
THE WITT GROUP OF LAURENT POLYNOMIALS

by Manuel Ojanguren and Ivan Panin

Abstract. We give a direct, self-contained proof of the fact that for
a large class of rings A , in particular for all regular rings with involution,
W (A[t, 1/t]) = W (A)⊕W (A) .

1. Introduction

The purpose of this note is to give a short direct proof of two funda-
mental theorems on the Witt group of polynomials and Laurent extensions
of a ring A . These theorems were proved independently by M. Karoubi [3]
and by A. Ranicki [5]. We will state them under the most general condi-
tions on A and for their proofs we will use nothing more than a general
result on the K-theory of Laurent polynomials. In the last section we will
show, by two counterexamples, that the assumptions we make on A are
necessary.

We begin by briefly recalling some definitions. We refer to [4] for a more
detailed exposition and for the proofs of the few basic results that we will
use.

Let A be an associative ring with an involution denoted by a 7→ a◦ .
Except in §2 we will always assume that 2 is invertible in A . If M is a
right A -module we denote by M∗ its dual HomA(M,A) endowed with the
right action of A given by fa(x) = a◦f(x) for any f : M → A and a ∈ A .
If P is a finitely generated projective right A-module we identify it with
P ∗∗ through the canonical isomorphism mapping x ∈ P to x̂ : P ∗ → A

defined by x̂(f) = f(x).

Let ε be 1 or −1. An ε -hermitian space over A is a pair (P, α)
consisting of a finitely generated projective right A-module P and an
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A-isomorphism α : P → P ∗ satisfying α = εα∗ . For brevity ε-hermitian
spaces will be called spaces. A 1-hermitian space (over a commutative ring
A) is also called quadratic space.

Two spaces (P, α) and (Q, β) are isometric if there exists an A -
isomorphism ϕ : P → Q such that the square

P
ϕ //

α
²²

Q

β
²²

P ∗ Q∗
ϕ∗

oo

commutes. A space is hyperbolic if it is isometric to a space of the form

H(P ) =
(

P ⊕ P ∗,
(

0
ε

1
0

))
.

The orthogonal sum of two spaces (P, α) and (Q, β) is the space

(P, α) ⊥ (Q, β) = (P ⊕Q,α⊕ β) .

If (P, α) is a space and M a submodule of P we denote by M⊥ the
orthogonal of M , defined by the exact sequence

0 −→ M⊥ −→ P
i∗◦α−−−→ M∗ ,

where i∗ is the dual of the inclusion i : M → P . A submodule M of P is
totally isotropic if M ⊆ M⊥ . A sublagrangian of a space (P, α) is a totally
isotropic direct factor of P . A lagrangian of (P, α) is a sublagrangian L

such that L = L⊥ . For instance, P and P ∗ are lagrangians of H(P ).

The Witt group W (A) of ε -hermitian spaces over A is the quotient of
the Grothendieck group of ε -hermitian spaces with respect to orthogonal
sums, by the subgroup generated by all hyperbolic spaces. We say that two
spaces are Witt equivalent if they represent the same element of W (A).

Consider now the rings A[t] and A[t, t−1] , endowed with the involution
that fixes t and maps a ∈ A to a◦ . For the ring A[t, t−1] we introduce a
variant W ′(A[t, t−1]) of the Witt group. We first consider the Grothendieck
group Q of ε -hermitian spaces over A[t, t−1] which are extended from A

as A[t, t−1] -modules, and its subgroup N generated by the hyperbolic
spaces H(P ) where P is extended from A . We then define W ′(A[t, t−1])
as Q/N . Clearly W ′(A[t, t−1]) maps canonically to W (A[t, t−1]) . Here are
our results.
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A (Theorem 3.1). Let A be an associative ring with involution, in
which 2 is invertible. The canonical homomorphism

W (A) → W (A[t])

is an isomorphism.

B (Theorem 5.1). Let A be an associative ring with involution, in
which 2 is invertible. The homomorphism

ψ : W (A)⊕W (A) → W ′(A[t, t−1])

mapping (ξ, η) to ξ + tη is an isomorphism.

C (Theorem 7.1). Let A be an associative ring with involution, in
which 2 is invertible. Let

ϕ : W ′(A[t, t−1]) → W (A[t, t−1])

be the canonical homomorphism.

(a) If H2(Z/2,K−1(A)) = 0 , then ϕ is surjective.

(b) If K0(A) = K0(A[t]) = K0(A[t, t−1]) , then ϕ is an isomorphism.

Two examples will be constructed in §8 to show that the assumptions
in (a) and in (b) cannot be omitted.

An amusing application of B is the following result :

D (Proposition 6.8). Let A be a commutative semilocal ring in which 2
is invertible. Let (P, α) be a quadratic space over A . If (P, α) is isometric
to (P, t · α) over A[t, t−1] , then (P, α) is hyperbolic.

We remark that in general, even for a commutative local ring, there is
no residue map

Res : W (A[t, t−1]) → W (A)

satisfying the following two properties :

• For any constant space ξ ∈ W (A) ⊂ W (A[t, t−1]) , Res(ξ) = 0.

• For any constant space ξ ∈ W (A) ⊂ W (A[t, t−1]) , Res(t · ξ) = ξ .
In fact, the existence of such a residue map immediately implies the

injectivity of
ϕ ◦ ψ : W (A)⊕W (A) → W (A[t, t−1]) ,
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which may fail, as in Example 8.1. However, there exists a residue map
Res : W ′(A[t, t−1]) → W (A) (Proposition 5.2) which yields the injectivity
of ψ .

We now recall three elementary, well-known facts about hermitian
spaces.

Proposition 1.5. Let (P, α) be any space. Then

1. The space (P, α) ⊥ (P,−α) is hyperbolic.

2. If L is a lagrangian of (P, α) , then (P, α) is isometric to H(L) .

3. If M is a sublagrangian of (P, α) , then the map α induces on
M⊥/M a natural structure of hermitian space that makes it Witt equiva-
lent to (P, α) .

2. K-theoretic preliminaries

We recall a few results proved in the twelfth chapter of Bass’book [1].
For any ring A we denote by K0(A) the Grothendieck group of finitely
generated projective right A-modules and by K1(A) the abelianized gen-
eral linear group of A : K1(A) = GL(A)/[GL(A), GL(A)] . By Whitehead’s
lemma K1(A) is also the quotient of GL(A) by the subgroup E(A) gen-
erated by all elementary matrices over A .

For any functor F from rings to abelian groups we denote by N+F (A)
the kernel of the map F (A[t]) → F (A) obtained by putting t = 0.
Similarly, we denote by N−F (A) the kernel of F (A[t−1]) → F (A) obtained
by putting t−1 = 0. The inclusions of A[t] and A[t−1] into A[t, t−1] define
a map

N+F (A)⊕N−F (A) −→ F (A[t, t−1])

whose cokernel will be denoted by LF (A). The functor LK1 turns out to
be naturally isomorphic to K0 , hence we will denote LKi by Ki−1 for
i = 1 and also for i = 0.
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Theorem 2.1. Let A be any associative ring.

(a) For i = 0 or 1 there exists a natural embedding

λi : Ki−1(A) −→ Ki(A[t, t−1])

such that the composite

Ki−1(A) λi−→ Ki(A[t, t−1]) −→ LKi(A) = Ki−1(A)

is the identity.

(b) The embedding λi and the canonical homomorphism

N±Ki(A) → Ki(A[t, t−1])

yield canonical decompositions

K1(A[t, t−1]) = K1(A)⊕N+K1(A)⊕N−K1(A)⊕K0(A)

and

K0(A[t, t−1]) = K0(A)⊕N+K0(A)⊕N−K0(A)⊕K−1(A) .

Proof. See [1], Theorem 7.4 of chapter XII.

We will also use the following well-known result.

Proposition 2.2. If 2 is invertible in A , the groups N±K1(A) are
uniquely divisible by 2 .

Proof. By [1], XII, 5.3 every element of N+K1(A) can be represented
by a matrix α = 1 + νt , with ν a nilpotent matrix of Mn(A). Let

P (X) =
∞∑
0

(
1/2

n

)
Xn ∈ Z[1/2][X] .

Then P (νt) ∈ Mn(A[t]) and (P (νt))2 = 1+νt . This shows that N+K1(A)
is divisible by 2. To show uniqueness it suffices to show that N+K1(A) has
no 2-torsion. Take α = 1 + νt as before and suppose that α2 ∈ E(A[t]) .
Put s = t(2 + νt), so that α2 = 1 + νs . Since

t =
∞∑
1

(
1/2

n

)
νn−1sn

we have Mn(A)[t] = Mn(A)[s] . If α2 = 1 + νs ∈ E(A[s]) = E(Mn(A)[s])
we clearly also have α = 1 + νt ∈ E(Mn(A)[t]) .
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Corollary 2.3. If 2 is invertible in A , the groups N±K0(A) are
uniquely divisible by 2 .

Proof. K0(A) is a direct factor of K1(A[X,X−1]) , hence N±K0(A)
is a direct factor of N±K1(A[X, X−1]) .

Assume now that A has an involution. Associating to any projective
module its dual and to any matrix its conjugate transpose yields actions
of Z/2 on K0 and K1 which are compatible with the decompositions of
Theorem 2.1. From Corollary 2.3 we immediately deduce

Corollary 2.4. Suppose that A is a ring with involution, in which
2 is invertible. Then

H2(Z/2, K0(A[t, t−1])/K0(A)) = H2(Z/2,K−1(A)) .

3. The Witt group of polynomial rings

Theorem 3.1. Let A be an associative ring with involution, in which
2 is invertible. Let ε be 1 or −1 and let W be the Witt group functor of
ε-hermitian spaces. The natural homomorphism

W (A) −→ W (A[t])

is an isomorphism.

Proof. It suffices to show that the homomorphism W (A[t]) → W (A)
given by the evaluation at t = 0 is an isomorphism. Surjectivity is obvious.
To prove injectivity let (P, α) be a space over A[t] and (P (0), α(0))
its reduction modulo t . Suppose that (P (0), α(0)) is isometric to some
hyperbolic space H(Q). Choosing a projective module Q′ such that
Q ⊕ Q′ is free and adding to (P, α) the space H(Q′[t]) we may assume
that P (0) is the hyperbolic space over a free module. The class of P in
K0(A[t])/K0(A) = N+(A) is a symmetric element. By Corollary 2.4 it can
be written as a + a∗ , hence, adding to (P, α) a suitable free hyperbolic
space, we may assume that (P, α) is of the form

H(An[t]) ⊥ (R⊕R∗, β) .

Let R′ be an A[t] -module such that R⊕R′ is free. Adding to (P, α) the
hyperbolic space H(R′) we are reduced to the case in which P is free and
α is an invertible ε -hermitian matrix with entries in A[t] .
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Lemma 3.2. Let α = εα∗ ∈ Mn(A[t]) be any ε-hermitian matrix.
There exist an integer m and a matrix τ ∈ GLn+2m(A[t]) (actually in
En+2m(A[t])) such that

τ∗
(

α 0
0 χ

)
τ = α0 + tα1 ,

where α0 and α1 are constant matrices and χ is a sum of hyperbolic blocs(
0 1
ε1 0

)
of various sizes.

Proof of the lemma. Write α = γ +δtN , where δ is constant and γ of
degree less than N . Assume that N is at least 2. Since δ is ε-hermitian
and 2 is invertible in A we can write δ = σ + εσ∗ . Then




1 t −σ∗tN−1

0 1 0
0 0 1







γ + σtN + εσ∗tN 0 0
0 0 1
0 ε 0







1 0 0
t 1 0

−σtN−1 0 1




is of degree ≤ N − 1 and after N − 1 such transformations we get a linear
matrix.

Writing α = α0 + tα1 as α0(1 + νt) we see immediately that, α being
invertible, ν is nilpotent. The formal power series

τ = (1 + νt)−1/2 =
∑ (−1/2

k

)
(νt)k

is a polynomial. From α = εα∗ we get α∗0 = εα0 and ν∗α∗0 = εα0ν . This
implies that τ∗α∗0 = εα0τ and therefore

τ∗ατ = τ∗α0(1 + νt)τ = α0τ(1 + νt)τ = α0 .

This proves that (P, α) is Witt equivalent to (P (0), α(0)) and is, therefore,
hyperbolic.

4. The Witt group of torsion modules

Let M be a finitely generated right A[t] -module and suppose that it is
a t -torsion module and that it is projective as an A -module. Obviously, it
will be finitely generated over A . We denote by M ] the left A[t] -module
HomA[t](M,A[t, t−1]/A[t]) and we consider it as a right module through
the involution on A[t] .
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Recall that, as an A-module, the quotient A[t, t−1]/A[t] can be written
as a direct sum

A[t, t−1]/A[t] = At−1 ⊕At−2 ⊕ · · · .

Thus, to any f ∈ HomA[t](M, A[t, t−1]/A[t]) we can associate an A-linear
map f−1 : M → A , which is defined as the composite of f with the
projection onto At−1 .

Proposition 4.1. The map

∂ = ∂M : M ] = HomA[t](M,A[t, t−1]/A[t]) −→ HomA(M, A) = M∗

obtained by associating f−1 to f is a functorial A-linear isomorphism.

Proof. It is clear that ∂ is A -linear. To show that it is bijective we
construct its inverse. Given any g ∈ M∗ define g̃ by the (finite !) sum

g̃(x) = t−1g(x) + t−2g(tx) + t−3g(t2x) + · · · .

It is easy to check that g̃ ∈ M ] , (g̃)−1 = g and f̃−1 = f . Functoriality is
clear.

Corollary 4.2. For any finitely generated t-torsion module M

which is projective as an A-module the canonical homomorphism M →
M ]] is an isomorphism.

Proof. It suffices to remark that the diagram

M
can

}}zz
zz

zz
zz can

""DD
DD

DD
DD

M ]]
(∂∗M )−1◦∂

M]

// M∗∗

commutes and that M
can−−→ M∗∗ is an isomorpism.

An ε-hermitian t-torsion space (or, briefly, a t-torsion space) is a pair
(M, < ,>) consisting of a finitely generated t-torsion right A[t] -module
M which is projective as an A -module, and a perfect ε -hermitian pairing
< , >: M × M → A[t, t−1]/A[t] . Giving < , > is the same, of course, as
giving its adjoint ϕ : M → M ] defined by ϕ(a)(b) =<a, b> .

Isometries and orthogonal sums are defined in the obvious way. For any
subset X ⊂ M we define its orthogonal as
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X⊥ = {y ∈ M | <x, y>= 0 ∀x ∈ X} .

A sublagrangian of (M, ϕ) is an A[t] -submodule L of M which satisfies
the following two conditions :
(1) It is contained in its own orthogonal : L ⊆ L⊥ .
(2) The quotient M/L is projective over A (which is the same as saying

that L , as an A -module, is a direct factor of M ).

A sublagrangian L is a lagrangian if L = L⊥ . A t-torsion space is
metabolic if it has a lagrangian. The Witt group of t-torsion spaces is
the quotient of the Grothendieck group of t -torsion spaces with respect to
orthogonal sums, modulo the subgroup generated by the metabolic spaces.
We will denote it by Wtors(A[t]) . Lemma 4.6 below will show that the
opposite of the class of (M,ϕ) is the class of (M,−ϕ).

Lemma 4.3. Let M and N be finitely generated t-torsion modules
and i : N → M an A[t]-linear homomorphism. Assume that as A-
modules M and N are projective. Then the map i] : M ] → N ] is
surjective (respectively injective) if and only if i∗ : M∗ → N∗ is surjective
(respectively injective).

Proof. Look :

M ]
i] //

∂M
²²

N ]

∂N
²²

M∗ i∗ // N∗ .

Proposition 4.4. Let (M,ϕ) be a t-torsion space and L an A[t]-
submodule of M . If M/L is projective over A , then L = L⊥⊥ and L⊥ is
a direct factor of M as an A-module.

Proof. First observe that as an A-module L is finitely generated and
projective. Let i : L → M be the natural injection. By Lemma 4.3 the
map i] ◦ ϕ is surjective, thus the sequence

0 −→ L⊥
j−→ M

i]◦ϕ−−−→ L] −→ 0

is exact. Hence L⊥ is a direct factor of M as an A -module; in particular
it is A-projective. Identifying L with L]] we can write the dual sequence
as
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0 −→ L
i−→ M

j]◦ϕ]

−−−→ (L⊥)] −→ 0 .

Notice that it is exact by Lemma 4.3. Again by Lemma 4.3 the sequence

0 −→ L⊥⊥ −→ M
j]◦ϕ−−−→ (L⊥)] −→ 0

is exact because L⊥ is a direct factor of M as an A -module. Since
ϕ] = ±ϕ , comparing the last two sequences we get the result.

We now prove a fundamental result on the equivalence of t-torsion
spaces.

Theorem 4.5. Let (M, ϕ) be an ε-hermitian t-torsion space and L

a sublagrangian of (M, ϕ) . The quotient L⊥/L carries a natural structure
of t-torsion ε-hermitian space and its class in Wtors(A[t]) is the same as
that of (M, ϕ) .

Proof. We first prove the following lemma.

Lemma 4.6. Let (M,ϕ) be any ε-hermitian t-torsion space. The
space (M, ϕ) ⊥ (M,−ϕ) is metabolic.

Proof of Lemma 4.6. We show that the image L = ∆(M) of the
diagonal map M

∆−→ M ⊕ M is a lagrangian. The condition L ⊆ L⊥ is
immediately verified. The quotient (M⊕M)/L is isomorphic to M , hence
it is projective over A . It remains to see that L⊥ ⊆ L . If (a, b) ∈ L⊥ we
have 0 =< (a, b), (x, x) >=< a − b, x > for any x ∈ M . Since the pairing
< , > is perfect, this implies a = b , i.e. (a, b) ∈ L .

We now prove the theorem. By Proposition 4.4, L⊥ is a direct factor
of M as an A -module. Since L ⊆ L⊥ is also a direct factor of M , the
quotient L⊥/L is projective. Denoting by a, b the classes modulo L of
two elements a, b ∈ L , we define the hermitian structure of L⊥/L by
<a, b>=<a, b> . It is clear that <a, b> only depends on a and b . We first
check that this pairing defines a t-torsion space. It is clearly ε -hermitian.
The injectivity of the adjoint map L⊥/L → (L⊥/L)] follows immediately
from Proposition 4.4. To show surjectivity consider any A[t] -linear map
f : L⊥ → A[t, t−1]/A[t] . Since L⊥ is a direct factor of M as an A-module,
f , by Lemma 4.3, extends to an A[t] -linear map f̃ : M → A[t, t−1]/A[t] .
Choose an m ∈ M for which f̃ =<m, ·> . If f̃ vanishes on L , then m is
in L⊥ . This proves that L⊥/L is a t-torsion space.
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To show that L⊥/L is equivalent to (M, ϕ) we check that the image of
the diagonal map ∆ : L⊥ → M⊕L⊥/L is a lagrangian of (M,−ϕ) ⊥ L⊥/L

which is, therefore, metabolic. It is easy to check that ∆(L⊥) is contained
in its own orthogonal. Conversely, if (a, b) ∈ M ⊕ L⊥/L is orthogonal to
every (x, x), then < a − b, x >= 0 for every x ∈ L⊥ . This means that
a− b is in L⊥⊥ , which by Proposition 4.4 coincides with L . We thus have
(a, b) = (a, a) ∈ ∆(L⊥).

The next proposition connects the Witt group of t-torsion spaces with
the Witt group of A .

Proposition 4.7. The isomorphisms

∂M : HomA[t](M,A[t, t−1]/A[t]) → HomA(M, A)

induce a surjective homomorphism

∂W : Wtors(A[t]) → W (A) .

Proof. Associating to any t-torsion space (M, ϕ) the hermitian space
(M, ∂M ◦ ϕ) preserves isometries and orthogonal sums and, by Lemma
4.3, transforms metabolic t-torsion spaces into hyperbolic spaces (with
the same lagrangian). Therefore it induces a homomorphism

∂W : Wtors(A[t]) → W (A) .

To find a preimage (M,ϕ) of a space (M, α) over A consider M as an
A[t] -module annihilated by t and replace α : M → M∗ by ϕ = ∂−1

M ◦α .

5. The Witt group of extended spaces

Let W ′(A[t, t−1]) be the group defined in the introduction.

Theorem 5.1. Let A be an associative ring with involution, in which
2 is invertible. The homomorphism

ψ : W (A)⊕W (A) → W ′(A[t, t−1])

mapping (ξ, η) to ξ + tη is an isomorphism.

Proof. The injectivity of ψ is based on the following result, whose
proof will be given in §6.
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Proposition 5.2. There exists a homomorphism

Res : W ′(A[t, t−1]) → W (A)

with the following properties :

R1 : For any constant space ξ ∈ W (A) ⊂ W ′(A[t, t−1]) , Res(ξ) = 0 .

R2 : For any constant space ξ ∈ W (A) ⊂ W ′(A[t, t−1]) , Res(t · ξ) = ξ .

Proof. See Theorem 6.7.

Assuming this proposition, suppose that for two elements ξ, η ∈ W (A)
we have ξ + t · η = 0. Then 0 = Res(ξ + t · η) = η and hence ξ = 0.

We now turn to the surjectivity of ψ . We have to show that every her-
mitian space (P, α) over A[t, t−1] with P = P0[t, t−1] is Witt equivalent
to a space of the form (Q0[t, t−1], α0) ⊥ (Q1[t, t−1], tα1). Let P1 be a pro-
jective A-module such that P0 ⊕ P1 = An for some n . Replacing (P, α)
by

(P0[t, t−1], α) ⊥ (P0[t, t−1],−α(1)) ⊥ H(P1[t, t−1])

we may assume that P0 is free. Replacing α by t2Nα with a suitable N ,
we may also assume that α maps P0[t] into P ∗0 [t] . By Lemma 3.2 we
are reduced to the case where α = α0 + tα1 for some ε -hermitian maps
α0, α1 : P0 → P ∗0 .

Lemma 5.3. If, for a constant matrix β ,

α = 1 + (t− 1)β ∈ GLn(A[t, t−1]) ∩Mn(A[t]) ,

then there exists an N such that (1− β)NβN = 0 .

Proof. This is Corollary 2.4 of [2]. For the convenience of the reader
we reprove it here.

Writing the inverse of α as a Laurent polynomial and equating coeffi-
cients in the identity

1 = αα−1 = (1− β + tβ)(γ−qt
−q + · · ·+ γ−1t

−1 + γ0 + γ1t + · · ·+ γpt
p)

we get

(1− β)γ−q = 0, (1− β)γ−q+1 + βγ−q = 0, . . . , (1− β)γ−1 + βγ−2 = 0 ,

(1− β)γ0 + βγ−1 = 1

and
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(1− β)γ1 + βγ0 = 0, . . . , (1− β)γp + βγp−1 = 0, βγp = 0 .

From the first line we get (1−β)qγ−1 = 0, from the third βp+1γ0 = 0 and
then from the middle one βp+1(1− β)q = 0.

We put β = α(1)−1α1 : P0 → P0 , so that

α(1)−1α = 1 + (t− 1)β .

We will repeatedly use the fact that β is adjoint with respect to
α, α(1), α0, α1 , by which we mean that αβ = β∗α , and so on. The same
clearly holds for any polynomial in β with integral coefficients.

By Lemma 5.3 we can find an integer N such that βN (1 − β)N = 0.
Denoting by Z[β] the subring of EndA(P0) generated by β we can write
Z[β] = Z[β]e × Z[β](1 − e), where e is an idempotent of the form β + ν

and ν is a nilpotent matrix. Note that e and ν are polynomials in β and
therefore they commute with β and with each other. If we decompose P0

as eP0 + (1− e)P0 and represent A -linear endomorphisms of P0 as 2× 2
block matrices, we have

e =
(

1 0
0 0

)
, β =

(
1 + ν1 0

0 ν2

)

and

α =
(

α11 α12

εα∗12 α22

)
(1 + (t− 1)β) .

Computing the product we see that the condition α∗ = εα implies

α12(1− ν2) = −ν∗1α12 , α∗11 = εα11 and α∗22 = εα22 .

From this we immediately deduce

α12(1− ν2)k = (−ν∗1 )kα12

for any natural integer k . Since ν1 and ν2 are nilpotent, this implies that
α12 = 0. Thus α is of the form

(
α11t(1 + ν1)− α11ν1 0

0 α22(1 + (t− 1)ν2)

)

and (P0[t, t−1], α) splits as a hermitian space.
Since α , α11 and α22 are symmetric, evaluating the above matrix at

t = 1 we see that

α11ν1 = ν∗1α11 and α22ν1 = ν∗2α22 .
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The first block can be written as

σ1 = α11t(1 + ν1 − t−1ν1) = α11t(1 + (1− t−1)ν1) .

Since (1− t−1)ν1 is nilpotent, the formal power series

τ1 = (1 + (1− t−1)ν1)−1/2 =
∑ (−1/2

k

)
((1− t−1)ν1)k

is a Laurent polynomial and we can replace the first block by τ∗1 σ1τ1 =
α11t . Similarly, the power series

τ2 = (1 + (t− 1)ν2)−1/2 =
∑ (−1/2

k

)
((t− 1)ν2)k

is a Laurent polynomial and we can replace the second block by τ∗2 σ2τ2 =
α22 .

This shows that

(P0[t, t−1], α) ' (P0e[t, t−1], tα11) ⊥ (P0(1− e)[t, t−1], α22) ,

thus proving the surjectivity of ψ .

6. The residue

In this section we construct a residue map

Res : W ′(A[t, t−1]) → W (A)

satisfying R1 and R2 of §5.
The definition of Res will be preceded by a few preliminaries.

Lemma 6.1. Let P0 be a (finitely generated) projective A-module and
define M(α) by the exact sequence

(2) 0 −→ P0[t]
α−→ P ∗0 [t] −→ M(α) −→ 0 ,

where α is A[t]-linear. Suppose that its localization αt : P0[t, t−1] →
P0[t, t−1] is an isomorphism. Then, as an A-module, M(α) is finitely
generated and projective.

Proof. Decompose P0[t, t−1] as a direct sum P0[t] ⊕ t−1P0[t−1] of
A-modules. Let π be the projection onto the first summand. Then β =
π ◦α−1

t |P∗0 [t] is an A -linear splitting of α . Hence M(α) is A -projective. It
is also finitely generated as an A[t] -module, hence, being annihilated by a
power of t , it is finitely generated as an A -module.
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Let M = M(α) be as in the previous lemma. Assume that α is ε -
symmetric. We define a pairing

M ×M → A[t, t−1]/A[t]

by < a, b >= a(α−1
t (b)), where a and b are representatives in P ∗0 [t] of

a, b ∈ M .

Lemma 6.2. If α is ε-hermitian, then < , > is a perfect ε-hermitian
pairing.

Proof. Since αt is ε -hermitian, denoting by x 7→ x◦ the involution on
A we have

<a, b>= a(α−1
t (b)) = ε(b(α−1

t (a)))◦ = ε <b, a>◦ .

This proves the first assertion.
We now check that the adjoint of < , >

χ : M → HomA[t](M,A[t, t−1]/A[t]) ,

defined as χ(a)(b) =<a, b> , is an isomorphism. We first prove injectivity.
Suppose that, for some a and every x in M , χ(a)(x) = 0. This means
that a(α−1

t (x)) ∈ A[t] for every x ∈ P ∗0 [t] . We only have to show that
α−1

t (a) ∈ P0[t] . Consider the diagram

P0[t]
∼ //

²²

HomA[t](P ∗0 [t], A[t])

²²
P0[t, t−1] ∼ // HomA[t](P ∗0 [t], A[t, t−1])

where the horizontal arrows are the canonical ones. Since P0[t] is projective
(and finitely generated !) over A[t] , they both are isomorphisms. Therefore
an element b ∈ P0[t, t−1] is in P0[t] if and only if, for any x ∈ P ∗0 [t] , x(b)
is in A[t] . This is indeed the case for b = α−1

t (a) because x(α−1
t (a)) =

ε(a(α−1
t (x)))◦ ∈ A[t] by the very assumption on a . Thus injectivity is

proved. We now check that χ is surjective. Let f : M → A[t, t−1]/A[t]
be an A[t] -linear map. Since P0[t]∗ is projective, there exits an f which
makes the right hand square of the diagram

0 // P0[t]
α //

a
²²Â
Â
Â

P0[t]∗
p //

f
²²

M

f
²²

// 0

0 // A[t] // A[t, t−1]
q // A[t, t−1]/A[t] // 0
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commute, p and q being the canonical surjections. Clearly q ◦ f ◦ α = 0,
hence there exists an A[t] -linear map a : P0[t] → A[t] such f ◦ α = i ◦ a ,
i being the inclusion A[t] → A[t, t−1] . We claim that χ(a) = f . For
this it suffices to show that for any b ∈ P0[t]∗ we have a(α−1

t (b)) ≡
f(b) modulo A[t] . We denote by at the localization of a at t and by
ft : P0[t, t−1]∗ → A[t, t−1] the unique A[t, t−1] -linear extension of f .
Observing that α−1

t (a) = at ◦ α−1
t we get the following relations :

a(α−1
t (b)) = (at ◦ α−1

t )(b) = ft(b) = f(b) .

This proves that χ is surjective.

Let now (P0[t, t−1], α) be an ε-hermitian space. For any natural integer
n for which t2nα(P0[t]) ⊆ P0[t]∗ we define M(α, n) by the exact sequence

0 −→ P0[t]
t2nα−−−→ P ∗0 [t] −→ M(α, n) −→ 0

and equip it with the ε -hermitian structure defined above :

<a, b>= a((t2nαt)−1(b)) .

Lemma 6.3. Let ψ : (P0[t, t−1], α) → (Q0[t, t−1], β) be an isometry
and assume that ψ(P0[t]) ⊆ Q0[t] , α(P0[t]) ⊆ P0[t]∗ and β(Q0[t]) ⊆
Q0[t]∗ . Then M(α) and M(β) are Witt equivalent t-torsion spaces.

Proof. Consider the diagram

0

0

²²

K

OO

0 // P0[t]
α //

ψ
²²

P0[t]∗

q̂

OO

qα // M(α) // 0

0 // Q0[t]
β //

q
²²

Q0[t]∗

ψ∗
OO

qβ // M(β) // 0

L

²²

0

OO

0 .
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By Lemma 6.1 the module L , viewed as an A -module, is finitely generated
and projective. The map ψ∗ is obtained from the map ψ by dualizing over
A[t] . We denote the cokernel of ψ∗ by K and we denote the canonical map
P0[t]∗ → K by q̂ . One may observe that K is isomorphic to L] (see §4
for the notation) but we will not use this observation.

The A[t] -linear map θ = qα ◦ ψ∗ : Q0[t]∗ → M(α) induces a map
θ : M(β) → θ(Q0[t]∗)/θ(β(Q0[t])) . The statement will be deduced from
the following claims.

(1) The map θ is an A[t] -linear isomorphism.

(2) The map q̂ induces an A[t] -linear isomorphism

ρ : M(α)/θ(Q0[t]∗) → K .

(3) θ(β(Q0[t])) is a sublagrangian of M(α).

(4) (θ(β(Q0[t]))⊥ = θ(Q0[t]∗).

(5) The map θ is an isometry of t-torsion spaces.

In fact, by (4), (5) and Theorem 4.5, M(β) is Witt equivalent to M(α).

We now prove the claims. The surjectivity of θ is clear. To show
injectivity, suppose that x ∈ ker(θ). Choose a lift x̃ ∈ Q0[t]∗ of x . There
exist a y ∈ Q0[t] and a z ∈ P0[t] such that ψ∗(β(y)−x̃) = α(z). Replacing
α by ψ∗ ◦ β ◦ ψ we get ψ∗(x̃) = ψ∗(β(y − ψ(z))). Since ψ∗ is injective,
this shows that x̃ ∈ Im(β) and hence x = 0.

To prove (2) observe that, since q̂ ◦α = q̂ ◦ψ∗ ◦ β ◦ψ = 0, q̂ induces a
surjective map ρ : M(α)/θ(Q0[t]∗) → K . Injectivity is also clear.

To prove (3) we first observe that θ(β(Q0[t])) is a direct factor (as an
A-module) of M(α). In fact, by (2), θ(Q0[t]∗) is a direct factor (as an A -
module) of M(α) and, by (1), θ(β(Q0[t])) is a direct factor of θ(Q0[t]∗).
For any two elements a, b ∈ P0[t]∗ let us denote by <a, b>α the element
a(α−1

t (b)), and similarly for <a, b>β . We then have

<a, b>β=<ψ∗(a), ψ∗(b)>α

because ψt is an isometry. Let now a, b ∈ θ(β(Q0[t])) and x, y ∈ Q0[t]
such that a = ψ∗(β(x)) and b = ψ∗(β(y)) are preimages of a and b . We
have to check that <a, b>= 0. This is the same as saying that <a, b>α

is in A[t] . This is indeed the case because

<a, b>α=<ψ∗(β(x)), ψ∗(β(y))>α=<β(x), β(y)>β= β(x)(y) ∈ A[t] .
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We now prove (4). For any a ∈ θ(β(Q0[t])) and any b ∈ M(α) we
choose preimages a and b of the form a = ψ∗(β(x)) and b = ψ∗t (y) with
x ∈ Q0[t] and y ∈ Q0[t, t−1]∗ . Then we have

<a, b>α=<ψ∗(β(x)), ψ∗t (y)>α=<β(x), y>β= ε · y(x)◦ ,

which shows that, for any y ∈ Q0[t, t−1]∗ , <ψ∗(β(Q0[t])), b>α is in A[t]
if and only if y ∈ Q0[t]∗ , which is equivalent to b ∈ θ(Q0[t]∗).

We now prove (5). We already know that θ is an A[t] -linear isomor-
phism. A computation like the one above proves that it is an isometry.

Corollary 6.4. Let (P0[t, t−1], α) be an ε-hermitian space. Let n be
such that t2nα(P0[t]) ⊆ P0[t]∗ . Then the class of M(α, n) in Wtors(A[t])
does not depend on the choice of n .

Corollary 6.5. Let (P0[t, t−1], α) and (P0[t, t−1], β) be isometric
spaces and assume that for some natural integers m and n t2mα(P0[t]) ⊆
P0[t]∗ and t2nβ(P0[t]) ⊆ P0[t]∗ . Then M(α, m) and M(β, n) are Witt
equivalent t-torsion spaces.

Proof. Let ψ : (P0[t, t−1], t2mα) → (P0[t, t−1], t2nβ) be an isometry
and let k be a natural integer such that tkψ(P0[t]) ⊆ P0[t]∗ . Then
tkψ : (P0[t, t−1], t2mα) → (P0[t, t−1], t2n+2kβ) is an isometry and, by
Lemma 6.3, M(α, m) and M(β, n + k) are Witt equivalent. Hence, by
Corollary 6.4, M(α,m) and M(β, n) are Witt equivalent as well.

Proposition 6.6. Associating to any space (P0[t, t−1], α) the torsion
space M(α, n) (for a suitable n) yields a homomorphism

res : W ′(A[t, t−1]) → Wtors(A[t]) .

Proof. By Corollary 6.5, associating to the isometry class of a space
(P0[t, t−1], α) the Witt class of the t-torsion space M(α, n) for some
suitable n is a well defined map. It is obvious that the orthogonal sum of
two spaces is mapped to the corresponding sum of t-torsion spaces, hence
this map induces a homomorphism ω : KH → Wtors(A[t]) , where KH is
the Grothendieck group of ε -hermitian spaces of the form (P0[t, t−1], α).
It is clear from the definition of M(α, n) that a standard hyperbolic
space H(Q0[t, t−1]) is mapped to zero, hence ω induces a homomorphism
res : W ′(A[t, t−1]) → Wtors(A[t]) .
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If we compose res with ∂W : Wtors(A[t]) → W (A) we get a homomor-
phism

Res = ∂W ◦ res : W ′(A[t, t−1]) → W (A)

which we call residue.

Theorem 6.7. The residue

Res : W ′(A[t, t−1]) → W (A)

satisfies the following two properties :

R1 : For any constant space ξ ∈ W (A) ⊂ W (A[t, t−1]) , Res(ξ) = 0 .

R2 : For any constant space ξ ∈ W (A) , Res(t · ξ) = ξ .

Proof. The two properties immediately follow from the construction
of res .

An amusing application of the existence of Res is the following result.

Proposition 6.8. Let A be a commutative semilocal ring in which 2
is invertible. Let (P, α) be a quadratic space over A . If (P, α) is isometric
to (P, t · α) over A[t, t−1] , then (P, α) is hyperbolic.

Proof. Let ξ be the class of (P, α) in W (A). In W ′(A[t]) we have
ξ = t·ξ . Applying Res to both sides we obtain ξ = 0. Since A is semilocal,
by Witt’s cancelletion theorem we conclude that (P, α) is hyperbolic.

7. The Witt group of Laurent polynomials

Let W ′(A[t, t−1]) be the group defined in the introduction.

Theorem 7.1. Let A be an associative ring with involution in which
2 is invertible. Let

ϕ : W ′(A[t, t−1]) → W (A[t, t−1])

be the canonical homomorphism.

(a) If H2(Z/2,K−1(A)) = 0 , then ϕ is surjective.

(b) If K0(A) = K0(A[t]) = K0(A[t, t−1]) , then ϕ is an isomorphism.

Proof of (a). Corollary 2.4 implies that
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H2(Z/2, K0(A[t, t−1])/K0(A)) = 0 .

This means that every projective A[t, t−1] -module P is in the same class
as some projective module of the form

P0[t, t−1]⊕Q⊕Q∗ ,

where P0 is a projective A-module. Therefore, adding to a space (P, α)
a hyperbolic space H(Q′) with Q⊕Q′ free, we may assume that P is of
the form P0[t, t−1] . This means precisely that the class of (P, α) is in the
image of W ′(A[t, t−1]) .

Proof of (b). Surjectivity is obvious, because by assumption every
projective A[t, t−1] -module is stably extended from A . Suppose that the
class of a space (P0[t, t−1], α) vanishes in W (A[t, t−1]) . This means that,
for some Q and R , there exists an isometry

(P0[t, t−1], α) ⊥ H(Q) ' H(R) .

Adding to both sides a suitable H(A[t, t−1]n) we may replace Q and R

by extended modules Q0[t, t−1] and R0[t, t−1] . Then the isometry means
precisely that the class of (P0[t, t−1], α) vanishes in W ′(A[t, t−1]) .

We can restate assertion (b) of Theorem 7.1 as follows.

Theorem 7.2. Let A be an associative ring with involution, in which
2 is invertible. Assume that K0(A) = K0(A[t]) = K0(A[t, t−1]) . Then
there exists a natural homomorphism Res such that the sequence

0 −→ W (A) −→ W (A[t, t−1]) Res−−→ W (A) −→ 0

is split exact. The homomorphism Res restricts to an isomorphism of
t ·W (A) onto W (A) .

8. Two counterexamples

In this section we show that in general the map W ′(A[t, t−1]) →
W (A[t, t−1]) is neither surjective nor injective.
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Example 8.1. We first recall the Mayer-Vietoris sequence associated
to a cartesian sqare of commutative rings (see [1], Ch. IX, Corollary 5.12).
Let

R //

f
²²

S

g
²²

R // S

be a cartesian dagram of commutative rings, with f or g surjective. Denote
by K̃0 the kernel of the rank function on K0 . Then there is a commutative
diagram with exact rows

K1(R)×K1(S) //

det
²²

K1(S) //

det
²²

K̃0(R) //

∧max

²²

K̃0(R)× K̃0(S) //

∧max

²²

K̃0(S)
∧max

²²
Gm(R)×Gm(S) // Gm(S) // Pic(R) // Pic(R)× Pic(S) // Pic(S) .

Let A be the local ring at the origin of the complex plane curve
Y 2 = X2 − X3 , Ã the normalisation of A and c the conductor of Ã

in A . Applying the big diagram above to the cartesian squares

A //

²²

Ã

²²
(A/c) // (Ã/c)

and

A[t, t−1] //

²²

Ã[t, t−1]

²²
(A/c)[t, t−1] // (Ã/c)[t, t−1] ,

it is easy to see that K̃0(A[t, t−1]) = C∗ ⊕ Z = Pic(A[t, t−1]) . This shows
that a projective A[t, t−1] -module P is stably free if and only if its maximal
exterior power

∧max(P ) is isomorphic to A[t, t−1] .
Let I be an ideal representing (1, 1) in C∗ ⊕ Z = Pic(A[t, t−1]) . The

module underlying the space H(I ⊕ A[t, t−1] ⊕ A[t, t−1]) is free. In fact
it is stably free because its determinant is trivial, hence, by a well-known
cancellation theorem it is free. This shows that H(I⊕A[t, t−1]⊕A[t, t−1])
is a quadratic space of the form (P0[t, t−1], α) with P0 free of rank 6
over A . Clearly this space represents the zero element of W (A[t, t−1]) .
We claim that its class in W ′(A[t, t−1]) is not trivial.

Since A is local, projective modules extended from A are free. If
H(I ⊕ A[t, t−1] ⊕ A[t, t−1]) were hyperbolic in W ′(A[t, t−1]) it would be
stably isometric to H(A[t, t−1] ⊕ A[t, t−1] ⊕ A[t, t−1]) and hence, by the
quadratic cancellation theorem (see [4],VI, 6.2.5) it would be isometric to
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it. Recall that, for any commutative ring R in which 2 is invertible and
any finitely generated projective R -module P , the even Clifford algebra
C0 of H(P ) is of the form

C0 = EndR(
∧even(P ))× EndR(

∧odd(P )) ,

where
∧even(P ) (respectively

∧odd(P ))) is the even (respectively odd)
part of the exterior algebra of P . In the case P = I ⊕A[t, t−1]⊕A[t, t−1]
we have

C0 = EndA[t,t−1](A[t, t−1]2 ⊕ I2)× EndA[t,t−1](A[t, t−1]2 ⊕ I2) .

Suppose now that H(I⊕A[t, t−1]2) and H(A[t, t−1]3) are isometric. In this
case their even Clifford algebras would be isomorphic, hence the algebra
EndA[t,t−1](A[t, t−1]2 ⊕ I2) would be a 4 × 4 matrix algebra. By Morita
theory the module A[t, t−1]2 ⊕ I2 would be of the form J4 for some
invertible ideal J . Taking the fourth exterior power of both sides we would
have I2 = J4 , which is impossible because I represents (1, 1) in C∗ ⊕ Z .

This shows that, even for a one-dimensional local domain, the map
W ′(A[t, t−1]) → W (A[t, t−1]) may fail to be injective.

Example 8.2. We define a commutative ring A by the cartesian
diagram of real algebras

(2)
A //

²²

R[X,Y ]

π
²²

R ι // C ,

where C = R[x, y] = R[X, Y ]/(X2 +Y 2−1), π is the canonical projection
and ι the canonical injection. Then C ⊕ C is the direct sum of its two
submodules

P = C 1
2 (y+1,−x)+C 1

2 (−x, 1−y) and P ′ = C 1
2 (1−y, x)+C 1

2 (x, 1+y)

and we can define an automorphism α of C[t, t−1]⊕C[t, t−1] as the identity
on P ′ and multiplication by t on P . With respect to the canonical basis
of C[t, t−1]⊕ C[t, t−1]

α = 1
2

(
t(1 + y) + 1− y −tx + x

−tx + x t(1− y) + 1 + y

)
.

The matrix α has determinant equal to t and thus lies in GL2(C[t, t−1]) .
According to Theorem 7.4 of [1] its class in K1(C[t, t−1]) is the image of
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P by the canonical injection λ mentioned in §2. It is easy to see that P

is not free over C . In fact it turns out to represent the non trivial class
of Pic(C) = Z/2. Since the homomorphism ι in the cartesian square that
defines A is surjective, tensoring the diagram with R[t, t−1] yields a Milnor
patching diagram

A[t, t−1] //

²²

R[X,Y ][t, t−1]

π
²²

R[t, t−1] ι // C[t, t−1] .

We can use this diagram and the matrix α (see for instance [1], Chapter
IX, theorem 5.1) to patch a rank 2 free module Q over R[X,Y ][t, t−1] with
a rank 2 free module R over R[t, t−1] and get a rank 2 projective module

M = {(q, r) ∈ Q×R | α(π∗(q)) = ι∗(r)}
over A[t, t−1] . We now equip M with a skew-symmetric structure. To
do this we put on Q and on R the skew-symmetric structures defined,
respectively, by the matrices

σ =
(

0 1
−1 0

)
and τ =

(
0 1/t

−1/t 0

)
.

Since α∗τα = σ , the skew-symmetric structures σ : Q → Q∗ and
τ : R → R∗ are compatible with the patching and therefore they define a
skew-symmetric structure ϕ : M → M∗ on M .

We claim that the class of this space is not in the image of W ′([t, t−1]) .
Extending to K−1 the Mayer-Vietoris sequence associated to (2) (see [1],
Chapter XII, Theorem 8.3) we get an exact sequence

K0(R[X,Y ])⊕K0(R) → K0(C) → K−1(A) → K−1(R[X,Y ])⊕K−1(R) .

From the fact that regular rings have a vanishing K−1 , that K0(R[X, Y ]) =
K0(R) = Z and that K0(C) = Z ⊕ Z/2 where the element of order
2 is the class of P , we easily deduce that K−1(A) = Z/2, generated
by the image of M . Thus, by Corollary 2.4, the class of M generates
H2(Z/2,K0(A[t, t−1])/K0(A)) = Z/2. Consider now the homomorphism

ω : W (A[t, t−1]) −→ H2(Z/2, K0(A[t, t−1])/K0(A))

obtained by associating to any space its underlying projective module.
Since ω((M,ϕ)) 6= 0, (M, ϕ) cannot be Witt equivalent to a space
supported by a module extended from A . This shows that the map
W ′(A[t, t−1]) → W (A[t, t−1]) is not surjective.
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Remark 8.3. We suspect that even if the assumption of (a) is satisfied
the map W ′(A[t, t−1]) → W (A[t, t−1]) may not be injective, but we did
not find an example to confirm our suspicion.
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