
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008 2053

Variability-Aware Design of Multilevel Logic
Decoders for Nanoscale Crossbar Memories

Mohamed Haykel Ben Jamaa, Student Member, IEEE, Kirsten Emile Moselund, Student Member, IEEE,
David Atienza, Member, IEEE, Didier Bouvet, Adrian Mihai Ionescu, Senior Member, IEEE,

Yusuf Leblebici, Senior Member, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—The fabrication of crossbar memories with sublitho-
graphic features is expected to be feasible within several emerg-
ing technologies; in all of them, the nanowire (NW) decoder is
a critical part since it bridges the sublithographic wires to the
outer circuitry that is defined on the lithography scale. In this
paper, we evaluate the addressing scheme of the decoder circuit
for NW crossbar arrays, based on the existing technological solu-
tions for threshold voltage differentiation of NW devices. This is
equivalent to using a multivalued logic addressing scheme. With
this approach, it is possible to reduce the decoder size and keep
it defect tolerant. We formally define two types of multivalued
codes (i.e., hot and reflexive codes), and we estimate their yield
under high variability conditions. Multivalued hot decoders yield
better area saving than n-ary reflexive codes, and under severe
conditions, reflexive codes enable a nonvanishing part of the code
space to randomly recover. The choice of the optimal combination
of decoder type and logic level saves area up to 24%. We also
show that the precision of the addressing voltages when a high
variability affects the threshold voltages is a crucial parameter
for the decoder design and permits large savings in memory area.
Moreover, a precise knowledge about the variability level improves
the design of memory decoders by giving the right optimal code.

Index Terms—Addressing, crossbar architecture, memory, mul-
tivalued logic (MVL), nanotechnology, reliability.

I. INTRODUCTION

THE TREND toward deeply scaled evolutionary and
emerging technologies, as predicted by the International

Technology Roadmap for Semiconductors [1], and the corre-
sponding increase in variability and defect rates of devices and
interconnect justifies the reintroduction of regular architectures.
Within this design style, sometimes referred to as array logic,
switching devices [molecular switches and semiconducting
nanowires (NWs)] can be fabricated and deposited into highly
dense regular arrays, called crossbar arrays. A specific example
is given by two perpendicular strips of parallel NWs storing the

Manuscript received January 3, 2008; revised May 16, 2008. Current version
published October 22, 2008. This work was supported in part by the Swiss NSF
Research under Grant 20021-109450/1 and in part by the Spanish Government
Research under Grants TIN2005-5619 and CSD00C-07-20811. This paper was
recommended by Associate Editor N. Chang.

M. H. Ben Jamaa, K. E. Moselund, D. Bouvet, A. M. Ionescu, Y. Leblebici,
and G. De Micheli are with Ecole Polytechnique Fédérale de Lausanne, 1015
Lausanne, Switzerland (e-mail: haykel.benjamaa@epfl.ch).

D. Atienza is with Complutense University of Madrid, 28040 Madrid, Spain,
and also with Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne,
Switzerland.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.2006076

information or executing the computation at the matrix nodes
(i.e., at the NW crosspoints) [5].

Crossbar circuits can be integrated onto CMOS chips, and
this hybrid approach has to provide ways to bridge the two
different dimension scales. Designing the interface between
the nano- and mesoscale parts is a challenging issue. The
circuit performing this operation is called decoder: It allows
the addressing of each single wire in the nanoscale part by
the mesoscale part. Many approaches for designing decoders
are found in literature; they range from a random attribution of
addresses [9], [11] to a deterministic mask-based decoder [3].
The consequence of the variability affecting the placement of
NWs is an overhead in the decoder size, which can be up to five
times [11].

This paper presents a method to reduce the decoder size
by implementing it in a multivalued logic (MVL), while its
robustness is enhanced by optimizing the encoding and design
parameters. MVL is a possible method for saving area. It
was presented, for instance, as a solution to the interconnect
bottleneck. While interconnects cannot follow the scaling of
transistors, MV wires can carry denser information and reduce
the area dedicated to global interconnects [27], [28]. MVL can
be also implemented in hardware for computation [7], [21], and
many MVL minimizers and input/output encoders exist [10],
[23], [25] and have proved their superior performance.

The contribution of this paper is the construction of the
MVL encoding and the investigation of its properties and
impact on the circuit under high variability conditions. Our
underlying technology based on gate-all-around silicon NWs
(GAA SiNWs) was demonstrated in [20], and it enables the
fabrication of devices with multiple threshold voltages (VT)
that represent a possible technological platform for the MVL
addressing of NW arrays. The demonstrated technology yields
robust NWs with respect to breakage and placement; however,
small radii imply a high VT variation, which, in turn, causes the
MVL code to fluctuate. The detection of code errors depends
on the encoding and was investigated for the binary case in [2].
We presented this approach in [4] where we restricted our study
to the advantages of MVL addressing within this technology. In
this paper, we generalize the implementation of MVL to a wide
range of other decoder technologies.

This paper is organized in the following way. In the next
section, we review the work related to crossbar memories,
focus on the decoder design, and survey the applications of
MVL. In Section III, we present the decoder model and the
underlying technology. Section IV states the formalism and

0278-0070/$25.00 © 2008 IEEE

2054 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 1. Decoder layout and circuit.

semantic used for MVL encoding. Then, we construct two types
of encoding schemes (Section V). The defects affecting the
codes are modeled, and then, their impact on the code space is
analyzed in Section VI. In Sections VII and VIII, we investigate
multidigit errors. The impact of these errors on the size of the
addressable code space is simulated in Section IX. Then, the
simulation results for decoders with both encoding schemes
and under various reliability and technological assumptions are
presented in Section X.

II. RELATED WORK

A. From Technology to Circuits

The fabrication of silicon NWs usually follows one of the
two different approaches: bottom–up, where wires are grown,
synthesized, or self-assembled onto the silicon substrate [12],
and top–down, where NWs are fabricated from the substrate
by more traditional means such as lithography, oxidation, and
etching [6], [18]. In all these technologies, a controlled con-
nection between the NWs can be implemented with molecular
crosspoints, which can switch from a high to low resistance
state [16].

Logic gates based on SiNWs and switching crosspoints
were demonstrated in [13], and an architectural paradigm for
building logic circuits was proposed in [5], which relies upon
a full logic out of NOR and OR planes. An architecture with
cascaded sequences of OR/NOT planes is also proposed in [8].
Aside from interconnection and logic, SiNW crossbar arrays
are highly suitable for storing the information at the crosspoints
because of their regular structure and high density. A prototype
for this kind of memory was reported in [16].

B. Decoders of Crossbar Circuits

Any crossbar circuit, performing either logic or memory,
needs the decoder part. The decoder is shown in a schematic
way in Fig. 1, where the aspect ratios are not exact. The current
conduction through the horizontal wires (NWs) can be con-
trolled by applying suitable voltages at the vertical wires that
are called mesowires (MWs). The cross-areas between NWs
and MWs define field effect transistors having two possible
VT ’s. Depending on the voltage sequence at the MWs, one of
the NWs will conduct, while the others will have a high resis-
tance. The vertical wires are called control or addressing wires.
Their number depends on the encoding scheme and technology,
which, in turn, follows from the fabrication approach.

Differentiated NWs have an axial or a radial doping profile
which was defined during the NW growth process. An axial

decoder was presented in [9], in which the distribution of the
VT ’s results from the doping profile and is fully random. Radial
decoders [26] rely on a selective etching of NWs with radially
doped shells, whose pattern is defined by the shell sequence
and the etching order. On the other hand, for undifferentiated
NWs, a mask-based decoder reported in [3] uses different oxide
types to address the NWs. A random contact decoder was
presented in [11]: The pattern of the NWs are defined by the
fully random connections between MWs and NWs through
randomly deposited impurities.

C. Multivalued Logic

The research areas for MVL can be summarized in three
categories: MV algebra, MV semiconductor circuits, and MV
network synthesis. A review of the background of MV algebra
was presented in [27] and [28]. The implementation of alge-
braic notions into real circuits was motivated from one side by
the exponential growth of interconnects in digital circuits and
their limited scaling abilities [28] and, from the other side, by
the need for higher density of information storage. The use of
the MVL encoding of data reduces the area needed for MVL
buses and memories.

Many circuit design techniques were used to implement
MVL: Different current-mode MVL circuits were reviewed in
[7]; while in [21], a voltage-mode MVL full adder was demon-
strated. A charge- and voltage-based approach for MVL Flash
memories was described in [15], and MVL SRAM memory
and logic blocks fabricated with the same technology were
introduced in [17].

Design tools for mapping MVL functions onto field program-
mable gate array systems were presented in [19]. Optimized
design methodologies for MVL Programmable Logic Array
(PLA) were introduced in [23] and [24] while considering
the MVL encoding problem of inputs and outputs and the
benefits of encoding in terms of the number of products in
the minimized function. The simplification and minimization
of EXOR-sum-of-product expressions for MVL functions were
presented in [25] and [29], respectively. The use of MV func-
tional decomposition algorithms based on MV decision dia-
grams was investigated in [10] for logic synthesis. The efficient
minimization of MVL networks with don’t-cares was presented
in [14] as a way to implement MVL hardware and also as an
optimization opportunity for binary functions at the MV stage,
which cannot be discovered in the binary domain.

III. CIRCUIT MODEL AND TECHNOLOGY

We show the memory architecture considered in this paper in
Fig. 2. This architecture has two parts, organized in an identical
way and laid out perpendicularly to each other. Each part is
a plane of N parallel NWs divided into a set of bundles; the
NWs within each group have a common ohmic contact to an
MW at either extremity of the bundle. Each group is defined
lithographically. We assume that the circuit has a standard
binary NW group decoder, which is not investigated in this
paper since its design is well established on the lithographic
scale. M MWs are used to address the NWs within each group.
Then, the NW decoder of each group has the size N × M . The

BEN JAMAA et al.: VARIABILITY-AWARE DESIGN OF MULTILEVEL LOGIC DECODERS FOR NANOSCALE CROSSBAR MEMORIES 2055

Fig. 2. Crossbar memory architecture.

area sandwiched between the NW arrays is the actual memory,
in which the information is stored in bistable switches grafted
at the crosspoints.

Each NW within a single group has to be addressed. This
operation is performed by the NW decoder which is formed
by a set of parallel MWs crossing the NW plane. The part of
NWs under the decoder is coated by a dielectric, thus allowing
a field-effect control of the NWs by the MWs of the decoder.
Any method among those described in Section II-B can be used
to fabricate the decoder part.

We fabricated silicon NW arrays to validate the proposed
crossbar decoder architectures. The technological details are
reported in [20]. The fabricated NWs are parallel and have
a length of several tens of micrometers, a cross-sectional cir-
cumference ranging from hundreds of nanometers to 5 nm,
and a pitch depending on the lithography. The gate wraps the
SiNW; thus, the control device represents a gate-all-around
field effect transistor (GAA FET). The threshold voltage of the
GAA FETs depends on the doping level of the channel. We are
experimenting with more than two doping levels, i.e., more than
two VT ’s, which enables the fabrication of an MVL decoder.

The technology that we demonstrated in [20] is considered
as a possible future embodiment of such a decoding scheme,
but by no means, the only one: The generalization to other
NW technologies will be exposed in this paper. The following
sections investigate the types of MVL encodings that can be
implemented, their impact on the decoder area and memory
density, and the related reliability aspects.

IV. SEMANTIC OF MVL ADDRESSING

In this section, we generalize the notion of encoding to
multiple-valued bits. Some basic semantic used in encoding can
be considered as a generalization of the binary definitions stated
in [22] to MVL. In [22], a realistic NW model was presented
to reflect their finite resistance. This was called a real-valued
encoding, because the current through the NWs had real values;
however, the applied addresses and the NW patterns were still
binary. In this paper, we assume multivalued applied addresses
and NW patterns. The issue of the real-valued current through
the NWs will be addressed in Section VI, by introducing the
parameters q and VX . In this paper, all algebraic operations are
performed as defined in the ring of integers.

Definition 1: A multiple-valued pattern a, or simply a pat-
tern a, is a suite of M digits ai, in the n-valued base B, i.e.,
a = (a0, . . . , aM−1) ∈ BM , B = {0, . . . , n − 1}.

A pattern represents a serial connection of M transistors in
the silicon NW core; each digit ai of the code word represents a
threshold voltage VT,i, with the convention ai < aj ⇔ VT,i <
VT,j ∀i, j = 0, . . . ,M − 1. An analog equivalence holds for
ai = aj and, consequently, for ai > aj . This convention is
equivalent to discretizing the n values of VT and ordering them
in an increasing order. Assuming that three VT ’s are used (0.2,
0.4, and 0.6 V), the pattern 002120, for instance, represents the
VT sequence (0.2, 0.2, 0.6, 0.4, 0.6, 0.2 V).

Definition 2: A multiple-valued code word c, or simply a
code word c, is similarly to a pattern, a suite of M digits
ci, in the n-valued base B = {0, . . . , n − 1}, i.e., c = (c0, . . . ,
cM−1) ∈ BM .

A code word represents the suite of applied voltages VA at
the M MWs. These are defined such that every VA,i is slightly
higher than VT,i and lower than VT,i+1. Hence, a similar
convention holds for the order of VA,i with respect to that of ci:
Assuming that three VA’s are used (0.3, 0.5, and 0.7 V),
the pattern 202111, for instance, represents the VA sequence
(0.7, 0.3, 0.7, 0.5, 0.5, 0.5 V).

Definition 3: A complement of digit xi in a code word or
pattern x is defined as follows: NOT(xi) = xi = (n − 1) − xi.
The operator NOT can be generalized to the vector x, act-
ing on each component as defined previously. Notice that
NOT(NOT(x)) = x.

Definition 4: A pattern a is covered by a code word c if
and only if the following relation holds: ∀i = 0, . . . ,M − 1,
ci ≥ ai. By using the sigmoid function1 generalized to vectors
σ(x) = (σ(x0), . . . ,σ(xM−1)), the aforementioned definition
becomes a is covered by c ⇔ ‖σ(a − c)‖ = 0. Alternatively,
we can use the order relations on vectors c and a2: A pattern
a is covered by a code word c if and only if a ≤ c. The same
definition for covering can be generalized between two patterns
or two code words.

Covering a given pattern with a certain code is equivalent
to applying a suite of gate voltages making every transistor
conductive. Then, the NW is conducting, and we say that it
is controlled by the given sequence of gate voltages. In the
opposite case, at least one transistor is highly resistive, and the
NW is nonconducting.

Definition 5: A pattern a implies a pattern b if and only if
‖σ(b − a)‖ = 0, i.e., b is covered by a. We note this as fol-
lows: a ⇒ b. Since a 1-to-1 mapping between the patterns and
codes was assumed, we generalize this definition to code words
(ca ⇒ cb) ⇔ ‖σ(cb − ca)‖ = 0, i.e., cb is covered by ca.

This means that, if an NW with the pattern a corresponding
to the code ca is covered by a code c∗, then the NW with
the pattern b corresponding to the code cb is also covered by
the same code c∗. Applying the voltage suite c∗ will result in
turning on the NWs with either pattern.

Definition 6: The code words ca and cb are independently
covered if and only if ca does not imply cb and cb does not
imply ca.

1σ(x) = 0 if x ≤ 0; otherwise, σ(x) = 1.
2c < a ⇔ ∀i, ci < ai, and c > a ⇔ ∀i, ci > ai. The relation becomes

relaxed (i.e., ≤ or ≥) if there exists i such that ci = ai.

2056 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

This definition means that there exists a voltage suite that
turns on the NW with the pattern a corresponding to ca but not
that with the pattern b corresponding to cb. Reciprocally, there
exists a second voltage pattern that turns on the NW with the
pattern b corresponding to cb but not that with the pattern a
corresponding to ca.

Definition 7: The code word ca belonging to the set Ω is
addressable if and only if it does not imply any other code in
Ω \ {ca}. We define the set Ω to be addressable if and only if
every code word in Ω is addressable.

Assuming that there is a 1-to-1 mapping between the code
space Ω and the pattern space A, saying that a code ca im-
plies no other code in Ω \ {ca} is equivalent to saying that
it covers only the pattern a but no other pattern in A \ {a}.
Thus, there exists a voltage sequence that activates only the
NW with the pattern a but no other NW having its pattern
in A \ {a}.

Proposition 1: A set Ω of code words is addressable if and
only if every code word in Ω is independently covered with
respect to any other code word in Ω.

Proof: This follows directly from Definitions 6 and 7. !
Consequently, an admissible set of applied voltages that

uniquely addresses each NW corresponds to the set of code
words Ω that independently covers every pattern in A. This set
of patterns can be simply taken as Ω itself if Ω is addressable.

V. CODE CONSTRUCTION

A. Hot Encoding

In binary logic, the (k,M) hot code space is defined as the set
of code words with the length M having k occurrences of the bit
“1” and (M − k) occurrences of the bit “0” in every code word
(k ≤ M). It is also known as the k-out-of-M code, which was
first used as a defect tolerant encoding scheme [2]. This defini-
tion can be generalized to the n-valued logic. We first define k
as an n-dimensional vector (k0, . . . , kn−1) such that

∑
i ki =

M . Then, the multivalued (k,M) hot encoding is defined as
the set of all code words having the length M such that each
ki represents the occurrence of the digit i, i = 0, . . . , n − 1.
We consider, for instance, the ternary logic (n = 3),
and we set k = (4, 3, 1) and M = 8. Then, every code word
in the considered (k,M) hot space contains four times the digit
“0,” three times the digit “1,” and one time the digit “2.” The
considered code space includes, for instance, the code words
00001112 and 00210110.

Proposition 2: The code space defined by a multivalued
(k,M) hot encoding is addressable.

Proof: Consider two different code words ca and cb in
the code space defined by the (k,M) hot encoding. Both
codes are identical except at P different digits lying at the
positions p0, . . . , pP−1. cb is obtained by a permutation of
{ca

p0
, . . . , ca

pP−1
}. Hence, there is at least one position pi

for which ca
pi

> cb
pi

holds and at least one position pj for
which ca

pj
< cb

pj
holds. This proves that ‖σ(cb − ca)‖ += 0 and

‖σ(ca − cb)‖ += 0 and that every two code words are indepen-
dently covered. Then, Proposition 1 states that the whole code
space is addressable. !

Example 1: For instance the code words a = 00001112 and
b = 00210110 differ at the third, fourth, fifth, and last digits,
in positions {2, 3, 4, 7}. The third digit of a is smaller than the
third digit of b, which proves that b +≤ a, and the fifth digit of
a is bigger than the fifth digit of b, which proves that a +≤ b.
Thus, both codes are independently covered. !

Proposition 3: The size of the code space defined by a mul-
tivalued (k,M) hot encoding is maximal for ki = M/n ∀i =
0, . . . , (n − 1). The size of the maximal-sized space is asymp-
totically proportional to ∝ nM/M (n−1)/2 for a given n.

Proof: The number of code words is given by
M !/(

∏
ki!), which can be maximized by using the Gamma

function Γ(ki + 1) = ki!. The Stirling formula yields the
asymptotic space size for large M ’s. !

In the rest of this paper, we implicitly mean the (k,M) hot
code with the maximal-sized space when we simply talk about
the (k,M) hot code.

B. N -ary Reflexive Code

The binary tree code with the length M is a 2-to-2M encoder
representing the 2M binary numbers 0 · · · 0 to 1 · · · 1. Similarly,
an n-ary tree code with the length M is defined as the set of
nM numbers ranging from 0 · · · 0 to (n − 1) · · · (n − 1). For
instance, the ternary (n = 3) tree code with the length M = 4
includes all ternary logic numbers ranging between 0000 and
2222. As one can easily see, some code words imply many
others from the same space: For instance, 2222 implies all other
codes. It is possible to prevent the inclusive character of the
n-ary tree code by attaching the complement of the code word
(i.e., 2222 becomes 22220000). The as-constructed code is the
N -ary reflexive code (NRC).

Proposition 4: The code space defined by the NRC is
addressable.

Proof: The first (nonreflected) halves of any two code
words ca and cb having the total length M (M is even)
differ by at least one digit at, for example, position i [i =
0, . . . , (M/2 − 1)]. Let ca be the code word such that ca

i < cb
i .

The reflection implies that ca
M/2+i > cb

M/2+i. This proves that
‖σ(cb − ca)‖ += 0 and ‖σ(ca − cb)‖ += 0 and that ca and cb

are independently covered. Then, Proposition 1 states that the
whole code space is addressable. !

Example 2: We consider, for instance, the ternary (n = 3)
reflexive code words with the length M = 8: ca = 22220000
and cb = 00122210. The codes differ at some positions; we
consider, for instance, the first one. The first digit of ca (“2”)
is bigger than the first digit of cb (“0”), proving that ca +≤ cb.
The complementary of the first digit is the fifth one (since
M = 8). Because of the complementarity of the values of the
digits, the fifth digit of ca (“0”) is smaller than the fifth digit
of cb (“2”), proving that cb +≤ ca. Consequently, ca and cb are
independently covered. !

In a similar way, the reflection principle works for any other
code (e.g., Hamming code), making the whole code space
addressable. However, in return, it doubles the code length.
Although the binary hot code is denser than the binary reflexive
code, this statement holds for the MVL only if the codes are
defect free. This aspect is analyzed in the following sections.

BEN JAMAA et al.: VARIABILITY-AWARE DESIGN OF MULTILEVEL LOGIC DECODERS FOR NANOSCALE CROSSBAR MEMORIES 2057

Fig. 3. Coding defects induced by VT variability.

VI. DEFECT MODELS

The control of the silicon NWs fabricated with our tech-
nology described in Section III is based on the modulation
of the threshold voltage of the controlling transistors. The
encoding schemes proposed in Section V impose a distrib-
ution of the applied control voltages between the successive
threshold voltages. The main issue with the threshold voltage
is its variability and process dependence: Several aspects of
the insufficient controllability of the technology are expressed
on the device level as a random variation of the threshold
voltage (e.g., variation of the doping level, oxide thickness,
mechanical stress of the NWs, etc). The independent nature of
these random effects and their superposition generally justify
the assumption of a normal distribution of the threshold voltage
(see Fig. 3). The MVL encoding only depends on the value of
VT ’s; however, other random defects, such as the NW breakage
and the NW-to-metal contact quality, impact the array yield (but
not the addressable code space size). These random effects were
modeled by a statistical factor explained in Section X. Many
random errors can affect the molecular switches (bad switching,
stack-at-defects, . . .); these are beyond the scope of this paper,
which focuses on NW defects.

A. Basic Error Model

Fig. 3 shows the main assumptions for basic error models.
We assume that the threshold voltages VT,i are equidistant, i.e.,
VT,i+1 − VT,i = 2αV0, with V0 being a given scaling voltage,
and α is given by the technology. The applied voltages VA,i

are set between every two successive threshold voltages VT,i

and VT,i+1, not necessarily in the middle, rather shifted by υV0

toward VT,i, where υ is a design parameter.
If the variability of VT,i is high or the spacing between two

successive VT,i’s is low due to the large number of doping
levels, VT,i may exceed a voltage VX,i given by VA,i − δ · V0,
where δ will be derived in the following. While VT increases,
the sensed current, while ai is applied on the digit ci, decreases
(ai = ci), and the sensed current, while ai + 1 is applied on

Fig. 4. Mapping of the code space onto the pattern space (a) in the defect-free
case and (b) in the case of defects.

the same digit, increases. The voltage VX,i is defined as the gate
voltage which results in the decrease of the sensed current for ai

by the factor q from its value at V T,i. The higher q is, the more
accurate is the sensing. Thus, q is also considered as a design
parameter. Assuming that the transistors are saturated, the
current in the saturation region is proportional to (VA,i − VT)2,
where VT is the actual threshold voltage. Consequently, the
following condition on VX must hold: (VA,i − V T,i)2/(VA,i −
VX,i)2 = q, which gives δ = (α + υ)/√q for long channel
transistors.3 This fixes the values of VX,i; when VT,i exceeds
VX,i, the digit ai acts as ai + 1; its address becomes ci + 1,
and we call this case the flip-up defect.

Now, consider the case when VT,i falls below VA,i−1 − δ ·
V0 = VX,i−1; then, the current flowing while ai − 1 is applied
is no longer ∼0 and always greater than q times the current
flowing while ci − 2 is applied. Then, ai is implied by ci and
ci − 1 but not by ci − 2; its address is ci − 1 which means
that ai acts as ai − 1; this case is called the flip-down defect.
The probabilities of flip-ups and -downs are given by the
following expressions, which are independent of i. Here, fi is
the probability density function of VT,i

pu =
∞∫

VX,i

fi(x)dx pd =

VX,i−1∫

−∞

fi(x)dx.

When VT,i falls within the range between the threshold values
for flip-up and -down defects, the digit is correctly interpreted.
We notice that the flip-down error never happens at digits
having the smallest value 0, since the corresponding V T,i is, by
definition, smaller than the smallest VA,i available. For the same
reason, the flip-up error never happens at the digits having the
biggest value n − 1. In order to study the size of the addressable
code space, we consider flip-up and -down errors in the code
space instead of flip-up and -down defects at the NWs, since
both considerations are equivalent.

B. Overall Impact of Variability

If VT varies within a small range close to its mean value,
then the pattern does not change, since the NW still conducts
under the same conditions. Then, a 1-to-1 mapping between
the code and the pattern space holds, which is shown in Fig. 4
for a ternary hot code with M = 3. On the contrary, if the
VT variation is large, then some digits may be shifted up or
down, as explained previously. When a pattern has a sequence

3If we consider short channel transistors, then the saturation current is
proportional to (VA,i − VT) and δ = (α + υ)/q.

2058 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

of errors, it can be either covered by one or more codes or it can
be uncovered. When we consider the codes, some of them cover
one or more patterns, and some cover no pattern under the error
assumptions. The following example explains this conjecture.

Example 3: Fig. 4(b) shows the digit shift at some patterns.
We notice that the first pattern 022 (which underwent a defect)
is no longer covered by any code. Thus, its NW cannot be
addressed. All the other patterns are covered at least by one
code. Two categories among these covered patterns can be dis-
tinguished. On the one hand, the fourth pattern 120 is covered
by the fourth code, which, in turn, covers another pattern (the
fifth). Thus, by activating the fourth NW, the required control
voltages activate either the fourth and fifth NW. Consequently,
the fourth NW cannot be addressed uniquely. This case repre-
sents the patterns covered only by codes covering more than
a single pattern. On the other hand, the complementary case
is illustrated by the fifth pattern 100, which is covered by
many codes. However, one of these codes (201) covers no
other pattern except the considered one. Thus, it is possible to
uniquely activate the fifth NW by applying the voltage sequence
corresponding to the code 201. !

The examples shown in Fig. 4 demonstrate that a pattern
undergoing defects can be either 1) not covered by any valid
code word, in which case the NW cannot be identified as
addressable and the pattern is useless, or 2) covered by at least
one valid code word. In the second case, if two patterns or more
are covered by the same code word, then this code word cannot
be used because more than one NW would have the same
address. Thus, in the second case, the pattern is only useful if at
least one code word covering it covers no other pattern, insuring
that the covered pattern can be addressable.

Assuming that, in average, every code word covers ν pat-
terns when errors happen, let pI be the probability that a
pattern becomes uncovered and pU the probability that a code
word covers a unique pattern (pU = 1 − pU). Let |Ω| be the
original size of the code space and |Ω′| the size after errors
happen. The set Ω′ contains the useful addresses under defect
conditions, i.e., those that address unique NWs even though
the NWs are undergoing defects. The size of Ω′ indicates the
number of NWs that remain useful under high variability condi-
tions. Then

|Ω′| = |Ω| · (1 − pI) (1 − pν
U) . (1)

In order to assess |Ω′|, we model multidigit errors in the
following sections. Then, we analytically derive pI and pU , and
we estimate ν as a fit parameter from Monte Carlo simulations.

VII. ERRORS IN THE k HOT CODE SPACE

A. Error Types

Ω refers, in the following, to the code space of the maximal-
sized multivalued (k,M) hot encoding in the base B =
{0, . . . , n − 1} with k = (k, . . . , k) and M = k · n. We con-
sider a code word c in Ω undergoing a series of single digit
errors. The multidigit error is described by the following vector
d = (d0, . . . ,dn−1), where each di represents a pair of inte-
gers (du

i , dd
i) expressing the number of flip-ups and -downs

occurring in each digit group having the value i. Since no flip-
down occurs at digits with value 0 and no flip-up occurs at
digits with value (n − 1), we impose dd

0 = 0 and du
n−1 = 0.

For instance, we consider the ternary hot code 010221 un-
dergoing a flip-up defect at the third digit, turning it into
011221. One digit “0” flipped up, while no flip-error happened
at the digits “1” and “2.” This error is represented as d =
(
(1
0

)
,
(0
0

)
,
(0
0

)
). Because the number of digits having the same

value is k by definition, it must hold for each di: 0 ≤ du
i +

dd
i ≤ k.
We distinguish two types of multidigit error d corresponding

to uncovered (type I) and covered codes (type II) that we can
formally describe in the following way:

1) Type I: ∃i ∈ {0, . . . , i − 2}/du
i > dd

i+1.
2) Type II: ∀i ∈ {0, . . . , i − 2}: du

i ≤ dd
i+1.

This conjecture can be illustrated by the following two
examples.

Example 4: We consider the same hot code 010221 turning
into the error code 010220 with the defect d = (

(0
0

)
,
(0
1

)
,
(0
0

)
).

By comparing the codes before and after the defect happened,
we notice that the number of digits “0” has increased, while the
number of digits “1” has decreased, and the number of digits
“2” has remained the same. Any code coinciding with the error-
free code at the digits “2” and “1” assigns “1” and “0” to the
positions holding “0” in the error code, for instance, 010221 and
110220. All these codes cover the error code because both “1”
and “0” cover “0.” This remark can be generalized as follows:
Whenever the error induces a decrease of the higher valued
digits and an increase in the lower valued digits, it is always
possible to find codes covering the error code. !

Example 5: The opposite case can be illustrated by consid-
ering the same code 010221 turning into the error code 010222
with the defect d = (

(0
0

)
,
(1
0

)
,
(0
0

)
). Here, the number of digits

“2” has increased, while the number of digits “1” has decreased,
and the number of digits “0” has remained the same. Any code
that would cover the error code would have at least three digits
with the value “2.” Such codes do not exist in the considered
hot code space. Consequently, the error code cannot be covered
by any code in the considered space. !

B. Error Type I

The proof for the multidigit error of type I is given in the
following. Consider the case that a code word in Ω is trans-
formed into a code word c∗ by a multidigit error d of type I.
We denote by i the smallest position in d at which holds du

i >
dd

i+1. The number of digits in c∗ whose values are ≥ (i + 1)
becomes larger than the permitted number in any code word cb

in Ω, namely, k · (n − i − 1). No code word would imply each
digit of c∗ with a value ≥ (i + 1). Consequently, the NW with
the pattern equal to the code word c∗ is not addressed by any
permitted code word. The probability of defect type I is given
by pI and uses the recursive Algorithm 1

pI =
k∑

u=0

ProI

(
u, 0, 0,

k!
u! · (k − u)!

· (pu)u · (1 − pu)k−u

)
.

(2)

BEN JAMAA et al.: VARIABILITY-AWARE DESIGN OF MULTILEVEL LOGIC DECODERS FOR NANOSCALE CROSSBAR MEMORIES 2059

Fig. 5. Partial representation of error subtree for error
(
1
0

)
at i = 0.

Here, u = 0, . . . , k is a variable going through all possible
numbers of flip-up errors that can happen at digit “0” (flip-
downs cannot occur at digit “0”); pu is the probability of a
flip-up error as explained in Section IV-A, and ProI() gives
the probability that a type I error occurs at any higher valued
digit and that u flip-ups occur at digit “0” (see Algorithm 1).

Algorithm 1 pI = ProI(xu, xd, i, p)
1: πsum ← 0
2: Construct D = all possible defects in subtree
3: for all y = (yu, yd) ∈ D do
4: if i < n − 1 then
5: p ← p · k!/(yd! · yu! · (k − yd − yu)!) · (pu)yu ·

(pd)yd · (1 − pu − pd)k−yu−yd

6: if yd ≥ xu then
7: π ← ProI(yu, yd, i + 1, p)
8: else
9: π ← p

10: end if
11: else
12: p← p ·k!/(yd! · (k−yd)!) · (pd)yd · (1−pd)k−yd

13: if yd ≥ xu then
14: π ← 0
15: else
16: π ← p
17: end if
18: end if
19: πsum ← πsum + π
20: end for
21: return πsum

Algorithm 1 takes as input a defect described by
(xu

xd

)
at the

digit level i that can happen with a probability p (describing
the history of defects happening at digit levels ≤ i). It delivers
the probability that the assumed defect description can lead to a
type I defect. In order to calculate this probability, the algorithm
considers all possible error sequences that can happen at digit
levels > i and lead to a type I error. The algorithm is explained
with the example in Fig. 5.

In Fig. 5, we assumed a ternary hot code with M = 6
and k = 2 (e.g., 001122, 012012, . . .). Three types of errors
can happen at digit “0”:

(0
0

)
,

(1
0

)
, and

(2
0

)
, because no flip-

downs can happen at this digit. When u goes from 0 to
k = 2 in (2), it describes these three errors. Each error has
the probability k!/(u! · (k − u)!) · (pu)u · (1 − pu)k−u (u =

0, 1, 2), which are denoted by p0,1, p0,2, and p0,3, respectively,
in Fig. 5. We assume now that Algorithm 1 is called for the
error

(1
0

)
at the digit “0” [i.e., u = 1 in (2)]. The probability that

any possible sequence of errors at higher level digits leads to a
type I error is initialized at πtmp = 0 (line 1 in Algorithm 1).
We consider the digit level “1,” at which six different errors
can happen: D(i = 1) = {

(0
0

)
,
(1
0

)
,
(2
0

)
,
(0
1

)
,
(1
1

)
,
(0
2

)
}. Gener-

ally, for a given level i /∈ {0, n − 1}, the elements of D are
generated as follows: D{

(xu

xd

)
, s.t. xd = 0, . . . , k and xu =

0, . . . , (k − xd)}. For i = n − 1, since no flip-ups can happen,
D = {

(0
xd

)
, s.t. xd = 0, . . . , k}. Every error in D(i = 1) has a

probability designated by p1,1, . . . , p1,6 in Fig. 5 and calculated
at line 5. We consider the element

(0
0

)
in D(i = 1) for which the

following holds: The number of flip-ups at level “0” is higher
than the number of flip-downs at level “1.” This error sequence
induces a type I error. The algorithm saves the probability
of this event (line 9). On the other hand, if we consider the
element

(1
0

)
in D(i = 1), then no type I error is detected, and

the algorithm is called iteratively for the next digit level “2”
(line 7). The algorithm constructs the elements of D(i = 2) =
{
(0
0

)
,
(0
1

)
,
(0
2

)
} as explained previously and goes through them.

Only
(0
0

)
fulfills the condition of a type I error; for which the

error probability is saved (line 16). For the two others, 0 is
returned (line 14). Then, the updated type I error probability π
is returned (line 19 and 21).

C. Error Type II

Now, let the code word ca in Ω be transformed into c∗ by
a multidigit error d of type II. The number of digits in c∗
having the value i is always larger than the number of digits
having the value (i + 1). It is possible to construct one or more
code words cb in Ω implying c∗. An intuitive way consists in
starting with the smallest digit value 0 and filling the digits of
cb by 0 with respect to the positions held by the value 0 in the
digits of c∗. The procedure is repeated iteratively on the next
digit values until all digits of cb are allocated (Algorithm 2).
In Algorithm 2, we use the following notations: The number of
digits having the value i in c∗ is li. Their respective positions
are pi

0, . . . , p
i
li−1. The definition of the defect pattern d yields

li = k − du
i + dd

i+1 + du
i−1 ∀i, with the conventions du

i−1 = 0
for i = 0 and dd

i+1 = 0 for i = n − 1.

Algorithm 2 Σ = CoveredSet(i, ν,∆, c∗)
1: Construct S1 = set of all positions of digit i in c∗
2: Construct σ = set of subsets of S1 with ν elements
3: if i < n − 1 then
4: ∆tmp = ∅
5: for all S2 ∈ σ do
6: ∆rep = ∆
7: for all cb ∈ ∆rep do
8: Allocate i to digits of cb at positions S2

9: Allocate i+1 to digits of cb at positions S1 \S2

10: end for
11: ∆tmp ← ∆tmp ∪ ∆rep

12: end for
13: ν ← ν + k − |S1|
14: i ← i + 1

2060 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

15: ∆ ← ∆tmp

16: return CoveredSet(i, ν,∆, c∗)
17: else
18: for all cb ∈ ∆ do
19: Allocate n−1 to digits ofcb at remaining positions
20: end for
21: return ∆
22: end if

From the definition of the type II errors, there is at least a
digit value i for which νi < li holds. Each choice of νi elements
among li possible values (line 2) gives many possible choices
for cb. This proves that it is possible to find more than one code
word covering the considered error code type II. The following
example explains Algorithm 2 by means of the error code
c∗ = 010220.

Example 6: In order to find all code words which cover a
given error code c∗, Algorithm 2 is called with i = 0, ν = k,
and ∆ a single space-holder code with M × “∗, ” where “∗”
means that the digits are not allocated yet and can take any
possible value. For c∗ = 010220, Algorithm 2 is called with
i = 0, ν = 2, and ∆ = {∗ ∗ ∗ ∗ ∗∗}. We start with the digit
level “0,” whose positions in c∗ are given by S1 = {0, 2, 5}
(line 1). Then, σ = {{0, 2}, {0, 5}, {2, 5}} (line 2). Lines 4–12
set ∆tmp to {0 ∗ 0 ∗ ∗1, 0 ∗ 1 ∗ ∗0, 1 ∗ 0 ∗ ∗0}. Line 16 calls
the algorithm with i = 1, ν = 1, and ∆ set to ∆tmp. During
this call of Algorithm 2, S1 = {1} (line 1) and S2 can take the
only value {1}. Then, lines 4–12 update ∆tmp to {010 ∗ ∗1,
011 ∗ ∗0, 110 ∗ ∗0}. Subsequently, the algorithm is called again
with i = 2, ν = 2, and ∆ set to ∆tmp (line 16). During this
call, the lines 17–20 are executed and just fill in the remain-
ing space holders with the digit “2.” Finally, ∆ is set to
{010221, 011220, 110220} and returned recursively to the top
level. To conclude, the error code c∗ can be covered by three
possible code words. !

D. Unique Covering

In order to assess the probability that a code word ca

uniquely covers an error code, we first need to enumerate the
code words cb which can undergo a sequence of defects to
become covered by ca and the probability of each one of these
events. Then, we can derive the probability that exactly one
of these events happens, which is equivalent to saying that ca

covers a unique error code.
Enumerating these events is performed in two steps: We first

define the set S of code words cb that can be transformed into
ca by a sequence of flip-ups and -downs. Then, the considered
events consist in making each element cb undergo a sequence
of defects that turn it not necessarily into ca but just make it
covered by ca. We describe the elements cb of S in an abstract
way, consisting of a transformation matrix T which describes
the flip-ups and -downs that cb needs to undergo in order to
turn to ca. Then, each element is assigned the probability of
covering under defects.

A code word cb is transformed into another code word ca

by undergoing at each digit level i = 0, . . . , n − 1: tij (j − i)-
order flip-ups (for j = i + 1, . . . , n − 1) and tij (i − j)-order

flip-downs (for j = 0, . . . , i − 1). We use the following con-
vention: tii designates the number of correct digits at level i. A
transformation T affecting a whole code word is a set of the
transformations ti = [ti0, . . . , tin−1]4 affecting each digit level
i = 0, . . . , n − 1. Thus, T is the matrix [t0, . . . , tn−1]. The
(i + 1)th column of T describes the transformation happening
at digit levels i = 0, . . . , n − 1. Since there are k occurrences of
the digit level i in each code word, T must verify: ∀i

∑
j tij =

k. The (i + 1)th row indicates the number of digits with the
value i in the code obtained after the transformation (i.e., ca).
This number has to be set to k. Then, we derive the second
condition on T : ∀j

∑
i tij = k.

Example 7: We consider the ternary hot code with M = 6
and k = 2. The digit level “0” undergoes only one flip-up: t0 =
[1, 1, 0]4. The digit level “1” undergoes one flip-up and one flip-
down: t1 = [1, 0, 1]4. The digit level “2” undergoes no errors:
t2 = [0, 0, 2]4. Thus, the code word 001122 undergoing T =
[t0, t1, t2] can be transformed, for instance, into 010222, which
is not an element of the considered code space. This is due to
the fact that the second condition is not fulfilled. We suggest the
transformation T̃ meeting both conditions

T =

1 1 0
1 0 0
0 1 2

 T̃ =

1 1 0
1 0 1
0 1 1

T̃ would transform 001122 into 010212 (for instance), which is
in the same code space. !

Now, we inject defects that make cb controlled by ca. At each
digit value i, the tij digits, for which j > i holds, must each
undergo a (j − i)-order (or higher) flip-down defect, in order to
decrease their value down to that of the corresponding digit in
ca. On the contrary, the tij digits, for which j < i holds, already
have a value which is smaller than that of the corresponding
digit in ca; therefore, they can undergo any kind of first-order
defect or be correct. The remaining tii digits in cb have the
same values as their counterparts in ca; therefore, they can
undergo a flip-down error or no error. Only first-order flip errors
are considered in this paper, because the likelihood of higher
order defects is negligible. Thus, we set tij to 0 for j > i + 1 in
order to reduce the computation time. This represents the third
condition on T .

These conditions define the eligible set of transformations T .
For each transformation, the probability that a sequence of
defects transforms the digits of cb with the value i into an
error code covered by ca at the positions corresponding to
these digits is p̃i = (pd)ui · (1 − pu)k−ui−di with ui = tii+1

and di =
∑

j<i tij ∀i. The probability that the code word cb is
transformed into an error code covered by ca is identical to the
probability that the previous event holds for each digit value i.
This gives the event probability p =

∏
i p̃i.

Given the transformation ti affecting the k occurrences of the
digit value i, there are µi distributions of the tij transformations
on the k elements, given by µ̃i = k!/

∏
j tij !. Considering the

n possible values of i, there are µ code words cb transformed
into an error code covered by ca with the same probability p:
µ =

∏
i µ̃i.

BEN JAMAA et al.: VARIABILITY-AWARE DESIGN OF MULTILEVEL LOGIC DECODERS FOR NANOSCALE CROSSBAR MEMORIES 2061

Example 8: The code ca = 001122 in the previous example
was transformed by T̃ to cb = 010212. A series of defects
transforms cb into c∗ that is covered by ca. Thus, the first
digit in cb (corresponding to the first occurrence of “0” in
ca) has to remain unchanged in order to be covered by ca.
The second digit in cb (corresponding to the second occur-
rence of “0” in ca) has to flip down to be covered by ca.
This gives p̃0 = pd(1 − pu). In a similar way, we find p̃1 =
pd and p̃2 = 1. Then, p = (pd)2(1 − pu). There are many
images of ca through T̃ , for instance, 102012, 102021, etc.
Their number is obtained by permuting the flipping digits.
For instance, T̃ requires that exactly one digit “0” flips up:
There are µ̃0 = 2!/(1! · 1! · 0!) = 2 permutations. In a simi-
lar way, we find µ̃1 = 2 and µ̃2 = 2 for the digits “1” and
“2,” respectively. Finally, the number of possible code words
cb is µ = 8. !

Algorithm 3 represents a formulation of the method ex-
plained previously. It assumes that all eligible transformations
T were calculated, for instance, by selecting in an exhaustive
way those meeting the three conditions aforementioned among
all matrices in {0, . . . , k}n×n. Then, it defines the set S of
all (p, µ), where p is the probability of the code words cb

represented by the valid transformation to undergo the right
error sequence that makes it covered by ca and q is the number
of its equivalent occurrences.

Algorithm 3 S = UniqueSet(T)
1: Construct E = {all eligible transformations T meeting

the 3 conditions above}
2: S ← ∅
3: for all T ∈ E do
4: ui ← tii+1∀i
5: di ←

∑
j<i tij∀i

6: p̃i ← pui
d · (1 − pu)k−ui−di

7: p ←
∏

i p̃i

8: µ̃i ← k!/
∏

j tij !
9: µ ←

∏
i µ̃i

10: S ← S ∪ {(p, µ)}
11: end for
12: return S

Let S be the set of all eligible events with their respective
occurrences; then, the probability that exactly one event hap-
pens (i.e., ca covers exactly one error code) can be calculated
as follows:

pU =
∑

i=1,...,|S|

µi · pi

/
(1 − pi) ×

∏

i=1,...,|S|

(1 − pi)µi . (3)

In summary, this section suggested mathematical methods
to estimate the probability of uncovered codes (pI) and the
probability of unique covering (pU). The probability pI was
calculated by constructing the whole set of type I errors and
estimating the probability of each one of these errors. On the
other hand, pU was estimated from the set of code words that
can undergo a sequence of errors and become covered by a

given reference code word. Once pI and pU are known, they can
be inserted in (1) in order to estimate the size of the addressable
code space under defects, i.e., the number of NWs that can be
addressed in the array under high variability conditions.

VIII. ERRORS IN THE NRC SPACE

A. Error Types

In the following, Ω refers to an arbitrary NRC space with
length M (M is even) and base size n. We define a flip-up
defect at digit ci in the code word c to be canceled when a
flip-down defect occurs at digit cM/2+i. A canceled flip-down
defect is defined in a complementary way.

As for the hot codes, we distinguish two types of multi-
digit errors for reflexive codes, corresponding to the uncovered
(type I) and covered codes (type II) that we can describe in the
following way.

1) Multidigit errors of type I. The code word undergoes at
least one uncanceled flip-up.

2) Multidigit errors of type II. The code word only experi-
ments flip-downs and/or canceled flip-ups.

In order to illustrate this assumption, we suggest the follow-
ing two examples.

Example 9: We consider the code word ca = 00012221 in
the ternary (n = 3) reflexive code space with the length M = 8.
ca undergoes an uncanceled flip-up error at the fourth digit
and turns to the error code c∗ = 00022221. Any hypothetical
code word that would cover c∗ would have, at the fourth digit,
the value 2 and, at the last digit, the value 0 (then, the last
digit would not be covered) or it would have, at the last digit,
the value 1 or 2 and, at the fourth digit, the value 1 or 0,
respectively, (then, in both cases, the fourth digit would not be
covered). The uncanceled flip-up defect causes any hypothetical
covering code to cover either the first half of the code or
its reflected half, but never both of them at the same time.
Consequently, the error code c∗ cannot be covered by any code
in the considered NRC space. !

Example 10: On the other hand, if we consider the same
code word ca undergoing the canceled flip-up defect at the
fourth digit, then it turns to c∗ = 00022220 which is a code
word from the same space, and it is consequently covered by
itself. If, in addition to the canceled flip-up defect at the fourth
digit, a flip-down defect occurs, for example, at the fifth digit,
then the code turns to the error code c∗ = 00021220 which is
in turn covered by the code words 00022220 and 10021220. !

B. Error Type I

Here, we explain formally how codes undergoing type I
errors are not covered by any code in the considered code
space. Let the code word ca in Ω be transformed into c∗
by a multidigit error of type I. We denote by i one of
the positions in the first half of the code word, at which
an uncanceled flip-up error occurs. Then, c∗i =ca

i +1, and
c∗M/2+i≥ca

M/2+i. Any code word c0 which would imply

2062 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

the pattern corresponding to c∗ would verify that c0
i ≥

c∗i = ca
i + 1. Then, c0

M/2+i = NOT(c0
i) = n − 1 − c0

i ≤ n −
1 − ca

i − 1 = cM/2+i − 1 < c∗M/2+i and ‖σ(c∗ − c0)‖ += 0.
Thus, there exists no code word in Ω that would cover c∗. The
size of the addressable space is reduced by the number of code
words undergoing the multidigit error of type I.

Unlike hot codes, we give no recursive form for the prob-
ability of type I errors affecting reflexive codes; we rather
derive the explicit analytical expression. However, it is much
easier to consider the complementary case of the type I error,
which is the type II error (probability pII) or no errors (immune
codes with the probability pim): pI = 1 − (pII + pim). The
exact expression of pII + pim and, consequently, the one of pI

are derived in the following section.

C. Error Type II

Let the code word ca in Ω be transformed into c∗ by a
multidigit error d of type II. It is possible to find more than
one code word c0 which covers the pattern corresponding to c∗.
We construct first, for example, the left half of c0; then, the
right half is obtained by complementing the left half. The
construction rule is the following (i = 0, . . . , M/2 − 1).

1) If ca
i undergoes a noncanceled flip-down error, then c0

i

can be set to either ca
i − 1 or ca

i .
2) If ca

i undergoes a canceled flip-down error, then c0
i is set

to ca
i − 1.

3) If ca
i undergoes a canceled flip-up error, then c0

i is set to
ca
i + 1.

4) If ca
i has no error, then c0

i is set to ca
i .

5) c0
M/2+i is set to n − 1 − c0

i .

It is easy to verify that all patterns corresponding to c0 con-
structed this way cover c∗. In order to calculate the probability
pI of the multidigit error type I, we observe the complementary
event (multidigit error type II or no error in code word ca).

1) If ca
i undergoes no error, then ca

M/2+i must undergo a flip-
down or no error: (1 − pu − pd)(1 − pu).

2) If ca
i undergoes a flip-down error, then ca

M/2+i can have
any value: pd.

3) If ca
i undergoes a flip-up error, then ca

M/2+i must undergo
a flip-down error: pupd.

This scheme assumes that the digit ca
i has the value 1, . . . , n −

2, i.e., it is not at the range borders. In this case, the probability
that the digit ca

i and its complement in the reflected code
half undergo no type I error is pI,1 = (1 − pu − pd)(1 − pu) +
pd + pupd = (1 − pu)2 + 2pupd.

If the considered digit ca
i has the value 0 or n − 1, then

its complement ca
M/2+i has the value n − 1 or 0, respectively,

and we derive, in a similar way, the probability that the digit
ca
i and its complement undergo no type I error in this special

case: pI,2 = 1 − pu + pupd. In order to consider a digit with
any value in 0 to n − 1, we apply the binomial theorem, which
results in a simple averaging of both probabilities: pI,avg =
pI,1 · (n − 2)/n + pI,2 · 2/n.

Since a code word has M/2 couples of complementary dig-
its, the probability that no type I error happens, i.e., that no error
or only type II errors happen, is given by pII + pim = pM/2

I,avg.

The probability of immune codes is not given here, since we
are only interested in pI, which is given by 1 − (pII + pim)

pI = 1 −
(

n − 2
n

pI,1 +
2
n

pI,2

)M/2

. (4)

D. Unique Covering

Now, we would like to calculate pU . In principle, the same
reasoning for hot codes can be applied on reflexive codes too.
In order to assess the probability that a code word ca uniquely
covers an error code, we first enumerate all the code words
cb that can be transformed into ca by a sequence of flip-ups
and -downs. Then, we calculate the probability that these code
words cb undergo errors and become covered by ca.

For hot codes, we considered all the transformations T =
(t0, . . . , tn−1) that transform cb into ca, and we represented
them by matrices. The fact that we considered only first-order
defects fixed the limit tij = 0 for j > i + 1. Because of the
reflection principle, the reflected half of the code word fixes
the limit tij = 0 for j < i − 1. Consequently, the transformation
becomes much simpler than in the case of hot codes: for each
digit i, (ca

i − cb
i) ∈ {−1, 0, 1} must hold. We do not need the

matrix representation in order to define the set of code words cb

verifying this condition: Indeed, the set of cb represents the
neighborhood of ca that can be graphically represented in
the space BM/2 by a hypercube with the edge length 2 and
centered around ca. If ca has a certain number u of digits at the
range border (i.e., 0 or n − 1), then only (ca

i − cb
i) ∈ {−1, 0}

or {0, 1} holds, respectively, and the volume of hypercube is
halved for each one of these digits.

Given this definition of the set of code words cb, we can
now enumerate them, first, by assuming that no digit is at
the range borders. We consider only the first half of the code
words because it completely defines the whole code word by
applying the reflection principle. Let α be the number of digits
in a half-word such that cb

i − ca
i = 0 (α = 0, . . . , M/2). There

are µ̃α =
(M/2

α

)
· 2M/2−α possible code words fulfilling this

condition. Each one of them can be transformed into an error
code c∗ covered by ca if the α digits in each half undergo
no flip-up error and each one of the M/2 − α digits for
which holds c∗i − ca

i = 1 (in the whole code word) undergoes
a flip-down error. The other M/2 − α digits for which holds
c∗i − ca

i = −1 (in the whole code word) can undergo any kind
of defect, or they can be correct. The likelihood of each event is
p̃α = (1 − pu)2α · pM/2−α

d · 1M/2−α.
We can now consider the cases in which the first half of cb

has u digits at the range border such that cb
i − ca

i += 0 and
α is still the number of digits in the half-word such that
cb
i − ca

i = 0 (α = 0, . . . , M/2 and u = 0, . . . ,M/2 − α). The
number of code words having u digits among M/2 − α such
that cb

i − ca
i += 0 is 2(M/2−α)−u · 1u. The average number of oc-

currences of each one of these words is
(M/2−α

u

)
(2/n)u((n −

2)/n)M/2−α−u. Then, the binomial theorem yields the average
number of code words having α digits such that cb

i − ca
i = 0

µα =
(

M/2
α

)(
2 · n − 1

n

)M/2−α

.

BEN JAMAA et al.: VARIABILITY-AWARE DESIGN OF MULTILEVEL LOGIC DECODERS FOR NANOSCALE CROSSBAR MEMORIES 2063

We consider now the probability of occurrence of the trans-
formation affecting each one of the µα code words without
discarding the digits at the range borders. The indexes α and u
keep the same definitions as before (α being again the number
of digits in the half of a code word such that cb

i − ca
i = 0 and

u the number of digits in the rest of the code half having
their values at the range borders: α = 0, . . . ,M/2 and u =
0, . . . ,M/2 − α). In addition, we call v the number of digits
in the set of α digits having their value at the range borders
(v = 0, . . . ,α). First, we fix the value of α. In order for cb

to undergo errors making it covered by ca, each one of the α
digits must undergo no flip-up error. If the digit is among the
ones at the range border (with the probability 2/n), then having
no flip-up error happens with the probability 1v · (1 − pu)v . If
the digit is not at the range border (with the probability (2 −
n)/n), then having no flip-up error happens with the probability
(1 − pu)2(α−v). The remaining M/2 − α digits are divided into
those for which holds cb

i − ca
i = 1, and which have to undergo

a flip-down error, and those for which holds cb
i − ca

i = −1, and
which can undergo any kind of error or be correct. Because
of the reflection principle, the probability that the remaining
M/2 − α digits undergo the right error sequence is independent
of u, and it is equal to pM/2−α

d . Consequently, the probability
that each one of the µα code words cb undergoes the right defect
sequence and becomes covered by ca is given by the binomial
theorem

pα =
(

n − 2
n

(1 − pu)2 +
2
n

(1 − pu)
)α

· pM/2−α
d .

Finally, having the set S of all possible events that cb

becomes covered by ca and their respective occurrences, the
likelihood that only one event happens, i.e., only one code word
in S is transformed into another word covered by c0, is given by

pU =
M/2∑

i=0

µi · pi/(1 − pi) ×
M/2∏

i=0

(1 − pi)µi . (5)

In summary, this section suggested the analytical expressions
of the probability of uncovered codes (pI) and the probability
of unique covering (pU). For each probability, we considered
the simplified case, in which the digits are not at the range
border, i.e., 0 and n − 1, then we derived the general case,
where the digits can have any value. The NRC space is easier to
describe analytically; thus, the given probabilities are in explicit
forms unlike the recursive forms given in the k hot code space.
Once pI and pU are known, they can be used in (1) in order
to analytically estimate the size of the addressable code space
under defect conditions.

IX. SIMULATIONS OF THE ADDRESSABLE CODE SPACE

In order to assess the variation of the addressable code
space under variable VT , we used the following simulation
parameters: q = 100, V0 = VDD = 1 V, and α ∼ 1/n since
the difference between the highest and lowest VT,i’s is limited
by the constant VDD. We plotted separately the uncovered part
|Ω|un = pI · |Ω|, the addressable part |Ω′|, and the immune part

Fig. 6. Dependence of different code space subsets on VT variability.

in which no defects occur |Ω|im. If we neglect the effect of
digits at the range border, then |Ω|im = (1 − pu − pd)M · |Ω|.
In the simulations, we used the exact expression taking into
account the effect of range borders. The fit parameter ν was
estimated with Monte Carlo simulations. Fig. 6 shows the sizes
of these subspaces for a ternary (3, 14) reflexive code depending
on the 3σ value of VT . The Monte Carlo simulations confirm,
in the same figure, the analytical results and gives the value
2.8 for the fit parameter ν. The size of the addressable space
|Ω′| drops quickly when 3σ reaches 0.4 V. At the same time,
more patterns become uncovered. Interestingly, there are more
addressable than immune patterns, because some defective
patterns can be randomly addressed. This tendency increases
for unreliable technologies, and around 10% of the original
code space size can be randomly addressed under extreme
conditions. The simulation of hot codes was not shown, because
the result is similar, except for large defect probabilities: Under
these conditions, the size of the addressable space goes faster
toward 0 because the construction of hot codes imposes more
constraints than the NRC.

The fact that the hot code space is under more constraints
than the reflexive code space could be illustrated by investi-
gating the value of ν for different codes. It is important to
emphasize the fact that ν is a statistical quantity that gives the
average number of elements in the code spaces mapped onto the
pattern space under variability conditions through the relation
“code covers pattern.” Its value was estimated by matching the
analytical results to the Monte Carlo simulations. For hot codes,
ν has a value between 1.3 and 1.4, while for reflexive codes, ν
was ranging between 1.8 and 3.0.

We also investigated the impact of the placement of VA

between two successive VT,i’s. We postulated, in an intuitive
way, that VA has to be the median of VT,i and VT,i+1. While
modeling the defects (Section VI), we allowed VA to translate
by a small value υ. When υ increases (i.e., VA moves toward
VT,i), the probability of a flip-up increases and that of a flip-
down decreases. The opposite happens when VA moves toward
VT,i+1. The normalized number of addressable NWs has been
shown in Fig. 7. For unreliable devices with 3σ > 0.1 V, the

2064 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

Fig. 7. Impact of the value of VA on the number of addressable NWs.

optimal position of VA is slightly shifted from the middle of
VT,i and VT,i+1 toward VT,i+1 by a few tens of millivolts.
While reliable devices show a plateau around the optimal value
of υ and necessitate no accurate calibration of VA, the circuit
designer has to calibrate the applied voltages VA in a precise
way when the transistors are not reliable; otherwise, a certain
loss in the number of addressable NWs has to be taken into
account. This circuit level issue has to be considered for either
hot or n-ary reflected codes (both codes showed a similar
behavior). In our technology characterized by a 3σ value below
100 mV, no calibration will be needed.

X. SIMULATIONS OF THE EFFECTIVE MEMORY AREA

The previous section enables the assessment of the number of
NWs that the decoder can address uniquely even with variable
threshold voltages. Based on this estimate, we can evaluate
the effective capacity of the crossbar memory, i.e., the number
of addressable bits. An analysis of the defects affecting the
switches is beyond the scope of this paper. Thus, we can
estimate the effective capacity Ceff in an analog way to the
memory yield in [9]: Ceff = (η · |Ω′|)2, where η represents the
effects of contact and control quality of NWs as explained in
[9] and [26]. The area can be estimated from the geometry
as shown in Fig. 2. The NW pitch depends on the considered
fabrication process, whereas the MWs are defined according to
the technology node 45 nm [1].

A. Top–Down Approach: GAA Decoder-Based Memories

We explored the memory effective capacity/area design
space, and we performed a simulation of the design space of
our technology (Fig. 8). The processes based on two and four
VT ’s were considered for both hot and n-ary reflected codes.
As Fig. 8 shows, the hot code generally reduces the decoder
area and, consequently, the memory area, because with the
same code length, it is possible to address a larger code space.
For instance, by using the same technology with four VT ’s

Fig. 8. Memory area/capacity design space for different encoders.

to fabricate a 4-kB memory, the NRC has an area overhead
of ∼10% compared to the hot code. The use of a simpler
technology with two VT ’s implies an area overhead of ∼24%
for the same memory size. The area saving can be implemented
at either the technology or system level. It is worth to notice
that the area saving is more significant for small memory sizes
(typically less than 0.1 Mb), because the memory area for
large memories is dominated by the area of the programmable
array. The programmable array can be split into smaller blocks
defined by the size of the ohmic regions (Fig. 2) in order to
reach the optimal size.

B. Bottom–Up Approach: Axial Decoder-Based Memories

MVL decoding can be used also within other decoder tech-
nologies. As an example of bottom–up approaches, we chose
the axial decoders. The yield of axial decoders was investigated
under different scenarios, by changing the process variability σ
and the code type. The particularity of decoders in this
bottom–up approach is that they assign addresses randomly.
The size of the ohmic region is set to the smallest value
allowed in the considered technology in order to maximize the
efficiency of the random address assignment [9].

We considered memory blocks with 32-kB raw density,
where the raw density designates the memory density in the
error-free case. We first set σ to a very low value (below 10 mV)
so that the defects have a negligible impact on the bit area.
The results are shown in Fig. 9, using a reflexive code with
n = 2 and 3. The results for hot codes have a similar qualitative
behavior. For n = 2, the effective bit area is large for short
codes because small code spaces do not insure enough unique
codes. The randomness in the bottom–up decoding schemes
necessitates a code space that is large enough to insure unique
addressing. On the other hand, long codes increase the size
of the decoder, and the cost in terms of area cancels the
gain in terms of unique codes. Between these two regions, an
optimal code length exists for which the effective bit area is

BEN JAMAA et al.: VARIABILITY-AWARE DESIGN OF MULTILEVEL LOGIC DECODERS FOR NANOSCALE CROSSBAR MEMORIES 2065

Fig. 9. Effective bit area versus code length for binary and ternary reflexive
codes and Craw = 32 kB.

TABLE I
YIELD OF DIFFERENT BOTTOM–UP DECODERS IN TERMS OF AREA PER

WORKING BIT (nm2) AT THE TECHNOLOGY NODE OF 45 nm

minimal. When we use a larger number of logic levels, the
code space for short codes is already large enough to insure
the unique addressing with random decoders. Thus, the optimal
code length becomes smaller for larger n’s.

The same simulation described previously was performed
with a higher variability. The decrease in effective bit area does
not happen in a uniform way for all codes. For instance, the
optimal binary reflexive code has M = 18 for low σ (30 mV),
whereas the optimum is shifted toward M = 16 for the same
code when σ becomes large (300 mV). Designing the circuit
with an overestimated reliability would result in about 10%
larger effective bit area. This result shows that optimizing
the choice of the decoder strongly depends on the estimated
reliability level.

C. Summary

The benefits of using MVL to design bottom–up decoders
is summarized in Table I. Among the decoders presented in
Section II-B, the radial decoder would need several oxide
shell thicknesses, and the random contact decoder would need
more than one level of conduction in order to be extended to
n-ary logic. These features are not inherent to the decoders
as presented in [11] and [26]; thus, they cannot be extended
to multilevel logic. On the contrary, it is possible to assume
more than two levels of doping for the axial decoder and more
than one oxide thickness for the mask-based decoder in order
to perform an MVL addressing without altering the underlying
decoding paradigm. Consequently, only these two decoders

TABLE II
YIELD OF DIFFERENT TOP–DOWN DECODERS IN TERMS OF AREA PER

WORKING BIT (nm2) AT THE TECHNOLOGY NODE OF 45 nm

were extended to MVL addressing. The bottom–up approaches
promise a high effective density under technological assump-
tions that are still to be validated. The use of ternary logic in
32-kB raw area memories saves area up to 20.2% for memories
with axial decoder and up to 11.8% for memories with mask-
based decoder.

On the other hand, memories using GAA decoders have
a lithography-dependent pitch; and they consequently com-
pete with the lithography-based memories. We compared the
yield of GAA decoder-based crossbar memories with standard
DRAM and Flash technologies at the technology node of
45 nm, while we assumed that the variation of VT is σ ∼ 1/A,
where A represents the channel area. For the NW technology,
A is given by the NW radius and the transistor length, whereas
for DRAM and Flash technologies, it is given by the transistor
length and width. We assumed that, for these standard technolo-
gies, σ ≈ 60 mV at the technology node of 90 nm.

The crossbar architecture is the main reason for the smaller
bit area when compared to DRAM or Flash memories. The
larger the raw memory density, the better is the yield of the
crossbar memory with GAA decoder (see Table II). For high
raw memory density, the ultimate limit is defined by the square
of the minimal features (poly pitch) which is almost the same
limit for Flash memories. The crossbar memory is denser than
DRAM memory for all future technology nodes. Compared to
Flash memory, it is denser for all nodes until 22 nm; then, both
technologies converge to the ultimate limit defined previously.
However, using a ternary logic makes crossbar arrays more
competitive even after the 22-nm node.

XI. CONCLUSION

This paper studied the design of decoders based on MVL
for crossbar memories. The investigation started from the GAA
SiNW technology; then, it was extended to other NWs and
decoder technologies. This paper presented a theoretical for-
malism of multivalued addressing, which enabled the general-
ization of binary hot and reflexive codes to MVL. We modeled
the impact of variability by the digits flipping up and down.
Then, we investigated the types of errors that happen when
multidigit errors are considered. Depending on the error type,
the size of the addressable code space was reduced by a certain
fraction that we calculated. Since the size of the addressable
code space is equal to the number of NWs that can be used
in the memory array, our defect models enabled the estimation
of the effective memory density under high variability. The
performed simulations showed that hot decoders with multiple
VT yield an area saving up to 24%. For highly unreliable

2066 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2008

technologies, reflexive codes guarantee that at least 10% of
the NWs recover. We proved that the accurate estimation of
the variability improves the estimation of the optimal decoder
design for bottom–up technologies. Generally, the area saving
for all considered technologies was shown to be between 11%
and 24% for ternary instead of binary logic.

REFERENCES

[1] International Technology Roadmap for Semiconductors (ITRS) 2006,
Tech. Rep., 2006. [Online]. Available: www.itrs.net/reports.html

[2] G. Anderson and D. A. Metze, “Design of totally self-checking check
circuits for m-out of-n codes,” in Proc. Int. Symp. Fault-Tolerant Comput.,
Jun. 27–30, 1995, pp. 244–248.

[3] R. Beckman et al., “Bridging dimensions: Demultiplexing ultrahigh-
density nanowire circuits,” Science, vol. 310, no. 5747, pp. 465–468,
Oct. 2005.

[4] M. H. Ben Jamaa et al., “Fault-tolerant multi-level logic decoder for
nanoscale crossbar memory arrays,” in Proc. ICCAD, Nov. 4–8, 2007,
pp. 765–772.

[5] M. Butts et al., “Molecular electronics: Devices, systems and tools for
gigagate, gigabit chips,” in Proc. ICCAD, 2002, pp. 433–440.

[6] G. F. Cerofolini, “Realistic limits to computation. II. The technological
side,” Appl. Phys. A, Solids Surf., vol. 86, no. 1, pp. 31–42, Jan. 2007.

[7] K. W. Current, “Current-mode CMOS multiple-valued logic circuits,”
IEEE J. Solid-State Circuits, vol. 29, no. 2, pp. 95–107, Feb. 1994.

[8] A. DeHon, “Design of programmable interconnect for sublitho-
graphic programmable logic arrays,” in Proc. Int. Symp. FPGA, 2005,
pp. 127–137.

[9] A. DeHon et al., “Stochastic assembly of sublithographic nanoscale inter-
faces,” IEEE Trans. Nanotechnol., vol. 2, no. 3, pp. 165–174, Sep. 2003.

[10] C. M. Files and M. A. Perkowski, “New multivalued functional decompo-
sition algorithms based on MDDs,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 19, no. 9, pp. 1081–1086, Sep. 2000.

[11] T. Hogg et al., “Assembling nanoscale circuits with randomized connec-
tions,” IEEE Trans. Nanotechnol., vol. 5, no. 2, pp. 110–122, Mar. 2006.

[12] J. D. Holmes, “Control of thickness and orientation of solution-
grown silicon nanowires,” Science, vol. 287, no. 5457, pp. 1471–1473,
Feb. 2000.

[13] Y. Huang, “Logic gates and computation from assembled nanowire build-
ing blocks,” Science, vol. 249, no. 5545, pp. 1313–1317, Nov. 2001.

[14] Y. Jiang and R. K. Brayton, “Don’t cares and multi-valued logic network
minimization,” in Proc. ICCAD, 2000, pp. 520–525.

[15] D. L. Kencke et al., “A multilevel approach toward quadrupling the den-
sity of flash memory,” IEEE Electron Device Lett., vol. 19, no. 3, pp. 86–
88, Mar. 1998.

[16] Y. Luoer et al., “Two-dimensional molecular electronics circuits,”
ChemPhysChem, vol. 3, no. 6, pp. 519–525, Jun. 2002.

[17] S. Mahapatra and A. M. Ionescu, “Realization of multiple valued logic
and memory by hybrid SETMOS architecture,” IEEE Trans. Nanotech-
nol., vol. 4, no. 6, pp. 705–714, Nov. 2005.

[18] N. A. Melosh, “Ultrahigh-density nanowire lattices and circuits,” Science,
vol. 300, no. 5616, pp. 112–115, Apr. 2003.

[19] D. M. Miller, “Multiple-valued logic design tools,” in Proc. Int. Symp.
MVL, May 24–27, 1993, pp. 2–11.

[20] K. E. Moselund, “Cointegration of gate-all-around MOSFETs and local
silicon-on-insulator optical waveguides on bulk silicon,” IEEE Trans.
Nanotechnol., vol. 6, no. 1, pp. 118–125, Jan. 2007.

[21] K. Ogawa et al., “Multiple-input neuron MOS operational amplifier for
voltage-mode multivalued full adders,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 45, no. 9, pp. 1307–1311, Sep. 1998.

[22] E. Rachlin, Robust Nanowire Decoding, 2006. [Online]. Available: www.
cs.brown.edu/publications/theses/masters/2006/eerac.pdf

[23] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimiza-
tion for PLA optimization,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. CAD-6, no. 5, pp. 727–750, Sep. 1987.

[24] T. Sasao, “On the optimal design of multiple-valued PLAs,” IEEE Trans.
Comput., vol. 38, no. 4, pp. 582–592, Apr. 1989.

[25] T. Sasao, “EXMIN2: A simplification algorithm for exclusive-or-sum-of-
products expressions for multiple-valued-input two-valued-output func-
tions,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 12,
no. 5, pp. 621–632, May 1993.

[26] J. E. Savage et al., “Radial addressing of nanowires,” ACM J. Emerging
Technol. Comput. Syst., vol. 2, no. 2, pp. 129–154, Apr. 2006.

[27] K. C. Smith, “A Multiple valued logic: A tutorial and appreciation,”
Computer, vol. 21, no. 4, pp. 17–27, Apr. 1988.

[28] K. C. Smith, “The prospects for multivalued logic: A technology and
applications view,” IEEE Trans. Comput., vol. C-30, no. 9, pp. 619–634,
Sep. 1981.

[29] N. Song and M. A. Perkowski, “Minimization of exclusive sum-of-
products expressions for multiple-valued input, incompletely specified
functions,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 15, no. 4, pp. 385–395, Apr. 1996.

Mohamed Haykel Ben Jamaa (S’08) received
the co-joint B.S. and M.S. degrees in electrical
engineering from Technische Universität München,
München, Germany, and Ecole Centrale Paris,
Châtenay-Malabry, France, and has been working
toward the Ph.D. degree at Ecole Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland,
since 2005.

He is currently working on the design aspects for
nanoelectronics with a focus on hybrid systems. His
work covers the manufacturing aspects of regular

circuits as well as reliable system design and architecture.

Kirsten Emile Moselund (S’02) was born in
Denmark, in 1976. She received the M.Sc. degree
in engineering from the Technical University of
Denmark, Lyngby, Denmark, in 2003 and the
Ph.D. degree from Ecole Polytecnique Fédérale de
Lausanne, Lausanne, Switzerland, in 2008.

She is currently with IBM Rüschlikon,
Switzerland. Her research interests include silicon
optoelectronics, advanced transistors, nanowire
devices, and microelectronic fabrication technology.

David Atienza (M’05) received the M.Sc. degree
in computer science from Complutense University
of Madrid (UCM), Madrid, Spain, in 2001 and
the Ph.D. degree in computer science from IMEC,
Leuven, Belgium, in 2005.

He is currently an Associate Professor with
UCM and a Senior Research Associate with Ecole
Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland. He is the coauthor of more than
90 publications in these areas. He is an Associate
Editor of the Elsevier Integration: The VLSI Journal.

His research interests focus on design methodologies for integrated systems,
including thermal management techniques for multiprocessor systems-on-chip,
novel nanoscale architectures for logic and memories, dynamic memory and
memory hierarchy optimizations, and network-on-a-chip design.

Dr. Atienza is an Associate Editor of IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. He has been a
member of the Executive Committee of IEEE Council on Electronic Design
Automation since 2008.

Didier Bouvet was born in Evian, France, in 1968.
He received the M.S. degree in microelectronic engi-
neering from the University of Lyon, Lyon, France,
in 1991 and the Ph.D. degree in applied physics
from the Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, in 1997.

He was a Process Engineer for the start-up of
ATMEL’s 8-in fab at Rousset, France, in 1996. Since
1998, he has been with the EPFL, where he was a
Research Associate. His present research interests
include design, fabrication, and characterization of

submicrometer MOS devices and the development of slurries for chemical–
mechanical polishing applications.

BEN JAMAA et al.: VARIABILITY-AWARE DESIGN OF MULTILEVEL LOGIC DECODERS FOR NANOSCALE CROSSBAR MEMORIES 2067

Adrian Mihai Ionescu (S’91–M’93–SM’06) re-
ceived the B.S. and M.S. degrees in microelectron-
ics from the University Politehnica of Bucharest,
Bucharest, Romania, in 1989, and the Ph.D. degree
in physics of semiconductors from the Institut Na-
tional Polytechnique de Grenoble, Grenoble, France,
in 1997.

He has held positions with the Electronics and
Information Technology Laboratory, Commissariat à
l’Energie Atomique, Grenoble, and with the Centre
National de la Recherche Scientifique, France, and

he was a Visiting Researcher at the Center of Integrated Systems, Stanford
University, Stanford, CA. He is currently an Associate Professor with Ecole
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. His present
research interests include the design, modeling, and characterization of submi-
crometer MOS devices, single electron devices and few electron circuit archi-
tectures, SOI novel applications, and RF MEMS. He has (co)authored around
100 research papers.

Yusuf Leblebici (M’90–SM’98) received the Ph.D.
degree in electrical and computer engineering
from the University of Illinois, Urbana–Champaign
(UIUC), in 1990.

He has held positions with the UIUC, Istanbul
Technical University, Istanbul, Turkey, and
Worcester Polytechnic Institute, Worcester, MA.
He was a Director of the New England Center
for Analog and Mixed-Signal IC Design. Since
2002, he has been a Chair Professor with Ecole
Polytechnique Fédérale de Lausanne, Lausanne,

Switzerland. His research interests include the design of high-speed CMOS
digital and mixed-signal integrated circuits, computer-aided design of very
large scale integration (VLSI) systems, intelligent sensor interfaces, modeling
and simulation of semiconductor devices, and VLSI reliability issues.

Giovanni De Micheli (S’79–M’79–SM’80–F’94).
He is a Professor and Director of the Insti-

tute of Electrical Engineering and the Integrated
Systems Centre, Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland. He also chairs the
Scientific Committee, Centre Suisse d’Electronique
et de Microtechnique SA, Neuchâtel, Switzerland.
His research interests include design technologies for
integrated circuits and systems, such as synthesis,
hardware/software codesign, low-power design, as
well as systems on heterogeneous platforms.

Prof. De Micheli is the recipient of the 2003 IEEE Emanuel Piore Award.
He is a Fellow of the Association for Computing Machinery. He was Editor-
in-Chief of the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS/ICAS from 1987–2001. He is the
recipient of the 1987 D. Pederson Award for the best paper on the IEEE
TCAD/ICAS and the Golden Jubilee Medal for outstanding contributions to
the IEEE CAS Society in 2000. He was the President of the IEEE Circuits
and Systems Society in 2003, the Cofounder and President Elect of the
IEEE Council on Electronic Design and Automation from 2005–2007, and is
currently the Division 1 Director (2008–2009).

