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Abstract

The flow after the rupture of a dam on an inclined plane of arbitrary slope, and

the induced transport of non-cohesive sediment, is analysed using the shallow-water

approximation. An asymptotic (analytical) solution is presented for the flow hydro-

dynamics, and compared with the numerical simulation of the dam-break flood. Dif-

ferences arise due to the appearance of hydrodynamic instabilities (hereafter called

roll-waves) in the numerical solution. These roll-waves point out the unstable be-

haviour of the dam-break wave. It is found that roll-waves enhance the transport of

suspended sediment. The limitations of this simple model to predict the transport of

sediment in dam-break floods on steep inclines are discussed.

Then, a numerical experiment is designed to analyse the unstable character of the

dam-break wave, that constitutes a non-parallel and unsteady base flow. By analysing

the linear and non-linear numerical evolution of small perturbations, it is possible to

reveal how the nature of the ensuing flow depends not only on the Froude number

(as it happens in the classical problem of roll-waves over a uniform and steady flow)

but also on the non-parallel and time-varying characteristics of the background flow.

Consequently, it is also shown that these effects stabilise turbulent roll-waves and

raise the critical Froude number required to achieve an unstable flow. This stability

result differs with that obtained with a non-parallel spatial stability analysis, pointing

out the strong influence of the base-flow time-dependence in the stability criteria.

A novel Continuum Mechanics model is presented to study the transport of sedi-

ment in a laminar/turbulent free-surface flow. The mixture equations for non-cohesive

sediment transport in turbulent free-surface flow are derived from the ensemble av-

eraged Navier-Stokes equations of the three-phases (water, sediment and air). This

model avoids the limitations of traditional shallow-water models, and is suitable to

study, for instance, the transport of sediment in non-hydrostatic shallow-water flows

over bed of arbitrary bottom slopes. The model developed in this work reveals a

mathematical equivalence between the propagation of the volumetric concentration

of the sediment and the phase function used to capture the free surface. We take
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iv Abstract

advantage of this fact to formulate an explicit Finite Volume Method (FVM) with

the exact conservation property, that is implemented in the open source software

OpenFOAM. Finally, this model is applied to solve the problem of local scour around

a pipeline and the transport of sediment after the rupture of a horizontal dam.

It is demonstrated that one-dimensional models based on depth-averaged variables

(e.g. generalisations of the one-dimensional Saint-Venant equations to predict mor-

phological changes) are superseded by more sophisticated and accurate procedures

valid for hyperconcentrated shallow-water flows over bed of arbitrary bottom slopes

(e.g. the model described herein).
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Chapter 1

Introduction

1.1 Background

The subject of two or multiphase flow has become increasingly important in a wide

variety of engineering systems for their optimum design and safe operations. Multi-

phase flow phenomena can be observed in a number of biological systems and natural

phenomena which require better understanding. Some of the important applications

are: power system (e.g. nuclear reactors, power plants with boilers and evaporators,

two-phase propulsors), heat transfer systems (e.g. heat exchangers, spray cooling

towers, dryers), process systems (e.g. extraction and distillation units, fluidized beds,

chemical reactors), transport systems (e.g. air-lift pump, ejectors, slurries, fibbers),

geo-meteorological phenomena (e.g. sedimentation, soil erosion and transport by

wind, ocean waves), etc.

All the systems and components listed above are governed by essentially the same

physical laws of transport of mass, momentum and energy (Ishii and Hibiki, 2006).

It is evident that our rapid advances in engineering technology, the demands for

progressively accurate predictions of the systems in interest have increased. The

precise understanding of the physics is indispensable for safe as well as economically

sound operations.

Although the fundamental way to know the physics of a multiphase system is

based on experimental works, its theoretical modelling is a powerful tool to predict

1



2 Chapter 1: Introduction

Figure 1.1: View of the break in Sweetwater Dam (Jan 30, 1916). c©San Diego
Historical Society (http://www.sandiegohistory.org)

the behaviour of the system. Many times, experiments are really expensive, so it is

impossible to reproduce all the situations that one requires to know. There are also

multiphase systems that cannot be accessed by measuring instruments, for instance,

volcanos, avalanches and glacial outburst floods. The numerical simulation is there-

fore an economic tool that allow better understanding of these complicated systems.

In the context of multiphase flows, this work focus its attention on the modelling of

sediment transport in free-surface flows, that represents a problem of great interest

in hydraulics, and in environmental flows in general.

Hydraulics is the branch of civil engineering related to the science of water in

motion, and the interaction between the fluid and the surrounding. The extreme

complexity of hydraulic engineering is closely linked with the geometric scale of wa-

ter systems, the broad range of relevant time scales, the variability of river flows

from zero during droughts to gigantic floods, the complexity of basic fluid mechanics
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characterised by non-linearity, natural fluid instabilities, interactions between water,

solid, air and biological life, and Man’s total dependence (Chanson, 2004). The pre-

diction of water floods, the transport of sediment associated to them, as well as the

fluid-structure interactions, are needed for the assessment and reduction of risks from

extreme flooding caused by natural events, or the failure of dams and flood defence

structures. For instance, the Hatfield Flood of San Diego, United States, destroyed

the Sweetwater (Figure 1.1) and Lower Otay Dams in 1916. Moreover, it caused 22

deaths and $4.5 million in damages. In the last decade, several experimental works

have been done to better understand the physics of dam-break floods. For instance,

figure 1.2 depicts the U.S. Geological Survey (USGS) debris flow flume (Iverson et al.,

1992) constructed to conduct controlled experiments on water-sediment floods. The

cost of this experiment is however too expensive and just a limited number of runs

can be performed, covering only a small portion of all the possible scenarios. Hence,

theoretical modelling of water-sediment interaction based on first principles appears

as an alternative to experimentation. The decreasing of the computational facil-

ity cost and the continuous increase of computational capabilities, allow us to solve

complex models based on first principles. To elucidate the observed properties of

particles suspensions in experimental works, and to capture these properties in so-

called closure relations needed by theroretical models, controlled experiments should

be performed. Thus, these closure relations can then be employed to describe the

theoretical continuum behaviour of particle suspensions.

The remainder of this Chapter is structured as follows: In the following section,

well-known Computational Fluid Dynamics (CFD) methodologies for the prediction

of the hydrodynamics and sediment transport in shallow-water flows are introduced,

two of which are extensively used and developed further in this study. Then, the

objectives of this work are stated in Section 1.3. The objectives are followed by a

list of the specific contributions made to the field. Next, Section 1.5 reviews previous

and related studies and, finally, an outline of the contents of Chapters 2 to 6 is given

in Section 1.6.
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Figure 1.2: Flume constructed in 1991 by the U.S. Geological Survey (USGS), in
cooperation with the U.S. Forest Service, to conduct controlled experiments on debris
flows (Logan and Iverson, 2007): The flume is a reinforced concrete channel 95 meters
long, 2 meters wide, and 1.2 meters deep that slopes 31 degrees (60 percent), an angle
typical of terrain where natural debris flows originate.
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1.2 CFD methodologies for sediment transport mod-

elling in shallow-water flows

In recent years, the numerical simulation of sediment transport in free-surface flow

has focused a wide interest of the hydraulic community (see, for instance, Hutter,

2005; Wright, 2005; Garcia-Navarro and Playan, 2007; Pananicolaou et al., 2008).

Although there are some noticeable exceptions, most of the hydraulic works in

sediment transport have been limited to shallow-water flow over bed of small bottom

slopes. Consequently, the influence of the vertical velocity (i.e. in the direction of

the gravity) on the fluid movement is usually neglected, among many other factors

that influence the sediment discharge (see Vanoni, 2006, Section 43: Criticism of

Depth-Discharge Predictors). Under such conditions, the one- or two-dimensional

shallow-water equations can be formulated (Cunge et al., 1980). These equations

constitute a system of non-homogeneous hyperbolic laws which can be successfully

solved with well-balance numerical techniques, e.g. Riemann solvers, ensuring the

conservation of the properties (Toro, 1999, 2001; LeVeque, 2002). In fact, hundreds

of papers along the last decade have been devoted to Riemann solvers applied to

shallow-water flows (for references, see Toro and Garcia-Navarro, 2007). A natural

continuation of this research has been the generalisation of the Saint-Venant equations

to predict morphological changes associated with the transport of sediment (see § 1.5.4

for references), but most of these works are still based on depth-averaged magnitudes

and continue neglecting the vertical velocity component in the mass continuity and

momentum balance equations. Although the ensuing conservation equations can be

readily solved with Riemann solvers, because they remain hyperbolic, a noticeable

drawback is exhibited: morphological changes associated with the sediment transport

usually induce variations of unpredictable magnitude in the bottom slope. When the

eroded bed reach high bottom slopes the vertical motion cannot be longer neglected

(Dressler, 1978; Bouchut et al., 2003; Keller, 2003).

The extension of the shallow-water equations for bed of arbitrary bottom slopes

to include geomorphic processes is a tedious task. In geomorphic flows, the bed may
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change its shape, break apart, and merge together. Thus, the curvilinear system

of coordinates required by the general shallow-water equations may introduces huge

algebraical complications in presence of topological changes of the bed. Moreover,

the bed of the channel is not sharply defined in flows that transport sediment as bed-

and suspended-load. For instance, the boundary between the traction carpet (or

bed-load layer) and the intermittently suspended sediment cannot be sharply defined

in hyperconcentrated flows (Wan and Wang, 1994; Pierson, 2005). Therefore, the

extension of the general shallow-water equations to account for sediment transport

may become inappropriate for geomorphic flows.

To avoid discrepancies between the hydrodynamic and sediment transport model

predictions and measurements, three-dimensional hydrodynamic and sediment trans-

port models have become much more attractive to use. Recently, Pananicolaou et al.

(2008) have reviewed most of the models that are usually employed in hydraulic engi-

neering applications. Three-dimensional approaches are likely to be more appropriate

for accurately simulating extreme erosion events, given their ability to characterise

the sediment concentration distribution along the vertical coordinate. Most three-

dimensional models solve the Reynolds Averaged Navier-Stokes equations (RANS),

along with the sediment mass balance equation, using physical models to quantify

the sediment transported as bed-load. But few studies have employed the theory of

multiphase flows to obtain a Continuum Mechanics formulation for geomorphic flows

(in this line, some recent advances have been done by Villaret and Davies, 1995; Ni

et al., 1996; Cao et al., 1995; Greimann et al., 1999), i.e. three-dimensional hydraulic

models are still based on layers and sediment discharge formulas.

1.3 Objectives of this work

The principle objectives of the study described in this thesis are as follows:

• Revision of previous works on the hydraulics of dam-break flows on inclined

planes, paying special attention to the effect of hydraulic resistance and the

formulations developed for arbitrary slopes.
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• Analysis of the suspended-load in dam-break floods on steep inclines using one-

dimensional shallow-water models valid for arbitrary slopes of the bottom. The

relative importance of bed-load versus suspended-load is also assessed, as well

as the limitations of the model.

• Establishment of the stability criteria, based in the one-dimensional shallow-

water equations, for the onset of roll-waves in dam-break floods. The influence

of the non-parallel and time-dependent characteristic of the background flow

is considered on this study by simulating numerically the linear and non-linear

behaviour of the perturbations. It is shown that non-parallel spatial stability

analysis alone fails to predict the formation of roll-waves in kinematic waves.

• Development of a research related to the multi-fluid methodology for the trans-

port of non-cohesive sediment in free-surface flows, applicable to fluvial hy-

draulic. Although the model is formulated for a uniform grain size and non-

cohesive sediment, guidelines for the extension to n-grain sizes and cohesive

sediment are addressed.

• Development of a numerical solution technique for the multiphase model appli-

cable to the full range of phase fraction.

• Critical evaluation of the methodology.

1.4 Present contributions

This study is concerned with the simulation of non-cohesive sediment transport

in shallow-water flows at arbitrary phase fractions, excluding heat and mass transfer

as well as phase change. The following specific contributions have been made in this

study:

• A review and analysis of the literature with respect to:

– Theoretical, numerical and experimental studies of dam-break flows on

inclines.
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– Theoretical, numerical and experimental studies of turbulent roll-waves.

– Numerical methodologies for the solution of the mixture model based on

the Finite Volume Method (FVM).

– Test cases suitable for the validation.

• Research related to the hydraulics of dam-break flows on inclines:

– Revision of analytical solutions available in the literature for small slopes

of the bottom.

– Formulation of a numerical experiment, generalisable to a physical exper-

iment, for the computation of linear and non-linear evolution of perturba-

tions.

– Determination of the stability criteria for the appearance of roll-waves.

– Non-parallel spatial stability analysis of roll-waves in kinematic waves.

– Stability analysis of the linearised shallow-water equations by means of

multiple scales.

• Research related to the sediment transport associated with dam-break flows on

inclines:

– One-dimensional numerical study of the transport of suspended sediment

after the rupture of a dam.

– Qualitative comparison of our results with the analytical solution devel-

oped by other authors.

– Analysis of the accuracy of the results, as a function of the hypothesis

involved in the model.

– Discussion of the relative importance between the bed- and suspended-load

discharge.

• Research related to the modelling of sediment transport at arbitrary phase

fractions in free-surface flows:
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– Formulation of a three-dimensional model for sediment transport based on

the ensemble averaged Navier-Stokes equations.

– Discussion of this approach versus the traditional RANS equations.

– Reduction of the three-phases model to a mixture model.

– Incorporation of the k-ǫ turbulence model with buoyant modifications.

• Research related to the mixture methodology:

– Proposal of a slip velocity incorporating shear-induced particle self-diffusion

to account for erosion and the microscopic modelling of yield stress. Fick-

ian and sedimentation fluxes are also incorporated in an algebraical closure

law for the slip velocity.

– Implementation and testing of a numerical algorithm for the mixture method-

ology which improves stability and convergence in situations where the

phase fraction is high, even in regions close to the free-surface.

– Validation against experimental data: local scour on pipelines and ero-

sional dam-breaks.

1.5 Previous and related studies

1.5.1 General model for turbulent free-surface flow with ap-

plication to shallow-water flow

One very important class of free-interface problems occurs with two immiscible

fluids such as air and water at low Mach numbers. In this section we start describing

how to compute the motion of two immiscible fluids using the Level Set Method (LSM)

as introduced by Sussman et al. (1994) - the approach that follows was developed in his

Ph.D. dissertation. Later, we present other alternatives based on indicator functions

and we discuss the advantages and drawbacks of each methodology, with especial

attention to fluvial hydraulic applications.
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The equations for the conservation of mass and momentum for the gas, at low

Mach numbers, and pure water are (e.g. Sethian and Smereka, 2003):

~x ∈ the gas : ∇ · ~vg = 0 , (1.1)

∂ρg~vg

∂t
+ ∇ · (ρg~vg~vg) = −∇pg + ∇ · (τ ′g + τ

′′

g) , (1.2)

~x ∈ the liquid : ∇ · ~vf = 0 , (1.3)

∂ρf~vf

∂t
+ ∇ · (ρf~vf~vf ) = −∇pf + ∇ · (τ ′f + τ

′′

f ) , (1.4)

where the subscript ‘g’ and ‘f ’ denote the gas and the liquid phase, respectively. In

the above equations t is time, ~v is the mean velocity vector, p = P − ρ~g · ~x is the

reduced pressure, P is the absolute pressure, ρ is the density, τ
′
is the viscous stress

tensor,

τ
′
= µl

[
∇~v + (∇~v)T +

(
µv

µl

− 2

3

)
(∇ · ~v) I

]
, (1.5)

µl is the dynamic viscosity, µv is the bulk viscosity, and τ
′′

is the Reynolds stress

tensor.

Equations (1.1)-(1.5) are to be solved with appropriated boundary conditions at

the interface Γ between the gas and liquid phases. The boundary conditions at the

interface between inviscid fluids where the surface tension coefficient is constant are

(see, for instance, Batchelor, 1967)

~x ∈ Γ : ~vf = ~vg , (τ f − τ g) · ~n = (Pf − Pg + σκ) · ~n , (1.6)

where σ is the coefficient of surface tension, ~n is the unit normal vector to the interface

drawn outwards from the gas to the liquid, κ is the local surface curvature,

κ ≡ ∇ · ~n , (1.7)

and

τ ≡ τ
′
+ τ

′′
. (1.8)
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The system of equations (1.1)-(1.4) and the boundary condition (1.6) can be

combined together incorporating the surface tension as a force concentrated on the

interface (Peskin, 1977). A derivation of the resulting equations can be found in Chang

et al. (1996) and Smereka (1996), although the form below comes from Unverdi and

Tryggvason (1992):

ρ
∂~v

∂t
+ ρ∇ · (~v~v) = −∇p+ ∇ · τ − σκδ(d)~n , ∇ · ~v = 0 , ~x ∈ Ω (1.9)

with ~v given by

~v =






~vf ~x ∈ the water

~vf = ~vg ~x ∈ Γ

~vg ~x ∈ the gas

.

The density ρ and viscosity µ are defined in analogous fashion to the velocity ~v.

On the other hand, Ω is the domain containing both fluids and δ is the Dirac delta

function. Besides, d is the signed distance function from the interface, which is defined

as follows: at a point ~x in the water, d is the distance to the closest point on the

interface; in the gas, d is the negative distance of this quantity.

Then, we introduce the zero-level set φ ≡ d to parametrise the interface Γ (Osher

and Sethian, 1988), that has the property of being a signed-distance function near

the interface:

Γ = {~x |φ(~x, t) = 0} , (1.10)

and also takes φ > 0 (φ < 0) in the liquid (gas) region. Because the interface moves

with the fluid volume, the evolution of φ is given by

∂φ

∂t
+ ∇ · (φ~v) = 0 . (1.11)

Moreover, the unit normal and curvature on the interface can be easily expressed in

terms of φ(~x, t): ~n = ∇φ/|∇φ| and κ = ∇ · (∇φ/|∇φ|).
It is clear that we can initialise φ as a signed-distance function, but under the

evaluation of (1.11), it will not remain so. Therefore, one must reinitialise φ so

that it remains a distance function near the front as the computation proceeds (see

Sussman et al., 1994). Conventional routines for reinitialising a distance function
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have to explicitly find the contour φ = 0 and reset φ at all points close to the front.

This takes O(n) operations, where n is the total number of cell points (see Chopp,

1991). Sussman et al. (1994) proposed a reinitialisation algorithm that maintains the

signed-distance property by solving to steady state (as fictitious time τ → ∞) the

equation
∂φ

∂τ
+ sgn(φ0)(|∇φ| − 1) = 0 , (1.12)

where sgn(φ0) is

sgn(φ0) =
φ0√

φ2
0 + (∆x)2

. (1.13)

Efficient ways to solve these equations to steady state via fast marching methods are

discussed in Sethian (1996, 1999).

The second approach that can be adopted to solve the evolution of the interface

is the well known Volume of Fluid method (VOF). The basis of this method is to

compute the concentration or volume fraction of one fluid, say γ, which is later used

to determine the fluid properties at a particular location. Equations for the VOF

method can be derived from the general theory of multiphase flows (Drew, 1983; Ishii

and Hibiki, 2006), and provide physical sense to the terms appearing in the equations.

In fact, as shown below, this method can be very useful for fluvial regimes that have

a not sharply defined interface [i.e., flows with strong turbulence at the free surface,

Brocchini and Peregrine (2001)].

The starting point is the conservation equations for mass, momentum and volume

fraction (see Chapter 5 for a formal deduction):

∂ρ

∂t
+ ∇ · (ρ~v) = 0 , (1.14)

∂ρ~v

∂t
+ ∇ · (ρ~v~v) = −∇p+ ∇ · τ − σκ∇γ − ~g · ~x∇ρ , (1.15)

∂γ

∂t
+ ∇ · (γ~u) + ∇ · [γ(1 − γ)~urγ] = 0 , (1.16)

where ρ is the water-air mixture density given by ρ = ρfγ+ρg(1−γ), γ is the volume

fraction occupied by the water in a small control volume centred at (~x, t), ~v is the
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mass velocity given by

~v = [γρf~vf + (1 − γ)ρg~vg]/ρ , (1.17)

~u is the volumetric flux defined as

~u ≡ γ~vf + (1 − γ)~vg verifying ∇ · ~u = 0 , (1.18)

τ ≡ τ
′
+ τ

′′
+ τ

′′′
is the generalised stress tensor that accounts for the viscous stress

tensor τ
′
, the Reynolds stresses τ

′′
, and the momentum-diffusion due to the relative

motion of the water with respect to the air τ
′′′

at the free-surface is

τ
′′′ ≡ γ(1 − γ)

ρfρg

ρ
~urγ~urγ , (1.19)

where ~urγ ≡ ~vf − ~vg is the relative (slip) velocity of the water phase with respect to

the air phase. The mass velocity ~v, required by the continuity (1.14) and momentum

balance equation (1.15), and the volumetric flux ~u, used in the transport equation

(1.16), are linked by the expression

~v = ~u+ γ(1 − γ)
ρf − ρg

ρ
~urγ . (1.20)

For a sharp (or thin) interface, the relative velocity between water and air at

the interface vanishes (~urγ = 0), and the most common error in the VOF method

appears: the numerical diffusion. In this case, the phase indicator γ changes abruptly

from γ = 1 in the water phase to γ = 0 in the air phase, and is purely convected

at the volumetric velocity ~u. For this reason, we find the first difference of the LSM

and VOF: while γ is discontinuous at a thin interface, φ is a continuous function

- therefore, the effects of numerical diffusion are less important for the LSM than

for VOF. First-order upwind scheme smears the interface too much and introduces

artificial mixing of the two fluids. To avoid the numerical diffusion in the VOF

method, one should employ second- and higher-order schemes, which tend to produce

over- and undershoots (because of its definition, γ has to stay within bounds 0 ≤
γ ≤ 1). Thus, the computations to obtain accurate results become a difficult task.

Fortunately, it is possible to derive schemes with both keep the interface sharp and

produce monotone profiles of γ across it (Ubbink, 1997). On the other hand, the
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Figure 1.3: Sequences of snapshots (66× 11 cm2) after releasing fresh water from the
lock in the dam-break experiment of Jánosi et al. (2004). The initial filling height in
the lock is d0 = 15 cm and the ambient fluid depth in front of the lock is (a) d = 0
(dry bed), (b) d = 18mm, (c) d = 38mm.

interface can be defined thin, and formulate an appropriate slip velocity ~urγ with the

transition region being as thin as possible. The accuracy and convergence properties

of some of these kernels have been discussed by Williams et al. (1998). This approach

replaces the drawback previously described with the new difficulty in dealing with

changes in interface topology and introducing spurious currents in the near region

to the free-surface. Although it is common to neglect the influence of the relative

velocity ~urγ in the momentum balance, and identify the volumetric flux ~u with the

mixture mass velocity ~v, we will retain the original form of the mixture model (1.14)-

(1.20), which can be applied to study aeration processes at the free-surface, that

usually appear in fluvial processes (i.e. hydraulic jumps). Moreover, as we shall

see in § 1.5.3, the equation (1.16) for the propagation of the indicator function is

analogous to that of sediment, and the same numerical technique can be employed to

solve both equations.

The two numerical approaches described above for the computation of free-surface

flows are traditionally known as interface-capturing methods because the computa-



Chapter 1: Introduction 15

Figure 1.4: RANS numerical simulation of the experiments shown in Figure 1.3. The
numerical solver rasInterFoam (OpenCFD Limited, 2007) was employed to compute
the solution in a mesh with 1380 × 200 nodes.

tion is performed in a solution domain which extends over regions occupied by both

fluids on a fixed grid. Interface-capturing methods suffer typical accuracy problems

in the mass preservation constraint (Losasso et al., 2006). Since φ does not explicitly

occur in any of the conservation equations, the original level-set method of Osher and

Sethian (1988) do not exactly conserve mass. The imposition of a volume preservation

constraint in the VOF method does not eliminate these errors, but instead changes

their symptoms replacing mass loss with inaccurate mass motion leading to small

pieces of fluid non-physically being ejected as jetsam or flotsam (see, for instance,

the splashing at the end of the simulations shown in Fig. 1.4). Hybridation between

VOF and LSM has been proposed (Sussman and Puckett, 2000) but the drawback is

that both Eulerian method have similar difficulties as opposed to interface-tracking

methods. Interface-tracking methods can follow the evolution of a simple interface

very accurately (Muzaferija and Peric, 1998), advancing boundary fitted grids each

time the free surface is moved. This lagrangian front tracking methods do not suffer

from the typical accuracy problems characteristic of Eulerian methods. The draw-

back however is that the elements that make up the interface (segments or triangles

in 2 or 3 spatial dimensions) can become highly distorted leading to a loss of accu-
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racy. Moreover, if the interface changes topology, some difficult remeshing is required.

When the flow conditions are such that there are no breaking or overturning waves,

the interface-tracking method is a good approach.

To illustrate the VOF capabilities to simulate shallow-water flows, Figure 1.3 and

1.4 show the dam-break experimental results of Jánosi et al. (2004) and the numerical

simulation, respectively. The overall agreement is good, although some discrepancies

arise due to the idealisation of the gate release process and the appearance of flotsam.

The gate release process in the initial stage of the dam-break problem constitutes a

Fluid Structure Interaction (FSI) problem, requiring the addition of computational

nodes in the fluid mesh during the numerical simulation. Although the software

employed in this work allow us to study problems with topological changes in the

mesh, we do not cover this topic. Mesh-free numerical techniques, e.g. Smooth

Particle Hydrodynamics (SPH), readily deal with this kind of problems. In fact,

Crespo et al. (2007) simulated the gate release process and found a better agreement

in their results.

More sophisticated techniques are hybrid methods, that draw their accuracy from

the tracked particles at the free-surface. For instance, particle level set method (En-

right et al., 2005) derives the particle connectivity from the level set approach com-

bining the best aspect of the LSM and the interface-tracking method. The result

is a robust, accurate method that is simple to implement even in the three spatial

dimensions (Mokhberi and Faloutsos, 2007). We refer to the reader to the following

references for further details in any of these approaches: Losasso et al. (2006); Sethian

and Smereka (2003); Ferzinger and Peric (2002); Sethian (2001) and Muzaferija and

Peric (1998).

The applicability of the numerical method described above is limited to resolved-

scale surface, i.e., a fluid interface with a characteristic length, other than the interface

thickness, which is relative large to the computational grid cells. The treatment

of multiscale surface phenomena (for instance, breaking waves, splashing and spray

atomisation) usually requires the modelling of flow structures smaller than the grid

cell. This kind of flows needs a special treatment that is not covered herein. The

reader interested in this topic is referred to the recent thesis of Moses (2007) for
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further details.

1.5.2 Shallow-water equations for arbitrary slopes of the bot-

tom

In the previous section, the conservation equations for a free-surface flow have

been presented. In general, these equations are valid for any flow regime (laminar

or turbulent) and any physical process (e.g. fluvial or coastal). However, in this

work we are specially interested in fluvial hydraulic flows. River flows are usually

characterised by turbulence and shallowness (the characteristic streamwise length L is

much larger than the characteristic water depth η0). Turbulent effects tend to uniform

the vertical velocity profile, except in the near bottom region where viscous effects

are no longer negligible. On the other hand, shallowness implies that the streamwise

velocity is much larger than its vertical counterpart. An additional consideration,

usually established in fluvial flows, is that the slope of the bottom bed is small. Under

such considerations, the previous general formulation (§ 1.5.1) can be simplified given

the well-known “non-linear shallow-water equations”.

The basis for most open-channel flow analyses is the non-linear shallow-water

equations, and are attributable to de Saint-Venant (1871). They have been in en-

gineering use for more than a century. Usually they are used for analyses of both

steady and unsteady flows. The Saint-Venant equations can be derived by applying

asymptotic approximations in terms of a shallowness parameter (i.e. the ratio of the

typical vertical dimension to the characteristic length in the horizontal dimension,

ǫs ≡ η0/L ≪ 1) to the exact formulation of the flow problem (see Friedrichs, 1948).

They represent the lowest order in approximation, and so they cannot retain accuracy

when the channel bottom is appreciably curved. To obtain a more accurate solution in

presence of high slopes of the bottom bed, Keller (1948) used the systematic method

of Friedrichs (1948), obtaining higher-approximation equations for a nonlinear chan-

nel bottom in a rigorous manner. Thus, the small bottom slope objection (intrinsic

to the traditional Saint-Venant equations) could be partly overcome by employing

higher-order correction equations. However, all higher-order correction procedures
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are complicated, lengthy to solve the various sets of equations successively, and are

rarely attempted to solve engineering problems.

Dressler (1978) derived a generalisation of the non-linear unsteady shallow-water

equations containing explicitly the curvature of the channel bottom. To that end, a

specific set of curvilinear coordinates attached to the bottom bed was employed in

the derivation of his equations. Dressler’s (1978) equations show that the velocity is

no longer constant over any cross-section orthogonal to a curved bottom, and that

the pressure expression contains terms, in addition to the hydrostatic term, which

describe the effect of the streamline curvatures. Although his equations contain more

terms and more complicated coefficients than the Saint-Venant equations, they are

identical in structure and, therefore, they are as easy to solve by computer as the

Saint-Venant equations. Recently, the guidelines of Friedrichs (1948) were followed

by other authors to address again the question of varying topography (Berger and

Carey, 1998; Keller, 2003; Rodriguez and Taboada-Vázquez, 2007)

1.5.3 Complex model for sediment transport with applica-

tion to shallow-water flow

Multiphase theory has been developed and applied in many scientific fields, e.g.

slurry flows, cavitating flows, aerosols, debris flows, fluidized beds, and so on. One

could classify them according to the state of different phases or components and

therefore refer to gas-solid flows or gas-particle flows or bubbly flows and so on. Mul-

tiphase flows are also a ubiquitous feature of our environment where one considers

rain, avalanches, debris flow, sediment transport, and countless natural phenomena.

Water-sediment-air interaction in shallow-water flows can be understood as a partic-

ular case of multiphase flow of three incompressible phases (when air is moving at

low Mach number). However, few studies on sediment transport in fluvial hydraulic

formally apply the multiphase theory (Pananicolaou et al., 2008). Many researchers

propose governing equations without citing, or incorrectly citing, a reference for the

basis for their equations - Anderson and Jackson (1967) as well as Ishii (1975) derived

multiphase flow equations from first principles.
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Figure 1.5: Dam-break flow on a horizontal channel from Ferreira (2005, Figure 3.1).
Still image from a set of experimental tests performed at Laboratory of Hydraulics of
the University of Beira Interior (UBI). Bed composed of pumice with 3mm of mean
diameter and a density of 1500 kg/m3. The initial water depth at the reservoir is
0.25m; the downstream water depth is 0.025m and the camera is located at 0.5m
from the gate. (a) time t = 0.2 s. (b) time t = 0.35 s. (c) time t = 1.0 s.
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Erosional dam-break flows, among many others unsteady fluvial processes, can

experience diverse fluvial regimes: beginning with a flow of clear water, continuing

with an erosional stage (which starts the ‘conversation between the sediment and

water’), and finishing with aggradation. So, the dynamic of the flood is affected by

the intense transport of sediment. As an example, figure 1.5 shows three snapshoots

of the dam-break experiments performed in the Laboratory of Hydraulics of the Uni-

versity of Beira Interior (Ferreira, 2005). This figure clearly depicts three steps: first,

the flow of initial clear water and the formation of a hydraulic jump; second, the

initiation of aggradation and transport of sediment in a transitory regime; and fi-

nally, a quasi-steady and uniform dense flow characterised with a continuum vertical

profile in the sediment concentration, without a sharply defined boundary between

bed-load and intermittently suspended load (Drake, 1986). Even for highly unsteady

hyperconcentrated flows, as shown in Fig. 1.5, the sediment transport is traditionally

modelled as the sum of two mechanisms (Pierson, 2005): bed-load (or contact load),

which is the sum of all sliding or rolling particles that stay in more or less continuous

contact with the bed, as well as the saltating particles that move close to the bed and

are frequently in contact with it; suspended load, composed of fines (wash load) which

form a stable suspension and intermittently suspended load which remain temporar-

ily in dynamic suspension for long periods of time relative to their size during flow.

Recent studies suggest that bed-load sediment may be transported in a concentrated

zone of intense bed shear, that has been referred as a traction carpet (Hanes and

Bowen, 1985; Sohn, 1997). A dense basal underflow layer has also been inferred from

field relationships (Pierson, 2005). In water flows, this dense zone of moving bed

material has been subdivided into two zones: an upper saltation zone and a lower

collisional grain flow zone (Hanes and Bowen, 1985). A somewhat similar model is

used to described motion within dry grain flows (e.g. Larcher, 2004; Armanini et al.,

2005): it includes an upper collisional zone, which is characterised by large gradients

in particle concentration and velocity, active grain collision, high granular tempera-

ture, and generation of dispersive pressure; and a lower frictional zone, which is a

compact layer of slowly moving grains that are entirely in frictional contact with each

other.
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This example clearly shows the requirements of a general model to correctly pre-

dict the behaviour of shallow-water flows on beds composed of uniform and non-

cohesive sediment. In the previous section, different approaches were presented for

modelling turbulent shallow-water flows of a Newtonian fluid. Trivially, without ad-

ditional modifications, this model is not able to predict the erosion, transport and

sedimentation of solid particles. The eroded particles of sediment interact with the

water modifying the properties of the ensuing mixture (i.e. the mixture density and

viscosity), they affect the turbulent fluctuations of the velocity and pressure field,

and also to the interaction not only with the pure water but with each other, etc.

Additional complications arise when the sediment concentration value ranges from

zero to its maximum value (the maximum packing factor), because the flow field

experience both a turbulent and laminar regime, at the same time; moreover, the

water-sediment mixture behaves as a non-Newtonian flow for sediment concentration

values close to the maximum packing factor at both low and medium shear rates,

due to the existence of yield stress (Huang et al., 2005; Huang and Bonn, 2007) for

a dense flow at rest and the development of normal stresses when flowing (Zarraga

et al., 2000; Ovarlez et al., 2006), respectively. Although rheological stratification

(Armanini et al., 2005) appears in the traction carpet, the transition from a frictional

to collisional regime cannot be sharply defined, as well as the border separating the

bed and wash load (van Rijn, 1987), and so on. That is, the water-sediment mixture

define a Continuum Field. The modelling of turbulence in dense suspensions is also a

formidable task since four-way coupling takes place, i.e. turbulence is modified by the

presence of solid particle at the same time that the collisions between particles affects

its own movement (Muste and Patel, 1997; Muste et al., 2005). A general model for

geomorphic processes, should take into account, at least, all these factors. Therefore,

a Continuum Mechanics formulation based on first principles seems straightforward

to couple all the physical phenomenas described herein.

The theory of multiphase flow is well established if all the species that conform

the mixture are fluids (Ishii, 1975; Ishii and Hibiki, 2006). This theory accounts

for the existence of the multiple deformable moving interfaces with their motions

being unknown, the existence of the fluctuations of variables due to turbulence and
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to the motion of the interface, and the significant discontinuities of properties at

the interface. These effects cause complicated coupling between the field equations

of each phase, introduce a statistical characteristic and huge local jumps in various

variables in space and time. To deal with these difficulties, the local instant details of

the flow field should be filtered. By proper averaging, the multiphase theory is able

to obtain the mean values of fluid motions and properties that effectively eliminate

local instant fluctuations. The ensemble averaging introduced by Dopazo (1977) is

one of the suitable averaging technique that can be employed in the derivation of the

multiphase system conservation equations - the equivalence between this technique,

the time averaging and Boltzmann statistical averaging can be found in Ishii and

Hibiki (2006). The phase fraction α is defined at the number of times a particular

phase is present at a certain point in time and space divided by the total number of

realisations:

α ≡ 1

N

N∑

n=1

χk =
Nk

N
, (1.21)

where N is the total number of realisations, χk is a phase indicator function which

is one when the phase k is present and zero otherwise. Nk is the resulting number

of times at which the phase k was present at the particular point in time and space.

Thus, the resulting phase fraction can be viewed as the probability that a certain

phase is present at a certain point in space and time. Then, the Eulerian ensemble

average of a general function f is defined by

〈f〉(~x, t) =
1

N

N∑

n=1

fn(~x, t) .

It can be seen that, as such, the phase fraction does not fluctuate in a turbulent

regime. That is, the definition of a volume averaging domain suitable for general

turbulence multiphase flow cannot help but include contributions from the turbulence

in the individual phases.

Being said that, the fact that multiphase and turbulence effects cannot be cleanly

separated with valid time or volume averaging domains becomes evident. The essence

of the problem is that, in the general case, the volume average and time average
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domains overlap. This is the reason why, in the more recent past, workers have aban-

doned double averaging in favour of a single, usually ensemble, average. They argue

that the ensemble average is more fundamental than both the time and volume aver-

age, without introducing any spatial or temporal restriction into the final equations

(Hill, 1998). In the double averaging technique, the volume fractions is first defined

(as in the previous section) which is subsequently decomposed into mean and fluc-

tuating components and time averaged. As a consequence, phase dispersion terms

in the conservation equations appear, being this the main reason argued by propo-

nents of double averaging to adopt it. However, dispersion is adequately predicted

without the explicit presence of fluctuating volume fraction terms in the conservation

equations but with the fluctuating velocity term (Simonin, 1990).

In presence of a solid phase, Anderson and Jackson (1967) derived the mass con-

tinuity and momentum balance equation for the solid phase in a solid-gas mixture

from the equation of motion of each discrete particle. On the other hand, Ishii (1975)

derive the multi-fluid model time averaging the local instant equations of each phase,

and then introducing the unique axiom of his study: the axiom of continuity.

The equations of Ishii (1975) and Anderson and Jackson (1967) differ in the momen-

tum balance due to the particle shear stresses, being this difference significant near

large gradients of sediment volume fraction (Jackson, 1997). Many researchers and

commercial codes modify Ishii’s (1975) equations to describe fluid-solid and gas-solid

flows (e.g. Enwald et al., 1996). However, this fact does not affect the macroscopic

flow behaviour, but do modify the predictions of both approaches on a local scale

(van Wachem, 2000). In the solid-fluid approach (the Jackson’s one), the solid-phase

stress tensor is modelled with the kinetic theory. But in dense-suspensions, the fluc-

tuating velocity of the fluid phase and its correlation with the properties of particles

are negligible compared to particle-particle interactions (collisions and friction). Par-

ticle collisions are no longer instantaneous at very high solids volume fraction, as it

was assumed in the kinetic theory (Zhang and Rauenzahn, 1997). Several approaches

have been presented in the literature to model the frictional stress for dense packed

particles, mostly originating from geological research groups (e.g. Johnson and Jack-

son, 1987; Johnson et al., 1990), although more recent studies in the field of Rheology
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show that the frictional shear stresses are purely viscous, that the mixture viscosity

depends mainly on the sediment volume fraction (Huang et al., 2005; Ovarlez et al.,

2006; Huang and Bonn, 2007), and that the frictional normal stress is proportional

to the solid volume fraction and shear stress (Zarraga et al., 2000). It is now evident

the complexity associated to a model that includes all the possible physical scenarios

in a particulate multiphase system.

The first approach that can be adopted in the multiphase formulation is the multi-

fluid model, that considers each phase separately. Thus, the model is expressed in

terms of a set of conservation equations governing the balance of mass and momentum

in each phase. However, the fields of one phase (i.e. its volumetric concentration,

velocity and pressure field) are not independent of the other phase, and there are terms

in these balance equations that represent this interaction. The ensemble averaged

continuity and momentum balance equation for the k-phase (in our case, with k =

{p, f, g}, where p is the sediment phase, f is the water phase and g is the air phase),

in absence of mass transfer between phases, are (Drew, 1983):

∂αkρk

∂t
+ ∇ · (αkρk〈~vk〉) = 0 , (1.22)

∂αkρk〈~vk〉
∂t

+ ∇ · (αkρk〈~vk〉〈~vk〉) = −∇ (αk〈Pk〉) + ∇ ·
[
αk

(
〈τ ′k〉 + 〈τ ′′k〉

)]
+

αkρk~g + ~Mk ,

(1.23)

where τ
′′

k is the averaged turbulent stresses of the k-phase and the term ~Mk is the

interfacial source term, given by

~Mk ≡ −〈τ ′ · ∇χk〉 . (1.24)

The main contributions in the averaged inter-phase momentum transfer term ~Mk are

due to drag, lift, virtual mass forces and Basset force. The expressions for some of

these forces are revised, for instance, in Ishii and Hibiki (2006) and Rusche (2002).

As commented on above, the mass-weighted averaging removes the fluctuation

term in Eq. (1.22) which describes the turbulent diffusion due to concentration gra-

dients. All turbulent terms appear in the momentum equation (1.23).
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The alternative to the model describe above is the mixture model (also known

as drift-flux model) which considers the mixture as a whole, and therefore the field

equations should be written for the balance of mixture mass and momentum. These

equations are supplemented by a diffusion equation that takes account for the concen-

tration changes of the disperse phase. It is clear that the drift-flux model formulation

will be simpler than the multi-fluid model, however it requires some drastic consti-

tutive assumptions causing some of the important characteristics of multi-phase flow

to be lost. The mixture model is generally accepted where the dynamics of the com-

ponents are closely coupled. The usefulness of the drift-flux model in many practical

engineering systems comes from the fact that even multi-phase mixtures that are

weakly coupled locally can be considered, because the relative large axial dimension

of the systems usually gives sufficient interaction time (Ishii and Hibiki, 2006).

The main mixture properties are the mixture density (ρ), the ensemble averaged

velocity of the mixture mass centre (〈~v〉), and the ensemble-averaged volumetric flux

(〈~u〉), which are given by (see Chapter 5 for a formal deduction)

ρ = ρmγ + ρg(1 − γ) , (1.25)

〈~v〉 =
1

ρ
[γρm〈~vm〉 + (1 − γ)ρg〈~vg〉] , (1.26)

〈~u〉 ≡ γ〈~um〉 + (1 − γ)〈~vg〉 , (1.27)

where the density (ρm), the velocity of the centre of mass (< ~vm >) and volume

(< ~um >) in the water-sediment suspension are given by the following expressions:

ρm = ρp
β

γ
+ ρf

(
1 − β

γ

)
, (1.28)

〈~vm〉 ≡
1

ρm

[
β

γ
ρp〈~vp〉 +

(
1 − β

γ

)
ρf〈~vf〉

]
, (1.29)

〈~um〉 ≡
β

γ
〈~vp〉 +

(
1 − β

γ

)
〈~vf〉 . (1.30)

The definitions established above are functions of the solid particle volumetric con-

centration (αp ≡ β), the air volumetric concentration (αg ≡ 1 − γ), and the liquid
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volumetric concentration (αf = γ − β) in the three-phases mixture. Thus, the equa-

tions (1.22)-(1.23) can be reduced to the mixture forms:

∂ρ

∂t
+ ∇ · (ρ〈~v〉) = 0 , (1.31)

∂γ

∂t
+ ∇ · (γ〈~u〉) + ∇ · [γ(1 − γ)〈~urγ〉] = 0 , (1.32)

∂β

∂t
+ ∇ · (β〈~u〉) + ∇ · [β(1 − β)〈~urβ〉] = 0 , (1.33)

∂ρ〈~v〉
∂t

+ ∇ · (ρ〈~v〉〈~v〉) = −∇〈p〉 − ∇〈ps〉 + ∇ · 〈τ〉 − σκ∇γ − ~g · ~x∇ρ . (1.34)

The first equation (1.31) represents the mass conservation of the mixture, that

behaves as a compressible fluid of density ρ. The second equation (1.32) expresses

the conservation of the air phase, and captures the evolution of the interface through

the phase indicator function γ. Similar to the VOF method introduced in § 1.5.1,

the indicator function is convected at the ensemble-averaged volumetric velocity of

the three-phase mixture 〈~u〉1. The relative volumetric flux ~urγ between the water-

sediment mixture and the air phase is given by ~urγ ≡ ~um − ~vg. The third equation

(1.33) establishes the conservation of the sediment particles. The first two terms on

the left hand side (LHS) of this equation represent the convection of the sediment

phase at the volumetric velocity of the mixture. The last term introduces the relative

volumetric flux between the sediment and pure-water phases, denoted by ~urβ. This

term is obviously indispensable to model the erosion and the sedimentation of solid

particles, because the sediment particles do not travel attached to the water but

move with respect to it at a different velocity. Therefore, in geomorphic processes ~urβ

cannot be neglected. Finally, the last equation (1.34) shows the momentum balance of

the three-phases mixture. It includes analogous terms to that in abscence of sediment

(1.15), with the addition of the shear-induced particle-phase pressure ps that can be

1As the reader can figure out, the mixture variables defined in § 1.5.1 are ensemble-averaged
variables because the multiphase flow occurred at the interface separating the water and air phases.
However, when the relative velocity at the interface ~urγ is employed in the VOF method to compress
the phase indicator function γ, the air volumetric concentration γ vanishes at the interface. Thus,
we can drop (as we made in § 1.5.1) the brackets 〈·〉 representing the ensemble average, which only
has sense at the thin interface 0 < γ < 1.
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defined mechanically in terms of the laminar mixture viscosity and the shear rate

(Zarraga et al., 2000). The generalised stress tensor τ ≡ τ
′
+ τ

′′
+ τ

′′′
+ τ

′′′′
accounts

for the viscous stress tensor τ
′
(where the laminar viscosity depends, according to

Ovarlez et al. (2006), only on the particle volume fraction and the laminar fluid

viscosity), the turbulent stresses τ
′′
, and both the momentum-diffusion due to the

relative motion of the sediment-water mixture with respect to the air τ
′′′

and the

sediment with respect to the water τ
′′′′

. These two last tensor are defined as

τ
′′′ ≡ γ(1 − γ)

ρmρg

ρ
~vrγ~vrγ τ

′′′′ ≡ β

(
1 − β

γ

)
ρfρp

ρm

~vr~vr . (1.35)

These tensors establish the first dependence of the rheology of dense suspensions

on the mixture microstructure through the relative velocities ~vrγ and ~vr (which are

related to ~urγ and ~urβ, respectively, see § 5.2 for further details). It is evident that

the elimination of the air and sediment momentum equations from the formulation

requires the kinematic relation between the phases. Therefore, the relative velocity

between the phases should be given as a constitutive law.

One of the most noticeable effects of the relative velocity in the particle-fluid

mixture is the difference arising between the mass velocities ~v and the volume fluxes

~u, associated with the motion of the centre of mass and centre of volume, respectively.

In fact, both are related by the slip velocities:

~v = ~u+ γ(1 − γ)
ρm − ρg

ρ
~urγ + βs

γ − β

γ + βs

ρm

ρ
~vr . (1.36)

Hence, the fact that the mass transfer is not necessarily accompanied by a similar

volume transfer is now evident.

Now, that the multiphase framework has been described and particularised for

fluvial hydraulic, the specific characteristics of the models developed by other authors

can be discussed and readily understood. Several models for sediment transport in

fluvial hydraulic have been formulated based on the theory of multiphase flows (e.g.

Cao et al., 1995; Iverson and Denlinger, 2001; Iverson et al., 2001; Greimann and

Holly, 2001; Muste, 2002; Jiang et al., 2004; Li and Yu, 2007; Wang et al., 2008).

For suspended sediments with large size or inertia, it was observed that a notice-

able lag exists between the transport velocity of the sediments and that of the carrier
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water (Muste et al., 2005). Traditional sediment diffusion theory, that has become

the main approach to quantify suspended-sediment transport, cannot deal with this

effect. To take into account the sediment inertia and the sediment-sediment interac-

tion, two-fluid models for solid-liquid flows have been applied to suspensions in open

channels. Cao et al. (1995) applied double average technique to construct predictive

equations for vertical profiles of sediment concentration and mixture velocity. Their

analysis accounted for sediment-turbulence interactions, while sediment-sediment in-

teractions were ignored.

Using a more fundamental averaging, i.e. the ensemble averaging, Greimann et al.

(1999) developed analytical expressions for sediment concentration and lag velocity

profiles; later, Greimann and Holly (2001) extended this formulation to flows with

high concentration of sediments. In these two studies, sediment stresses as well as

sediment-fluid velocity covariance were assumed, which resulted in rough prediction

of the lag velocity.

A potentially more accurate description of the sediment transport process has been

performed by using a kinetic model that has the unique advantage of specifying the

constitutive relations for sediments. Closure of the solid-phase momentum equation

requires a description for the solid-phase stress. When collisional interactions play

an important role in the motion of the particles, concepts from kinetic gas theory

(Chapman and Cowling, 1970) can be used to describe the effective stresses in the

solid phase resulting from particle streaming (kinetic contribution) and direct colli-

sions (collisional contribution). Constitutive relations for the solid-phase stress based

on kinetic theory concepts have been derived by Lun et al. (1984) allowing for the

inelastic nature of particle collisions. In this respect, the kinetic models may mitigate

the shortcomings of the two-fluid ones in characterising sediment-sediment interac-

tions. For example, Wang and Ni (1990, 1991) analytically reproduced sediment

concentration and velocity profiles in a horizontal duct flow, respectively. Later, Ni

et al. (2000) extended this formulation to dense flows. In a different way, Jenkins and

Hanes (1998) constructed relations for sediment concentration and velocity profiles in

highly concentrated sheet flows. Recently, Fu et al. (2005) developed a kinetic model

for turbulent sediment laden flows. This model accounts for the effects of sediment-
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turbulence interactions as well as sediment-sediment collisions and have been adopted

to quantify the underlying mechanisms of sediment diffusion, i.e., gravitational set-

tling, turbulent diffusion, effect of lift force, and that of sediment stress gradient. Fi-

nally, Wang et al. (2008) presented a comprehensive analysis of suspended sediment

transport in open channels under various flow conditions through a kinetic-model-

based simulation, accounting for both sediment-turbulence and sediment-sediment

interactions. Their model successfully represents experimentally observed diffusion

and transport characteristics of suspended sediments with different densities and sizes.

Recently, Zhao and Fernando (2007, 2008) have solved the problem of scour around

pipelines by using the two-fluid methodology. Their results show the capabilities of

Continuum Mechanics for studying the transport of sediment, avoiding the employ-

ment of traditional depth-averaged discharge formulae.

Numerical flow simulation utilising a full multiphase model is impractical for a

suspension possesing wide distributions in the particle size or density. Where the

secondary phases cannot be ignored due to their influence on the fluid dynamics be-

haviour of the mixture, and the coupling between the phases is strong, the mixture

model is a sufficiently accurate approximation of the multiphase system (Manninen

et al., 1996). Due to the requirement of a strong coupling between the phases, the

mixture model is more suited for liquid-particles mixtures than for gas-particle mix-

tures. Iverson (1997) and Iverson and Denlinger (2001) propose a mixture theory

framework to describe flowing grain-fluid mixtures, and assume that motion of fluid

relative to the solids is negligibly. This assumption is equivalent to neglect the relative

velocities ~vr and ~urβ in our mixture model (1.31)-(1.34). Under this hypothesis, nei-

ther erosion, deposition, or lag velocities can be modelled. Moreover, the constitutive

relations (1.35) for the stress tensor of the mixture are not taken into account. The

discrepancy between the depth-averaged numerical predictions and the experimental

results in water-saturated debris flows is pretty large (Iverson et al., 2001). Puda-

saini et al. (2005) propose a model for debris flows down general channels by using

the same simplifying hypothesis of constant mixture density and equality of phase

velocities as Iverson and Denlinger, finding better agreement between the numerical

simulations and the experimental results for the same experimental scenarios as in
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Iverson et al. (2001). In the framework of sediment transport applications, Lalli et al.

(2005, 2006) presented a constitutive equation, limited to a laminar regime, that in-

cludes the presence of particles in terms of the effective viscosity, which is defined

by means of both Newtonian and non-Newtonian (Bingham plastic) models. They

proposed a relative velocity equation closure based on particle buoyancy as well as

on shear-induced self-diffusion effects (Leighton and Acrivos, 1987). Leighton and

Acrivos (1986) shown that the viscous resuspension of a settled layer of particles

can be described in terms of the shear-induced diffusion. Furthermore, the change

in height of the settled layer when sheared, made dimensionless with the particle

radius, was found proportional to an integral involving the shear-induced diffusion

coefficient, the settling hindrance function and the shear viscosity. The constant of

proportionality is a type of Shields parameter (Shields, 1936), a parameter which

often arises in the study of the flow of sediment in rivers and tidal estuaries (e.g.

Chanson, 2004). Furthermore, in non-dilute suspensions, the conjunction of shear-

induced particle self-diffusion and a Newtonian model for the viscous tensor give rise

to the microscopical modelling of a non-Newtonian fluid (Ovarlez et al., 2006), i.e. it

is equivalent to a Bingham plastic model. These two facts indicate the proper mod-

elling of the suspension microstructure and the capabilities of the model to account

for erosion2.

Mixture models have been broadly applied in the design of settlers (Ungarish,

1993). Notwithstanding questions of rigour, precision, well-posedness and complete-

ness, the averaging procedures are a powerful tool for engineers and applied math-

ematicians, capable of explaining and predicting non-trivial phenomena. According

to Drew (1983) this “... is the essence, a recommendation for a model that has many

known features of two-phase flow dynamics. An enlightened investigator can use the

model to make predictions ... It should never be used blindly, but with caution and

careful examination of the results and implications”. In most published applications

of the mixture model, considerations have been restricted to gravitational or/and cen-

2In most sediment transport problems the flow is highly turbulent and, hence, in such system
the viscous resuspension mechanisms play only a minor role except, perhaps, in the viscous sublayer
which occurs near the boundaries of the flows.
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trifugal forces (e.g. Brennan, 2001; Liu and Garcia, 2007). A more general approach

can be developed, first, examining the instantaneous forces acting on a particle in

suspension and, then, deriving the slip velocity using the dispersed phase momentum

equation (Manninen et al., 1996). With this technique, a constitutive equation is

required for the fluctuation terms of the slip velocity. To accomplish this, Manninen

and coworkers postulate the following solution for the fluctuation terms (c.f. Ishii,

1975; Simonin, 1990):
Dcβ

β
∇β .

Because of its simplicity and applicability to a wide range of two-phase-flow prob-

lems of practical interest, the drift-flux model is of considerable importance. Partic-

ularly, the one-dimensional drift-flux model obtained by averaging the local drift-flux

formulation over the cross-sectional area is useful for complicated engineering prob-

lems, since field equations can be reduced to quasi-one-dimensional forms (Ishii, 1977;

Hibiki and Ishii, 2003). By area averaging, the information on changes of variables in

the direction normal to the main flow within the channel is basically lost. The exten-

sive review of this model is given by Ishii (1977). As commented on in § 1.5.4, this

formal approach is uncommon to deduce the one-dimensional conservation equations

of the mixture flow in fluvial hydraulic applications.

1.5.4 Extension of the shallow-water equations for sediment

transport modelling

One-dimensional shallow-water models that include sediment transport have been

used with some success in research and engineering practice. Most of the one-

dimensional shallow-water models solve the differential conservation equations of mass

and momentum of flow (i.e. the Saint-Venant equations) along with the sediment mass

continuity equation (i.e. the Exner equation). Extension of one-dimensional models

to two-dimensions is straightforward, and the discussion that follows is, therefore,

limited to the simplest case, i.e. one-dimensional formulations.

One-dimensional depth-averaged geomorphic equations should be rigorously de-

rived from the conservation equations of the mixture (1.31)-(1.34). However, it is com-
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mon to find models in the literature that are deduced, after the establishment of phe-

nomenological assumptions, from integral equation based on the Reynolds transport

theorem. The specific formulation for the transport of sediment in one-dimensional

shallow-water flows is therefore not unique, and relies on the particular assumptions

established by each author. For that reason, and due to the extensive number of works

in this matter, it is not possible to review the whole state-of-art. In its place, most

significant examples (related with dam-break floods) are then discussed, depending

on the coupling between the fluid and sediment phases conservation equations.

It can be said that the simplest, but not for this uncomplete, geomorphic model is

such that accounts for the sediment transport just in two different layers, originating

the two well-known modes of sediment motion: bed-load and suspended transport.

So, three main regions are promptly identified in a longitudinal section of an alluvial

channel, as it is shown in figure 1.5: i) the bed, composed of grains with no motion,

where the shear stress τb acting at a point on the flow boundary is less than a certain

“critical” value (τc) (corresponding to that point, see Chapter 4 for the definition of

τb and τc); ii) a transport layer over the bed, where the grains are transported by

sliding, rolling and saltating, being the relative tractive force or relative flow intensity

η∗ ≡ τb/τc smaller than a certain value and larger than one; iii) an upper layer where

the transported grains diffuse, by turbulence, into the remaining flow region, while

some others are still transported in the form of bed-load. The total volume of grains

passing through a flow cross-section per unit flow width and per unit time is the

sum of the bed-load rate qsb and the suspended-load rate qss, and is referred as total

transport rate qs ≡ qsb + qss.

The transport continuity equation can be formulated in terms of the bed- and

suspended-load rates (e.g. Yalin and Ferreira da Silva, 2001):

αp,max
∂zb

∂t
+
∂qsb
∂x

+
∂qss
∂x

+
∂hc

∂t
= 0 , (1.37)

where x is the streamwise coordinate, αp,max (< 1) is the maximum packing fac-

tor of the sediment phase (the complementary of the granular material porosity),

zb is the bed level, h is the water depth in the direction of the gravity and c is

the vertical averaged volumetric concentration in the suspended-load sublayer. This
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equation provides the evolution of the bed level as a function of each component of

the total transport rate, the volumetric concentration of suspended sediment, and

the water depth. To compute the bed-load rate qsb, stage-discharge predictors for

alluvial channels are usually employed (e.g. Vanoni, 2006). On the other hand, the

suspended-load rate should be formulated in terms of the streamwise component of

the depth-averaged velocity vector u (qss = αchcu, with αc being a near-to-unity coef-

ficient called as non-equilibrium adaptation coefficient of suspended load). Addition-

ally, the suspended-load transport equation is required to determine the volumetric

concentration of suspended load:

∂hc

∂t
+
∂hcu

∂x
= qe − qd (1.38)

This equation balances for the sediment deposition and entrainment rates at the

interface between bed-load and suspended-load layers, denoted by qd and qe, respec-

tively. Hence, empirical formulas to determine these rates are also required by one-

dimensional models.

To model the interaction of the flow with sediment transport and bed change, one

can use the one-dimensional unsteady sediment-laden flow described by the gener-

alised shallow-water equations (e.g. Wu and Wang, 2007):

∂ρh

∂t
+
∂ρhu

∂x
+
∂ρzb

∂t
= 0 , (1.39)

∂ρhu

∂t
+
∂ρhu2

∂x
+ ρgh

∂zs

∂x
+

1

2
gh
∂ρ

∂x
= −τb , (1.40)

where τb is the bed shear stress, that is usually computed with Manning, Chezy or

Darcy-Weisbach frictional law. The water surface elevation zs ≡ zb + ǫb + h is to

be computed as a function of the bed-load depth ǫb that depends on the bed-load

formula one best to use.

By comparison of the variables involved in the geomorphic equations (1.37)-(1.40)

and that of the mixture model (1.25)-(1.35), the following hypotheses intrinsic in

the geomorphic model are clearly figured out: both the slip velocity of the sedi-

ment particles with respect to the water phase and the sediment particles inertia

are neglected; small slope of the bottom bed is assumed, as well as a hydrostatic
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pressure distribution; erosion and deposition processes are modelled as point sources

and sinks of sediment, respectively, and static laws are supposed to be valid in the

computation of these volumetric fluxes. The first assumption implies an incorrect

modelling of the general stress tensor τ of the sediment-water mixture, neglecting the

momentum-diffusion stresses τ
′′′′

. Moreover, the momentum interchange between wa-

ter and sediment when sediment particles are eroded or settled are not accounted for.

Therefore, one-dimensional models given by (1.37)-(1.40) do not properly describe

the fundamental physics of the water-sediment multiphase flow under consideration.

The hydrostatic pressure distribution in presence of sediment stratification is also no

longer justified, and the formulation for small bottom slopes limits the applicability

of the model when erosion may induce changes in the bottom bed of unpredictable

magnitude. Although this kind of models is not universal, they however give good

predictions when special care is taken in the calibration of the erosion and deposition

fluxes, the bed-load predictor and the coefficients in the friction law, for the specific

situation one desires to simulate.

In the particular case that the predominant mode of sediment transport is the bed-

load one, the one-dimensional geomorphic equations described above can be simplified

neglecting both the suspended-load rate qss and the suspended-load equation (1.38).

An extensive analysis of the mathematical properties of the resulting system of equa-

tion, and the appropriate way of solving it was done by Hudson (2001). This option

has been adopted by several authors in their studies to analyse, for instance, ero-

sional dam-break problems (Capart and Young, 1998; Rosatti and Fraccarollo, 2006;

Murillo et al., 2007), Tsunami originated by landslide (Castro-Dı́az et al., 2008), and

local scour around object (Liu, 2008). One advantage of this choice is the powerful

mathematical tools available to solve non-homogeneous systems of hyperbolic partial

differential equations. As commented on in § 1.2, in the last decades special attention

has been focussed on the development of conservative numerical schemes for hyper-

bolic systems of partial differential equations (see Murillo et al., 2007; Castro et al.,

2007). Thus, all this machinery can be employed to solve numerically the ensuing

problem. Contrarily, if bed-load is expected to vanish with respect to suspended-load,

one has to solve the complete system of partial differential equations (1.37)-(1.40) with
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qsb = 0 in (1.37). In this case, the mathematical problem remains hyperbolic, and the

same numerical techniques, as in the previous case, can be employed. Examples of

application are erosional dam-break flows (Cao et al., 2004; Wu and Wang, 2008; Bo-

horquez and Fernandez-Feria, 2008; Murillo et al., 2008) and Tsunami on a coastline

(Simpson and Castelltort, 2006), among many others. Finally, more sophisticated

approaches consider both bed- and suspended-load on the sediment transport asso-

ciated with the flow movement (e.g. Fraccarollo and Capart, 2002; Wu and Wang,

2007).

Making a significant step forward with respect to depth-averaged mixture models,

Pitman and Le (2005) have recently presented a novel depth-averaged two-phase

model for debris flows and avalanches that contains mass and momentum equations

for both the solid and fluid component. This implicitly provides equations for the

velocities of both phases and for porosity. However, in this work the authors propose a

numerical method only for a reduced system that ignores fluid inertial terms. Pelanti

et al. (2008) present a mathematical and numerical two-phase granular flow model

over variable topography that follows the approach of Pitman and Le. Ferreira (2007)

propose a multi-fluid model with closure laws computed by means of the kinetic

theory.

1.6 Thesis outline

The remainder of this thesis is organised as follows. Chapter 2 describes the one-

dimensional hydraulic modelling of a dam-break flood on a steep incline. The subject

has a long history and previous modelling efforts are summarised in a comprehensive

literature survey. The discussion covers asymptotic analytical solution as well as

numerical simulation. Differences arise due to the development of hydrodynamic

instabilities at late time when a kinematic state is reached, which finally give rise to

roll waves.

The Chapter 3 presents a linear stability analysis of a kinematic wave on an in-

clined plane by means of a linear near- and non-parallel spatial stability analysis,

multiple scales, and the direct numerical simulation of small perturbations. Both
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stability analyses are checked against the numerical evolution of non-linear pertur-

bations. The CFD methodologies used in this study, namely FVM and the finite

differences methodology, are also presented.

Next, the one-dimensional modelling of the transport of suspended sediment as-

sociated with a dam-break flood on an inclined plane is discussed in Chapter 4. The

transport of suspended sediment down the inclined bed is obtained and discussed as

a function of the slope of the bed for different values of the parameters characterising

the sediment and its transport properties. The relative importance of the bed-load

(to the suspended load) sediment transport is also discussed as a function of the size

of the sediment particles and the slope of the bed for different models on the initiation

of sediment suspension from bed-load. We also check the dilute sediment approach

and characterise the conditions for its failure.

The objective of Chapter 5 is to contribute to the development of three-dimensional

mixture models, based on first principles, for the transport of sediment in free-surface

flows. First, the literature related to the modelling of solid-liquid systems is reviewed.

For completeness, correlations derived for liquid-liquid systems are also included in

this study. A revised model for the mixture viscosity function at high phase fractions

is put forward, which is based on recent experimental data. The performance of sev-

eral models is assessed against experimental data for two test cases. Finally, novel

results for a horizontal dam-break are presented.

Each of the Chapters starts by stating the governing equations. Then, the solution

procedure is discussed by presenting the discretised equations together with the overall

solution procedure. Finally, both methodologies are validated against suitable test

cases.

Finally, in Chapter 6, the main findings and conclusions are summarised. Various

outstanding issues are identified and suggestions for future research are given.
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One-dimensional dam-break flood

on a steep incline

2.1 Introduction

It is well known that the hydraulic resistance, caused by stream bed friction and

turbulence, strongly affects the propagation of a dam-break wave of a semi-infinite

mass of fluid over a rigid horizontal boundary (Schoklistsch, 1917; Eguiazaroff, 1935;

Martin and Moyce, 1952). This frictional effect predominates in the shallow front

region of the flow, so called tip region, but can be neglected in the bulk of the flow.

The experiments of Schoklitsch indicate that actual velocities for the fordward wave

may be as slow as 40 percent of the theoretical results given by Ritter’s (1892) solution.

This behaviour was firstly analysed theoretically by Dressler (1952), and consecutively

by Whitham (1955), leading both analytical studies to formulae which are in almost

perfect agreement. The overall agreement between their theoretical results and the

experiments conducted by Dressler (1954) was also satisfactory - the recent theoretical

study by Hogg and Pritchard (2004) confirms this result. The importance of the

hydraulic resistance in dam-break flows over a horizontal boundary has motivated

further experiments (e.g. Lauber and Hager, 1998a; Jánosi et al., 2004) as well as

analytical studies (e.g. Hogg, 2006) that consider the release of a finite mass of fluid.

In the case of releasing a finite mass of fluid, it has been noted that hydraulic resistance

37
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continues playing an unnegligible role, but the applicability of the results by Dressler

(1952), Whitham (1955) and Hogg (2006) reduces to very early times since the bulk

flow pattern differs from the Ritter’s one (Bohorquez and Fernandez-Feria, 2008).

The influence of the bed slope in dam-break processes is also of great interest, since

the slope effect predominates over the resistance for moderately steep slopes (e.g.

Lauber and Hager, 1998b; Nsom et al., 2000). The bed slope effect, in the dam-break

problem of a finite mass of fluid on an inclined plane, was first analysed by Dressler.

After establishing that “One can determine analytically the exact wave-front celerity

(neglecting resistance) for the case where the bottom is inclined below the horizontal”

(Dressler, 1952), he presented in 1958 an exact solution for ideal dam-break floods on

an inclined plane “for slopes which are not excessive” (Dressler, 1958). Later, Hunt

(1987) presented a similar solution. Since the earlier work of Dressler other solutions

valid for steep slopes were obtained (Fernandez-Feria, 2006; Ancey et al., 2008). How-

ever, similarly to the horizontal problem, hydraulic resistance is unnegligible in floods

over inclined planes. This fact was originally noted by Lighthill and Whitham (1955),

who established that flood waves on inclined planes can be described as kinematic

waves (i.e. waves in which a balance is struck between frictional and gravitational

forces) for subcritical floods. In this case the hydraulic resistance affects not only the

advancing of the fordward wave but also the bulk of the flow, when the flood travels

approximately four times its initial extent (Hunt, 1982). Moreover, kinematic waves

and dynamic waves are both possible together in supercritical floods (Lighthill and

Whitham, 1955). In supercritical streams the kinematic and dynamic waves can play

equally important parts, as in the case of roll-waves observed in mountain streams

(as analysed by Dressler, 1954). This behaviour is radically different to that of an

ideal wave, which constitutes a purely dynamic wave. Therefore, it becomes evident

the importance of considering frictional effects in floods on inclines, questioning the

applicability of ideal solutions to real scenarios. The hydraulic effect in a dam-break

flood over an incline of small slope was firstly study analytically by Hunt (1982), and

later in floods of a point-source of mass by Weir (1983) and Hunt (1984). Contrary to

the ideal dam-break flood, Weir and Hunt’s solutions claim that the resulting flow at

late time does not depend on its initial configuration. This fact was corroborated by
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comparison of theoretical solutions with laboratory data. However, in the early stage

just after the release of the water the non-linear shallow water equations are to be

solved without any simplification. To this end, the use of numerical techniques (e.g.

Soulis, 1992; Garcia-Navarro et al., 1999; Tseng and Chu, 2000; Hsu, 2002; Namin

et al., 2004) was proven satisfactory by comparison with experimental data (WES

1961, Bellos et al. 1992).

This chapter is aimed to review previous analytical solutions for dam-breaks on

small slopes, and reformulate them to steep slopes. We focus the analysis on the

bulk flow as well as the tip region. These solutions will be then checked against

the numerical simulation of the problem, so that their validity is established. As

expected from the comment on Lighthill and Whitham (1955), we find roll-waves in

our numerical simulations at late time and moderately high Froude numbers (more

precisely, for Froude numbers larger than 2). We draw qualitative characteristics of

roll-waves in floods on steep slopes based on the numerical results. Finally, some

laboratory-based experiments for floods on steep inclines, in which roll-waves were

observed, are shown, qualitatively supporting our predictions based on numerical

simulations.

Preliminary results concerning this research were presented in Bohorquez (2007b,c).

2.2 Formulation of the problem

We consider here the one-dimensional flow over a constant slope bed. In the

shallow-water approximation, the dimensionless equations for the mass conservation

and momentum in the direction of the flow can be written as (see Fig. 2.1)

∂η

∂t
+
∂ηU

∂X
= 0 , (2.1)

∂U

∂t
+ U

∂U

∂X
+ cos θ

∂η

∂X
= sin θ − sf

η
, (2.2)

where θ is the angle between the bed and the horizontal, t is the time, X is the

coordinate along the bed, η is the depth of the water measured along the coordinate

Y perpendicular to the bed, U is the depth-averaged velocity component alongX, and
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U

η
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Figure 2.1: Sketch of coordinates and variables.

sf is a dimensionless bed friction (see below). All the magnitudes in these equations

have been non-dimensionalised with respect to a length scale η0, corresponding to

some initial depth, and a velocity scale U0 ≡ √
gη0, where g is the acceleration due

to gravity. Equations (2.1)-(2.2) are formally the same as the classical Saint-Venant

equations for the shallow-water in a channel with small angle of inclination θ (Stoker,

1957). However, it can be shown (Dressler, 1978; Savage and Hutter, 1991; Bouchut

et al., 2003; Keller, 2003) that these equations, written in the present coordinates X

and Y (see Fig. 2.1), are valid for any slope tan θ of the constant-slope bed, not just

for small channel slope, provided that the characteristic length scale of the flow in

the direction of the coordinate X is much greater than the characteristic length scale

in the Y direction (shallow-water approximation).

To compute the friction term, sf ≡ (τb/ρU
2
0 ), where τb is the bed shear stress and

ρ the fluid density, we shall use the Darcy-Weisbach friction factor f , so that sf may

be written as (Chanson, 2004)

sf =
f

8
|U |U . (2.3)

The factor f is a function of the local Reynolds number, based on the velocity U and
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the hydraulic diameter of the channel, and of the relative height roughness of the bed.

To simplify the present analysis we shall assume that the friction factor f is constant

to ease the analytical treatment of the problem under consideration.

We are interested here in the wave-front shape, and the advancing of the forward

wave, of a point source of mass initially (t = 0) located at X = 0,

U(X, 0) = 0 , (2.4)

η(X, 0) = Aδ(X) , (2.5)

where A is the released volume of water and δ(X) is the Dirac delta function.

We first consider as a test case the dam-break problem, i.e. the flow whose initial

condition is given by (see Fig. 2.2)

η(X, 0) =






0 for X < −1/e

eX + 1 for − 1/e ≤ X ≤ 0

−X/e+ 1 for 0 < X ≤ e ,

0 for X > e

(2.6)

where e ≡ tan θ is the slope of the bed. At t = 0, the vertical wall that intersects the

bed at X = e is removed instantaneously, causing the fluid to move over the slopping

bed under the action of gravity. In this case, we shall use the characteristic length η0

as the dimensional depth at X = 0, t = 0, and the volume of water initially at rest is

given by

A =
1

2

(
e+

1

e

)
. (2.7)

2.3 Perturbation solution

In the spirit of Weir (1983) and Hunt (1984), an asymptotic analytical solution can

be found in the spreading of a mass of fluid (initially at rest) over an inclined plane

at late time. In Hunt’s solution, for small slopes of the bottom bed, he showed that

the velocity and water depth field can be constructed by an asymptotic expansion in

terms of the shallowness parameter εHunt (≡ η0/l), which relates the characteristic
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Figure 2.2: Coordinates and sketch of the initial conditions for η(X) in the dam-break
problem on inclines.

streamwise extent l occupied by the flood and the characteristic water depth η0.

Moreover, the solution does not depend on the initial configuration of the released

fluid.

We can also take advantage of this fact to construct the solution for steep inclines,

defining a scaling factor ε, and rescaling non-dimensional variables in § 2.2 with the

relations that follow:

x ≡ Xε tan θ , τ ≡ tε tan θ

√
8

f
sin θ , u ≡ U

√
f

8 sin θ
. (2.8)

Thus, equations (2.1)-(2.2) now read as

∂η

∂τ
+
∂ηu

∂x
= 0 , (2.9)

ε

[
Fr2

eq

(
∂u

∂τ
+ u

∂u

∂x

)
+
∂η

∂x

]
= 1 − u2

η
, (2.10)

where Freq is defined as

Freq ≡
√

8

f
tan θ . (2.11)

The Froude number, which states the local ratio of the flow velocity U to the wave

celerity c ≡
√
η cos θ, is given in the new variables (2.8) by

Fr ≡ U

c
= Freq

u√
η
, (2.12)
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and reduces to the constant parameter Freq when a balance is struck between the

friction of the bottom and the streamwise component of gravity, in other words, when

ε can be neglected in the momentum balance (2.10).

To provide ε with physical sense, one can use a characteristic streamwise extent l

to make non-dimensional equations, and one obtains the relation that follows between

ε and l:

ε ≡ η0

l tan θ
.

According to Lighthill & Whitham (1955), kinematic waves are obtained by neglecting

ε in (2.10). In view of this, the kinematic regime is attained when ε≪ 1, and it holds

for l ≫ η0/ tan θ. This means that, with small slopes of the bottom, the wave should

travel a long distance downstream to reach the kinematic state, while for very large

slopes (θ → π/2) only a very short distance is required.

Here, we are interested in kinematic waves, which are obtained when the param-

eter ε is small in the momentum balance (2.10), providing u and η, as well as their

gradients, of order unity. In this case, the velocity and height can be expanded in

powers of ε to find an asymptotic analytical solution:

u(x, τ) = V (x, τ) + εV1(x, τ) +O(ε2) , (2.13)

η(x, τ) = H(x, τ) + εH1(x, τ) +O(ε2) . (2.14)

Substituting this expansion in the momentum balance (2.10), and grouping terms of

order O(1), one has V = H1/2. Similarly, from (2.9) it follows

∂H

∂τ
+

3

2

√
H
∂H

∂x
= 0 , (2.15)

showing that H and V remain constant for waves travelling with velocity (3/2)H1/2.

The dam-break problem, whose initial condition for the height (2.6) reads in the

present variables

η(x, 0) =






0 for x < −ε
x/ε+ 1 for − ε ≤ x ≤ 0

−x/(εe2) + 1 for 0 < x ≤ εe2

0 for x > εe2
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can be readily integrated using the kinematic equation (2.15), together with the initial

condition shown above. Although the solution obtained by this approach is not valid

for the initial stage, at late time the flow losses memory and the asymptotic expansion

becomes more and more valid as time increases. Furthermore, after computing this

solution, that is valid for any slope of the bottom, we will be able to analyse the

discrepancy of other theoretical results obtained with the well known Saint-Venant

equations, which are just appropriate for small bottom slopes. In order to present

the results, and due to the fact that the scaling paremeter ε is arbitrary, we state ε

in such a way that x ≡ X, i.e. ε = 1/e.

The resulting wave profile for the dam-break problem should be defined in two

different regions: the first area (denoted by ℜI) is enclosed by the two real charac-

teristics C1 ≡ −1/e and C2(τ) ≡ 3τ/2, and this region exists for any τ ; the second

region (ℜII) ranges between the characteristic C2(τ) and C3(τ) ≡ (16e2 + 9τ 2)/(8e),

and it exists just for τ ≤ 4e/3. After defining these two different areas the solution

reads

H(X, τ) =





eξI(X, τ) + 1 if X ∈ ℜI

1 − ξII(X, τ)/e if X ∈ ℜII

, (2.16)

with

ξI =
1

2

(
eτ̂ 2 + 2X − τ̂

√
4 + e2τ̂ 2 + 4eX

)
, (2.17)

ξII =
1

2

(
2eX − τ̂ 2 − 3

2
τ̂
√

4e2 + τ̂ 2 + 4eX

)
. (2.18)

being τ̂ ≡ 3τ/2. As in Hunt’s (1982) solution, a shock must be inserted to satisfy the

mass conservation requirement,
∫ Xs(τ)

−1/e

η(X, τ)dX = A . (2.19)

For simplicity, we give the location of the shock Xs(τ) just for τ > 3Xs/2. In closed-

form it is given by

τ̂
(
4 + e2τ̂ 2 + 4eXs

)3/2
= e3τ̂ 4 + 12Xs + 6e2τ̂ 2Xs + 6e

(
τ̂ 2 +X2

s − 1
)
. (2.20)

Figure 2.3 depicts both the region ℜI (dashed-dotted line) and the region ℜII

(dotted line) in a space-time diagram {X, τ} for e = 1. The border between these
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Figure 2.3: Characteristic curves in a space-time diagram for the dam-break problem
in § 2.3 with e = 1.

two regions is established by the characteristic curve C2 (solid, squared line). One

should note the presence of the shock Xs (solid, circled line), which establishes the

validity of the solution (2.16): on the right hand side of the shock the solution is

no longer valid, and both the height and the velocity field vanish. The other two

characteristics C1 (solid, crossed line) and C3 (dashed line) are also shown in the

same figure.

A more simple solution can be deduced for the release of a point source of mass

initially at rest, as defined in § 2.2 [see equation (2.5) for the initial condition]. As

a matter of fact, the set of equations (2.9)-(2.10), together with the initial condition

(2.5), is exactly the same as used by Weir (1983) and Hunt (1984), but they come

from different dimensional equations. Therefore, the first conclusion to state is that

dimensionless Weir’s (1983) and Hunt’s (1984) solution is valid also for arbitrary

slopes when non-dimensional variables are defined correctly. Some details of the orig-

inal study by Hunt (1984) are next reproduced, in order to create a self-contained

manuscript.

The height field in the kinematic wave, called first-order outer solution, is given
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by

H(X, τ) =

(
2X

3τ

)2

for 0 ≤ X ≤ Xs(τ) , (2.21)

being the kinematic shock location Xs,

Xs(τ) =
3

2

(
2Aτ 2

)1/3
, (2.22)

and evaluating (2.21) at the shock (2.22), the shock flow depth holds:

Hs(τ) =

(
2A

τ

)2/3

. (2.23)

Next, the solution at the nose region, denoted by inner solution, is obtained after

rescaling the streamwise coordinate:

χ ≡ x− xs

ε
,

in which the continuity equation (2.9) and the momentum balance equation (2.10)

read

ε
∂η

∂τ
+
∂η(u− x′s)

∂χ
= 0 ,

εFr2∂u

∂τ
+ (u− x′s)

∂u

∂χ
+
∂η

∂χ
= 1 − u2

η
,

respectively. Substituting the asymptotic expansion (2.13)-(2.14) in the equations

shown above, and grouping terms of order unity, it follows u = x′s and

∂H

∂χ
= 1 − (x′s)

2

H
. (2.24)

Therefore, the velocity profile in the tip region is established uniform by the current

solution. The above partial differential equation has as implicit solution (Hunt, 1984):

χf − χ = −Hin − (x′s)
2 ln

[
1 − Hin

(x′s)
2

]
, (2.25)

where χf (τ) is the value of χ at which the nose of the shock intersects the channel

bed.

The front location given by (2.22), and the previous result (2.20), has been plot-

ted in Fig. 2.4 for a steep slope, in particular e = 1. Both solutions are directly
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with respect the shock height ηs (2.23), for a given instant of time and several values
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comparable. We have also plotted the original asymptotic result provided by Hunt

(1982, 1984) to quantify the effect of considering the Saint-Venant equations in spite

of Eqs. (2.1)-(2.2). The solutions by this author becomes worse as time goes on

because the slope e is not small.

2.4 Asymptotic analytical solution for the tip re-

gion

Whitham (1955) proposed an asymptotic analytical solution for the tip region of

a dam-break flood on a horizontal plane. In the spirit of Whitham, we provide this

section with the algebraical expression of the whole expansion for the advancing of a

wetting front on an inclined plane.

If we define the variable ξ = Xf (t) −X, where Xf is the position of the wetting

front, equations (2.1)-(2.2) read (note that U > 0)

∂η

∂t
+ (X ′

f − U)
∂η

∂ξ
− η

∂U

∂ξ
= 0 , (2.26)

∂U

∂t
+ (X ′

f − U)
∂U

∂ξ
− cos θ

∂η

∂ξ
= sin θ − f

8

U2

η
, (2.27)

where primes denote differentiation with respect to t. One can obtain a solution of

the resulting equations in powers of ξ using the same expansion as Whitham (1955),

which can be written as

η(ξ, t) =
N∑

j=0

ηj(t)ξ
j+1
2 , U(ξ, t) =

N∑

j=−1

Uj(t)ξ
j+1
2 . (2.28)

The first term in the above expansion for the velocity establishes a uniform velocity

profile in the tip region, and taking into account that the particle velocity in the front

should be the same as the wave-front velocity, one obtains U−1 = X ′
f . On the other

hand, drag forces caused by stream bed friction and turbulence predominate in the

shallow tip region of the flow, while away from the front they are often negligible

provided the fluid is sufficiently deep. Therefore, the effect of hydraulic resistance

is to pile up the fluid near the wave-front, the wave has a vertical slope at the tip,
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and the particle acceleration, ∂U/∂t+(X ′
f −U)∂U/∂ξ, is expected to be finite there.

Thus, to first approximation in the tip region, momentum balance (2.27) reduces to

a more simple equation:

−η cos θ
∂η

∂ξ
= η sin θ − f

8
U2. (2.29)

This last relationship is exactly the same as (2.24), which was rigorously deduced

by asymptotic analysis techniques. Substituting (2.28) into the above equation, and

grouping terms of order ξ, one obtains η0 = X ′
f/2(f/ cos θ)1/2. The reader should note

that for small slopes of the bottom (cos θ ≈ 1) this result is identical to the earlier

solution by Whitham (1955), and that the streamwise gradient of the hydrostatic

pressure hardly affects the height profile when we are close to the wetting front (ξ ≪
1). Analogously, the continuity equation (2.26) supplies the next term for the velocity,

U0 = 0. Repeating this process for the next exponents in ξ, first with the momentum

equation (2.27), and then with the mass balance (2.26), the coefficients ηi and Ui

are obtained explicitly. For instance, grouping terms O(ξ1/2) in the mass balance

provides η1 = 2(x′′f − sin θ)/(3 cos θ). All the coefficients can be obtained analytically:

UN =
1

η0

(
2

N + 2
η′N−1 −

N−1∑

j=1

UjηN−j

)
forN ≥ 1 , (2.30)

ηN =
2

N + 2

1

η0 cos θ

[
− cos θ

N−1∑

j=1

N − j + 1

2
ηjηN−j − sin θηN−1 +

f

8

N−1∑

j=−1

UjUN−j−2

+
N−1∑

j=0

ηjU
′
N−2−j +

N−1∑

j=0

(
−ηj

N+1−j∑

k=1

N − k − j + 1

2
UN−k−jUk−1

)]
forN ≥ 2 .

(2.31)

The asymptotic solution (2.28) was originally found by Whitham (1955) for a

horizontal bed (θ = 0o), but this author only provided explicit expressions for the

first few coefficients, just up to N = 1. Thus, the first result we must point out is

that the velocity field, which actually converges even for ξ > 1 (see below), depends

on ξ from the third term in the expansion, and therefore the assumption performed

by Whitham “that U is nearly uniform in the tip region” (Whitham, 1955) is valid

only until O(ξ).
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In order to check the asymptotic solution (2.30)-(2.31), and the approximate so-

lution (2.25), we have selected a really large time in such a way that the current is

lengthened enough to satisfy the kinematic wave approximation, and the location of

the wetting front can therefore be evaluated with (2.22) under the kinematic wave hy-

pothesis. So, we are able to compute the wave front velocity X ′
f and next derivatives.

As it is shown in Fig. 2.5, where the height η has been plotted as a function of ξ for a

given t, the solution converges slowly as N is increased if ξ is not too small. In that

figure we also include the original form of the tip region given by Hunt (1984), and the

inner solution (2.25) valid for arbitrary bottom slopes. We find that expansion (2.28)

is in agreement with the inner solution (plotted in continuous line) for N ≥ 2. As

a consequence, our results are directly comparable to those obtained by Hunt (1984)

provided N is sufficiently large. In view of this, it is much easier to evaluate the wave

front profile using (2.25) than the full expansion (2.28), and then the first alternative

becomes really practical. Moreover, the validity of the present solution allows us to

neglect accelerations in the momentum balance, and to establish the velocity profile

nearly constant in the tip region. A lack of precision is obtained in the nose region

for the height when using the Saint-Venant equations, as it is shown in Figure 2.5,

where the height profile obtained by Hunt (1984) has been also plotted for such slope

of the bottom. But our solution is actually valid for any constant slope.

2.5 Numerical simulation. Appearance of

roll-waves

In previous sections the dependence of the wave-front shape with the wetting front

velocity and diverse parameters governing the problem (bed slope e, and friction factor

f or Froude number Freq) has been established. Moreover, an asymptotic expression

for the advancing of the forward wave has been proposed for any mass of fluid that

reaches the kinematic regime, in particular the case of dam-break floods has been

analysed. However, the non-linear character of the set of equations that governs the

fluid movement [i.e, Eqs. (2.1)-(2.2)] allows multiple solutions for the same problem.
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The reader should think, for instance, in the development of roll-waves in uniform

and steady flows on inclined plane beds (see Lighthill and Whitham, 1955; Brock,

1967, among others). Thus, if roll-waves developed when a quasi-steady and quasi-

uniform flow regime is being reached (the kinematic wave), the flow pattern will

become significant different, and the location and velocity of the wetting front will

be deterministically unknown. Actually, Bohorquez and Fernandez-Feria (2008) have

reported this fact for the dam-break problem on inclined plane beds. The main aim

of this section is to introduce this new behaviour for the kinematic wave and report

some qualitative features of the resulting flow pattern.

To that end, the set of equations (2.1)-(2.2), together with the initial conditions

corresponding with the dam-break problem [Eqs. (2.4) and (2.6)], has been solved

numerically on a uniform grid using an upwind TVD (total variation diminishing)

method, second-order accurate in both space and time, with semi-implicit and upwind

treatment of the source terms, as described by Burguete and Garćıa-Navarro (2001).

The boundary condition used for the wetting front is a cut-off height (η/ηmax < 10−4),

the Courant-Friedrich-Lewy number is CFL = 0.45, and the mesh size is ∆X = 0.2.

Figure 2.6 depicts the location of the wetting front as a function of time obtained

numerically, the asymptotic results (2.20) and (2.22), and the ideal forward wave

(Dressler, 1958). On earlier time, the kinematic regime has not been reached yet,

and the kinematic solutions overestimate the wetting front velocity. As time goes by,

the agreement between the numerical experiment and the kinematic shock position

is better, while the ideal solution diverges more and more. This reveals the reduction

of front velocity due to drag effects, according to the semi-empirical results of Lauber

and Hager (1998b), also drawn in the same figure. As we stated before, the forward

wave corresponding with the ideal or inviscid case is far from the physical one. This

fact corroborates the fundamental importance of hydraulic resistance in floods on

inclines.

In the tip region, it is found that the asymptotic expansion compares well with the

numerical solution (circles plotted in Fig. 2.7). The agreement between (2.25) and

(2.28) is better and better as N increases, the expansion (2.28) converges to the inner

solution (2.25) for large N . From the matching point (big star) to the right hand
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side, the inner and the composite solution (dashed-dotted line) by Hunt are almost

identical, and we need quite a lot terms in the expansion (e.g., N > 25) to obtain

a similar result. It is also noted the low-precision solution for the case N = 1 (the

original one by Whitham), which is only applicable in the very proximal distance to

the wetting front.

However, the main feature of real flood waves on steep inclines in relation to the

predictions of the asymptotic solutions is the appearance of roll-waves. The evolu-

tion of the velocity profile at several instants of time for the dam-break problem is

addressed in Figure 2.8, corresponding to the same case as in Fig. 2.7. Continu-

ous line shows the numerical solution, while the velocity profiles associated to the

water-depth asymptotic solutions (2.16) and (2.21) have been drawn in circles and

stars, respectively. As time rises, the kinematic wave approximation becomes more

and more valid, but instabilities develop just from numerical noise and the result-

ing velocity field is rather different. It is found a velocity field composed by the

kinematic wave solution and additional roll-waves. The onset of these roll-waves is

located in the bulk of the flow (see Fig. 2.9), far from the tip region. As time goes

on, their amplitude grows, developing at the end saturated hydraulic-jumps, which

travels convected towards the wetting front. This behaviour, termed ‘competition’

between kinematic and dynamic waves, is that figured out by Lighthill and Whitham

(1955) half a century ago! The flow changes from a quasi-uniform and quasi-steady

state to highly unsteady. We found the occurrence of roll-waves just for supercritical

flows - moreover, for Freq > 2 (the exact value is analysed in the next Chapter). In

contrast, when Freq < 2 we did not find the formation of roll-waves, and thus the

kinematic wave describes with accurate precision the flow pattern. This behaviour

is analogous to that observed in naturally developed roll-waves on uniform streams

in mountain regions and artificial channels (e.g. Cornish, 1934; Brock, 1967; Brauner

and Maron, 1982). Finally, it should be pointed out that when roll-waves overtake the

wetting front, they disappear but affecting the water-depth profile at the tip region,

that is adjusted to the local velocity in the roll-wave velocity profile evaluated at the

wetting front (see Fig. 2.10). Thus, the forward wave acquires a pulsating behaviour,

which is better appreciated in the simulations shown in Chapter 4 with very large
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Froude numbers.

2.6 Roll-waves in field-based experiments in floods

on steep slopes

Figure 2.11 depicts three snapshoots of roll-waves observed in clear water dam-

break flood over an straight inclined channels of (constant) steep slope. These pic-

tures correspond to the experiments done the dates 08/30/1994, 08/28/2002 and

06/07/2006 (as noted in each photo) at the USGS Debris-Flow Flume. This infor-

mation was extracted from the Video Documentation of Experiments at the USGS

Debris-Flow Flume 1992-2006 (Logan and Iverson, 2007). At the top of the three im-

ages, roll-waves are clearly observed along the horizontal prolongation that enlarges

the end of the inclined flume. The waves grow on the left-hand side of the picture,

maybe denoting some inclination of the bottom channel towards the left bank. This

hypothesis is also funded on other dam-breaks experiments performed in the same

flume, but employing a mixture of sand, bed and loam instead of clear water (e.g.

experiments dated 09/12/2006), in which the mixture flows along this side1. In the

middle and at the bottom of the three pictures, the plan view of the inclined flume

end (without prolongation) shows the evolution of roll-waves when discharging over a

horizontal boundary. In absence of data field measures, we are happy to show at least

that the phenomenon of roll-waves in floods on inclines has been reported in physical

experiments. This is the physical evidence of our numerical predictions previously

presented.

2.7 Summary and conclusions

In this chapter we have considered the effects of hydraulic resistance on the dam-

break flood over an inclined plane of arbitrary but constant slope of the bottom bed.

1The reader has open access to the complete version of the films following the link displayed in
the bibliography.
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Figure 2.9: Detail of the velocity profile at t = 4783 from Fig. 2.8.
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Figure 2.10: Height profile at t = 8960 for the same case as in Fig. 2.7. In circles is
plotted the numerical solution, and in continuous line the asymptotic expansion in
§ 2.4.
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Figure 2.11: Roll-waves in clear water dam-break flood, observed in the experiments
at the USGS Debris-Flow Flume (Logan and Iverson, 2007).
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To gain some inroads into this problem, we have considered turbulent flows governed

by the one-dimensional shallow-water equations, and we have limited our study to

late times, in which the suddenly released, fixed mass of fluid lengthens and reaches

a kinematic state.

For a suddenly released mass of fluid and an initial dam-break configuration over

an inclined plane, the theoretical location of the wetting front has been supplied in the

kinematic wave regime, together with the velocity and water-depth field. One of the

most noticeable effects of the results for large slopes of the bottom is the divergence

of the previous solution by Hunt (1982, 1984), who provided a similar asymptotic

solution using the traditional Saint-Venant equations. This divergence arises mainly

because the whole gravity g moves the fluid when the Saint Venant equations are

used, instead of its projection along the perpendicular to the plane. The results for

any mass of fluid that spreads on a plane bed are identical to those reported by Weir

(1983) and Hunt (1984) in terms of a specific set of non-dimensional variables.

We have also considered the analysis of the shape of the flood in the tip region. The

solution has been obtained as a full expansion in terms of the streamwise coordinate

located at the wetting front. Our results are directly comparable to those obtained

by Hunt (1984) when we use enough terms in the expansion.

We have also solved the shallow-water equations (with the appropriate initial

conditions) using an upwind TVD method, second-order accurate in both space and

time, with semi-implicit and upwind treatment of the source terms. We find that the

asymptotic analytical solutions and the numerical simulations are in almost perfect

agreement, except for Froude numbers larger than two due to the development of

roll-waves. The accuracy of the numerical solution has been also checked, and very

good results are obtained by just using a cut-off height as boundary condition for the

wetting front. The existence of physical instabilities in floods on steep inclines was

illustrated.

Finally, we note that the solutions developed could be used to check, for instance,

the precision of other numerical schemes or boundary conditions.



Chapter 3

Roll-waves in flood on an inclined

plane

3.1 Introduction

‘A thin layer of water-flowing down an inclined surface, may undergo, in some

circumstances, a transition to an oscillatory movement where a train of surface waves

propagates downstream’. The development of roll-waves happens for large Reynolds

numbers, typically above 400 for quasi-2D roll-waves and above 1, 200 for roll-waves

for turbulent flow. In this region of large Reynolds numbers the flow can be assumed

to be potential except for a viscous boundary layer on the wall. The velocity is

therefore assumed to be independent of the cross-stream coordinate leading to the

shallow-water or Saint-Venant equations (de Saint-Venant, 1871; Whitham, 1974).

The evolution of the surface is governed by a sequence of transitions starting from

the primary instability of the plane-parallel flow, filtering mechanism of the linear

instability and secondary modulation instability that converts the primary wave field

into a roll-wave.

Experiments by Alekseenko et al. (1985) and Brauner and Maron (1982) indicate

that waves at inception near the channel entry are indeed well described by the linear

theory. However, for conditions far from criticality where the linear growth rate is

significant, these waves quickly grow in amplitude and wavelength as they travel

59
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downstream (Prokopiou et al., 1991). Beyond an entry length of about 500 times

the water-depth, the waves reach a permanent form and travel downstream without

discernible changes in speed and shape. These so-called naturally developed roll-waves

differ from that artificially excited waves (here referred permanent roll-waves), which

reach their permanent form immediately without an entry region.

The numerical study of Brock (1970) indicates that continuous finite-amplitude

waveforms do not exist for Dressler’s (1949) shallow-water theory. To remedy this,

Needham and Merkin (1984) have added an empirical second-order dissipation term

to Dressler’s equation in order to model the ‘normal shear’. They showed that peri-

odic waveforms were then possible. The solitary waves speed at one and a half time

the Nusselt flat-film velocity, comparing favourably to the data of Brock, and Braun-

ner and Maron (Needham and Merkin, 1984; Hwang and Chang, 1987). The normal

shear contribution, which Needham and Merkin attempted to model empirically, was

derived from first principles by Prokopiou et al. (1991), showing that the non-linear

shallow-water equations still do not allow the construction of finite-amplitude peri-

odic waves. This is so because the dissipation term sought by Needham and Merkin

remains absent when surface tension is negligible. Prokopiou et al. extended Alek-

seenko et al.’s integral boundary-layer theory, and found in their weakly non-linear

study a family of periodic waves near the onset. They also shown by comparison to

experimental data that the well-developed waves approach the solitary wave limit at

large Reynolds number with wave frequencies much smaller than that correspond-

ing to the linear maximum-growing mode. The periodic waves are then sensitive to

subharmonic disturbances (which is consistent with Brauner and Maron’s experimen-

tal observation), and a period-doubling cascade is an important component of the

evolution to solitary waves.

It is important to realize the limitations of the non-linear shallow-water equations

to quantify the onset of roll-waves. They ignore all disturbances of a small wavelength,

such as gravity and capillary waves. The travelling wave solutions analysed by the

shallow-water equations are the long ones which appear for Fr > 2 (e.g. Jeffreys,

1925). Consequently, thin steady waves which have also been observed at low Froude

numbers (and low Reynolds numbers) cannot be described by this analysis (e.g. Usha
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et al., 2006). However, long waves have been widely studied in fluvial hydraulic

by means of the Saint-Venant equations (e.g. Brock, 1967; Foley and Vanoni, 1977;

Julien and Hartley, 1986; Chen, 1995; Zanuttigh and Lamberti, 2002; Liu et al., 2005;

Di Cristo and Vacca, 2005; Bohorquez and Fernandez-Feria, 2006; Balmforth and

Mandre, unpublished).

The effect of bottom topography on linear stability of turbulent flow over uneven

surfaces was recently explored by Balmforth and Mandre (2004). Balmforth and

Mandre found that low-amplitude topography destabilises turbulent roll-waves and

lower the critical value of the Froude number required for instability. In a general

case on curved solid walls, roll-waves whose amplitudes remain small at all distances

from their origin are possible, and the slope of the wave profile is no longer constant

but varies slowly in the streamwise direction (Kluwick, 2006).

The analysis presented herein endeavours to apply the theory of linear stability

to the set of equations governing the motion in open channel flow. First, we consider

a non-parallel spatial stability analysis of the one-dimensional kinematic waves with

turbulent friction down an inclined plane (Bohorquez and Fernandez-Feria, 2006;

Bohorquez, 2007a). The main features introduced here that have not been considered

before are that non-parallel effects originated from the slow streamwise variations of

both the basic flow and the perturbation are taken into account. At this stage,

the influence of temporal variations on the basic flow is neglected. We find that a

bifurcation occurs in the stability diagram when small non-parallel effects are taken

into account, so that the critical parameters at which roll-waves are predicted to occur

in a non-uniform flow may be substantially lower than for a uniform flow. This result

is then checked against the exact solution of the linear perturbation equations for the

Froude number Fr = 2. The exact solution is obtained by means of multiple scales

and shows that, independent of the wavelength or the wave frequency, perturbations

always decrease. The discrepancy between the exact and the nonparallel spatial

stability analysis is found pretty large, showing the unnegligible importance of time-

varying characteristic of the basic flow in the stability analysis (Bohorquez, 2007c).

The non-linear behaviour of the perturbations, obtained with the direct numerical

simulation of the non-linear shallow-water equations, corroborates this fact.
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3.2 Non-parallel spatial stability analysis

Here we shall analyse the spatial stability of a flow governed by Eqs. (2.1)-(2.2).

To that end, if η = H(X, t) and U = V (X, t) are solutions to these equations, the

perturbed flow is decomposed, as usual, as the sum of the basic flow solution, H and

V , plus a small perturbation, η′(X, t) and U ′(X, t),

η = H + η′, U = V + U ′, (3.1)

where the amplitude of the (non-dimensional) perturbations satisfy the conditions

|η′| ≪ H, and |U ′| ≪ V . (3.2)

We also assume that the streamwise variation of the basic flow is small,
∣∣∣∣
∂H

∂X

∣∣∣∣≪ 1 ,

∣∣∣∣
∂V

∂X

∣∣∣∣≪ 1 . (3.3)

Substituting (3.1) into (2.1)-(2.2), taking into account that [H,V ]T is a solution to

the equations (superscript T denotes transposed vector), and neglecting second order

terms in both the small perturbations and the streamwise derivatives of the basic

flow, one is left with the following set of linear equations for the perturbations:

∂η′

∂t
+
∂HU ′

∂X
+
∂η′V

∂X
= 0, (3.4)

∂U ′

∂t
+
∂V U ′

∂X
+ cos θ

∂η′

∂X
+
fV 2

8H

(
2U ′

V
− η′

H

)
= 0. (3.5)

The perturbation s ≡ [η′(X, t), U ′(X, t)]T is decomposed in the standard form

s(X, t) = S(X)χ(X, t), (3.6)

where the complex amplitude

S(X) ≡
(
F (X)

G(X)

)
(3.7)

depends only on the streamwise coordinate. In accordance with (3.3), we shall assume

that |dS/dX| ≪ 1. The other part of the perturbation is of exponential form and

describes the wave-like nature of the disturbance,

χ(X, t) = exp

[∫ X

Xi

a(X ′)dX ′ − iωt

]
, (3.8)
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where Xi is an initial or reference value of the coordinate X. The non-dimensional,

complex wavenumber a is defined as

a(X) ≡ γ(X) + iα(X) . (3.9)

The real part γ(X) is the local exponential growth rate, and the imaginary part

α(X) is the local wavenumber. A non-dimensional frequency ω has also been defined

in (3.8).

Substituting (3.6)-(3.9) into (3.4)-(3.5), the resulting set of two linear equations

may be written in the matrix form as

A · S + aB · S + B · dS
dX

= 0, (3.10)

where

A =

(
−iω + VX HX

−fV 2

8H2 −iω + VX + fV
4H

)
, (3.11)

B =

(
V H

cos θ V

)
, (3.12)

and

HX ≡ ∂H

∂X
, VX ≡ ∂V

∂X
. (3.13)

The retained terms in (3.10) account for two different non-parallel effects on the

stability of the perturbations: the effect of the non-parallelism of the basic flow and

of the amplitude of the perturbations, and the effect of the history, or convective

evolution, of the perturbations. This last effect is described by the d/dX terms of

the stability equation (3.10). All these effects are negligible in the parallel limit of

uniform basic flow with uniform perturbations.

As it stands there is some ambiguity in the partition of the perturbations (3.6)

into two functions of the coordinate X. To close the problem one has to enforce

an additional normalisation condition which puts some restriction on the streamwise

variation of the perturbation amplitude (Bertolotti et al., 1992). We perform here a

local spatial stability analysis (Fernandez-Feria, 2000): given a real frequency ω, Eq.

(3.10) and its X-derivative will be solved locally for each location X = X0 with the
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normalisation condition [da/dX]X=X0 = 0. This condition will restrict, as required,

the downstream variation of the perturbation amplitude (eigenfunction), yielding, for

each X = X0, the local growth rate and the wavenumber (or the phase speed of the

disturbance). To that end, the eigenfunction S is expanded in a Taylor series about

X = X0, where only two terms are retained to be consistent with the approximation

made in Eq. (3.10):

S(X) ≃ S(X0) + (X −X0)
dS

dX

∣∣∣
X=X0

≡ S0 + (X −X0)S1. (3.14)

This expansion is now substituted into (3.10) and its X-derivative to obtain two

equations for S0 and S1 (|S1| ≪ |S0|). Using the local normalisation condition

[da(X)/dX]X=X0 = 0, one has a set of four homogeneous linear equation that may

be written in compact form as

F · T = 0, (3.15)

where

F =

(
A + aB B

C + aD E + aB

)
, T ≡

(
S0

S1

)
, (3.16)

C =

(
0 0

− fV
4H3 (HVX − V HX) f

4H2 (HVX − V HX)

)
, (3.17)

D =

(
VX HX

0 VX

)
, (3.18)

E =

(
−iω + 2VX 2HX

−fV 2

8H2 −iω + 2VX + fV
4H

)
. (3.19)

For a given basic flow, and given ω and X = X0 (for simplicity, in the above ex-

pressions, and in what follows, we write X for the local value X0), the homogeneous

equation (3.15) constitutes an eigenvalue problem for the complex eigenvalue a and

the complex eigenfunction T . That is to say, the homogeneous equation (3.15) has

nontrivial solutions only when the determinant of F vanishes, yielding a dispersion

relation of the form

det(F) ≡ D (a, ω; θ, f, V,H, VX , HX) = 0, (3.20)
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that determines the eigenvalue a.

One is interested in looking for convective instabilities propagating towardsX > 0,

i.e. in the same direction as the basic flow. Thus, for a known positive value of the

real frequency ω, one is interested in modes whose eigenvalue a has both its real and

imaginary parts positive. According to (3.8)-(3.9), this ensures that the perturbation

grows exponentially as it propagates downstream increasing X (γ > 0), with phase

velocity directed downstream (i.e. cph ≡ ω/α > 0). As a matter of fact, one has to

consider the sign of the group velocity,

cg ≡ ∂ω

∂α
, (3.21)

instead of the sign of the phase velocity cph, in order to determine the propagation

direction of the perturbations. But, as we shall see, the sign of cg always coincide

with the sign of cph in all the cases considered below (all the instabilities found here

are convective instabilities, with both cg and cph positive). On the other hand, the

frequency range of study can be reduced to just non-negative values because the real

and imaginary parts of the linear operator F,

F (ω, α, γ) ≡ Fℜ (γ) + iFℑ (ω, α) , (3.22)

have the property

F (a, ω) = F (a,−ω) , (3.23)

where (·) denotes the complex conjugate, and both Fℜ and Fℑ are real functions.

Thus, if a is the eigenvalue corresponding to the real frequency ω, a is also an eigen-

value of the problem, corresponding to the frequency −ω. Therefore, one has to

consider only non-negative values of ω to fully analyse the linear spatial stability of

the flow.

3.2.1 Results

Parallel flow: Roll-waves

Before undertaking the non-parallel stability analysis of a non-uniform flow down

an open inclined channel, it is convenient to consider first the simplest case of a
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uniform flow, thus reproducing previously known stability results. This analysis will

also serve as a reference that will help to understand the results given in the next

section.

For a uniform and steady basic flow, H = constant and V = constant, one has

dS/dX ≡ S1 = 0 in (3.15)-(3.16). In fact, the second equation in (3.15) for S1

becomes unnecessary, and the linear stability equation is just (3.10) with dS/dX = 0.

The dispersion relation (3.20) reduces then to

det (A0 + aB) = 0, (3.24)

where A0 is the matrix (3.11) with HX = VX = 0.

For a uniform and steady basic flow, the solution to (2.1)-(2.3) relates the constant

values of H and V by

H =
fV 2

8 sin θ
. (3.25)

It is convenient to use the Froude number

Fr ≡ V

c
=

V√
H cos θ

=

√
8

f
tan θ, (3.26)

instead of the friction factor f , where c =
√
H cos θ is the non-dimensional wave speed

for small surface perturbations. Substituting (3.25)-(3.26) into (3.24), one obtains the

following dispersion relation for the complex eigenvalue a and the real frequency ω:

a2V 2

(
1 − 1

Fr2

)
+ a(3 sin θ − 2ωV i) − ω2 − 2 sin θω

V
i = 0. (3.27)

The number of parameters may be reduced to just one, the Froude number, if one

makes the following changes of variables, valid for sin θ 6= 0:

e ≡ aV 2

sin θ
, ̟ ≡ ωV

sin θ
, (3.28)

so that (3.27) reduces to

e2(1 − ̺) + e(3 − 2̟i) −̟2 − 2̟i = 0 , (3.29)

where, for convenience, we use the inverse of the square of the Froude number,

̺ ≡ 1

Fr2
. (3.30)
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The new growth rate σ and wavenumber ǫ are defined as [see (3.9)]

e ≡ σ + iǫ , σ =
γV 2

sin θ
, ǫ =

αV 2

sin θ
. (3.31)

The neutral curve for instability, corresponding to σ = 0, is easily obtained by

substituting e = iǫ into (3.29). The imaginary and real parts of the resulting equation

yield, respectively,

ǫ =
2

3
̟ and ̺ =

1

4
. (3.32)

The flow is stable (σ < 0) for ̺ > ̺c = 1/4, while it is (convectively) unstable (σ > 0)

for any value of the frequency ̟ if ̺ < 1/4. This obviously reproduces Jeffreys (1925)

instability condition Fr > 2: any perturbation is unstable above the critical Froude

number 2. In addition, one obtains that the phase velocity of the neutrally stable

waves,

cph ≡ ω

α
=
̟V

ǫ
=

3

2
V , (3.33)

is three times larger that the surface wave speed c for the critical Fr = 2, c = V/Fr =

V/2. Incidentally, since ̟ is a linear function of ǫ, the group velocity cg (3.21)

coincides with the phase speed cph. In all the unstable waves we have computed,

both in the uniform flows considered here and in the non-uniform ones of the next

section, the signs of cph and cg are always positive. That is to say, all the unstable

modes correspond to convective instabilities.

Figure 3.1 depicts the neutral curve in the plane (Fr,̟), which is just the vertical

straight line Fr = 2, together with some contour lines for constant growth rate σ.

Note that for Fr close to the critical value Frc = 2 the growth rate is so small that

an extremely long channel would be required for the developments of the unstable

waves.

To finish this section it is worth to mention that for a horizontal channel (sin θ =

0), for which the change of variables (3.28) is not valid, Eq. (3.27) does not yield

unstable solutions (i.e., solutions with σ > 0 together with ǫ > 0).
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Figure 3.1: Contour lines for constant growth rate σ in the plane (̟,Fr) for the
parallel-flow case. Continuous lines: σ = 0, .001, .01, .2, .4, .6, .8, 1, 1.2, 2, 3. Dashed
lines: σ = −.001,−.01,−.05,−.1,−.15,−.2,−.25.

Near-parallel flow: Kinematic wave approximation

In order to obtain some quantitative results, but without recurring to any par-

ticular basic flow, we shall consider here the ‘kinematic wave approximation’ to the

shallow-water flow equations (Lighthill and Whitham, 1955; Whitham, 1974), which

have proved to be very useful for approximating the long time behaviour of the flow

down an open inclined channel (see previous Chapter).

In the kinematic wave approximation, one neglects the left hand side of Eq. (2.2)

and, after using the friction law (2.3), obtains the same relation (3.25) between H

and V . But now H and V are not constant, they must satisfy the continuity equation

(2.1) and the boundary conditions of the particular problem under consideration.

Substituting (3.25) into Eq. (2.2) and using (2.1), one obtains the following condition

for the validity of this approximation:

∣∣∣∣
∂H

∂X

∣∣∣∣≪
∣∣∣∣∣

sin θ

cos θ − 2
f

sin θ

∣∣∣∣∣ . (3.34)

With this approximation, one can eliminate the dependence on H and HX of the
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dispersion relation (3.20) by using (3.25) and its derivative with respect to X:

H =
fV 2

8 sin θ
, HX =

fV VX

4 sin θ
. (3.35)

In addition, the explicit dependence on the angle θ and on the local flow velocity V

can be eliminated from the dispersion relation thanks to the same change of variables

(3.28) together with

φ ≡ VXV

sin θ
=

4

f
HX . (3.36)

In these new variables, the validity condition (3.34) for the kinematic wave ap-

proximation reads

|φ| ≪
∣∣∣∣

2

4̺− 1

∣∣∣∣ . (3.37)

Introducing all these variables into Eqs. (3.15)-(3.19), the dispersion relation

(3.20) may be simplified under the near-parallel assumption, which neglects the con-

tribution of the streamwise gradients of complex amplitudes s, resulting

D (e,̟; ̺, φ) ≡ −eρ(e+ 2φ) + (e+ φ− i̟)2 + 3e+ 4φ− 2i̟ = 0, (3.38)

Neutral curves are obtained setting e = iǫ in Eq. (3.38):

̟ = [3 − 2(ρ− 1)φ]

[
φ(4 + φ)

1 + 4ρ2φ2 − 4ρ(1 + 3φ+ φ2)

]1/2

, (3.39)

ǫ =
2(1 + φ)

3 − 2(ρ− 1)φ
̟ . (3.40)

Figures 3.2(a)-3.2(b) depict neutral curves corresponding to several values of φ. It is

shown that the flow is stabilised as φ grows. Thus, the spatial gradients in the base

flow destabilise roll-waves. Defining the critical Froude number such that defines the

vertical in the plane Fr,̟, one has (see Fig. 3.2(c))

Fr2
c =

2φ2

1 + 3φ+ φ2 − (1 + φ)
√

1 + 4φ+ φ2
. (3.41)

In the parallel limit case, i.e. φ→ 0, the Jeffreys’s (1925) parallel stability criteria is

recovered: ‘The flow is stable for Froude numbers lower than 2’. On the other hand,

Fig. 3.2(d) shows the σ-isocontours for the particular case φ = 10−4.
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Figure 3.2: (a) Neutral curves for different values of φ > 0; (b) details of the neutral
curves near Fr = 2 for φ = 10−4, 10−3, 0.01, 0.05; (c) critical Froude number Frc as a
function of φ; (b) contour lines of constant growth rate σ for φ = 10−4 (discontinuous
line: σ = −10−7, −10−4, −10−3, −0.01, −0.05, −0.1, −0.15, −0.2, −0.25; continuous
line: σ = 0.001, 0.01, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 2, 3).
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Non-parallel flow

We turn now to the general nonparallel stability formulation (3.15). Introducing

all the previous variables (3.34)-(3.36) into Eqs. (3.15)-(3.19), the dispersion relation

(3.20) may be written as

D (e,̟; ̺, φ) ≡ d0 + d1φ+ d2φ
2 + d3φ

3 + d4φ
4 = 0, (3.42)

where

d0 ≡
[
e2 (̺− 1) +̟2 + 2ie̟ + (2i̟ − 3e)

]2
, (3.43)

d1 ≡ 2
[
3i̟3 + 2e3 (̺− 1)2 + 4e̟2 (̺− 2)

+7ie2̟ (̺− 1) − 13e2 (̺− 1) − 12̟2 + 2ie̟ (5̺− 12) + (12e− 11i̟)
]
, (3.44)

d2 ≡ −13̟2 + 8e2 (̺− 1)2 + 4ie̟ (4̺− 5) + 36 − 2 [i̟ (27 − 4̺) + e (22̺− 25)] ,

(3.45)

d3 ≡ −4 [3i̟ + 2e (̺− 1) + 2 (3̺− 5)] , (3.46)

d4 ≡ 4, (3.47)

and where use has been made of the Froude number (3.26) and (3.30).

The neutral curves for instability, corresponding to vanishing real part of e (σ = 0)

in (3.42), can be written in the form Fr = Fr(̟,φ), together with the wavenumber

ǫ = ǫ(̟,φ). Actually, one may obtain these expressions in an analytical closed form

by taking the real and imaginary parts of that equation, but they are rather involved

implicit relations (see Appendix A). Figure 3.3(a) shows these neutral curves in the

plane (Fr,̟) for several values of φ > 0, while Fig. 3.3(b) shows the corresponding

curves in the plane (ǫ,̟). As it is observed in Fig. 3.3(a), there are marked differences

with the neutral curve for the parallel flow case φ = 0 (i.e., with the vertical line

Fr = 2). Firstly, the flow is always stable independently of the Froude number for

very small frequencies [i.e., for ̟ < ̟∞(φ)]. Secondly, the minimum, or critical,

Froude number for instability, Frc1(φ), corresponding to the frequency ̟c1(φ), is

always less that 2 when φ > 0. (All these critical values of Fr and ̟ are marked in

Fig. 3.3(a) for φ = 0.01.) This critical Froude number tends to zero as φ decreases,

though the frequency ̟c1 also vanishes as φ→ 0. As in the parallel case, the flow is
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Figure 3.3: (a): Neutral curves (σ = 0) for different values of φ > 0 (as indicated)
in the plane (Fr,̟). The critical points (Frc1, ̟c1) and (Frc2, ̟c2) are shown for
one of the curves. (b): Critical wavenumbers in the plane (ǫ,̟) corresponding to the
neutral curves in (a).
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10−4. Continuous lines: σ = 0, .001, .01, .2, .4, .6, .8, 1, 1.2, 2, 3. Dotted lines: σ =
−.001,−.01,−.05,−.1,−.15,−.2.

unstable for almost any frequency when Fr > 2 (except for very small frequencies,

as commented on above). In fact, there exists another critical value of the Froude

number, Frc2(φ) < 2, corresponding to the frequency ̟c2(φ), above which the flow is

always unstable, provided that the frequency is not too small. For high frequencies

the stability region shrinks to disappear for very high ̟, the larger the smaller φ. But

these very high frequencies, like the very small ones ̟ < ̟∞, are too extreme to be

physically meaningful. Thus, the two pairs of critical values (Frc1, ̟c1) and, especially

(Frc2, ̟c2), are the most significant physical results. Figures 3.4 and 3.5 show these

critical values (together with ̟∞) as functions of φ(> 0). For ̟c1 < ̟ < ̟c2 the

flow is unstable for Froude numbers less than 2 (Frc1 < Frc2 < 2).

To have an idea of the most unstable frequencies, Fig. 3.6 shows contour lines of

constant growth rate σ for a particular value of φ. It is observed that, though the

critical Fr is much smaller than 2 for low frequencies, the growth rate is quite small
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for Fr < 2, thus explaining why it is not easy to see roll-waves for Fr < 2. For

very high frequencies, the critical Fr may also be much smaller than 2, and with a

growth rate not so small. But the frequencies are so high that they are not physically

relevant.

Figure 3.7 shows the neutral curves in the planes (Fr,̟) and (ǫ,̟) for several

values of φ < 0, while Fig. 3.8 depicts contour lines of constant growth rate σ for a

particular value of φ < 0. As in the cases where φ > 0, the flow may be unstable

for Fr < 2 and the stability properties are very sensitive to the non-uniformities of

the flow: with very small values of |φ|, the region of instability changes dramatically

with respect to the parallel flow case. However, the growth rates for Fr < 2 are very

small, except for very high unrealistic frequencies (Fig. 3.8), as it also occurs for

φ > 0. There are, nonetheless, some important differences between the φ > 0 and the

φ < 0 cases. First, for φ < 0, no frequency ̟∞ exists, and the flow is always unstable

as ̟ → 0. In fact, the stable region in the (Fr,̟) plane is closed, so that the flow

is also unstable for any frequency when Fr is very small (Fig. 3.7). However, for

these very small values of the Froude number the kinematic wave approximation is

no longer valid because condition (3.37) implies

Fr ≫
√

4|φ|
2 + |φ| ≃

√
2|φ| . (3.48)

This condition applies for both φ < 0 and φ > 0.

3.2.2 Asymptotic results for φ≪ 1

Although the dispersion relation of the previous section is given in a closed analyt-

ical form, it is convenient to simplify it by making use of the fact that |φ| is very small.

In particular, it is of interest to analyse the bifurcation of the neutral curves shown

in Figs. 3.3 and 3.7 when one pass from a uniform (φ = 0) to a non-uniform (φ 6= 0)

flow. We will restrict our analysis here to positive velocity gradients (φ > 0), which

is the most common situation in physical problems, such as the dam-break problem

on a sloping channel (see previous Chapter), for the long time behaviour when the

kinematic wave approximation applies. The analysis for φ < 0 is very similar.
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Figure 3.7: As in Fig. 3.3, but for φ < 0.



Chapter 3: Roll-waves in flood on an inclined plane 77

Fr

ϖ

φ = −10
−4

σ < 0

σ > 0

σ = 0

1 2 3 4 5 6 7 8 9 10
10

−4

10
−2

10
0

10
2
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For small φ > 0, the neutral curves ̺(̟,φ) and ǫ(̟,φ) behave as

̺(̟,φ) ∼ ̺0(̟) + ̺1(̟)φ1/2 + ̺2(̟)φ+ ...+ ̺i(̟)φi/2 + ... , (3.49)

ǫ(̟,φ) ∼ ǫ0(̟) + ǫ1(̟)φ1/2 + ǫ2(̟)φ+ ...+ ǫi(̟)φi/2 + ... . (3.50)

Substituting these expansions into (3.42)-(3.47) with σ = 0, e = iǫ (the expressions

(3.42)-(3.47) with σ = 0 are given analytically in Apendix A), at the lowest order one

obtains

[ǫ20(̺0 − 1) −̟(2i+̟) + ǫ0(3i+ 2̟)]2 = 0. (3.51)

This equation has as unique solution Jeffreys’ solution (3.32) for a uniform flow:

ǫ0 =
2̟

3
, ̺0 =

1

4
. (3.52)

At the next order, φ1/2, one has

2[ǫ20(̺0 − 1)−̟(2i+̟) + ǫ0(3i+ 2̟)]{ǫ20̺1 + ǫ1[3i+ 2ǫ0(̺0 − 1) + 2̟]} = 0 , (3.53)
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which is satisfied identically for any value of ̺1 and ǫ1 if the zeroth order solution

(3.52) is substituted. Therefore, one has to go to the next order to obtain ̺1 and ǫ1.

Using (3.52), the resulting equation at the order φ is

−6i̟ − 4̟2 +
2i̟3

3
+

16̺2
1̟

4

81
+

8

9
ǫ1̺1̟

2(3i+̟) + ǫ21(3i+̟)2 = 0 , (3.54)

which has four possible solutions,

ǫ1 = ±(3 −̟)
√
̟

3
√

3
, ̺1 = ±

√
3(9 +̟2)

4̟3/2
. (3.55)

ǫ1 = ±(3 +̟)
√
−̟

3
√

3
, ̺1 = ∓

√
3(9 +̟2)

4(−̟)3/2
. (3.56)

The two last solutions (3.56) are complex for positive ̟ and they have no physical

meaning (they are the relevant ones for the expansion in the case φ < 0, not considered

here). As we show below, the solution that corresponds to the neutral curves depicted

in Figs. 3.3 and 3.7 is (3.55) with the plus sign.

At the next order φ3/2, the resulting equations yields

ǫ2 =
̟[−32̺2

1̟
4 + 36ǫ1̺1̟(̟2 − 36) + 243ǫ21(9 +̟2)]

6[72ǫ1̺1̟3 + 16̺2
1̟

4 + 81ǫ21(9 +̟2)]
,

̺2 =3
64̺2

1̟
4(6 +̟2) + 729ǫ41(9 +̟2) − 648ǫ31̺1̟(18 +̟2)

16̟2[72ǫ1̺1̟3 + 16̺2
1̟

4 + 81ǫ21(9 +̟2)]

− 3
8ǫ1̺1̟

3[189 + (9 + 32̺2
1)̟

2] + 18ǫ21[1944 + 459̟2 + (27 + 56̺2
1)̟

4]

16̟2[72ǫ1̺1̟3 + 16̺2
1̟

4 + 81ǫ21(9 +̟2)]
.

(3.57)

After substituting (3.55) into (3.57) and simplifying, the neutral curve (3.49) up to

the order φ can be written as

̺ =
1

4
± 1

4

√
3(9 +̟2)

̟3/2
φ1/2 +

−72 + 36̟ − 9̟2 + 5̟3

8̟2
φ+O(φ3/2) , (3.58)

where we have retained the two solutions (3.55). Figure 3.9(a) compares, in the

plane (Fr,̟), these approximate neutral curves for a particular value of φ > 0 with

the exact one (see Fig. 3.3). It is observed that the expression (3.58) with the plus

sign agrees quite well with the exact neutral curve. In particular, it catches with a
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Figure 3.9: (a): Comparison between the exact neutral curve of stability in the plane
(Fr,̟) and the approximate solutions (3.58) for positive (ρ+) and negative (ρ−)
signs, for a given value of φ. (b): Comparison between exact neutral curves and
approximate ones for different orders in the expansion in powers of φ.
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Figure 3.10: Critical Froude numbers (a) and frequencies (b) obtained with the
asymptotic expressions (3.58) and (3.59) as functions of φ. The upper parts of the
curves correspond to Frc2 and ̟c2, while the lower parts to Frc1 and ̟c1. Note that
the approximation is not valid for the largest values of φ plotted.

very good precision the critical point (Frc2, ̟c2), and with less precision the other

critical point (Frc1, ̟c1). In fact, the expansion (3.58) diverges for both ̟ → 0 and

̟ → ∞, but yields a good approximation for the physically relevant (order of unity)

frequencies and, in particular, for the most relevant critical point (Frc2, ̟c2). Figure

3.9(b) shows that the accuracy near this critical point improves as the next term

in the expansion, (ǫ3, ̺3), is taken into account. However, the accuracy does not

improve for large and small values of ̟. In relation to the expression (3.58) when

the minus sign is considered, Fig. 3.9(a) shows that the corresponding curve lies in

the unstable region, so that it corresponds to a second unstable mode of less physical

interest, because it becomes unstable for higher values of the Froude number with a

smaller growth rate (the neutral curves for these modes have not been plotted in Fig.

3.3).

The critical points for instability can be obtained as functions of φ by making

∂̺(̟)/∂̟ = 0. Using the approximation in (3.58), one obtains

φ =
3̟c(−27 +̟2

c )
2

(144 − 36̟c + 5̟3
c )

2
, (3.59)

which yields, implicitly, ̟c(φ) and, together with (3.58), ̺c(φ) or Frc(φ). These

expressions are plotted in figure 3.10. The upper parts of the curves corresponds to
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Figure 3.11: Frc2 (a) and ̟c2 (b) as functions of φ obtained with the exact solu-
tion (circles), with the asymptotic expansion (3.58) (continuous lines), and with an
additional term in the expansion (up to order φ3/2; dashed lines).

Frc2(φ) and ̟c2(φ), and the lower parts to Frc1(φ) and ̟c1(φ). As discussed above,

the most relevant one from a physical point of view is [Frc2(φ), ̟c2(φ)], which is

compared in Fig. 3.11 to the exact solution. Also shown in that figure is the critical

point obtained when the next term (ǫ3, ̺3) is taken into account in the expansion

(3.49), which obviously improve the accuracy of the approximation. Note that we have

plotted in Fig. 3.10 the whole range of φ, till Frc1 and Frc2 merge. But the expansion

is only valid for very small values of φ, for which the lower curve corresponds to very

small frequencies and the expansion is not valid (these very small frequencies are also

physically irrelevant). Therefore, the most significant asymptotic results given here

are the upper curves in Fig. 3.10, plotted in detail for φ≪ 1 in Fig. 3.11.

Finally, the critical frequencies for φ = 0 given by the analytical expression (3.59)

are ̟c1 = 0 and ̟c2 =
√

27 ≈ 5.2, corresponding to Frc1 = 0 and Frc2 = 2. As seen

in Figs. 3.4 and 3.5, these are the values to which the exact solution tends as φ→ 0,

but they are difficult to compute because the bifurcation of the solution at φ = 0.

This bifurcation is evident in Figs. 3.10 and 3.11, where Frc1, Frc2 and especially ̟c2

have infinite slopes at φ = 0. Whence, another reason why the present asymptotic

solution is valuable. Actually, even with an analytic closed solution, it was difficult

to see what happened for φ = 0+ without the present asymptotic solution.



82 Chapter 3: Roll-waves in flood on an inclined plane

3.3 Linear stability analysis by means of multiple

scales

In § 2.3, an asymptotic analytical solution for the background flow resulting from

a flood of water at rest on a steep incline was obtained as an asymptotic expansion

in terms of the shallowness parameter ε. The rescaling we did, see Eq. (2.8), shows

a fundamental characteristic of the scales at which the base flow develops: both the

temporal and spatial coordinates (x and τ , respectively) characterising the kinematic

wave are much smaller than the dynamic wave coordinates (X and t). In this section,

we take advantage of this fact to perform a linear stability analysis of the kinematic

wave in terms of multiple scales (Kevorkian and Cole, 1996). We shall focus our

interest on the particular case Freq = 2, in order to compare the ensuing stability

criteria with that of Jeffreys and the previous ones in § 3.2.

Although the non-dimensional variables X and t in (3.4)-(3.5) are appropriate to

analyse the stability, the basic flow moves in a much slower scale:

x̂ = δX , t̂ = δt with δ ≡ η0

l
≪ 1 . (3.60)

The basic flow is so supposed to depend just on this scale

H ≡ H(x̂, t̂; δ) , V ≡ V (x̂, t̂; δ) (3.61)

whilst the perturbations move at several scales

η′ ≡ η′(X, t, x̂, t̂; δ) , U ′ ≡ U ′(X, t, x̂, t̂; δ) . (3.62)

The equations for the basic flow (2.1)-(2.2) read in the new variables

∂H

∂t̂
+
∂HV

∂x̂
= 0 , (3.63)

δ

[
∂V

∂t̂
+ V

∂V

∂x̂
+ cos θ

∂H

∂x̂

]
− sin θ +

fV 2

8H
= 0 , (3.64)

and the linearised equations for the perturbations (3.4)-(3.5) are

∂η′

∂t
+H

∂U ′

∂X
+ V

∂η′

∂X
+ δ

(
U ′∂H

∂x̂
+ η′

∂V

∂x̂

)
= 0 , (3.65)
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∂U ′

∂t
+ V

∂U ′

∂X
+ cos θ

∂η′

∂X
+
fV 2

8H

(
2U ′

V
− η′

H

)
+ δU ′∂V

∂x̂
= 0 . (3.66)

The coefficients in (3.65)-(3.66) do not depend on (X,t), only on (t̂,x̂). Therefore,

it is possible to write the solution of η′ and U ′ in the rapid scale as an exponential

function:

s ≡
(

η′

U ′

)
≡ S(x̂, t̂; δ)eiλ(X,t;δ) ≡

(
F (x̂, t̂; δ)

G(x̂, t̂; δ)

)
ei
ψ(x̂,t̂)
δ . (3.67)

Taken into account (3.67), equations (3.65)-(3.66) now read

i(aV − ω)F + iαHG = −δ
(
∂F

∂t̂
+
∂HG

∂x̂
+
∂FV

∂x̂

)
, (3.68)

i(aV − ω)G+ ia cos θF +
fV

4H
G− fV 2

8H2
F = −δ

(
∂G

∂t̂
+
∂HG

∂x̂
+ cos θ

∂F

∂x̂

)
, (3.69)

where the complex frequency ω and the complex wave number a are defined as:

ω ≡ −∂ψ
∂t̂

, a ≡ ∂ψ

∂x̂
, (3.70)

The phase function ψ(x̂, t̂) can then be written in terms of ω and a:

ψ(x̂, t̂) =

∫ x̂

x̂0

a(ξ, t̂)dξ −
∫ t̂

t̂0

ω(x̂, τ)dτ −
∫ t̂

t̂0

∫ x̂

x̂0

∂a

∂t̂
(ξ, τ)dξdτ , (3.71)

and the similarity between the present multi-scale stability analysis and the non-

parallel spatial stability analysis, presented in the previous section, readily becomes.

However, the decomposition (3.70) introduces an additional unknown, which should

be closed with the compatibility relation that results from the equality of cross-

derivatives:
∂

∂t̂

(
∂ψ

∂x̂

)
=

∂

∂x̂

(
∂ψ

∂t̂

)
⇒ ∂a

∂t̂
+
∂ω

∂x̂
= 0 . (3.72)

The unknowns are to be expanded in power of δ:

H = H0 + δH1 +O(δ2) , V = V0 + δV1 +O(δ2) ,

F = F0 + δF1 +O(δ2) , G = G0 + δG1 +O(δ2) ,

a = a0 + δa1 +O(δ2) , ω = ω0 + δω1 +O(δ2) .

(3.73)
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Substituting the expansion (3.73) into (3.63)-(3.64), and grouping terms of order

unity, the first-order background-flow equations are obtained:

∂V0

∂t̂
+

3V0

2

∂V0

∂x̂
= 0 , H0 =

fV 2
0

8 sin θ
. (3.74)

Following the same procedure but with equations (3.68)-(3.69), it follows

L0 · S0 = 0 (3.75)

with

L0 ≡



 i(a0V0 − ω0) ia0H0

ia0 cos θ − fV 2
0

8H2
0

i(a0V0 − ω0) + fV0

4H0



 , S0 ≡
(

F0

G0

)
. (3.76)

The system of equations shown above has non-trivial solutions only if the dispersion

relation that follows, provided by det(L0) = 0, is satisfied:

̟0 = e0 − i± (−1 + ie0 + ρe20)
1/2 (3.77)

where we have used the same change of variable as in (3.28). In addition, the com-

patibility relation (3.72) is also to be satisfied at leading-order,

∂e0

∂t̂
− 2e0

V0

∂V0

∂t̂
= −V0

∂̟0

∂x̂
+̟0

∂V0

∂x̂
. (3.78)

To solve the compatibility equation (3.78), it is convenient to rewrite it along the

characteristic curve, so that one obtains

de0

∂t̂
=

2e0
V0

∂V0

∂t̂
+̟0

∂V0

∂x̂
with

dx̂

dt̂
= V0

d̟0

de0
. (3.79)

Fr = 2 in flood on a steep slope

The first-order partial differential equation (3.74), so-called kinematic wave equa-

tion, is exactly the same as we solved in § 2.3. Setting an initial condition for the

velocity (or the initial water-depth), one can determine the velocity field by integrat-

ing (3.74) as in Lighthill and Whitham (1955). In particular, we are interested in the

stability criteria of waves occurring in floods on inclines. Thus, we focus the analysis
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on the solution at late time of a flood which initial conditions are (2.4)-(2.5), which

is given by

V0 =
2x̂

3t̂
, H0 =

fV 2
0

8 sin θ
. (3.80)

In the case that the Froude number value is Fr = 2, the corrections to this solution

vanish (i.e. Vi = Hi = 0 for i ≥ 1). Furthermore, the dispersion relation (3.77) has

the two solutions that follows:

̟0 = 3
2
e0 , (3.81a)

̟0 = 1
2
e0 − 2i . (3.81b)

The characteristic path for the functions ̟0(e0) shown above are purely real. Thus,

the characteristic equation (3.79) easily provides the solution for both cases if the

constant complex number ao is settled as initial condition, resulting

ψ0(x̂, t̂) = ao t̂0
t̂
x̂ . (3.82a)

ψ0(x̂, t̂) = ao
(

t0
t

)1/3
x− i

{
9t2 sin θ

5x

[(
t0
t

)5/3 − 1
]}

. (3.82b)

The solution (3.82b) is obviously stable [the reader can verify it by substitution into

(3.67)], i.e. the amplitude of the perturbation decreases as time proceeds, whilst the

stability of the solution (3.82a) is determined from the eigenfuntions F and G. The

relation between the eigenfunctions (F,G) is next determined from (3.75)

F0 =
H0

V0

e0
̟0 − e0

G0 , (3.83)

which after substitution of (3.81a)-(3.81a) gives

F0 = 2H0

V0
G0 , (3.84a)

F0 = −2H0

V0

e0

e0+2i
G0 . (3.84b)

Thus, the first-order solution of the linear stability equations, for the Froude number

value Fr = 2 in a flood on a steep incline, is given by

s =

(
η′

U ′

)
= G

(
2H0/V0

1

)
eia(t̂)x̂ with a(t̂) ≡ aot̂0

t̂
. (3.85)
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This solution should satisfy the leading order of the linear perturbation equations,

which provides the function G(x̂, t̂). This is given by

∂G

∂t̂
+

3

2
V0
∂G

∂x̂
= −G

t̂
,

whose solution is

G(x̂, t̂) ≡ Go

(
t̂0x̂

t̂

)
t̂0

t̂
, (3.86)

with Go(ξ) being the perturbation at the initial time. Curiously, both the basic flow

(3.80) and the perturbation solution (3.85)-(3.86) are not only the leading term of

the solution but the exact solution to (2.1)-(2.2) and (3.4)-(3.5), respectively! The

temporal contribution always decreases the perturbation amplitude. This means that

along the ray x(t) = t, the perturbation is attenuated as follows

s(x̂ = t̂, t̂) = G(t̂0)
t̂0

t̂

(
f

6 sin θ

1

)
eiao t̂0 .

Therefore, we conclude that the Jeffreys’s stability criteria is no longer valid for

floods on inclines: the flow is stable for the Froude number Fr = 2; furthermore,

one eyewitness at rest will observe the modulation of the waves, that increase their

wavelengths proportionally to the time.

Fr = 2 in a linear velocity profile on a steep slope

We have observed in Fig. (2.8) that the velocity profiles at late times after the

rupture of a dam are nearly linear in the streamwise direction, and that roll-waves

start to develop under such flow. So, we can analyse the stability of a linear velocity

profile instead of considering the asymptotic solution for a flood on a steep slope, as

in the previous section.

A linear velocity profile of slope A at the initial instant of time t = 0 develops,

according to (3.74), the solution that follows:

V0 =
Ax̂

1 + 3
2
At̂

, H0 =
fV 2

0

8 sin θ
. (3.87)
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For late time, the solution is in fact the same as such analysed in the previous section

lim
t̂≫ 2

3A

V0 =
2x̂

3t̂

1

1 + 2
3At̂

≈ 2x̂

3t̂
.

This means that the flow forgets its initial state.

For this basic flow, one can obtain the exact solution of the linear perturbation

as in the previous section, which is

s = Go

(
x(1 +Bt0)

1 +Bt

)
1 +Bt0
1 +Bt

(
fV0

4 sin θ

1

)
eia(t)x with a(t) ≡ ao 1 +Bt0

1 +Bt
, (3.88)

where B ≡ 3A/2 and the perturbation is introduced in the background flow at the

instant of time t0. It is clear that for the ray x(t) = 1+Bt, the perturbation amplitude

decreases as time goes on at the rate 1/(1 +Bt). In this case, the initial slope of the

background flow affects the growth rate until t≫ 1/B.

3.4 Numerical stability analysis

3.4.1 Design of a numerical experiment

The initial configuration (at t = t0) of the perturbation U ′ to be simulated is

depicted in Figure 3.12 on the basic flow V (henceforth, we will use just the first

term in the expansion (3.73) to compute the base state), and is given by (Bohorquez,

2007c)

U ′(X, t0) =






Go(l1) sin
(
2πnX−l1

l2−l1

)
if l1 ≤ X ≤ l2

0 otherwise
, (3.89)

where Go denotes the initial amplitude of the perturbation (Go ≡ δ V (l1, t0), being

δ a very small parameter), l1 and l2 establish the boundary enclosing the initial

waves, and n denotes the number of waves. For the height η′, we suppose that the

perturbed flow also satisfies the kinematic wave approximation, obtaining the relation

that follows:

η′(X, t0) =
f

8 sin θ
(V + U ′)2 −H ≈ f

4 sin θ
V U ′ ,
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I1

I2

I3I∩

l1 l2 X
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t = t0

t > t0

Figure 3.12: Sketch of the initial condition at t = t0 for the velocity field U according
to the numerical experiment defined in § 3.4.1.

which is O(δH). In fact, the resulting ratio of the perturbation amplitude of the

height to the velocity is exactly the same as the ratio between the eigenfunctions F

and G in the previous section. So, we are able to compare directly the results in this

section with the previous analytical one.

The convective nature of the perturbations is easily established in terms of the

Froude number. This is understandable in view of the fact that both the linear (3.4)-

(3.5) and non-linear (2.1)-(2.2) system of Partial Differential Equations (PDEs) have

two real and distinct characteristic curves, and these are the same for small waves.

Hence, perturbations travel along the characteristics C± : dX/dt = V ±
√
H cos θ,

and the convective nature comes for supercritical kinematic waves: dX/dt ≈ V (1 ±
1/Freq) > 0 with Freq > 1. From now onward, we are interested in supercritical

flows.

To compute the linear evolution of the perturbations, we use a finite-difference

scheme on a uniform grid with mesh size ∆X. The time integration is performed with

a Crank-Nicolson method, and a fourth-order central-differences scheme is applied in

space - the truncation error is O(∆t2,∆X4), where ∆t is the time step. In order to
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use the minimal number of nodes, we initially solve the resulting linear system of

equations just in a small region I1 with homogeneous boundary conditions. Before

the wave train travelling downwards reaches the end of I1, a new domain I2 is defined

containing the subregion in which waves live (denoted as I∩ in Fig. 3.12), and it

is enlarged downwards adding new nodes (subdomain I3). This process is repeated

several times during the numerical simulation. Thus, we have to solve in each time

step a linear system of equations with just eleven diagonals. Band storage mode

is used to minimise memory requirements. To that end, subroutines DGBMV and

DLSLRB into the IMSL Numerical Libraries are used.

On the other hand, the full non-linear set of equations (2.1)-(2.2) is solved with the

numerical technique described in the next Chapter. In this case, taking into account

that the flow is supercritical at both inlet and outlet, two boundary conditions are

imposed upstream (given by Eq. 3.74), and the characteristic variable extrapolation

(CVE) method is used downstream. For simplicity we apply the first-order version

of the CVE method. The first-order extrapolation does not imply a uniform outflow

regime, although the physical meaning is similar: the information is travelling from

the interior spatial domain and therefore the outflow regime is determined from the

solution inside the boundary. Next, we present some results.

3.4.2 Results

First, we will show results corresponding to the parallel case. To that end, we

have considered a uniform and steady basic flow with U = 1 and θ = 1o. This flow

has been initially disturbed with n small waves (n = 10), and its non-linear evolution

has been computed following the approach introduced above. Figure 3.13 depicts

the maximum amplitude of the wave train as a function of time for several Froude

numbers. Initially, the non-linear growth rate is in agreement with theoretical results

obtained using the linear theory, but as time goes on, and the wave amplitude is

not so small, the wave changes its shape towards hydraulic jumps (see Fig. 3.14) and

saturation appears due to non-linear effects. One should note that the main difference

of the numerical technique we have used, with respect that applied by Brook et al.
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Figure 3.13: Amplitude of the water wave velocity, U − V , against non-dimensional
time, t, for different steady flow Froude numbers Freq ≥ 2, for a velocity perturba-
tion with an initial amplitude δ = 5 × 10−5. The solid curves represent the solution
obtained from the non-linear numerical code, and the dashed lines indicate the cor-
responding growth rates obtained from the linear stability analysis (see, e.g., Brook
et al. 1999). nx represents the number of nodes used by wave.
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Figure 3.14: Plots of perturbation velocity, U−V , against distance along the channel,
X, at several instants of time (t < 1.4× 104) corresponding with the case Freq = 2.1
shown in Fig. 3.13.
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Figure 3.15: Plots of the non-linear flow velocity U (a) and the non-linear perturbation
velocity U − V (b) against the distance along the channel X at several instants of
time. Figures (c) and (d) depict the evolution in time of both the numerical and the
linear [see Eq. (3.88)] amplification factor G(t) and the wavelength 1/a(t) along the
ray x(t) = 1 + Bt. The parameter values are Freq = 2, θ = 1o, B = 0.0013 and
t0 = 0.

(1999), are the boundary conditions. Traditionally, roll-waves are numerically studied

by using their periodicity properties, and periodic boundary conditions are usually

stated. However, in order to analyse the stability of more general basic flows (see

below), which are not periodic, we have followed a different approach.

To check the ability of the non-linear numerical code computing the evolution of

small perturbations, and the validity of the linear stability analysis in section 3.3, we

start with the analysis of the stability of the unsteady and non-uniform base state

given by (3.87). One should focus the interest on the question that follows: how
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Figure 3.16: Plots of the non-linear flow velocity U (a) and the linear perturbation
velocity U ′ (b) against the distance along the channel X at several instants of time.
Figure (c) depicts the evolution in time of the numerical non-linear and linear growth
rate, and (d) shows in detail the ensuing roll-waves. The parameter values of the base
flow are Freq = 2.2, θ = 1o, B = 2.04 × 10−5 and t0 = 0.
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temporal and spatial gradients of the basic flow affect the stability criteria. As we

expected from the analytical analysis presented in section 3.3, the non-linear velocity

profile U , that is linear with X at the initial instant of time t = 0, remains being a

linear profile in X as the time increases [see subplot 3.15(a)]. The perturbation intro-

duced at the initial instant of time in the basic flow is difficult to be observed in this

figure since its amplitude is δ = 10−5 times lower than the basic flow, but is clearly

depicted in subfigure 3.15(b). The perturbation was obtained removing the base

flow (3.87) from the the non-linear velocity U that was computed numerically. The

non-linear perturbation behaviour is in excellent agreement with that inferred in the

linear stability analysis by multiple scales (section 3.3). The (exact) linear and (nu-

merical) non-linear amplification factor is indistinguishable, as shown in Fig. 3.15(c),

as well as the wavelength modulation [see 3.15(d)]. Therefore, the first novel result

we have found, when analysing the particular case Freq = 2, is that non-parallel and

unsteady effects stabilise the flow. Furthermore, the wavelength remains constant in

the parallel case as time goes on (e.g. Prokopiou et al., 1991; Brook et al., 1999),

whilst disturbances lengthen in the present case.

Second, when increasing the Froude number, the flow may become unstable - as

shown in Fig. 3.16(a), which corresponds with the non-linear numerical simulation of

a background flow (with Froude number Freq = 2.2, θ = 1o, B = 2.04 × 10−5 and

t0 = 0) in which a small perturbation, of wavelength unity, is introduced at the initial

state. A similar result is obtained with the linear theory as shown in subfigure 3.16(b).

The amplitude of the perturbation increases as convected downstream, with a growth

rate that is in agreement with the linear theory at early time [see Fig. 3.16(c)].

Similar to the parallel case, the non-linear growth rate is saturated at late time due

to the formation of roll-waves, that cannot be studied by using the linear theory.

But there are cases with Froude numbers Freq > 2 that are stable to the presence of

small perturbations. For instance, Fig. 3.17 depicts the linear evolution of a stable

perturbation in a basic flow with Freq = 2.2, θ = 1o, B = 6.1 × 10−4 and t0 = 0

- the wave amplitude decreases while the wave lengthens as time goes on. Hence,

even background flows with Froude numbers larger than two are stable for some wave

numbers (Bohorquez, 2007c).
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Figure 3.17: (a) Linear numerical simulation of a three-waves train over the base flow
shown on the right-hand side (b). We have selected Freq = 2.2, θ = 1o, B = 6.1×10−4

and t0 = 0

3.5 Summary and conclusions

In this study we have considered the stability analysis of a suddenly released, fixed

mass of fluid that reaches a kinematic regime. In particular, we have considered the

influence of near- and non-parallel effects on the linear stability criteria, and found

an asymptotic analytical solution for the critical Froude number as a function of both

the wave frequency and non-parallel characteristic of the base flow. Then, the exact

solution for the linear perturbations with Fr = 2 have been obtained by means of

multiple scale expansion. This result was compared against the non-linear simulation

of the perturbation, showing a perfect matching between both solutions. However,

the near- and non-parallel spatial stability analysis fail to predict the linear stability

criteria to the unnegligible influence of the base-flow temporal variation. Finally, we

have designed a numerical experiment, and a clever numerical method, that allow us

to compute the linear and non-linear evolution of small perturbations.

We have found that non-uniform and unsteady effects of the background flow sta-

bilise turbulent roll-waves and raise the critical Froude number required for instability.

The well known stability criteria for parallel flows at high Reynolds number (the basic

flow is unstable for any wavelength and Froude number larger than 2) differs abruptly

of that resulting from kinematic waves. One of the most noticeable effects is stabil-
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isation of disturbances on basic flows with Freq = 2. In addition to that, for larger

Froude numbers, Freq > 2, the wave amplitude decreases or increases depending on

the velocity, and both spatial and temporal gradients of the base flow. Finally, stable

waves lengthen as the flow evolutes in time - this behaviour is also different with

respect to the parallel one, in which waves remain with constant wavelength even

when hydraulic jumps are developed (Bohorquez, 2007c).





Chapter 4

Transport of suspended sediment

under the dam-break flow on an

inclined plane bed of arbitrary

slope

4.1 Introduction

Dam-break hydraulics of natural rivers and its associated erosion and transport of

sediments is an important practical problem in civil and environmental engineering.

The precise formulation of the equations that govern the problem, with all the fluid

mechanics and their transport phenomena is, even in its one-dimensional version and

for dilute sediments, a very complex task (see, for instance, Bellos and Hrissanthou,

2003). This panorama becomes much more complex when two- or three-dimensional

debris (non-Newtonian fluid) flows are considered (e.g. Spinewine and Zech, 2007;

Jakob and Hungr, 2005). In addition, the numerical techniques needed to solve these

equations, that must, for instance, capture with precision the advance of water fronts

with their induced sediment transport, is a formidable task.

For this reason, to gain some preliminary understanding of these physical and

numerical problems, much effort has been dedicated in the recent past to model,

97
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in simpler dam-break flows over a horizontal bed, some of the basic ingredients,

such as erosion and deposition of sediment particles (Pritchard and Hogg, 2002; Cao

et al., 2004) and friction (Hogg and Pritchard, 2004), as well as to the development of

powerful and accurate numerical techniques that are able to cope with these problems

(e.g. Toro, 2001; LeVeque, 2002; Zoppou and Roberts, 2003).

In this line, we consider here the dam-break flow over a plane inclined bed, which,

in relation to its horizontal bed counterpart, is more appropriate to model avalanches

after natural dam failures, mainly for two reasons: for the obvious one that the rivers

beds are not horizontal, and because it considers the movement of a finite mass of

water with its associated sediment transport. An important advance was made in this

direction by Dressler (1978). This relaxes one of the main limitations of the traditional

shallow-water formulation [e.g., Stoker (1957)], which is valid only for small slopes

of the bed, and thus inappropriate to model real river flows with large slopes where

this kind of avalanches are more frequent to occur. This generalisation obviously

makes the shallow-water equations much more involved. However, for a constant, but

arbitrary, slope of the bed, the equations are quite similar to the traditional shallow-

water equations. We use here these equations to solve the dam-break problem over

an inclined bed of arbitrary but constant slope, together with its associated transport

of dilute sediments, and taking into account the effect of friction. Thus, our results

will shed new light on the problem of transport of sediment due to the release of a

finite mass of water after the rupture of a dam on an inclined bed of arbitrary (large)

slope. Although these results have the limitations of one-dimensional flow, constant

bed slope, and dilute, non-cohesive sediment with depth-averaged concentration, they

give general trends about the transport of sediments as a function of the bed slope, and

on how the validity of the formulation and the predictions are affected by the several

parameters in the erosion, deposition, and friction models. A similar problem was

recently considered by Pritchard (2005). However, the asymptotic solutions given by

this author do not predict, for instance, the formation of roll waves near the advancing

water front which we find in our numerical simulations. The effect of these waves on

the transport of sediments may be very significant. The results given here will be also

valuable to check future numerical codes to solve more complex formulations where
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arbitrary slopes and slope variations, together with non-dilute sediments with vertical

variation of concentration, are taken into account. We also check the accuracy of the

different numerical techniques in capturing the advance of water fronts over a dry

bed.

Although this chapter is mainly focussed on the computation of the suspended

transport of dilute sediment down an inclined bed after the rupture of a dam (as the

title runs), we shall also consider the bed-load transport of sediments. In particular, we

shall characterise the relative importance of the bed-load transport to the suspended

transport for different slopes of the bed, and different diameters of the sediment

particles, by using different conditions for the initiation of sediment suspension from

bed-load. This will complete the picture of transport of sediments in the present

dam-break problem on an inclined bed, and characterise the validity of the dilute

suspension approach.

The structure of the chapter is the following. In section 4.2 the mathematical

problem is formulated and the numerical method is briefly described. Section 4.3 is

devoted to check the numerical method and the friction model by comparison with

known analytical solutions and experimental data. In section 4.4 we present the

results for the transport of suspended sediments after the breaking of the dam on an

inclined bed, which are complemented in section 4.5 with bed-load sediment transport

results. Some conclusions are drawn in section 4.6.

4.2 Formulation of the problem and numerical

method

We consider here the one-dimensional flow over a constant slope bed. In the

shallow-water approximation (see Chapter 2), the dimensionless equations for the

mass conservation and momentum in the direction of the flow are given by (2.1)-

(2.2). To compute the friction term, sf , we shall use the Darcy-Weisbach friction

factor f (2.3). The factor f is a function of the local Reynolds number, based on

the velocity U and the hydraulic diameter of the channel, and the relative height
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roughness of the bed. In particular, we shall use the Colebrook-White (Colebrook,

1939) expression to approximate f (see below, § 4.2.1). To check the validity of this

approximation to model the friction in a dam-break flow, we shall compare in § 4.3

existing experimental data for the dam-break problem on a horizontal bed with the

results obtained with this friction model.

The non-dimensional shallow-water equation for the conservation of sediment

transported as a dilute, well-mixed suspension can be written as

∂c

∂t
+ U

∂c

∂X
= E

qe − qd
η

, (4.1)

where c is the dimensionless, depth-average mass concentration of suspended sedi-

ment, and qe and qd are the dimensionless mass erosion and mass deposition fluxes,

respectively. The concentration of sediment is made dimensionless with me/ws, where

ws is the settling velocity of the particles [see Eq. (4.10) in § 4.2.1], and me is a char-

acteristic, constant mass flux per unit area that characterises the erosion flux (see,

e.g., Sanford and Maa, 2001). This flux me is used to non-dimensionalise both the

erosion and deposition fluxes. With this choice, the dimensionless parameter

E ≡ ws

U0

(4.2)

is a ratio between the settling velocity and the characteristic fluid velocity, and qe and

qd may be written as (e.g., Dyer and Soulsby, 1988; Sanford and Maa, 2001; Pritchard

and Hogg, 2002)

qe =






(
U2

U2
e
− 1
)p

for |U | ≥ Ue

0 for |U | < Ue

, (4.3)

qd = c . (4.4)

Ue is the non-dimensional velocity above which sediment particles are eroded from the

bed and suspended into the flow, and the exponent p is a number often taken to be

unity (Sanford and Maa, 2001). According to Bagnold (1966), the threshold velocity

Ue for suspension is such that the turbulent friction velocity v∗ ≡
√
τb/ρ exceeds the

settling velocity ws of the particles by a certain factor (a say). Relating the bed shear

stress to the Darcy-Weisbach friction coefficient, one may write the following relation
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for Ue:

Ue = aE
√

8/f , (4.5)

where a is a dimensionless constant of order unity to be obtained experimentally. Its

value is well defined for small sediment particles, i.e. for ds/η0 less than about 10−3,

where ds is the diameter of the sediment particles and η0 is a characteristic depth (see,

e.g., Julien, 1995), but it is not so well defined for larger values of ds/η0. In this case

of larger particles, the sediment transport does not pass neatly from a bed-load mode

to a suspended load mode as v∗/ws becomes larger than a given constant a, but there

exists a mixed mode of sediment transport. Experimental values of a range between

0.2 (for this value, incipient erosion and suspension may occur for large particles)

and nearly 5 [for u∗/ws > 5, all the sediment transport is by suspension; e.g Julien

(1995)]. In the computations of § 4.4 we shall use a mean value a = 1.2 (Chanson,

2004), though several other values will be used in § 4.5 for the comparison between the

bed-load, and the suspended, sediment transport mechanisms in the present problem.

Typical values of the remaining parameters p and E are discussed in the next

Section, together with some comments on the physical model that underlies the flux

(4.3).

We are interested here in solving these equations for the dam-break problem (see

Fig. 2.1), i.e., for the flow whose initial condition (t = 0) is given by (2.4), (2.6) and

c(0, X) = 0 , (4.6)

At t = 0, the vertical wall that intersects the bed atX = e is removed instantaneously,

causing the fluid to move over the slopping bed under the action of gravity. Note that

the characteristic length η0 is the dimensional depth at X = 0, t = 0.

Equations (2.1)-(4.1) with initial conditions (2.4)-(4.6) are solved numerically on

an uniform grid with mesh size ∆X = Xi+(1/2) − Xi−(1/2) using an upwind TVD

method (see, e.g., LeVeque, 2002), second-order accurate in both space and time, with

a semi-implicit and upwind treatment of the source terms, as described by Burguete

and Garćıa-Navarro (2001).

A flux limiter function has been used to solve the hyperbolic equations (see, e.g.,

Sweby, 1984; LeVeque, 2002). In particular we use that termed as ‘MinMod’ by
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Sweby (1984), which works better in the present problem where one has to capture

numerically the advance of a water front over a dry bed (see § 4.3.2 below). To

avoid numerical discontinuities at the critical points we have used here the entropy

correction technique described in Burguete and Garćıa-Navarro (2001) whenever they

are detected between any two grid points. Finally, the numerical stability condition,

based on the Courant-Friedrichs-Lewy number

CFL ≡ ∆t

∆x
|λmax|, (4.7)

where ∆t is the time step, and |λmax| the maximum absolute value of the eigenvalues

of the Jacobian of the transformation of the equations to its non-conservative form

at the grid points (LeVeque, 2002), can be written as

CFL ≤ 1

1 + 1
2
max(φ)

,

being φ the flux limiter function.

4.2.1 Friction and sediment models

For the Darcy-Weisbach friction factor f (sometimes also called Darcy, or Fanning,

friction factor in the turbulent pipe literature) appearing in Eqs. (2.3) and (4.5), we

shall use the Colebrook-White expression (Colebrook, 1939)

1√
f

= −2.0 log10

(
ks

3.71DH

+
2.51

Re
√
f

)
, (4.8)

where ks is the average roughness height of the bed [Nikuradse’s equivalent sand

roughness; see, e.g., Schlichting (1987)], and

Re =
U
√
gη0DH

ν
, (4.9)

is the local Reynolds number, where DH is the hydraulic diameter (note that for

one-dimensional flow, b≫ η0, where b is the channel width, DH ≃ 4η0η), and ν is the

kinematic viscosity of the fluid. In the computations reported in Secs. 4.4 and 4.5

we use ν = 10−6m2/s, and values of η0 between 1 and 10m. For the roughness height

ks, several experiments have obtained values between one and ten times the sediment
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particles mean diameter ds (e.g. van Rijn, 1987). We shall use a mean value ks = 2ds

(Chanson, 2004).

The depositional model (4.4), in which all the particles fall at the same settling

velocity ws, is appropriate for fine suspended, non-cohesive sediment, like for exam-

ple sand (Pritchard and Hogg, 2003). There exists more complex expressions that

take into account the formation and break-up of aggregates, or a different near-bed

concentration to the average one that controls the deposition of particles (see, e.g.,

Cao, 1999). However, we will restrict ourselves to the simple model (4.4) in this work.

To be coherent with this non-cohesive sediment deposition model, the power p in the

erosion model (4.3) must lie in the range 3/2 ≤ p ≤ 7/2 (Dyer and Soulsby, 1988).

Nonetheless, we have also used the value p = 1 in the computations of section 4.3 to

compare with previous analytical dam-break results.

For sediment particles with mean diameter in the wide range ds < 60mm, one

may use the following experimental expression for the settling velocity (Brown and

Lawler, 2003):

ws = 3
√
gν(s− 1)

[(
18

d2
∗

)0.898( 0.936d∗+1
d∗+1 )

+

(
0.317

d∗

)0.449
]−1.114

. (4.10)

Taking s = ρs/ρ = 2.65 for quartz particles in water, the settling velocities predicted

by this formula lie in the interval 0.003m/s < ws < 0.114m/s. Thus, for a reference

depth η0 between 1m and 10m, the non-dimensional parameter E = ws/
√
gη0 (4.2)

will lie in the range 3 × 10−4 < E < 0.036, approximately.

4.2.2 Morphological changes in the bed elevation

In the equations (2.1)-(2.2) and (4.1) we have assumed that the suspended sedi-

ment particles remains always very dilute, so that we have neglected the effect of the

concentration of the particles on the fluid density ρ (we have also neglected its effect

in the fluid viscosity to compute the friction factor f). For this reason we have also

neglected any morphological change in the bed elevation produced by the deposition

and erosion of sediments.
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x38cm=0x

h = 15cm
0

Figure 4.1: Sketch of the experimental setup of Jànosi et al. (2004).

To justify this, we re-write below Eq. (2.1) taking into account this effect. But

first, the non-dimensional equation for the change of bed elevation due to deposition

and erosion of particles may be written as

dz

dt
= B(qd − qe) , (4.11)

where z is the non-dimensional bed elevation in relation to the initial inclined plane,

and the non-dimensional parameter B is defined as

B ≡ me

ρs(1 − P )U0

, (4.12)

where ρs is the particles density and P the bed porosity. Then, the non-dimensional

mass conservation equation (2.1) that takes into account the variation of the bed

elevation may be written, for dilute suspended sediments, as

∂η

∂t
+
∂(uη)

∂X
= B(qe − qd) . (4.13)

Since me usually ranges between 5× 10−5 and 5× 10−3 kg/(m2s) (Sanford and Maa,

2001), and ρsU0 is always larger than 103kg/(m2s) (for η0 of the order of 1m, or

larger), B is always very small, so that it is justified to neglect the variation of the

bed elevation for dilute suspensions, provided that |qe − qd| remains order unity.

4.3 Check of the numerical method and frictional

model

To check the accuracy of the numerical technique, as well as the validity of the

frictional model, in the following two subsections we apply the equations to two
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Figure 4.2: Dimensionless height as a function of x for several instants of time (as
indicated) after the sudden release of the gate.

different situations described in Jánosi et al. (2004) and Pritchard and Hogg (2002),

and compare our numerical results with the experimental data, and with the analytical

solution, respectively, given in them. In section 4.3.2 we also compare the results

obtained from different numerical schemes.

4.3.1 Comparison with experimental data for the dam-break

problem on a horizontal bed (with friction)

Jánosi et al. (2004) have recently reported a series of experimental results for the

dam-break problem in a horizontal (θ = 0) glass channel of width b = 16 cm. We

compare here our numerical results obtained from different friction models with their

experimental data for the dam-break flow of pure water over a dry bed. In particular,

the flow is produced when a gate initially at x = 0 is suddenly removed, releasing

the water filling a lock of length 38cm and height η0 = h0 = 15 cm (see sketch in

Fig. 4.1). To simulate numerically the vertical wall at the beginning of the channel,

x = −38 cm/15 cm ≃ −2.53, we consider the numerical problem with a symmetry

plane there.
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Figure 4.3: Temporal evolution of the water front obtained with Darcy-Weisbach
friction factor (4.8) compared to the experimental results from Jànosi et al. (2004),
and the asymptotic solution by Hogg and Pritchard (2004).

In Figure 4.2 we plot the computed dimensionless height η = h(x, t) for several

instants of time. In these simulations we have used Darcy’s friction factor given by Eq.

(4.8), with the hydraulic diameter DH = 4bh∗/(2h∗+b) (h∗ is the dimensional height)

and a smooth surface (ks = 0). The computations are performed using a second order

TVD-MinMod method with a spatial mesh size ∆X = (2/3)× 10−6, and a time step

given by CFL = 0.45. They show that the numerical method simulates correctly the

advance of the water front over the dry channel, as well as other qualitative features

of the dam-break wave, as compared with the photographs given in Fig.2 of Jánosi

et al. (2004). To make a quantitative comparison with the experimental data, we

plot in Fig. 4.3 the temporal evolution of the water front X = xf obtained from

these simulations for a smooth surface, together with the experimental data given in

Jánosi et al. (2004) (their figure 5). Also shown are the computed values of xf using

several, very small, values of the roughness height ks. It is seen that the Colebrook-

White friction model reproduces very well the experimental results, especially with

ks = 5×10−5mm (it corresponds to a practically smooth surface). This fact justify the

use of the Colebrook-White formula (4.8) to compute the friction term in the results

given in sections 4.4 and 4.5. As commented on in § 4.2.1, we shall approximate the
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equivalent sand roughness with twice the size of the sediment particles, ks = 2ds. For

comparison’s sake we also include in Fig. 4.3 the asymptotic results of xf (t) given by

the asymptotic solution in §4 of Hogg and Pritchard (2004). The agreement with our

numerical solutions and with the experimental data of Jánosi et al. (2004) is quite

good for the initial stages. However, beyond t = 5, approximately, the overall flow

becomes affected by the rear vertical wall at x = −x0 in the experiments (and in our

numerical solution), and this effect is obviously not accounted for in the asymptotic

solution by Hogg and Pritchard (2004), valid only near the wetting front.

4.3.2 Comparison with an analytical solution for the sedi-

ment transport in the dam-break problem on a hori-

zontal bed without friction

The hydrodynamical part (η, U) of the dam-break problem on a horizontal bed is

described by the well known Ritter’s (1892) solution:

η(X, t) =






1 for X < −t
1
9

(
2 − X

t

)2
for − t ≤ X ≤ 2t

0 for X > 2t

, (4.14)

U(X, t) =

{
2
3

(
1 + X

t

)
for − t ≤ X ≤ 2t

0 otherwise
. (4.15)

Introducing these expressions into the suspended sediment transport equation (4.1),

Pritchard and Hogg (2002) were able to obtain also an analytical solution for the

sediment concentration c in the dam-break problem over a horizontal bed. To this

end, these authors used Lagrangian co-ordinates, eliminating first constant E from

Eq. (4.1) by re-defining the non-dimensional independent variables as

x+ ≡ EX , t+ ≡ Et . (4.16)

Figure 4.4 compares the analytical solution of Pritchard and Hogg with our nu-

merical solution when p = 1 and Ue = 1 in the erosion model (4.3). In particular,

this figure shows the sediment charge Z = cη as a function of x+ for t+ = 2. It is
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Figure 4.4: Sediment charge as a function of x+ for t+ = 2 from different numerical
schemes, obtained with the same spatial and temporal resolutions (∆x+ = 10−3 and
CFL = 0.45), compared to the analytical solution given in Pritchard and Hogg
(2002).
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Figure 4.5: Concentration c as a function of x+ for t+ = 2 from different numerical
methods, obtained with the same spatial and temporal resolutions (∆x+ = 10−3 and
CFL = 0.45), compared to the the analytical solution of Pritchard and Hogg (2002).
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observed that the agreement between the analytical and the numerical solutions is

quite good. The errors are larger in the vicinity of the water front over the dry sur-

face, x+ = 2t+, where, according to (4.14)-(4.15), the water height η vanishes and the

velocity reaches its maximum value U = 2. This is due to the fact that the concen-

tration c has a discontinuity at this point, falling abruptly from its maximum value

to zero (see Fig. 4.5). This error may be reduced by decreasing the mesh size. In

this figure 4.4 we have also compared the accuracy of different numerical techniques

[Lax-Wendroff, first-order upwind, and TVD-MinMod; see, e.g., LeVeque (2002)]. It

is seen that the TVD-MinMod method reproduces better the analytical solution for

all values of x+, particularly near the right water front: the upwind method has the

poorest precision there, while the Lax-Wendroff method undergoes marked oscillation

near the water front, where the concentration has a discontinuity. The results from

the TVD-MinMod method in Fig. 4.4 are practically indistinguishable from the ana-

lytical solution. This comparison between the performance of the different numerical

techniques is much better appreciated in Fig. 4.5, where we plot the distribution of

the concentration c for the same time t+ = 2.

4.4 Results

In this section we present the numerical results for the suspended sediment trans-

port after the rupture of a dam on an inclined bed of constant, arbitrary slope. All

the results are obtained with the second order TVD-MinMod method, CFL = 0.45

and 5000 nodes distributed along the spatial coordinate X.

First we present some detailed results for a given bed slope, corresponding to a

bed angle θ = 20o. Figures 4.6-4.7 show some results about the hydrodynamics part

of the problem (physical height η, velocity U , and flow rate Q ≡ Uη) for some instants

of time just after the rupture of the dam. To compute Darcy’s friction factor, we have

used a characteristic length η0 = 10m and ks = 1mm. In Fig. 4.6 it is observed that

the left (‘drying’) front remains stationary for the instants of time considered, while

the right (‘wetting’) front advances quickly in time. At the position of this wetting

front, where the water height vanishes, the velocity [Fig. 4.7 (a)] has a fictitious
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discontinuity due to the fact that there is no water downstream the front. This

discontinuity becomes just a high slope for the flow rate, since we multiply U by η

[Fig. 4.7(b)]. Also included as Fig. 4.7 (c) is the distribution of the Froude number

Fr ≡ U/
√
η cos θ, which becomes singular at the wetting front.

The position of the wetting front as a function of time, L1(t), is plotted in Fig.

4.8 up to t ≈ 90. For large t one observes some undulations. They are due to the

oscillatory behaviour of the flow field near the wetting front at large time, as observed

in Figs. 4.9-4.10. This behavior is not numerical, as corroborated by the fact that

the same results are obtained with finer numerical resolution, and by the strongly

unstable nature of the flow [as proved in the previous chapter]. It corresponds to

the formation of roll waves (see, e.g., Brock, 1967; Whitham, 1974) near the wetting

front, since the Froude number is significantly larger than 2 there [see Fig. 4.7 (c)]. As

shown by Zanuttigh and Lamberti (2002), the shallow-water model, with an accurate

numerical method similar to that used in the present work, correctly describes the

development of roll waves in rectangular channels and reproduces Brock’s (1967)

experiments on roll waves. On the other hand, no undulations are observed in the

numerical simulations if Fr ≤ 2.

The corresponding sediment concentration profiles c(X), and sediment charge

profiles Z(X) ≡ cη, are plotted in Fig. 4.11 for the same instants of time considered

in Fig. 4.9. They are obtained using p = 1.5 in the erosion model (4.3) and a

particle size ds = ks/2 = 0.5mm. As it happens with the velocity, the concentration

shows a fictitious discontinuity at the wetting front due to the fact that there is no

water downstream it. The sediment charge presents marked local maxima near this

front, due to the formation of roll waves, that the present numerical method recovers

accurately, as shown by the inset in Fig. 4.11(b).

As an illustration of the physical reality of the roll-waves found in our numerical

simulation, Fig. 4.12 depicts a sequence of three snapshoots of a water flood over

erodible sediment bed: at the top of the pictures, the spreading of pure water (in

pink) over a thin layer of fine sediment initially at rest (in brown) is shown; after

travelling approximately half of the channel length, the pure water flood has fluidized

and eroded the bed, as shown in the middle of the pictures; then, roll-waves appear
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Figure 4.6: Height η for several instants of time (as indicated) just after the rupture
of the dam for a bed with inclination θ = 20o.
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Figure 4.8: Position of the right (‘wetting’) front as a function of time, L1(t), for
θ = 20o (η0 = 10m, ks = 1mm).

(see the detail of the sudden expansion at the end of the flume, where the waves are

clearly illustrated).

Although the non-dimensional mass concentration c reaches high values near the

wetting front for intermediate times, its physical dimensional value depends on the

quantity me/ws that is used to non-dimensionalise the sediment concentration. To

check the diluted sediment hypothesis, we may compute the maximum value of the

sediment volume fraction, given by

υ =
cme

wsρs

. (4.17)

Using a typical value for the characteristic erosion mass flux, me = 5×10−5 kgm−2s−1

(Sanford and Maa, 2001), ρs/ρ = 2.65 (quartz/water), and the corresponding value of

the settling velocity ws for the present sediment size [see Eq. (4.10)], the maximum

value of the sediment volume fraction in the flow is υ ≃ 8.88 × 10−4, reached at

the wetting front for t ≃ 23.58. Therefore, the diluted sediment hypothesis is well

satisfied in the present case.

As time goes on, both the sediment concentration and the sediment charge increase

inside the flow, and then decrease (note that c and Z are much smaller for the first

instant of time considered in Fig. 4.11). To have an idea of the total amount of



Chapter 4: Transport of suspended sediment under the dam-break flow on an
inclined plane bed of arbitrary slope 113

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

X

U
t = 3.9816017
   6.9362400 
   11.922902 
   16.397069 
   20.696358 
   25.087669 
   29.663480 
   67.836895 

(a) 

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

X

η

(b)

Figure 4.9: Velocity (a) and height (b) as functions of X for several instants of time,
as indicated in (a) (θ = 20o).

170 175 180 185 190 195
0

0.5

1

1.5

2

2.5

3

X

U

(a) 

170 175 180 185 190 195
0

0.05

0.1

0.15

0.2

0.25

X

η

t=67.836895 

(b) 

Figure 4.10: Details of the velocity (a) and water height (b) profiles near the wetting
front at t = 67.836895.
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Figure 4.11: Sediment concentration profiles (a) and sediment charge profiles (b)
as functions of X for the same instants of time considered in Fig. 4.9. The inset
in (b) shows a detail of the largest value of Z(X). θ = 20o, η0 = 10m, p = 1.5,
ds = ks/2 = 0.5mm.
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Figure 4.12: Roll-waves in water flood over erodible sediment bed, observed in the
experiments at the USGS Debris-Flow Flume (Logan and Iverson, 2007).
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sediment inside the flow for a given time it is convenient to define the total suspended

sediment load

Qs(t) ≡
∫ L1(t)

L2(t)

Z(X, t)dX , (4.18)

where L1 and L2 are the right and left water fronts, respectively. Figure 4.13 shows

Qs(t) for the present case. Initially it has a rapid growth in time, reaches a maximum

Qs,max, and then decreases, first as quickly as it increased, and then more slowly, with

the oscillatory behavior at large time. At the end, all the eroded particles may become

deposited if friction can slow down the flow below the critical value for erosion. This

last process may be very slow owing to the oscillatory behavior of the wetting front.

This long time behavior of the suspended sediment load is not accounted for by the

recent asymptotic solutions by Pritchard (2005), which tend monotonically to zero in

the absence of roll waves.

For the present slope (θ = 20o), we have performed the same computations for

other values of the physical parameters. According to the discussion in the § 4.2.1,

these parameters are basically reduced to three, η0, ds and p. The computations are

summarised in Fig. 4.14, where the time evolution of the total suspended sediment

charge Qs(t) is plotted for characteristic (limiting) values of these parameters. The

computations are followed in time until Qs is about ten percent of Qs,max. It is

observed that Qs,max can be very high (note the logarithmic vertical scale). For this

reason, and in order to check the validity of the diluted suspended sediment hypothesis

all along the flow, we also give in Fig. 4.14 the highest value of the sediment volume

fraction reached along each flow (υ). This maximum value of the volume fraction is

reached at the wetting front for some instant close to the time where Qs reaches its

maximum. Obviously, υ increases with η0 (since more water is put into motion), with

decreasing particle size (erosion is enhanced, and deposition reduced, as ds decreases),

and, more markedly, with increasing erosion power p (erosion is much more effective

as p increases). All the cases plotted in Fig. 4.14 satisfy the hypothesis υ ≪ 1 (only

for the case with p = 3.5, η0 = 10m, and ds = 1mm, υ is not so small). The case

with p = 3.5, η0 = 10m, and ds = 0.5mm is not plotted because υ is order unity. For

p = 1.5, the dilute sediment approach is always valid, even for particle sizes smaller
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Figure 4.13: Total suspended sediment charge as a function of time for the same case
considered in Fig. 4.11.

than those considered in Fig. 4.14.

The computations have been repeated for other values of the angle of the bed θ

up to the maximum value given by the angle of repose φs, which for sand particles

with ds < 10mm is between 30o and 35o (van Rijn, 1993). To characterise the

downhill global transport of sediments after the break of the dam as a function of

the bed angle θ we have selected two quantities: the maximum value of the total

sediment load, Qs,max, and the time at which this maximum is reached, tmax. The

first quantity gives an idea of the total amount of sediment moved by the flow, and

the second one tells us about the distance at which this sediment load is transported

downhill the dam (provided one knows the advance of the wetting front). In order

that these two dimensionless quantities are always evaluated for the same volume

of water (same area in the initial triangle depicted in Fig. 2.1), independently of

the bed angle θ, for a given characteristic length η0, we normalise them by defining

Q∗
s,max = Qs,max sin θ cos θ and t∗max = tmax/(sin θ cos θ)1/4. These two quantities are

plotted in Figs. 4.15-4.16 as functions of the bed angle θ for some values of ds, for

η0 = 10m and 1m, and for p = 1.5. Both Q∗
s,max and t∗max increase with decreasing ds

(obviously, as the size of the sediment particles decreases, more sediment load is put
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Figure 4.14: Total suspended sediment load as a function of time for θ = 20o and
several values of η0 (m), ds (mm) and p. Also shown is the maximum value reached
by the sediment volume fraction inside each flow (υ).

into motion, and it is transported further downstream). Clearly, t∗max decreases with

θ, while Q∗
s,max increases with θ. On the other hand, Q∗

s,max → 0 and t∗max → ∞ as

θ → 0 due to the volume normalisation (the volume of the water tends to infinity as

θ → 0).

4.5 Discussion: Suspended versus bed-load sedi-

ment transport

The above results are for suspended sediment transport. As discussed on in section

4.2, sediment particles become eroded from the bed, and get suspended into the flow,

when the fluctuation velocity near the bed v∗ becomes larger than a times the settling

velocity of the particles ws, where a is an empirical constant that we have taken equal

to 1.2 in the above computations. This criterion can be written in terms of a critical

velocity Ue, given by Eq. (4.5), in such a way that when U > Ue erosion, and

suspended sediment transport, occurs. However, another type of sediment transport

takes place along the bed even for velocities smaller than Ue. This bed-load sediment
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Figure 4.15: Normalised maximum of the suspended sediment load as a function of
θ for different values of ds (as indicated), p = 1.5, and for η0 = 1m (a) and η = 10m
(b).
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Figure 4.16: Normalised time at which Qs,max is reached as a function of θ for different
values of ds (as indicated), p = 1.5 and for η0 = 1m (a) and η = 10m (b).
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transport occurs when the shear stress at the bed becomes larger than a critical value.

Thus, in order to asses what fraction of the total sediment is transported by suspension

(the above results), one has to characterise also the bed-load transport. In this section

we compute the fraction between bed-load, and suspended load, sediment transport

in the present dam-break problem for different sizes of the sediment particles and for

different angles of the bed.

Sediment motion along the bed occurs when the so-called Shields parameter, de-

fined as [see, e.g., Chanson (2004)]

τ∗ ≡
τb

ρ(s− 1)gds

=
fU2

0U
2

8(s− 1)gds

, s ≡ ρs

ρ
, (4.19)

where ρs is the density of the sediment particles, is larger than a critical value, that

depends only (for horizontal beds) on the shear Reynolds number

Re∗ ≡
v∗ds

ν
=

√
f/8 U0Uds

ν
. (4.20)

We have taken s = 2.65 in the computations, see section 4.2.1. For inclined beds,

this criterion has to be modified to take into account the bed angle θ. According to
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Damgaard et al. (1997), if one defines the modified critical Shields parameter

τ θ
c ≡ sin(φs − θ)

sinφs

τc , (4.21)

where φs is the angle of repose, sediment bed-load motion occurs when τ∗ > τ θ
c , where

τc is the critical Shields parameter for θ = 0, given by Julien (1995) (see also Chanson,

2004)

τc =






0.5 tanφs for d∗ < 0.3

0.25d−0.6
∗ tanφs for 0.3 < d∗ < 19

0.013d0.4
∗ tanφs for 19 < d∗ < 50

0.06 tanφs for 50 < d∗

. (4.22)

In this expression, the dimensionless particle diameter

d∗ ≡ ds
3

√
(s− 1)g

ν2
= 3

√
Re2

∗

τ∗
(4.23)

is used instead of the shear Reynolds number (4.20). The critical Shields parameter

for the threshold of sediment bed-load motion is plotted in Fig. 4.17 for different

values of the bed angle θ, and for φs = 34o, appropriate for sand particles (e.g.

Chanson, 2004). Also plotted in Fig. 4.17 is the threshold for suspension according

to Bagnold’s criterion (4.5) v∗ = aws, with a = 1.2, expressed in the notation τc =

τc(Re∗) [note that τ∗ = v2
∗/((s − 1)gds), and ws is given by (4.10)]. It is observed

that this criterion predicts, for small Re∗, that suspension may occurs for a lower

shear stress (a lower flow velocity) than bed-load motion, which cannot be physically

correct. As commented on in section 4.2, what happens is that, for larger particles,

this suspension criterion is not correct because no sharp boundary between bed-load

motion and suspended transport exists; i.e. the suspension process is not characterised

by a single constant a in (4.5) (Julien, 1995). For this reason, we also include in

Fig. 4.17 curves corresponding to different probabilities P of suspension (Cheng and

Chiew, 1999). For a given P , these curves yield the threshold Shield parameter above

which the probability of suspension is P , as functions of Re∗. P = 0.2 is equivalent to

Bagnold’s criterion with a = 1.2 for large Re∗, P = 0.34 to a = 2.5, and P = 0.42 to

a = 5 (Cheng and Chiew, 1999). This means that above the curve for P = 0.42 all the
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sediment transport is by suspended load (Julien, 1995), while in between this curve

and the Shields’ curves one has mixed transport. We have included some straight

lines (in the logarithmic plot) corresponding to several values of the particle diameter

(note that d∗ = constant means that τ∗ ∼ Re2
∗) in order to have an idea of the

behavior of sediment particles of different sizes as Re∗ increases.

Taking into account all these considerations, we have evaluated the inception of

bed-load and suspended load sediment transport in the present problem. Figure 4.18

compares, for η0 = 10m, ds = 0.2mm, and for two values of the bed angle θ, the right

wetting front L1(t) with the front Lb(t) at which bed-load transport begins, and with

the different fronts Ls,a(t) at which suspended load is initiated for different values of

constant a in Bagnold’s criterion. This comparison gives us a first idea of the relative

importance of both kinds of sediment transport. Figures 4.19-4.20 contain the same

information for ds = 1mm and ds = 5mm. It is observed that Lb becomes first very

small and then increases, meaning that the bed motion begins just after the break of

the dam and it is present at almost every point of the flow motion since the starting

of the flow. Small sediment particles (e.g., ds = 0.2mm, Fig. 4.18) become suspended

a little downstream the initiation of the bed motion. Therefore, sediment transport

is dominated by suspension in this case [note that the curve Ls,5(t), above which all

the particles are in suspension, is much closer to Lb(t) than to L1(t)], the more so the

larger the bed slope. For ds = 1mm (Fig. 4.19) the situation is qualitatively similar,

but the ratio of suspended transport to bed-load transport is not so large, especially

for small bed slopes. Note that although Ls,5 is closer to L1 than to Lb (Ls,5 does

not even exist at some intervals of time for small θ), Ls,1.2 is always closer to Lb, so

that an important fraction of the transported sediment particles are in suspension

at every instant. However, the situation is inverted for larger particles (Fig. 4.20

for ds = 5mm). In this case, the dominant transport mechanism is bed-load motion

for small angles of the bed, though the relative suspended load increases with θ, and

for θ > 20o suspended load becomes more important than bed-load. Note that in

this case, the curve Ls,5(t) does not exists for any bed angle. Finally, it is worth

to comment that the discontinuities observed in some of these curves are due to the

formation of roll waves, which produces intermittencies in the sediment suspension.
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Figure 4.18: Wetting L1 front as function of time compared to different fronts for bed-
load motion (Lb), and for suspension (Ls,1.2,Ls,2.5,Ls,5), for η0 = 10m, ds = 0.2mm,
and different bed slopes (as indicated in each subfigure).
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Figure 4.19: As in Fig. 4.18 but for ds = 1mm.
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Figure 4.20: As in Fig. 4.18 but for ds = 5mm.
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Although the above figures give us a qualitative idea of the different sediment

transport processes taking place in the flow as time goes on for different values of ds

and θ, to have a more quantitative idea of the relative importance of both sediment

transport processes we have computed the quantities

Êb =
Eb

Eb + Es

and Ês = 1 − Êb , (4.24)

where Eb and Es are the total energies per unit time used for bed-load motion and

for suspended transport, respectively (see, e.g., Yalin and Ferreira da Silva, 2001),

Eb = ǫb

Nb∑

i=1

∫ xIIbi

xI
bi

[τ∗ − (τc)b]v∗dx , (4.25)

Es = ǫs

Ns∑

i=1

∫ xIIsi

xIsi

[τ∗ − (τc)s]v∗dx . (4.26)

In these expressions N is the number of intervals [xI , xII ] where a specific erosion

process (bed-load or suspension, as the subscript indicates) takes place, and ǫ is the

corresponding efficiency of the process [we have used ǫb = ǫs in (4.24)]. Êb and Ês

with P = 0.2, corresponding to a = 1.2 for large Re∗, are plotted in Figs. 4.21-4.23

for the same cases as in Figs. 4.18-4.20. It is observed that only for large particles

(ds = 5mm) and small slopes of the bed (θ < 20o) Êb > Ês, i.e. bed-load sediment

transport is more important than suspended load transport. For ds = 1mm, Êb ≪ Ês

for all θ almost from t = 0, while for ds = 0.2mm, Êb is always negligible.

4.6 Summary and conclusions

We have formulated in this Chapter the problem of transport of dilute suspended

sediments after the rupture of a dam on an inclined bed of arbitrary constant slope.

The frictional model has been validated against existing experimental data. Sev-

eral numerical techniques have been tested with available analytical solutions for the

transport of sediment in the dam-break problem on a horizontal bed.

We have characterised the transport of suspended sediments as a function of the

slope of the bed for different values of the parameters characterising the sediments. To
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Figure 4.21: Ês (continuous lines) and Êb (dots) as functions of time for η0 = 10m,
ds = 0.2mm, and different bed angles (as indicated). a = 1.2 (P = 0.2) has been
used for the computation of the suspension threshold.
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Figure 4.22: As in Fig. 4.21 but for ds = 1mm.
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Figure 4.23: As in Fig. 4.21 but for ds = 5mm.
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that end we have used the maximum value of the normalised sediment load (Q∗
s,max)

and the normalised time at which this maximum is reached after the rupture of the

dam (t∗max). Some details on the water height, flow velocity, and sediment concen-

tration profiles are also given. We have observed the formation of roll waves near

the advancing water front for large times. They produce spatial oscillations in the

sediment concentration near the wetting front, but they do not affect to Q∗
s,max since

they are produced for t ≫ tmax. However, these oscillations are very relevant in the

sediment transport near the wetting front as the dam-break flow evolves downhill be-

cause they produce pronounced local maxima of the sediment concentrations, which

cannot be predicted from asymptotic solutions of the problem (Pritchard, 2005). We

have also characterised the validity of the dilute sediment approach as a function of

the bed slope and of the sediment properties. Finally, we have also computed the

bed-load transport and discussed its relative importance to the suspended sediment

transport in the present problem as a function of the size of the sediment particles

and the inclination of the bed. It is concluded that bed-load motion is more impor-

tant than suspended transport for large sediment particles (ds ∼ 5mm), especially

for small bed angles. For small particles (ds ≃ 1mm or smaller), the sediment trans-

port is dominated by suspension, the more so the larger of the bed slope. Of course,

all these results have the limitations of a depth-averaged model. For instance, the

settling flux is computed with the depth-averaged concentration c and, clearly, basal

concentration will be in excess of c, enhancing the bed-load transport. For very small

sediment particles this effect is negligible because the sediment concentration profile

tend to be uniform, but the concentration of sediment particles becomes increasingly

larger near the bed as the sediment size increases (Julien, 1995).

All these limitations, together with the artificial separation between suspended

and bed-load sediment transport, are superseded by the much more complex model

presented in the next chapter, for which the above numerical results may serve as a

check of the models and numerical technique used to solve them.





Chapter 5

Continuum Mechanics model for

the transport of non-dilute

sediment in river flows

5.1 Introduction

The term hyperconcentrated flow is most often applied to river flows transporting

large quantity of fine sediments in full dynamic suspension, as well as bed-load. Bed-

load (or contact load) is the sum of all sliding or rolling particles that stay in more

or less continuous contact with the bed. Suspended load includes fines which form

a stable suspension and coarser particles which remains temporarily in dynamic sus-

pension. Hyperconcentrated flow is a process intermediate between normal sediment-

laden streamflow, which transport mostly fine sediment in relatively small quantities,

and debris or mud flood, in which the sediment plays an integral role in the flow

behaviour and mechanics. Field and experimental studies have shown that natural

hyperconcentrated flows are turbulent, two-phase, gravity-driven flows of water and

sediment (Pierson, 2005).

In recent years, the number of theoretical and numerical models to study open

channel and river flows, and related sediment transport, has increased due to the im-

portant role that plays in our life. Debris and hyperconcentrated flows are frequently

127
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associated with natural hazards, and usually becomes a natural disaster. However,

nowadays the behaviour of this kind of flows is not well understood. The simple

fact that hyperconcentrated flows are not hydrostatic questions the applicability of

up-to-date shallow-water models - which now accounts for morphological changes as-

sociated to the sediment transport. Furthermore, most of the actual formulations are

based on layers, i.e. one splits the vertical coordinate into layers and select different

equations to model the sediment-water mixture depending on the layer regime (fric-

tional, collisional, saltation, etc). Nevertheless, the boundary between the traction

carpet (or bed-load layer) and intermittently suspended load cannot be sharply de-

fined in hyperconcentrated flows. More sophisticated and rigorous approaches solve

the Reynolds-averaged Navier-Stokes equations (see, e.g., Wu et al., 2000; Liu and

Garcia, 2006) given generally good results in the suspended-load region and the trac-

tion carpet. But, to our knowledge, there are no studies avoiding the use of both

layers and empirical formulas to account for the sediment transport mechanism, ex-

cept the worth work by Lalli et al. (2005) for pipes. That is, there is no Continuum

Mechanics formulation for general river flow.

A Continuum Mechanics approach to predict the behaviour of dense suspensions

with free-surface implies the analysis of three-phases (i.e., water, sediment and air).

Two ways are possible: first, to adopt a diffusion model solving the continuity equa-

tion of both phase, and the momentum equation of the three-phase mixture; second, to

employ averaged mass and momentum conservation equations of both phases. Many

complications are introduced by the dense suspension and the free-surface, which en-

rich the dynamics of real flows. Thus, the author considers that the study about this

multi-phase system is an outstanding issue. We choose the first option to reduce the

computation cost of the resulting model.

We start defining the mixture model and the Continuum Surface Force (CSF)

formulation in § 5.2, and continue with closure laws in 5.3. Next, in § 5.4, we define

the numerical scheme used in following sections. We devote § 5.5 to compare our

numerical simulations with some experiments. A summary and some concluding

comments are given in § 5.6.
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5.2 Turbulent mixture model and CSF formula-

tion

The ensemble averaged continuity equations for the liquid (f), solid (p) and gas (g)

phase in a three-phase mixture are respectively given by (e.g. Ishii and Hibiki, 2006):

∂αfρf

∂t
+ ∇ · (αfρf〈~vf〉) = 0 , (5.1)

∂αpρp

∂t
+ ∇ · (αpρp〈~vp〉) = 0 , (5.2)

∂αgρg

∂t
+ ∇ · (αgρg〈~vg〉) = 0 . (5.3)

In particular, we are interested in flows in which the solid phase cannot get in contact

with the gas phase. Thus, the phase volumetric concentration αk should be written

in terms of the volume fraction occupied by the solid-liquid mixture in a small control

volume, say γ ≡ 1 − αg, and the volumetric concentration of solid particles in the

three-phase mixture, denoted by β ≡ αp. The liquid volumetric concentration is

therefore given by αf ≡ γ − β.Adding the three equations shown above, and defining

appropriately the mixture density ρ and mass velocity 〈~v〉 (e.g. Manninen et al., 1996):

ρ = ρpβ + ρf (γ − β) + ρg(1 − γ) (5.4)

〈~v〉 =
1

ρ
{ρpβ〈~vp〉 + ρf (γ − β) 〈~vf〉 + ρg(1 − γ)〈~vg〉} (5.5)

the continuity equation of the mixture, given by (1.31), is readily deduced. To simplify

the notation it is convenient to introduce dense suspension variables. In general,

these variables are denoted with the subscript m, that characterises the particle-

liquid suspension. As a matter of fact, in Chapter 1 the dense suspension density ρm

and mass velocity 〈~vm〉 were introduced [see equations (1.28) and (1.29), respectively].

An alternative formulation of the mixture continuity equation (1.31) is useful to

formulate the pressure equation (see section 5.4). This formulation is obtained after

dividing the k-phase equation (5.1)-(5.3) by the k-phase density and then adding the

three resulting equations, that yields

∇ · (〈~u〉) = 0 , (5.6)
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being the volumetric velocity 〈~u〉 known thanks to the equation (1.27). This shows

that the volumetric velocity 〈~u〉 is a divergence-free vector.

In order to formulate an efficient and conservative numerical scheme, capable to

solve the continuity equations, it is convenient to rewrite them in a different way.

Dividing equation (5.1) and (5.2) by ρf and ρp, respectively, and adding the ensuing

equations, it yields (1.32) with 〈~urγ〉 ≡ 〈~um〉 − 〈~vg〉. The equation for β, given by

Eq. (1.33), however requires some additional algebra. Writing 〈~vp〉 as a function of

the relative velocity of the dense suspension with respect to the gas phase, 〈~urγ〉, and

the relative velocity of the solid particles with respect to the liquid, 〈~vr〉 ≡ 〈~vp〉−〈~vf〉,
one obtains

〈~vp〉 = 〈~um〉 +

(
1 − β

γ

)
〈~vr〉 = 〈~u〉 + (1 − γ)〈~urγ〉 +

(
1 − β

γ

)
〈~vr〉 . (5.7)

Substituting this relation into (5.2), one deduces (1.33), with

〈~urβ〉 ≡
γ(1 − γ)〈~urγ〉 + (γ − β)〈~vr〉

γ(1 − β)
. (5.8)

Now, the analogy between the indicator function γ and the volumetric sediment con-

centration β becomes evident. Moreover, one can apply exactly the same numerical

scheme to solve both equations (1.32)-(1.33).

One just rests to obtain the momentum balance equation. We drop the condi-

tional averaged brackets 〈·〉 along the deduction for sake of simplicity. According to

Ungarish (1993), we start with the definition of the resultant (total) momentum flux

J associated to the averaged phase velocities,

J = βρp~vp~vp + (γ − β)ρf~vf~vf + (1 − γ)ρg~vg~vg , (5.9)

which can be rewritten as

J = ρ~v~v + β

(
1 − β

γ

)
ρfρp

ρm

~vr~vr + γ(1 − γ)
ρmρg

ρ
~vrγ~vrγ , (5.10)

where ~vrγ denotes the slip velocity between the dense suspension and the air,

~vrγ = ~vm − ~vg = ~urγ +
β

γ
s
γ − β

γ + βs
~vr .
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We follow the theoretical development with some algebraical manipulations on the

LHS of the momentum equation, denoted by ~C, which introduces the material deriva-

tives of each phase [sum of the left-hand side of equation (1.23) for all the species],

~C = βρp
Dp~vp

Dt
+ (γ − β)ρf

Df~vf

Dt
+ (1 − γ)ρg

Dg~vg

Dt
.

To rewrite ~C in terms of the mixture mass velocity, we subtract the equation that

follows to the previous one, and take into account Eqs. (5.1) and (5.3),

∂ρ~v

∂t
=βρp

∂~vp

∂t
+ (γ − β)ρf

∂~vf

∂t
+ (1 − γ)ρg

∂~vg

∂t
−

{ρp~vp∇ · (β~vp) + ρf~vf∇ · [(γ − β)~vf )] + ρg~vg∇ · [(1 − γ)~vg)]} ,

so that it yields

~C − ∂ρ~v

∂t
= ∇ · [βρp~vp~vp + (γ − β)ρf~vf~vf + (1 − γ)ρg~vg~vg] = ∇ · J .

So, substituting Eq. (5.9) into the last expression, the LHS of the momentum balance

becomes

~C =
∂ρ~v

∂t
+∇·(ρ~v~v)+∇·

[
β

(
1 − β

γ

)
ρfρp

ρm

~vr~vr

]
+∇·

[
γ(1 − γ)

ρmρg

ρ
~vrγ~vrγ

]
. (5.11)

The last two terms are called diffusion stress terms and represent the momentum

convected by the relative motion between the phases [as advanced in equation (1.35)].

Finally, we shall incorporate the surface tension as a force concentrated on the

interface in the same way as Unverdi and Tryggvason (1992) and Brackbill et al.

(1992). Hence, the jump condition due to surface tension is included in the mathe-

matical model (Drew, 1983). In addition, the solid stress is divided into a compressive

normal stress ps, the so-called solid pressure, and shear stress. The effect of the shear

stress is commonly described by the effective viscosity. Sometimes in dense suspen-

sions, the shear stress term has been neglected and only the solid pressure is included

(Manninen et al., 1996). So, the momentum balance for the mixture model is

~C = −∇P −∇ps + ∇ · (τ ′ + τ
′′
) − σκ∇γ + ρ~g · ~x .

Substituting (5.11) into the expression shown above, and using the definition of the

reduced pressure p,

p ≡ P − ρ~g · ~x ,
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one has

∂ρ〈~v〉
∂t

+ ∇ · (ρ〈~v〉〈~v〉) = −∇〈p〉 − ∇〈ps〉 + ∇ · 〈τ〉 − σκ∇γ − ~g · ~x∇ρ , (5.12)

being τ ≡ τ
′
+τ

′′
+τ

′′′
+τ

′′′′
the generalised stress tensor that accounts for the viscous

stress tensor τ
′
,

〈τ ′〉 = µl

[
∇〈~v〉 + (∇〈~v〉)T +

(
µv

µl

− 2

3

)
(∇ · 〈~v〉) I

]
, (5.13)

the turbulent stresses τ
′′

(see below), and both the momentum-diffusion due to the

relative motion of the sediment with respect to the water τ
′′′

and the sediment-water

mixture with respect to the air τ
′′′′

[see Eq. (1.35)].

5.3 Constitutive laws and turbulence closure

The physical model presented in the previous section requires some additional

ingredients. It should be included a constitutive law for the mixture viscosity, the

turbulent stress tensor, the solid pressure and the slip velocities.

It is well known that the rheology of dense or highly concentrated suspensions

depends strongly on the microstructure of all the particles and the suspension viscosity

(see, for instance, Stickel and Powell, 2005). We deal above with the first dependence

through the additional momentum-diffusion tensor of the entire stress tensor. Now

we continue establishing the relationship between the laminar viscosity µl and the

volumetric concentrations β and γ. For a thin interface, the bulk viscosity of the

three-phase mixture is given by (Sethian and Smereka, 2003):

µl(~x, t) = γµm + (1 − γ)µg , µm(β) = µfµr(β) (5.14)

where the laminar viscosity of the dense suspension µm will be formulated as a func-

tion of a relative viscosity µr. The relative viscosity is, in general, a function of the

solid volumetric concentration β, the density parameter s, the Reynolds number Reγ̇,

the Pecklet number Peγ̇, and the characteristic time tr,

Reγ̇ =
ρfa

2γ̇

µf

, P eγ̇ =
6πµfa

3γ̇

kBT
, tr =

tkBT

µfa3
,
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where a is the particle radius, γ̇ is the effective shear rate proportional to the square

root of the second invariant of the rate of deformation tensor γ,

γ̇ ≡
√

2|γ| with |γ| := (γ : γ)1/2, γ =
1

2

[
∇〈~v〉 + (∇〈~v〉)T − 2

3
(∇ · 〈~v〉)I

]
,

kBT is the thermal energy, and kB is Boltzmann’s constant kB = 1.38 × 10−23 J/K.

For simplicity, we consider on this chapter a relative viscosity that depends just on

the solid particle volumetric concentration and the effective shear rate. The use of

a Krieger (1972) law, see Figure 5.1, for the relative viscosity was proven successful

to analyse viscous resuspension and settling processes (e.g., Leighton and Acrivos,

1986; Schaflinger et al., 1990, 1995). However, this first ingredient models the sus-

pension as a pure Newtonian fluid, in which the viscosity is function of the solid

volumetric concentration. Non-Newtonian behaviour is generally observed for solids

concentrations exceeding 0.4 by volume (Stickel and Powell, 2005): in the zero shear

rate limit, the suspension is Newtonian except for the yield stress behaviour of very

dense suspensions; all suspensions generally shear-thin at low to intermediate shear

rates; with increasing shear rate, there is a Newtonian plateau and finally a steep

shear-thickening region; finally, the behaviour beyond the shear-thickening region is

not clear. The additional influence of the effective shear rate on the relative viscosity

should be introduced in order to model shear-thinning phenomena. In the present

work the dynamics of fluids with large amount of suspended solids is described fol-

lowing the work by Lalli et al. (2005), which establishes the constitutive law that

follows:

µm =






µf

(
1 + 3β/2

1−β/βM

)2

if β < βm

µf

(
1 + 3β/2

1−β/βM

)2

+ τ0(γ̇ + ǫ)−1/2 if βm ≤ β ≤ βM

. (5.15)

Here τ0 represents the yield stress, βM is the maximum packing factor and βm (= π/6)

is the volumetric concentration at which the flow starts to behave as a Bingham

fluid. Finally, ǫ is a small parameter to avoid numerical difficulties. The visco-plastic

discontinuous model is approximated by means of a shear-thinning continuous model,

whose limit is the visco-plastic one as ǫ → 0. To compute the yield stress we have
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Figure 5.1: Fit to a Krieger-Dougherty law µr(β) = (1−β/βM)−2 of the local viscosity
measurements on suspensions of various concentration ranging from 55% to 60%
(Ovarlez et al., 2006, continuous line) and Krieger (1972, discontinuous line) law
µr(β) = [1 − 1.5β/(1 − β/βM)]−2 with βM = 0.605. The expression proposed by
Huang and Bonn (2007) is also shown.

used the following expression (see Wan and Wang, 1994):

τ0 = 990 exp

{
8.45

[
1.5 +

β − βm

βM

]}
. (5.16)

The modelling of turbulence in dense suspensions is a formidable task since four-

way coupling takes place. The turbulence is modified by the presence of solid particle

at the same time that the collisions between particles affects its own movement.

Hence, the use of a turbulence model that accounts just for the presence of one

phase is no longer valid. Most of the studies in multiphase turbulent flows at high

phase fractions deal with two-fluid models (see, for a complete review, Rusche, 2002).

However, we lost the detailed behaviour of the motion of the phases when an overall

mixture momentum equation was considered. We follow in the present study the work

by Brennan (2001), so we shall adopt the well known k-ǫ turbulence model of Rodi

(1993) with a buoyancy modification term in the k equation to account for density

stratification. The k-ǫ eddy-viscosity model [see, e.g., Rodi (1993)] determines the

isotropic eddy viscosity µt as a function of the turbulent kinetic energy k and its
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dissipation rate ǫ by

µt = Cµρ
k2

ǫ
. (5.17)

The distributions of k and ǫ are determined from the following model transport equa-

tions:

∂ρǫ

∂t
+∇ · (ρ~vǫ) = ∇ · [(αǫµt + µl)∇ǫ] +

ǫ

k
C1

[
Pk + PB(1 − C3) −

2

3
kρ∇ · ~v

]
−C2ρ

ǫ2

k
,

(5.18)
∂ρk

∂t
+ ∇ · (ρ~vk) = ∇ · [(αkµt + µl)∇k] + Pk + PB − ρǫ− 2

3
kρ∇ · ~v , (5.19)

where

Pk = 2µt(∇ · ~v) · dev[∇~v + (∇~v)T ] , PB = −αkµt

ρ
~g · ∇ρ .

The constants used in the equations are Cµ = 0.09, C1 = 1.44, C2 = 1.92, C3 = 0.85,

αk = 1 and αǫ = 0.76923. Certainly, the set of equations (5.18)-(5.19) is not formally

valid in presence of a free-surface, and they should be modified taking into account

the indicator function γ. However, this task is actually out of the scope of the present

study. Because we have adopted the k − ǫ turbulence model, we can now define the

effective viscosity of the continuous phase µ, where

µ ≡ µl + µt .

At high solid volume fraction, sustained contacts between particles occur, resulting

frictional stresses. Several approaches have been presented in the literature to model

the frictional stress, mostly originated from geological research groups. At frictional

regime, the local constitutive law of the flowing material is that of a purely viscous

material (i.e. viscous and not Newtonian as these materials develop normal stresses),

as recently observed by Huang et al. (2005) and Ovarlez et al. (2006). Although

normal stresses were extensively studied by Zarraga et al. (2000), we use the semi-

empirical equation of Johnson and Jackson (1987):

ps = Cp
(β − βm)n

(βM − β)p
for β > βm (5.20)

where Cp, n and p are empirical constants, and βm being the solid volume fraction

when frictional stresses become important. The parameters Cp, n and p depend on
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the material. The values proposed by Johnson et al. (1990) for the empirical material

constants are Cp = 0.05Nm−2, n = 2 and p = 5.

To close the model we need to establish the constitutive laws for the slip velocity

~vr and ~vrγ. We now proceed to define the relative movement of the sediment into the

sediment-water mixture. To that end we shall use “stationary laws”, i.e. we suppose

that the response time of the sediment is much smaller than the characteristic time

of the flow. We consider that the sediment grain moves with respect to the clear flow

due to sedimentation processes (~vs), diffusion caused by concentration gradients (~vd),

and shear-induced self-diffusion (~vsh). In this case the slip velocity ~vr is

~vr = ~vs + ~vd + ~vsh . (5.21)

When analysing the settling of particles in the direction of gravity, the downward

flux of particles is given by (see, for instance, Leighton and Acrivos, 1986)

~vs =
2

9

β

γ

(
1 − β

γ

)
a2g(ρp − ρf )

µl

~g

|~g| . (5.22)

In presence of a concentration gradient along the vertical direction, Leighton and

Acrivos (1987) shown that the Fickian diffusive flux yields

~vd = −Dd∇
(
β

γ

)
, (5.23)

where the dimensionless form of the diffusion coefficient is

D̂d ≡ Dd

a2γ̇
=

1

3

(
β

γ

)2(
1 +

1

2
e8.8β/γ

)
+ 0.6

(
β

γ

)2
1

µl

dµl

dβ
.

Furthermore, when the particle flux due to gradients in the shear stress cannot be

neglected a new contribution to the diffusive flux appears, and this is given by (see

Zhang and Acrivos, 1994)

~vsh = −Dsh∇γ̇ with D̂sh ≡ Dsh

a2
= 0.6

(
β

γ

)2

. (5.24)

Finally, the compression velocity ~vrγ should act perpendicular to the interface

(Rusche, 2002):

~vrγ = Kc
∇γ
|∇γ| . (5.25)
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There are many possible formulations for the compression magnitude Kc. In this

work we adopt that by default in interFOAM solver (OpenCFD Limited, 2007):

Kc = min(Cγ~u · ~nf ,max(~u · ~nf )) (5.26)

where the normal vector at the cell face ~nf is given by the mesh used to solve numer-

ically the problem under consideration (see below). The compressive constant Cγ is

usually fixed to the unity value.

5.4 Computational method

In this work, we adopt the FVM method (see Ferzinger and Peric, 2002) to solve

numerically the set of partial differential equations detailed in § 5.2-5.3, together with

the appropriate initial and boundary conditions. The FVM has been successfully

applied to several, complex physical models involving turbulence modelling, multi-

phase flows, and fluid-structure interaction problems, among others. Nowadays, the

use of advanced data structure and oriented object programing allows one to create

high level libraries tailored for Continuum Mechanics problems. In this line, we shall

use OpenFOAM (Weller et al., 1998) which actually implements several solvers for

multi-phase and free-surface flows.

To make the description of the numerical scheme as easy as possible, we use the

finite volume notation by Weller (2002a), that has been previously applied by Rusche

(2002). For a detailed description of the discretisation of the convection, diffusion

and source terms involved in the equations, as well as the temporal derivative, we

refer the reader to Jasak (1996, 2006). Each of these terms are generally found

in the standard transport equation, and the application of a discretisation practice

with second-order accurate in space and time is suitable for second-order continuum

mechanics problems.

5.4.1 Compressible pressure-based solver

An implicit scheme has been used for the discretisation of all the terms that are

represented in the standard transport equation. However, in our equations there are
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terms that do not correspond to a term in the standard transport equation, say extra

terms, which are usually discretised explicitly.

The momentum correction and pressure equation can be readily derived from a

semidiscretised form of the momentum equation,

ADV = AH −∇p∗ −∇ps − ~g · ~z∇ρ− σκ∇γ , (5.27)

where A denotes a system of linear algebraic equations arising from the discretisation

of the momentum equation (5.12) without surface tension and buoyancy terms,

A :=

s

∂ρ[V]

∂t

{

+
q

∇ ·
(
φ[V]f(φ,S)

)y
=

q

∇ ·
(
µ∇[V]

)y
+ ∇ · R

effC , (5.28)

where the mass flux is φ ≡ ρV ·S, AD is a matrix containing the diagonal coefficients,

the “H” operator AH (see below) is extensively used in the Jacobi iteration scheme

(Ferzinger and Peric, 2002), and the Reynolds stress correction term R
effC is useful

for the numerical implementation,

R
effC = µ

[
(∇V)T − 2

3
(∇ · V)I

]
− (τ

′′′
+ τ

′′′′
) . (5.29)

The “H” operator is defined as:

AH ≡ AS − ANφ

where the special operators AS and AN are invoked to extract the source vector

and the off-diagonal coefficients, respectively. The flux predictor φ∗ and corrector φ

are then derived by interpolating the momentum correction equation using central

differencing:

φ = φ∗ −
(

ρ

AD

)

f

|S|∇⊥
f p

∗ , (5.30)

and the flux prediction φ∗ is expressed, in the spirit of Rhie and Chow (1983), by

φ∗ =

(
ρ
AH

AD

)

f

· S −
(

ρ

AD

)

f

[
(~g · ~z)f |S|∇⊥

f ρ+ (σκ)f |S|∇⊥
f γ + ∇ps

]
. (5.31)

The mass flux φ is the result of the Pressure-Implicit Split-Operator (PISO) loop. The

value of φ is not evaluated by taking the scalar product of the face area vector and
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1. Solve the continuity equation (5.33).
2. Compute the relative velocities (5.21).
3. Solve the γ-equation (5.34).
4. Calculate the unit normal vector as well as curvature.
5. Construct A, equation (5.28).
6. PISO-Loop:

(a) Predict fluxes using equation (5.31).
(b) Construct and solve the pressure equation (5.32).
(c) Correct fluxes, equation (5.30).
(d) Solve the continuity equation (5.33).
(e) Reconstruct velocities.

7. Solve k − ǫ equations (if required).
8. Solve the β-equation (5.35).

Table 5.1: Implicit three-phase numerical solution procedure.

the face interpolate of the velocity, as this would not obey continuity. The equation

for the pressure is then obtained to obey continuity,
t

∇ ·

[(
ρ

AD

)

f

∇[p∗]

]|
= ∇ · φ∗ +

∂ρ

∂t
, (5.32)

and the density is updated in the PISO-Loop to satisfy the mass conservation,
s

∂[ρ]

∂t

{

+ ∇ · φ = 0 . (5.33)

This method gives an oscillation-free velocity in line with Rhie-Chow, even though

there is no explicit Rhie-Chow correction (Kärrholm, 2006). This numerical solu-

tion procedure is analogous to that currently implemented in settlingFoam solver by

Brennan (2001).

Special attention should be paid to the γ- and β-equations to obtain a conservative

and bounded solution. Several practices for the phase equation has been previously

tested (Rusche, 2002) and here we follow the work by Weller (2002b). Therefore, the

phase equations (1.32) and (1.33) are discretised as follows:

s

∂[γ]

∂t

{

+
q

∇ ·
(
φu[γ]f(φv ,S)

)y
+

r

∇ ·

(
φ̃rγ[γ]f(φ̃rγ ,S)

)z
= 0 . (5.34)
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s

∂[β]

∂t

{

+
q

∇ ·
(
φu[β]f(φv ,S)

)y
+

r

∇ ·

(
φ̃rβ[β]f(φ̃rβ ,S)

)z
= 0 . (5.35)

Taken into account (1.36), the volumetric flux φu ≡ Uf · S is expressed as a function

of the mass flux φ:

φu =
φ

ρf

−
[
γ(1 − γ)

ρm − ρg

ρ

]

f

φrγ −
[
sβ

γ − β

γ + βs

ρm

ρ

]

f

φr (5.36)

where

φ̃rγ = (1 − γ)f(−φrγ ,S)φrγ , φ̃rβ = (1 − β)f(−φrβ ,S)φrβ ,

φrγ = (Urγ · S)f , φrβ = (Urβ · S)f , φr = (Vr · S)f .

The transport equations for the k − ǫ turbulence model are discretised treating

implicitly the negative source terms, while the positive source terms are incorporated

explicitly as in Brennan (2001).

Finally, the sequence of operations for the solution procedure is summarised in

Table 5.1.

5.4.2 Segregated pressure-based solver

The compressible pressure-based solver described above deals with the velocity-

pressure coupling through a PISO-Loop which employs the continuity equation of the

mixture (5.33), based on the mean velocity ~v. However, one can adopt a different

approach that includes the relation (5.4), in such a way that the density is no longer

an unknown to be determined as a function of the volume fraction β and γ. Thus, the

PISO algorithm is to be formulated based on the continuity equation (5.6). Rewriting

(5.6) in terms of the mean velocity ~v, one has

∇ · ~v = ∇ ·
[
γ(1 − γ)

ρm − ρg

ρ
~urγ

]
+ ∇ ·

[
βs

γ − β

γ + βs

ρm

ρ
~vr

]
. (5.37)

This equation should be discretised and then assembled, together with the discretised

momentum equation (5.27), into the block system that follows:

[
AD ∇
∇· 0

][
φ

p

]
=



 AH −∇ps − ~g · ~z∇ρ− σκ∇γ
∇ ·
[
γ(1 − γ)ρm−ρg

ρ
~urγ

]
+ ∇ ·

[
βs γ−β

γ+βs
ρm
ρ
~vr

]



 , (5.38)
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1. Compute the relative velocities (5.21).
2. γ − β-sybcycle:

(a) Update φrγ (5.26) and φγ (5.42).
(b) MULES::explicitSolve01(γ, φu, φγ).
(c) Update φr (5.21), φβ (5.43) and φuβ = φβ/β.
(d) MULES::explicitSolve(β, φuβ, φβ, βmin, βmax).
(e) Calculate the unit normal vector
as well as curvature of the free-surface.
(f) Restart 2(a) if the γ − β subcycle is not ended.

3. Update the mass flux (5.45).
4. Construct A, equation (5.46).
5. PISO-Loop:

(a) Predict fluxes using equation (5.40).
(b) Construct and solve the pressure equation (5.39).
(c) Correct fluxes, equation (5.41).
(d) Reconstruct velocities.

6. Solve k − ǫ equations (if required).
7. Update flow properties (density, viscosity, etc)

Table 5.2: Explicit three-phase numerical solution procedure.

where φ ≡ V · S is now defined as in the incompressible Navier-Stoke equations. A

revised formulation of the pressure equation via a Schur’s complement yields:
t

∇ ·

[(
1

AD

)

f

∇[p∗]

]|
= ∇ ·φ∗−∇·

[
γ(1 − γ)

ρm − ρg

ρ
~urγ

]
−∇·

[
βs

γ − β

γ + βs

ρm

ρ
~vr

]
,

(5.39)

with

φ∗ =

(
AH

AD

)

f

· S −
(

1

AD

)

f

[
(~g · ~z)f |S|∇⊥

f ρ+ (σκ)f |S|∇⊥
f γ + ∇ps

]
(5.40)

and

φ = φ∗ −
(

1

AD

)

f

|S|∇⊥
f p

∗ . (5.41)

The pressure equation (5.39) is a Poisson equation with the diagonal part of the

discretised momentum acting as diffusivity and the divergence of the velocity on the

RHS. The block AD only contains diagonal entries and is easy to invert, preserving
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the sparseness pattern in the triple product. Therefore, we avoid the inconveniences

of the original non-linear system of equations defined by A, which is a sparse matrix

whose inverse is likely to be dense and the triple product with A
−1 would result in a

dense matrix, making it computationally expensive to solve.

Additional difficulties come from the multi-dimensional scalar transport equations

(1.32)-(1.33). In the previous section, the standard way of discretising both equations

was proposed [see equations (5.34)-(5.35)]. However, the γ function is sharp in the

interface and so the numerical solution obtained with standard methods (e.g. Jasak

and Weller, 1995) will be strongly diffusive, smearing therefore the interface (Gopala

and van Wachem, 2008). Similarly, the β function may exhibit discontinuities (e.g.

Ungarish, 1993), introducing the same difficulties as the γ function. Furthermore,

special care has to be taken since the solid volumetric concentration cannot cross

the free-surface. This implies that the volumetric flux, of both functions γ and β,

at the interface should be numerically limited coherently. The best way to guaran-

tee a sharp and bounded solution, and propagate both functions coherently, is to

couple both equations and to solve them with a numerical scheme designed for the

multi-dimensional advection equation (e.g. LeVeque, 1996). To this end, the explicit

Multidimensional Universal Limiter with Explicit Solution (MULES) implemented in

OpenFOAM (OpenCFD Limited, 2007) was adapted to our requirements.

MULES employs the following input parameters: the normal convective flux, and

the actual explicit flux of the variable which is also used to return limited flux of the

bounded-solution. The normal flux of the variables to be solve are given by

φγ ≡
[
γU + γ(1 − γ)Urγ

]
f
· S = γ[φu + (1 − γ)φrγ] , (5.42)

φβ ≡
[
βU + β(1 − β)Urβ

]
f
· S = β

[
φγ

γ
+

(
1 − β

γ

)
φr

]
, (5.43)

being φu the volumetric flux at the cell face: φu ≡ Uf · S. Consequently, the mass

flux at the cell faces can be then determined from the normal flux of γ and β:

ρφ ≡ ρV · S = ρgφu + (ρp − ρf )φβ +

[
(ρm − ρg) −

β

γ
(ρp − ρf )

]
φγ . (5.44)

Thus, one should first solve the γ-equation calling “MULES::explicitSolve01(γ, φu,

φγ)” that returns the limited flux φγ used in the computation of γ. This normal flux is
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used to evaluate φβ and then the solution of the β-equation “MULES::explicitSolve(β,

φuβ , φβ, βmin, βmax);” where φuβ ≡ φβ/β. These equations should be iterated inside

the so-called γ-β-subcycle. This subcycle consists in solving both equations Nγβ-times

and then averaging the mass flux:

ρφ ≡ ρV·S = ρgφu+

Nγβ∑

i=1

δti

∆t

{
(ρp − ρf )φ

i
β +

[
(ρm − ρg) −

βi

γi
(ρp − ρf )

]
φi

γ

}
. (5.45)

Then, the mass flux ρφ required by the momentum balance should be computed

according to (5.45), in such a way that the limited fluxes employed to solve the

γ- and β-equation are accounted for in the PISO-Loop. Therefore, the momentum

equation has to be formulated explicitly:

A :=
∂ρ[V]

∂t
+ ∇ ·

(
ρφ[V]f(ρφ,S)

)
= ∇ ·

(
µ∇[V]

)
+ ∇ · R

effC , (5.46)

hence maintaining constant the mass flux ρφ in the advection term inside the PISO-

Loop. Once the pressure-velocity equations are solved, the volumetric flux φu is

updated from (5.36). The overall numerical procedure is sketched in Table 5.2.

5.5 Test cases

We select the problem of local scour around pipeline (Mao, 1986), and the ero-

sional dam-break wave (Capart and Young, 1998; Spinewine and Zech, 2007) to test

the theoretical model and the numerical scheme. The first case is solved with the

implicit numerical method (§ 5.4.1), whilst the second one is computed by using

the explicit one (§ 5.4.2). According to previous numerical works (e.g. Brors, 1999;

Wu et al., 2000; Li and Cheng, 2001; Sumer, 2007), the free-surface is modelled as

a symmetric plane in the pipeline scour problem. This assumption is likely to be

valid when the curvature of the interface is smooth, and reduces in one the number

of partial differential equations to be solved. The main objective at this stage is to

take into account the sediment erosion, transport and deposition, and to analyse its

dependence on the input parameters of the model. The erosional dam-break wave

is highly unsteady, so the capabilities of the model to capture the evolution of the

free-surface and the sediment bed are better appreciated herein.
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Figure 5.2: Development of bed profile with time (in min). The water-depth in the
cases (a,b,c) is 0.35m and the cylinder diameter 10cm, whilst for (d) the water-depth
and the cylinder diameter is 0.23m and 5cm, respectively. Figure taken from Mao
(1986). The Shields Parameters of 0.048, 0.056, and 0.096 correspond to free stream
velocities of 37, 44, and 53cm/s, respectively.
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5.5.1 Local scour

Mao (1986) presented laboratorial experiments for the interaction between a pipe-

line and an erodible bed. Mao observed the scour around horizontal cylinders in

steady current and wave conditions, as well as with different Reynolds numbers,

Shields parameters, and pipeline gaps. These experiments investigated such scour

features as the shape and size of the scour hole and the time scale of scour hole

formation. Scour around the object may cause the structure fail. It is important for

engineers to understand the process of scour and to make better designs to prevent

or mitigate the damage. This work has motivated further experimental research on

scour around solids (e.g. Jensen et al., 1990; Gao et al., 2006; Cataño Lopera and

Garćıa, 2007), as well as theoretical studies (e.g. Brors, 1999; Li and Cheng, 2001;

Lua et al., 2005; Sumer, 2007; Smith, 2004, 2007).

The case considered herein is a clear water case (Shields parameter = 0.048, mean

particle diameter = 0.036cm) where scour and deposition are caused only by the local

fluid forcing, with no net transport downstream. The cylinder has a diameter of 10cm

(Re = 3.7 × 104) for these experiments.

The results of the numerical simulation at several instants of time are shown

in Figure 5.3, where the water is flowing from left to right. The flow streamlines

(pink lines) depict the primary down-stream recirculation zone, that disappears as

the bed is eroded. The numerical results were not (quantitatively) compared against

the experimental data because of the evident disagreement: the time scale of the

erosional process in the numerical results is accelerated with respect to the physical

one, and the dune that should be created downstream of the cylinder did not appear

in the numerical simulation. This unsatisfactory result may be due to the viscoplastic

model employed to describe the shear-thinning behaviour of the dense suspension. It

should be noted that viscoplastic models yield ill-posed problems - when the bed

is fluidized the viscosity changes abruptly from “infinite” to the laminar viscosity,

and so the sediment is suddenly ejected from the bed after its fluidization. Lalli

et al. (2005) observed the same difficulties when they applied their model to the local

scour problem. Therefore, the yield stress plays the main role in our model. In fact,
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Figure 5.3: Numerical results for the evolution of the bottom bed in the Mao’s prob-
lem, case a in Figure 5.2, at several instants of time (from left to right, and from top
to bottom: t = 0, 35, 36, 37, 40, 55s). The sediment volume fraction scale is the
same as that depicted in Figure 5.4.

in absence of yield stress our model is able to give better predictions of the mixture

behaviour (see § 5.5.2). However, this fact does not explain the continuous suspension

of the eroded sediment, that is convected out of the domain of computation, without

predicting the formation of the dune observed experimentally. The source of this

error is the turbulent diffusion that was added to the β-equation (1.33), resulting

∂β

∂t
+ ∇ · (β〈~u〉) + ∇ · [β(1 − β)〈~urβ〉] = ∇ ·

(µt

σ
∇β
)
. (5.47)

The turbulent diffusion term (on the RHS of the equation shown above) is tradi-

tionally considered on hydraulic engineering, but in our case seems to overpredict the

transport of suspended sediment. In Mao’s experiment the turbulent kinetic energy
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Figure 5.4: Numerical simulation of the turbulent kinetic energy (at the top) in Mao’s
experiment. At the bottom is shown the sediment volume fraction at the same instant
of time.

k is intensively developed over the cylinder and mainly in the turbulent boundary

layer growing from the bottom bed, as shown in Figure 5.4.

5.5.2 Erosional dam-break flow

With the Tapei erosional dam-break wave experiments (Capart and Young, 1998)

we return to our problem of main interest. Our purpose in this chapter was to avoid

the limitations intrinsic to depth-averaged shallow-water models and, to that end, we

have presented a formulation valid for non-hydrostatic free-surface flows of non-dilute

suspensions. An illustrative problem to show the capabilities of the model, as well

as the numerical scheme proposed to solve it, is the erosional dam-break wave. This

experiment has been conducted under different initial conditions and with sediment of

diverse characteristics (Capart and Young, 1998; Leal et al., 2002; Spinewine and Zech,

2007). To reduce the number of physical parameters that introduce uncertainties

in the model, we have selected the case in which the flow does not exhibit yield

stress during the flood. The Tapei dam-break experiments was performed into an

undisturbed bed with a sediment concentration of 40% in volume, with very light

sediment ρs = 1.048ρf . Under these conditions, the rheology of the suspension is

expected to depend on the sediment volumetric concentration β.

This test problem was considered on many other studies (e.g. Capart and Young,
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1998; Fraccarollo and Capart, 2002; Fraccarollo et al., 2003; Cao et al., 2004; Simpson

and Castelltort, 2006; Wu and Wang, 2007), and theoretical predictions were given by

using depth-averaged shallow-water models. In general, the overall agreement of the

one-dimensional numerical simulations and the experimental results is satisfactory.

There are marked differences in some locations between the free-surface location and

the bed elevation, but the main behaviour of the dam-break wave is properly captured.

The test reach for the Taipei experiments was of length 1.2m, width 20cm and sidewall

height 70cm. The particle diameter was 6.1mm, the density 1048kg m−3 and fall

terminal velocity 7cm s−1. The water level upstream of the gate raised the depth

10cm above the top of a granular bed of constant thickness of approximately 5−6cm.

The gate released the water at rest within 50ms.

The results obtained with our model are shown in Figure 5.5, together with the

initial configuration. In order to reproduce the flood in the initial stage, that is

pretty affected by the gate release process, it was necessary to set the velocity of the

cells bordering with the gate to 0.75ms−1 along the direction of the gravity. Our

numerical simulation does not reproduce exactly the erosional dam-break wave, but

is qualitatively very similar to the physical result. It should be pointed out that

the relative velocity of the sediment with respect to the water was neglected, i.e. it

was supposed that the sediment is purely advected with the dense-suspension. We

suggest that the main cause of the discrepancy is that the sediment fall velocity leads

vertical stratification that increases substantially the viscosity of the mixture (see

Figure 5.1). For this reason, the velocity of the fordward wave is reduced. Another

factor that may affect the predictions is the maximum packing factor βM and the

volume fraction threeshold βm to develop yield stress - the packing limit is a measure

of microstructure, and microstructure changes with flow (Stickel and Powell, 2005).

Apart from the reality of these results, the numerical scheme implemented is able

to propagate the free-surface as well as the sediment volume fraction with success,

and conserves the mass (as the volume-averaged phase-fraction of each specie remains

constant during the numerical simulation).

On the other hand, the useful configurations of erosional dam-break waves, re-

cently presented by Spinewine and Zech (2007), can be used to check the capability
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Figure 5.5: Image mosaics for the Tapei erosional dam-break wave experiments, con-
ducted with light granular material (ρs = 1.048ρf ), and the numerical simulation
using the numerical scheme in § 5.4.2, where the scalar field γ + β is drawn. The
instants selected are: t = 0 s, 0.1 s, 0.2 s, 0.3 s, 0.4 s, 0.5 s. Digital footpage from the
experiments of Capart and Young (1998) in Fraccarolo and Capart (2002).
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of the mixture model presented in this work to predict the transport of sediment.

They provide six scenarios, each of them for two kinds of sediment, sand and PVC

sediment. These scenarios differ each other in the initial configuration of the sedi-

ment and water at rest. Thus, the input parameters of the model can be calibrated,

simulating one of the six experiments, and then the goodness of the model should

be checked against the other five experiments. We now present the calibration result

for the configuration f (see Fig. 5.6) with PVC pellets. The PVC pellets are slightly

cylindrical in shape, with an equivalent spherical diameter of 3.9mm, a specific den-

sity ρp = 1580 kg m−3, a frictional angle of 38o and no cohesion. This PVC sediment

is set in place at the random close packing 58%. With this sediment volume fraction,

we expect the dense suspension to develop yield stress. We have corroborated this

fact by simulating the configuration f with different values of βm, fixing the other

input parameters to the values βM = 0.608, Cp = 0.5 and n = p = 2. However, as

was discussed in the previous section, the shear stress law (5.16) is not appropriate,

and we adopt now the proposal of Wildemuth and Williams (1984):

τ0 =

[
AWW

βM

βm

(
β − βm

βM − βm

)]1/mWW

, (5.48)

being AWW and mWW constants that depend on the sediment under consideration -

we use the values AWW = 33 kg ms−2 and mWW = 1.

Figure 5.6 depicts the numerical simulation at three instants of time (as indicated

in the figure caption) with βm = 0.4. This value of the Newtonian limit βm is

lower than we could expect from the rheological analysis of the sediment particles

but gives good predictions of the bed deformation. This disparity should be caused

by the uncertainty of the other input parameters, which were given default values.

The present test shows the capability of the Bingham model to capture the bed-load

mechanism of sediment transport. We are still working in the other five configurations

that exhibit the difficulty of capturing the advance of a wetting front responsable of

the bed fluidization.
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Figure 5.6: Image mosaics (400×50 cm2) for the numerical simulation of the Louivain
erosional dam-break wave experiments, conducted with PVC (configuration f ). The
instants selected are: t = 0, 0.4, 0.8 and 1.25 s; the color scale corresponds to β + γ.

5.6 Summary and conclusions

A Continuum Mechanics formulation for the transport of sediment in free-surface

flows was formulated from the ensemble-averaged Navier-Stokes equations. The multi-

fluid equations were simplified to the mixture equations. The terms in the equations

were formulated, when possible, as in the standard scalar transport equation, in such

a way that they admit Computational Continuum Mechanics solvers that ease their

implementation and solution. In particular, the sediment transport equation was

rewritten in terms of the relative velocities, resulting a similar equation to that of

the free-surface. Two numerical schemes were proposed to solve the mixture model:

a segregated implicit FVM, and a segregated explicit FVM. Both numerical schemes

were implemented in the OpenFOAM package and were applied to the problem of

local scour and erosional dam-break, respectively.

The implicit method was applied to the local scour problem around pipelines in

order to show the capabilities of the model to account for sediment erosion, trans-

port and deposition, and check the constitutive laws proposed in § 5.3. Although the
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numerical results described the structure of the flow field, the transport of sediment

exceeded the physical one. The main cause of the divergence seemed to be the ex-

pression employed for the yield stress and the introduction of turbulent diffusion in

the sediment transport equations.

The Tapei dam-break wave was analysed numerically, showing the capabilities of

the explicit numerical scheme to capture the propagation of the free-surface and sed-

iment volume fraction. The yield stress was neglected at this stage. The numerical

results were quite promising, although the matching between the numerical solution

and the physical experiment could be improved by considering a shear-thinning mech-

anism. Then, one of the configurations of the Louivain dam-break wave experiment

was solved. This experiment, which shows high yield stress, pointed out again the

importance of the appropriate modelling of the shear-thinning mechanisms in the

transport of sediment.
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Closure

This last Chapter concludes the thesis and is divided in two Sections. The first

Section summarises the conclusions acquired from this work and the second one makes

suggestions for future work.

6.1 Conclusions

The results of the present study have been extensively assessed and discussed in the

previous Chapters. In the following, the most important conclusions are summarised.

• For a suddenly released mass of fluid over an inclined plane, the theoretical

location of the wetting front has been supplied in the kinematic wave regime,

together with the velocity and water-depth field, based on depth-averaged equa-

tions. One of the most noticeable effects of the results for large slopes of the

bottom is the divergence of the previous solution by Hunt (1982, 1984) obtained

by using the traditional Saint-Venant equations. The results for any mass of

fluid that spreads on a plane bed are identical to those reported by Weir (1983)

and Hunt (1984) in terms of a specific set of non-dimensional variables. We paid

special attention to the shape of the flood in the tip region, where the solution

has been obtained as a full expansion in terms of the streamwise coordinate

located at the wetting front. The present results are directly comparable to

those obtained by Hunt (1984) when we use enough terms in the expansion.

153
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• The shallow-water equations (with the appropriate initial conditions for a dam-

break over an inclined surface) have been solved using an upwind TVD method,

second-order accurate in both space and time, with semi-implicit and upwind

treatment of the source terms. We found that the asymptotic analytical so-

lutions and the numerical simulations are in almost perfect agreement, except

for Froude numbers larger than two due to the development of roll-waves. The

accuracy of the numerical solution has been also checked, and very good results

have been obtained by just using a cut-off height as boundary condition for the

wetting front.

• The existence of physical instabilities in floods on steep inclines was illustrated.

• The theory of linear stability has been applied to the set of equations governing

the depth-averaged motion in open channel flow.

– First, we considered a non-parallel spatial stability analysis of the one-

dimensional kinematic waves with turbulent friction down an inclined plane,

and we found an asymptotic analytical solution for the critical Froude num-

ber as a function of both the wave frequency and non-parallel characteristic

of the base flow.

– The exact solution for the linear perturbations with Fr = 2 have been

obtained by means of multiple scale expansion. This result has been com-

pared against the non-linear simulation of the perturbation, showing a

perfect matching between both solutions.

– However, the non-parallel spatial stability analysis fails to predict the linear

stability criteria due to the unnegligible influence of the base-flow temporal

variation.

– We designed a numerical experiment, and a clever numerical method, that

allows to compute the linear and non-linear evolution of small perturba-

tions.

– We have found that non-uniform and unsteady effects of the background
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flow stabilise turbulent roll-waves and raise the critical Froude number

required for instability.

• The well known stability criteria for parallel flows at high Reynolds number

(the basic flow is unstable for any wave length and Froude number larger than

2) differs abruptly of that resulting from kinematic waves. One of the most

noticeable effects is the stabilisation of disturbances on basic flows with Freq =

2. In addition to that, for larger Froude numbers, Freq > 2, the wave amplitude

decreases or increases depending on the velocity, and both spatial and temporal

gradients of the base flow. Furthermore, stable waves lengthen as time goes on

- this behaviour is also different with respect to the parallel one, in which waves

remain with constant wave length even when hydraulic jumps are developed.

• In this work, the one-dimensional problem of transport of dilute suspended

sediments after the rupture of a dam on an inclined bed of arbitrary constant

slope is formulated. The frictional model has been validated against existing

experimental data. Several numerical techniques have been tested with available

analytical solutions for the transport of sediment in the dam-break problem on

a horizontal bed.

– The transport of suspended sediments has been characterised as a function

of the slope of the bed for different values of the parameters characterising

the sediments. To that end, we use the maximum value of the normalised

sediment load (Q∗
s,max) and the normalised time at which this maximum

is reached after the rupture of the dam (t∗max).

– Some details on the water height, flow velocity, and sediment concentration

profiles are also given.

– We observe the formation of roll waves near the advancing water front for

large times. They produce spatial oscillations in the sediment concentra-

tion near the wetting front, but they do not affect to Q∗
s,max since they are

produced for t≫ tmax.
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– We have also characterised the validity of the dilute sediment approach as

a function of the bed slope and the sediment properties.

– We have also computed the bed-load transport and discussed its relative

importance to the suspended sediment transport in the present problem

as a function of the size of the sediment particles and the inclination of

the bed.

– It is concluded that bed-load motion is more important than suspended

transport for large sediment particles (ds ∼ 5mm), especially for small bed

angles. For small particles (ds ≃ 1mm or smaller), the sediment transport

is dominated by suspension, the more so the larger of the bed slope.

• A Continuum Mechanics formulation for the transport of sediment in free-

surface flows was formulated. Starting from the ensemble averaged Navier-

Stokes equations, the multi-fluid equations were simplified to the mixture equa-

tions. The derivative operators in the equations were formulated, when possible,

as in the standard scalar transport equation, that ease their implementation and

solution with OpenFOAM.

• The k-ǫ turbulent model with a buoyancy modification term in the k equation to

account for density stratification is considered on the closure laws. To account

for the transport of sediment in the laminar regime, a Bingham model is adopted

in the determination of the laminar viscosity.

• Two Finite Volume Methods were provided: first, an implicit segregated ap-

proach, useful for problems in which the free-surface remains nearly flat; then,

an explicit segregated scheme, able to capture with high precision the free-

surface advection, breaking apart and merge together, as well as the evolution

of the sediment volume fraction. The last numerical scheme was able to main-

tain constant the mass of water and sediment during the numerical simulation.

• The numerical simulation of Mao’s (1986), Capart and Young (1998) and Spinewine

and Zech (2007) dam-break experiments reported a strong dependence of the
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results with the yield stress. The agreement between the numerical solution

and the physical experiments was better when the yield stress can be neglected,

as it happens in the Taipei dam-break experiments.

6.2 Suggestions for future works

Obviously, all the suggestions on future works are related to the more ambitious

model for three-dimensional, hyper-concentrated flows described in the last chapter.

Before we proceed with recommendations for the future work, the important role of

measurements has to be emphasised. The mixture model rely on the availability and

accuracy of measurements. Therefore, only more extensive experimental data will

reduce the uncertainty inherent in some of the models and/or will give evidence of

phenomena currently unaccounted for.

Due to the fact that this work does not focus on experimental methods, the

suggestions will be mainly directed towards researchers in the field of modelling and

numerics. Tasks which are, arguably, of the most priority are as follows:

• Comparison of the depth-averaged results presented in Chapters 2-4 with that

obtained using the mixture model.

• Derivation of accurate and reliable correlations for the solid phase pressure and

stress tensor, that could be incorporated into the mixture model.

• Inclusion of the k-ǫ turbulence model in the interface-capturing calculations.

Improvements in the turbulence modelling for the mixture methodology must

be developed. Although the influence of turbulence modelling has not been

investigated extensively, it is very likely that some of the discrepancies discov-

ered in this study are due to deficiencies in the models used. For example, it is

very difficult to incorporate the effects of large scale eddies, so-called coherent

structures, on the slip velocity.

• Improvement of the wall functions used by the k-ǫ turbulence model to account

for the bed roughness.
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• Inclusion of Large Eddy Simulation (LES) turbulence models and comparison

against RANS. The main idea of LES is to filter the small scales out of the

Navier-Stokes equations and resolve the larger ones. The smaller scales are

represented using a so-called sub-grid model by relating the sub-grid Reynolds

stress tensor to the sub-grid fluctuations.

• Validation of the current mixture methodology against a more complete set

of experimental data. In particular, a comparison between the sediment and

pressure distribution along the vertical direction against physical measures could

be valuable.

The present study should be regarded as a further step towards the accurate sim-

ulation of sediment transport in free-surface flows. The mixture model presented in

here has not addressed many important phenomena, such as heat- and mass transfer,

size distribution effects as well as phase change. The inclusion of these into the frame-

work of the mixture model is by no means uncharted territory and many researchers

have made contributions towards it. However, it is unlikely that a single model will

emerge eventually because of the many ways these phenomena interact with each

other. More likely, several multi-fluid methodologies will co-exist, each specialising

in the aspects most relevant to the particular application in mind. In this respect,

it is the hope of the author that this study might serve as a tool-box to other mod-

ellers and engineers in industry who attempt the prediction of sediment transport in

environmental flows.
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Neutral curves

Taking e = iǫ (i.e., σ = 0) in Eq. (3.42), dividing its imaginary part by ̟, and
solving it for ̟, one obtains

̟2 =
φ {(11 − 12β) + φ [27 − 25β + ̺(22β − 4)] + 2φ2 [3 + 2β(̺− 1)]}

(3β − 2) [−1 + 2β + (̺− 1)β2] + φ [3 + 4(̺− 2)β − 7(̺− 1)β2 − 2(̺− 1)2β3]
,

(A.1)
where β = ǫ/̟. Substituting into the real part of (3.42), the following expression is
obtained

6∑

i=0

ri(̺, φ) βi = 0 , (A.2)

where

r0 ≡ − 88 + (32̺− 661)φ+ 8(7̺− 195)φ2 + 2(−877 − 56̺+ 8̺2)φ3

− 9(101 + 12̺)φ4 − 162φ5,
(A.3)

r1 ≡ 668 + (4220 − 1000̺)φ+ (9763 − 4080̺+ 224̺2)φ2 + (9737 − 5156̺+ 128̺2)φ3

+ (4569 − 2854̺− 208̺2)φ4 + (756 − 612̺)φ5,

(A.4)

r2 ≡ 88̺− 2098 + (−12101 + 5514̺− 32̺2)φ+ (−25479 + 20836̺− 3184̺2)φ2

+ (−22537 + 25417̺− 6396̺2 + 352̺3)φ3 + (−9533 + 13277̺− 3708̺2 − 32̺3)φ4

+ (−1458 + 2418̺− 848̺2)φ5,

(A.5)
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r3 ≡ 3489 − 492̺+ (18453 − 13250̺+ 848̺2)φ+ (35492 − 44365̺+ 12860̺2

− 192̺3)φ2 + (27825 − 48629̺+ 24150̺2 − 2992̺3)φ3 + (10567 − 23359̺

+ 15072̺2 − 2552̺3 + 128̺4)φ4 − 8(−186 + 481̺− 363̺2 + 68̺3)φ5,

(A.6)

r4 ≡ 54(−60 + 19̺) + (−15787 + 16379̺− 2815̺2)φ+ (−27827 + 48083̺− 22648̺2

+ 2032̺3)φ2 + (−19312 + 46379̺− 35759̺2 + 9008̺3 − 208̺4)φ3 + (−6562

+ 20292̺− 21150̺2 + 8092̺3 − 672̺4)φ4 − 8(−1 + ̺)2(106 − 171̺+ 16̺2)φ5,

(A.7)

r5 ≡ 1593 − 945̺+ (7185 − 10311̺+ 3288̺2)φ+ (11639 − 26439̺+ 18528̺2

− 3728̺3)φ2 + 4(1784 − 5547̺+ 6042̺2 − 2615̺3 + 336̺4)φ3 − 4(−1 + ̺)2

(−541 + 1110̺− 504̺2 + 16̺3)φ4 + 64(−1 + ̺)3(−4 + 7̺)φ5,

(A.8)

r6 ≡ 324(−1 + ̺) − 9(151 − 293̺+ 142̺2)φ+ 12(−1 + ̺)2(−169 + 154̺)φ2

− 3(−1 + ̺)2(365 − 696̺+ 316̺2)φ3 + 8(−1 + ̺)3(37 − 78̺+ 32̺2)φ4

+ 32(−1 + ̺)4(−1 + 2̺)φ5 .

(A.9)

These rather involved algebraic expressions have been obtained with the help of Math-
ematica.
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Resumen extendido

B.1 Introducción

El flujo unidimensional que se produce tras la rotura de una presa sobre un plano

inclinado de pendiente arbitraria, aśı como el transporte suspendido de sedimento

no cohesivo, se analiza haciendo uso de la aproximación de aguas someras. En

condiciones diluidas, en la cual el sedimento trasportado por el agua no modifica

las propiedades reológicas de la mezcla sedimento-agua, la hidrodinámica de dicho

flujo puede ser estudiada anaĺıticamente en los instantes tard́ıos. Para tiempos su-

ficientemente grandes tras la rotura de la presa, la solución anaĺıtica es presentada

bajo la hipótesis de onda cinemática, y comparada con la solución numérica. Entre

la solución numérica y la anaĺıtica se observan discrepancias debido a la aparición de

inestabilidades hidrodinámicas (de ahora en adelante denominadas ondas rodantes).

La solución numérica, obtenida con un método numérico de volúmenes finitos anti-

oscilatorio (de segundo orden en espacio y tiempo, y con tratamiento semi-impĺıcito

de los términos fuente), pone de manifiesto el carácter inestable del flujo resultante

tras la rotura de una presa en un plano inclinado. Se observa que las inestabilidades

hidrodinámicas degeneran en resaltos hidráulicos, que incrementan el transporte de

sedimento suspendido. Las limitaciones del modelo, originadas por las hipótesis

reológicas, son discutidas con detalle.

Posteriormente, el carácter inestable de dicho flujo, caracterizado por variar tanto

a lo largo de la coordenada longitudinal como con el tiempo, es analizado mediante
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diversos procedimientos. En primer lugar, se considera un estudio anaĺıtico de esta-

bilidad lineal siguiendo tres métodos: primero, un estudio casi paralelo, el cual retiene

la influencia de las variaciones espaciales del flujo base; segundo, un estudio no para-

lelo que considera, además de las variaciones espaciales del flujo base, las variaciones

espaciales de las perturbaciones; tercero, un análisis de múltiples escalas que retiene

la dependencia espacial y temporal del flujo base, aśı como de las perturbaciones. El

análisis de múltiples escalas permite obtener la solución exacta de las perturbaciones

lineales cuando el número de Froude Fr toma el valor 2. Aśı, la bondad de los re-

sultados obtenidos con el método casi paralelo y no paralelo puede ser objetivamente

cuantificada. Por otro lado, también se realiza el análisis de estabilidad lineal y no

lineal mediante la simulación numérica directa de la evolución de las perturbaciones

lineales y no lineales. El estudio numérico es validado con la solución anaĺıtica para

el caso particular Fr = 2. Para casos en el que el número de Froude es distinto

a 2, la simulación numérica permite establecer el carácter estable o inestable de las

perturbaciones.

Posteriormente, se abandonan todas las hipótesis inherentes a los modelos de

transporte de sedimento en flujos unidimensionales de aguas someras, formulando un

modelo novedoso basado en la Mecánica del Continuo. El modelo de mezcla para

el transporte de sedimento no cohesivo en flujos laminares/turbulentos es derivado

a partir de las ecuaciones de Navier-Stokes de la mezcla trifásica agua, sedimento y

aire. Este modelo genérico es aplicable, por ejemplo, a problemas no hidrostáticos de

flujos de aguas someras sobre terrenos de pendiente arbitraria. Este modelo revela

una equivalencia matemática entre la ecuación de propagación de la superficie libre

y la del sedimento. Este hecho se aprovecha para formular un método numérico

expĺıcito, que usa una discretización de volúmenes finitos, y es implementado en el

programa de código abierto OpenFOAM. Los resultados muestran que el método

numérico conserva la masa. En particular, se aplica el modelo al problema de erosión

de sedimento debajo de un cilindro y al problema de la rotura de una presa horizontal

en distintas condiciones.

A la vista de los resultados presentados en el presente documento, se observa que

los modelos unidimensionales basado en variables promediadas en altura (es decir,
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ecuaciones de Saint-Venant generalizadas para estudiar el transporte de sedimento)

son superados por modelos más sofisticados y precisos, válidos para reǵımenes hiper-

concentrados y flujos sobre terrenos de pendiente arbitraria.

B.2 Conclusiones

Los resultados del presente estudio se encuentran detallados al final de cada uno de

los caṕıtulos previos. A continuación, se resumen las conclusiones más importantes.

• La localización del frente de avance de un lquido inicialmente en reposo, que

fluye sobre un plano inclinado, ha sido obtenida anaĺıticamente, junto con el

campo de velocidad y la elevación de la superficie libre, haciendo uso de la

hipótesis de aguas someras y onda cinemática. Para pendientes del terreno

elevadas, los resultados presentados divergen de la solución obtenida con las

ecuaciones tradicionales de Saint-Venant, obtenida por Hunt (1982, 1984). Sin

embargo, se ha proporcionado un reescalado de variables que permite aplicar

los resultados asintóticos de Weir (1983) y Hunt (1984). Se ha prestado especial

atención al análisis del campo de velocidad y altura en la región más próxima al

frente de avance, donde la solución anaĺıtica ha sido obtenida como una serie de

potencias. Los resultados obtenidos concuerdan a la perfección con los de Hunt

(1984) cuando se consideran suficientes sumandos en la serie de potencias.

• Se ha implementado numéricamente un método numérico de volúmenes finitos,

que permiten las resolución de las ecuaciones de aguas someras unidimensio-

nales. Dicho método emplea una discretización semi-impĺıcita “upwind” de los

términos fuente, e incluye un limitador TVD que garantiza el filtro de soluciones

espúreas. En particular, se ha aplicado dicho esquema numérico al problema de

la rotura de una presa sobre un plano inclinado, sirviendo la solución numérica

como test de la solución anaĺıtica (basada en la hipótesis de onda cinemática).

Para tiempos suficientemente grandes, la solución anaĺıtica y numérica son

prácticamente indistinguibles. Sin embargo, en la solución numérica se ob-

serva el desarrollo de inestabilidades hidrodinámicas para números de Froude
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mayores que 2. La multiplicidad de soluciones es debida al carácter no lineal

de las ecuaciones de aguas someras. Por otra parte, la solución anaĺıtica en

la proximidad del frente de avance ha sido validada con la solución numérica,

siendo los resultados altamente satisfactorios.

• Se ha ilustrado la existencia f́ısica de inestabilidades en inundaciones sobre

planos inclinados.

• Con el objeto de caracterizar las condiciones en las que aparecen ondas rodantes

en roturas de presas, se ha aplicado la teoŕıa de estabilidad lineal a las ecuaciones

de aguas someras.

– En primer lugar, se consideró un análisis de estabilidad lineal casi paralelo

y no paralelo de ondas cinemáticas con fricción turbulenta sobre planos

inclinados, encontrándose resultados muy dispares. El número de Froude

cŕıtico (es decir, aquél requerido para que crezcan las perturbaciones) fue

expresado anaĺıticamente mediante desarrollos asintóticos.

– La solución de las perturbaciones lineales, en el caso particular en el que el

número de Froude toma el valor Fr = 2, fue obtenida mediante la técnica

de múltiples escalas. Este resultado sirvió para establecer la incorrección

de los resultados previos, aśı como de test para el código numérico lineal

y no lineal presentado para estudiar la evolución temporal de las pertur-

baciones. La incorrección de los resultados casi paralelo y no paralelo son

debidos a la influencia de las variaciones temporales del flujo base en el

comportamiento de las perturbaciones. Los códigos numéricos propuestos

son capaces de reproducir con precisión los factores de crecimiento y la

fase de las perturbaciones en el caso Fr = 2.

– Se ha encontrado que los efectos no paralelos y transitorios de la onda

cinemática estabilizan las ondas rodantes turbulentas e incrementan el

número de Froude cŕıtico requerido para la aparición de ondas rodantes.

• El archiconocido criterio de estabilidad para ondas rodantes turbulentas en flu-

jos uniformes y estacionarios sobre planos inclinados (es decir, el flujo base
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es inestable para cualquier longitud de onda cuando su número de Froude es

mayor que 2) difiere considerablemente del obtenido para ondas cinemáticas. El

efecto más destacable es la estabilización de perturbaciones para flujos base con

Fr = 2. Adicionalmente, para números de Froude mayores, Fr > 2, la ampli-

tud de las ondas crece o decrece dependiendo tanto de la velocidad del flujo base

como de sus gradientes espaciales y temporales. Además, las ondas estables se

modulan a medida que son convectadas aguas abajo. Este resultado es también

diferente respecto del caso paralelo, en el que las ondas mantienen constante su

longitud de onda incluso cuando se transforman en resaltos hidráulicos.

• En este trabajo, se ha formulado el problema unidimensional de transporte de

sedimento suspendido y diluido tras la rotura de una presa inclinada. El modelo

de fricción ha sido validado con datos experimentales. Diversos limitadores

numéricos han sido testeados con soluciones anaĺıticas para el transporte de

sedimento suspendido en terrenos horizontales.

– El transporte de sedimento suspendido ha sido caracterizado en función

de la pendiente del terreno para diversos valores de los parámetros que

caracterizan el sedimento. Para ello se consideró el valor máximo que

alcanza la carga de sedimento suspendido (Q∗
s,max) y el tiempo en el que

se alcanza dicho valor (t∗max).

– Los detalles de la elevación de la superficie libre, la velocidad del flujo y

los perfiles de concentración de sedimento se han mostrado.

– Se observó la formación de ondas rodantes en las proximidades del frente

de avance para tiempos suficientemente grandes. Las ondas rodantes pro-

ducen oscilaciones en la concentración de sedimento cerca del frente de

avance, pero no afectan los valores de Q∗
s,max debido a que las ondas ocu-

rren para t≫ tmax.

– También se caracterizó la validez de la hipótesis diluida en función del

ángulo del terreno y de las propiedades del sedimento.

– Se determinó la carga de fondo, estableciéndose la importancia relativa
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respecto de la carga suspendida en función del tamaño y la inclinación del

terreno.

– Se concluye que la carga de fondo es más importante que la suspendida

para sedimentos de gran diámetro (ds ∼ 5mm), especialmente cuando

la pendiente del terreno es suave. Para part́ıculas de menor diámetro

(ds ≃ 1mm o inferiores), el transporte de sedimento es dominado por

suspensión, tanto más cuanto mayor es la pendiente del terreno.

• Se ha presentado una formulación para el transporte de sedimento en flujos

con superficie libre, tanto laminares como turbulentos, basada en la Mecánica

del Continuo. Partiendo de las ecuaciones de Navier-Stokes, las ecuaciones

de un sistema multifase han sido simplificadas a su versión de mezcla. Los

operadores diferenciales de las ecuaciones fueron formulados de manera análoga

a la ecuación de transporte escalar, que facilita su implementación y resolución

con las libreŕıas numéricas OpenFOAM.

• El modelo turbulento k-ǫ se ha modificado en los términos de flotabilidad de la

ecuación de la enerǵıa turbulenta k. Para modelar el transporte de sedimento

en régimen laminar, se ha considerado un modelo Bingham, que determina la

viscosidad laminar en función del esfuerzo tangencial denominado “yield stress”

(τ0).

• Dos métodos de volúmenes finitos han sido formulados para resolver el modelo

de mezcla: primero, un modelo segregado e impĺıcito, útil en problemas en

los que la superficie libre permanece casi plana; posteriormente, un esquema

segregado y expĺıcito, capaz de capturar con precisión la superficie libre y la

evolución de la concentración de sedimento. El esquema numérico expĺıcito

mostró que conserva la masa durante la simulación numérica.

• La simulación numérica de los experimentos de Mao (1986), y de la rotura de

presa con transporte de sedimento (Capart and Young, 1998; Spinewine and

Zech, 2007) mostró una excesiva dependencia de los resultados con el esfuerzo

tangencial τ0. En ausencia de τ0, la simulación numérica y los experimentos
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f́ısicos son muy similares, tanto mejores cuando menor es τ0, tal y como muestran

las simulaciones de los experimentos Taipei.

B.3 Sugerencias para trabajos futuros

Obviamente, todas las sugerencias para trabajos futuros están relacionadas con el

modelo más ambicioso, el modelo tridimensional para flujos hiperconcentrados des-

crito en el último caṕıtulo. Antes de proceder con las recomendaciones para trabajos

futuros, se debe destacar la importancia de las medidas experimentales de las carac-

teŕısticas reológicas del sedimento, que cierran el modelo teórico de mezcla.

Las tareas de mayor prioridad son las siguientes:

• Comparación de los resultados promediados presentados en los Caṕıtulos 2-4

con aquellos obtenidos usando el modelo de mezcla.

• Derivación de leyes constitutivas para la presión de la fase sólida y el tensor de

esfuerzos viscoso sólido que pueda ser incorporado en el modelo de mezcla.

• Inclusión de los efectos de la turbulencia en los cálculos de la evolución de la

superficie libre, aśı como el perfeccionamiento de los modelos de turbulencia de

mezcla. Aunque la influencia del modelo de turbulencia no ha sido investigada

intensivamente, algunas de las discrepancias entre las predicciones teóricas y los

resultados experimentales pueden ser debidos al modelo de turbulencia. Seŕıa

interesante incorporar los efectos de las estructuras turbulentas coherentes en

la determinación de la velocidad de deslizamiento del sedimento respecto del

agua.

• Mejora de las funciones “pared” del modelo turbulento, para incluir los efectos

de la rugosidad del sedimento en el modelo k-ǫ.

• Inclusión de un modelo de turbulencia “Large Eddy Simulation” (LES) y com-

paración de los resultados con aquellos obtenidos con RANS.



168 Appendix B: Resumen extendido

• Validación del modelo de mezcla con un conjunto más completo de datos experi-

mentales. En particular, el análisis de la distribución vertical de la concentración

de sedimento y presión es de especial interés.

El trabajo actual debe ser considerado como un paso adelante hacia el modelado

preciso del transporte de sedimento en flujos con superficie libre. El modelo de mezcla

presentado en el documento no incluye fenómenos tan importantes como transferencia

de masa, calor y distribución de tamaños, aśı como cambio de fase. La inclusión de

estos efectos da lugar a un entorno teórico en el que actualmente se están realizando

contribuciones de gran interés. Sin embargo, es dif́ıcil unificar todos los modelos

actualmente disponibles o incorporar los avances de unos en otros.
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