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W e b - B a s e d
I n t e r a c t i o n

W eb-enabled technologies and 
applications for control engi-
neering are important research 
topics for many institutions and 

companies. This interest in exploring new meth-
ods for remote experimentation, diagnostics, 
and maintenance in engineering stems from two 
fundamental breakthroughs: the introduction 
of Internet-enabled supervision mechanisms for 
industrial and didactical processes to offer com-
petitive access to distant resources,1–3 and innova-
tive new technologies in curricula and renovated 
training programs.4,5

Web-based control environment deployment 
benefits both end users and developers (process 
control engineers, teaching staff, and so on). 
However, developers face extra work when trans-
forming an existing local system into a Web-

based environment—they know how to manage 
hardware and software in a local control system, 
but new problems arise when making the system 
accessible via the Internet. In particular, develop-
ers must create interactive GUIs for the system 
that can be deployed via the Internet in the form 
of a Java applet—the simplest way to integrate in-
teractive user interfaces for remote supervision 
into Web-based learning-management systems.

Labview’s virtual instrument (VI) is a graphi-
cal programming language specifically designed 
for developing instrumentation, diagnostics, and 
data acquisition systems. Many engineering and 
scientific disciplines, both professional and aca-
demic, have adopted Labview, which has resulted 
in a broad collection of libraries and legacy code, 
most of them working in local control systems. 
Publishing a Labview VI on the Internet is a long-
standing, click-and-share feature of this software.6 
However, a simple mechanism isn’t yet in place to 
make the VI variables (controls and indicators) ac-
cessible from Java applets. This requirement poses 
an important setback for developers who want to 
transform existing Labview-based local control 
systems into Web-based ones.

In this article, we present a new approach for 
quick and simple creation of Web-enabled control 
environments that use Labview on the local side, 
Java applets on the remote client side, and TCP/IP 
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as the communication mechanism between both 
elements. We’ve developed two software compo-
nents to solve this problem: a stand-alone applica-
tion, called a JIL (Java-Internet-Labview) server, 
which acts as middleware to publish an existing 
Labview VI on the Internet; and a Java library file, 
which Java clients can use to control and access 
JIL-published VI variables. The novelty of this 
approach is that programmers can access the VI’s 
controls and indicators from the Java program in a 
fully transparent way to the Labview developer—
that is, without introducing any modification to 
the original VI.

Communication via  
the Java-Internet-Labview (JIL) Server
Labview’s built-in local communication facilities 
let it include communication facilities at design 
time with almost any existing software and hard-
ware. However, once a Labview VI is developed, 
implementing a bidirectional data exchange with 
a Java applet requires editing the existing VI wir-
ing diagram to include new TCP/IP communi-
cation blocks into the diagram. It also requires 
implementing the TCP/IP-based communication 
library calls in the Java client. This procedure is 
time-consuming and demands both Java knowl-
edge and an understanding of how TCP/IP com-
munication works.

The JIL Server
Web-enabled environments for remote diagnos-
tics, control, or experimentation are commonly 
based on client-server architectures that use TCP/
IP links to exchange data and commands between 
both sides (see Figure 1).

The command parser, sender, and control loop 
are on the server side. The command parser re-
ceives commands from the client, interprets them, 
and executes the requested actions. When no re-
quest is received, the parser just sleeps, leaving 
the processor free for other duties. Similarly, the 
sender sends to the client application the measure-
ments the control loop acquires when a command 
requires them.

Figure 1 shows that we can draw a separation 
line between the two communication tasks and 
the control loop, which is the task connected to an 
industrial process or didactical setup. In this sce-
nario, the control loop is a Labview VI that super-
vises, diagnoses, or controls the industrial process 
or the didactical setup, principally without TCP/
IP communication capabilities. The JIL server 
acts as middleware to provide a TCP/IP wrapping 
to the control loop, acting as both the command 

parser and sender blocks, effectively communicat-
ing the control loop VI with a remote Java client.

To publish a VI using the JIL server, the au-
thor uses the server’s control panel to select the 
local VI he or she wants to publish and presses 
the Start button to finish the publishing task (see 
Figure 2). Every control and indicator of the VI 
becomes immediately accessible to any applet that 
uses the provided Java library file, described later. 
The server performs an automatic scan of all the 
VI controls and indicators, initializes the network 
input port, and waits for an incoming connection 
from a Java applet. When the connection is estab-
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Figure 1. Command-based architecture. This design pattern known 
as the command-based architecture is the basis of the Java-Internet-
Labview (JIL) approach.

Figure 2. The Java-Internet-Labview server’s front panel. Via the 
Options drop-down menu, it’s possible to configure the server’s 
TCP listening port and the rate at which the JIL server will send data 
packets to clients, change the size of the data packets, have the JIL 
server open the virtual instrument target’s front panel, and so on.  
At the bottom of the GUI, a connection log is displayed. Users can 
save this report in a file and send it to the server’s administrator.
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lished, the server then listens for incoming com-
mands, which it parses and serves as requested.

JIL Server Implementation
We have developed the JIL server entirely in Lab-
view, making use of the VI server feature that it 
provides. The VI server is a collection of blocks that 
allows programmatic access to the VI’s objects and 
functionalities. Any VI exposes properties—char-
acteristics you can read, write, or both, depending 
on the property—and methods—actions you can 
perform on a VI. Authors can access these proper-
ties and invoke the methods using blocks. An ex-
ample of a VI class property is Execution:State, 
which indicates a VI’s execution state (bad, idle, 
or running). An example of method is the run-VI 
method that programmatically runs a VI, much 
like manually pressing the run button in the VI’s 
user interface. Figure 3 presents a simple template, 
in which we’ve used two Labview invoke-node blocks 
of the VI server feature to execute methods and set 
or get property values.

Figure 4 shows a portion of the JIL server’s 
structure developed with the invoke-node blocks. 
When a developer publishes a Labview VI via the 
JIL server, the server’s first action is a programmat-
ic reading of all VI control and indicator names. 
It does this by calling the control-value-get-
all method in two invoke-node blocks—one for 
getting the indicators’ names and the other for the 

controls’ names. Once the JIL server receives this 
information, it waits for an incoming connection 
from a Java applet. Once the connection is estab-
lished, the server continues to listen for incoming 
commands from the applet.

Anytime the JIL server receives a command, it’s 
parsed and processed according to its type. If the 
command is a request for the available controls 
and indicators, the JIL server returns the name 
list (because it was extracted when the two invoke 
blocks obtained it). When the user issues a control 
command, he or she can start, stop, or reinitialize 
the VI via invoke nodes with run-VI, abort-VI, 
or reinitialize-all-to-default methods. 
The server can receive a state command, which 
is either for reading an indicator or for writing a 
control. Either way, the corresponding method 
performs this action in an invoke-node block. The 
rest of the time, when information isn’t received, 
the JIL server waits.

JIL-Enabled Java Clients
A JIL-enabled Java client must implement two 
(sender and receiver) communication tasks to in-
teract with a published VI. The sender task sends 
control commands (to set VI control values) or 
state commands (to modify the VI’s state) when-
ever the user interacts with the client’s user in-
terface. The receiver task periodically reads the 
VI indicator values that the JIL server sends—for 
example, in a Web-enabled control application, 
values that the Java client sends can be controller 
parameters, and the data stream it receives back 
will contain data relative to the process state (the 
tank level, the temperature in a heat exchanger, a 
motor’s angular position, and so on.) The JIL.
class utility—part of the JIL package—provides 
methods that make it easy to implement these 
communication tasks in a Java program. Table 1 
lists the methods that the JIL class provides to 
open a connection, control the VI, and obtain in-
formation about its controls and indicators. Table 
2 enumerates the methods to read and write the 
indicators’ values and VI’s controls published by 
the JIL server.

The first method to invoke on a JIL object 
is the connect() method, which establishes the 
connection with the server and reads the remote 
VI’s list of controls and indicators and stores them 
internally in the object. This internal list acts as 
a buffer to improve the communication perfor-
mance, meaning that reading the value of one 
or more VI indicators requires a call to the re-
fresh() method prior to calling the appropriate 
getValue() methods. The refresh() method 

Figure 3. Property modification and method calling. Invoke-node 
blocks can modify a property or call a method in a virtual instrument.

Figure 4. A portion of the Java-Internet-Labview (JIL) server wiring 
diagram. This part helps obtain the list of the virtual instrument’s 
controls and indicators by using two invoke-nodes blocks.
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reads all the values from the JIL server into the 
private list, from which the getValue() method 
retrieves any indicator’s value. Similarly, to modify 
the value of one or more VI controls, the program-
mer must first call the appropriate setValue() 
methods to set the new values in the private list. 
When all values have been set, a single call to the 
flush() method transmits the new values to the 
JIL server. The JIL class implements the minimal 
features that communicate with the JIL server. 
For example, Java programmers can easily extend 
this class using Java inheritance—without chang-
es to the existing architecture—to implement ad-
ditional features such as advanced communication 
management or alarm management.

A Simple Example
Figure 5 shows a complete, albeit rather naïve, 
example of the Java library. The diagram consists 
of a synchronous while loop with four controls 

connected to four indicators. This has the simple 
(and rather useless) effect of showing any control 
modification in the corresponding indicator.

Once the VI is published using the JIL server, 
the Java code in Figure 6 communicates with this 
VI—an example of this is as follows:

The first lines of this applet’s init() method 
instantiate a JIL object and try to connect the ob-
ject to the VI that the JIL server published in the 
example.uned.es host at the 8080 port. If the con-
nection is successfully established, the JIL server 
then starts the VI execution. The next try/catch 
block sets the values of the four controls and flush-
es the buffer, and the third block refreshes the in-
put buffer and reads and prints the VI indicator 
values. The VI must have placed the previously 
sent control values in the indicators, according 
to the VI wiring diagram. The final try/catch 
block stops the VI and closes the connection.

Table 2. Java-Internet-Labview class methods to set the indicator values and read the control values.

Method Action

void setValue(String name, 
Object value)

Sets the VI control value with the given name; the value must be an object 
that wraps the desired primitive value; if the primitive value type doesn’t 
correspond to the Labview control type or the name doesn’t correspond to a 
control, a java.lang.IllegalArgumentException is thrown

Object getValue(String name) Returns an object that wraps the primitive value (as defined in the VI) of the 
indicator name; if the name doesn’t correspond to an indicator, a java.lang.
IllegalArgumentException is thrown

void refresh() Reads and saves all the VI indicator values into a private class list at once;  
a java.io.IOException is thrown if an I/O error occurs

void flush() Writes the private class list with all the controls’ values to the VI at once;  
a java.io.IOException is thrown if an I/O error occurs

Table 1. Java-Internet-Labview class methods used to exchange information with the virtual instrument.

Method Action

JIL(String hostname, int port) Constructor used to create a JIL object

void connect() Creates and initializes the TCP/IP connection with the JIL server; a java.
io.IOException is thrown if an I/O error occurs; this method must be called 
prior to further operation

void disconnect() Closes the TCP link with the JIL server; a java.io.IOException is thrown if 
an I/O error occurs

String[] getIndicators() Returns an array containing the VI’s indicator names; indicators work like read-
only variables

String[] getControls() Returns an array containing the VI’s control names; controls work like write-
only variables

void run() Starts the VI; a java.io.IOException is thrown if an I/O error occurs

void stop() Stops the VI; a java.io.IOException is thrown if an I/O error occurs

boolean isRunning() Returns a Boolean indicating whether the VI is running; a java.
io.IOException is thrown if an I/O error occurs
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Integrating the JIL Approach
At this point, the tools to create the server-side 
components are clear: Labview for developing 
the VI (the control loop task) and the JIL server 
for providing the TCP/IP wrapping to the VIs. 
However, for the client side, we must provide a 
tool to help nonexpert Java developers produce 
JIL-flavored applets. This tool should conceal the 
implementation details of the JIL approach and 
provide advanced interactive user interfaces. To 
simplify the programming task for nonexpert Java 
developers, we’ve augmented the fast-prototyping 
program Easy Java Simulations (EJS) with the 
capability to create JIL-enabled applets using the 
JIL library in a transparent way.

EJS is a freeware, open source tool developed 
in Java and specifically designed to create interac-
tive dynamic simulations.7–9 Although we origi-
nally designed EJS for developing interactive 
simulations in physics, we’ve recently augmented 
it to help create Web-accessible laboratories in 
control engineering education. For this reason, 
recent releases of EJS support connections with 
external applications, such as Matlab/Simulink, 
SciLab, and SysQuake. EJS now provides point-
and-click mechanisms to connect Java variables 
with Labview controls and indicators; it also 
hides JIL class implementation details from pro-
grammers. For more information, visit www.
um.es/fem/EjsWiki.

From a practical viewpoint, developers can 
create advanced interactive applets using EJS by 
working in two main sections: the model and the 

view (see Figure 7). The model section must pro-
vide a mathematical description of the industrial 
process, didactical setup, or the physical phenom-
enon being studied. The model includes a list of 
its state, parameters, input, and output variables 
together with their initial values and equations 
that state how these variables relate to each other, 
evolve with time, or change under user interac-
tion. The view must provide a graphical represen-
tation of the program output and an interface for 
user interaction. EJS provides a simplified pro-
gram structure, custom model tools (such as an 
advanced differential equation editor), and drag-
and-drop view elements that let developers work 
at a high level of abstraction, thus speeding up the 
creation process. Developers input the qualified 
information on the simulation that only a human 
can provide—such as math equations, the initial 
model state, and the graphical interface’s design—
and the program takes care of all the computer-
related aspects of creating a finished, independent 
Java applet or application.

When using EJS to create the remote interface 
for an existing VI, the actual equipment deter-
mines the process’s behavior, thus programmers 
don’t need to specify the model. However, they 
must declare the variables to help the EJS com-
municate with the VI controls and indicators. 
We’ve edited the panel for variable declaration in 
EJS so that the developers can enter the VI’s URL 
published by JIL. EJS then automatically connects 
to the VI and retrieves the list of controls and in-
dicators and offers it to developers so that he or 
she can link them to the variables declared in the 
EJS’s variables table.

Figure 8 shows the actions required to connect 
the controls and indicators with an applet created 
in EJS. The first step is to fill out the text field, 
external file, with the JIL server and VI’s locations. 
The syntax is

<labview:IP_address:port> 

   VI_relative_path

The labview keyword identifies the file as a JIL-
enabled remote VI, the IP_address and port 
values indicate the URL at which the JIL server 
is listening, and the VI_relative_path value 
indicates the VI’s location in the computer on 
which the JIL server runs. Once the developer 
sets the data source, the server sends EJS the tar-
get VI’s input and output variables—that is, the 
names of all controls and indicators. Next, the de-
veloper must declare the local variables and con-
nect them with their remote data source. Figure 

Figure 5. Wiring diagram of the JiLTest.vi. The diagram 
corresponds to a while loop running ad infinitum until the user 
pushes the Stop button. Inside the loop, four controls are directly 
wired to four indicators of similar data types. Every 100-msec cycle, 
the controls’ values are transmitted to the indicators, which visualize 
any control modification done by the user.
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8 shows the model section’s variables page, where 
the local variables must be declared in EJS. In this 
page, the developer must specify the names of the 
variables, initial values, types, dimensions, and 
whether they’re connected to some VI target con-
trol or indicator. To ease the connection process, 
anytime a user clicks on a cell in the “connected 
to” column, EJS pops up a dialog box (see Fig-
ure 8b) that contains the controls and indicators 
available in the VI target. To establish the link be-
tween the VI controls, the indicators, and the EJS 

variables, the developer just clicks on a control or 
indicator name. From this point, the connected 
EJS variables act as normal Java variables, taking 
into account that

if a variable is connected to a control, it must •	
be considered as a write-only variable (it allows 
putting a new value to the linked control), and
if it’s connected to an indicator, it must be seen •	
as a read-only variable (it allows getting the 
current value of the associated indicator).

public class SimpleJILTest extends javax.swing.JApplet {

public void init() { // start connection and run the VI

jil.JiL vi = new jil.JiL(“example.uned.es”,8080);

try {

vi.connect();

vi.run();

} catch (Exception e) {

System.out.println(“Error when connecting to the VI”);

}

try { // setting the value of the VI controls

vi.setValue(“boolean_control”, new Boolean(true));

vi.setValue(“int_control”, new Integer(1));

vi.setValue(“double_control”, new Double(0.5));

vi.setValue(“string_control”, “Hello world”);

vi.flush();

} catch (Exception e) {

System.out.println(“Error when setting VI controls”);

}

try { // reading the value of the VI indicators

vi.refresh();

System.out.println(“boolean = “+ vi.getValue(“boolean_indicator”));

System.out.println(“int = “+ vi.getValue(“int_indicator”));

System.out.println(“double = “+ vi.getValue(“double_indicator”));

System.out.println(“String = “+ vi.getValue(“string_indicator”));

} catch (Exception e) {

System.out.println(“Error when readingVI controls”);

}

try { // stop the VI and close the connection

vi.stop();

vi.disconnect();

} catch (Exception e) {

System.out.println(“Error when closing the connection”);

}

} // end of the init method

} // end of class

Figure 6. Java code example. Even though all the code is located in just one method, to facilitate 
understanding, we can distinguish four sectors corresponding to the four try/catch blocks: opening 
connection, write control values, read indicators, and closing connection.
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The VI specified in the external file text field (see 
Figure 8a) corresponds to the example shown in 
Figure 5, the Variables page (see Figure 8b) con-
tains the same number of indicator variables but 
adds a “stop” control to the number of control 
variables. For example, if four indicator controls 
are connected to four indicators, you would have 
a total of nine variables. By clicking on any vari-

able’s “connected to” cell, the “list of external 
variables” dialog box pops up to let you select the 
desired external variable (see Figure 8b).

Establishing this simple connection between 
model variables, VI controls, and indicators in-
structs EJS to include the necessary Java calls to 
the library JiL.class in the generated simula-
tion. The variables’ values are then passed back 
and forth as the program requires. Authors can 
now use the EJS model variables when construct-
ing their own view, either for visualization or 
interaction purposes, just as in any other EJS-
generated view, and obtain direct access to the 
VI controls and indicators. The result is a fully 
functional Java applet with the particularity that 
its variables have their data source or target in a 
remote VI.

Thermal Processes
Using our approach, we developed a Web-enabled 
environment as part of the current infrastruc-
ture that the Department of Computer Science 
and Automatic Control at the Spanish National 
University for Distance Education (UNED) pro-
vides to students for remote experimentation. The 
purpose of this Web-enabled environment is to be 
able to work either with a thermal process’s com-
puter model or with the actual equipment via the 
Internet. In this example, the steps to create the 
Web-enabled environment are to

use EJS to design and implement a Java applet •	
with a thermal process computer model and an 
appropriate user interface,
create a Labview VI to control the actual ther-•	
mal process laboratory equipment,
publish the VI using the JIL server, and•	
modify the applet to allow connection with the •	
JIL-published VI.

In the rest of this section, we describe the subse-
quent development processes to create a complete 
Web-based environment. For the sake of brevity, 
we’ve excluded some of the finer details; however, 
we left enough information for readers to get a 
clear idea of how to create such an environment 
by using our approaches.

Computer Model
Quanser Consulting designed the heat-flow sys-
tem (see Figure 9) we chose for the laboratory. 
This system consists of a duct with a heating el-
ement, a blower, and three sensors—S1, S2, and 
S3—along the duct. Users can control the power 
delivered to the heater and the fan speed using 

Model View

Applet

+

Figure 7. Creating an applet in Easy Java 
Simulations. The developer first describes the 
phenomenon to simulate by its state variables 
(Variable pages), its mathematical model 
(Evolution page) and the limitations in its possible 
states (Constraints page); second, the user 
interface is developed with the graphical library’s 
elements to visually represent the phenomenon 
under study. Once this information is established, 
the applet is generated.

(a)

(b)

Figure 8. Easy Java Simulations (EJS). (a) The EJS 
Variables page, with the local variables to connect 
with the VI specified in the text field external file. 
(b) A dialog box, with the VI controls and indicators 
that can be connected to the EJS local variables.
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analog signals Vh and Vb, and they can measure 
the fan’s speed using a tachometer that produces 
the analog signal Vt.

We’ve used system identification techniques to 
derive the model required to simulate the system 
with EJS. The model has the following form:
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where the gain Kp (degrees C/volt), the lags, and 
the delays—both in seconds—depend on which of 
the three sensors the user selects for closing the 
temperature control loop. We use the built-in dif-
ferential equation editor to implement this model 
in EJS.

As mentioned earlier, we created a view in EJS 
using a collection of ready-to-use view elements as 
building blocks to construct the graphical inter-
face. These view elements encapsulate lower-level 
graphical elements programmed in Java Swing 
classes and two- and three-dimensional widgets 
of the Open Source Physics project.10 Figure 10 
shows the system’s graphical view.

To facilitate visualization of the heat-flow dy-
namics, the interface’s left panel displays a 3D 
representation of the apparatus in which the 
inner air’s color changes according to its tem-
perature. We consider this feature to be a kind 
of augmented reality technique that can give the 
user the feeling of physical presence in the lab. 
The bottom-left part of this panel shows several 
tabs that let users modify different experimenta-
tion parameters.

Labview VI’s Design
Figure 11 shows (for illustration purposes only) 
Labview VI’s wiring diagram, called heatflow.
vi, which we created for the Web-enabled envi-
ronment’s server side. When creating the local 
control application, it’s very important to consider 
how to stop the VI in a safely controlled way. This 
is a critical point because users can remotely ma-
nipulate expensive equipment, and therefore we 
should design safety actions to prevent them from 
damaging the hardware. In this sense, these ac-
tions should follow certain requirements as men-
tioned in Christophe Salzmann and Denis Gillet’s 
work,11 such as

physical equipment should be identifiable to de-•	
fine what kind of equipment is connected;
equipment should be fully controllable and di-•	
agnosable by the controlling computer;
physical equipment’s full controllability can’t be •	

exposed to the outside world, for security rea-
sons (controllability also implies that it’s always 
possible to place the equipment in a known 
state); and
other requirements such as reliability and main-•	
tainability should also be considered.

In this context, every Web-enabled environ-
ment currently developed at UNED follows a 
common pattern to fulfill these requirements. In 
particular, the heat-flow VI has a Boolean control, 
labeled Stop, to finish the local control loop and 
to execute a resetting code before closing the ap-
plication (see RESET HW in Figure 11). The reset 
code zeroes out the heating element and resets the 
blower, which closes the communication channels 
and finally returns the VI to its initial state (see 
INIT HW in Figure 11).

(a) (b)

Blower

Vh
Vb

Vt

Heater
Sensor 1 Sensor 2

Sensor 3

S3S2S1

Figure 9. Heat-flow system. (a) Installation in our control laboratory 
and (b) a scheme showing the distribution of the three temperature 
sensors along the duct. Depending on the temperature sensor used to 
close the control loop, we obtain different process dynamics that let 
instructors offer students different versions of the same experiment.

Figure 10. A heat-flow system GUI. The computer 
model implemented in Easy Java Simulations (EJS) 
produces the displayed data. The heat flow’s color 
changes according to the inner air’s temperature.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore.  Restrictions apply.



44� Computing in Science & Engineering

Publishing the Local Control VI  
in the JIL Server
To make the VI available via the Internet, just run 
the JIL server and select the heatflow.vi file in 
its interface. No special communication facilities 
need to be included in the VI.

Applet Modification  
to Communicate with the VI
To modify an applet, an additional page of model 
variables is created in EJS that will connect to the 
external file

<Labview:62.004.199.xxx:xxxx>heatflow/

heatflow.vi

(We deliberately omitted IP and port informa-
tion.) We declare as many variables as are required 
by the VI to write its controls and read its indica-
tors. Figure 12 shows a partial view of the result-
ing table of variables.

Because we originally designed the applet to 
display a computer simulation of the thermal 
process, we had to modify the view to allow 
switching between the displays of the virtual 
(simulated) and the remote (real) processes. The 
user triggers the transition from virtual to re-
mote by clicking a button in the user interface, 

labeled Connect. This button invokes the code 
shown in Figure 13.

The identifier _external in this code refers to 
a JIL object created automatically by EJS. Invok-
ing this code will establish the connection, and EJS 
will automatically send to the VI the values of all 
model variables connected to the controls a num-
ber of times per second (as indicated in the EJS 
evolution panel) or whenever the model is updated. 
EJS will also read the indicators connected to the 
model’s variables. A final if-then block in an EJS 
evolution page decides whether to use the comput-
er model’s variable values or those of the remote 
process to update the view, depending on the con-
nection status. Updating the view with the correct 
values causes it to display an accurate description 
of the state of the simulated or real process.

Figure 14 shows a view of the EJS applet con-
nected with the remote VI. We also added to the 
view an Internet-enabled, video-capturing ele-
ment that displays the input of a webcam as back-
ground to the 3D representation. The result is a 
very nicely augmented, realistic effect. Because 
the air-heating process isn’t visible, the video im-
age is enhanced with a colored 3D image repre-
senting the system’s current air temperature.

I n 2008, several Spanish universities imple-
mented the JIL approach for fast develop-
ment of Web-based laboratories in control 
engineering. The experience shows that 

not having to deal with the details of the com-
munication implementation highly improves the 
Web-enabled applications’ maintainability and 
scalability. This has enabled us to quickly trans-
form legacy Labview VIs into server-side com-
ponents. Our developers were process control 
engineers without much programming expertise 
in networks or computer graphics. For this rea-
son, we chose to program the user interfaces via 
EJS. Developer satisfaction is very high because 
they were all able to create sophisticated user in-
terfaces with high interactivity capabilities and 
elaborate 2D and 3D schematic representations of 
the processes.

Our approach lets Labview developers concen-
trate their programming efforts in developing 
the VI core and leave the VI’s communication 
task implementation to the JIL server. Also, JiL.
class provides an extremely simple API for a Java 
applet to communicate with a VI published via the 
JIL server. Finally, the extension of EJS with the 
JIL approach provides non-Java programmers 
with a convenient tool for creating advanced user 

Figure 11. Local control of the heat-flow laboratory equipment. For 
simplification, consider the wiring diagram as being divided into three 
logical sections executed sequentially: INIT HW, ACQUISITION AND 
CLOSED-LOOP CONTROL, and RESET HW. The INIT HW section 
contains the blocks needed for hardware initialization purposes. The 
section in the middle constitutes the closed control loop—that is, the 
reading of the temperature sensor, the PID controller, and the sending 
of the control action to the heater. The RESET HW is the section 
in which the user places the blocks to reset the hardware at the 
completion of the heat-flow experiment.
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interfaces and linking Java and Labview variables 
with just a few mouse clicks.

Further research is oriented toward improving 
some of the JIL server features to include aug-
mented communication and data management, 
whereas the communication is currently based 
exclusively on TCP sockets. We plan to include 
alternative communication protocols such as, for 
example, UDP, HTTP, HTTPS, and so on. At 
this time, only primitive data types can be ex-
changed between a Java client and a Labview VI, 
so we plan to add the possibility to exchange Lab-
view clusters, JPEG pictures, and videos.�
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try {

_external.connect();

_external.run();

} catch (Exception e) {

System.out.println(“Error 

   when connecting to the VI”);

}

Figure 13. Code invoked when a user presses 
the Connect button. The first line opens the TCP 
connection with the JIL server; the second one 
runs the published VI. From this point, the data 
exchange is with the real system and not with the 
simulated model.

Figure 14. Experimentation console. When the real 
setup is used for experimentation instead of the 
model, the Augmented button lets users display 
a video image of how the three sensors’ current 
outputs affect the duct’s temperature.
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