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Abstract: Robustness and security of services like localisation, routing and time syn-
chronisation in Wireless Sensor Networks (WSNs) have been critical issues. Efficient
mathematical (graph-theoretic) models for these services exist. Since, these services
were not designed with robustness and security in mind, new mathematical models
are needed to address these issues. In this paper, we propose a practical approach for
modelling these services using weighted undirected graphs called Partially Consistent
Grounded Graphs (PCGG). In such graphs, malicious behaviour or inaccurate infor-
mation reporting is modelled as a function that assigns incorrect or inconsistent values
(weights) to the edges connecting the corresponding nodes, called inconsistent edges.
We formulate two optimisation problems, namely MAX-CON and LARGEST-CON.
Given a PCGG, these are the problems of determining the largest induced subgraph
(obtained by eliminating a subset of vertices) containing only consistent edges. MAX-
CON maximises the number of vertices, while LARGEST-CON maximises the number
of consistent edges of the resulting subgraph. We also discuss the practical implica-
tions of solving these problems, analyse their computational hardness and provide a
comparitive analysis of heuristics-based algorithms for them.
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1 INTRODUCTION

A Wireless Sensor Network (WSN) is an ad-hoc network
of minute devices with limited computation ability and
battery power that communicate with each other using ra-
dio or ultra-sound signals. By attaching highly specialised
sensors to these devices, WSNs can be used in a variety
of applications including but not limited to environmen-
tal monitoring, health-care, emergency response and mil-
itary applications (Lorincz et al., 2004; Tollefsen et al.,
2004; Shnayder et al., 2005; Robinson, 2004). An example
of such a setup is a network of MICA2 or MICAz motes
(processor modules) fitted with MDA/MTS series data ac-
quisition modules, developed by Crossbow Technologies.
The success of WSNs in these applications depends on
the various services like routing, location discovery and
time synchronisation. Extensive research on distributed
algorithms for routing (Hong et al., 2002; Ko and Vaidya,
1998; Yu et al., 2001), location discovery (Hightower and
Borriello, 2001; Bahl and Padmanabhan, 2000; He et al.,
2003; Priyantha et al., 2000; Ray et al., 2003; Fang et al.,
2005) and time synchronisation (Ganeriwal et al., 2003;
Elson and Estrin, 2001) has already been done. Since the
term “mote” is still not an industry standard, we will re-
fer to all such small, low power and autonomous sensing
devices as “nodes.”

As with any new technology, there are security and ro-
bustness issues associated with these services. Majority
of the algorithms for these services use inter-mote com-
munications and/or distance estimates (computed using
techniques like Received Signal Strength, Angle of Arrival,
Time Difference of Arrival etc.) to neighbouring nodes,
assuming that the neighbours are honest (non-malicious).
This assumption is no longer valid in highly obstructive
terrains and hostile environments like emergency situa-
tions, battlefields and enemy territories. Nodes can be
captured and compromised or external conditions like ob-
structions, weather, environment etc. may prevent the
nodes from functioning normally. These factors introduce
inaccuracy and errors in the measurement of physical prop-
erties like time difference, distance etc., which we refer to
as inconsistencies. Some research has already been done in
securing location discovery and time synchronisation ser-
vices for WSNs (Liu et al., 2005a,b; Ganeriwal et al., 2005).
These techniques provide intelligent ways to overcome ad-
versary. For example, Liu et al. (2005b) provides tech-
niques for detecting malicious sensor nodes by deploying
special nodes (their identities hidden) specifically for detec-
tion purposes. But, it rests on the assumption that these
extra nodes will always be honest, which might not always
be true. These special nodes can behave maliciously by
reporting benign nodes in the network as malicious, thus
rendering the entire scheme ineffective.

Due to such limitations, existing schemes are no longer
viable when deployed in emergency situations and hostile
environments. Researchers working in this direction are
posed with important questions. Are there efficient tech-
niques for detecting inconsistency-causing nodes with at

least a high probability, if not with certainty? Do cur-
rent modelling techniques for WSNs take into account in-
consistencies introduced due to malicious behaviour of the
nodes? Is it possible to efficiently eliminate these incon-
sistencies assuming they can be detected easily? In this
paper, we attempt to provide answers to these questions.
It may be noted that in this paper we do not intend to
propose a new scheme for securing WSNs but aim to shed
some light on problems that may arise when assumptions
about the honest behaviour of sensor nodes are dropped.

1.1 Background and Motivation

WSNs like any other network can be efficiently represented
as a graph where each vertex of the graph corresponds
to a sensor node and each edge represents certain asso-
ciation between the two nodes. In other words, an edge
exists between two nodes if they are associated by some
pre-defined, application dependent relation. One such re-
lation, for example, is if two nodes are in the radio range of
each other. Two nodes that are connected by an edge are
called neighbours of each other. The relation that defines
these edges varies from application to application. But in
most cases, an edge exists between two nodes if they are
in the radio range of each other. Eren et al. (2004) and
Goldenberg et al. (2005) use a model similar to the one
described above to formulate the problem of location dis-
covery in WSNs. The graph-based model of WSN used
by them is also referred to as Grounded Graphs. In the
grounded graph model described by Eren et al. (2004), a
function called the Distance Function assigns each edge a
distance value indicating the separation between the two
connecting nodes. It is similar to assigning weights or costs
to edges. Depending on the application one is trying to
model, this function may vary, quantifying different prop-
erties like time difference, wellness of routes etc. For ex-
ample, in routing services a routing function can assign
probabilities to edges based on its usefulness to routes.
Similarly, in a time synchronisation service a time func-
tion can assign each edge the time difference between the
two connected nodes. We refer to this function by a more
generalised name, the Property Function, that assigns each
edge an estimated property value. A subtle point over here
is that the value of this function is only an estimate and
not necessarily the true value of the property (parameter).
This will become more clear later.

Eren et al. (2004) and Goldenberg et al. (2005) assume
that the distance function is honest i.e., it always assigns
the correct or consistent distance to each edge. The main
motivation for our work is to propose a more practical
model by dropping this assumption. In other words, mali-
cious or inconsistent behaviour of nodes can be modelled as
a dishonest property function. This is also very intuitive as
the property function for an edge is computed by the con-
necting nodes themselves or by using information obtained
from these nodes. Thus, malicious behaviour by the nodes
will be transformed into an incorrect or inconsistent value
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of the property function. The graph-based model with a
dishonest property function, as described above, is referred
by us as a Partially Consistent Grounded Graph (PCGG).
To clarify how the above concepts map onto real world ap-
plications in WSNs, we give a few examples. Consider a
location discovery service in which nodes determine their
own locations by hearing from beacon nodes that know
their own locations. By computing distances to these bea-
cons using techniques like received signal strength, time
difference of arrival etc., nodes can compute their own lo-
cation using multilateration or triangulation techniques.
Beacon nodes can cheat by advertising incorrect self loca-
tions or by manipulating the power of the sent signal. This
results in nodes receiving inconsistent information from
these beacons and end up computing their locations in-
correctly. The edges between the nodes and the malicious
beacons, in this case, are the inconsistent edges. Simi-
larly, in routing applications malicious nodes can advertise
inconsistent routes to divert all the traffic through them.
Such nodes eventually drop packets instead of forwarding
them resulting in retransmissions and lower throughput.
Thus, edges connecting the benign nodes to such mali-
cious nodes can be labelled as inconsistent. Apart from
malicious behavior, low battery power, obstacles, extreme
weather conditions etc. can all result in inconsistencies.
It can also be a result of malicious behaviour or incon-
sistencies propagated from remote parts of the network
through communication channels. The existence of incon-
sistent edges implies that either or both nodes connected
by these edges are responsible for the inconsistency. Ei-
ther the nodes that compute the function values may have
caused it or the ones that generate information for these
functions may have caused it. Pires et al. (2004) and Sastry
et al. (2003) present techniques for detecting and verifying
such inconsistent information transmission by the nodes.

Given a PCGG, we focus on the problem of determin-
ing an induced subgraph, such that it has only consistent
edges. In other words, we would like to eliminate vertices
such that the resulting subgraph is fully consistent. Such
a consistent subgraph is useful for various reasons. First,
the sparsity of the consistent subgraph can help the net-
work administrator to make important decisions like rede-
ployment, application abortion etc. Second, with a high
probability, the eliminated vertices can be assumed to be
the problem causing nodes. This information is also useful
during redeployment, as the deployment area previously
occupied by such malicious or problem causing nodes can
be avoided during the deployment of new nodes. Also,
routing services can use this information to avoid particu-
lar routes while making routing decisions. Readers, please
note that we will be using the terms nodes and vertices
interchangeably. Depending on the context of its usage,
it would either mean an actual sensor mote or its corre-
sponding graph abstraction.

The first problem we study is that, given a PCGG, how
to identify a maximum subset of vertices such that the
subgraph induced by the vertices consists only consistent
edges. We refer to this problem as the MAX-CON prob-

lem. Maximising the number of vertices is important as
an administrator would like to replace or redeploy only a
minimum number of new vertices. Moreover, if the sparsity
(in terms of the vertices) of the resultant consistent sub-
graph is used to make redeployment decisions, one would
like to know the maximum such consistent subgraph to
justify a redeployment. The next optimisation problem we
discuss is that, given a PCGG, how to identify a subset of
vertices (need not be maximum) such that the subgraph
induced by the vertices consists only consistent edges and
the number of consistent edges is maximised. We refer
to this problem as the LARGEST-CON problem. This
problem is relevant in situations where quality is more im-
portant that quantity. More number of consistent edges
would mean more number of accurate property (parame-
ter) values which in turn results in better overall accuracy
of applications. More importantly, the ideas and results
presented in this paper not only apply to sensor networks
but also can be used in any application (or domain) that
can be modelled as a PCGG.

1.2 Contributions

This paper introduces Partially Consistent Grounded
Graph (PCGG) as a practical modelling approach for
WSNs. PCGG as discussed before, consists of an edge
set which can be partitioned into a set of consistent and
a set of inconsistent edges. We present two optimisation
problems associated with PCGGs. We first provide a for-
mal treatment of the MAX-CON problem and prove that
it is NP-complete. We also show that an efficient approx-
imation algorithm for VERTEX-COVER can be used to
solve this problem.

Next, we prove that the LARGEST-CON problem is
NP-complete. We give an elegant reduction from MAX-
2SAT (Karp, 1972), known to be NP-hard, to this problem.
We also give the inapproximability result for LARGEST-
CON and provide two solution strategies for this problem.
The first algorithm uses a greedy approach. The second
one uses a technique called local solution search. Currently,
we are unable to bound the solution quality of these algo-
rithms. We perform experiments to test these algorithms
on randomly generated graphs and present a comparative
analysis of their solution quality. In summary, we have the
following main contributions.

• A formal technique for modelling WSN services and
two graph-theoretic optimisation problems associated
with this model.

• Analysis of the combinatorial hardness of these prob-
lems and testing the efficiency of heuristics-based al-
gorithms for LARGEST-CON on randomly generated
graphs with the help of computer simulations.

1.3 Paper Organisation

Section 2 outlines the formal model of WSNs and intro-
duces the concept of partially consistent grounded graphs.
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In Section 3, we formulate and present hardness results
for MAX-CON. In Section 4, we formulate and present
hardness results for LARGEST-CON. Section 5 presents
heuristics-based algorithms for LARGEST-CON and Sec-
tion 6 provides experimentation results for these algo-
rithms. Finally, we conclude the paper with a discussion
of current contributions and proposed future work.

2 Mathematical Formulation

2.1 Network Model

Before introducing the graph model we define the current
state vector of a node. The current state is the current
value of a certain physical characteristic of the node and
the current values of all the different physical characteris-
tics (defined by the application) are represented in a cur-
rent state vector. For example, in a location discovery
service the current state vector pi = (xi, yi) is the current
position of each node and pi ∈ Rd, where d is the dimen-
sion of the position coordinates. In a time synchronisation
service the current state vector, pi = ti s.t. ti ∈ R, is
the current local time (crystal frequency) of each node. In
most cases, a node i may not know pi at the start when it
is deployed, however, some special nodes may know their
own pi. For example, in a location discovery service, ev-
ery beacon node knows its own position but other nodes
may not and they use the location discovery service of the
network to determine their own pi. Using specialised algo-
rithms and communications from other nodes, each node
in the network determines its own current state vector pi.

Let N = {1, 2, . . . , n} be the set of n nodes and let
P = {p1, p2, . . . , pn} be the set of their corresponding cur-
rent state vectors. We now define the graph G = (V,E) for
the network as follows. The set V = {v1, v2, . . . , vn} of ver-
tices contains a vertex corresponding to each node in the
network. An edge exists between two vertices i and j in the
graph G if and only if the current states pi and pj of the
corresponding nodes are associated in some way. One im-
portant assumption we make here is that this relationship
is symmetric. For example, if two nodes are associated by
the distance between them, then by symmetric we mean
that if node i is in the radio range of node j, then node
j is also in the radio range of node i. Thus, the edges
in this graph model of the network are undirected. The
set E is the set of all the edges as defined above. Two
nodes are said to be neighbours if and only if there exists
an edge connecting their corresponding vertices. In other
words, E gives the neighbourhood relation for each node in
the network. For simplicity we assume that the graph is a
connected graph i.e., every vertex is reachable from every
other vertex through a sequence of edges.

The graph G, as described above, is associated with a
property function δ, δ : E→ R, such that δ assigns a value
to an edge signifying the estimated value of the associ-
ated property. In other words, it quantifies the associated
property (defined by the edge) and is similar to assigning

weights to the edges. The exact details of this function will
vary from application to application and we do not discuss
it further as it is out of scope of this paper. We can safely
assume that such a function exists and can be efficiently
computed. The actual property value is the true or cor-
rect property value. The difference between the property
function value and the actual value is called the estimation
error. For example, in location discovery schemes, a dis-
tance function assigns distance estimate values (distance
between two nodes) to each edge. The actual property
value in this case is the Euclidean distance between the
two nodes. The actual property value between two nodes
i and j with position coordinates pi(xi, yi) and pj(xj , yj)
can be computed as shown in Equation 1

Euci,j =
√

(xi − xj)
2 + (yi − yj)

2 (1)

Similarly, in time synchronisation applications, the prop-
erty function could assign an estimate of the time differ-
ence to each edge. As noted before, Eren et al. (2004) use
a similar graph theoretical model called Grounded Graphs
where the current state of each node is its position in d-
dimensional space and the property function associates a
value to each edge that is an estimate of the distance be-
tween the two nodes. What we have described above is a
more generalised version of this model.

2.2 Partially Consistent Grounded Graph

In the definition of grounded graphs proposed by Eren
et al. (2004), they implicitly assume that the property
function δ (distance function) that estimates the distance
di,j between the nodes i and j is honest i.e.,

δ(i, j) = di,j s.t. (Euci,j − ε) ≤ di,j ≤ (Euci,j + ε), ∀i, j
Here ε, called the error tolerance factor, is the maximum
estimation error allowed by the application. Ideally, the
value of ε should be zero but in most practical cases it is
assumed to have a very small value. More generally, δ(i, j)
is always assumed to be within the actual property value ±
ε, ∀ i, j i.e., the value of the property function is very close
to the actual property value. We now introduce the notion
of consistent and inconsistent edges where this assumption
about the honest property function is dropped.

Definition 2.1. Consistent Edge: An edge (i, j) in the
grounded graph is said to be consistent if and only if the
estimated property value (value of the property function)
associated with it is within some small error tolerance fac-
tor ε.

An edge that is not consistent is said to be an inconsis-
tent edge and the property function that assigns inconsis-
tent values to edges is called a dishonest property function.
At this point, there are three important observations we
make.

• The implementation of the property function varies
from application to application. But, property func-
tion computations normally use information collected
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V = {1, 2, 3, 4, 5, 6, 7} OP T MAX−CON = {2, 3, 4, 6, 7} OP T LARGEST−CON = {4, 5, 6, 7}

E′ = {(2, 6), (3, 6), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7)} Number of consistent edges in solution = 5 Number of consistent edges in solution = 6

E′′ = {(1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (3, 5)}

(a) (b) (c)

Figure 1: (a) PCGG, G′ = (V ′, E′ ∪ E′′); (b) OPTMAX−CON ; (c) OPTLARGEST−CON

from the nodes and other inter-node communications
in the network. Thus, cheating or dishonest behaviour
in part by the nodes would result in an incorrect value
being assigned by the function to the corresponding
edge. This incorrect value can also be due to other fac-
tors (low battery power, obstacles, extreme weather
conditions etc.) and not necessarily due to cheating
by the nodes but it is not possible to differentiate be-
tween the two cases. The eventual goal of this research
is to effectively eliminate the inconsistencies. We will
not be concerned with how they are caused.

• Nodes do not behave maliciously all the time. Ma-
licious behaviour is random. In other words, not all
edges coming out of a particular node will be incon-
sistent. If they do, then such a behaviour is trivial to
detect. Nodes will behave maliciously at random and
intermittently to avoid easy detection. There will be
some nodes that are an exception to this rule but we
assume that their numbers are small.

• In this paper, we assume that inconsistent edge values
for most applications in WSNs can be detected effi-
ciently. We do not go into the details of how this can
be acheived as it is out of scope of this paper. Some
techniques for inconsistency/malicious behaviour de-
tection are discussed in (Sastry et al., 2003; Ray et al.,
2003; Liu et al., 2005b; Pires et al., 2004).

We are now ready to define a Partially Consistent
Grounded Graph (PCGG).

Definition 2.2. Partially Consistent Grounded Graph
(PCGG): A partially consistent grounded graph (PCGG)
G′ = (V ′, E′ ∪ E′′) is a grounded graph associated with a
dishonest or malicious property function. The set of ver-
tices is denoted by V ′ and edge set can be partitioned into
two disjoint subsets, namely the set of consistent edges (E′)
and the set of inconsistent edges (E′′).

Definition 2.3. Consistent Sub-grounded Graph (CSG):
A consistent sub-grounded graph (CSG) G = (V,E) is an
induced subgraph of a PCGG G′ = (V ′, E′ ∪ E′′), where

E′′ 6= φ, such that the vertex set V ⊂ V ′ and the edge set
E contains only consistent edges i.e., E ⊆ E′.

A CSG is obtained by eliminating vertices (and the cor-
responding edges) from a PCGG such that the resulting
induced subgraph is consistent. The size of a CSG is the
cardinality of its vertex set. The edge size of a CSG is the
cardinality of its edge set. A CSG is maximal if its vertex
set is not a proper subset of the vertex set of any other
CSG. A maximum CSG is a maximal CSG with maximum
size.

Definition 2.4. Largest Consistent Sub-grounded Graph:
The largest consistent sub-grounded graph (LCSG) of a
PCGG is a CSG that has the maximum edge size, if more
than one CSG exists.

Figure 1(a) shows a PCGG G′ = (V ′, E′ ∪ E′′), Figure
1(b) its corresponding maximum CSG and Figure 1(c) its
largest CSG. In the next two sections, we formulate two
optimisation problems for obtaining a CSG from a PCGG.

3 Maximum Consistent Sub-grounded Graph

3.1 Problem Statement

The maximum consistent sub-grounded graph problem can
be stated as follows. Given a PCGG G′ = (V ′, E′ ∪ E′′),
find the maximum CSG G(V, E) of G′. This problem
is denoted by MAX-CON. All the notations have the
same meaning as discussed before. The problem can
be alternatively stated as the problem of eliminating
a minimum number of vertices from G′ such that the
subgraph induced by the remaining vertices consists of
only consistent edges. MAX-CON is an optimisation
problem and the decision version can be stated as:

MAX-CON
Input: A PCGG G′ = (V ′, E′∪E′′) and a positive integer
k s.t. k ≤ ‖V ′‖.
Question: Does G′ contain a CSG of size k or more?
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3 4

1 2

3 4

1 2

V = {1, 2, 3, 4} V ′ = {1, 2, 3, 4}
E = {(1, 2), (2, 3), (2, 4), (3, 4)} E′ = {(1, 3), (1, 4)}

E′′ = {(1, 2), (2, 3), (2, 4), (3, 4)}
(a) (b)

Figure 2: (a) Input graph for the VERTEX - COVER problem, G = (V, E); (b) Input graph for the MAX-CON
problem, G′ = (V ′, E′ ∪ E′′)

3.2 Hardness of MAX-CON

In this section, we show that MAX-CON is NP -complete.
This result implies that MAX-CON ∈ NP and the
deterministic complexity of MAX-CON is as hard as
any problem in NP . Thus, MAX-CON does not have a
deterministic polynomial time solution. We prove this
result by a polynomial time many-one reduction from
VERTEX-COVER. VERTEX-COVER problem is a well
known NP -complete problem. A vertex cover of an undi-
rected graph G = (V,E) is a subset of vertices C ⊆ V that
contains at least one vertex of every edge e ∈ E, and the
VERTEX-COVER problem (also called minimum vertex
cover problem) is to find such a subset C of the smallest
cardinality. VERTEX-COVER, NP -completeness and
polynomial time many-one reductions are explained in the
seminal paper by Karp (Karp, 1972). Before proceeding
ahead we would like to state the decision version of
VERTEX-COVER (Homer and Selman, 2001).

VERTEX-COVER
Input: A graph G = (V,E) and a positive integer k s.t.
k ≤ ‖V ‖.
Question: Is there a vertex cover of size ≤ k for G?

Theorem 3.1. MAX-CON is NP -complete.

Proof. It is easy to see that MAX-CON ∈ NP : Given a
graph G′ = (V ′, E′ ∪ E′′), guess a set of vertices V (s.t.
‖V ‖ ≥ k), and check whether the subgraph induced by V
consists of only consistent edges (i.e., all the induced edges
only belong to the set E′). This clearly can be done deter-
ministically in polynomial time, provided it can be decided
whether an edge is inconsistent or not in polynomial time.
Now we show that VERTEX-COVER ≤P

m MAX-CON, i.e.,
VERTEX-COVER many-one (m) reduces in polynomial
time (P ) to the MAX-CON problem.
Construction: We describe a polynomial time construc-
tion that maps an instance G = (V, E) of the VERTEX-
COVER problem to an instance G′ = (V ′, E′ ∪ E′′) of
the MAX-CON problem such that G has a vertex cover of
size ≤ k (k ≤ ‖V ‖) if and only if G′ has a CSG of size

≥ ‖V ‖ − k. The construction is shown in Figure 2.

1. For each vertex v in the vertex set V of G, place a
vertex v in the vertex set V ′ of G′.

2. For each edge (u, v) ∈ E s.t. u, v ∈ V , add an edge
(u, v) in the inconsistent edge set E′′ of G′. These
edges are shown as dotted lines in Figure 2(b).

3. For each edge (u, v) /∈ E s.t. u, v ∈ V , add an edge
(u, v) in the consistent edge set E′ of G′. These edges
are shown as solid lines in Figure 2(b).

It is clear that the above construction can be completed
in polynomial time. We now show that the graph G has
a vertex cover of size k if and only if the graph G′ has a
CSG of size ‖V ‖ − k.

Suppose the graph G in Figure 2 has a vertex cover
C (C ⊆ V ) of size k (‖C‖ = k). Since C is a vertex
cover, ∀(u, v) ∈ E, either u or v or both are in C. By our
construction, ∀(u, v) ∈ E, (u, v) ∈ E′′ (inconsistent edge
set). Thus, C also covers all the inconsistent edges in G′.
In other words, V − C is a CSG. ‖V − C‖ = ‖V ‖ − k.
Thus, if G has a vertex cover of size k, G′ has a CSG of
size ‖V ‖ − k.

Now we prove the other direction. Let C ′ be the CSG
of G′ of size m (m ≤ ‖V ′‖). By definition of CSG, C ′

contains only consistent edges i.e., for all edges (u, v) in
C ′, (u, v) ∈ E′. Thus, V ′ − C ′ covers all edges in the
inconsistent edge set E′′. If this was not true, that means
there is an edge (u, v) ∈ E′′ s.t. both u and v are not in
V ′ − C ′. Thus, both u and v are in C ′ and it is not a
CSG which is a contradiction. Thus, V ′ − C ′ covers all
inconsistent edges. From our construction, V ′ − C ′ is a
vertex cover of the graph G (there is a one-one mapping
of edges in G to inconsistent edges in G′) and its size is
‖V ′‖ −m i.e., ‖V ‖ −m since ‖V ′‖ = ‖V ‖.

Thus, VERTEX-COVER many-one reduces in polyno-
mial time to MAX-CON. Since VERTEX-COVER is NP -
complete, MAX-CON is NP -complete.
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V ′ = {1, 2, 3, 4, 5, 6, 7} V = {1, 2, 3, 4, 5, 6, 7}
E′ = {(2, 6), (3, 6), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (6, 7)} E = {(1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (3, 5)}
E′′ = {(1, 4), (1, 5), (1, 6), (1, 7), (2, 5), (3, 5)}

(a) (b)

Figure 3: (a) Input graph for the MAX-CON problem, G′ = (V ′, E′∪E′′); (b) Input graph for the VERTEX - COVER
problem, G = (V,E)

3.3 Approximation Algorithm for MAX-CON

Lemma 3.1. MAX-CON many-one reduces in polynomial
time (≤P

m) to the VERTEX-COVER Problem.

Proof. The proof of this lemma has a construction that is
very similar to the one in Theorem 3.1. This construc-
tion maps an instance G′ = (V ′, E′ ∪ E′′) of the MAX-
CON problem to an instance G = (V,E) of the VERTEX-
COVER problem in polynomial time such that G′ has a
CSG of size k (k ≤ ‖V ′‖) if and only if G has a vertex
cover of size ‖V ′‖ − k.

1. For each vertex v in the vertex set V ′ of G′, place a
vertex v in the vertex set V of G.

2. For each inconsistent edge (u, v) ∈ E′′, add an edge
(u, v) in the edge set E of G. These edges are shown as
dotted lines in Figure 3(a) and as solid lines in Figure
3(b).

It is clear that the above construction can be completed in
polynomial time. We now show that G′ has a CSG of size
k (for any k ≤ ‖V ′‖) if and only if G has a vertex cover of
size ‖V ‖ − k.

Suppose G′ has a CSG C of size k. This implies that C
contains only consistent edges i.e., edges from the edge set
E′. Thus, V ′−C contains all the inconsistent edges (from
E′′) and the remaining consistent edges (from E′). Also,
‖V ′ − C‖ = ‖V ′‖ − k. By our construction E = E′′ and
V = V ′. Thus V ′−C covers all edges in E and is a vertex
cover of size ‖V ′‖ − k. Similarly, the other direction.

Lemma 3.1 implies that any efficient algorithm for solv-
ing the VERTEX-COVER problem can be used as a
subroutine to solve the MAX-CON problem. The mini-
mum VERTEX-COVER problem is a fundamental prob-
lem in graph theory and combinatorial optimisation and
is a vastly studied problem with a large number of con-
stant and fixed ratio approximation algorithms. Hastad
(1997) has shown that VERTEX-COVER cannot be ap-
proximated within a factor of 7/6. It was further improved
to 10

√
5−21 by Dinur and Safra (2005). Gavril introduced

a 2-approximation algorithm for the VERTEX-COVER
problem in (Garey and Johnson, 1979). This was improved
to 2− loglog|V |

2log|V | (Bar-Yehuda and Even, 1985; Monien and

Speckenmeyer, 1985) and later to 2 − lnln|V |
ln|V | (1 − o(1))

(Halperin, 2000) before it was eventually improved to
2−Θ( 1√

log n
) by Karakostas (2005). An interesting gener-

alisation of the VERTEX-COVER problem is the weighted
VERTEX-COVER problem in which positive weights are
assigned to each vertex and the problem is to find the
vertex cover with minimum cumulative weight. The first
well-known 2-approximation algorithms for the weighted
VC problem were discovered independently by Bar-Yehuda
and Even (1981) and Hochbaum Hochbaum (1982). An
important point to note here is that all the approximation
results for the unweighted case also hold for the weighted
case.

We are now ready to state the approximation algorithm
for the MAX-CON problem. The approximation algorithm
for MAX-CON is as shown in Algorithm 1. Let A(V, E) be

E ⇐ E′′ {place all inconsistent edges in E}
for all edge (u, v) ∈ E′′ do

if u /∈ V then
V ← u {and corresponding vertices in V }

end if
if v /∈ V then

V ← v
end if

end for
C = A(V,E) {execute approx algorithm for VERTEX-
COVER}
return V ′ − C {solution of MAX-CON}

Algorithm 1: Calculating the Maximum CSG of the
PCGG G′ = (V ′, E′ ∪ E′′)

an algorithm for solving the VERTEX-COVER problem,
where V and E are the set of vertices and edges respec-
tively of the input graph G. Algorithm A returns the set
of vertices that form the minimum vertex cover for the

7
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Figure 4: Construction of a PCGG G′ = (V ′, E′ ∪E′′) from the MAX-2SAT formula F = (x1 ∨ x2)∧ (x2 ∨ x3)∧ (x1 ∨
x̄3) ∧ (x̄1 ∨ x̄2)

graph G. The approximation algorithm for MAX-CON
is simple and uses the approximation algorithm A for the
VERTEX-COVER problem as a subroutine. The for loop

runs no more than
(‖V ′‖

r

)
times. Also, the running time

and solution quality of Algorithm 1 is bounded by the run-
ning time and solution quality of algorithm A.

4 Largest Consistent Sub-grounded Graph

4.1 Problem Statement

The largest consistent sub-grounded graph problem can
be stated as, given a PCGG G′ = (V ′, E′ ∪ E′′), to find
the largest CSG G(V,E) (Definition 2.4) of G′. This
problem is denoted by LARGEST-CON. The problem
can be alternatively stated as the problem of eliminating
vertices from G′ in such a way that the subgraph induced
by the remaining vertices consists of only consistent edges
and the cardinality of these edges is maximised. From
Figure 1, we can clearly see that an optimal solution
for MAX-CON is not necessarily an optimal solution
for LARGEST-CON. These two are different problems
with different combinatorial hardness and approximation
schemes. The decision version of the problem can be
stated as:

LARGEST-CON
Input: A PCGG G′ = (V ′, E′∪E′′) and a positive integer
k s.t. k ≤ ‖E′‖.
Question: Does G′ contain a CSG of edge size k or more?

4.2 Hardness of LARGEST-CON

In this section, we show that LARGEST-CON is NP -
complete. This result implies that LARGEST-CON ∈
NP and the deterministic complexity of LARGEST-CON
is as hard as any problem in NP . Thus, LARGEST-CON
does not have a deterministic polynomial time solution.
We prove this result by a polynomial time many-one
reduction from MAX-2SAT or Maximum 2-Satisfiability.

MAX-2SAT is a known NP -complete problem (Garey
and Johnson, 1979). MAX-2SAT is a restricted version
of another NP -complete problem called the Maximum
Satisfiability or MAX-SAT. MAX-SAT is the problem,
given a set S of disjunctive form clauses, to find a truth
assignment to the literals such that maximum number of
clauses are satisfied (Garey and Johnson, 1979). MAX-
2SAT is restricted to at-most two literals per clause. It
can be formally stated as:

MAX-2SAT
Input: A Conjunctive Normal Form (CNF) formula
F on Boolean variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm, each containing at most two literals, where
each literal is either Boolean variable xi or its negation x̄i

(¬xi) and a positive integer k (k < m).
Question: Is there a truth assignment to the variables
that satisfies k or more clauses?

Theorem 4.1. LARGEST-CON is NP -complete.

Proof. We use a technique similar to the polynomial time
reduction from 3-SAT used to prove the NP -completeness
of VERTEX-COVER problem (Homer and Selman, 2001).
It is easy to see that LARGEST-CON ∈ NP : Given a
graph G′ = (V ′, E′ ∪ E′′), guess a set of consistent edges
E (s.t. ‖E‖ ≥ k and E ⊆ E′). Let V be the set of
vertices of all these guessed edges. Check in polynomial
time whether the other edges induced by V are consistent.
This procedure clearly can be accomplished in polynomial
time and thus LARGEST-CON ∈ NP . Now we show
that MAX-2SAT ≤P

m LARGEST-CON, i.e., MAX-2SAT
many-one reduces in polynomial time to LARGEST-CON.
We can then claim that since MAX-2SAT is NP -complete,
LARGEST-CON is NP -complete.

Construction of G′ = (V ′, E′UE′′): We describe a polyno-
mial time construction that maps an instance F of MAX-
2SAT to an instance G′ = (V ′, E′UE′′) of the LARGEST-
CON problem such that F satisfies k clauses if and only if
G′ has a CSG of edge size k. Figure 4 shows the construc-
tion of a PCGG G′ = (V ′, E′ ∪ E′′) from the MAX-2SAT
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formula F = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2).
The consistent edges are shown as solid lines and the in-
consistent edges are shown as dotted lines.

The construction of G′ consists of the following 3 steps,
each adds a different component to the graph.

1. Let U = V AR(F ), be the set of variables in the
Boolean formula F . For each variable ui ∈ U , put
ui and ūi in the vertex set V ′ and put (ui, ūi) into the
edge set E′′ i.e. the set of inconsistent edges in graph
G′. This is the first component of the graph.

2. Let C = CLAUSE(F ) be the set of clauses in F i.e.,
F =

∧
cj∈Ccj . For each clause cj in the formula F put

vertices c1
j and c2

j in V ′. Put an edge (c1
j , c

2
j ) in the

set E′′ i.e., the set of inconsistent edges. This is the
second component of the graph G′.

3. In this step we create a new component by connect-
ing components from the first two steps. This com-
ponent depends on the literals that are contained in
the clauses. As mentioned before, each clause cj ∈ C
is a disjunction of two literals and literals are vari-
ables or their negations. Consider one such clause
cj = (xj ∨ yj), where xj and yj are literals. For each
clause cj , put edges (xj , c

1
j ) and (yj , c

2
j ) in E′ i.e., the

set of consistent edges of G′. This forms the third set
of components of the graph G′.

We need to show that PCGG G′ has a CSG G = (V, E)
of edge size k i.e., ‖E‖ = k if and only if F has k satisfiable
clauses. Suppose, there exists an assignment t s.t. exactly
k clauses are satisfied. Then for each variable ui ∈ U either
t(ui) = 1 or t(ūi) = 1 but both cannot be 1. Place ui in
the vertex set V of the subgraph G of the PCGG G′ if
t(ui) = 1 or place ūi in V if t(ūi) = 1. Thus, V contains
one vertex of each edge in the first component. Now, for
a clause cj = (xj ∨ yj), cj is satisfiable if either literals xj

or yj or both are true. Thus, either xj or yj or both are
in the set V based on their truth assignment. If both xj

and yj are in V , randomly (with a probability 1/2) select
vertex c1

j or c2
j and add it to V (never both). If only one

of xj or yj is 1, pick the corresponding ci
j (based on the

construction of component 3) and place it V . One thing to
note here is that when the clause cj is satisfied, only one c1

j

or c2
j is in the set V . When it is not satisfied none of them

are in V . It follows that the vertex set V induces edges
only from E′. Thus the graph induced by V is consistent
and G = (V, E) is a CSG. Also from the above procedure,
if k clauses are satisfied then exactly k consistent edges get
induced in E. Thus G = (V, E) is a CSG with edge size k.
We now prove the other direction.

Suppose, G = (V, E) is a CSG of the PCGG G′ s.t.
‖E‖ = k, for some positive integer k. From the construc-
tion it is clear that all the consistent edges are of the form
(ui, c

i
j), where ui is the ith (i ∈ 1, 2) literal in the jth clause

cj of the formula F . Also, if ui ∈ {xi, x̄i}, since the graph
G is a CSG, the edges of the form (xi, x̄i) and (c1

j , c
2
j ) can-

not be in E, i.e., both xi and x̄i or c1
j and c2

j cannot be in

the vertex set V of the CSG G. Now define an assignment
t : U → {0, 1} s.t. t(ui) = 1 if ui ∈ V and t(ui) = 0 if
ui /∈ V . Similarly, t(ūi) = 1 if ūi ∈ V and t(ūi) = 0 if
ūi /∈ V . We claim that this assignment is consistent and
if there are k edges in E then there are k satisfied clauses
by the above assignment. Since G is a CSG of G′, none
of the edges in the first two components of our construc-
tion can be present in G. Thus, for any variable xi, both
xi and x̄i cannot be in V . As a result the assignment t
above will consistent. Similarly, for a clause ci, both c1

i

and c2
i cannot be in V . Thus, both edges in the third com-

ponent of our construction above of the form (u, c1
j ) and

(v, c2
j ) cannot be in G at the same time, where u and v

are some literals. If this was not true, (c1
j , c

2
j ) would also

be induced in G making it inconsistent. Thus, there is a
one-one correspondence between an edge in G and the cor-
responding satisfied clause and since all these edges span
distinct clauses there are exactly k satisfied clauses.

Lemma 4.1. Let OPTLAR(G′) and OPTMAX(G′) be the
optimal solutions of the LARGEST-CON and MAX-CON
problems resp. on any input PCGG G′. Let LAR(G′) and
MAX(G′) be the set of all the feasible solutions for the
LARGEST-CON and MAX-CON problems resp. on G′.
Then,

1. cost(OPTLAR(G′)) ≤ cost(OPTMAX(G′)) i.e.,
‖OPTLAR(G′)‖ ≤ ‖OPTMAX(G′)‖

2. LAR(G′) = MAX(G′)

3. Let, A ∈ LAR(G′) (MAX(G′)) and B ∈ LAR(G′)
(MAX(G′)) s.t. C = A∩B and C 6= φ. Then, A∪B
/∈ LAR(x) (MAX(x))⇒ ∃u ∈ A−C and ∃v ∈ B−C
s.t. (u, v) ∈ E′′ i.e., in the set of inconsistent edges of
G′

Proof. 1. Assume that there exists a PCGG x such that
the inequality 1 above is not true. This means, that
there exists an optimal solution of LARGEST-CON
that has more vertices than an optimal solution for
MAX-CON. But, then the solution for MAX-CON is
not a maximum CSG, thus not optimal, and that is a
contradiction. Thus, no such PCGG exists.

2. The proof of this point is trivial and follows directly
from the definitions of MAX-CON and LARGEST-
CON.

3. Since, A and B are both feasible solutions, there are
no two vertices u and v both in A s.t. (u, v) is inconsis-
tent. Similarly, there are no such vertices in either B
or C. Also, since A∪B is not a feasible solution which
implies that there exists two vertices u, v ∈ (A ∪ B)
s.t (u, v) is inconsistent. The above two points imply
that ∃u ∈ A and v ∈ B s.t. (u, v) is inconsistent.
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4.3 Inapproximability of LARGEST-CON

In this section, we show the inapproximability of
LARGEST-CON. CLIQUE is a well known problem and
is one of the first problems shown to be NP -complete
(Bomze et al., 1999). It can be stated as (Homer and
Selman, 2001):

CLIQUE
Input: A graph G = (V, E) and a positive integer j ≤
‖V ‖.
Question: Does G contain a clique of size j or more?

Bomze et al. (1999) have listed important combinatorial
results for the CLIQUE problem. In summary, there is
strong evidence that clique does not have a polynomial
time approximation algorithm. In other words, unless P =
NP , CLIQUE cannot be approximated with any ratio less
than 1.

Theorem 4.2. If there exists an approximation algorithm
that can approximate LARGEST-CON with an approxi-
mation ratio ε, then there exists an algorithm that approx-

imates CLIQUE with ratio 1−
√

1−ε
2 .

Proof. Suppose we have an instance of CLIQUE, G =
(V,E). We can construct a new graph G′ = (V,E′) such
that the new graph G′ has the same vertex set as G and
E′ = E∪Ec where Ec contains all the edges that are not in
E (in the complete graph induced by the vertex set). Now,
if we take E to be the set of consistent edges and Ec to be
the set of inconsistent edges, then G′ is a PCGG. Also, it
is easy to see that any CLIQUE in graph G corresponds to
a CSG in G′ and vice versa. Let A be the ε-approximation
algorithm for solving the LARGEST-CON problem. We
apply A on the graph G′ to get the largest CSG in G′. Let
this largest CSG be Ĝ = (V̂ , Ê). Also, let |V̂ | = m and M
be the vertex cardinality of the optimal solution.

Since A has an approximation ratio ε, we have

∣∣∣∣∣∣∣∣

(
M
2

)
−

(
m
2

)

(
M
2

)

∣∣∣∣∣∣∣∣
=

M2 −M −m2 + m

M2 −M
≤ ε

Then,

1− ε ≤ m2 −m

M2 −M
<

m2

M2 −M

Without loss of generality we can assume M ≥ 2. Then
we have,

1− ε < 2
( m

M

)2

which is,
M −m

M
< 1−

√
1− ε

2

This means we have found an approximation algorithm for

CLIQUE with ratio 1−
√

1−ε
2 .

Corollary 4.1. Unless P = NP , the approximation
threshold of LARGEST-CON is 1.

Proof. This directly follows from the fact that CLIQUE
cannot be approximated with any ratio less than 1 under
the hypothesis P 6= NP .

The above corollary implies that LARGEST-CON can-
not be approximated with any ratio less than 1 under the
hypothesis P 6= NP .

5 Heuristics-based Algorithms for LARGEST-CON

In this section, we present approximation algorithms for
LARGEST-CON based on well known heuristics. Cur-
rently, we do not know if the quality of the solutions pro-
duced by these algorithms can be bounded.

5.1 Greedy Algorithm

Let G′ = (V ′, E′∪E′′) be an instance of LARGEST-CON,
where E′ and E′′ are the sets of consistent and inconsistent
edges respectively. For a vertex v ∈ V ′, let con(v) be the
number of consistent edges of v and let incon(v) be the
number of inconsistent edges of v. A greedy approach for
obtaining the largest CSG of G′ is shown in Algorithm 2.

C ⇐ φ; {Initialise the solution to empty set}
C = {v| v ∈ V ′ and incon(v) = 0}
V ′ ← V ′\C;
while E′′ 6= φ do

pick a vertex v ∈ V ′ of minimum con(v);
V ′ ← V ′\{v}
E′′ ← E′′\{e|v ∈ e}

end while
C ← C + V ′;
return C {solution of LARGEST-CON}

Algorithm 2: Greedy Algorithm

This approach eliminates a vertex of inconsistent edge
degree at least one and minimum consistent edge degree
in each iteration. The greedy approach is pretty straight-
forward, with a running time bounded by the execution of
the while loop that is O(n2) where |V | = n. The above al-
gorithm can be modified slightly as shown in Algorithm 3.
It picks a vertex v with minimum con(v)

incon(v) i.e., eliminates
vertices with the lowest ratio of consistent to inconsistent
edges.

5.2 Local Solution Search

Local Solution Search (LSS) is an algorithm design tech-
nique for optimisation problems. Before giving details on
this technique we introduce a few important concepts. Let
U be an optimisation problem and x be an input problem
instance for U . Let M(x) be the set of feasible solutions
of the problem U for the input instance x.

10



C ⇐ φ; {Initialise the solution to empty set}
C = {v| v ∈ V ′ and incon(v) = 0}
V ′ ← V ′\C;
while E′′ 6= φ do

pick a vertex v ∈ V ′ of minimum con(v)
incon(v) ;

V ′ ← V ′\{v}
E′′ ← E′′\{e|v ∈ e}

end while
C ← C + V ′;
return C {solution of LARGEST-CON}

Algorithm 3: Modified Greedy Algorithm

Definition 5.1. Neighbourhood: For an optimisation
problem U and for every input instance x, a neighbour-
hood on the set of feasible solutions (M(x)) is any mapping
fx : M(x) → Pot(M(x))(Pot denotes the power set) such
that

1. α ∈ fx(α) for every α ∈M(x),

2. if β ∈ fx(α) for some α ∈M(x), then α ∈ fx(β), and

3. for all α, β ∈ M(x) there exists a positive integer k
and γ1, . . . , γk ∈ M(x) such that γ1 ∈ fx(α), γi+1 ∈
fx(γi) for i = 1, . . . , k − 1, and β ∈ fx(γk)

If α ∈ fx(β) for some α, β ∈ M(x), we say that α and β
are neighbours in M(x). The set fx(α) is called the neigh-
bourhood of the feasible solution α in M(x) (Hromkovič,
2004).

We now introduce the concept of local optima.

Definition 5.2. Let U be an optimisation problem and let
for every input instance x, the function fx be the neigh-
bourhood on M(x). Let cost be the cost function that as-
signs a positive real number to each feasible solution. A
feasible solution α ∈ M(x) is a local optima for the input
instance x of U according to fx, if

cost(α) = (max) or (min){cost(β)|β ∈ fx(α)}

We denote the set of all local optima for x according to
the neighbourhood fx by LocOPTU (x, fx) (Hromkovič,
2004).

Neighbourhood definition for LARGEST-CON:
The formalisms of functions and relations does not work
when introducing neighbourhoods on M(x) in practical
problems like LARGEST-CON. The standard way to in-
troduce a neighbourhood on M(x) is to use a so-called
local transformation on M(x). Informally, a local trans-
formation transforms a feasible solution α to a feasible
solution β by some local changes of the specification of
α. To define a neighbourhood for an instance of the
LARGEST-CON problem, we introduce a transformation
called a n-neighbourhood transformation. For simplicity,
we first introduce a 1-neighbourhood transformation. Let

x = G′(V ′, E′ ∪ E′′) be an instance of the LARGEST-
CON problem. Let M(x) be the set of feasible solutions
for LARGEST-CON on input x. For α ∈M(x), we define
the 1-neighbourhood of α as follows:

To define a 1-neighbour of a feasible solution α, pick
a vertex v ∈ V ′\α s.t. v has an inconsistent edge degree
of exactly one and this inconsistent edge connects v to
a vertex in α. Let this vertex in α be called w. If there
are no such vertices then α has no 1-neighbours. Now to
get a 1-neighbour of α, add v in α and remove w from α.
It is clear that this resultant subgraph is also a feasible
solution since the inconsistent edge which was covered
by v previously is now covered by w. Also, addition of
v does not induce any inconsistent edge in the resultant
subgraph since its inconsistent edge degree is one and
that edge is covered by w. We call this a 1-neighbour
of the solution α. The set of all the 1-neighbours of α
is called the 1-neighbourhood of α and is represented as
Neigh1

x(α). Similarly, to define a 2-neighbourhood, a
vertex v ∈ V ′\α with inconsistent edge degree of exactly
two (to vertices in α) is selected. This vertex is added
in α and the two vertices that v connects by inconsistent
edges are removed from α. One thing to note here is that
1-neighbours of α have the same vertex set cardinality as
α while its 2-neighbours have their vertex set cardinal-
ity reduced by 1. Similarly 3−neighbourhoods are defined.

Local Solution Search Algorithm for LARGEST-
CON: Roughly speaking, a Local Search Solution (LSS)
algorithm starts off with an initial solution and then con-
tinually tries to find a better solution by searching neigh-
bourhoods. If there is no better solution in the neigh-
bourhood, then it stops. Having a structure on the set
of feasible solutions M(x) determined by a neighbourhood
Neighx for every input instance x of an optimisation prob-
lem U , one can describe a general scheme of local search
as shown in Algorithm 4.

Find a feasible solution α ∈M(x)
while α /∈ LocOPTU (x, Neighx) do

find a β ∈ Neighx(α) such that cost(β) < cost(α) if
U is a minimisation problem or cost(β) > cost(α) if
U is a maximisation problem;
If such a β is found, α = β;

end while
return α

Algorithm 4: Local Search Scheme according to a neigh-
bourhood Neigh

The success of a local search algorithm depends on the
choice of the neighbourhood. If a neighbourhood Neighx

has the property that Neighx(α) has a small cardinality
for every α ∈M(x), then one iterative improvement of the
while loop of Algorithm 4 can be executed efficiently but
the risk that there are many local optima (potentially with
a cost that is very far from the optimal solution) can sub-
stantially grow. On the other hand, large |Neighx(α)| can
lead to feasible solutions with costs that are closer to the
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optimal solution than smaller neighbourhoods can, but the
complexity of the execution of one run of the while cycle
can increase too much. Besides the choice of the neigh-
bourhood there are two other factors that affect the ex-
ecution of the local search algorithm. The first factor is
the method by which the initial feasible solution is com-
puted. The choice of the initial solution can essentially
influence the quality of the resultant local optimum. The
initial feasible solution can be either chosen randomly for
problems in which the structure of the feasible solution
is simple or it can be precomputed. In the LSS algorithm
for LARGEST-CON the initial feasible solution is precom-
puted. From Lemma 4.1 we know that a solution for the
MAX-CON problem is also a solution for the LARGEST-
CON problem. Thus, any algorithm that produces an op-
timal solution for MAX-CON can be used as a good start-
ing solution for the LARGEST-CON problem. Further
improvement can be done by starting the LSS algorithm
with multiple initial feasible solutions. The second factor
affecting the performance of the LSS algorithm is the way
in which a cost-improving feasible solution is selected in-
side the while loop. There are two strategies in doing this,
namely, first improvement and best improvement. The first
improvement strategy means that the current feasible solu-
tion is replaced by the first cost-improving feasible solution
found by the neighbourhood search. The best improve-
ment strategy replaces the current feasible solution by the
best feasible solution in the neighbourhood. A LSS for
solving LARGEST-CON is outlined in Algorithm 5.

Let x = G′(V ′, E′ ∪E′′) be a PCGG and an instance of
LARGEST-CON and let A be an efficient algorithm for
solving MAX-CON.
Let α = A(x) be the initial feasible solution.
while α /∈ LocOPTU (x,Neigh1

x(α)) do
Either by first improvement or best improvement, find
a β ∈ Neigh1

x(α) such that cost(β) > cost(α) {cost
function outputs the edge count (consistent) of a so-
lution}
If such a β is found, α = β;

end while
return α

Algorithm 5: Local Search Scheme for LARGEST-CON
using Neigh1

x

One shortcoming of this approach is that in one iteration
of the while loop only the 1-neighbourhood (Neigh1

x) of
the feasible solution α is checked. But α might not have 1-
neighbourhoods at all or there might be better solutions in
the 2-neighbourhoods and 3-neighbourhoods. The above
algorithm can be further improved by also checking the
2-neighbourhoods and 3-neighbourhoods.

6 Experimental Evaluation

We implemented the greedy and local solution search al-
gorithms in C++ language and tested them on randomly

(a)

(b)

(c)

Figure 5: Plot of solution quality versus radio range for a
network with (a) 80 Nodes; (b) 100 Nodes; (c) 120 Nodes

generated graphs. The random graphs are generated in the
following way: All vertices in the graph represent the nodes
in the sensor network that are randomly distributed in a
500m× 500m region. If the distance between two nodes is
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less than or equal to the radio range (all nodes are assumed
to have the same radio range), then the two corresponding
vertices are connected by an edge in the graph.

The number of nodes (n) and the radio range (r) are ad-
justable parameters. We, then randomly assign one third
of the nodes as malicious, and for any edge between a ma-
licious node and an honest node, we assign the edge to be
inconsistent with a probability of 1/2. All other edges are
assigned to be consistent. It is obvious that if we remove
all the malicious nodes and the corresponding edges then
the resulting subgraph becomes consistent. This subgraph
may or may not be the optimal solution. Such a subgraph
is called a sub-optimal solution and the number of edges
in a sub-optimal solution is called its value.

We tested the two greedy algorithms and the two local
search algorithms with some fixed values for n and r. Since
it is computationally infeasible to get the true optimal so-
lution for large graphs, we measure the solution quality of
the algorithms by evaluating the ratio of the value (number
of edges in the solution) returned by these algorithms to
the value of the sub-optimal solution. All data values are
the average of 100 runs. The data diagrams in Figure 5(a),
5(b) and 5(c) plot the data values of the algorithms with
n = 80, n = 100 and n = 120 respectively. The radio range
is along the x− axis and the ratio of the solution value to
the sub-optimal solution value is along the y − axis.

We make the following observations:

1. None of the algorithms discussed above returns a so-
lution that is better than the sub-optimal solution.

2. The performance difference of the two greedy algo-
rithms is negligible (for this reason we only indicate
one data curve for greedy algorithms in the diagrams).

3. The performance difference of the two local search al-
gorithms is negligible (for this reason we only indicate
one data curve for local search algorithms in the dia-
grams).

4. The local search algorithm has some improvement
over the greedy algorithm, but the improvement is
not significant.

5. The performance of both the algorithms decreases as
the number of nodes increases.

6. The performance of both the algorithms decreases
as the radio range increases (i.e., the graph is more
dense), and becomes stable after the radio range
reaches a certain threshold value.

7. The solution quality does not deteriorate below 0.4
and the average solution quality is close to 0.5.

Despite the negative inapproximability result for
LARGEST-CON, we can see that both the greedy and
local search algorithms produce good solutions even for
large graphs. Also, the solution quality is close to 0.5 even
for highly sparse graphs. These results are encouraging.
In our experiments, we found only a negligible difference

between the two greedy algorithms and the local search
algorithms. Moreover, the above algorithms and results
are true only for general graphs. We have not investigated
the LARGEST-CON problem in specific types of graphs
like planar graphs. There is a possibility that we might be
able to find a lower bound on the solution quality for such
graphs.

7 Conclusion and Future Work

In this paper, a formal model for Wireless Sensor Networks
that takes into account the inconsistencies (inaccuracies)
introduced due to malicious node behaviour or external
factors is proposed. Using this model as a basis, we for-
mulate two optimisation problems that aim to eliminate
these inconsistencies in an efficient way, namely MAX-
CON and LARGEST-CON. The hardness of these opti-
misation problems is indicative of the difficulty involved in
eliminating inconsistency causing nodes in a WSN and is
an important factor when considering redeployment, net-
work termination etc. We prove the above problems to
be NP -complete and give the inapproximability result for
LARGEST-CON. We also provide two approximation al-
gorithms for LARGEST-CON based on popular heuristics
like greedy choice and local solution search. Finally, using
experiments we show that local solution search performs
slightly better than greedy algorithms for randomly gener-
ated graphs and performance of both the algorithms dete-
riorates as the number of nodes and radio range increases.

As part of our future work in this direction, we would
first like to get a lower bound on the solution quality of
LARGEST-CON. We are currently working on another
solution strategy for solving LARGEST-CON. We would
like to formulate, test and compare it against the exist-
ing strategies. Moreover, the combinatorial results for
LARGEST-CON presented in this paper hold for graphs
in general. As part of future research, we would like to in-
vestigate whether WSNs can be modelled as specific types
of graph and whether or not the inapproximability result
for LARGEST-CON holds for such graphs.

ACKNOWLEDGMENT

The authors would like to thank Dr. Hung Ngo and
Mr. S. Vidyaraman for their valuable inputs and comments
during the course of this work.

REFERENCES

Bahl, P. and Padmanabhan, V. N. (2000). Radar: An
in-building RF-based user location and tracking system.
In IEEE INFOCOM Conference Proceedings, pages 775–
784. IEEE Communications Society.

13



Bar-Yehuda, R. and Even, S. (1981). A linear time ap-
proximation algorithm for the weighted vertex cover al-
gorithm. Journal of Algorithms, 2:198–210.

Bar-Yehuda, R. and Even, S. (1985). A local-ratio theo-
rem for approximating the weighted vertex cover prob-
lem. Analysis and Design of Algorithms for Combinato-
rial Problems, Annals of Disc. Mathematics, 25:27–46.

Bomze, I., Budinich, M., Pardalos, P., and Pelillo, M.
(1999). The maximum clique problem. In Du, D.-Z.
and Pardalos, P. M., editors, Handbook of Combinato-
rial Optimization, volume 4. Kluwer Academic Publish-
ers, Boston, MA.

Dinur, I. and Safra, S. (2005). On the hardness of approx-
imating minimum vertex-cover. Annals of Mathematics,
162(1).

Elson, J. and Estrin, D. (2001). Time synchronization for
wireless sensor networks. In Proceedings of the 2001 In-
ternational Parallel and Distributed Processing Sympo-
sium (IPDPS), Workshop on Parallel and Distributed
Computing Issues in Wireless and Mobile Computing,
pages 186–186, San Francisco, California, USA.

Eren, T., Goldenberg, D., Whiteley, W., Yang, Y. R.,
Morse, A. S., Anderson, B., and Belhumeur, P. (2004).
Rigidity, computation and randomization of network lo-
calization. In The IEEE INFOCOM 2004. Proceedings.,
Hong Kong, China. IEEE Computer and Communica-
tions Society.

Fang, L., Du, W., and Ning, P. (2005). A beacon-less lo-
cation discovery scheme for wireless sensor networks. In
IEEE INFOCOM Conference Proceedings. IEEE Com-
munications Society.

Ganeriwal, S., Capkun, S., Han, C.-C., and Srivastava,
M. B. (2005). Secure time synchronization service for
sensor networks. In WiSe ’05: Proceedings of the 4th
ACM workshop on Wireless security, pages 97–106, New
York, NY, USA. ACM Press.

Ganeriwal, S., Kumar, R., and Srivastava, M. B. (2003).
Timing-sync protocol for sensor networks. In SenSys ’03:
Proceedings of the 1st international conference on Em-
bedded networked sensor systems, pages 138–149, New
York, NY, USA. ACM Press.

Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability : A Guide to the Theory of NP-
Completeness. W. H. Freeman.

Goldenberg, D., Krishnamurthy, A., Maness, W., Yang,
Y., Young, A., Morse, A., Savvides, A., and Anderson,
B. (2005). Network localization in partially localizable
networks. In The IEEE INFOCOM 2005. Proceedings,
Miami, FL.

Halperin, E. (2000). Improved approximation algorithms
for the vertex cover problem in graphs and hypergraphs.
In Proc. 11th Ann. ACM-SIAM Symp. on Discrete Al-
gorithms.

Hastad, J. (1997). Some optimal inapproximability results.
In Proc. of 29th ACM Symposium on Theory of Com-
puting, pages 1–10.

He, T., Huang, C., Blum, B. M., Stankovic, J. A., and Ab-
delzaher, T. (2003). Range-free localization schemes for
large scale sensor networks. In MobiCom ’03: Proceed-
ings of the 9th annual international conference on Mo-
bile computing and networking, pages 81–95, New York,
NY, USA. ACM Press.

Hightower, J. and Borriello, G. (2001). Location systems
for ubiquitous computing. Computer, 34(8):57–66.

Hochbaum, D. S. (1982). Approximation algorithms for the
weighted set covering and node cover problems. SIAM
Journal on Computing, 11:555–556.

Homer, S. and Selman, A. L. (2001). Computability and
Complexity Theory, chapter Nondeterminism and NP-
Completeness, pages 122–144. Springer-Verlag.

Hong, X., Xu, K., and Gerla, M. (2002). Scalable routing
protocols for mobile ad hoc networks. IEEE Network
Magazine, 16(4):11–21.
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