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Introduction

Let A be a regular local ring with quotient field K. Assume that 2 is invertible
in A. Let W (A)→W (K) be the homomorphism induced by the inclusion
A ↪→ K, where W ( ) denotes the Witt group of quadratic forms. If dim A ≤ 4,
it is known that this map is injective ([6], [7]). A natural question is to
characterise the image of W (A) in W (K). Let Spec1(A) be the set of prime
ideals of A of height 1. For P ∈ Spec1(A), let πP be a parameter of the discrete
valuation ring AP and k(P ) = AP /PAP . For this choice of a parameter πP ,
one has the second residue homomorphism ∂P : W (K)→W (k(P )) ([9], p.
209). Though the homomorphism ∂P depends on the choice of the parameter
πP , its kernel and cokernel do not. We have a homomorphism

∂ = (∂P ) : W (K)→ ⊕

P∈Spec1(A)

W (k(P )).

A part of the so-called Gersten conjecture is the following question on “pu-
rity”:
Is the sequence

W (A)→W (K)
∂→ ⊕

P∈Spec1(A)

W (k(P ))

exact ?
The above question has an affirmative answer for dim(A) ≤ 2 ([3], p.277,

1



[1]). There have been speculations by Pardon and Barge-Sansuc-Vogel on
the question of purity. However, in the literature, there is no proof for purity
even for dim(A) = 3. One of the consequences of the main result of this paper
is an affirmative answer to the purity question for dim(A) = 3.

We briefly outline our main result. For any scheme X let W ε(X) denote
the Witt group of ε-symmetric spaces on X, ε = ±1 (W+1(X) = W (X)
being the usual Witt group of symmetric spaces over X). Let A be a regular
local ring of dimension 3 with maximal ideal m and Y = Spec(A) \ {m}.
We associate (§2) to an ε-symmetric space over Y a (−ε)-symmetric space
over a finite length A-module. This assignment leads to a homomorphism
W ε(Y )→W−ε

fl (A), where W ε
fl(A) is the Witt group of ε-symmetric spaces of

finite length A-modules (cf §0). Then we prove (§3) that the sequence

0→W ε(A)→W ε(Y )→W−ε
fl (A)→0

is exact, where the map W ε(A)→W ε(Y ) is induced by the restriction. Since
W ε

fl(A) ' W ε(A/m), it follows that W−1
fl (A) = 0. Thus the map W (A)→W (Y )

is an isomorphism. This leads to the purity theorem for the Witt groups.
On the other hand, since every skew-symmetric space over A is hyperbolic,
W−1(A) = 0 and we get an isomorphism W−1(Y ) ' W (A/m). We observe
the curious fact that if A is complete, W±1(Y ) is isomorphic to W (A/m).

A crucial result used in our proof of the main theorem is a theorem of
Horrocks ([2]) on vector bundles on the punctured spectrum Y = Spec(A) \
{m}, where A is a regular local ring of dimension 3 and m its maximal ideal.
We use his theorem on the equivalence of the category of “Φ-equivalence”
classes of vector bundles on Y with the category of finite length A-modules.

We would like to remark parenthetically that purity for dimension 3 was
used in [8] while establishing the equivalence of finite generation of Witt
groups of affine real 3-folds and the finite generation of Chow groups of
codimension 2 cycles modulo 2.

We thank the referee for patiently pointing out errors, obscurities and
misprints in the various versions of this paper.

0. ε-symmetric spaces reminisced

Let A be a regular local ring of dimension three in which 2 is invertible.
We recall the definition of ε-symmetric spaces on finite length A-modules
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and their Witt groups. For A-modules M , N and i ≥ 0, let Exti(M, N)
denote the group of congruence classes of i-fold extensions of N by M ([4],
p. 84). For any homomorphism f : M→M ′ of A-modules, let Exti(N, f) :
Exti(N,M)→Exti(N, M ′) be the induced homomorphisms defined as follows:
Let

ζ = 0→M
α→ Zi

∂i→ Zi−1→· · ·→Z2
∂2→ Z1

β→ N→0

be an i-fold extension of N by M . Let Z = (Zi ⊕M ′)/({(α(x), f(x)) | x ∈
M}) be the push-out of the diagram ([4])

M
α→ Zi

↓f
M ′ .

Then

Exti(N, f)(ζ) = 0→M ′ α′→ Z
∂′→ Zi−1

∂i−1→ · · ·→Z2
∂2→ Z1

β→ N→0,

where α′ and ∂′ are the natural homomorphisms induced by the push-out.
Similarly, we define Exti(f, N) as the pull-back under f of an i-fold extension
of N by M ′. Let M be a finite length A-module and M∨ = Ext3(M, A). If
M , M ′ are two finite length A-modules and f : M→M ′ an A-linear map,
then we denote Ext3(f,A) by f∨. Let

P = 0→P3
∂3→ P2

∂2→ P1
∂1→ P0

θ→ M→0

be a projective resolution of M . Since Exti(M,A) = 0 for i = 0, 1, 2 ([5], Th.
18.1), by dualising the above exact sequence we see that

P∗ = 0→P ∗
0

∂∗1→ P ∗
1

∂∗2→ P ∗
2

∂∗3→ P ∗
3

θ′→ M∨→0

is a projective resolution of M∨, where P ∗
i = HomA(Pi, A), ∂∗i is induced by

∂i and for any f ∈ P ∗
3 ,

θ′(f) = Ext3(f, M)(P) ∈ M∨.

Throughout this paper, for any surjection θ : P0→M as above, θ′ denotes the
map defined as above. We define a canonical homomorphism C : M→M∨∨

as follows : Let x ∈ M . Choose y ∈ P0 such that θ(y) = x. We define
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C(x) = Ext3(−ey,M
∨)(P∗) ∈ M∨∨, where, for f ∈ P ∗

0 , ey(f) = f(y). Then
it is easy to see that C(x) is independent of the choice of y and the diagram

0 → P3
∂3→ P2

∂2→ P1
∂1→ P0

θ→ M → 0
↓C ↓C ↓C ↓C ↓ − C †

0 → P ∗∗
3

∂∗∗3→ P ∗∗
2

∂∗∗2→ P ∗∗
1

∂∗∗1→ P ∗∗
0

θ′′→ M∨∨ → 0

is commutative, where C : Pi→P ∗∗
i are the canonical isomorphisms. Thus

C : M→M∨∨ is an isomorphism and it is obvious that it is independent of
the choice of the projective resolution. We use this isomorphism to identify
M with M∨∨. The choice of the negative sign at ey in the definition of C is
explained in the following : Let m = (x1, x2, x3) be the maximal ideal of A
and

ζ = 0→A
δ3→ A3 δ2→ A3 δ1→ A

η→ A/m→0

be the Koszul resolution of A/m with respect to (x1, x2, x3). With respect to
the standard basis {e1, e2, e3} of A3, we have

δ1 = ( x1 x2 x3 ) , δ2 =



−x2 −x3 0
x1 0 −x3

0 x1 x2


 , δ3 =




x3

−x2

x1




and η : A→A/m is the natural homomorphism. Let M be a finite dimen-
sional vector space over A/m. Then M is a finite length A-module. Let
M̃ = Hom(M, A/m). The assignment f 7→ Ext3(f,A)(ζ) ∈ M∨ induces a
homomorphism

ΦM : M̃→M∨.

The following lemmas are well known, but for the sake of completeness we
will give their proofs here.

Lemma 0.1 The homomorphism ΦM is an isomorphism and the diagram

M
C→ M∨∨

↓ι ↓Φ∨
M

˜̃
M

Φ
M̃→ (M̃)∨

is commutative, where ι : M→˜̃
M is the canonical isomorphism.

4



Proof. Since M ' ⊕n
1A/m, M∨ ' ⊕n

1 (A/m)∨ and M̃ ' ⊕n
1 Ã/m, it is

enough to prove the lemma in the case when M = A/m. In this case it is
easy to see that ΦM 6= 0. Since M∨ ' A/m ([5], Th 18.1) and M̃ ' A/m,
ΦM is an isomorphism. We now prove the commutativity of the diagram. For
all x ∈ M and f ∈ M̃ we have ι(x)(f) = f(x) and

Φ
M̃

(ι(x)) = 0→A
δ3→ A3 δ2→ A3 δ1→ A

ι(x)−1η→ A/m→0.

Let y ∈ A be such that η(y) = x. Then we have

C(x) = 0→A
−δ∗1e−1

y→ A3∗ δ∗2→ A3∗ δ∗3→ A∗ η′→ (A/m)∨→0.

Since ΦM is an isomorphism, we have

Φ∨
M(C(x)) = 0→A

−δ∗1e−1
y→ A3∗ δ∗2→ A3∗ δ∗3→ A∗ Φ−1

M η′→ (A/m)∨→0.

Let {e∗1, e∗2, e∗3} be the dual basis of A3∗. For i = 1, 2, let θi : A3→A3∗ be
given by the following matrices, with respect to the bases {e1, e2, e3} and
{e∗1, e∗2, e∗3}.

θ1 =




0 0 −y−1

0 y−1 0
−y−1 0 0


 , θ2 =




0 0 y−1

0 −y−1 0
y−1 0 0


 .

Let θ3 : A→A∗ be the homomorphism defined by θ3(1) = ly, where ly(a) = ay
for all a ∈ A. It is easy to see that the following diagram

0→ A
δ3→ A3 δ2→ A3 δ1→ A

ι(x)−1η→ (A/m)∨ →0
↓id ↓θ1 ↓θ2 ↓θ3 ↓id

0→ A
−δ∗1e−1

y→ A3∗ δ∗2→ A3∗ δ∗3→ A∗ Φ−1
M η′→ (A/m)∨ →0

is commutative. Thus Φ
M̃

ι = Φ∨
MC. 2

Lemma 0.2 Let ψ : M→M̃ be a homomorphism and ψ̃ :
˜̃
M→M̃ the

induced homomorphism. Then the following diagram

˜̃
M

Φ
M̃→ (M̃)

∨

↓ψ̃ ↓ψ∨
M̃

ΦM→ M∨

is commutative.
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Proof. Let f ∈ ˜̃
M . Then Φ

M̃
(f) is the pull-back of the Koszul resolution ζ

under f : M̃→A/m and ψ∨(Φ
M̃

(f)) is the pull-back of the extension Φ
M̃

(f)
under ψ. Thus ψ∨(Φ

M̃
(f)) is the pull-back of the Koszul resolution under the

homomorphism fψ : M→A/m. Since ψ̃(f) = fψ, ΦM(ψ̃)(f) is the pull-back
of the Koszul resolution under fψ. Thus ΦMψ∨ = ψ∨Φ

M̃
. 2

The above lemmas enable us to embed the category of ε-symmetric spaces
on finite dimensional A/m-vector spaces into the category of ε-symmetric
spaces on finite length A-modules (cf (0.3)).

Let ε = ±1. An ε-symmetric space of finite length is a pair (M,ψ) where
M is a finite length A-module and ψ : M→M∨ = Ext3(M, A) is an isomor-
phism with ψ∨ C = εψ. Let ψ1 and ψ2 be two ε-symmetric spaces on finite
length A-modules M1 and M2 respectively. We say that ψ1 is isometric to
ψ2, if there exists a homomorphism θ : M1→M2 such that ψ1 = θ∨ψ2θ. An
ε-symmetric space ψ on M is called metabolic if there exists a submodule N
of M such that

0→N
i→ M

i∨ψ→ N∨→0

is exact, where i : N→M is the inclusion. The Witt group of ε-symmetric
spaces of finite length A-modules is defined as the quotient of the Grothen-
dieck group of isometry classes of ε-symmetric spaces with the orthogonal
sum as addition, modulo the subgroup generated by metabolic spaces. It is
denoted by W ε

fl(A).

Corollary 0.3 Let M be a finite dimensional vector space over A/m. Let
ψ : M→M̃ be an ε-symmetric space, i.e., ψ̃ι = ψ and ψ is an isomorphism.
Then ΦMψ : M→M∨ is an ε-symmetric space.

Proof. By (0.1), we have (ΦMψ)∨C = ψ∨Φ∨
MC = ψ∨Φ

M̃
ι. Using (0.2), we

get that (ΦMψ)∨C = ΦM ψ̃ι = εΦMψ. Thus ΦMψ is an ε-symmetric space. 2

We need the following

Lemma 0.4 Let M be a finite length A-module and ψ : M→M∨ an ε-
symmetric space. If (M, ψ) is stably metabolic, then it is metabolic.
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Proof. If M is an A/m-module, then the result follows from the corres-
ponding result for ε-symmetric spaces over the field A/m. We reduce the
general case to the above case by induction on the length of M . Assume that
the length of M is at least 1. Let V be a maximal submodule of M which
is an A/m-module. Suppose that ψ restricted to V is singular. Then there

exists a non-zero submodule L of V such that L ⊂ L⊥ = ker(M
i∨ψ→ L∨)

and ψ induces an ε-symmetric form ψ on L⊥/L which is Witt equivalent to
(M,ψ). Suppose that (M, ψ) is stably metabolic. Then (L⊥/L, ψ) is stably
metabolic. By induction there exists a submodule N1 of L⊥/L such that

0→N1
i→ L⊥/L

i∨ψ→ N∨
1 →0

is exact. Let N be the submodule of M containing L such that N/L = N1.
Then it is easy to see that the sequence

0→N
i→ M

i∨ψ→ N∨→0

is exact and (M, ψ) is metabolic. We may therefore assume that ψ restricted
to V is non-singular. Then (M, ψ) ' (V, ψ |V ) ⊥ (M1, ψ1). If M1 6= 0, then
M1 contains a non-zero submodule which is an A/m-module, contradicting
the maximality of V . Thus M1 = 0 and M = V is an A/m-module. This
completes the proof of the lemma. 2

Let X be a scheme such that 2 is invertible in Γ(X). Let E be a vector
bundle over X of finite rank. An ε-symmetric space on E is an isomorphism
q : E→E∗ = Hom(E ,OX) such that q∗C = εq, where C : E→E∗∗ is the
canonical identification. Let W ε(X) be the Witt group of ε-symmetric spaces
on vector bundles over X ([3], p. 144). If X = Spec(A), then we denote
W ε(X) by W ε(A).

Throughout this paper, by an A-module we mean a finitely generated
A-module. We call an ε-symmetric space simply a quadratic space if ε = +1
and a symplectic space if ε = −1. We also denote W+1(X) by W (X). For a
vector bundle E over X, we denote the hyperbolic space on E by IH(E) ([3],
p. 130).
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1. Reflexive modules

Let A be a regular local ring of dimension three with 2 invertible. An A-
module E is said to be reflexive if it is finitely generated and the canonical
homomorphism E→E∗∗ is an isomorphism. For a reflexive A-module E we
use the canonical isomorphism to identify E∗∗ with E. It is well-known that a
reflexive module over a regular ring of dimension 3 has projective dimension
at most 1. Let E be a reflexive A-module and M = Ext1(E∗, A), where E∗ =
HomA(E, A). Since reflexive modules over regular rings of dimension at most
2 are projective, M is a finite length A-module. We define a homomorphism
βE : Ext1(E, A)→M∨ = Ext3(M, A) as follows. Let

0→P1
∂1→ P0

∂0→ E∗→0 (?)

be a projective resolution of E∗. Then by dualising, we get an exact sequence

0→E
∂∗0→ P ∗

0

∂∗1→ P ∗
1

δ→ Ext1(E∗, A) = M→0,

where δ is defined by push-outs. We have the following

Lemma 1.1 The Yoneda composition ([4], p. 82) βE : Ext1(E, A)→M∨

given by

βE(0→A
η→ Z

η′→ E→0) = (0→A
η→ Z

∂∗0η′→ P ∗
0

∂∗1→ P ∗
1

δ→ M→0)

is an isomorphism and is independent of the choice of the projective resolution
(?) of E∗.

Proof. Consider the long exact sequence of cohomology associated to the
short exact sequences

0→E
∂∗0→ P ∗

0

∂∗1→ ker(δ)→0 and 0→ker(δ) ↪→ P ∗
1

δ→ M→0.

Since Exti(M,A) = 0 for i ≤ 2 and P ∗
1 is a projective module, Ext1(ker(δ), A) =

0 and the connecting homomorphisms Ext1(E, A)→Ext2(ker(δ), A) and
Ext2(ker(δ), A)→Ext3(M,A) induced by the above short exact sequences are
isomorphisms. Since βE, up to sign, is the composition of these two connec-
ting homomorphisms ([4], p. 97, Th 9.1), β is an isomorphism.
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Suppose that

0→F1
∂′1→ F0

∂′0→ E∗→0

is another projective resolution of E∗. Then by lifting the identity map on
E∗, we get homomorphisms Pi→Fi, i = 0,1, such that the diagram

0→ P1
∂1→ P0

∂0→ E∗ →0
↓ ↓ ↓id

0→ F1
∂′1→ F0

∂′0→ E∗ →0

is commutative. By dualising this diagram we get a commutative diagram

0→ E
∂′∗0→ F ∗

0

∂′∗1→ F ∗
1

δ′→ M →0
↓id ↓ ↓ ↓id

0→ E
∂∗0→ P ∗

0

∂∗1→ P ∗
1

δ→ M →0,

where δ′ is defined by push-outs. This implies that

(0→E
∂′∗0→ F ∗

0

∂′∗1→ F ∗
1

δ′→ M→0) = (0→E
∂∗0→ P ∗

0

∂∗1→ P ∗
1

δ→ M→0)

in Ext2(M,E). Thus the homomorphism βE is independent of the choice of
the projective resolution of E∗. 2

Lemma 1.2 1) For any reflexive A-module E we have

βE∗ = −β∨EC.

2) Let E and E ′ be reflexive A-modules. Then, for any isomorphism f :
E→E ′, we have

Ext1(f ∗)∨βE′ = βEExt1(f).

Proof. Let 0→P1
∂1→ P0

∂0→ E∗→0 and 0→F1
∂′1→ F0

∂′0→ E→0 be projective
resolutions of E∗ and E respectively. By dualising these exact sequences, we
get exact sequences

0→E
∂∗0→ P ∗

0

∂∗1→ P ∗
1

δ→ Ext1(E∗, A)→0
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and

0→E∗ ∂′∗0→ F ∗
0

∂′∗1→ F ∗
1

δ1→ Ext1(E, A)→0.

Let ζ = (0→A
α→ Z

β→ E∗→0) ∈ Ext1(E∗, A). Since P0 and P1 are pro-
jective, there exist homomorphisms f : P1→A and g : P0→Z such that the
diagram

0→ P1
∂1→ P0

∂0→ E∗ →0
↓f ↓g ↓id

0→ A
α→ Z

β→ E∗ →0

is commutative. By the definition of δ we have δ(f) = ζ. Since

0→F1
∂′1→ F0

∂∗0∂′0→ P ∗
0

∂∗1→ P ∗
1

δ→ Ext1(E∗, A)→0

is a projective resolution of Ext1(E∗, A), by dualising it we get an exact
sequence

0→P1
∂1→ P0

∂′∗0 ∂0→ F ∗
0

∂′∗1→ F ∗
1

δ′1→ Ext1(E∗, A)
∨→0.

Thus C(ζ) = −ξ, where

ξ = (0→A
α→ Z

∂′∗0 β→ F ∗
0

∂′∗1→ F ∗
1

δ′1→ Ext1(E∗, A)
∨→0).

From the definitions of δ, δ′ and βE, it follows that the diagram

0→ E∗ ∂′∗0→ F ∗
0

∂′∗1→ F ∗
1

δ1→ Ext1(E, A) →0
↓id ↓id ↓id ↓βE

0→ E∗ ∂′∗0→ F ∗
0

∂′∗1→ F ∗
1

δ′1→ Ext1(E∗, A)
∨ →0

is commutative. It follows from the definition of β∨E that

β∨E(ξ) = (0→A
α→ Z

∂′∗0 β→ F ∗
0

∂′∗1→ F ∗
1

δ1→ Ext1(E,A)→0).

On the other hand we have

βE∗(ζ) = (0→A
α→ Z

∂′∗0 β→ F ∗
0

∂′∗1→ F ∗
1

δ1→ Ext1(E, A)→0) = β∨E(ξ).

Thus −β∨EC = βE∗ .
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Let f : E→E ′ be an isomorphism. Then 0→P1
∂1→ P0

f∗
−1

∂0→ E ′∗→0 is a
projective resolution of E ′∗. By dualising it we get an exact sequence

0→E ′ ∂∗0f−1

→ P ∗
0

∂∗1→ P ∗
1

δ2→ Ext1(E ′∗, A)→0,

with δ2 = Ext1(f ∗)δ. Let ζ = (0→A
α→ Z

β→ E ′→0) ∈ Ext1(E ′, A). Then

βE′(ζ) = (0→A
α→ Z

∂∗0f−1β→ P ∗
0

∂∗1→ P ∗
1

δ2→ Ext1(E ′∗, A)→0)

and

Ext1(f ∗)∨βE′(ζ) = (0→A
α→ Z

∂∗0f−1β→ P ∗
0

∂∗1→ P ∗
1

δ→ Ext1(E∗, A)→0),

since δ = Ext1(f ∗)−1δ2. On the other hand we have

Ext1(f)(ζ) = (0→A
α→ Z

f−1β→ E→0)

and

βEExt1(f)(ζ) = (0→A
α→ Z

∂∗0f−1β→ P ∗
0

∂∗1→ P ∗
1

δ→ Ext1(E∗, A)→0)
= Ext1(f ∗)∨βE′(ζ).

This proves the lemma. 2

Let A be any local ring in which 2 is invertible and m its maximal ideal.
Let E be a reflexive A-module. By an ε-symmetric space on E we mean
an isomorphism q : E→E∗ such that q∗C = εq, where C : E→E∗∗ is the
canonical isomorphism.

Let V be an A-module. By a unimodular element of V we mean an element
x ∈ V such that f(x) = 1 for some A-linear map f : V→A. For example,
an element (a1, · · · , an) ∈ An is unimodular if and only if ai 6∈ m for some
i. Thus, if an A-module V has no unimodular elements and η : V→An is an
A-linear map, then η(V ) ⊂ mAn.

Lemma 1.3 Let E be a reflexive A-module and q an ε-symmetric space on
E. Suppose that E = E0⊕An with E0 having no unimodular elements. Then
there exist ε-symmetric spaces q1 and q2 over E0 and An respectively such
that

(E, q) ' (E0, q1) ⊥ (An, q2).
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Proof. Let E = E0 ⊕ An be such that E0 has no unimodular elements.
Then

q =
(

q1 η
εη∗ q′1

)

for some q1 : E0→E∗
0 , q′1 : An→An∗ and η : An→E∗

0 . Since E0 has no uni-
modular elements, η∗(E0) ⊂ mAn∗ and hence η(An) ⊂ mE∗

0 . This implies
that

q ≡
(

q1 0
0 q′1

)
mod mE∗.

Since q is an isomorphism, q1 and q′1 are isomorphisms. We have

(
1 0

−εη∗q−1
1 1

) (
q1 η
εη∗ q′1

) (
1 −q−1

1 η
0 1

)
=

(
q1 0
0 −η∗q−1

1 η + q′1

)
.

Let q2 = −η∗q−1
1 η+q′1 : An→An∗. Since q∗1 = εq1, (E, q) ' (E0, q1) ⊥ (An, q2).

2

2. Spaces over the punctured spectrum and
on finite length modules

We begin by recalling from a paper of Horrocks ([2]) an equivalence between
the categories ΦP of Φ-equivalence classes of vector bundles on the punctured
spectrum of a regular local ring A of dimension 3 and the categoryM of finite
length A-modules. Let m be the maximal ideal of A and Y = Spec(A)\{m}.
Let E be a vector bundle over Y and E = Γ(E) the module of sections
of E . Then E is a reflexive A-module ([2], Th.4.1) and M = Ext1(E∗, A),
which is isomorphic to H1(Y, E) ([2], §5), is a finite length A-module ([2],
Cor.7.2.5). The functor T : ΦP→M given by T (E) = Ext1(E∗, A) is an
equivalence of categories ([2], Cor. 7.2.5). Let M be a finite length A-module.
The construction below gives a vector bundle E on Y such that T (E) = M .
Let, in fact

0→P3
∂3→ P2

∂2→ P1
∂1→ P0

η→ M→0

be a projective resolution of M . Let E = ker(∂1). Then E is an A-module
of projective dimension at most 1 and Ext1(E∗, A) = M . Since M is a finite
length module, for any prime ideal p of A, p 6= m, Mp = 0 and hence Ep is
free. Thus E = Γ(E) for some vector bundle E on Y ([2], Th. 4.1).
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Let A be a regular local ring of dimension 3 in which 2 is invertible.
Let E be a vector bundle and q an ε-symmetric space on E . We associate to
(E ,q) a (−ε)-symmetric space ρ(q) of finite length. The ε-symmetric space
q on E gives rise to an ε-symmetric space (E, q), where E = Γ(E). Then
M = Ext1(E∗, A) is a finite length A-module. The isomorphism q : E→E∗

induces an isomorphism Ext1(q) : M = Ext1(E∗, A)→Ext1(E, A). Let ρ(q) =
βEExt1(q). We have the following

Lemma 2.1 ρ(q) : M→M∨ is a (−ε)-symmetric space.

Proof. In the following diagram

M = Ext1(E∗, A)
Ext1(q)→ Ext1(E, A)

βE→ Ext1(E∗, A)
∨

= M∨

↓βE∗ ↓βE ↓id
Ext1(E, A)

∨ εExt1(q)∨→ Ext1(E∗, A)
∨ id→ Ext1(E∗, A)

∨

↓β∨−1

E ↓εExt1(q)∨
−1 ↓id

Ext1(E∗, A)
∨∨ β∨E→ Ext1(E, A)

∨ εExt1(q)∨→ Ext1(E∗, A)
∨

clearly all the squares except perhaps the top left one commutes. Since q∗ =
εq, by (1.2) this square also commutes. By (1.2), the composition of maps on
the first column is equal to −C. Thus

ρ(q)∨C = Ext1(q)∨β∨EC = −εβEExt1(q) = −ερ(q).

2

Lemma 2.2 Let M be a finite length A-module and ψ an ε-symmetric form
on M . Suppose that there exists an exact sequence

N
f→ M

f∨ψ→ N∨

of finite length A-modules. Then (M, ψ) is metabolic.

Proof. Since the map f factors as N→N/ker(f)
f→ M , we have an exact

sequence

0→N/ker(f)
f→ M

f
∨

ψ→ (N/ker(f))∨.

Since, dimension of A being 3, Ext4(L,A) = 0, the map f
∨
ψ is surjective

and hence (M, ψ) is metabolic. 2

13



Lemma 2.3 If (E ,q) is metabolic, then (M, ρ(q)) is metabolic.

Proof. Suppose that (E ,q) is metabolic. Let F be a subbundle of E such
that the sequence

0→F i→ E i∗q→ F∗→0

is exact, where F i→ E is the inclusion. By taking global sections and then
applying the Ext functor to the following exact sequence of bundles

0→F qi→ E∗ i∗→ F∗→0

we get an exact sequence

Ext1(F ∗, A)→Ext1(E∗, A)→Ext1(F, A)

of finite length modules, where F = Γ(F). Let N = Ext1(F ∗, A). Then the
canonical identification of Ext1(F, A) with N∨ gives an exact sequence

N
f→ M

f∨ρ(q)→ N∨.

Now the lemma follows from (1.2). 2

Lemma 2.4 The assignment (E ,q) 7→ (M,ρ(q)) induces a homomorphism

ρ : W ε(Y )→W−ε
fl (A).

Proof. Since ρ is clearly additive, it is enough to show that ρ takes stably
metabolic spaces to metabolic spaces. Let (E ,q) be an ε-symmetric spaces
over Y which is stably metabolic. Then there exists a metabolic space (E1,q1)
such that (E ,q) ⊥ (E1,q1) is metabolic. By (2.3), ρ(q1) and ρ(q ⊥ q1) =
ρ(q) ⊥ ρ(q1) are metabolic. Thus ρ(q) is stably metabolic. 2

We note that if E is a trivial bundle then M = 0. Thus, if (E ,q) comes
from an ε-symmetric space on A, then ρ(q) = 0.

The proof of the following lemma is by straightforward verification, hence
we omit it.
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Lemma 2.5 Let R be a ring. Let 0→N
i→ M

j→ N ′→0 be an exact
sequence of R-modules. Assume that the projective dimensions of N and N ′

are finite. Let

0→Pn
∂n→ Pn−1

∂n−1→ · · ·P1
∂1→ P0

α→ N→0

and

0→Qn
∂′n→ Qn−1

∂′n−1→ · · ·→Q1
∂′1→ Q0

β→ N ′→0

be projective resolutions of N and N ′ respectively. Let, for l ≥ 1, φl :
Ql→Pl−1 and θ : Q0→M be R-linear homomorphisms. Let

δl =
(

∂l (−1)lφl

0 ∂′l

)
.

Then the following diagram

0→ Pn
∂n→ Pn−1 · · · → P1

∂1→ P0
α→ N →0

↓ ↓ ↓ ↓ ↓i
0→ Pn ⊕Qn

δn→ Pn−1 ⊕Qn−1 · · · → P1 ⊕Q1
δ1→ P0 ⊕Q0

(iα,θ)→ M →0
↓ ↓ ↓ ↓ ↓j

0→ Qn
∂′n→ Qn−1 · · · → Q1

∂′1→ Q0
β→ N ′ →0

is commutative if and only if the following diagram

0 → Qn
∂′n→ Qn−1

∂′n−1→ · · · → Q2
∂′2→ Q1

∂′1→ Q0
β→ N ′ →0

↓ ↓φn ↓φn−1 ↓φ2 ↓φ1 ↓θ ↓id
0→ Pn

∂n→ Pn−1
∂n−1→ Pn−2

∂n−2→ · · · → P1
∂1→ P0

iα→ M
j→ N ′ →0

is commutative.

Proposition 2.6 Let (E ,q) be an ε-symmetric space over Y . Suppose that
E = Γ(E) has no unimodular elements and that ρ(q) is metabolic. Then
there exist ε-symmetric spaces q1 and q2 on E and OY

n respectively such
that q1 ⊥ q2 is metabolic and ρ(q) ' ρ(q1).
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Proof. Let M = Ext1(E∗, A) and ρ(q) be the ε-symmetric space on M .
Since ρ(q) is metabolic, there exists an exact sequence

0→N
i→ M

i∨ρ(q)→ N∨→0.

Let
0→Q3

∂3→ Q2
∂2→ Q1

∂1→ Q0
η→ N→0

be a projective resolution of N . By dualising this resolution, we get a pro-
jective resolution

0→Q∗
0

∂∗1→ Q∗
1

∂∗2→ Q∗
2

∂∗3→ Q∗
3

η′→ N∨→0

of N∨. By lifting the identity map of N∨, we obtain a commutative diagram

0 → Q∗
0

∂∗1→ Q∗
1

∂∗2→ Q∗
2

∂∗3→ Q∗
3

η′→ N∨ →0
↓ ↓φ3 ↓φ2 ↓φ1 ↓θ ↓id (?)

Q3
∂3→ Q2

∂2→ Q1
∂1→ Q0

iη→ M
i∨ρ(q)→ N∨ →0.

Let

δ1 =
(

∂1 −φ1

0 ∂∗3

)
, δ2 =

(
∂2 φ2

0 ∂∗2

)
, δ3 =

(
∂3 −φ3

0 ∂∗1

)
.

By (2.5), the diagram

0 0 0 0 0
↓ ↓ ↓ ↓ ↓

0→ Q3
∂3→ Q2

∂2→ Q1
∂1→ Q0

η→ N →0
↓ ↓ ↓ ↓ ↓i

0→ Q3 ⊕Q∗
0

δ3→ Q2 ⊕Q∗
1

δ2→ Q1 ⊕Q∗
2

δ1→ Q0 ⊕Q∗
3

(iη,θ)→ M →0
↓ ↓ ↓ ↓ ↓i∨ρ(q)

0→ Q∗
0

∂∗1→ Q∗
1

∂∗2→ Q∗
2

∂∗3→ Q∗
3

η′→ N∨ →0
↓ ↓ ↓ ↓ ↓
0 0 0 0 0

is commutative. Since the first row, the last rows and all the columns in
the above diagram are exact and the diagram is commutative, from the long
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exact homology sequence ([4], Th. 4.1 p. 45) we get that the middle row is
also exact. By dualising this diagram, we get the commutative diagram

0 0 0 0 0
↓ ↓ ↓ ↓ ↓

0→ Q3
∂3→ Q2

∂2→ Q1
∂1→ Q0

η′′→ N∨∨ →0
↓ ↓ ↓ ↓ ↓ρ(q)∨i∨∨

0→ Q3 ⊕Q∗
0

δ∗1→ Q2 ⊕Q∗
1

δ∗2→ Q1 ⊕Q∗
2

δ∗3→ Q0 ⊕Q∗
3

(µ,ν)→ M∨ →0
↓ ↓ ↓ ↓ ↓i∨

0→ Q∗
0

∂∗1→ Q∗
1

∂∗2→ Q∗
2

∂∗3→ Q∗
3

η′→ N∨ →0
↓ ↓ ↓ ↓ ↓
0 0 0 0 0

with exact rows and columns. By (2.5), the diagram

0 → Q∗
0

∂∗1→ Q∗
1

∂∗2→ Q∗
2

∂∗3→ Q∗
3

η′→ N∨ →0
↓ ↓φ∗1 ↓φ∗2 ↓φ∗3 ↓ν ↓id
Q3

∂3→ Q2
∂2→ Q1

∂1→ Q0
ρ(q)∨i∨∨η′′→ M∨ i∨→ N∨ →0

is commutative. From the definition of η′′ and C : N→N∨∨ (cf diagram
† in §0) it follows that Cη = −η′′. Since ρ(q)∨C = −ερ(q), we have the
commutative diagram

0 → Q∗
0

∂∗1→ Q∗
1

∂∗2→ Q∗
2

∂∗3→ Q∗
3

η′→ N∨ →0
↓ ↓φ∗1 ↓φ∗2 ↓φ∗3 ↓ν ′ ↓εid
Q3

∂3→ Q2
∂2→ Q1

∂1→ Q0
iη→ M

i∨ρ(q)→ N∨ →0

where ν ′ = ερ(q)−1ν. From (?) and the above commutative diagram we get
maps s1 : Q∗

2→Q1 and s2 : Q∗
1→Q2 such that φ2 − εφ∗2 = ∂2s2 − s1∂

∗
2 . Let

φ = φ2 − ε∂2s
∗
1. Then we have

∂1φ = ∂1φ2

= ∂1(φ2 − εφ∗2)
= ∂1(∂2s2 − s1∂

∗
2) + ε∂1φ

∗
2

= ε∂1(φ
∗
2 − ε1∂

∗
2)

= ε∂1φ
∗.
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Let

δ =
(

∂2
φ+εφ∗

2

0 ε∂∗2

)
.

It is easy to see that the diagram

0 0 0 0 0
↓ ↓ ↓ ↓ ↓

0→ Q3
∂3→ Q2

∂2→ Q1
∂1→ Q0

η→ N →0
↓ ↓ ↓ ↓ ↓i

0→ Q3 ⊕Q∗
0

δ∗1→ Q2 ⊕Q∗
1

δ→ Q1 ⊕Q∗
2

δ1→ Q0 ⊕Q∗
3

(η,θ)→ M →0 (??)
↓ ↓ ↓ ↓ ↓i∨ρ(q)

0→ Q∗
0

∂∗1→ Q∗
1

ε∂∗2→ Q∗
2

∂∗3→ Q∗
3

η′→ N∨ →0
↓ ↓ ↓ ↓ ↓
0 0 0 0 0

commutes. Since the first row, the last row and all the columns are exact, the
middle row is also exact. Let E ′ = ker(δ1). Since δ∗C = εδ, from the middle
row of the diagram (??) it is easy to see that δ induces an ε-symmetric
isomorphism q′ : E ′→E ′∗. Let (E ′,q′) be the ε-symmetric space over Y with
Γ(E ′) = E ′ and Γ(q′) = q′. Since Ext1(E ′, A) ' M = Ext1(E∗, A) and E has
no unimodular elements, by Cor. 7.2.5 and Lemma 7.1 of [2] we have E ′ =
E ⊕ An. Then by (1.3), (E ′, q′) ' (E, q1) ⊥ (An, q2) for some ε-symmetric
spaces q1 and q2 on E and An respectively. Let q1 be the ε-symmetric space
on E such that Γ(q1) = q1. Let F = ker(∂1) and F the vector bundle over
Y with Γ(F) = F . Then using (??), it is easy to see that F is a Lagrangian
for (E ′,q′) ' (E ,q1) ⊥ (OY

n,q2), where Γ(q2) = q2. Since the map E ′→F ∗

induced by the diagram (??), induces i∨ρ(q) : M→N∨, we have i∨ρ(q) =
i∨ρ(q1). Thus, by the lemma (2.7) below, we have ρ(q) ' ρ(q1). 2

Lemma 2.7 Let ψ1 and ψ2 be two ε-symmetric spaces on M . Suppose there
exists a submodule N such that

0→N
i→ M

i∨ψ1→ N∨→0

is exact and i∨ψ1 = i∨ψ2. Then ψ1 ' ψ2.
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Proof. Since i∨ψ1 = i∨ψ2, there exists a map θ : M→N such that ψ−1
1 ψ2−

1 = iθ, i.e., ψ1iθ = ψ2 − ψ1 = θ∨i∨ψ1. We have

(1+θ∨i∨)
2

ψ1
(1+iθ)

2
= (ψ1+θ∨i∨ψ1)

2
(1+iθ)

2

= ψ1 + ψ1
iθ
2

+ θ∨i∨
2

ψ1 + θ∨i∨
2

ψ1
iθ
2

= ψ1 + ψ2−ψ1

2
+ ψ2−ψ1

2

= ψ2

2

3. The Witt groups of the punctured spec-
trum and purity

Let A be a regular local ring of dimension three with 2 invertible. Let Y =
Spec(A) \ {m}, where m is the maximal ideal of A.

Proposition 3.1. Let E be a vector bundle on Y and q : E→E∗ an ε-
symmetric isomorphism. Suppose that Γ(E) has no unimodular elements. If
ρ(q) is isomorphic to a hyperbolic space, then q is in the image of W ε(A).

Proof. Let N be a finite length A-module such that (M,ρ(q)) is isomorphic
to the hyperbolic space IH(N). Let F be the vector bundle on Y with Γ(F)
having no unimodular elements and such that H1(Y,F) ' N (cf §2). Since
H1(Y, E) ' N ⊕ N∨ ' H1(Y,F ⊕ F∗) with Γ(E) and Γ(F ⊕ F∗) admitting
no unimodular elements, by Lemma 7.1 and Cor.7.2.5 of [2] we can and do

identify E with F ⊕F∗. Let ψ̃ be an isometry of ρ(q) with ρ(
(

0 1
ε 0

)
). Then

by [2], Cor.7.2.5 there exists an automorphism ψ of E such that H1(ψ) = ψ̃.
By the definition of ρ we have ρ(ψ∗qψ) = βEExt1(Γ(ψ∗)qΓ(ψ))
= βEExt1(Γ(ψ∗)Ext1(q)Ext1(Γ(ψ)), where E = Γ(E) and q = Γ(q). By
(1.2 (2)), we have βEExt1(Γ(ψ∗)) = Ext1(Γ(ψ))∨βE, so that ρ(ψ∗qψ) =
Ext1(Γ(ψ))∨βEExt1(q)Ext1(Γ(ψ)) = Ext1(Γ(ψ))∨ρ(q)Ext1(Γ(ψ))
= H1(ψ)∨ρ(q)H1(ψ) = ψ̃ρ(q)ψ̃. We replace q by ψ∗qψ and assume that

ρ(q) =
(

0 1
ε 0

)
. Let q =

(
α δ
εδ∗ β

)
with α : F → F∗, β : F∗ → F ,

δ : F∗ → F∗ maps such that α∗ = εα, β∗ = εβ. Since ρ(q) =
(

0 1
ε 0

)
,
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H1(α) = 0 and H1(β) = 0. Therefore, by ([H], Cor.7.2.5), there exist f1 :
F → On

Y , f2 : F∗ → On
Y , g1 : On

Y → F∗ and g2 : On
Y → F such that α = g1f1

and β = g2f2. Let us consider the automorphism

ψ =




1 0 −g1/2 f1∗
0 1 −g2/2 f ∗2
0 0 1 0
0 0 0 1




of F ⊕ F∗ ⊕OY
n ⊕OY

n∗. We have

q′ = ψ




α δ 0 0
εδ∗ β 0 0
0 0 0 1
0 0 ε 0


 ψ∗ =




0 X εf ∗1 −g1/2
εX∗ 0 εf ∗2 −g2/2
f1 f2 0 1

−εg∗1/2 −εg∗2/2 ε 0




where X = δ−εf ∗1 g∗2/2−g1f2/2. Since Γ(F) and Γ(F∗) admit no unimodular
elements, f1 ≡ f2 ≡ 0 mod m. Hence X is an isomorphism. Since q′ restricted
to F ⊕ F∗ is (

0 X
εX∗ 0

)

with X an isomorphism, q′ splits as

(
0 X

εX∗ 0

)
⊥ q′′

for some q′′ supported on a bundle E ′′. Since E ⊕ OY
n ⊕OY

n∗ ' E ⊕ E ′′, by
[2], Cor.7.2.5, E ′′ is a trivial bundle and hence q′′ is in the image of W ε(A).
Since

q ⊥ H(OY
n) ' q′ '

(
0 X

εX∗ 0

)
⊥ q′′,

it follows that q is in the image of W ε(A). 2

Lemma 3.2 Let M be a finite length A-module and ψ : M→M∨ be an
ε-symmetric isomorphism. Then there exists a vector bundle E over Y with
a (−ε)-symmetric isomorphism q : E→E∗ such that ρ(q) = ψ.
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Proof. Let E be a vector bundle on Y such that H1(Y, E) = M (cf §2). and
E = Γ(E) has no unimodular elements. Then (cf §2) the projective dimension
of E is less than or equal to 1 and Ext1(E∗, A) ' M . Let

0→P1→P0→E→0

and
0→Q1→Q0→E∗→0

be projective resolutions of E and E∗ respectively. By dualising the projective
resolution of E∗ we get an exact sequence

0→E→Q∗
0→Q∗

1→M→0.

By taking the Yoneda composition of this exact sequence with the projective
resolution of E we get a projective resolution

0→P1→P0→Q∗
0→Q∗

1→M→0

of M . By dualising this we get a projective resolution

0→Q1→Q0→P ∗
0→P ∗

1→M∨→0

of M∨. By lifting the ε-symmetric isomorphism ψ : M→M∨, we get a com-
mutative diagram

0 → P1 → P0 → Q∗
0 → Q∗

1 → M → 0
↓ψ3 ↓ψ2 ↓ψ1 ↓ψ0 ↓ψ

0 → Q1 → Q0 → P ∗
0 → P ∗

1 → M∨ → 0

of exact sequences. Since E has no unimodular elements it is easy to see, as
in the proof of (2.6), that the above diagram induces a (−ε)-symmetric space
q on E such that ρ(q) = ψ. 2

Theorem 3.3 Let A be a regular local ring of dimension 3 and m its
maximal ideal. Assume that 2 is invertible in A. Let Y = Spec(A) \ {m}.
Then the the complex

0→W ε(A)
ι→ W ε(Y )

ρ→ W−ε
fl (A)→0

is exact, where ι is induced by the restriction.
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Proof. If ε = 1, then the injectivity of ι follows from the injectivity of
the canonical homomorphism W (A)→W (K) ([6],Th. 23), where K is the
quotient field of A. If ε = −1, ι is injective because W−1(A) = 0.

We now prove the exactness in the middle. As we remarked in §2, ρι = 0.
Let (E ,q) be an ε-symmetric space over Y such that ρ(q) is zero in W−ε

fl (A).
Then, by (0.4), ρ(q) is metabolic. We show that (E ,q) is in the image of ι.
In view of (1.3), we assume that Γ(E) has no unimodular elements. Then, by
(2.6), there exist ε-symmetric spaces q1 and q2 supported respectively on E
and OY

n for some integer n, such that q1 ⊥ q2 is metabolic and ρ(q) ' ρ(q1).
Thus ρ(q ⊥ −q1) is isomorphic to a hyperbolic space. Since Γ(E ⊕E) has no
unimodular elements, it follows from (3.1) that q ⊥ −q1 is in the image of
ι. Since q2 is in the image of ι and q1 ⊥ q2 is metabolic, q1 and hence q is
in the image of ι.

The surjectivity of ρ follows from (3.2). 2

Let A be any regular ring. Let Spec1(A) denote the set of prime ideals
of A of height 1. Then for any P ∈ Spec1(A), the local ring AP is a discrete
valuation ring. Let ∂P : W (K)→W (AP /PAP ) denote the second residue
homomorphism with respect to some choice of a parameter of PAP , where
K is the quotient field of A.

Corollary 3.4 Let A be a regular local ring of dimension 3, m its maximal
ideal and K its quotient field. Assume that 2 is invertible in A. The sequence

0→W (A)→W (K)
⊕∂P→ ⊕

P∈Spec1(A)

W (AP /PAP )

is exact.

Proof. The injectivity of W (A)→W (K) is proved in [6], Th. 23. Since
W−1

fl (A) ' W−1(A/m) = 0, by (3.3) we have W (A) ' W (Y ). Thus it is
enough to prove that the complex

W (Y )→W (K)
⊕∂P→ ⊕

P∈Spec1(A)

W (AP /PAP )

is exact. Let q be a quadratic space over K such that ∂P (q) = 0 for all height
1 prime ideals P of A. Since Y is a regular scheme of dimension 2, by [1]
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2.5 p. 112, there exists a quadratic space (E ,q) over Y = Spec(A) \ {m},
such that its image in W (K) under the restriction map, is equal to q. This
completes the proof of corollary. 2

Using (3.4), one can prove the following theorem (cf [8], Prop. 2.1).

Corollary 3.5 Let A be a regular ring of dimension 3 and K its quotient
field. Assume that 2 is invertible in A. The sequence

0→W (A)→W (K)
⊕∂P→ ⊕

P∈Spec1(A)

W (AP /PAP )

is exact.

We end this paper by giving a computation of W−1(Y ) using (3.3).

Corollary 3.6 Let A be a regular local ring of dimension 3 and m its
maximal ideal. Assume that 2 is invertible in A. Let Y = Spec(A) \ {m}.
Then W−1(Y ) ' W (A/m).

Proof. Since W−1(A) = 0 and Wfl(A) ' W (A/m), the result follows from
(3.3). 2
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