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Introduction

Let A be a regular local ring with quotient field K. Assume that 2 is invertible
in A. Let W(A)—W(K) be the homomorphism induced by the inclusion
A — K, where W () denotes the Witt group of quadratic forms. If dim A < 4,
it is known that this map is injective ([6], [7]). A natural question is to
characterise the image of W(A) in W (K). Let Spec!(A) be the set of prime
ideals of A of height 1. For P € Spec'(A), let 7p be a parameter of the discrete
valuation ring Ap and k(P) = Ap/PAp. For this choice of a parameter 7p,
one has the second residue homomorphism 0p : W(K)—W (k(P)) (9], p.
209). Though the homomorphism dp depends on the choice of the parameter
mp, its kernel and cokernel do not. We have a homomorphism

0=0p) WIE)— @ Wk(P)).

PcSpect(A)

A part of the so-called Gersten conjecture is the following question on “pu-
rity”:
Is the sequence

W(A-W(EK) %S @ WEP)

PcSpect(A)

exact ¢
The above question has an affirmative answer for dim(A) < 2 ([3], p.277,



[1]). There have been speculations by Pardon and Barge-Sansuc-Vogel on
the question of purity. However, in the literature, there is no proof for purity
even for dim(A) = 3. One of the consequences of the main result of this paper
is an affirmative answer to the purity question for dim(A) = 3.

We briefly outline our main result. For any scheme X let W¢(X) denote
the Witt group of e-symmetric spaces on X, ¢ = +1 (WH(X) = W(X)
being the usual Witt group of symmetric spaces over X). Let A be a regular
local ring of dimension 3 with maximal ideal m and Y = Spec(A) \ {m}.
We associate (§2) to an e-symmetric space over Y a (—e)-symmetric space
over a finite length A-module. This assignment leads to a homomorphism
WY ) =W (A), where W5 (A) is the Witt group of e-symmetric spaces of
finite length A-modules (cf §0). Then we prove (§3) that the sequence

0—>W€(A)—>W€(Y)—>Wﬁ€(z4)—>0

is exact, where the map W¢(A)—W*(Y) is induced by the restriction. Since
W5 (A) =~ W<(A/m), it follows that Wf_ll(A) = 0. Thus the map W(A)—-W(Y)
is an isomorphism. This leads to the purity theorem for the Witt groups.
On the other hand, since every skew-symmetric space over A is hyperbolic,
W=1(A) = 0 and we get an isomorphism W~1(Y) ~ W (A/m). We observe
the curious fact that if A is complete, W*(Y") is isomorphic to W(A/m).

A crucial result used in our proof of the main theorem is a theorem of
Horrocks ([2]) on vector bundles on the punctured spectrum Y = Spec(A) \
{m}, where A is a regular local ring of dimension 3 and m its maximal ideal.
We use his theorem on the equivalence of the category of “®-equivalence”
classes of vector bundles on Y with the category of finite length A-modules.

We would like to remark parenthetically that purity for dimension 3 was
used in [8] while establishing the equivalence of finite generation of Witt
groups of affine real 3-folds and the finite generation of Chow groups of
codimension 2 cycles modulo 2.

We thank the referee for patiently pointing out errors, obscurities and
misprints in the various versions of this paper.

0. e-symmetric spaces reminisced

Let A be a regular local ring of dimension three in which 2 is invertible.
We recall the definition of e-symmetric spaces on finite length A-modules

2



and their Witt groups. For A-modules M, N and i > 0, let Ext’(M, N)
denote the group of congruence classes of i-fold extensions of N by M ([4],
p. 84). For any homomorphism f : M—M" of A-modules, let Ext!(N, f) :
Ext' (N, M )—Ext' (N, M) be the induced homomorphisms defined as follows:
Let

C=0-M22 %7, .. =72, % 7, % N0

be an i-fold extension of N by M. Let Z = (Z; & M")/({(a(x), f(x)) | x €
M?}) be the push-out of the diagram ([4])

M % Z
Lf
M/
Then
Ext'(N, /)(Q) = 0—M' %z 2 7, %5 ..z, % 7, B N,

where o and @ are the natural homomorphisms induced by the push-out.
Similarly, we define Ext’(f, N) as the pull-back under f of an i-fold extension

of N by M'. Let M be a finite length A-module and MY = Ext3(M, A). If
M, M’ are two finite length A-modules and f : M—M' an A-linear map,
then we denote Ext?(f, A) by fV. Let

P=0—-P, 2 P2P % pY M0

be a projective resolution of M. Since Ext'(M, A) = 0 for i = 0,1,2 ([5], Th.
18.1), by dualising the above exact sequence we see that

o5 o5 ox /
P =0-P S P32 P3PS MY—0

is a projective resolution of M"Y, where P = Homu(FP;, A), 0F is induced by
0; and for any f € Pj,

0'(f) = Ext®(f, M)(P) € MV.

Throughout this paper, for any surjection 0 : Pp—M as above, 8’ denotes the
map defined as above. We define a canonical homomorphism C : M— M"Y
as follows : Let € M. Choose y € P, such that 6(y) = z. We define
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C(z) = Ext?(—e,, MV)(P*) € M"Y, where, for f € P}, e,(f) = f(y). Then
it is easy to see that C(z) is independent of the choice of y and the diagram

0o - P B p &2 p &% p LM =0
1€ 1€ 1€ 1€ 1=C T
0 - P 5 opr % opr Lope Do oo

is commutative, where C : P,—P/* are the canonical isomorphisms. Thus
C : M—MV"Y is an isomorphism and it is obvious that it is independent of
the choice of the projective resolution. We use this isomorphism to identify
M with MVYV. The choice of the negative sign at e, in the definition of C is
explained in the following : Let m = (x1, 22, x3) be the maximal ideal of A
and

C=0—A2 A3 2 435 4% A/m—0

be the Koszul resolution of A/m with respect to (z1, 2, z3). With respect to
the standard basis {e;, ez, e3} of A%, we have

—T9 —T3 0 xs3
0 = ($1 X2 lEs), 0y = X1 0 —x3 |, 03 = | —x2
0 Ty Ty Ty

and 1 : A—A/m is the natural homomorphism. Let M be a finite dimen-
sional vector space over A/m. Then M is a finite length A-module. Let
M = Hom(M, A/m). The assignment f +— Ext®(f, A)(¢) € M" induces a
homomorphism

(I)M . M—)Mv

The following lemmas are well known, but for the sake of completeness we
will give their proofs here.

Lemma 0.1 The homomorphism ®,, is an isomorphism and the diagram

M £) MV\/
Le 1oy
- o~ —~

M E (M)

is commutative, where ¢ : M— M is the canonical isomorphism.
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Proof. Since M ~ @"A/m, MY ~ &(A/m)¥ and M ~ &A/m, it is
enough to prove the lemma in the case when M = A/m. In this case it is
easy to see that ®,; # 0. Since MY ~ A/m ([5], Th 18.1) and M ~ A/m,
@)y is an isomorphism. We now prove the commutativity of the diagram. For
all z € M and f € M we have «(z)(f) = f(z) and

O (u(x)) = 0—A B A3 22 43 2 AL

Let y € A be such that n(y) = x. Then we have

.
—07ey

1 * * ’
Clx) = 0—A 05 A% 25 43 %5 4% " (4 )m)Y 0,
Since @), is an isomorphism, we have

w —1
—07ey

BY (C(x)) = 0—A "5 e B pae 5 4o P gV

Let {e},e5, €5} be the dual basis of A%*. For i = 1,2, let 6; : A3>— A% be
given by the following matrices, with respect to the bases {ej,es,e3} and

{ef, €5, e3}-

0 0 —y! 0 0 y!
0, = 0 Yy 0 , b= 0 -yt 0
-yt 0 0 y ' 0 0

Let 63 : A—A* be the homomorphism defined by 65(1) = [,,, where [, (a) = ay
for all @ € A. It is easy to see that the following diagram

0— A 5o Boa Ao LTy g
lid 161 102 103 lid
_§*ert §* 5% <I>71n/
0— A SAR 24 24 ST (A/m)Y —0
is commutative. Thus @ + = ®},C. O

Lemma 0.2 Let ¢ : M—DM be a homomorphism and J . M—DM the
induced homomorphism. Then the following diagram

MO ()
1y Y
M MY

1s commutative.



Proof. Let f € M. Then ® - (f) is the pull-back of the Koszul resolution ¢
under f: M—A/m and VY (®5;(f)) is the pull-back of the extension ® - (f)
under 1. Thus ¢ (® (f)) is the pull-back of the Koszul resolution under the
homomorphism f1) : M—A/m. Since (f) = fib, ®ar(1)(f) is the pull-back
of the Koszul resolution under f. Thus ®¢" = ¢V ® . O

The above lemmas enable us to embed the category of e-symmetric spaces
on finite dimensional A/m-vector spaces into the category of e-symmetric
spaces on finite length A-modules (cf (0.3)).

Let € = +1. An e-symmetric space of finite length is a pair (M, 1) where
M is a finite length A-module and v : M—M" = Ext*(M, A) is an isomor-
phism with ¢V C = €. Let ¢; and 1) be two e-symmetric spaces on finite
length A-modules M; and M, respectively. We say that v, is isometric to
19, if there exists a homomorphism 6 : M;— M, such that 1 = 6V1),0. An
e-symmetric space 1) on M is called metabolic if there exists a submodule N
of M such that ' N

0—N -5 M =¥ NV—0

is exact, where ¢ : N—M is the inclusion. The Witt group of e-symmetric
spaces of finite length A-modules is defined as the quotient of the Grothen-
dieck group of isometry classes of e-symmetric spaces with the orthogonal
sum as addition, modulo the subgroup generated by metabolic spaces. It is

denoted by W§(A).
Corollary 0.3 Let M be a finite dimensional vector space over A/m. Let

v M —M be an e-symmetric space, i.e., ?,ZL = 1) and 1 is an isomorphism.
Then ® ;1) : M— MY is an e-symmetric space.

Proof. By (0.1), we have (®3¢)"C = ¢V ®},C = ¥ ® 1. Using (0.2), we
get that (®,0)VC = O b = e®pr1p. Thus $ye) is an e-symmetric space. O

We need the following

Lemma 0.4 Let M be a finite length A-module and ¢ : M—M" an e-
symmetric space. If (M, 1)) is stably metabolic, then it is metabolic.



Proof. If M is an A/m-module, then the result follows from the corres-
ponding result for e-symmetric spaces over the field A/m. We reduce the
general case to the above case by induction on the length of M. Assume that
the length of M is at least 1. Let V' be a maximal submodule of M which
is an A/m-module. Suppose that 1 restricted to V' is singular. Then there

exists a non-zero submodule L of V such that L C Lt = ker(M k4 LY)
and 1) induces an e-symmetric form ) on L' /L which is Witt equivalent to
(M,%)). Suppose that (M, 1)) is stably metabolic. Then (L*/L, ) is stably
metabolic. By induction there exists a submodule N; of L*/L such that

0—N, & LY /L ™Y NY 0

is exact. Let N be the submodule of M containing L such that N/L = Nj.
Then it is easy to see that the sequence

0—N 5 MY NV

is exact and (M, 1) is metabolic. We may therefore assume that 1 restricted
to V' is non-singular. Then (M, ) ~ (V,¢ |v) L (My, ). If My # 0, then
M contains a non-zero submodule which is an A/m-module, contradicting
the maximality of V. Thus M; = 0 and M = V is an A/m-module. This
completes the proof of the lemma. a

Let X be a scheme such that 2 is invertible in I'(X). Let £ be a vector
bundle over X of finite rank. An e-symmetric space on £ is an isomorphism
q : E—&* = Hom(E,Ox) such that q*C = eq, where C : E—=E* is the
canonical identification. Let W€¢(X') be the Witt group of e-symmetric spaces
on vector bundles over X ([3], p. 144). If X = Spec(A), then we denote
We(X) by We(A).

Throughout this paper, by an A-module we mean a finitely generated
A-module. We call an e-symmetric space simply a quadratic space if € = +1
and a symplectic space if € = —1. We also denote W (X) by W(X). For a
vector bundle £ over X, we denote the hyperbolic space on € by H(E) ([3],
p. 130).



1. Reflexive modules

Let A be a regular local ring of dimension three with 2 invertible. An A-
module F is said to be reflexive if it is finitely generated and the canonical
homomorphism EF— E** is an isomorphism. For a reflexive A-module E we
use the canonical isomorphism to identify £** with E. It is well-known that a
reflexive module over a regular ring of dimension 3 has projective dimension
at most 1. Let E be a reflexive A-module and M = Ext'(E*, A), where E* =
Hom, (F, A). Since reflexive modules over regular rings of dimension at most
2 are projective, M is a finite length A-module. We define a homomorphism
Bp : Ext'(E, A)—M" = Ext*(M, A) as follows. Let

0—P, & Py & B*—0 (%)
be a projective resolution of E*. Then by dualising, we get an exact sequence
B o
0—E 2 Pr 5 Pr S Ext! (B, A) = M—0,

where 0 is defined by push-outs. We have the following

Lemma 1.1 The Yoneda composition ([4], p. 82) B : Ext'(E, A)—M"
given by

Bp(0—A " 721 B0) = (0—A 2% 220 pr % pr 2 A
is an isomorphism and is independent of the choice of the projective resolution

(%) of E*.

Proof. Consider the long exact sequence of cohomology associated to the
short exact sequences

-5 % Py % ker(§)—0 and 0—ker(d) — P; - M—0.

Since Ext’(M, A) = 0 for i < 2 and P; is a projective module, Ext' (ker(§), A) =
0 and the connecting homomorphisms Ext'(E, A)—Ext*(ker(§), A) and
Ext?(ker(6), A)—Ext*(M, A) induced by the above short exact sequences are
isomorphisms. Since fg, up to sign, is the composition of these two connec-
ting homomorphisms ([4], p. 97, Th 9.1), § is an isomorphism.
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Suppose that
?, o
O—)Fl —1> FO —O> E*—>O

is another projective resolution of E*. Then by lifting the identity map on
E*, we get homomorphisms P,—F;, i = 0,1, such that the diagram
0— P 5 P B B -0
l | lid

— n 3 B % B o

is commutative. By dualising this diagram we get a commutative diagram

% 0 s

O0— E — F5 — I M —0
lid ! 1 lid

9 o5 s
H

0— £ —= F P = M =0,

6/
—_—

where ¢’ is defined by push-outs. This implies that

O0—-EE S 20 = 0-E% P % pr S M)

in Ext?(M, E). Thus the homomorphism [ is independent of the choice of
the projective resolution of E*. O

Lemma 1.2 1) For any reflexive A-module E we have

B = —PEC.

2) Let E and E’ be reflexive A-modules. Then, for any isomorphism f :
E—F' we have

Ext'(f*)YBr = BrExt'(f).

d, d,
Proof. Let 0—P, 2 P, 2 B0 and 0—F, 2 Fy, 2 E—0 be projective
resolutions of E* and E respectively. By dualising these exact sequences, we
get exact sequences

0-E 8 pr % pr Ot (B*, A)—0



and

0—E* 2 mr & e 0 Bl (B, A)—0.
Let ¢ = (0-A 5 Z 2, E*—0) € Ext'(E*, A). Since Py and P, are pro-
jective, there exist homomorphisms f : Pi—A and g : Py—Z such that the

diagram

0— P, &% B 2 B -0

Lf lg lid
0— A % 7z 5 B 0

is commutative. By the definition of § we have §(f) = . Since
’ 8 8/ * T x 0 1
0—F, & Fy =’ Py = P = Ext' (E*, A)—0

is a projective resolution of Ext!'(E*, A), by dualising it we get an exact

sequence

0-pP & py 0P B e gt (B2, 4)Y 0.

Thus C(¢) = —¢, where
€= (042 7% 5 B pr B pl(B7, 4) —0).

From the definitions of §, ¢’ and (g, it follows that the diagram

0— B & % o % mgl(EA) 0

lid lid lid 1Bk
0— B & o A g 4 pxil(ee 4)Y -0

is commutative. It follows from the definition of 5), that

Y g % pr % Bl (B, A)—0).

Bp(§) =(0-A 5 Z =
On the other hand we have
Bu-(C) = (0—A % 2 F* F* % Ext! (B, A)—0) = BL(€).

Thus —(%C = Be-.
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1
Let f: E—E' be an isomorphism. Then 0— P; 9 Py % B 0is a
projective resolution of ™. By dualising it we get an exact sequence
* p—1 *
0—E L pr 8 pr 2 Ext! (B, A)—0

)

with &, = Ext'(f*)8. Let ¢ = (0—A % Z 2 E'—0) € Ext'(E’, A). Then

B (C) = (0—A & 2 87 pe A pr 32 gt (g 4)0)
and

Ext' ()" 8w (C) = (0—A = 2 %57 pr & pr 2 Ext! (E*, A)—0),

since § = Ext!(f*)~'0,. On the other hand we have

ExtL(£)(¢) = (0—A % 7127 Ep)
and

BREXt'()(Q) = (0—A % 257 pe 8 pr 5 Bt (B4, 4)-0)
— Ext'(£)" 8w (C).

This proves the lemma. g

Let A be any local ring in which 2 is invertible and m its maximal ideal.
Let E be a reflexive A-module. By an e-symmetric space on E we mean
an isomorphism ¢ : EF—FE* such that ¢*C = eq, where C : E—E** is the
canonical isomorphism.

Let V be an A-module. By a unimodular element of V' we mean an element
x € V such that f(z) = 1 for some A-linear map f : V—A. For example,
an element (ay,---,a,) € A" is unimodular if and only if a; € m for some
1. Thus, if an A-module V' has no unimodular elements and 7 : V—A" is an
A-linear map, then n(V) C mA™.

Lemma 1.3 Let E be a reflexive A-module and g an e-symmetric space on
E. Suppose that £ = Ey@® A™ with Ey having no unimodular elements. Then
there exist e-symmetric spaces ¢; and ¢o over Ey and A" respectively such
that

(E,q) ~ (Eo,q1) L (A", q2).
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Proof. Let E = Ey & A™ be such that Ey has no unimodular elements.

Then
_ (@ M )
1 ( en' q

for some q : Ey—Ej, q) : A"—A™ and n : A"—E§. Since Ey has no uni-
modular elements, n*(Ey) C mA™ and hence n(A™) C mkE{. This implies
that

— q1 0 *
q_<0 C]i> mod mE™.

Since ¢ is an isomorphism, ¢; and ¢; are isomorphisms. We have

( 1 1 0)(611 n)(l _Q1177>:(QI 9 )
—en*qr 1) \en® ¢/ \O 1 0 —n'¢gn+aq

Let o = —n*q; 'n+d) : A"—A". Since ¢; = eqy, (E,q) ~ (Eo, 1) L (A", g2).
O

2. Spaces over the punctured spectrum and
on finite length modules

We begin by recalling from a paper of Horrocks (]2]) an equivalence between
the categories ®P of ®-equivalence classes of vector bundles on the punctured
spectrum of a regular local ring A of dimension 3 and the category M of finite
length A-modules. Let m be the maximal ideal of A and Y = Spec(A)\ {m}.
Let € be a vector bundle over Y and E = I'(£) the module of sections
of £ Then E is a reflexive A-module ([2], Th.4.1) and M = Ext'(E*, A),
which is isomorphic to H*(Y,€) (2], §5), is a finite length A-module ([2],
Cor.7.2.5). The functor T' : ®P—M given by T(£) = Ext'(E*, A) is an
equivalence of categories ([2], Cor. 7.2.5). Let M be a finite length A-module.
The construction below gives a vector bundle £ on Y such that T'(€) = M.
Let, in fact

0—P, & P, % p 2 py L M—0
be a projective resolution of M. Let E = ker(9;). Then E is an A-module
of projective dimension at most 1 and Ext'(E*, A) = M. Since M is a finite

length module, for any prime ideal p of A, p # m, M, = 0 and hence E, is
free. Thus F = I'(€) for some vector bundle £ on Y ([2], Th. 4.1).
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Let A be a regular local ring of dimension 3 in which 2 is invertible.
Let £ be a vector bundle and q an e-symmetric space on £. We associate to
(€,q) a (—e)-symmetric space p(q) of finite length. The e-symmetric space
q on & gives rise to an e-symmetric space (E,q), where E = I'(£). Then
M = Ext'(E*, A) is a finite length A-module. The isomorphism ¢q : E— E*
induces an isomorphism Ext'(¢) : M = Ext!'(E*, A)—Ext'(E, A). Let p(q) =
BrExt!(q). We have the following

Lemma 2.1 p(q): M—M" is a (—¢)-symmetric space.

Proof. In the following diagram

M =Ext/(E*, 4) P Exil(E, A) 5 Extl(Br, A)Y = MY
1 BE~ 1BE lid
Ext'(E,4) P pgi(pe a0 M Ext!(E*, A)”
18y leBxt!(q)V™ lid

By eBExtl(q)V
= —

)
Ext'(E*, A)"" Ext'(E, A)’ Ext'(E*, A)"

clearly all the squares except perhaps the top left one commutes. Since ¢* =
€q, by (1.2) this square also commutes. By (1.2), the composition of maps on
the first column is equal to —C. Thus

p(q)'C = Ext'(q)" BC = —efrExt'(q) = —ep(q).
O

Lemma 2.2 Let M be a finite length A-module and ) an e-symmetric form
on M. Suppose that there exists an exact sequence

NS MmNy
of finite length A-modules. Then (M, 1)) is metabolic.

Proof. Since the map f factors as N—N/ker(f) L, M, we have an exact
sequence

0—N/ker(£) L M ¥ (N/kex(£))".

Since, dimension of A being 3, Ext*(L, A) = 0, the map 7V¢ is surjective
and hence (M, ) is metabolic. O
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Lemma 2.3 If (£,q) is metabolic, then (M, p(q)) is metabolic.

Proof. Suppose that (€, q) is metabolic. Let F be a subbundle of £ such
that the sequence

0—F 5 £ 0

is exact, where F %, € is the inclusion. By taking global sections and then
applying the Ext functor to the following exact sequence of bundles

0—F L g 5 70
we get an exact sequence
Ext'(F*, A)—Ext'(E*, A)—Ext' (F, A)

of finite length modules, where F' = I'(F). Let N = Ext'(F*, A). Then the
canonical identification of Ext'(F, A) with NV gives an exact sequence

N L TAY N
Now the lemma follows from (1.2). O

Lemma 2.4 The assignment (£, q) — (M, p(q)) induces a homomorphism
p: WE(Y)—>Wﬁ€(A).

Proof. Since p is clearly additive, it is enough to show that p takes stably
metabolic spaces to metabolic spaces. Let (€£,q) be an e-symmetric spaces
over Y which is stably metabolic. Then there exists a metabolic space (€1, q;)
such that (£,q) L (£1,q;) is metabolic. By (2.3), p(q,) and p(q L q,) =
p(q) L p(q;) are metabolic. Thus p(q) is stably metabolic. O

We note that if £ is a trivial bundle then M = 0. Thus, if (£,q) comes
from an e-symmetric space on A, then p(q) = 0.

The proof of the following lemma is by straightforward verification, hence
we omit it.
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Lemma 2.5 Let R be a ring. Let 0—N % M % N'—0 be an exact
sequence of R-modules. Assume that the projective dimensions of N and N’
are finite. Let

0, On— 1o}
0—P, 3P, 1 5 ...P, 3 Py 3 N=0

and )
a i~ 2
0=Qn = Quoy ™5+ —Q1 = Qo 5 N'—0

be projective resolutions of N and N’ respectively. Let, for [ > 1, ¢; :
Q—P,_1 and 0 : Qo— M be R-linear homomorphisms. Let

5 = (?)l (—g?lcbz) '

Then the following diagram

0— P, & Po e s R % N S0
! | ! ! i

0= P®Qn 2 Py ®Qu1 - — POQ 3 RaQ -0
| | ! ! lj

- Q@ B Q- @ 2@ AN -0

is commutative if and only if the following diagram

T S N S e N 0 T
| 1o Lon—1 Lo2 ol 10 lid

0— P, B p, ™ P, ™ ... P A p 8y LN S0

1s commutative.

Proposition 2.6 Let (£, q) be an e-symmetric space over Y. Suppose that
E = T'(£) has no unimodular elements and that p(q) is metabolic. Then
there exist e-symmetric spaces q; and q, on £ and Oy" respectively such
that q; L q, is metabolic and p(q) ~ p(qy)-
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Proof. Let M = Ext'(E*, A) and p(q) be the e-symmetric space on M.
Since p(q) is metabolic, there exists an exact sequence

0N 5 A1 T2 NV,

Let
0—Q3 ng %Ql ﬂQOLN—>0

be a projective resolution of N. By dualising this resolution, we get a pro-
jective resolution

*af *a; *8::: « 1 \Y
O—>Q0—>Q1—>Q2—>Q3—>N —0

of NV. By lifting the identity map of NV, we obtain a commutative diagram

03 o3 n
=

0 - & 2o 2o %t N -0
! 6 Lo Lo 10 Jid (*)

Qs L Q2 % Q1 & Q =2 M el NY  —0.

(D —<Z51> _(82 ¢2) _(33 —453)
51—(0 03 ) 02= 0 o)’ 05 = 0 o)

By (2.5), the diagram

Let

0 0 0 0 0
l | l l l

- Q@ 2 @ 2 o 2 Q@ L N =0
l l l l ol

0— Qo 2 Qo 2 Qe % Qo ™ M 0
L 1i¥p(q)

0— Q; BN Q; 2 Qs i 5 I, NV —0
l l l l l
0 0 0 0 0

is commutative. Since the first row, the last rows and all the columns in
the above diagram are exact and the diagram is commutative, from the long
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exact homology sequence ([4], Th. 4.1 p. 45) we get that the middle row is
also exact. By dualising this diagram, we get the commutative diagram

0 0 0 0 0
| l | | ol

0— Qs % Q2 % 3 ﬁ Qo L NW —0
| B} l ) l ; l Lp(g)¥i""

0—» Qe 3 Qo 2 Qo 2 Qo Y MY )
l oF l o l ox l liv

- @ - @ > o = @ 5 N —0
l | | | l
0 0 0 0 0

with exact rows and columns. By (2.5), the diagram
* o1 * * 9 * n vV
0 — QO - Q] = Q3 = Q3 - NY —0
l o 1o3 L¢3 ' v lid
Qs 2 Q 2 o % Q PO v BNV S0
is commutative. From the definition of n” and C : N—N"V (cf diagram
T in §0) it follows that Cn = —n". Since p(q)"C = —ep(q), we have the
commutative diagram
0 - & 2o 2o %ot N 0
! o7 1o3 L3 W leid
Q3@>Q2 %Ql iQo oy A NV o
where v/ = ep(q)~'v. From (%) and the above commutative diagram we get
maps s1 : (5—@Q1 and so @ Q7 —Q2 such that ¢o — €¢y = Oa59 — 510;. Let
¢ = ¢y — €0ys;. Then we have

oo = 0ig

O1(d2 — €)

81 (8282 — 8165‘) + €al¢§
€01 (93 — €103)

= e@lgb*.
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Let «
5 (82 ¢+2€¢ ) |

0 €0;
It is easy to see that the diagram

0 0 0 0 0
| | | ! |

0— Q3 % Q2 %, 1 o, Qo - N —0
| | | ! li

éf * * 1 * 0

- QeQ > 2o > Qe % Qe ™ M -0
! | l ! 1i¥p(q)

0— Q@ X o % @ & o N -0
| | | | |
0 0 0 0 0

commutes. Since the first row, the last row and all the columns are exact, the
middle row is also exact. Let E' = ker(d;). Since *C = €d, from the middle
row of the diagram (%) it is easy to see that § induces an e-symmetric
isomorphism ¢’ : E'—E"™. Let (£',q’) be the e-symmetric space over Y with
(&) =FE and I'(q') = ¢. Since Ext'(E', A) ~ M = Ext'(E*, A) and E has
no unimodular elements, by Cor. 7.2.5 and Lemma 7.1 of [2] we have E' =
E @ A™. Then by (1.3), (E',¢') ~ (FE,q) L (A", qz) for some e-symmetric
spaces ¢; and g; on I and A" respectively. Let q; be the e-symmetric space
on & such that I'(q;) = ¢1. Let F' = ker(d;) and F the vector bundle over
Y with I'(F) = F. Then using (**), it is easy to see that F is a Lagrangian
for (£',q') ~ (€,q;) L (Oy™,q,), where I'(qy) = ¢2. Since the map E'—F*
induced by the diagram (%), induces iVp(q) : M—NV, we have iVp(q) =
i¥p(qy). Thus, by the lemma (2.7) below, we have p(q) ~ p(q;). O

Lemma 2.7 Let ¢/ and 1, be two e-symmetric spaces on M. Suppose there
exists a submodule N such that

0N 5 M8 NV S0

is exact and ¢V1); = iV4by. Then 1 =~ 1)s.
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Proof. Since V1) = iV1)y, there exists a map 6 : M— N such that 1] i), —
1= 20, i.e., 1/)120 = wg — 1/}1 = 0\/7:\/1/}1. We have

(1+9V¢V)¢ A+i0)  _ (p1460YiVer) (1446)
2 179

= 1+ + 9\/2,LV Y1+ av;v %
— :il + ¢2;¢1 + 1#2;#1
= Yo

3. The Witt groups of the punctured spec-
trum and purity

Let A be a regular local ring of dimension three with 2 invertible. Let Y =
Spec(A) \ {m}, where m is the maximal ideal of A.

Proposition 3.1. Let £ be a vector bundle on Y and q : £—&* an e
symmetric isomorphism. Suppose that ['(£) has no unimodular elements. If
p(q) is isomorphic to a hyperbolic space, then q is in the image of W¢(A).

Proof. Let N be a finite length A-module such that (M, p(q)) is isomorphic
to the hyperbolic space IH(N). Let F be the vector bundle on Y with I'(F)
having no unimodular elements and such that H'(Y,F) ~ N (cf §2). Since
HYY,E) ~ N® NY ~ HY(Y,F & F*) with T'(£) and I'(F & F*) admitting
no unimodular elements, by Lemma 7.1 and Cor.7.2.5 of [2] we can and do

identify £ with F @ F*. Let 1) be an isometry of p(q) with p((S (1))) Then

by [2], Cor.7.2.5 there exists an automorphism 1 of £ such that H'(1) = ).
By the definition of p we have p(v*qi)) = BgExt!(L(1/*)ql(¥))

= BpExt'(T(¢v*)Ext'(¢)Ext!(I'()), where E = T'(€) and ¢ = I'(q). By
(1.2 (2)), we have BpExt'(I'(v*)) = Ext'(I'(¢))"Bg, so that p(y*qy) =
Ext' (T(v))" BpExt’ (q)Bxt! (T (v)) = Ext' (T(1))p(q)Ext' (T (¥))

= HY(¥)Vp(q)H'(v) = ¥p(q)y. We replace q by 1*qy and assume that

0 1 AR B F
d © F* — F* maps such that o = ea, " = €. Since p(q) = (S (1)>7
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H'(a) = 0 and H'(8) = 0. Therefore, by ([H], Cor.7.2.5), there exist f; :
F—0%, fo: F*— 0%, q1: OF — F* and g5 : O} — F such that a = g1 f;
and 0 = gofs. Let us consider the automorphism

1 0 —91/2 fl*
W= 0 1 —go/2 f3
0 0 1 0
0 0 0 1
of FOF* D Oy™ D Oy™. We have
a 6 00 0 X eff —q)2
;o e B 0 0| . | €X* 0 efs  —g2/2
=%l 00 1|V | 4 £, 0 1
0 0 € 0 —€gi/2 —egs/2 € 0

where X = d—efg3/2— g1 f2/2. Since I'(F) and I'(F*) admit no unimodular
elements, f; = fo = 0 mod m. Hence X is an isomorphism. Since q’ restricted

(0] ; @J iS
( >

with X an isomorphism, g’ splits as

0 X /)
<6X* O)J_q

for some q” supported on a bundle £”. Since £ D Oy" & Oy ~E G E”, by
2], Cor.7.2.5, £" is a trivial bundle and hence q” is in the image of W¢(A).

Since 0 x
N\ ~o ! ~o "
qu(Oy)—Q—<€X* O)Lq,

it follows that q is in the image of W¢(A). O

Lemma 3.2 Let M be a finite length A-module and ¢ : M—M" be an
e-symmetric isomorphism. Then there exists a vector bundle £ over Y with
a (—e)-symmetric isomorphism q : E—E&* such that p(q) = 1.
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Proof. Let & be a vector bundle on Y such that H'(Y;£) = M (cf §2). and
E =T(€) has no unimodular elements. Then (cf §2) the projective dimension
of E is less than or equal to 1 and Ext!(E*, A) ~ M. Let

0—P,—FPy—E—0

and
O—>Q1—>QO—>E*—>O

be projective resolutions of E and E* respectively. By dualising the projective
resolution of E* we get an exact sequence

0—E—Qi—Q]—M—0.

By taking the Yoneda composition of this exact sequence with the projective
resolution of E we get a projective resolution

0—P—FPy—Qi—Q]—M—0
of M. By dualising this we get a projective resolution
O—>Q1—>QO—>PS—>P1*—>MV—>O

of MV. By lifting the e-symmetric isomorphism v : M—M", we get a com-
mutative diagram
0O - A —- F —- Q@ — @ —- M — 0
13 12 1 1o Ly
0O - 1 — Q — F — P — MY = 0

of exact sequences. Since F/ has no unimodular elements it is easy to see, as
in the proof of (2.6), that the above diagram induces a (—e)-symmetric space
q on & such that p(q) = 9. O

Theorem 3.3 Let A be a regular local ring of dimension 3 and m its
maximal ideal. Assume that 2 is invertible in A. Let Y = Spec(A) \ {m}.
Then the the complex

0—We(A) 5 W (Y) 2 W (A)—0
is exact, where ¢ is induced by the restriction.
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Proof. If ¢ = 1, then the injectivity of ¢ follows from the injectivity of
the canonical homomorphism W(A)—W (K) ([6],Th. 23), where K is the
quotient field of A. If e = —1, ¢ is injective because W~!(A) = 0.

We now prove the exactness in the middle. As we remarked in §2, pr = 0.
Let (€,q) be an e-symmetric space over Y such that p(q) is zero in W;,*(A).
Then, by (0.4), p(q) is metabolic. We show that (£, q) is in the image of «.
In view of (1.3), we assume that ['(£) has no unimodular elements. Then, by
(2.6), there exist e-symmetric spaces q; and q, supported respectively on &€
and Oy " for some integer n, such that q; L q, is metabolic and p(q) ~ p(q,).
Thus p(q L —q;) is isomorphic to a hyperbolic space. Since I'(€ & £) has no
unimodular elements, it follows from (3.1) that q L —q; is in the image of
t. Since q, is in the image of ¢ and q; L q, is metabolic, q; and hence q is
in the image of «.

The surjectivity of p follows from (3.2). O

Let A be any regular ring. Let Spec!(A) denote the set of prime ideals
of A of height 1. Then for any P € Spec'(A), the local ring Ap is a discrete
valuation ring. Let dp : W(K)—W (Ap/PAp) denote the second residue
homomorphism with respect to some choice of a parameter of PAp, where
K is the quotient field of A.

Corollary 3.4 Let A be a regular local ring of dimension 3, m its maximal
ideal and K its quotient field. Assume that 2 is invertible in A. The sequence

0—W(A)=W(K) = @  W(Ap/PAp)
PeSpect(A)

is exact.
Proof. The injectivity of W(A)—W(K) is proved in [6], Th. 23. Since

Wit (A) ~ WH(A/m) = 0, by (3.3) we have W(A) ~ W(Y). Thus it is
enough to prove that the complex

W(Y)-W(K)% @ W(Ap/PAp)
PeSpect(A)

is exact. Let ¢ be a quadratic space over K such that dp(q) = 0 for all height
1 prime ideals P of A. Since Y is a regular scheme of dimension 2, by [1]
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2.5 p. 112, there exists a quadratic space (£,q) over Y = Spec(A) \ {m},
such that its image in W (K) under the restriction map, is equal to ¢. This
completes the proof of corollary. a

Using (3.4), one can prove the following theorem (cf [8], Prop. 2.1).

Corollary 3.5 Let A be a regular ring of dimension 3 and K its quotient
field. Assume that 2 is invertible in A. The sequence

0—W(A)—-W(E)™* P W(Ap/PAp)
PeSpect(A)

is exact.
We end this paper by giving a computation of W~1(Y") using (3.3).

Corollary 3.6 Let A be a regular local ring of dimension 3 and m its
maximal ideal. Assume that 2 is invertible in A. Let Y = Spec(A) \ {m}.
Then WHY) =~ W(A/m).

Proof. Since W(A) =0 and Wy (A) ~ W(A/m), the result follows from
(3.3). O
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