
36	 This article has been peer-reviewed.� Computing in Science & Engineering

1521-9615/09/$25.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

W e b - B a s e d
I n t e r a c t i o n

W eb-enabled technologies and
applications for control engi-
neering are important research
topics for many institutions and

companies. This interest in exploring new meth-
ods for remote experimentation, diagnostics,
and maintenance in engineering stems from two
fundamental breakthroughs: the introduction
of Internet-enabled supervision mechanisms for
industrial and didactical processes to offer com-
petitive access to distant resources,1–3 and innova-
tive new technologies in curricula and renovated
training programs.4,5

Web-based control environment deployment
benefits both end users and developers (process
control engineers, teaching staff, and so on).
However, developers face extra work when trans-
forming an existing local system into a Web-

based environment—they know how to manage
hardware and software in a local control system,
but new problems arise when making the system
accessible via the Internet. In particular, develop-
ers must create interactive GUIs for the system
that can be deployed via the Internet in the form
of a Java applet—the simplest way to integrate in-
teractive user interfaces for remote supervision
into Web-based learning-management systems.

Labview’s virtual instrument (VI) is a graphi-
cal programming language specifically designed
for developing instrumentation, diagnostics, and
data acquisition systems. Many engineering and
scientific disciplines, both professional and aca-
demic, have adopted Labview, which has resulted
in a broad collection of libraries and legacy code,
most of them working in local control systems.
Publishing a Labview VI on the Internet is a long-
standing, click-and-share feature of this software.6
However, a simple mechanism isn’t yet in place to
make the VI variables (controls and indicators) ac-
cessible from Java applets. This requirement poses
an important setback for developers who want to
transform existing Labview-based local control
systems into Web-based ones.

In this article, we present a new approach for
quick and simple creation of Web-enabled control
environments that use Labview on the local side,
Java applets on the remote client side, and TCP/IP

A new approach to developing Web-enabled environments for remote diagnostics,
maintenance, and experimentation in engineering is based on a middleware layer that
uses a Java-Internet-Labview server to provide communication between Java programs and
Labview virtual instruments. The authors illustrate their technique by applying it to the
development of a complete Web-enabled application for remote control of a thermal process.

Héctor Vargas, José Sánchez-Moreno, and Sebastián Dormido
Spanish National University for Distance Education
Christophe Salzmann and Denis Gillet
Ecole Polytechnique Fédérale de Lausanne
Francisco Esquembre
University of Murcia

Web-Enabled Remote
Scientific Environments

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 37

as the communication mechanism between both
elements. We’ve developed two software compo-
nents to solve this problem: a stand-alone applica-
tion, called a JIL (Java-Internet-Labview) server,
which acts as middleware to publish an existing
Labview VI on the Internet; and a Java library file,
which Java clients can use to control and access
JIL-published VI variables. The novelty of this
approach is that programmers can access the VI’s
controls and indicators from the Java program in a
fully transparent way to the Labview developer—
that is, without introducing any modification to
the original VI.

Communication via
the Java-Internet-Labview (JIL) Server
Labview’s built-in local communication facilities
let it include communication facilities at design
time with almost any existing software and hard-
ware. However, once a Labview VI is developed,
implementing a bidirectional data exchange with
a Java applet requires editing the existing VI wir-
ing diagram to include new TCP/IP communi-
cation blocks into the diagram. It also requires
implementing the TCP/IP-based communication
library calls in the Java client. This procedure is
time-consuming and demands both Java knowl-
edge and an understanding of how TCP/IP com-
munication works.

The JIL Server
Web-enabled environments for remote diagnos-
tics, control, or experimentation are commonly
based on client-server architectures that use TCP/
IP links to exchange data and commands between
both sides (see Figure 1).

The command parser, sender, and control loop
are on the server side. The command parser re-
ceives commands from the client, interprets them,
and executes the requested actions. When no re-
quest is received, the parser just sleeps, leaving
the processor free for other duties. Similarly, the
sender sends to the client application the measure-
ments the control loop acquires when a command
requires them.

Figure 1 shows that we can draw a separation
line between the two communication tasks and
the control loop, which is the task connected to an
industrial process or didactical setup. In this sce-
nario, the control loop is a Labview VI that super-
vises, diagnoses, or controls the industrial process
or the didactical setup, principally without TCP/
IP communication capabilities. The JIL server
acts as middleware to provide a TCP/IP wrapping
to the control loop, acting as both the command

parser and sender blocks, effectively communicat-
ing the control loop VI with a remote Java client.

To publish a VI using the JIL server, the au-
thor uses the server’s control panel to select the
local VI he or she wants to publish and presses
the Start button to finish the publishing task (see
Figure 2). Every control and indicator of the VI
becomes immediately accessible to any applet that
uses the provided Java library file, described later.
The server performs an automatic scan of all the
VI controls and indicators, initializes the network
input port, and waits for an incoming connection
from a Java applet. When the connection is estab-

Client side: Java Server side: Labview

Sender
Command/variable

Sender
Command/variable

Medium priority

Command parser
Command/variable

Control
loop
High

priority

Receiver
Command/variable

TCP/IP link
Asynchronous

communication

Figure 1. Command-based architecture. This design pattern known
as the command-based architecture is the basis of the Java-Internet-
Labview (JIL) approach.

Figure 2. The Java-Internet-Labview server’s front panel. Via the
Options drop-down menu, it’s possible to configure the server’s
TCP listening port and the rate at which the JIL server will send data
packets to clients, change the size of the data packets, have the JIL
server open the virtual instrument target’s front panel, and so on.
At the bottom of the GUI, a connection log is displayed. Users can
save this report in a file and send it to the server’s administrator.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

38� Computing in Science & Engineering

lished, the server then listens for incoming com-
mands, which it parses and serves as requested.

JIL Server Implementation
We have developed the JIL server entirely in Lab-
view, making use of the VI server feature that it
provides. The VI server is a collection of blocks that
allows programmatic access to the VI’s objects and
functionalities. Any VI exposes properties—char-
acteristics you can read, write, or both, depending
on the property—and methods—actions you can
perform on a VI. Authors can access these proper-
ties and invoke the methods using blocks. An ex-
ample of a VI class property is Execution:State,
which indicates a VI’s execution state (bad, idle,
or running). An example of method is the run-VI
method that programmatically runs a VI, much
like manually pressing the run button in the VI’s
user interface. Figure 3 presents a simple template,
in which we’ve used two Labview invoke-node blocks
of the VI server feature to execute methods and set
or get property values.

Figure 4 shows a portion of the JIL server’s
structure developed with the invoke-node blocks.
When a developer publishes a Labview VI via the
JIL server, the server’s first action is a programmat-
ic reading of all VI control and indicator names.
It does this by calling the control-value-get-
all method in two invoke-node blocks—one for
getting the indicators’ names and the other for the

controls’ names. Once the JIL server receives this
information, it waits for an incoming connection
from a Java applet. Once the connection is estab-
lished, the server continues to listen for incoming
commands from the applet.

Anytime the JIL server receives a command, it’s
parsed and processed according to its type. If the
command is a request for the available controls
and indicators, the JIL server returns the name
list (because it was extracted when the two invoke
blocks obtained it). When the user issues a control
command, he or she can start, stop, or reinitialize
the VI via invoke nodes with run-VI, abort-VI,
or reinitialize-all-to-default methods.
The server can receive a state command, which
is either for reading an indicator or for writing a
control. Either way, the corresponding method
performs this action in an invoke-node block. The
rest of the time, when information isn’t received,
the JIL server waits.

JIL-Enabled Java Clients
A JIL-enabled Java client must implement two
(sender and receiver) communication tasks to in-
teract with a published VI. The sender task sends
control commands (to set VI control values) or
state commands (to modify the VI’s state) when-
ever the user interacts with the client’s user in-
terface. The receiver task periodically reads the
VI indicator values that the JIL server sends—for
example, in a Web-enabled control application,
values that the Java client sends can be controller
parameters, and the data stream it receives back
will contain data relative to the process state (the
tank level, the temperature in a heat exchanger, a
motor’s angular position, and so on.) The JIL.
class utility—part of the JIL package—provides
methods that make it easy to implement these
communication tasks in a Java program. Table 1
lists the methods that the JIL class provides to
open a connection, control the VI, and obtain in-
formation about its controls and indicators. Table
2 enumerates the methods to read and write the
indicators’ values and VI’s controls published by
the JIL server.

The first method to invoke on a JIL object
is the connect() method, which establishes the
connection with the server and reads the remote
VI’s list of controls and indicators and stores them
internally in the object. This internal list acts as
a buffer to improve the communication perfor-
mance, meaning that reading the value of one
or more VI indicators requires a call to the re-
fresh() method prior to calling the appropriate
getValue() methods. The refresh() method

Figure 3. Property modification and method calling. Invoke-node
blocks can modify a property or call a method in a virtual instrument.

Figure 4. A portion of the Java-Internet-Labview (JIL) server wiring
diagram. This part helps obtain the list of the virtual instrument’s
controls and indicators by using two invoke-nodes blocks.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 39

reads all the values from the JIL server into the
private list, from which the getValue() method
retrieves any indicator’s value. Similarly, to modify
the value of one or more VI controls, the program-
mer must first call the appropriate setValue()
methods to set the new values in the private list.
When all values have been set, a single call to the
flush() method transmits the new values to the
JIL server. The JIL class implements the minimal
features that communicate with the JIL server.
For example, Java programmers can easily extend
this class using Java inheritance—without chang-
es to the existing architecture—to implement ad-
ditional features such as advanced communication
management or alarm management.

A Simple Example
Figure 5 shows a complete, albeit rather naïve,
example of the Java library. The diagram consists
of a synchronous while loop with four controls

connected to four indicators. This has the simple
(and rather useless) effect of showing any control
modification in the corresponding indicator.

Once the VI is published using the JIL server,
the Java code in Figure 6 communicates with this
VI—an example of this is as follows:

The first lines of this applet’s init() method
instantiate a JIL object and try to connect the ob-
ject to the VI that the JIL server published in the
example.uned.es host at the 8080 port. If the con-
nection is successfully established, the JIL server
then starts the VI execution. The next try/catch
block sets the values of the four controls and flush-
es the buffer, and the third block refreshes the in-
put buffer and reads and prints the VI indicator
values. The VI must have placed the previously
sent control values in the indicators, according
to the VI wiring diagram. The final try/catch
block stops the VI and closes the connection.

Table 2. Java-Internet-Labview class methods to set the indicator values and read the control values.

Method Action

void setValue(String name,
Object value)

Sets the VI control value with the given name; the value must be an object
that wraps the desired primitive value; if the primitive value type doesn’t
correspond to the Labview control type or the name doesn’t correspond to a
control, a java.lang.IllegalArgumentException is thrown

Object getValue(String name) Returns an object that wraps the primitive value (as defined in the VI) of the
indicator name; if the name doesn’t correspond to an indicator, a java.lang.
IllegalArgumentException is thrown

void refresh() Reads and saves all the VI indicator values into a private class list at once;
a java.io.IOException is thrown if an I/O error occurs

void flush() Writes the private class list with all the controls’ values to the VI at once;
a java.io.IOException is thrown if an I/O error occurs

Table 1. Java-Internet-Labview class methods used to exchange information with the virtual instrument.

Method Action

JIL(String hostname, int port) Constructor used to create a JIL object

void connect() Creates and initializes the TCP/IP connection with the JIL server; a java.
io.IOException is thrown if an I/O error occurs; this method must be called
prior to further operation

void disconnect() Closes the TCP link with the JIL server; a java.io.IOException is thrown if
an I/O error occurs

String[] getIndicators() Returns an array containing the VI’s indicator names; indicators work like read-
only variables

String[] getControls() Returns an array containing the VI’s control names; controls work like write-
only variables

void run() Starts the VI; a java.io.IOException is thrown if an I/O error occurs

void stop() Stops the VI; a java.io.IOException is thrown if an I/O error occurs

boolean isRunning() Returns a Boolean indicating whether the VI is running; a java.
io.IOException is thrown if an I/O error occurs

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

40� Computing in Science & Engineering

Integrating the JIL Approach
At this point, the tools to create the server-side
components are clear: Labview for developing
the VI (the control loop task) and the JIL server
for providing the TCP/IP wrapping to the VIs.
However, for the client side, we must provide a
tool to help nonexpert Java developers produce
JIL-flavored applets. This tool should conceal the
implementation details of the JIL approach and
provide advanced interactive user interfaces. To
simplify the programming task for nonexpert Java
developers, we’ve augmented the fast-prototyping
program Easy Java Simulations (EJS) with the
capability to create JIL-enabled applets using the
JIL library in a transparent way.

EJS is a freeware, open source tool developed
in Java and specifically designed to create interac-
tive dynamic simulations.7–9 Although we origi-
nally designed EJS for developing interactive
simulations in physics, we’ve recently augmented
it to help create Web-accessible laboratories in
control engineering education. For this reason,
recent releases of EJS support connections with
external applications, such as Matlab/Simulink,
SciLab, and SysQuake. EJS now provides point-
and-click mechanisms to connect Java variables
with Labview controls and indicators; it also
hides JIL class implementation details from pro-
grammers. For more information, visit www.
um.es/fem/EjsWiki.

From a practical viewpoint, developers can
create advanced interactive applets using EJS by
working in two main sections: the model and the

view (see Figure 7). The model section must pro-
vide a mathematical description of the industrial
process, didactical setup, or the physical phenom-
enon being studied. The model includes a list of
its state, parameters, input, and output variables
together with their initial values and equations
that state how these variables relate to each other,
evolve with time, or change under user interac-
tion. The view must provide a graphical represen-
tation of the program output and an interface for
user interaction. EJS provides a simplified pro-
gram structure, custom model tools (such as an
advanced differential equation editor), and drag-
and-drop view elements that let developers work
at a high level of abstraction, thus speeding up the
creation process. Developers input the qualified
information on the simulation that only a human
can provide—such as math equations, the initial
model state, and the graphical interface’s design—
and the program takes care of all the computer-
related aspects of creating a finished, independent
Java applet or application.

When using EJS to create the remote interface
for an existing VI, the actual equipment deter-
mines the process’s behavior, thus programmers
don’t need to specify the model. However, they
must declare the variables to help the EJS com-
municate with the VI controls and indicators.
We’ve edited the panel for variable declaration in
EJS so that the developers can enter the VI’s URL
published by JIL. EJS then automatically connects
to the VI and retrieves the list of controls and in-
dicators and offers it to developers so that he or
she can link them to the variables declared in the
EJS’s variables table.

Figure 8 shows the actions required to connect
the controls and indicators with an applet created
in EJS. The first step is to fill out the text field,
external file, with the JIL server and VI’s locations.
The syntax is

<labview:IP_address:port>

 VI_relative_path

The labview keyword identifies the file as a JIL-
enabled remote VI, the IP_address and port
values indicate the URL at which the JIL server
is listening, and the VI_relative_path value
indicates the VI’s location in the computer on
which the JIL server runs. Once the developer
sets the data source, the server sends EJS the tar-
get VI’s input and output variables—that is, the
names of all controls and indicators. Next, the de-
veloper must declare the local variables and con-
nect them with their remote data source. Figure

Figure 5. Wiring diagram of the JiLTest.vi. The diagram
corresponds to a while loop running ad infinitum until the user
pushes the Stop button. Inside the loop, four controls are directly
wired to four indicators of similar data types. Every 100-msec cycle,
the controls’ values are transmitted to the indicators, which visualize
any control modification done by the user.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 41

8 shows the model section’s variables page, where
the local variables must be declared in EJS. In this
page, the developer must specify the names of the
variables, initial values, types, dimensions, and
whether they’re connected to some VI target con-
trol or indicator. To ease the connection process,
anytime a user clicks on a cell in the “connected
to” column, EJS pops up a dialog box (see Fig-
ure 8b) that contains the controls and indicators
available in the VI target. To establish the link be-
tween the VI controls, the indicators, and the EJS

variables, the developer just clicks on a control or
indicator name. From this point, the connected
EJS variables act as normal Java variables, taking
into account that

if a variable is connected to a control, it must •	
be considered as a write-only variable (it allows
putting a new value to the linked control), and
if it’s connected to an indicator, it must be seen •	
as a read-only variable (it allows getting the
current value of the associated indicator).

public class SimpleJILTest extends javax.swing.JApplet {

public void init() { // start connection and run the VI

jil.JiL vi = new jil.JiL(“example.uned.es”,8080);

try {

vi.connect();

vi.run();

} catch (Exception e) {

System.out.println(“Error when connecting to the VI”);

}

try { // setting the value of the VI controls

vi.setValue(“boolean_control”, new Boolean(true));

vi.setValue(“int_control”, new Integer(1));

vi.setValue(“double_control”, new Double(0.5));

vi.setValue(“string_control”, “Hello world”);

vi.flush();

} catch (Exception e) {

System.out.println(“Error when setting VI controls”);

}

try { // reading the value of the VI indicators

vi.refresh();

System.out.println(“boolean = “+ vi.getValue(“boolean_indicator”));

System.out.println(“int = “+ vi.getValue(“int_indicator”));

System.out.println(“double = “+ vi.getValue(“double_indicator”));

System.out.println(“String = “+ vi.getValue(“string_indicator”));

} catch (Exception e) {

System.out.println(“Error when readingVI controls”);

}

try { // stop the VI and close the connection

vi.stop();

vi.disconnect();

} catch (Exception e) {

System.out.println(“Error when closing the connection”);

}

} // end of the init method

} // end of class

Figure 6. Java code example. Even though all the code is located in just one method, to facilitate
understanding, we can distinguish four sectors corresponding to the four try/catch blocks: opening
connection, write control values, read indicators, and closing connection.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

42� Computing in Science & Engineering

The VI specified in the external file text field (see
Figure 8a) corresponds to the example shown in
Figure 5, the Variables page (see Figure 8b) con-
tains the same number of indicator variables but
adds a “stop” control to the number of control
variables. For example, if four indicator controls
are connected to four indicators, you would have
a total of nine variables. By clicking on any vari-

able’s “connected to” cell, the “list of external
variables” dialog box pops up to let you select the
desired external variable (see Figure 8b).

Establishing this simple connection between
model variables, VI controls, and indicators in-
structs EJS to include the necessary Java calls to
the library JiL.class in the generated simula-
tion. The variables’ values are then passed back
and forth as the program requires. Authors can
now use the EJS model variables when construct-
ing their own view, either for visualization or
interaction purposes, just as in any other EJS-
generated view, and obtain direct access to the
VI controls and indicators. The result is a fully
functional Java applet with the particularity that
its variables have their data source or target in a
remote VI.

Thermal Processes
Using our approach, we developed a Web-enabled
environment as part of the current infrastruc-
ture that the Department of Computer Science
and Automatic Control at the Spanish National
University for Distance Education (UNED) pro-
vides to students for remote experimentation. The
purpose of this Web-enabled environment is to be
able to work either with a thermal process’s com-
puter model or with the actual equipment via the
Internet. In this example, the steps to create the
Web-enabled environment are to

use EJS to design and implement a Java applet •	
with a thermal process computer model and an
appropriate user interface,
create a Labview VI to control the actual ther-•	
mal process laboratory equipment,
publish the VI using the JIL server, and•	
modify the applet to allow connection with the •	
JIL-published VI.

In the rest of this section, we describe the subse-
quent development processes to create a complete
Web-based environment. For the sake of brevity,
we’ve excluded some of the finer details; however,
we left enough information for readers to get a
clear idea of how to create such an environment
by using our approaches.

Computer Model
Quanser Consulting designed the heat-flow sys-
tem (see Figure 9) we chose for the laboratory.
This system consists of a duct with a heating el-
ement, a blower, and three sensors—S1, S2, and
S3—along the duct. Users can control the power
delivered to the heater and the fan speed using

Model View

Applet

+

Figure 7. Creating an applet in Easy Java
Simulations. The developer first describes the
phenomenon to simulate by its state variables
(Variable pages), its mathematical model
(Evolution page) and the limitations in its possible
states (Constraints page); second, the user
interface is developed with the graphical library’s
elements to visually represent the phenomenon
under study. Once this information is established,
the applet is generated.

(a)

(b)

Figure 8. Easy Java Simulations (EJS). (a) The EJS
Variables page, with the local variables to connect
with the VI specified in the text field external file.
(b) A dialog box, with the VI controls and indicators
that can be connected to the EJS local variables.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 43

analog signals Vh and Vb, and they can measure
the fan’s speed using a tachometer that produces
the analog signal Vt.

We’ve used system identification techniques to
derive the model required to simulate the system
with EJS. The model has the following form:

G s
T s

V s

K e

s s
n

h

p
sd

()= ()
()
=

+()
+() +()

−1

1 1
3

1 2

τ

τ τ

τ

,

where the gain Kp (degrees C/volt), the lags, and
the delays—both in seconds—depend on which of
the three sensors the user selects for closing the
temperature control loop. We use the built-in dif-
ferential equation editor to implement this model
in EJS.

As mentioned earlier, we created a view in EJS
using a collection of ready-to-use view elements as
building blocks to construct the graphical inter-
face. These view elements encapsulate lower-level
graphical elements programmed in Java Swing
classes and two- and three-dimensional widgets
of the Open Source Physics project.10 Figure 10
shows the system’s graphical view.

To facilitate visualization of the heat-flow dy-
namics, the interface’s left panel displays a 3D
representation of the apparatus in which the
inner air’s color changes according to its tem-
perature. We consider this feature to be a kind
of augmented reality technique that can give the
user the feeling of physical presence in the lab.
The bottom-left part of this panel shows several
tabs that let users modify different experimenta-
tion parameters.

Labview VI’s Design
Figure 11 shows (for illustration purposes only)
Labview VI’s wiring diagram, called heatflow.
vi, which we created for the Web-enabled envi-
ronment’s server side. When creating the local
control application, it’s very important to consider
how to stop the VI in a safely controlled way. This
is a critical point because users can remotely ma-
nipulate expensive equipment, and therefore we
should design safety actions to prevent them from
damaging the hardware. In this sense, these ac-
tions should follow certain requirements as men-
tioned in Christophe Salzmann and Denis Gillet’s
work,11 such as

physical equipment should be identifiable to de-•	
fine what kind of equipment is connected;
equipment should be fully controllable and di-•	
agnosable by the controlling computer;
physical equipment’s full controllability can’t be •	

exposed to the outside world, for security rea-
sons (controllability also implies that it’s always
possible to place the equipment in a known
state); and
other requirements such as reliability and main-•	
tainability should also be considered.

In this context, every Web-enabled environ-
ment currently developed at UNED follows a
common pattern to fulfill these requirements. In
particular, the heat-flow VI has a Boolean control,
labeled Stop, to finish the local control loop and
to execute a resetting code before closing the ap-
plication (see RESET HW in Figure 11). The reset
code zeroes out the heating element and resets the
blower, which closes the communication channels
and finally returns the VI to its initial state (see
INIT HW in Figure 11).

(a) (b)

Blower

Vh
Vb

Vt

Heater
Sensor 1 Sensor 2

Sensor 3

S3S2S1

Figure 9. Heat-flow system. (a) Installation in our control laboratory
and (b) a scheme showing the distribution of the three temperature
sensors along the duct. Depending on the temperature sensor used to
close the control loop, we obtain different process dynamics that let
instructors offer students different versions of the same experiment.

Figure 10. A heat-flow system GUI. The computer
model implemented in Easy Java Simulations (EJS)
produces the displayed data. The heat flow’s color
changes according to the inner air’s temperature.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

44� Computing in Science & Engineering

Publishing the Local Control VI
in the JIL Server
To make the VI available via the Internet, just run
the JIL server and select the heatflow.vi file in
its interface. No special communication facilities
need to be included in the VI.

Applet Modification
to Communicate with the VI
To modify an applet, an additional page of model
variables is created in EJS that will connect to the
external file

<Labview:62.004.199.xxx:xxxx>heatflow/

heatflow.vi

(We deliberately omitted IP and port informa-
tion.) We declare as many variables as are required
by the VI to write its controls and read its indica-
tors. Figure 12 shows a partial view of the result-
ing table of variables.

Because we originally designed the applet to
display a computer simulation of the thermal
process, we had to modify the view to allow
switching between the displays of the virtual
(simulated) and the remote (real) processes. The
user triggers the transition from virtual to re-
mote by clicking a button in the user interface,

labeled Connect. This button invokes the code
shown in Figure 13.

The identifier _external in this code refers to
a JIL object created automatically by EJS. Invok-
ing this code will establish the connection, and EJS
will automatically send to the VI the values of all
model variables connected to the controls a num-
ber of times per second (as indicated in the EJS
evolution panel) or whenever the model is updated.
EJS will also read the indicators connected to the
model’s variables. A final if-then block in an EJS
evolution page decides whether to use the comput-
er model’s variable values or those of the remote
process to update the view, depending on the con-
nection status. Updating the view with the correct
values causes it to display an accurate description
of the state of the simulated or real process.

Figure 14 shows a view of the EJS applet con-
nected with the remote VI. We also added to the
view an Internet-enabled, video-capturing ele-
ment that displays the input of a webcam as back-
ground to the 3D representation. The result is a
very nicely augmented, realistic effect. Because
the air-heating process isn’t visible, the video im-
age is enhanced with a colored 3D image repre-
senting the system’s current air temperature.

I n 2008, several Spanish universities imple-
mented the JIL approach for fast develop-
ment of Web-based laboratories in control
engineering. The experience shows that

not having to deal with the details of the com-
munication implementation highly improves the
Web-enabled applications’ maintainability and
scalability. This has enabled us to quickly trans-
form legacy Labview VIs into server-side com-
ponents. Our developers were process control
engineers without much programming expertise
in networks or computer graphics. For this rea-
son, we chose to program the user interfaces via
EJS. Developer satisfaction is very high because
they were all able to create sophisticated user in-
terfaces with high interactivity capabilities and
elaborate 2D and 3D schematic representations of
the processes.

Our approach lets Labview developers concen-
trate their programming efforts in developing
the VI core and leave the VI’s communication
task implementation to the JIL server. Also, JiL.
class provides an extremely simple API for a Java
applet to communicate with a VI published via the
JIL server. Finally, the extension of EJS with the
JIL approach provides non-Java programmers
with a convenient tool for creating advanced user

Figure 11. Local control of the heat-flow laboratory equipment. For
simplification, consider the wiring diagram as being divided into three
logical sections executed sequentially: INIT HW, ACQUISITION AND
CLOSED-LOOP CONTROL, and RESET HW. The INIT HW section
contains the blocks needed for hardware initialization purposes. The
section in the middle constitutes the closed control loop—that is, the
reading of the temperature sensor, the PID controller, and the sending
of the control action to the heater. The RESET HW is the section
in which the user places the blocks to reset the hardware at the
completion of the heat-flow experiment.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 45

interfaces and linking Java and Labview variables
with just a few mouse clicks.

Further research is oriented toward improving
some of the JIL server features to include aug-
mented communication and data management,
whereas the communication is currently based
exclusively on TCP sockets. We plan to include
alternative communication protocols such as, for
example, UDP, HTTP, HTTPS, and so on. At
this time, only primitive data types can be ex-
changed between a Java client and a Labview VI,
so we plan to add the possibility to exchange Lab-
view clusters, JPEG pictures, and videos.�

Acknowledgments
This work was supported in part by the Spanish Min-
istry of Science and Technology under project DPI
2007-61068 and the IV Regional Plan of Scientific
Research and Technological Innovation (PRICIT) of
the Autonomous Region of Madrid under project
S-0505/DPI/0391.

References
A.P. Kalogeras et al., “Vertical Integration of Enterprise 1.	
Industrial Systems Utilizing Web Services,” IEEE Trans. Indus-
trial Informatics, vol. 2, no. 2, 2006, pp. 120–127.

S. Hua, C. Dai, and R.P. Knott, “Remote Maintenance of 2.	
Control System Performance over the Internet,” Control Eng.
Practice, vol. 15, no. 5, 2007, pp. 533–544.

I. Calvo et al., “A Methodology Based on Distributed Object-3.	
Oriented Technologies for Providing Remote Access to
Industrial Plants,” Control Eng. Practice, vol. 14, no. 8, 2006,
pp. 975–990.

D. Gillet, A. Nguyen, and Y. Rekik, “Collaborative Web-4.	
Based Experimentation in Flexible Engineering Education,”
IEEE Trans. Education, vol. 48, no. 4, 2005, pp. 696–704.

N. Duro et al., “An Integrated Virtual and Remote Control 5.	
Lab: The Three-Tank System as a Case Study,” Computing in
Science & Eng., vol. 10, no. 4, 2008, pp. 20–29.

D.L. Shirer, “Labview VI Adds Internet Features to Data 6.	
Acquisition Environment,” Computing in Science & Eng., vol.
3, no. 4, 2001, pp. 8–11.

F. Esquembre, “Easy Java Simulations: A Software Tool to 7.	
Create Scientific Simulations in Java,” Computer Physics
Comm., vol. 156, no. 2, 2004, pp. 199–204.

J.L. Guzmán et al., “Web-Based Remote Control Laboratory 8.	
Using a Greenhouse Scale Model,” Computer Applications in
Eng. Education, vol. 13, no. 2, 2005, pp. 111–124.

A. Visioli and F. Pasini, “A Virtual Laboratory for the Learning 9.	
of Process Controllers Design,” 7th IFAC Symp. Advances in
Control Education, Elsevier IFAC, 2006.

W. Christian, 10.	 Open Source Physics: A User’s Guide with Ex-
amples, Addison-Wesley, 2007.

C. Salzmann and D. Gillet, “From Online Experiments to 11.	
Smart Devices,” Int’l J. Online Eng., vol. 4, special issue,
2008, pp. 50–54.

Héctor Vargas is a student in the Department of Com-
puter Science and Automatic Control at the Spanish
National University for Distance Education (UNED).

His research interests include Web-based system de-
sign for control education. Vargas has a master’s de-
gree in electronics from the University of the Frontier,
Chile. Contact him at hvargas@bec.uned.es.

José Sánchez-Moreno is an associate professor in
the Department of Computer Science and Auto-
matic Control at UNED. His research interests include
event-based control, networked control systems, and
remote and virtual laboratories in control engineer-
ing. Sánchez-Moreno has a PhD in the sciences from
UNED. Contact him at jsanchez@dia.uned.es.

Sebastián Dormido is a full professor of automatic
control in the Department of Computer Science and
Automatic Control at UNED. His research interests
include automatic control and Web-based labs for
distance education. Dormido has a PhD in physics
from the Complutense University of Madrid. Contact
him at sdormido@dia.uned.es.

Christophe Salzmann is a senior research associate at
the Ecole Polytechnique Fédérale de Lausanne (EPFL).
His research interests include new Web technolo-
gies, real-time control, and real-time interaction over
the Internet, with an emphasis on quality of service
and bandwidth adaptation. Salzmann has a PhD in
the sciences from EPFL. Contact him at christophe.
salzmann@epfl.ch.

Figure 12. Table of Easy Java Simulations (EJS) variables connected
to the VI controls and indicators. The list of the local EJS variables
used in this example are located in the column Name. Each one of
these variables is connected to a control and an indicator to send or
receive information to and from the heat-flow system, respectively.
The names of the controls and indicators connected to the EJS
variables are in the column “Connected to” (ind means indicator
and con means control).

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

46� Computing in Science & Engineering

Denis Gillet is an associate professor at EPFL. His
research interests include optimal and hierarchical
control systems, distributed e-learning systems, sus-
tainable interaction systems, and real-time Internet
services. Gillet has a PhD in control systems from
EPFL. Contact him at denis.gillet@epfl.ch.

Francisco Esquembre is an associate professor at the

University of Murcia. His research interests include
simulations for didactical purposes. Esquembre has
a PhD in mathematics from the University of Murcia.
Contact him at fem@um.es.

try {

_external.connect();

_external.run();

} catch (Exception e) {

System.out.println(“Error

 when connecting to the VI”);

}

Figure 13. Code invoked when a user presses
the Connect button. The first line opens the TCP
connection with the JIL server; the second one
runs the published VI. From this point, the data
exchange is with the real system and not with the
simulated model.

Figure 14. Experimentation console. When the real
setup is used for experimentation instead of the
model, the Augmented button lets users display
a video image of how the three sensors’ current
outputs affect the duct’s temperature.

PURPOSE: The IEEE Computer Society is the world’s largest association
of computing professionals and is the leading provider of technical
information in the field.
MEMBERSHIP: Members receive the monthly magazine Computer,
discounts, and opportunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE members, affiliate society
members, and others interested in the computer field.
COMPUTER SOCIETY WEB SITE: www.computer.org
OMBUDSMAN: Email help@computer.org.

Next Board Meeting: 5 June 2009, Savannah, GA, USA

EXECUTIVE COMMITTEE
President: Susan K. (Kathy) Land, CSDP*
President-Elect: James D. Isaak;* Past President: Rangachar Kasturi;*
Secretary: David A. Grier;* VP, Chapters Activities: Sattupathu V.
Sankaran;† VP, Educational Activities: Alan Clements (2nd VP);* VP,
Professional Activities: James W. Moore;† VP, Publications: Sorel
Reisman;† VP, Standards Activities: John Harauz;† VP, Technical &
Conference Activities: John W. Walz (1st VP);* Treasurer: Donald F.
Shafer;* 2008–2009 IEEE Division V Director: Deborah M. Cooper;†
2009–2010 IEEE Division VIII Director: Stephen L. Diamond;† 2009
IEEE Division V Director-Elect: Michael R. Williams;† Computer Editor in
Chief: Carl K. Chang†

*voting member of the Board of Governors †nonvoting member of the Board of Governors

BOARD OF GOVERNORS
Term Expiring 2009: Van L. Eden; Robert Dupuis; Frank E. Ferrante; Roger
U. Fujii; Ann Q. Gates, CSDP; Juan E. Gilbert; Don F. Shafer
Term Expiring 2010: André Ivanov; Phillip A. Laplante; Itaru Mimura; Jon
G. Rokne; Christina M. Schober; Ann E.K. Sobel; Jeffrey M. Voas
Term Expiring 2011: Elisa Bertino, George V. Cybenko, Ann DeMarle,
David S. Ebert, David A. Grier, Hironori Kasahara, Steven L. Tanimoto

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Director, Business & Product
Development: Ann Vu; Director, Finance & Accounting: John Miller;
Director, Governance, & Associate Executive Director: Anne Marie
Kelly; Director, Information Technology & Services: Carl Scott;
Director, Membership Development: Violet S. Doan; Director,
Products & Services: Evan Butterfield; Director, Sales & Marketing:
Dick Price

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036
Phone: +1 202 371 0101; Fax: +1 202 728 9614; Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314
Phone: +1 714 821 8380; Email: help@computer.org
Membership & Publication Orders:
Phone: +1 800 272 6657; Fax: +1 714 821 4641; Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo
107-0062, Japan

Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS
President: John R. Vig; President-Elect: Pedro A. Ray; Past President:
Lewis M. Terman; Secretary: Barry L. Shoop; Treasurer: Peter W.
Staecker; VP, Educational Activities: Teofilo Ramos; VP, Publication
Services & Products: Jon G. Rokne; VP, Membership & Geographic
Activities: Joseph V. Lillie; President, Standards Association Board
of Governors: W. Charlton Adams; VP, Technical Activities: Harold L.
Flescher; IEEE Division V Director: Deborah M. Cooper; IEEE Division
VIII Director: Stephen L. Diamond; President,
IEEE-USA: Gordon W. Day

revised 5 Mar. 2009

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 25, 2009 at 09:10 from IEEE Xplore. Restrictions apply.

