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Abstract: The polarization properties of stimulated Brillouin scattering 
(SBS) amplification or attenuation in standard single-mode fibers are 
examined through vectorial analysis, simulation and experiment. Vector 
propagation equations for the signal wave, incorporating SBS and 
birefringence, are derived and analyzed in both the Jones and Stokes spaces. 
The analysis shows that in the undepleted pump regime, the fiber may be 
regarded as a polarization-dependent gain (or loss) medium, having two 
orthogonal input SOPs, and corresponding two orthogonal output SOPs, for 
the signal, which, respectively, provide the signal with maximum and 
minimum SBS amplification (or attenuation). Under high Brillouin gain 
conditions and excluding zero-probability cases, the output SOP of 
arbitrarily polarized input signals, would tend to converge towards that of 
maximum SBS gain. In the case of high SBS attenuation the output SOP of 
an arbitrarily polarized signal would approach the output SOP 
corresponding to minimum attenuation.  It is found that for a wide range of 
practical pump powers ( mW100≤ ) and for sufficiently long fibers with 
typical SBS and birefringence parameters, the signal aligned for maximum 
SBS interaction will enter/emerge from the fiber with its electric field 
closely tracing the same ellipse in space as that of the pump at the 
corresponding side of the fiber, albeit with the opposite sense of rotation. 
The analytic predictions are experimentally demonstrated for both Stokes 
(amplification) and anti-Stokes (attenuation) signals. 

©2008 Optical Society of America  
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1. Introduction  

Stimulated Brillouin Scattering (SBS) requires the lowest activation power of all non-linear 
effects in silica optical fibers. SBS has found numerous applications, including distributed 
sensing of temperature and strain [1-3], fiber lasers [4], optical processing of high frequency 
microwave signals [5-9], and even optical memories [10]. Over the last three years, SBS has 
been highlighted as the underlying mechanism in many demonstrations of variable group 
delay setups [11-16], often referred to as slow and fast light. In all of the above applications, 
SBS has been a favorable mechanism for its robustness, simplicity of implementation and low 
pump power in standard fibers at room temperature.  

In SBS, a strong pump wave and a typically weak, counter-propagating signal wave 
optically interfere to generate, through electrostriction, a traveling longitudinal acoustic wave. 
The acoustic wave, in turn, couples these optical waves to each other [17,18]. The SBS 
interaction is efficient only when the difference between the optical frequencies of the pump 
and signal waves is very close (within a few tens of MHz) to a fiber-dependent parameter, the 
Brillouin shift Bν , which is of the order of 10-11 GHz in silica fibers at room temperature and 

at telecommunication wavelengths [17,18]. An input signal whose frequency is Bν  lower than 
that of the pump (Stokes wave) experiences SBS amplification. If the input signal frequency is 

Bν  above that of the pump (anti-Stokes wave), SBS-induced signal attenuation is obtained 
instead. The strength of the interaction is often quantified in terms of an exponential gain 
coefficient γ , which is defined as the logarithm of the signal linear power gain (or loss), 

normalized to a unit pump power and unit fiber length [W⋅m]-1. (The coefficient γ  equals the 
Brillouin gain factor g  [19], divided by the fiber effective area).  

Since SBS originates from optical interference between the pump and signal waves, the 
SBS interaction, at a given point along the fiber, is most efficient when the electric fields of 
the pump and signal are aligned, i.e., their vectors trace parallel ellipses and in the same sense 
of rotation. Conversely, if the two ellipses are again similar, but traced in opposite senses of 
rotation, with their long axes being orthogonal to each other, then the SBS interaction at that 
point averages to zero over an optical period. Consequently, in the presence of birefringence, 
the overall signal gain (or loss) depends on the birefringent properties of the fiber, as well as 
on the input states of polarization (SOPs) of both pump and signal. Following initial work by 
Horiguchi et al. [20], van Deventer and Boot [21] have studied in detail the signal SOPs 
leading to maximum and minimum gain. Based on the statistical properties of the evolution of 
the pump and signal SOPs in optical fibers much longer than the polarization beat length, but 
implicitly ignoring any influence of the Brillouin interaction on SOP evolution, they argued 
that for standard, low birefringence single-mode fibers, the maximum gain coefficient is 
twice that of the minimum one, and equals 2/3 of the maximum gain coefficient in a 
birefringence-free fiber 0γ . Furthermore, maximum gain is achieved when the pump and 
signal have identical polarizations (in their respective directions of propagation), while 
minimum gain is obtained for the corresponding ‘orthogonal’ case [21-24]. Their analysis was 
nicely corroborated by an experiment, which showed that for a given pump, there were indeed 
two input SOPs, chosen by the experimenters to be identical or orthogonal to that of the 
pump, with one providing an exponential gain twice that of the other one. However, the SBS 
amplification of an arbitrarily polarized input signal SOP was not discussed, nor was the role 
played by the Brillouin effect itself in the evolution of the signal SOP considered. 

In this paper, the pioneering work of van Deventer and Boot is analytically substantiated 
and extended, using a vector formulation of the SBS amplification process in the presence of 
birefringence. A vector differential equation, combining both effects, is studied in the Jones 
and Stokes spaces. Based on the Jones space representation, it is shown that in the undepleted 
pump regime, the input signal SOPs which lead to maximum/minimum SBS gain are always 
orthogonal, regardless of pump power and the statistics of the pump and signal SOPs along 
the fiber. These maximum and minimum gain SOPs, therefore, provide a convenient vector 
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base for the examination of an arbitrarily polarized input signal wave. In the Stokes space, the 
evolution of the magnitude and the SOP of the signal wave along the fiber are described by a 
pair of coupled, rather simple differential equations. Using this representation, it is 
analytically shown that the SBS overall gain coefficient is determined by an average over a 
local mixing coefficient, similar (but not identical) to that of [21], for any input SOP, 
polarization statistics, or pump power. In addition, we show that in the presence of a pump, 
the evolution of the signal SOP is controlled not only by the fiber birefringence but also by the 
local SBS interaction, which drags the signal SOP towards that of the pump. The equations 
provide insight into the relation between the signal SOPs, which lead to maximum and 
minimum gain, and the SOP of the pump. The magnitude and SOP of the signal are then 
studied numerically. The maximum and minimum SBS gain coefficient for a general 
birefringent fiber are found to always be ( )μ±γ 102

1 , 10 ≤μ≤ . Even for a weakly birefringent 
fiber, μ  does not necessarily need to be 1/3, although in the limit of a fiber embodying the 
fully developed statistics of [21], it tends to this value. The SOPs of input signals, which 
experience maximum/minimum gains, are then studied as a function of the pump power.  

The signal SOP is also examined experimentally, for both Stokes and anti-Stokes signal 
waves. As predicted by the analysis, the output signal SOP is seen to converge towards a 
specific, preferred SOP, which is practically independent of both the input signal SOP and 
polarization transformations along the fiber [25]. That preferred output SOP could be 
arbitrarily varied, however, by changing the input pump SOP.  

The remainder of this paper is organized as follows: Section 2 presents vector theoretical 
analysis of the signal wave, subject to both SBS and birefringence, in the undepleted pump 
regime. Section 3 is dedicated to numerical simulations. Section 4 provides experimental 
results, and brief concluding remarks are given in section 5. 

2. Theory 

Let us denote the column Jones vector of a monochromatic signal wave as ( )zEsig

�

, z  

indicating position along the fiber, with the launch and exit points at 0=z  and Lz = , 

respectively ( L  is the fiber length). With no pump, the propagation of ( )zEsig

�

 can be 

described by: 

( ) ( ) ( )0sigsig EzzE
��

T=  (1) 

with ( )zT  a unitary Jones matrix representing the effect of fiber birefringence. The pump 

wave, whose Jones vector is denoted by ( )zEpump

�

, is launched into the fiber at Lz = . 

Throughout this paper, we work in the same right-handed coordinate system { }zyx ,, , where 
the signal propagates in the positive z  direction, while the pump propagates in the negative 

z  direction. Thus, if both ( )zEsig

�

and ( )zEpump

�

equal the 2X1 vector Tj]1[ (T stand for 

transpose), they represent a right-handed circularly polarized signal and a left-handed 
circularly polarized pump wave, respectively [23,24]. We also neglect linear polarization-
dependent power losses in the fiber, although such losses can be easily included in the 
analysis. Further, since the Brillouin shift Bν  is merely ~10GHz, and only a few kilometers of 
modern fibers are concerned, polarization mode dispersion can be ignored and, therefore, 
shifting the optical frequency by Bν  has a negligible effect on the Jones matrix of the fiber. 
Hence, the propagation of the pump wave (in the absence of a probe) can also be expressed 
using ( )zT : 

( ) ( ) ( ) ( ) ( ) ( ) ;00 *

pumppumppump

T

pump EzzEzEzE
����

TT =→=   (2) 

where ( )[ ] ( )zzT *inv TT = .  
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When both the probe and pump waves are present, the local evolution of ( )zEsig

�

 and 

( )zEpump

�

 is driven by both the fiber birefringence and the SBS effect to give (see [26] for the 

birefringence term, and [27] for the SBS term):  

( ) ( ) ( ) ( ) ( )[ ] ( )zEzEzEz
dz

zd

dz

zEd
sigpumppump

sig
���

�

⎥
⎦

⎤
⎢
⎣

⎡ γ
+= †0†

2
T

T
  

(3a) 

( ) ( ) ( ) ( ) ( ) ( )zEzEzEz
dz

zd

dz

zEd
pumpsigsig

Tpump
���

�

⎥
⎦

⎤
⎢
⎣

⎡ γ+= †0
*

2
T

T
  

(3b) 

0γ  [W⋅m]-1 is the SBS gain per unit length per a unit of pump power for a scalar interaction 
(i.e., for a fiber with no birefringence), and depends on the fiber material properties, the mode 
field diameter, the pump optical spectrum and the frequency offset between the pump and 
signal waves. We dedicate most of the analysis to the Stokes wave scenario, so that 0γ  is 
positive, but the analysis and results, properly interpreted, are equally valid for the anti-Stokes 
case, where the optical frequency of the signal is Bν  above that of the pump. The anti-Stokes 
signal surrenders its power to the pump, thereby becoming attenuated with an SBS attenuation 

per unit length of 0γ− . Note that ( ) ( )[ ]zEzE pumppump

†

0 )2/(
��

γ  is a 2×2 matrix, representing the 

outer product of a column vector ( ( )zEpump

�

) with a row one (the transpose conjugate 

of ( )zEpump

�

).  

From now on it will be assumed that SBS-induced signal amplification or attenuation 
negligbly affect the pump (i.e., the so-called undepleted pump approximation [21]). Thus, the 

SBS term in Eq. (3b) can be ignored and Eq. (3a) becomes linear in ( )zEsig

�

. Therefore, 

( ) ( )0sigsig ELE
��

⋅= H ,  (4) 

where H  is a 2×2 matrix, which depends on the fiber birefringence, the fiber length L , the 
pump power, and its SOP at Lz = . The matrix H  is generally non-unitary. Nevertheless, it 
can be processed using the singular value decomposition (SVD) technique:  

†

2

1†

0

0
VUVSUH ⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅=⋅⋅=

G

G
,  

(5) 

where U  and V  are unitary matrices, 21, GG  are real and positive and satisfy 121 >> GG  in 

the case of SBS amplification and 211 GG >>  in the case of SBS attenuation.  
Using this decomposition two orthogonal input signal Jones vectors can be identified, 

which provide the maximum and minimum signal output powers, namely:  

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= −

1

0
;

0

1

0

1
min_1†max_ VVV in

sig

in

sig EE
��

  
(6) 

The corresponding output Jones vectors are given by:  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅=⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅⋅=

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⋅=⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅⋅=

1

0

1

0

1

0

0

1

0

1

0

1

2

†min_

1

†max_

USUVVSU

USUVVSU

GE

GE

out

sig

out

sig

�

�

  

(7) 
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and are, therefore, also orthogonal. It is thus convenient to represent an arbitrarily polarized 

input signal using the orthogonal base of   max_in

sigE
�

, min_in

sigE
�

:   
min_

0

max_

0

in

sig

in

sig

in

sig EEE
���

β+α=   (8) 

Using Eqs. (7) and (8), the output signal Jones vector and the signal power are:  

2
2

2

0
2

1

2

0

2010 1

0

0

1

GGP

GGE

out
sig

out

sig

β+α=

⎥
⎦

⎤
⎢
⎣

⎡
β+⎥

⎦

⎤
⎢
⎣

⎡
α= UU

�

  

(9) 

When 21 GG >> , Eq. (9) suggests that unless 0α  is negligible, an arbitrarily polarized input 

signal will be drawn towards the SOP of max_out

sigE
�

. These predictions are supported by 

experiments, to be described in section 4.  

Next, we try to relate max_in

sigE
�

, min_in

sigE
�

 to the SOP of the pump wave. To that end, we have 

transformed Eq. (3) to the Stokes space (see Appendix):  

( ) )()(ˆ)(ˆ1
2

)()(
_0

0_0 zSzszs
zP

dz

zdS
sigsigpump

pumpsig ⋅+
γ

=   
(10a) 

( )

( )[ ])(ˆ)(ˆ)(ˆ)(ˆ
2

)(
)(ˆ)(

)(ˆ)(ˆ)(ˆ
2

)(
)(ˆ)(

)(ˆ

0

0

zszszszs
zP

zsz

zszszs
zP

zsz
dz

zsd

sigsigpumppump

pump

sig

sigpumpsig

pump

sig

sig

⋅−
γ

+×β=

××
γ

+×β=

�

�

 

(10b) 

Here sigS _0  is the signal power, [ ]T

sigsigsigsig ssss ,3,2,1
ˆ =  and similarly pumpŝ  are 3X1 

normalized Stokes vectors ( )12

,,3

2

,,2

2

,,1 =++ pumpsigpumpsigpumpsig sss , describing the evolution of the 

polarizations of the counter-propagating signal and pump waves, respectively, and finally, 

pumpP  denotes the pump power, which for the undepleted, lossless case is z-independent. The 

three-dimensional vector )(zβ
�

 describes the fiber birefringence in Stokes space [26]:  

†2 T
T

dz

d
j≡σ⋅β

�

�

,  
(11) 

where σ�  is a row vector of Pauli spin matrices [26] (see also in the Appendix). The vector 

)(zβ
�

 is aligned with the Stokes space representation of the local slow axis of birefringence 
[26]. Note that we express both Stokes vectors in the same right handed coordinate system, in 
which the signal wave propagates in the positive z  direction. Therefore, the Stokes vector 

[ ]Ts 100ˆ =  represents a right-handed circular polarization for the signal wave, but a left-
handed circular polarization for the pump.  

Eq. (10a) is easily cast into a form:  
( ) ( ) ( )sigpump

pumpsig ss
zP

dz

Sd
ˆˆ1

2

ln 0_0 ⋅+
γ

= . 
(12) 

In the undepleted pump regime, the solution is readily obtained:  
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( )

( )⎥
⎦

⎤
⎢
⎣

⎡
⋅+

γ
=

⎥
⎦

⎤
⎢
⎣

⎡
⋅+

γ
= ∫

Lsigpump

pumpin

sig

L

sigpump

pumpin

sig

out

sig

ssL
P

S

dzss
P

SS

ˆˆ1
2

exp

'ˆˆ1
2

exp

0

_0

0

0

_0_0

  

(13) 

Lsigpump ss ˆˆ ⋅  is the scalar product of the pump and signal Stokes vectors, averaged over the 

fiber length. Thus, for any input SOP one can define an effective SBS gain, given by:  

( )
Lsigpump ss ˆˆ1

2
0 ⋅+

γ
=γ   

(14) 

Obviously, γ depends on the signal input SOP, as well as on the pump SOP. 
Equation (10b) specifies two driving forces that control the evolution of the SOP along the 

fiber. The first, sigŝ×β
�

, describes the birefringence-induced evolution of the signal SOP [26]. 

The same term also governs the evolution of the pump SOP, albeit in the opposite direction. 
The second term, ( )[ ]sigsigpumppumppump ssssP ˆˆˆˆ)2/( 0 ⋅−γ , represents the effect of SBS amplification 

on the signal SOP. This second term has a very interesting physical interpretation on the 
Poincare sphere: it is a vector, orthogonal to sigŝ , and tangentially (on the sphere surface) 

pointing towards pumpŝ . This term signifies a force pulling sigŝ  towards pumpŝ . The magnitude 

of this pulling force scales with the pump power and depends on the local projection of 
( )zspump

ˆ on ( )zssig
ˆ , vanishing when either sigŝ is parallel to pumpŝ  (pump and signal SOPs 

aligned) or anti-parallel to it (in the Stokes space, namely: orthogonal in the Jones space).  
Several special cases are of particular interest. Let us consider a fiber with no 

birefringence, so that the evolution of the signal SOP is governed by SBS alone. If the input 
signal SOP is aligned with that of the pump, ( )1ˆˆ =⋅ in

sigpump ss , then it follows from Eq. (10b) 

that the 0ˆ =dzsd sig . The signal SOP, therefore, remains aligned with that of the pump 

throughout the fiber. Since in this case 1ˆˆ =⋅
Lsigpump ss , the SBS gain coefficient of Eq. (14) 

equals 0γ . Alternatively, when the signal input SOP is orthogonal to that of the pump 

( )1ˆˆ −=⋅ in

sigpump ss , we still obtain 0ˆ =dzsd sig , and the pump and signal remain orthogonal for 

all Lz ≤≤0 . Now 1ˆˆ −=⋅
Lsigpump ss  and the SBS gain coefficient is zero. Thus, max_out

sigE
�

 

( min_out

sigE
�

) in a birefringence-free fiber is parallel (perpendicular) to )( LzEpump =
�

 (using our 

conventions, max_out

sigE
�

 for a right-handed circularly polarized pump is left-handed polarized). 

When the input signal is arbitrarily polarized, the SBS polarization pulling term of Eq. (10b) 
is nonzero, so that sigŝ  is gradually drawn towards pumpŝ . The slope of the gain coefficient 

versus pump power curve, determined by 
Lsigpump ss ˆˆ ⋅ , will increase with pump power (or 

fiber length), eventually approaching its maximum value of L0γ , and the SOP of the 
emerging signal will draw nearer and nearer that of the pump wave. These trends are, of 
course, fully consistent with the Jones space description of Eq. (9).  

We now turn to the more prevalent scenario of standard single-mode fibers, where the 
birefringence term Eq. (10b) is larger than the SBS term (for a an average beat length of 40 m, 

1m16.0~ −β
z

�

 whereas 1

0 m01.0~2/ −γ pumpP  for [ ] W1.0,Wm2.0 1

0 =⋅=γ −
pumpP ). While 

being relatively small, the SBS term cannot be ignored.  High differential gains ( 21 / GG  > 10) 
are easily observed, and according to Eq. (9), any signal, whose input SOP even slightly 

#102564 - $15.00 USD Received 9 Oct 2008; revised 18 Nov 2008; accepted 12 Dec 2008; published 16 Dec 2008

(C) 2008 OSA 22 December 2008 / Vol. 16,  No. 26 / OPTICS EXPRESS  21698



deviates from that of min_in

sigE
�

, will emerge with its SOP being pulled towards that of max_out

sigE
�

. 

While the polarization pulling is due to the SBS term, the final signal SOP is not that of 

)( LzEpump =
�

. The relation between the SOP of  max_out

sigE
�

 and that of )( LzEpump =
�

 are studied 

below, first analytically, in the low pump power limit, and then, numerically for the general 
case.  

Let us assume first a very weak pump so that the Brillouin term in Eq. (10b) can be 
ignored ( 1/ 021 ⎯⎯⎯ →⎯ →pumpPGG ). In this limit, the forward evolution of sigŝ  and the backward 

evolution of pumpŝ  are solely governed by the birefringence term. We denote the maximum 

value of 
Lsigpump ss ˆˆ ⋅  over all possible SOPs of the input signal )0(ˆ =zssig , but for a given 

pump SOP ( )(ˆ Lzspump = ), as { }
Lsigpumpzs

ss
sig

ˆˆmax
)0(ˆ

⋅
=

. But:  

).0(ˆ)0(ˆ

)0(ˆ)()0(ˆ

)0(ˆ)()()0(ˆ)(ˆ)(ˆˆˆ

3

1
3

1

3

1

*

*

sig

T

pump

sig
Average

Ensemble
TT

pump

Average
Ensemblesig

TT

pump
Average

EnsemblesigpumpLsigpump

ss

szs

szzszszsss

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⋅=

⋅=⋅≈⋅

TT

TT

MM

MM

 

(15) 

Here )(zTM and )(* zTM  are the Mueller matrices representing )(zT  and )(* zT , respectively 
(T stands for transpose), and the fiber is assumed to be long enough so that most z values are 
much larger than many correlation lengths of the random birefringence. Finally, the ensemble 

averaged value of )()(* zzT

TT MM ⋅  was taken from [28]. 

One can easily conclude from Eq. (15) that { }
Lsigpumpzs

ss
sig

ˆˆmax
)0(ˆ

⋅
=

 is 1/3, resulting in a 

maximum achievable gain coefficient of 0)3/2( γ  (Eq. 14, see also a discussion in [21]).  This 

maximum is attained when ( )0ˆ =zssig  is the image of ( )0ˆ =zspump  on the Poincare sphere, 

with the equatorial plane acting as a mirror, namely: ( ) ( )0ˆ0ˆ
,1

max

,1 pumpsig ss = , ( ) ( )0ˆ0ˆ
,2

max

,2 pumpsig ss =  

and ( ) ( )0ˆ0ˆ
,3

max

,3 pumpsig ss −= . This ( )0ˆmax =zssig  is the normalized Stokes representation of the 

complex conjugate of the pump Jones vector at 0=z , namely, )0(* =zEpump

�

, rather than that 

of )0( =zEpump

�

 (as in the birefringence-free case). Conversely, { } 31ˆˆmin
)0(ˆ

−=⋅
= Lsigpumpzs

ss
sig

, 

corresponding to a minimum gain coefficient of  0)3/1( γ . This minimum value is attained for 

( ) ( )0ˆ0ˆ maxmin =−== zszs sigsig , which is the Stokes representation of a polarization orthogonal to 

that of )0(* =zEpump

�

, to be denoted by ( )0=⊥∗ zEpump

�

. It is easily proven from Eqs. (1-2) that for 

a unitary )(zT  (and ignoring the Brillouin term), if sigE
�

 and *

pumpE
�

 are a parallel pair at 0=z , 

they will continue to be parallel for all Lz ≤≤0 , so that )(max_ LzEout

sig =
�

 has the same 

polarization as that of )(* LzEpump =
�

. These analytically obtained results are no different than 

the seemingly intuitively-drived conclusions of [21], when carefully noting the difference in 
the reference frame convention, but both approaches are strictly valid only in the limit of very 

weak pump power. The relation between max

sigE
�

 and ∗
pumpE

�

 in the presence of non-negligible 

level of pump power is investigated in the next section. 
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3. Simulations for Signal amplification (Stokes) and attenuation (anti-Stokes) 

The SBS amplification/attenuation and the output SOP of the amplified/attenuated signal for 
different pump power levels were numerically examined, using Eqs. (2), (3) and (10a-10b). 
Simulations were based on the commonly used concatenated random wave-plate model [29], 

with the three components of β
�

 of Eq. (11) normally distributed with zero mean and the same 

standard deviation, chosen so that the average beat length 
z

BL βπ≡
�

2 equals 40 m. 

Although a broad set of parameters was numerically investigated, results below were obtained 

for a fiber length L of 2250 m comprising 10,000 plates and [ ] 1

0 mW2.0 −⋅=γ .  
 

10
-2

10
-1

10
0

10
1

10
2

0.7

0.8

0.9

1

Pump power [mW]  
10

-2
10

-1
10

0
10

1
10

2
0

0.1

0.2

0.3

0.4

0.5

Pump power [mW]  
Fig. 1. (a). The projection, ( )0ˆˆ

*
max_ =⋅ zss pump

in

sig
, of the input signal (normalized) Stokes vector 

for maximum SBS gain, onto the (normalized) Stokes vector corresponding to ( )0=∗ zE pump

�

, as 

a function of pump power, for 20 different fiber realizations. (b) The pump power dependence 
of { }

Lsigpumpzs
ss

sig

ˆˆmax
)0(ˆ

⋅
=

 for the same realizations. The beat length in all realizations was 40 m. 

 
Figure 1(a) shows the projection of max_ˆin

sigs  on ( )0ˆ
* =zspump , where max_ˆin

sigs  and ( )0ˆ
*pumps  are 

the normalized Stokes-space counterparts of max_in

sigE
�

 and ( )0=∗ zEpump

�

, respectively. Figure 

1(b) shows the calculated  
Lsigpump ss ˆˆ ⋅  for an input signal SOP aligned with max_in

sigE
�

, as a 

function of pump power. The figures include several different fiber realizations, each with 

different random drawings of β
�

 values for the concatenated wave-plates, though all with an 

average beat length of 40 m. At low pump powers ( )0ˆˆ
*

max_ =⋅ zss pump

in

sig  does not depend on 

pumpP , as discussed above, and the relatively small misalignments between max_in

sigE
�

 and 

( )0∗
pumpE

�

, as well as the deviations of  
Lsigpump ss ˆˆ ⋅  from the predicted value of 1/3, are due to 

the finiteness and discreteness of the model. It is clearly seen that max_in

sigE
�

 remains closely 

aligned with ( )0=∗ zEpump

�

, even for a pump power as high as 100 mW. While not shown, this 

close alignment also holds at the fiber output, Lz = , where the SOP of max_out

sigE
�

 lies in a 

similar close vicinity that of ( )LzEpump =∗
�

. 

Clearly, { }
Lsigpumpzs

ss
sig

ˆˆmax
)0(ˆ

⋅
=

, while not exactly 1/3 (Fig. 1(b)), depends very weakly on 

pumpP , resulting in a practically linear relationship between the achievable max/min gain 

coefficient and pump power. Figure 2 shows the signal power gain as a function of pump 
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power, for a signal SOP aligned with either max_in

sigE
�

 (maximum gain), or min_in

sigE
�

 (minimum 

gain). According to Eq. (14) and regardless of the particular fiber realization, the ratio of the 
slope of the maximum gain curve to that of the minimum gain at a particular pumpP , while not 

exactly 2, is always { } { }⎟
⎠
⎞

⎜
⎝
⎛ ⋅−⎟

⎠
⎞

⎜
⎝
⎛ ⋅+

== LsigpumpzsLsigpumpzs
ssss

sigsig

ˆˆmax1ˆˆmax1
)0(ˆ)0(ˆ

. 
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Fig. 2. Signal gain as a function of pump power for different SOPs of the input signal. The 
linear curves are calculated for an input SOP, aligned with either the pump-dependent max_in

sigE
�

 

(blue-top line), or orthogonal to it, i.e., parallel to min_in

sigE
�

(green-bottom line). The red-dashed 

line is for the case where the input SOP deviates from )mW50(min_ =pump

in

sig PE
�

 by a 20π  rad 

rotation about the 
1ŝ  axis on the Poincare sphere 

 
Yet, SBS still has a dramatic effect on the output SOP of an input signal, whose SOP only 

slightly deviates from that of min_in

sigE
�

, (see Fig. 2). As the difference between the minimum 

and maximum gains increases, the red-dashed gain curve in Fig. 2 changes its slope, 
approaching that of the maximum gain case. Incidentally [21], the same argument applies to 
amplified spontaneous SBS, which, therefore, under high differential gain conditions, emerges 

from the fiber with the SOP of ( )LzEpump =∗
�

. Thus, under high differential gain conditions the 

SOP of amplified spontaneous SBS at the fiber output ( Lz = ) coincides with that of max_out

sigE
�

!  

For arbitrarily polarized input signals and for pump powers above 25 mW, the output 
signal SOPs are clearly seen in Fig. 3(a) and Fig. 3(b) to converge towards the SOP of 

max_out

sigE
�

, which is almost unaffected by pump power. Figure 3(c) shows the evolution of 

)(ˆ)(ˆ
* zszs sigpump ⋅  as a function of the position coordinate z along the fiber, for different pump 

powers, when the signal input SOP is ( )0=⊥∗ zEpump

�

. That input SOP is close to, but not quite 

equal to min_in

sigE
�

, especially at high pump powers. Note the gradual pulling of signal SOP 

towards that of ( )zEpump

∗
�

, requiring many beat lengths before the effect becomes quite distinct 

at high pump powers. 
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Fig. 3. (a) and (b): Scatter plots of output amplified signal SOP on the Poincare sphere, 
corresponding to 100 random input signal SOPs, for a specific fiber realization. The input 
pump Stokes vector 

pumpŝ  was chosen as [ ]T010 . The horizontal and vertical axes in all 

figures correspond to the Stokes 
1s  and 

3s  axes, respectively. Red closed circles indicate SOPs 

for which 
2s  is positive, whereas open blue squares indicate a negative 

2s . ‘X’ denotes the 

location  max_out

sigE
�

 in Stokes space. The pump power was 5 mW (a) and 50 mW (b). (c): Stokes 

space projection of the signal SOP on the conjugate of the pump SOP, )(ˆ)(ˆ
* zszs sigpump ⋅ , as a 

function of position for an input signal SOP exactly orthogonal to that of ( )0=∗ zEpump

�

. Pump 

power was 25 mW (red dashed), 40 mW (black dotted) and 50 mW (blue solid). 
 
The above analysis was provided for the Stokes wave. However, the anti-Stokes case can 

be treated very similarly. As in the Stokes wave scenario, the SBS interaction for an anti-

Stokes signal is still maximum for an input SOP aligned with ( )0∗
pumpE

�

. However, this 

interaction results in efficient signal attenuation, rather than signal gain. We can, therefore, 

expect stronger attenuation for that input signal field component aligned with ( )0∗
pumpE

�

, and 

weaker attenuation (‘maximum gain’) for the orthogonal component. Correspondingly, the 
SOP of the emerging signal is dominated by that of the maximum power SOP, and is expected 

to be closely aligned with that of ( )LzEpump =⊥∗
�

. Figure 4 shows the scatter plots of the 

attenuated anti-Stokes signal, for T

pumps ]010[ˆ = , indicating convergence towards T]010[ − , 

which is the (normalized) Stokes-spaced representation of  ( )LzEpump =⊥∗
�

. Both scenarios are 

visited in the experiment, to be described next. 
 

   
Fig. 4. Scatter plots of attenuated output signal SOP on the Poincare sphere, corresponding to 
100 random input signal SOPs, for a specific fiber realization. The input pump Stokes vector 

pumpŝ  was chosen as [ ]T010 . The horizontal and vertical axes in all figures correspond to 

Stokes 
1s  and 

3s  axes, respectively. Red closed circles indicate SOPs for which 
2s  is positive, 

whereas open blue squares indicate a negative 
2s . X’ denotes the location  max_out

sigE
�

 in Stokes 

space. The pump power was 5 mW (left), 25 mW (center) and 50 mW (right). 
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4. Experiment 

The experimental setup for characterizing polarization related properties of SBS is shown in 
Fig. 5. Light emitted from a tunable laser source was split by a 50% coupler. In the lower 
(pump) branch, the light was amplified by a high-power Erbium-doped fiber amplifier 
(EDFA), and directed into the fiber under test via a circulator. The length of the fiber under 
test was 2250 m, and its Brillouin frequency shift was GHz57.10=ν B . The pump power was 
controlled by a variable optical attenuator (VOA). In the upper (signal) branch, the laser light 
was modulated by an electro-optic intensity modulator (EOM). The modulation frequency 
was tuned to Bν , and the EOM bias voltage was adjusted to suppress the optical carrier [2]. 
Following the EOM, the signal was filtered by a narrow-band Fiber Bragg grating (FBG). For 
SBS signal amplification measurements, the frequency of the tunable laser was adjusted so 
that the lower modulation sideband matched the FBG reflection frequency [30]. This way, the 
frequency of the signal propagating in the fiber under test was Bν  below that of the pump. For 
SBS attenuation measurements, the tunable laser frequency was modified so that the upper 
modulation sideband was retained by the FBG [30]. Following the SBS interaction, the signal 
was routed to a power meter, followed by a lock-in amplifier to filter out spontaneous SBS, or 
to a polarization analyzer for the measurement of the signal output power and SOP. A second 
FBG in the detection path was used to filter out the backscattered pump, as well as the 
spontaneous Brillouin scattering amplified by the Stokes process in the SBS loss scenario. 

For each pump power, the input signal SOPs which corresponded to minimum and 
maximum signal output power were found using the following procedure: First, a 
programmable polarization controller (Prog. PC) in the signal path was set to four non-
degenerate SOPs, and the output signal power was recorded for each. Based on these four 
measurements, the top row of the 4X4 Mueller matrix describing the pumped fiber under test 
was extracted [31], and signal SOPs for minimum and maximum output power could be 
calculated. Next, the programmable PC was set to these two input SOPs and the output signal 
power was recorded. 

 
Fig. 5. Experimental setup for characterizing the polarization dependence of SBS. ATT: 
Optical attenuator. VOA: Variable optical attenuator. FBG: Fiber Bragg grating. DSB: Double 
side band modulation. SSB: single side band modulation. PC: Polarization controller. EDFA: 
Erbium-doped fiber amplifier. EOM: electro-optic modulator. νp denotes the optical frequency 
of the pump  

 
Figure 6(a) shows the logarithm of the signal power gain (Stokes signal) as a function of 

pump power, for three different SOPs of the input signal wave. In the upper and lower curves, 
the signal SOP is adjusted for each pump power level to achieve maximum and minimum 
gain, respectively. In these curves, the logarithmic SBS gain appears to be linearly 
proportional to the pump power over the entire measurement range, indicating a power-
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independent gain coefficient, as obtained in simulations. Furthermore, the slope of the 
maximum gain curve is extremely close to twice that of the minimum gain curve [21]. These 
results indicate that our 2.2km fiber comprises many correlation lengths of the random 
birefringence [21, 28]. The third curve of Fig. 6(a) shows the logarithm of the SBS gain for a 

signal, whose input SOP, min_near_

)(

in

StokessigE
�

, is azimuthally 400 away from min_

)(

in

StokessigE
�

. Initially, for 

relatively low pump power, the gain slope is that of the minimum gain curve. However, for 
higher pump powers, the measured gain increases rapidly and its slope approaches that of the 
maximum gain curve, as discussed in Sec. 3.  
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Fig. 6. (a). SBS gain (Stokes signal) in dB as a function of pump power, for a 2250 m long 
fiber. Lower curve (Green) – optimized for minimum gain, Upper curve (Blue) – optimized for 
maximum gain, Dashed curve (Red) – for an input SOP in the vicinity of

 
min_

)(

in

StokessigE
�

, rotated 

from it by 400 around the s3 (RL) axis (the black squares are explained in the text). (b) The 
SOPs of the emerging amplified signals for the three cases of (a): maximum (blue solid 
circles), minimum (green open diamonds), and red squares for the intermediate case. Open 
symbols denote SOPs in the back of the sphere. The size of the square is a measure of the 
signal power, increasing with pump power for Stokes signals. The black ‘+’ is the SOP of the 
spontaneous SBS. The straight line through the center of the sphere connects this SOP to its 
orthogonal counterpart. (c) SBS attenuation (anti-Stokes signal) in dB as a function of pump 
power. Lower curve (Green) – optimized for minimum output power (maximum attenuation), 
Upper curve (Blue)– optimized for maximum output power (minimum attenuation), Dashed 
curve (Red) – for an input SOP in the vicinity of min_

)(

in

StokesAsigE −

�

, rotated from it by 400 around the 

s3 (RL) axis. (d) The SOPs of the emerging attenuated signals for the cases of (c): maximum 
(blue open circles), minimum (green solid diamonds), and red squares for the intermediate 
case. The straight line through the center of the sphere is that of (b), shown here for reference. 
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As a consistency check, we used Eqs. (8)-(9) first to project min_near_

)(

in

StokessigE
�

 on the measured 
max_

))(

in

StokessigE
�

, min_

)(

in

StokessigE
�

, and then used the measured values for 1G  (maximum gain) and 2G  

(minimum gain) to analytically predict the gain experienced by min_near_

))(

in

StokessigE
�

. The results are 

shown as open squares on the dashed (red) curve in Fig. 6(a), demonstrating excellent 
agreement with the measured gain. Figure 6(b) shows the output SOPs corresponding to 

max_
)(

out
StokessigE

�

, min_

)(

out

StokessigE
�

 and min_near_

)(

out

StokessigE
�

 for all pump powers. Also shown on the sphere is the SOP 

of spontaneously amplified Brillouin scattering, which was obtained by turning off the signal 
input and measuring the SOP of the Brillouin-scattered light at Bps ν−ν=ν . Note that as 

pumpP  spans the 5-35mW range, { }max_

)(

out

StokessigE
�

 and { }min_

)(

out

StokessigE
�

 hardly change and they are fairly 

orthogonal to one another (the SOP readings of the polarization analyzer in the minimum gain 
case were contaminated by the spontaneously amplified Brillouin scattering, leading to a 

larger spread near { }min_

)(

out

StokessigE
�

). Furthermore,  { }max_

)(

out

StokessigE
�

 coincides, as expected, with the SOP 

of the spontaneously amplified Brillouin scattering. Also shown is the evolution of the signal 

SOP for min_near_

)(

in

StokessigE
�

, clearly indicating the pulling of its SOP towards that of { }max_

)(

out

StokessigE
�

. Figure 

6(c) shows the logarithm of the maximum and minimum attenuation of an anti-Stokes signal. 
As obtained for the Stokes wave, the curves for maximum and minimum are linear, and the 
ratio of their slopes is close to two. Note that the obtained curves replicate those of the 
corresponding Stokes signal, albeit with a minus sign. The figure also shows the measured 

and calculated logarithmic loss of an anti-Stokes signal with an input SOP min_near_

)(

in

stokesAsigE −

�

. Finally, 

Fig. 6(d) shows the output SOPs corresponding to max_

)(

out

StokesAsigE −

�

, min_

)(

out

StokesAsigE −

�

 and min_near_

)(

out

StokesAsigE −

�

 for all 

pump powers. Polarization pulling towards the SOP of { }max_

)(

out

StokesAsigE −

�

 is observed. It is seen that 

{ }min_

)(

out

StokesAsigE −

�

 (solid diamonds in Fig. 6(d)), which suffers maximum attenuation are parallel to 

{ }max_

)(

out

StokessigE
�

 (solid circles in Fig. 6(b)), which enjoys the maximum possible gain. 

Figure 7 shows the signal output SOP for twenty different input SOPs, which were evenly 
distributed on the Poincare sphere. As the pump power is increased, the output signal SOPs 
converge to a particular, preferred state. Thus, the converging effect is effective for both SBS 
signal gain and signal loss, in the undepleted pump regime. 

 
a:     

   

b:  

 

c: 

 
Fig. 7. Measured output signal SOP for SBS signal gain and SBS signal loss for twenty evenly 
distributed input signal SOPs. (a) Stokes SOP, pump power is 5 mW. (b) Stokes SOP, pump 
power is 45 mW. (c) Anti-Stokes SOP, pump power is 20mW (SOP measurements in the signal 
attenuation scenario were difficult due to the presence of spontaneous SBS, which competed 
with the attenuated signal. Thus, reliable readings could not be obtained for pump powers 
above 25 mW.) 
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5. Conclusions  

In this work, the analysis of SBS in birefringent fibers was extended to include arbitrarily 
polarized signals. A vector propagation equation for the signal wave in the undepleted pump 
regime was provided, both in Jones and in Stokes spaces. The equations and their subsequent 
analysis provide expressions for the output signal vector, regardless of the polarization 
statistics of the pump and signal waves along the fiber. The analysis showed that SBS in the 
undepleted pump regime may be modeled as a pseudo-linear partial polarizer, whose input 
states for maximum and minimum gain are orthogonal. Due to the large difference in gain 
between these maximum and minimum states, it is expected that the SOP of an arbitrarily 
polarized input signal will be closely aligned with that of the maximum gain axis at the fiber 
output. This prediction was experimentally confirmed, for both Stokes and anti-Stokes signal 
waves. Somewhat similar polarization attraction between counter propagating waves, based 
on the Kerr effect in short, highly non-linear fibers, was recently reported [32], but the effect 
was restricted to circular SOPs. The vector properties of SBS can give rise to an arbitrary 
polarization synthesis. The analysis also shows that the maximum and minimum input signal 
SOPs for the Stokes wave in long, standard single-mode fibers correspond to the conjugate of 
the outgoing pump, and the orthogonal of that conjugate, respectively. This correspondence is 
practically valid for pump powers up to tens of milliwatts over fibers a few km long. The roles 
of the two SOPs are reversed for the anti-Stokes wave. 

The polarization and birefringence dependence of SBS has already been used in Brillouin 
fiber lasers [33,34] and distributed birefringence measurements [35]. On the other hand, the 
same dependence can hinder the performance of distributed strain and temperature sensors 
[36], and SBS based slow light setups. In addition, birefringence was observed to cause a 
nonlinear response in the delay-pump power transfer function [37]. In one recent example, the 
polarization sensitivity of SBS-induced delay was overcome using a Faraday rotator mirror 
[38]. Clearly, the polarization related properties of SBS in long, standard single-mode fibers 
continue to be of large interest. The tools developed in this work provide a broad and 
comprehensive framework for the study of SBS and polarization and open new horizons for 
applications. A possible application, in which the spread of the signal output SOP for random 
input polarization serves as a measure of the fiber beat length, is currently under study. 

Appendix 

In this appendix, the Stokes space representation of the signal propagation equation in the 
presence of SBS and birefringence, Eq. (10a-10b), is derived (see [39] for a different, though 
equivalent, formulation, of the equations governing the evolution of the non-normalized signal 
Stokes vector). The starting point for the derivation is Eq. (3) repeated here for convenience:  
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To obtain the evolution of the signal power and its SOP in terms of the Stokes parameters 

we use the common definitions [26, Eqs. (2.6), (3.5)] ( σ�  is a vector of the Pauli spin 
matrices):  
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(A3) 

and 0S  and ŝ  denote, respectively, the power and normalized Stokes vector which 

correspond to E
�

. Using Eq. (11) which reads:  
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†2 T
T
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(A4) 

and using the expansion of the projection operator in terms of Pauli matrices [26]:  
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 with I  denoting the 2X2 identity matrix, we obtain:   
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Eq. (A6) can be used to obtain an equation for the evolution of the signal power:  

( ) ( )

( ) ( ) 000

0

0†

0
0†

†0

ˆˆ1
2

ˆ
42

ˆ
42

sigpumpsigpumpsigpump

pump

sig

sigpump

pump

sig

sigsigsig

SSssEs
Sj

E

Es
Sj

E
dz

EEd

dz

dS

⋅+γ=⎥
⎦

⎤
⎢
⎣

⎡
σ⋅+

γ
+σ⋅β

+⎥
⎦

⎤
⎢
⎣

⎡
σ⋅+

γ
+σ⋅β−==

�

��

��

�

��

��

��

I

I

 

(A7) 

The equation governing the propagation of the normalized signal Stokes vector can be derived 
using Eqs. (A.3)-(A7) of [26]:   
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Following similar steps the corresponding equations for the pump can be derived. The 

resulting set of coupled equations is (with β~ defined by 332211

~~
;

~ β+=ββ−=ββ−=β ):  
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