (ݖ = ߶(ܴ, (ܮ + ߶(0, (ܮ െ ߶(ܴ, 1(ܮ െ J଴(ߙ௜) ቎cosh ቀߙ௜ ቁcoshݖܴ ቀߙ௜ ቁܮܴ െ J଴(ߙ௜)቏ + ܮ) െ (ݖ ,ܴ)௭ݍ ܭ(0 . (44)
432 Similarly, 

߶(ܴ, (ݖ = ߶(ܴ, (ܮ + ߶(0, (ܮ െ ߶(ܴ, 1(ܮ െ J଴(ߙ௜) ቎cosh ቀߙ௜ ቁcoshݖܴ ቀߙ௜ ቁܮܴ െ 1቏ J଴(ߙ௜)
+ ܮ) െ (ݖ ,ܴ)௭ݍ ܭ(0 . (45) 

Using Eqs. (44) and (45) gives, for థ(଴,௭)ିథ(ோ,௭)థ(଴,௅)ିథ(ோ,௅): 433 
߶(0, (ݖ െ ߶(ܴ, ,0)߶(ݖ (ܮ െ ߶(ܴ, (ܮ = cosh ቀߙ௜ coshܮቁݖܴ ቀߙ௜ ܴቁ. (46)
Eq. (46) is exact and can be used directly to calculate the dissipation length scale. If the argu-ments on the right side of Eq. 434 435 436 437 

(46) are sufficiently large, then they can be approximated by exponentials, giving the simple result in Eq. (19). On the other hand, Eq. (46) can be solved direct  for ݖ. If the left side of Eq. ly
ݖ = αܴ

(46) is set equal to ିܯଵ then 
arccosh ൤ିܯଵ cosh ൬α ௜ܮ ୧ ܴ൰൨. (47)The relative error of the approximation Eq. (19) can easily be calculated using the exact result in Eq. 438 439 (47 r, E, is defined as: ). The relative erro

E = ቮ1 െ α௜ ܮܴ െ ln(ܯ)arccosh ቂିܯଵ cosh ቀα௜ ቁቃቮ. (48)ܮܴ
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 For the case considered in §4.1, i.e., ݅ = 2 and 50=ܯ, Eq. (48) gives ܧ < 1% for ௅ோ ذ 1.5. As ௅ோ 
increases, the relative error decreases rapidly. For example, for ௅ோ

440 
= 2, E ൎ 0.015%. That is, Eq. 441 442 443 444 445 

(19) is sufficiently accurate to estimate the dissipation length scale. The other case considered in §4.1 is a nonuniform flux applied at ݖ = 0 and a uniform head condition at ݖ = ,From Eq. (17), with ߶(0 .ܮ (ܮ = ߶(ܴ,  :the disturbance dissipation is given by ,(ܮ
߶(0, (ݖ െ ߶(ܴ, (0,0)߶(ݖ െ ߶(ܴ, 0) = sinh ቀߙ௜ ܮ െ ܴݖ ቁቀߙ௜ ܮ ൎ exp ቀെߙ௜ ,ቁݖܴ (49)sinh ܴቁ446 where the approximation is that mentioned in §4.1, Eq. (22). Using a calculation similar to that p ௅resented just above, the relative error of this approximation is less than 1% for ோ ذ 1.4. The next case considered is that of the orifice, described in §4.2. One metric to estimate the dissipation length scale is the maximum range of the longitudinal flux at any cross-section, scaled relative to that at ݖ = 0, i.e., ௤౰(଴,௭)ି௤౰(ோ,௭)௤౰(଴,଴)ି௤౰(ோ,଴)

447 448 449 . For clarity, the solution for the semi-infinite column, Eq. 450 451 452 (29), is used to calculate the flux, i.e., the analysis is applicable for columns with small aspect ratios, yielding: 
,୸(0ݍ (ݖ െ ,ܴ)୸ݍ ୸(0,0)(ݖ െ ,ܴ)୸ݍ 0) = ௡ܴݎ2 ෍ Jଵ ቀα௜ ݍ௡ܴቁ௜J଴ଶ(α௜)ݎ α exp ቀെα௜ ቁݖܴ [1 െ J଴(α௜)]ஶ

௜ୀଶ . (50)
  453 
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