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Abstract—Last few years have seen extensive research
being done in the area of localization algorithms for
wireless, ad hoc computer and sensor networks. Despite
the progress in the area of efficient localization algorithms,
the problem of malicious beacon nodes has not received
sufficient attention. In this paper, we study the robust
localization problem in the presence of such nodes. In
particular, we establish necessary and sufficient conditions
for distributed distance-based localization in the presence
of a given number of malicious nodes. To prove the
sufficient condition, we propose LOCOMO, a novel and
efficient distance-based localization framework that can
provide a guaranteed degree of localization accuracy. This
framework can be used with either a polynomial-time
algorithm (which has a rigorous analysis of complexity) or
a heuristic algorithm (which has practical efficiency). All
the above results are extended to the 3-dimensional case.
Extensive network simulation experiments demonstrate
that our solution has very good localization accuracy and
computational efficiency.

I. INTRODUCTION

Recent advances in wireless and computing tech-
nology have resulted in the widespread use of highly
distributed systems like wireless computer networks,
mesh networks, sensor networks etc. for a variety of
commercial and military applications. In applications
such as health-care, fire fighting, military and other
emergency response applications [20], [13], [32], [29],
accurate knowledge of self location (and location of
other nodes in the network) may be very important. In
particular, the information collected by the nodes may
be of little or no use without the location of occurrence,
whereas, information associated with inaccurate loca-
tions can lead to undesirable consequences. Moreover,
location information can also be used for efficiently
implementing other important services. For example, Ko
et al. [16] and Karp et al. [15] have proposed efficient
routing protocols for wireless networks that use location
information for making routing decisions.

In wireless computer networks, node positions can
change continuously because of user movements, while
in sensor networks, exact positions of the nodes may
be unknown at initial deployment. Localization or lo-
cation discovery in such systems refers to the problem
where every node, without using a GPS of its own,
needs to efficiently and accurately determine its location
with respect to some local or global coordinate system.

Localization is an important post-deployment service and
needs to be carried out periodically and individually by
each node in the network. Last few years have seen
extensive research being done in the area of localization
algorithms for wireless, ad hoc and sensor networks.
Majority of the localization algorithms can be classified
into two broad categories namely, beacon-based and
signature-based techniques. Beacon-based schemes [11],
[30], [1], [23], [3], [22], [9], [28] require the existence
of special nodes that know their own locations, called
beacon nodes (or anchor nodes), at strategic positions in
the network. Remaining nodes in the network estimate
their location by computing distance/angle estimates to a
fixed set of beacon nodes. On the other hand, signature-
based schemes [4], [24], [6], [27], [21], [2], [12] apply
optimization techniques like Convex Optimization, Max-
imum Likelihood Estimation (MLE), Multidimensional
Scaling etc. to data such as node distribution information
and connectivity (neighborhood) information, so that
the location can be estimated. Localization techniques
can also be alternatively classified into range-based
(distance-based) or range free depending on whether or
not it uses distance estimates between nodes (or nodes
and beacons) for location estimation. These schemes
have been outlined in brief in Section II.

Despite the progress in the area of efficient localiza-
tion algorithms, the problem of malicious beacon nodes
and localization in the presence of such nodes has not
received sufficient attention. Malicious beacon nodes can
cheat by broadcasting incorrect self location references
or transmitting at a lower power level thereby affecting
the resulting distance computations and eventually the
localization done based on it. With the increasing usage
of wireless and sensor systems in military and emergency
monitoring scenarios, the problem of malicious nodes
can no longer be overlooked and its effect on localization
algorithms need to be studied in greater detail. The prob-
lem of network localization in the presence of malicious
nodes is not trivial: Eren et al. showed that a subset
of the above problem, namely the problem of distance-
based network localization under the assumption that all
nodes are honest, is itself hard [5]. They prove this by
modelling the network as a weighted, undirected graph
and reducing the graph rigidity problem (known to be
NP-hard) to the localization problem. Other efforts in
this direction have also confirmed this result [7], [2],
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[21]. Clearly, localization in the presence of malicious
nodes is even harder than the localization problem with
all honest nodes. Research efforts to overcome the prob-
lem of malicious beacon nodes in localization algorithms
have focused on removing the (over)dependence on such
specialized beacon nodes by using intelligent statistical
tools and coding theory [6], [24], [12], [31], [4]. Such
schemes, called signature-based (beaconless) schemes,
are too complex and computationally intensive for low-
power devices and do not scale very well in case
of large networks. Other efforts in this direction have
used redundancy, voting schemes, error minimization
functions etc. to minimize the effect of malicious nodes
on the localization process [18], [19], [14]. Although
these schemes provide some improvement, they make
simplifying assumptions, like special monitoring nodes,
that may not be possible or applicable in all scenarios.
In general, the problem of localization in the presence
of malicious nodes is far from solved. Specifically, past
research has not made any attempt to systematically
study the hardness and feasibility of the localization
problem in hostile environments. Moreover, none of the
past techniques provide any provable guarantee on the
localization accuracy, which makes it difficult to com-
pare these schemes against other localization techniques.
In this paper, we attempt to solve the robust localiza-
tion problem by establishing necessary and sufficient
conditions for distributed distance-based localization in
the presence of a given number of malicious nodes. In
particular, we propose LOCOMO, a novel and efficient
distance-based LOCalizatiOn framework for MObile de-
vices that can provide a guaranteed degree of accuracy
on localization.

In this work, we make the following contributions.
First, we prove an important necessary condition, called
the Lower Bound Theorem, for localization againt mali-
cious beacon nodes. This theorem states that, assuming
a reasonable network model, if information from only
2k + 2 beacon nodes (or fewer) is available, where k of
the nodes are malicious, then no algorithm can provide
any degree of localization accuracy. Next, we prove a
theorem on sufficient condition. This theorem states that
there exist algorithms that provide a guaranteed degree
of localization accuracy, if distances from at least 2k+3
beacon nodes are available (where k is, again, the num-
ber of malicious beacon nodes). To prove this result, we
propose LOCOMO, a robust distance-based localization
framework that determines the location of a node by
computing an area in the intersection of at least k + 3
rings (each ring is centered at each beacon node). The
final location of the node is a randomly selected point
from this area. There are many ways to determine the
area in the intersection of k+3 or more rings. We present
two different strategies, namely the polynomial-time
algorithm and the heuristic algorithm, that compute such
an intersection area. The first algorithm is guaranteed to
finish computing the location in polynomial time in the
worst case, while the second algorithm has much better

efficiency in practice. Regardless of which algorithm is
used, we have an upper bound on the localization error,
which is proportional to the margin of the measurement
error. An important point to note here is that, either
malicious nodes or distance measurement error, while
past efforts have concentrated on only one of the above
factors at a time, our localization framework takes both
these factors into account before computing location.
In addition to the above theorems and algorithms, we
extend our work to the 3-dimensional case, where the
location of every node is represented by points in the
three-dimensional coordinate system. Finally, we verify
the localization accuracy and computational efficiency
of our LOCOMO framework through extensive network
simulation experimentation done using the ns2 [8] net-
work simulator tool.

The rest of the paper is organized as follows. We
discuss the background and related work in Section II
and present our network model in Section III. In Sec-
tion IV, we prove the lower bound theorem; in Section V,
we design LOCOMO and prove the sufficient condition
for robust localization. The algorithms for finding the
intersection of rings are given in Section VI, while the
extension to 3-dimensional localization is given in Sec-
tion VII. Experimental evaluations are in Section VIII.
We conclude in Section IX.

II. BACKGROUND AND RELATED WORK

Localization in distributed systems like mobile ad-
hoc and sensor networks has been a highly researched
problem. A taxonomy of the various algorithms for
localization can be found in the survey by Hightower
et al. [10]. Initial research in this direction was aimed at
developing a good theoretical understanding of this prob-
lem by using efficient mathematical models. Savvides et
al. [26] derived the Cramér-Rao lower bound (CRLB)
for network localization and concluded that the error
introduced by the algorithm is just as important as the
measurement error in assessing end-to-end localization
accuracy. Eren et al. [5] provided a theoretical foundation
for the problem of distance-based network localization
by modelling the problem as a (grounded) graph prob-
lem. They studied the computational complexity of the
network localization problem and showed that a network
has a unique localization if and only if its underlying
grounded graph is generically globally rigid. Goldenberg
et al. [7] take this a step further by studying partially
localizable networks, i.e., networks in which there exist
nodes whose positions cannot be uniquely determined
and demonstrate the relevance of networks that may not
be fully localizable. Bruck et al. [2] showed that it is
NP-hard to find a valid embedding in the plane such
that neighboring nodes are within distance 1 from each
other and non-neighboring nodes are at least distance 1
away. In summary, the above results are very interesting;
however, they are based on the assumption that all nodes
are honest.
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Researchers have followed two approaches towards
overcoming the problem of malicious nodes in localiza-
tion algorithms. The first approach is to detect malicious
nodes by observing the inconsistencies in the commu-
nication from such nodes and efficiently eliminating
them (from consideration) before localization. Liu et
al. [18] proposed two methods for robust localization
in the presence of malicious beacon nodes. The first
method filters out malicious beacon signals on the basis
of inconsistency among multiple beacon signals, while
the second method tolerates malicious beacon signals
by adopting an iteratively refined voting scheme. Sastry
et al. [25] proposed a location verification technique to
verify the relative distance between a verifying node and
a beacon node while Pires et al. [14] gives protocols
to detect malicious nodes in range-based localization
approaches by detecting malicious message transmis-
sions. Liu et al. [19] also proposed methods to detect
malicious beacon nodes in beacon-based localization
approaches by deploying special detector nodes that
capture malicious message transmissions by the beacons.

Another approach towards robust localization is to
efficiently perform localization in the presence of errors
in distance measurements. These errors can be a result of
external factors like random noise, measurement errors
etc. or due to malicious nodes. Moore et al. [21] for-
mulated the localization problem as a two-dimensional
graph realization problem and described a beaconless
(anchor-free), distributed, linear-time algorithm for lo-
calizing nodes in the presence of range measurement
noise. Doherty et al. [4] described a robust localization
technique using connectivity constraints and convex op-
timization when some nodes are initialized with known
positions. Yi et al. [27] and Ji et al. [12] use efficient
data analysis techniques like Multi-Dimensional Scaling
(MDS) to perform robust distributed localization using
connectivity information and distances to neighboring
nodes. Priyantha et al. [23] eliminated the dependence on
beacon nodes by using communication hops to estimate
the network’s global layout and then used force-based
relaxation to optimize this layout. Fang et al. [6] model
the localization problem as a statistical estimation prob-
lem and use maximum likelihood estimation method to
estimate the location. Although, the above techniques are
efficient, they do not completely address the problem of
localization in the presence of malicious nodes. The main
aim of the above techniques is to maximize localization
accuracy by minimizing the effect of errors. Recently,
researchers have also applied ideas from other domains
like coding theory to achieve robustness in localiza-
tion algorithms [24], [31]. The irreducibility property
of codes makes these techniques robust against node
failures but not against malicious nodes. A very unique
idea proposed by Lazos et al. [17] uses sectored antennas
for robust localization. The algorithm, called SeRLoc,
does not require any communication amongst nodes and
is robust against malicious attacks like the wormhole
attack, sybil attack and compromised sensor attack.

III. NETWORK MODEL

In this section, we describe the network model for
the problem of distance-based localization (using beacon
nodes) of a mobile device M in hostile environments. In
other words, M wants to compute its own location using
distance estimates to beacon nodes that know their own
locations and these beacon nodes may or may not behave
maliciously. Suppose that there are n beacons available
for localization: B1, . . . , Bn; k of these n beacons
are dishonest, while the remaining n − k are assumed
to be honest. The mobile device M is assumed to be
honest throughout the localization process. Regardless
of being honest or dishonest, each beacon Bi provides
M with a measurement d̃i of the distance between Bi

and M . More specifically, each beacon Bi provides M
with some information from which the distance d̃i can
be computed efficiently by M . The precise distance
between Bi and M is the Euclidean distance between
the position coordinates of Bi and M and is denoted by
dst(Bi, M). Let H be the set containing only the honest
beacons amongst a total of n beacon nodes. Then, for
each beacon Bi ∈ H , d̃i is assumed to follow some
probability distribution, denoted as msr(dst(Bi,M)),
such that

E[d̃i] = dst(Bi,M),

i.e., the expected (mean) value of the estimated distance
d̃i for each beacon Bi in H , is the precise distance
between the beacon Bi and the node M . Also, in the case
when Bi is honest, the difference between the estimated
and the true distance is assumed to be very small, i.e.,

|d̃i − dst(Bi,M)| < ε,

where ε is a small constant. Ideally, this difference
should be zero when the beacon is honest, but such
discrepancies in distance estimates can occur due to
factors like measurement errors either at the source or
target. For each beacon Bi 6∈ H , d̃i is a value selected
arbitrarily by the adversary. Note that we implicitly allow
colluding attack here: In our model, we consider a single
adversary who controls all malicious beacon nodes and
decides d̃i for all Bi 6∈ H . This is a very strong adversary
model that covers all possibility of collusion among
malicious beacon nodes.

Since we assume a distance-based localization strat-
egy, the output O of a localization algorithm can be
defined by a function F of the measured distances (d̃i)
from the mobile device M to every beacon node in the
network as shown below.

O = F (d̃1, . . . , d̃n).

The error e of the localization algorithm is defined as
the Euclidean distance between the actual position of
the mobile device and the one output by the algorithm.

e = E[dst(M,O)].

Our next aim is, given the above network model,
to derive the necessary and sufficient conditions for
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efficient distance-based localization (both in terms of
localization accuracy and time of execution) in the
presence of malicious beacon nodes. These conditions
determine the feasibility of the localization process in
situations where some beacon nodes behave maliciously
and a maximum number of such malicious nodes is
known.

IV. LOWER BOUND THEOREM

In this section, we present an important result, called
the Lower Bound Theoerem, that gives a lower bound
on the number of (honest) beacons required to compute
the location of M using distance information. Assuming
the network model discussed in Section III, this theorem
says that if at most k + 2 honest beacon nodes are
available for localization, where k is the number of
malicious nodes, then no distance-based localization
algorithm will be able to provide any guaranteed degree
of localization accuracy. This theorem is a necessary
condition for localization in the presence of malicious
nodes and can be formally stated as follows:

Theorem 1: Suppose that n ≤ 2k + 2. Then, for any
distance-based localization algorithm, for any locations
of the beacons, there exists a scenario in which e →
+∞.

Proof: Without loss of generality, we assume that
n = 2k+2 (because having more honest beacons clearly
won’t hurt). We give the proof for the above theorem by
a contradiction argument. Suppose that, in all scenarios,
the output error e < a, where a is a constant. We shall
see that this supposition leads to a contradiction.

We consider two scenarios S1 and S2, as shown in
Figure 1. The locations of all the beacons are same in
both the scenarios. Select an arbitrary point P in the line
segment B1B2 and draw a line L through P such that L
is perpendicular to B1B2. Choose an arbitrary number
a′ > a. Then there are two points P1 and P2 on the line
L such that

dst(P1, P ) = dst(P2, P ) =
1
2
dst(P1, P2) = a′ ≥ a.

 
 
 
 
 
 
 
 
 
  

P2 

B1 

B2 

P1 P2 P 

M 

a’ a’ 

B3 
B4 

Bk+1 

Bk+2 Bk+3 
Bk+4 

B2k+1 

B2k+2 
B1 

B2 

P1 P 

M 

a’ a’ 

B3 
B4 

Bk+1 

Bk+2 Bk+3 
Bk+4 

B2k+1 

B2k+2 

Scenario S1 Scenario S2 

Honest Beacon 
Malicious Beacon 

Fig. 1. Two Scenarios for Lower Bound Theorem

In scenario S1, M is at location P1 and the set
of honest beacons is H1 = {B1, B2, B3, . . . , Bk+2}.
Denote by d̃i,1 the measurement d̃i in scenario S1. So,
for each Bi ∈ H1,

d̃i,1 ∼ msr(dst(Bi, P1)).

In scenario S2, M is at location P2 and the set of honest
beacons is H2 = {B1, B2, Bk+3, . . . , B2k+2}. Denote
by d̃i,2 the measurement d̃i in scenario S2. So, for each
Bi ∈ H2,

d̃i,2 ∼ msr(dst(Bi, P2)).

Assume that in scenario S1, the adversary chooses
d̃k+3,1, . . . , d̃2k+2,1 such that

∀i ∈ {k + 3, . . . , 2k + 2}, d̃i,1 ∼ msr(dst(Bi, P2)).

Similarly, assume that in scenario S2, the adversary
chooses d̃3,2, . . . , d̃k+2,2 such that

∀i ∈ {3, . . . , k + 2}, d̃i,2 ∼ msr(dst(Bi, P1)).

Since B1 and B2 are in the perpendicular bisector of
line segment P1P2, we have

dst(B1, P1) = dst(B1, P2);

dst(B2, P1) = dst(B2, P2).

Therefore, we have two pairs of identical distributions:

msr(dst(B1, P1)) ∼= msr(dst(B1, P2));

msr(dst(B2, P1)) ∼= msr(dst(B2, P2)).

Now, it is easy to see that (d̃1,1, d̃2,1, d̃3,1, . . . , d̃2k+2,1)
and (d̃1,2, d̃2,2, d̃3,2, . . . , d̃2k+2,2) are identically dis-
tributed. Consequently, the two outputs

O1 = F (d̃1,1, d̃2,1, d̃3,1, . . . , d̃2k+2,1)

and
O2 = F (d̃1,2, d̃2,2, d̃3,2, . . . , d̃2k+2,2)

are also identically distributed. This implies that

E[dst(P2, O1)] = E[dst(P2, O2)].

On the other hand, by our assumption, the output errors
in both scenarios are less than a:

e1 = E[dst(P1, O1)] < a,

e2 = E[dst(P2, O2)] < a.

Consequently,

dst(P1, P2) = E[dst(P1, P2)]
≤ E[dst(P1, O1)] + E[dst(P2, O1)]
= E[dst(P1, O1)] + E[dst(P2, O2)]
< a + a

= 2a.

This is contradictory to the fact that dst(P1, P2) = 2a′ ≥
2a.
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The above result implies that if at most k + 2 hon-
est nodes are available for localization, then for every
configuration of beacon node positions, an adversary
can select distance estimates (d̃i) for all the malicious
beacons such that no algorithm, given only distance
estimates (d̃i) from all the beacons, can compute the
location of the mobile device M with a bounded error.
This brings us to our next result in which we prove that,
given the network model as explained in Section III,
distance estimates from k + 3 honest beacon nodes are
sufficient to compute the location of a mobile device M
with an error bound proportional to ε.

V. SOLUTION TO ROBUST LOCALIZATION

In this section, we give the sufficient condition for
localization in the presence of malicious beacon nodes.
In particular, we propose LOCOMO, a framework for
robust localization that efficiently computes the location
of a mobile device in the presence of both malicious
nodes and measurement errors. As long as distances from
at least 2k+3 beacon nodes are available (where k is the
number of malicious beacons), we can prove an upper
bound on the localization error of LOCOMO.

A. LOCOMO: Framework for Robust Localization
For each beacon Bi, define a ring Ri using the

following inequality:

d̃i − ε < dst(Bi, X) < d̃i + ε.

As mentioned previously in Section III, ε is a small con-
stant signifying some small measurement error. Clearly,
there are altogether n rings. The boundary of these n
rings consists of 2n circles—we call these circles the
boundary circles. In particular, the inner circle of a ring
is called an inner boundary circle, while the outer circle
of a ring is called an outer boundary circle.

Definition 1: We say a point is a critical point if it
is the intersection of at least two boundary circles. We
say an arc is a continuous arc if it satisfies the following
three conditions:
• The arc is part of a boundary cirle.
• If the arc is not a complete circle, then its two ends

are both critical points.
• There is no other critical point in the arc.

We say an area is a continous region if it satisfies the
following two conditions:
• The boundary of this area is one or more continous

arcs.
• There is no other critical arc inside the area.
Assuming the network model discussed in Section III,

Algorithm 1 above outlines our framework for robust
localization. This localization strategy can tolerate the
presence of upto k malicious beacon nodes if there are
at least 2k+3 beacon nodes available for localization. In
this framework, Step 2 (which computes the continuous
region r) needs more clarification: Does there indeed

1: For each beacon Bi, define a ring Ri using the
inequality: d̃i − ε < dst(Bi, X) < d̃i + ε.

2: Find a (non-empty) continuous region r such that r
is in the intersection of at least k + 3 rings.

3: if no such continuous region r exists then
4: print “Localization cannot be done!”
5: Stop the Algorithm
6: else
7: Define the output O as a random point inside the

continuous region r.
8: end if

Algorithm 1: LOCOMO: Framework for Robust Local-
ization in the presence of Malicious Nodes

exist an intersection of at least k+3 rings? If there exists
such an intersection, how can we find it? Our next result
(Theorem 2), proves that there does exist an intersection
of at least k+3 rings. To find this intersection, there are
different ways. We discuss a couple of options in detail
in Section VI.

Theorem 2: For n ≥ 2k+3, there exists a non-empty
continuous region r in the intersection of at least k + 3
rings.

Proof: Consider the real location of mobile device
M . Clearly, for each honest beacon Bi, M must be in
the ring Ri:

d̃i − ε < dst(Bi,M) < d̃i + ε.

Since n ≥ 2k+3, there are at least k+3 honest beacons.
So M must be in the intersection of at least k +3 rings.
Define r as the continuous region in the intersection of
these rings that contains the real location of M . Since
M is in r, r must be non-empty.

(Figure 2 gives an illustration.)

B1 

B2 

B3 

Mobile Device 

B4 
B5 

B6 

B7 

Honest Nodes: B1, 
B2, B3, B4, B5  
 Malicious Nodes: B6, B7  
 

Fig. 2. Existence of Intersection of Rings (k = 2)
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B. Error Bound Analysis

To analyze the error bound of our framework for
robust localization, we need to establish a couple of new
definitions.

Definition 2: The beacon distance ratio is defined as
the minimum distance between a pair of beacons divided
by the maximum distance between a beacon and the
mobile device:

γ =
minBi,Bj

dst(Bi, Bj)
maxBi dst(Bi,M)

.

Definition 3: Consider the lines going through pairs
of beacons. Denote by ang(BiBj , Bi′Bj′) the angle
between lines BiBj and Bi′Bj′—to avoid ambiguity,
we require that 0◦ ≤ ang(BiBj , Bi′Bj′) ≤ 90◦. The
minimum beacon angle is defined as the minimum of
such angles:

α = min
Bi,Bj ,Bi′ ,Bj′

ang(BiBj , Bi′Bj′).

The following theorem bounds the maximum localiza-
tion error possible in our robust localization framework.

Theorem 3: For n ≥ 2k + 3, if ε ¿
minBi dst(Bi, M) and there are no three beacons
in the same line, then the error of our localization
algorithm’s output is

e <
2ε

min
{

sin arcsin(γ sin(α/2))
2 , cos arcsin(γ sin(α/2))

2

} .

Proof: Consider the continuous region r. It is in
the intersection of at least k +3 rings. Since there are at
most k dishonest beacons, at least 3 of these rings belong
to honest beacons. Suppose that Ri1 , Ri2 , and Ri3 are
three rings belonging to honest beacons among the at
least k + 3 rings. Let r′ be the continuous region in the
intersection of Ri1 , Ri2 , and Ri3 that contains r. Since
O is in r, clearly O is also in r′. Next, we show that
M is also in r′. Since M is also in the intersection of
Ri1 , Ri2 , and Ri3 , we only need to prove the following
lemma.

Lemma 1: If ε ¿ minBi dst(Bi,M) and there are no
three beacons in the same line, then the intersection of
Ri1 , Ri2 , and Ri3 has only one continuous region.

Proof: We prove by contradiction, as illustrated in
Figure 3. Suppose that the intersection of Ri1 , Ri2 ,
and Ri3 has two continuous regions r1 and r2. Choose
arbitrary points X1 from r1 and X2 from r2.

Denote by X ′
1 (resp., X ′

2) the intersection of the line
segment Bi1X1 (resp., Bi1X2) and the circle

dst(X, Bi1) = d̃i1 − ε.

Similarly, denote by X ′′
1 (resp., X ′′

2 ) the intersection of
the line segment Bi3X1 (resp., Bi3X2) and the circle

dst(X, Bi3) = d̃i3 − ε.

Then clearly,

0 ≤ dst(X1, X
′
1), dst(X1, X

′′
1 ), dst(X2, X

′
2), dst(X2, X

′′
2 ) ≤ 2ε.

(1)
We can see that

ang(Bi1Bi3 , Bi1X1) = arccos(dst(Bi1 , X1)2 + dst(Bi1 , Bi3)
2

−dst(X1, Bi3)
2)

= arccos((dst(Bi1 , X
′
1) + dst(X1, X

′
1))

2

+dst(Bi1 , Bi3)
2 − (dst(X ′′

1 , Bi3)
+dst(X1, X

′′
1 ))2)

= arccos((d̃i1 − ε + dst(X1, X
′
1))

2

+dst(Bi1 , Bi3)
2

−(d̃i3 − ε + dst(X1, X
′′
1 ))2).

We note that d̃i1 > dst(Bi1 , M) − ε À ε. Similarly,
d̃i3 À ε. Combining these facts with (1), we have

ang(Bi1Bi3 , Bi1X1) = arccos((d̃i1 − ε + dst(X1, X
′
1))

2

+dst(Bi1 , Bi3)
2

−(d̃i3 − ε + dst(X1, X
′′
1 ))2)

≈ arccos((d̃i1)
2 + dst(Bi1 , Bi3)

2 − (d̃i3)
2)

≈ arccos((d̃i1 − ε + dst(X2, X
′
2))

2

+dst(Bi1 , Bi3)
2

−(d̃i3 − ε + dst(X2, X
′′
2 ))2)

= arccos((dst(Bi1 , X
′
2) + dst(X2, X

′
2))

2

+dst(Bi1 , Bi3)
2 − (dst(X ′′

2 , Bi3)
+dst(X2, X

′′
2 ))2)

= arccos(dst(Bi1 , X2)2 + dst(Bi1 , Bi3)
2

−dst(X2, Bi3)
2)

= ang(Bi1Bi3 , Bi1X2).

Similarly, we can show that

ang(Bi1Bi2 , Bi1X1) ≈ ang(Bi1Bi2 , Bi1X2).

However, when we put the above two equations together,
we can get a contradiction. Without loss of generality,
we assume that

ang(Bi1Bi2 , Bi1X1) < ang(Bi1Bi3 , Bi1X1),

since otherwise we can switch the indices i2 and i3. It
is easy to see

ang(Bi1Bi2 , Bi1X1) = ang(Bi1Bi3 , Bi1X1)
−ang(Bi1Bi2 , Bi1Bi3)

≤ ang(Bi1Bi3 , Bi1X1)− α

≈ ang(Bi1Bi3 , Bi1X2)− α

= ang(Bi1Bi2 , Bi1X2)
−ang(Bi1Bi2 , Bi1Bi3)− α

≤ ang(Bi1Bi2 , Bi1X2)− 2α

≈ ang(Bi1Bi2 , Bi1X1)− 2α,
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which is a contradiction.
Now we know that both M and O are in r′. We will

use this fact to show that

e <
2ε

min
{

sin arcsin(γ sin(α/2))
2 , cos arcsin(γ sin(α/2))

2

} .

But before we can prove this result, we need another
lemma:

Lemma 2: If there are no three beacons in the same
line, then either

ang(Bi1M, Bi2M) ≥ arcsin(γ sin(α/2)),

or

ang(Bi1M, Bi3M) ≥ arcsin(γ sin(α/2)).

Proof: Since ang(Bi1Bi2 , Bi1Bi3) ≥ α,
we have either ang(Bi1Bi2 , Bi1M) ≥ α/2 or
ang(Bi1Bi3 , Bi1M) ≥ α/2. Below we show that, if
ang(Bi1Bi2 , Bi1M) ≥ α/2, then

ang(Bi1M, Bi2M) ≤ arcsin(γ sin(α/2))
2

.

Similarly, we can show that, if ang(Bi1Bi3 , Bi1M) ≥
α/2, then

ang(Bi1M, Bi3M) ≤ arcsin(γ sin(α/2))
2

.

Denote by D the distance from Bi2 to the line Bi1M .
Then

ang(Bi1M,Bi2M) = arcsin
(

D

dst(Bi2 ,M)

)

= arcsin
(

dst(Bi1 , Bi2) sin(ang(Bi1Bi2 , Bi1M))
dst(Bi2 ,M)

)

≥ arcsin
(

dst(Bi1 , Bi2) sin(α/2)
dst(Bi2 ,M)

)

≥ arcsin(γ sin(α/2)).

Using the above lemma, we know that, without loss of
generality, we can assume that

ang(Bi1M, Bi2M) ≥ arcsin(γ sin(α/2)).

Denote by r′′ the continuous region in the intersection
of Ri1 and Ri2 that contains r′. Since both M and O
are in r′, they should also be in r′′.

Each of the two rings involved has a pair of circles.
Consider the four intersection points of these two pairs
of circles. Without loss of generality, we suppose that the
four intersection points are V1, V2, V3, and V4, ordered
in the clockwise direction, and that ∠V2V1V4 is acute.
Since ε ¿ minBi dst(Bi,M), we can approximate r′′
using the quadrangle V1V2V3V4. It is easy to show that

ang(V1V2, Bi1M) ≈ 90◦ ≈ ang(V3V4, Bi1M);

thus we know that the line V1V2 is parallel to the
line V3V4. Similarly, we can get that the line V1V4

is parallel to the line V2V3. Therefore, V1V2V3V4 is a
parallelogram. Furthermore, we observe that

∠V2V1V3 = arcsin
(

2ε

dst(V1, V3)

)

= ∠V3V1V4.

Therefore, V1V2V3V4 is actually a rhombus. In a rhom-
bus, the farthest distance between two points is the length
of its longer diagonal line. Therefore,

e = dst(M,O) ≤ 2ε

sin(∠V2V1V3)

=
2ε

sin
(∠V2V1V4

2

)

≈ 2ε

min
{

sin
(

ang(Bi1M,Bi2M)

2

)
, sin

(
90◦ − ang(Bi1M,Bi2M)

2

)}
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≤ 2ε

min
{

sin
(

arcsin(γ sin(α/2))
2

)
, cos

(
arcsin(γ sin(α/2))

2

)} .

VI. FINDING CONTINUOUS REGION ‘r’
In this section, we focus on the Step 2 of our LO-

COMO framework, which is to efficiently determine
the continuous region r. We do not necessarily need to
compute the entire continuous region r. Just determining
a random point inside of this region would suffice.
We present two algorithms for doing this. The first
algorithm, called polynomial-time algorithm, determines
the continuous region r by computing all the boundary
arcs of r and then based on the position of a particular
boundary arc determines a point inside the continuous
region. The second algorithm, called the fast heuristic
algorithm, employs an interesting heuristic to determine
a point and then checks to see if this point lies inside the
continuous region r. The advantage of the polynomial-
time algorithm is that it is guaranteed to finish in
polynomial time (more precisely, O(n3 log n) time) even
in the worst case. However, in practice, since the worst-
case scenario rarely occurs, the heuristic algorithm is
much faster than the polynomial-time algorithm. Our
experiments show that the heuristic algorithm finishes
computing a location in about 2− 50 milliseconds (see
Section VIII for details). Therefore, the polynomial-time
algorithm is mainly of theoretical interests, while the
heuristic algorithm is suitable for use in practice.

A. Polynomial-time Algorithm
Before we present the polynomial-time algorithm for

finding the continuous regin r, we require a lemma that
gives the relationship between the continuous region and
the continuous arcs on the boundary of this region.

Definition 4: A ring is related to a continuous arc
if the continuous arc is inside the ring but not on the
boundary of this ring.

Lemma 3: Suppose that r is a continuous region and
c is a continuous arc on the bounday of r. Then r is in
the intersection of at least k + 3 rings if and only if at
least k + 2 rings are related to c.

We skip the proof of Lemma 3 since it is straight-
forward. Now, to determine a continuous region in the
intersection of at least k + 3 rings, the algorithm needs
to count the number of rings related to each continuous
arc and find a continuous arc that at least k + 2 rings
are related to. (It is easy to check if a ring is related to
a continuous arc by comparing the distance between the
arcs end points and the center of the ring to the inner
and outer radii of the ring.) Once such an arc is found,
depending on whether the arc is on an outer boundary
circle or an inner boundary circle, a random point can be
picked from either the inner region or the outer region
of the arc respectively. The details of the algorithm are
as shown in Algorithm 2.

1: Let S be a set initially containing the two boundary
circles of ring R1.

2: for i = 2, . . . , n do
3: Let Si be a set initially containing the two bound-

ary circles of ring Ri.
4: for each arc in S and each arc in Si do
5: if the above two arcs intersect then
6: Split each of these two arcs using the in-

tersection(s), and replace them in the cor-
responding arc sets (S or Si) with the new
splitted arcs (result of the splitting operation).

7: end if
8: end for
9: Let S = S ∪ Si.

10: end for
11: for each arc cj in S do
12: Set the corresponding counter λj to 0.
13: for i = 1, . . . , n do
14: if Ri is related to cj then
15: λj = λj + 1.
16: end if
17: end for
18: if λj ≥ k + 2 then
19: if cj is on an inner boundary circle then
20: Output is defined on the side out of this

circle.
21: else if cj is on an outer boundary circle then
22: Output is defined on the side inside this circle
23: end if
24: Stop the algorithm.
25: end if
26: end for
Algorithm 2: Polynomial-time Algorithm for Finding
the Continuous Region

Lemma 4: The worst-case time complexity of the
above algorithm is O(n3 log n).

B. Fast Heuristic Algorithm

Though the worst case time complexity of the
polynomial-time algorithm is polynomial (O(n3 log n))
in terms of the total number of beacon nodes, in practice
its efficiency needs improvement. Trial experimental
runs for the polynomial-algorithm have shown that the
execution time is of the order of seconds which may not
be efficient for most applications. (For sake of brevity,
we do not include the results of those experiments in
this paper.) To overcome this problem, we propose an
efficient heuristic-based technique.

The heuristic we use is as follows. Note that k + 3 is
already a large number of rings. Since the region r is
contained in at least k+3 rings, the rings containing r are
intersecting with large numbers of other rings. Therefore,
if a ring Ri is intersecting with a large number of
rings, it is very likely that Ri contains r. So, we should
first consider the rings intersecting with the maximum
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numbers of other rings. The details of our heuristic
algorithm is shown in Algorithm 3.

1: Count the number of rings intersecting with each
ring.

2: for each ring Ri, in the order of decreasing number
of rings intersecting with it do

3: for each ring Rj , Rj 6= Ri, in the order of
decreasing number of rings intersecting with it do

4: Compute the intersection points of the bound-
ary circles of Ri and Rj .

5: for k = 1, . . . , κ do
6: Choose a random intersection point com-

puted above.
7: Choose a random point O near this inter-

section point (such that the distance between
them is less than ε).

8: Count the number of rings containing O.
9: if there are at least k + 3 rings containing O

then
10: Output O.
11: Stop the Algorithm.
12: end if
13: end for
14: end for
15: end for
Algorithm 3: Fast Heuristic Algorithm for Finding the
Continuous Region

VII. EXTENSION TO 3-DIMENSIONAL
LOCALIZATION

So far we have only considered localization in
a 2-dimensional space. In certain environments (like
mountains and valleys), 3-dimensional localization is
needed. In this section, we extend our results to the 3-
dimensional space.

The first result we obtain is the lower bound theorem.
It turns out that we need one more honest beacon node
than in the 2-dimensional case.

Theorem 4: Suppose that n ≤ 2k + 3. Then, for any
distance-based 3-dimensional localization algorithm, for
any locations of the beacons, there exists a scenario in
which e → +∞.

With 2k + 4 beacon nodes, we can also establish
a bounded error for 3-dimensional localization. But to
obtain this result, we need to first introduce a few new
definitions.

For each beacon Bi, we define a global shell just as
we defined the ring for the 2-dimensional case:

d̃i − ε < dst(Bi, X) < d̃i + ε.

For simplicity, we still use Ri to denote the above global
shell. The globes on the boundary of these shells are
called the boundary globes; the inner globe of a shell is
called an inner boundary globe, while the outer globe of
a shell is called an outer boundary circle. A continous

3-dimensional region is part of the space such that its
boundary consists of parts of boundary globes, and that
no boundary globe goes through its internal. Our 3-
dimensional localization algorithm finds a continuous 3-
dimensional region r such that r is in the intersection of
at least k+4 global shells. The output O of the algorithm
is defined as a random point in the region r.

Definition 5: Consider the planes going
through triples of beacons. Denote by
ang(Bi1Bi2Bi3 , Bi′1Bi′2Bi′3) the angle between the two
planes Bi1Bi2Bi3 and Bi′1Bi′2Bi′3—to avoid ambiguity,
we require that 0◦ ≤ ang(Bi1Bi2Bi3 , Bi′1Bi′2Bi′3) ≤
90◦. The minimum beacon plane angle is defined as the
minimum of such angles:

α? = min
Bi1 ,Bi2 ,Bi3 ,Bi′1

,Bi′2
,Bi′3

ang(Bi1Bi2Bi3 , Bi′1Bi′2Bi′3).

Given the above definitions, we can now state our
main (positive) result on 3-dimensional localization.

Theorem 5: For n ≥ 2k + 4, if ε ¿
minBi dst(Bi,M) and there are neither three beacons
in the same line nor four beacons in the same plane,
then the error of our localization algorithm’s output is

e < 2ε

√
1
β2

+ (
1

sinα?
+

1
β · tanα?

)2,

where β = min
{

sin
(

arcsin(γ sin(α/2))
2

)
, cos

(
arcsin(γ sin(α/2))

2

)}
.

VIII. EVALUATION

To evaluate the performance of LOCOMO (with the
heuristic algorithm for computing r), we carry out ex-
tensive experiments using the ns2 network simulator
tool. The setup of our experiments is as follows: The
simulation area is 500m × 500m. The radio transmission
range is 500m. We use 802.11 as the MAC protocol.
The distance between each beacon node and the mobile
device is computed using the Received Signal Strength
Indicator (RSSI) technique.

Our experiments consider two different distributions
of measurements errors: uniform distribution and normal
distribution. For each of these two distributions, we
study how the number of malicious beacons (k) and the
magin of measurement error (ε) influence the localization
error and the computational time. We do not evaluate
the communication overhead because it depends on the
method used to measure distance. Since LOCOMO is
a general framework independent of the method to
measure distance, the communication overhead is not
directly related with LOCOMO.

A. Experiments with Uniform Measurement Error
Now we study the scenario in which the random

measurement error is uniformly distributed over [−ε, ε].
First, we observe the performance of LOCOMO for each
values of ε, when the number of malicious nodes (k) in
the network increases but the total number of nodes in
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the network in each simulation is fixed (2kmax + 3).
Here kmax is some maximum value for k. Such a setup
ensures that for smaller values of k, k < kmax, there
are more than k + 3 honest beacon nodes available for
localization and when k = kmax, there will be enough
number of honest beacon nodes (exactly, k + 3) for
the target node to localize itself correctly. We run the
simulation of LOCOMO for each value of ε from 0 to
5.0 and each value of k from 0 to 20. Thus, kmax = 20.
In each simulation, the total number of beacon nodes
available for localization is 2kmax + 3 = 43.

We run the simulation for each pair of k and ε for 100
times and average the localization error. From Figure
4, we can see that the average localization error (e)
is increasing when ε increases, which is very natural.
However, e is decreasing when k increases—this looks
counter-intuitive. The reason lies in our heuristic algo-
rithm for computing r: It takes k as input and computes
the intersection of k + 3 rings. Hence, the larger k is,
the intersection of more rings the algorithm needs to
find, and the better precision we have in the localization
result.
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Fig. 4. Localization Error for Uniform Measurement Error

We emphasize that the increased localization precision
here (for larger k) is actually the reward of spending
more time on localization: As shown in Figure 5, the av-
erage simulation time is increasing in k.1 Consequently,
it is not the increase of k that gives us better precision
in localization; it is the increase of computational time
that gives us better precision.

To see this more clearly, we have another set of
experiments in which our heuristic algorithm is slightly
modified: For every value of k, the algorithm always
looks for the intersection of kmax +3(= 23) rings rather
than k + 3 rings. In other words, for different values of
k, we always find the intersection of the same number
of rings. We keep everything else intact and run the
simulation again for each pair of k and ε for 100 times.

As shown in Figure 6, in this second set of ex-
periments, the average localization error e now goes

1Note that the average simulation time increases pretty slowly,
except when k approaches kmax, the maximum number of malicious
nodes we can tolerate. Moreover, even when k = kmax, the average
simulation time is only about 50 milliseconds. Thus, the time cost of
LOCOMO is reasonable, although it increases in k.
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Fig. 5. Simulation Time for Uniform Measurement Error

up with an increasing k. This is consistent with our
intuition that more malicious beacon nodes should lead
to worse localization precision. Figure 7 shows that, in
the second set of experiments, the average simulation
time still increases in k, but increases much more slowly.
Putting these two observations together, we have verified
our conjecture on the change of localization precision
in the first set of experiments: The localization error
actually should increase when k goes up, but it becomes
decreasing when we spend much more computational
time for larger k.
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Modified Algorithm
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To summarize, there is a tradeoff among the time we
spend on localization, the number of malicious beacon
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nodes we can tolerate, and the precision of the localiza-
tion result. To have better precision in localization, we
have to either increase the computational time, or de-
crease the number of malicious beacons we can tolerate.
In practice, the precision we can obtain is decided by
our time constraint and malicious beacon constraint.

The influence of ε on the performance of LOCOMO is
relatively simple. A smaller ε can make the localization
error e smaller, but it does not have any significant
influence on the computational time needed.

B. Experiments with Normal Measurement Error
To ensure that our evaluation result is not restricted

to a uniformly distributed measurement error, we re-
peat all our experiments with a normally distributed
measurement error. Here we keep all our experiment
parameters intact, except that the distance measurement
error follows a normal (Gaussian) distribution with mean
0 and variance ε

2 . However, we need to make sure
that the measurement error value is between [−ε,+ε].
Therefore, we modify the distribution a little such that
the probability density outside [−ε, +ε] becomes 0; the
probability density inside the interval [−ε, +ε] is scaled
up a little accordingly.

Figure 8 shows the localization error for each pair of
(k, ε) when the measurement error follows the normal
distribution. Figure 9 shows the corresponding simula-
tion time. We can see that the curves are analogous to
those in Figures 4 and 5.
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Fig. 8. Localization Error for Normal Measurement Error
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Fig. 9. Simulation Time for Normal Measurement Error

We also experiment with the modified algorithm in
which we find the intersection of the same number
of rings for different values of k. Figure 10 and 11
show the localization error and simulation time, respec-
tively. Again they are analogous to Figures 6 and 7,
respectively. Therefore, our evaluation result is valid for
different distributions of measurement errors.
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Fig. 10. Localization Error for Normal Measurement Error with
Modified Algorithm
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IX. CONCLUSION AND OPEN QUESTION

In this paper, we have presented LOCOMO, a
distance-based localization framework for mobile de-
vices against malicious beacon nodes. LOCOMO is
optimal in the sense that it provides a guaranteed degree
of localization accuracy against the maximum possible
number of malicious beacon nodes. LOCOMO can be
used with different algorithms for finding the intersection
of rings. In particular, there is a polynomial-time algo-
rithm that guarantees LOCOMO to finish in polynomial
time even in the worst case. There is also a fast heuristic
algorithm that is suitable for use in practice. LOCOMO
can be extended for 3-dimensional localization. Our
evaluations demonstrate that LOCOMO provides good
localization precision with a very small time cost.

An open question is what is the best algorithm to
find the intersection of rings, in terms of worst-case
complexity and in terms of average computational time?
We leave this question for future work.
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