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1. Introduction

In 1957 Rényi published his paper [R] about representations for real numbers by f -

expansions, called hereafter ϕ-expansions, which had tremendous impact in Dynamical

Systems Theory. The ideas of Rényi were further developed by Parry in [P1] and

[P2]. See also the book of Schweiger [Sch]. The first part of the paper, section 2, is an

exposition of the theory of ϕ-expansions in the setting of piecewise monotone dynamical

systems. Although many of the results of section 2 are known, for example see [Bo]

chapter 9 for Theorem 2.5, we state necessary and sufficient conditions for the validity

of the ϕ-expansion, which are different from those in Parry’s paper [P2], Theorem 2.2

and Theorem 2.3.

We then use ϕ-expansions to study two interesting and related problems in

sections 3 and 4. When one applies the method of section 2 to the dynamical system

βx + α mod 1, one obtains a symbolic shift which is entirely described by two strings

uα,β and vα,β of symbols in a finite alphabet A = {0, . . . , k− 1}. The shift space is given

by

Σ(uα,β, vα,β) = {x ∈ AZ+ : uα,β ¹ σnx ¹ vα,β ∀n ≥ 0} , (1.1)

where ¹ is the lexicographic order and σ the shift map. The particular case α = 0 has

been much studied from many different viewpoints (β-shifts). For α 6= 0 the structure

of the shift space is richer. A natural problem is to study all shift spaces Σ(u, v) of the

form (1.1) when we replace uα,β and vα,β by a pair of strings u and v. In section 3 we

give an algorithm, Theorem 3.1, based on the ϕ-expansion, which allows to compute the

topological entropy of shift spaces Σ(u, v). One of the essential tool is the follower-set

graph associated to the shift space. This graph is presented in details in subsection 3.1.

The algorithm is given in subsection 3.2 and the computations of the topological entropy

in subsection 3.3. The basic idea of the algorithm is to compute two real numbers ᾱ and

β̄, given the strings u and v, and to show that the shift space Σ(u, v) is a modification

of the shift space Σ(uᾱ,β̄, vᾱ,β̄) obtained from the dynamical system β̄x + ᾱ mod 1, and

that the topological entropies of the two shift spaces are the same. In the last section we

consider the following inverse problem for the dynamical systems βx + α mod 1: given

u and v, find α and β so that

u = uα,β and v = vα,β .

The solution of this problem is given in Theorems 4.1 and 4.2 for all β > 1.

2. ϕ-expansion for piecewise monotone dynamical

systems

2.1. Piecewise monotone dynamical systems

Let X := [0, 1] (with the euclidean distance). We consider the case of piecewise

monotone dynamical systems of the following type. Let 0 = a0 < a1 < · · · < ak = 1 and
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Ij := (aj, aj+1), j ∈ A. We set A := {0, . . . , k − 1}, k ≥ 2, and

S0 := X\ ⋃

j∈A
Ij .

For each j ∈ A let

fj : Ij 7→ Jj := fj(Ij) ⊂ [0, 1]

be a strictly monotone continuous map. When necessary we also denote by fj the

continuous extension of the map on the closure Ij of Ij. We define a map T on X\S0

by setting

T (x) := fj(x) if x ∈ Ij .

The map T is left undefined on S0. We also assume that

(
⋃

i∈A
Ji) ∩ Ij = Ij ∀j . (2.1)

We introduce sets Xj, Sj, and S by setting X0 := [0, 1] and for j ≥ 1

Xj := Xj−1\Sj−1 , Sj := {x ∈ Xj : T (x) ∈ Sj−1} , S :=
⋃

j≥0

Sj .

Lemma 2.1 Under the condition (2.1), T n(Xn+1) = X1 and T (X\S) = X\S. X\S is

dense in X.

Proof: Condition (2.1) is equivalent to T (X1) ⊃ X1. Since X2 = X1\S1 and

S1 = {x ∈ X1 : T (x) 6∈ X1}, we have T (X2) = X1. Suppose that T n(Xn+1) = X1;

we prove that T n+1(Xn+2) = X1. One has Xn+1 = Xn+2 ∪ Sn+1 and

X1 = T n(Xn+1) = T n(Xn+2) ∪ T n(Sn+1) .

Applying once more T ,

X1 ⊂ T (X1) = T n+1(Xn+2) ∪ T n+1(Sn+1) .

T n+1 is defined on Xn+1 and Sn+1 ⊂ Xn+1.

T n+1Sn+1 = {x ∈ Xn+1 : T n+1(x) ∈ S0} = {x ∈ Xn+1 : T n+1(x) 6∈ X1} .

Hence T n+1(Xn+2) = X1. Clearly T (X\S) ⊂ X\S and T (S\S0) ⊂ S. Since X1 is the

disjoint union of X\S and S\S0, and TX1 ⊃ X1, we have T (X\S) = X\S. The sets

X\Sk are open and dense in X. By Baire’s Theorem X\S =
⋂

k(X\Sk) is dense.

Let Z+ := {0, 1, 2, . . .} and AZ+ be equipped with the product topology. Elements of

AZ+ are called strings and denoted by x = (x0, x1, . . .). A finite string w = (w0, · · · , wn−1),

wj ∈ A, is a word; we also use the notation w = w0 · · ·wn−1. The length of w is |w| = n.

A n-word is a word of length n. There is a single word of length 0, the empty-word ε.

The set of all words is A∗. The shift-map σ : AZ+ → AZ+ is defined by

σ(x) := (x1, x2, . . .) .
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We define two operations p and s on A∗\{ε},

pw :=





w0 · · ·wn−2 if w = w0 · · ·wn−1 and n ≥ 2

ε if w = w0

(2.2)

sw :=





w1 · · ·wn−1 if w = w0 · · ·wn−1 and n ≥ 2

ε if w = w0.
(2.3)

On AZ+ we define a total order, denoted by ≺. We set

δ(j) :=





+1 if fj is increasing

−1 if fj is decreasing,

and for a word w,

δ(w) :=





δ(w0) · · · δ(wn−1) if w = w0 · · ·wn−1

1 if w = ε.

Let x′ 6= x′′ belong to AZ+ ; define j as the smallest integer with x′j 6= x′′j . By definition

x′ ≺ x′′ ⇐⇒




x′j < x′′j if δ(x′0 · · · x′j−1) = 1

x′j > x′′j if δ(x′0 · · · x′j−1) = −1
.

As usual x′ ¹ x′′ if and only if x′ ≺ x′′ or x′ = x′′. When all maps fj are increasing this

order is the lexicographic order.

2.2. ϕ-expansion

We give an alternative description of a piecewise monotone dynamical system as in

Parry’s paper [P2]. In this description, when all maps fj are increasing, one could use

instead of the intervals Ij the intervals I ′j := [aj, aj+1), j ∈ A. In that case S0 = {ak}
and Sj = ∅ for all j ≥ 1. This would correspond to the setting of Parry’s paper [P2].

We define a map ϕ on the disjoint union

domϕ :=
k−1⋃

j=0

j + Jj ⊂ R ,

by setting

ϕ(x) := f−1
j (t) if x = j + t and t ∈ Jj . (2.4)

The map ϕ is continuous, injective with range X1. On X1 the inverse map is

ϕ−1(x) = j + Tx if x ∈ Ij .

For each j, such that fj is increasing, we define ϕj on j + [0, 1] (using the extension of

fj to [aj, aj+1]) by

ϕj(x) :=





aj if x = j + t and t ≤ fj(aj)

f−1
j (t) if x = j + t and t ∈ Jj

aj+1 if x = j + t and fj(aj+1) ≤ t.

(2.5)
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For each j, such that fj is decreasing, we define ϕj on j + [0, 1] by

ϕj(x) :=





aj+1 if x = j + t and t ≤ fj(aj+1)

f−1
j (t) if x = j + t and t ∈ Jj

aj if x = j + t and fj(aj) ≤ t.

(2.6)

It is convenient below to consider the family of maps ϕj as a single map defined on

[0, k], which is denoted by ϕ. In order to avoid ambiguities at integers, where the map

may be multi-valued, we always write a point of [j, j + 1] as x = j + t, t ∈ [0, 1], so that

ϕ(j + t) ≡ ϕ(x) := ϕj(t) .

We define the coding map i : X\S → AZ+ by

i(x) := (i0(x), i1(x), . . .) with in(x) := j if T nx ∈ Ij .

The ϕ-code of x ∈ X\S is the string i(x), and we set

Σ = {x ∈ AZ+ : x = i(x) for some x ∈ X\S} .

For x ∈ X\S and any n ≥ 0,

ϕ−1(T nx) = in(x) + T n+1x and i(T nx) = σni(x) . (2.7)

Let zj ∈ A, 1 ≤ j ≤ n, and t ∈ [0, 1]; we set

ϕ1(z1 + t) := ϕ(z1 + t)

and

ϕn(z1, . . . , zn + t) := ϕn−1(z1, . . . , zn−1 + ϕ(zn + t)) . (2.8)

For n ≥ 1 and m ≥ 1 we have

ϕn+m(z1, . . . , zn+m + t) = ϕn(z1, . . . , zn + ϕm(zn+1, . . . , zn+m + t)) . (2.9)

The map t 7→ ϕn(x0, . . . , xn−1 + t) is increasing if δ(x0 · · · xn−1) = 1 and decreasing if

δ(x0 · · · xn−1) = −1. We also write ϕn(x) for ϕn(x0, . . . , xn−1).

Definition 2.1 The real number s has a ϕ-expansion x ∈ AZ+ if the following limit

exists,

s = lim
n→∞ϕn(x) ≡ ϕ(x0 + ϕ(x1 + . . .)) ≡ ϕ∞(x) .

The ϕ-expansion is well-defined if for all x ∈ AZ+, limn→∞ ϕn(x) = ϕ∞(x) exists.

The ϕ-expansion is valid if for all x ∈ X\S the ϕ-code i(x) of x is a ϕ-expansion of x.

If the ϕ-expansion is valid, then for x ∈ X\S, using (2.9), (2.7) and the continuity

of the maps ϕj,

x = lim
n→∞ϕn(i0(x), . . . , in−1(x))

= lim
m→∞ϕn(i0(x), . . . , in−1(x) + ϕm(in(x), . . . , in+m−1(x))) (2.10)

= ϕn(i0(x), . . . , in−1(x) + ϕ∞(i(T nx)) .

The basic and elementary fact of the ϕ-expansion is

a, b ∈ [0, 1] and x0 < x′0 =⇒ ϕ(x0 + a) ≤ ϕ(x′0 + b) . (2.11)

We begin with two lemmas on the ϕ-code (for Lemma 2.2 see e.g. [CoE]).
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Lemma 2.2 The ϕ-code i is ¹-order-preserving on X\S: x ≤ y implies i(x) ¹ i(y).

Proof: Let x < y. Either i0(x) < i0(y), or i0(x) = i0(y); in the latter case, the strict

monotonicity of fi0(x) implies

ϕ−1(x) = i0(x) + T (x) < ϕ−1(y) = i0(x) + T (y) if δ(i0(x)) = +1

ϕ−1(x) = i0(x) + T (x) > ϕ−1(y) = i0(x) + T (y) if δ(i0(x)) = −1 .

Repeating this argument we get i(x) ¹ i(y).

Lemma 2.3 The ϕ-code i is continuous‡ on X\S.

Proof: Let x ∈ X\S and {xn} ⊂ X\S, limn xn = x. Let x ∈ Ij0 . For n large enough

xn ∈ Ij0 and i0(x
n) = i0(x) = j0. Let j1 := i1(x); we can choose n1 so large that for

n ≥ n1 Txn ∈ Ij1 . Hence i0(x
n) = j0 and i1(x

n) = j1 for all n ≥ n1. By induction we

can find an increasing sequence {nm} such that n ≥ nm implies ij(x) = ij(x
n) for all

j = 0, . . . , m.

The next lemmas give the essential properties of the map ϕ∞.

Lemma 2.4 Let x ∈ AZ+. Then there exist y↑(x) and y↓(x) in [0, 1], such that

y↑(x) ≤ y↓(x); y↑(x) and y↓(x) are the only possible cluster points of the sequence

{ϕn(x)}n.

Let x ∈ X\S and set x := i(x). Then

aj ≤ y↑(x) ≤ x ≤ y↓(x) ≤ aj+1 if x0 = j .

If the ϕ-expansion is valid, then each y ∈ X\S has a unique ϕ-expansion §,
y = ϕ∞(x) ∈ X\S ⇐⇒ x = i(y) .

Proof: Consider the map

t 7→ ϕn(x0, . . . , xn−1 + t) .

Suppose that δ(x0 · · · xn−1) = −1. Then it is decreasing, and for any m

ϕn+m(x0, . . . , xn+m−1) = ϕn(x0, . . . , xn−1 + ϕm(xn, . . . , xn+m−1))

≤ ϕn(x0, . . . , xn−1) .

In particular the subsequence {ϕn(x)}n of all n such that δ(x0 · · · xn−1) = −1 is

decreasing with limit‖ y↓(x). When there is no n such that δ(x0 · · · xn−1) = −1, we set

y↓(x) := ax0+1. Similarly, the subsequence {ϕn(x)}n of all n such that δ(x0 · · ·xn−1) = 1

is increasing with limit y↑(x) ≤ y↓(x). When there is no n such that δ(x0 · · · xn−1) = 1,

we set y↑(x) := ax0 . Since any ϕn(x) appears in one of these sequences, there are at

most two cluster points for {ϕn(x)}n.

‡ If we use the intervals I ′j = [aj , aj+1), then we have only right-continuity
§ If we use the intervals I ′j = [aj , aj+1), this statement is not correct.
‖ If the subsequence is finite, then y↓(x) is the last point of the subsequence.



Computation of topological entropy 7

Let x ∈ X\S; x = ϕ(ϕ−1(x)) and by (2.7)

x = ϕ(i0(x) + Tx) = ϕ(i0(x) + ϕ(ϕ−1(Tx)))

= ϕ(i0(x) + ϕ(i1(x) + T 2x)) = · · · (2.12)

= ϕ(i0(x) + ϕ(i1(x) + . . . + ϕ(in−1(x) + T nx))) .

By monotonicity

(x ∈ X\S and δ(i0(x) · · · in−1(x)) = −1) =⇒ (2.13)

ϕn(i0(x), · · · , in−1(x)) ≥ x ,

and

(x ∈ X\S and δ(i0(x) · · · in−1(x)) = 1) =⇒ (2.14)

ϕn(i0(x), · · · , in−1(x)) ≤ x .

The inequalities of Lemma 2.4 follow from (2.13), (2.14) and ϕ(i0(x) + t) ∈ [ax0 , ax0+1].

Suppose that the ϕ-expansion is valid and that ϕ∞(x) = y ∈ X\S. We prove that

x = i(y). By hypothesis y ∈ Ix0 ; using (2.10) and the fact that Ix0 is open, we can write

y = ϕ(x0 + ϕ(x1 + ϕ(x2 + . . .))) = ϕ(x0 + ϕ(x1 + ϕ(x2 + . . .))) .

This implies that

ϕ−1(y) = i0(y) + Ty = x0 + ϕ(x1 + ϕ(x2 + . . .)) .

Since Ty ∈ X\S, we can iterate this argument.

Lemma 2.5 Let x, x′ ∈ AZ+ and x ¹ x′. Then any cluster point of {ϕn(x)}n is smaller

then any cluster point of {ϕn(x′)}n. In particular, if ϕ∞ is well-defined on AZ+, then

ϕ∞ is order-preserving.

Proof: Let x ≺ x′ with xk = x′k, k = 0, . . . , m− 1 and xm 6= x′m. We have

ϕm+n(x) = ϕm(x0, . . . , xm−1 + ϕn(σmx)) .

By (2.11), if δ(x0 · · ·xm−1) = 1, then xm < x′m and for any n ≥ 1, ` ≥ 1,

ϕn(σmx) = ϕ1(xm + ϕn−1(σ
m+1x)) ≤ ϕ`(σ

mx′) = ϕ1(x
′
m + ϕ`−1(σ

m+1x′)) ;

if δ(x0 · · · xm−1) = −1, then xm > x′m and

ϕn(σmx) = ϕ1(xm + ϕn−1(σ
m+1x)) ≥ ϕ`(σ

mx′) = ϕ1(x
′
m + ϕ`−1(σ

m+1x′)) .

Therefore, in both cases, for any n ≥ 1, ` ≥ 1,

ϕm+n(x) ≤ ϕm+`(x
′) .

Lemma 2.6 Let x ∈ AZ+ and x0 = j.

1) Let δ(j) = 1 and y↑(x) ∈ Ij be a cluster point of {ϕn(x)}. Then fj(y↑(x)) ≥ y↑(σx)

if y↑(x) = aj, fj(y↑(x)) ≤ y↑(σx) if y↑(x) = aj+1 and fj(y↑(x)) = y↑(σx) otherwise. The

same conclusions hold when y↓(x) is a cluster point of {ϕn(x)}.
2) Let δ(j) = −1 and y↑(x) ∈ Ij be a cluster point of {ϕn(x)}. Then fj(y↑(x)) ≤ y↓(σx)

if y↑(x) = aj, fj(y↑(x)) ≥ y↓(σx) if y↑(x) = aj+1 and fj(y↑(x)) = y↓(σx) otherwise. The

same conclusions hold when y↓(x) is a cluster point of {ϕn(x)}.
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Proof: Set fj(Ij) := [αj, βj]. Suppose for example that δ(j) = −1 and that nk is

the subsequence of all m such that δ(x0, . . . , xm) = 1. Since δ(j) = −1 the sequence

{ϕnk−1(σx)}k is decreasing. Hence by continuity

y↑(x) = lim
k

ϕnk
(x) = ϕ(j + lim

k
ϕnk−1(σx)) = ϕ(j + y↓(σx)) . (2.15)

If y↑(x) = aj, then fj(aj) = βj ≤ y↓(σx); if y↑(x) = aj+1, then fj(aj+1) = αj ≥ y↓(σx);

if aj < y↑(x) < aj+1, then

j + fj(y↑(x)) = ϕ−1(ϕ(j + lim
k

ϕnk−1(σx))) = j + y↓(σx) .

Similar proofs for the other cases.

Lemma 2.7 Let x ∈ AZ+.

1) If {ϕn(x)} has two cluster points, and if y ∈ (y↑(x), y↓(x)), then y ∈ X\S, i(y) = x

and y has no ϕ-expansion.

Let x ∈ X\S and set x := i(x).

2) If limn ϕn(x) = y↑(x) and if y ∈ (y↑(x), x), then y ∈ X\S, i(y) = x and y has no

ϕ-expansion.

3) If limn ϕn(x) = y↓(x) and if y ∈ (x, y↓(x)), then y ∈ X\S, i(y) = x and y has no

ϕ-expansion.

Proof: Suppose that y↑(x) < y < y↓(x). Then y ∈ Ix0 and i0(y) = x0. From Lemma

2.6

y↑(σx) < Ty < y↓(σx) if δ(x0) = 1 ,

and

y↓(σx) > Ty > y↑(σx) if δ(x0) = −1 .

Iterating this argument we prove that T ny ∈ Ixn and in(y) = xn for all n ≥ 1. Suppose

that y has a ϕ-expansion, y = ϕ∞(x′). If x′ ≺ x, then by Lemma 2.5 ϕ∞(x′) ≤ y↑(x) and

if x ≺ x′, then by Lemma 2.5 y↓(x) ≤ ϕ∞(x′), which leads to a contradiction. Similar

proofs in cases 2 and 3.

Lemma 2.8 Let x′ ∈ AZ+ and x ∈ X\S. Then

y↓(x′) < x =⇒ x′ ¹ i(x) and x < y↑(x′) =⇒ i(x) ¹ x′.

Proof: Suppose that y↓(x′) < x and y↓(x′) is a cluster point. Either x′0 < i0(x) or

x′0 = i0(x) and by Lemma 2.6

y↓(σx′) < Tx if δ(x′0) = 1,

or

y↑(σx′) > Tx if δ(x′0) = −1 .

Since y↓(σx′) or y↑(σx′) is a cluster point we can repeat the argument and conclude that

x′ ¹ i(x). If y↓(x′) is not a cluster point, then we use the cluster point y↑(x′) < y↓(x′)
for the argument.
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Theorem 2.1 [P2] A ϕ-expansion is valid if and only if the ϕ-code i is injective on

X\S.

Proof: Suppose that the ϕ-expansion is valid. If x 6= z, then

x = ϕ(i0(x) + ϕ(i1(x) + . . .)) 6= ϕ(i0(z) + ϕ(i1(z) + . . .)) = z ,

and therefore i(x) 6= i(z). Conversely, assume that x 6= z implies i(x) 6= i(z). Let

x ∈ X\S, x = i(x), and suppose for example that y↑(x) < y↓(x) are two cluster points.

Then by Lemma 2.7 any y such that y↑(x) < y < y↓(x) is in X\S and i(y) = x,

contradicting the hypothesis. Therefore z := limn ϕn(x) exists. If z 6= x, then we get

again a contradiction using Lemma 2.7.

Theorem 2.1 states that the validity of the ϕ-expansion is equivalent to the

injectivity of the map i defined on X\S. One can also state that the validity of the

ϕ-expansion is equivalent to the surjectivity of the map ϕ∞.

Theorem 2.2 A ϕ-expansion is valid if and only if ϕ∞ : AZ+ → [0, 1] is well-defined on

AZ+ and surjective.

Proof: Suppose that the ϕ-expansion is valid. Let x ∈ AZ+ and suppose that {ϕn(x)}n

has two different accumulation points y↑ < y↓. By Lemma 2.7 we get a contradiction.

Thus ϕ∞(x) is well-defined for any x ∈ AZ+ .

To prove the surjectivity of ϕ∞ it is sufficient to consider s ∈ S. The argument is

a variant of the proof of Lemma 2.7. Let x′ be a string such that for any n ≥ 1

fx′n−1
◦ · · · ◦fx′0(s) ∈ Ix′n .

We use here the extension of fj to Ij; we have a choice for x′n whenever fx′n−1
◦ · · · ◦fx′0(s) ∈

S0. Suppose that ϕ∞(x′) < s and that ϕ∞(x′) < z < s. Since s, ϕ∞(x′) ∈ Ix′0 , we have

z ∈ Ix′0 and therefore i(z) = x′0. Moreover,

ϕ∞(σx′) < Tz < fx′0(s) if δ(x′0) = 1

or

fx′0(s) < Tz < ϕ∞(σx′) if δ(x′0) = −1 .

Iterating the argument we get z ∈ X\S and i(z) = x′, contradicting the validity of the

ϕ-expansion. Similarly we exclude the possibility that ϕ∞(x′) > s, thus proving the

surjectivity of the map ϕ∞.

Suppose that ϕ∞ : AZ+ → [0, 1] is well-defined and surjective. Let x ∈ X\S and

x = i(x). Suppose that x < ϕ∞(x). By Lemma 2.7 any z, such that x < z < ϕ∞(x),

does not have a ϕ-expansion. This contradicts the hypothesis that ϕ∞ is surjective.

Similarly we exclude the possibility that x > ϕ∞(x).

Theorem 2.3 A ϕ-expansion is valid if and only if ϕ∞ : AZ+ → [0, 1] is well-defined,

continuous and there exist x+ with ϕ∞(x+) = 1 and x− with ϕ∞(x−) = 0.
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Proof: Suppose that the ϕ-expansion is valid. By Theorem 2.2 ϕ∞ is well-defined and

surjective so that there exist x+ and x− with ϕ∞(x+) = 1 and ϕ∞(x−) = 0. Suppose

that xn ↓ x and set y := ϕ∞(x), xn := ϕ∞(xn). By Lemma 2.5 the sequence {xn} is

monotone decreasing; let x := limn xn. Suppose that y < x and y < z < x. Since

y < z < xn for any n ≥ 1 and limn xn = x, we prove, as in the beginning of the proof of

Lemma 2.7, that z ∈ X\S. The validity of the ϕ-expansion implies that z = ϕ∞(i(z)).

By Lemma 2.8

x ¹ i(z) ¹ xn .

Since these inequalities are valid for any z, with y < z < x, the validity of ϕ-expansion

implies that we have strict inequalities, x ≺ i(z) ≺ xn. This contradicts the hypothesis

that limn→∞ xn = x. A similar argument holds in the case xn ↑ x. Hence

lim
n→∞xn = x =⇒ lim

n→∞ϕ∞(xn) = ϕ∞(x) .

Conversely, suppose that ϕ∞ : AZ+ → [0, 1] is well-defined and continuous. Then,

given δ > 0 and x ∈ AZ+ , ∃n so that

0 ≤ sup{ϕ∞(x′) : x′j = xj j = 0, . . . , n− 1}
− inf{ϕ∞(x′) : x′j = xj j = 0, . . . , n− 1} ≤ δ .

We set

xn,− := x0 · · ·xn−1x
− and xn,+ := x0 · · · xn−1x

+ .

For any x ∈ X\S we have the identity (2.12),

x = ϕ(i0(x) + ϕ(i1(x) + . . . + ϕ(in−1 + T nx)))

= ϕn(i0(x), . . . , in−1(x) + T nx) .

If δ(i0(x) · · · in−1(x)) = 1, then

ϕ∞(xn,−) : = ϕn(i0(x), . . . , in−1(x) + ϕ∞(x−))

= ϕn(i0(x), . . . , in−1(x))

≤ ϕn(i0(x), . . . , in−1(x) + T nx)

≤ ϕn(i0(x), . . . , in−1(x) + 1)

= ϕn(i0(x), . . . , in−1(x) + ϕ∞(x+)) =: ϕ∞(xn,+) .

If δ(i0(x) · · · in−1(x)) = −1, then the inequalities are reversed. Letting n going to

infinity, we get ϕ∞(i(x)) = x.

Remark 2.1 When the maps f0 and fk−1 are increasing, then we can take

x+ = (k − 1, k − 1, . . .) and x− = (0, 0, . . .) .

Theorem 2.4 [P2] A necessary and sufficient condition for a ϕ-expansion to be valid

is that S is dense in [0, 1]. A sufficient condition is supt |ϕ′(t)| < 1.
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For each j ∈ A we define (the limits are taken with x ∈ X\S)

uj := lim
x↓aj

i(x) and vj := lim
x↑aj+1

i(x) . (2.16)

The strings uj and vj are called virtual itineraries. Notice that vj ≺ uj+1 since vj
0 < uj+1

0 .

σkuj = σk(lim
x↓aj

i(x)) = lim
x↓aj

σki(x) = lim
x↓aj

i(T kx) (x ∈ X\S) . (2.17)

Proposition 2.1 Suppose that x′ ∈ AZ+ verifies ux′n ≺ σnx′ ≺ vx′n for all n ≥ 0. Then

there exists x ∈ X\S such that i(x) = x′.

Notice that we do not assume that the ϕ-expansion is valid or that the map ϕ∞ is well-

defined. For unimodal maps see e.g. Theorem II.3.8 in [CoE]. Our proof is different.

Proof: If y↑(x′) < y↓(x′) are two cluster points, then this follows from Lemma

2.7. Therefore, assume that limn ϕn(x′) exists. Either there exists m > 1 so that

y↑(σmx′) < y↓(σmx′) are two cluster points, or limn ϕn(σmx′) exists for all m ≥ 1.

In the first case, there exists zm ∈ X\S,

y↑(σmx′) < zm < y↓(σmx′) and i(zm) = σmx′ .

Let

zm−1 := ϕ(x′m−1 + zm) .

We show that ax′m−1
< zm−1 < ax′m−1+1. This implies that zm ∈ int(domϕ) so that

ϕ−1(zm−1) = x′m−1 + Tzm−1 = x′m−1 + zm .

Suppose that δ(x′m−1) = 1 and ax′m−1
= zm−1. Then for any y ∈ X\S, y > ax′m−1

, we

have Ty > zm. Therefore, by Lemma 2.2, i(Ty) º i(zm) = σmx′; i0(y) = x′m−1 when y

is close to ax′m−1
, so that

lim
y↓ax′

m−1

i(y) = ux′m−1 º σm−1x′ ,

which is a contradiction. Similarly we exclude the cases δ(x′m−1) = 1 and ax′m−1+1 =

zm−1, δ(x′m−1) = −1 and ax′m−1
= zm−1, δ(x′m−1) = −1 and ax′m−1+1 = zm−1. Iterating

this argument we get the existence of z0 ∈ X\S with i(z0) = x′.
In the second case, limn ϕn(σmx′) exists for all m ≥ 1. Let x := limn ϕn(x′).

Suppose that x′0 = j, so that uj ≺ x′ ≺ vj. By Lemma 2.2 and definition of uj and vj

there exist z1, z2 ∈ Ij such that

z1 < x < z2 and uj ¹ i(z1) ≺ x′ ≺ i(z2) ¹ vj .

Therefore aj < x < aj+1, i0(x) = x′0 and Tx = ϕ∞(σx′) (Lemma 2.6). Iterating this

argument we get x′ = i(x).

Theorem 2.5 Suppose that the ϕ-expansion is valid. Then

(i) Σ := {i(x) ∈ AZ+ : x ∈ X\S} = {x ∈ AZ+ : uxn ≺ σnx ≺ vxn ∀n ≥ 0}.
(ii) The map i : X\S → Σ is bijective, ϕ∞◦i = id and i◦ϕ∞ = id.

Both maps i and ϕ∞ are order-preserving.
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(iii) σ(Σ) = Σ and ϕ∞(σx) = Tϕ∞(x) if x ∈ Σ.

(iv) If x ∈ AZ+\Σ, then there exist m ∈ Z+ and j ∈ A such that ϕ∞(σmx) = aj.

(v) ∀n ≥ 0 , ∀j ∈ A : uuj
n ¹ σnuj ≺ vuj

n if δ(uj
0 · · · uj

n−1) = 1 and uuj
n ≺ σnuj ¹ vvj

n if

δ(uj
0 · · · uj

n−1) = −1.

(vi) ∀n ≥ 0 , ∀j ∈ A : uuj
n ¹ σnvj ≺ vuj

n if δ(vj
0 · · · vj

n−1) = −1 and uuj
n ≺ σnvj ¹ vvj

n

if δ(uj
0 · · · uj

n−1) = 1.

Proof: Let x ∈ X\S. Clearly, by monotonicity,

uik(x) ¹ σki(x) ¹ vik(x) ∀ k ∈ Z+ .

Suppose that there exist x ∈ X\S and k such that σki(x) = vik(x). Since (σki(x))0 =

i0(T
kx), we can assume, without restricting the generality, that k = 0 and i0(x) = j.

Therefore x ∈ (aj, aj+1), and for all y ∈ X\S, such that x ≤ y < aj+1, we have by

Lemma 2.2 that i(y) = i(x) = vj. By Theorem 2.1 this contradicts the hypothesis

that the ϕ-expansion is valid. The other case, σki(x) = uik(x), is treated similarly.

This proves half of the first statement. The second half is a consequence of Proposition

2.1. The second statement also follows, as well as the third, since T (X\S) = X\S (we

assume that (2.1) holds).

Let x ∈ AZ+\Σ and m ∈ Z+ be the smallest integer such that one of the conditions

defining Σ is not verified. Then either σmx ¹ uxm , or σmx º vxm . The map ϕ∞ is

continuous (Theorem 2.3). Hence, for any j ∈ A,

ϕ∞(uj) = aj and ϕ∞(vj) = aj+1 .

Let σmx ¹ uxm . Since vxm−1 ≺ σmx,

axm = ϕ∞(vxm−1) ≤ ϕ∞(σmx) ≤ ϕ∞(uxm) = axm .

The other case is treated in the same way. From definition (2.16) uuj
n ¹ σnuj ¹ vuj

n .

Suppose that δ(uj
0 · · · uj

n−1) = 1 and σnuj = vuj
n . By continuity of the ϕ-code there

exists x ∈ X\S such that x > aj and ik(x) = uj
k, k = 0, . . . , n. Let aj < y < x. Since

δ(uj
0 · · · uj

n−1) = 1, T ny < T nx and consequently

lim
y↓aj

i(T ny) = σnuj ¹ i(T nx) ¹ vuj
n .

Hence σni(x) = vxn , which is a contradiction. The other cases are treated similarly.

2.3. Dynamical system βx + α mod 1

We consider the family of dynamical systems βx + α mod 1 with β > 1 and 0 ≤ α < 1.

For given α and β, the dynamical system is described by k = dα + βe intervals Ij and

maps fj, I0 = (0, β−1(1− α)), Ik−1 = (β−1(k − 1− α), 1) and

Ij = (β−1(j − α), β−1(j + 1− α)) , j = 1, . . . , k − 2

and

fj(x) = βx + α− j , j = 0, . . . k − 1 .
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The maps Tα,β, ϕα,β and ϕα,β are defined as in subsection 2.1.

ϕα,β(t) =





0 if 0 ≤ t ≤ α

β−1(t− α) if α ≤ t ≤ α + β

1 if α + β ≤ t ≤ dα + βe
(2.18)

and

S0 = {aj : j = 1, . . . , k − 1} ∪ {0, 1}with aj := β−1(j− α) . (2.19)

Since all maps are increasing the total order on AZ+ is the lexicographic order. We have

2k virtual orbits, but only two of them are important. Indeed, if we set

uα,β := u0 and vα,β := vk−1 ,

then

uj = juα,β , j = 1, . . . k − 1

and

vj = jvα,β , j = 0, . . . , k − 2 .

Proposition 2.2 Let β > 1 and 0 ≤ α < 1. The ϕ-expansion for the dynamical system

βx + α mod 1 is valid.

Σα,β := {i(x) ∈ AZ+ : x ∈ X\S} = {x ∈ AZ+ : uα,β ≺ σnx ≺ vα,β ∀n ≥ 0} .

Moreover

uα,β ¹ σnuα,β ≺ vα,β and uα,β ≺ σnvα,β ¹ vα,β ∀n ≥ 0 .

The closure of Σα,β is the shift space

Σ(uα,β, vα,β) := {x ∈ AZ+ : uα,β ¹ σnx ¹ vα,β ∀n ≥ 0} . (2.20)

We define the orbits of 0, resp. 1 as, (the limits are taken with x ∈ X\S)

T k
α,β(0) := lim

x↓0
T k

α,β(x) , k ≥ 0 resp. Tk
α,β(1) := lim

x↑1
Tk

α,β(x) , k ≥ 0 .

From (2.16) and (2.17) the coding of these orbits is uα,β, resp. vα,β,

σkuα,β = lim
x↓0

i(T k
α,β(x)) and σkvα,β = lim

x↑1
i(Tk

α,β(x)) . (2.21)

Notice that T k
α,β(0) < 1 and T k

α,β(1) > 0 for all k ≥ 0.

The virtual itineraries u ≡ uα,β and v ≡ vα,β of the dynamical system βx+α mod 1

verify the conditions

u ¹ σnu ¹ v ∀n ≥ 0 and u ¹ σnv ¹ v ∀ n ≥ 0 . (2.22)

By Theorem 2.3, (2.21) and Theorem 2.5 we have (x ∈ X\S)

ϕα,β
∞ (σku) = lim

x↓0
ϕα,β
∞ (i(T k

α,β(x)) = lim
x↓0

T k
α,β(x) ≡ T k

α,β(0) (2.23)

ϕα,β
∞ (σkv) = lim

x↑1
ϕα,β
∞ (i(T k

α,β(x)) = lim
x↑1

T k
α,β(x) ≡ T k

α,β(1) . (2.24)
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Hence u and v verify the equations¶
ϕα,β
∞ (u) = 0 , ϕα,β

∞ (σu) = α and ϕα,β
∞ (v) = 1 , ϕα,β

∞ (σv) = γ , (2.25)

with

γ := α + β − k + 1 ∈ (0, 1] . (2.26)

The strings uα,β and vα,β are ϕ-expansions of 0 and 1. Because of the presence of

discontinuities for the transformation Tα,β at a1, . . . ak−1, there are other strings u,

v which verify (2.22) and (2.25), and which are also ϕ-expansions of 0 and 1. For

latter purposes we need to decribe these strings; this is the content of Proposition 2.3,

Proposition 2.4 and Proposition 2.5. We also take into consideration the borderline

cases α = 1 and γ = 0. When α = 1 or γ = 0 the dynamical system Tα,β is defined

using formula (2.7). The orbits of 0 and 1 are defined as before. For example, if α = 1

it is the same dynamical system as T0,β, but with different symbols for the coding of the

orbits. The orbit of 0 is coded by u1,β = (1)∞, that is u1,β
j = 1 for all j ≥ 0. Similarly,

if γ = 0 the orbit of 1 is coded by vα,β = (k − 2)∞. We always assume that α ∈ [0, 1],

γ ∈ [0, 1] and β ≥ 1.

Lemma 2.9 The equation

y = ϕα,β(xk + t) , y ∈ [0, 1]

can be solved uniquely if y 6∈ S0, and its solution is xk = i0(y) and t = Tα,β(y) ∈ (0, 1).

If y < y′, then the solutions of the equations

y = ϕα,β(xk + t) and y′ = ϕα,β(x′k + t′)

are such that either xk = x′k and Tα,β(y′)− Tα,β(y) = β(y′ − y), or xk < x′k.

Proof: The proof is elementary. It suffices to notice that

y 6∈ S0 =⇒ y = ϕα,β(xk + t) .

The second statement follows by monotonicity.

Proposition 2.3 Let 0 ≤ α < 1 and assume that the ϕ-expansion is valid. The

following assertions are equivalent.

1) There is a unique solution (u = uα,β) of the equations

ϕα,β
∞ (u) = 0 and ϕα,β

∞ (σu) = α . (2.27)

2) The orbit of 0 is not periodic or x = 0 is a fixed point of Tα,β.

3) uα,β is not periodic or uα,β = 0, where 0 is the string x with xj = 0 ∀j ≥ 0.

Proposition 2.4 Let 0 < γ ≤ 1 and assume that the ϕ-expansion is valid. The

following assertions are equivalent.

1) There is a unique solution (v = vα,β) of the equations

ϕα,β
∞ (v) = 1 and ϕα,β

∞ (σv) = γ . (2.28)

¶ If the ϕ-expansion is not valid, which happens when β = 1 and α ∈ Q, then (2.23) and (2.24) are
not necessarily true, as simple examples show. Hence uα,β and vα,β do not necessarily verify (2.25).
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2) The orbit of 1 is not periodic or x = 1 is a fixed point of Tα,β.

3) vα,β is not periodic or vα,β = (k − 1)∞.

Proof: We prove Proposition 2.3. Assume 1. The validity of the ϕ-expansion implies

that uα,β is a solution of (2.27). If α = 0, then u0,β = 0 is the only solution of (2.27)

since x 6= 0 implies ϕ0,β
∞ (x) > 0 and x = 0 is a fixed point of T0,β. Let 0 < α < 1. Using

Lemma 2.9 we deduce that u0 = 0 and

α = Tα,β(0) = ϕα,β(u1 + ϕα,β
∞ (σ2u)) .

If α = aj, j = 1, . . . , k − 1 (see (2.19)), then (2.27) has at least two solutions, which

are 0j(σ2uα,β) with ϕα,β
∞ (σ2uα,β) = T 2(0) = 0 (see (2.23)), and 0(j − 1)vα,β with

ϕα,β
∞ (vα,β) = 1. Therefore, by our hypothesis we have α 6∈ {a1, . . . , ak−1}, u1 = uα,β

1

and ϕα,β
∞ (σ2uα,β) = T 2(0) ∈ (0, 1). Iterating this argument we conclude that 1 =⇒ 2.

Assume 2. If x = 0 is a fixed point, then α = 0 and u0,β = 0. If the orbit of 0 is not

periodic, (2.21) and the validity of the ϕ-expansion imply

σkuα,β = lim
x↓0

i(T k
α,β(x)) Â lim

x↓0
i(x) = uα,β .

Assume 3. From (2.23) and the validity of the ϕ-expansion we get

ϕα,β
∞ (σkuα,β) = T k

α,β(0) > ϕα,β
∞ (uα,β) = 0 ,

so that the orbit of 0 is not periodic. The orbit of 0 is not periodic if and only if

T k
α,β(0) 6∈ {a1, . . . , ak−1} for all k ≥ 1. Using Lemma 2.9 we conclude that (2.27) has a

unique solution.

Propositions 2.3 and 2.4 give necessary and sufficient conditions for the existence

and uniqueness of the solution of equations (2.25). In the following discussion we

consider the case when there are several solutions. The main results are summarize

in Proposition 2.5. We assume the validity of the ϕ-expansion.

Suppose first that the orbit of 1 is not periodic and that the orbit of 0 is periodic,

with minimal period p := min{k : T k(0) = 0} > 1. Hence 0 < γ < 1 and 0 < α < 1. Let

u be a solution of equations (2.27) and suppose furthermore that w is a ϕ-expansion of

1 such that

∀n : u ¹ σnu ¹ w with ϕα,β
∞ (w) = 1 , ϕα,β

∞ (σw) ≤ γ .

By Lemma 2.9 we conclude that

uj = uα,β
j and Tj+1

α,β (0) = ϕα,β
∞ (σj+1u) , j = 1, . . . , p− 2 .

Since T p(0) = 0, T p−1(0) ∈ {a1, . . . , ak−1} and the equation

T p−1
α,β (0) = ϕα,β

∞ (up−1 + ϕα,β
∞ (σpu))

has two solutions. Either up−1 = uα,β
p−1 and ϕα,β

∞ (σpu) = 0 or up−1 = uα,β
p−1 − 1 and

ϕα,β
∞ (σpu) = 1. Let a be the prefix of uα,β of length p and a′ the word of length p

obtained by changing the last letter of a into+ uα,β
p−1−1. We have a′ < a. If up−1 = uα,β

p−1,

+ uα,β
p−1 ≥ 1. uα,β

p−1 = 0 if and only if p = 1 and α = 0.
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then we can again determine uniquely the next p− 1 letters ui. The condition u ≤ σku

for k = p implies that we have u2p−1 = uα,β
p−1 so that, by iteration, we get the solution

u = uα,β for the equations (2.27). If up−1 = uα,β
p−1 − 1, then

1 = ϕα,β
∞ (σpu) = ϕα,β

∞ (up + ϕα,β
∞ (σp+1u)) .

When ϕα,β
∞ (σpu) = 1, by our hypothesis on u we also have ϕα,β

∞ (σp+1u) = γ. By

Proposition 2.4 the equations

ϕα,β
∞ (σpu) = 1 and ϕα,β

∞ (σp+1u) = γ

have a unique solution, since we assume that the orbit of 1 is not periodic. The solution

is σpu = vα,β, so that u = a′vα,β ≺ uα,β is also a solution of (2.27). In that case there

is no other solution for (2.27). The borderline case α = 1 corresponds to the periodic

orbit of the fixed point 0, u1,β = (1)∞. Notice that ϕ1,β
∞ (σu1,β) 6= 1. We can also

consider ϕ1,β
∞ -expansions of 0 with u0 = 0 and ϕ1,β

∞ (σu) = 1. Our hypothesis on u imply

that ϕ1,β
∞ (σ2u) = γ. Hence, u = 0v1,β = a′vα,β ≺ uα,β is a solution of (2.27) and a

ϕ1,β
∞ -expansion of 0.

We can treat similarly the case when uα,β is not periodic, but vα,β is periodic. When

both uα,β and vα,β are periodic we have more solutions, but the discussion is similar.

Assume that uα,β has (minimal) period p > 1 and vα,β has (minimal) period q > 1.

Define a, a′ as before, b as the prefix of length q of vα,β, and b′ as the word of length q

obtained by changing the last letter of b into vα,β
q−1 + 1. When 0 < α < 1 and 0 < γ < 1,

one shows as above that the elements u 6= uα,β and v 6= vα,β which are ϕα,β-expansions

of 0 and 1 are of the form

u = a′bn1b′an2 · · · , ni ≥ 0 and v = b′am1a′bm2 · · · , mi ≥ 0 .

The integers ni and mi must be such that (2.22) is verified. The largest solution of

(2.27) is uα,β and the smallest one is a′vα,β.

Proposition 2.5 Assume that the ϕ-expansion is valid.

1) Let u be a solution of (2.27), such that u ¹ σnu for all n ≥ 1, and let v be a solution

of (2.28), such that σnv ¹ v for all n ≥ 1. Then

u ¹ uα,β and vα,β ¹ v .

2) Let u be a solution of (2.27), and let uα,β = (a)∞ be periodic with minimal period

p > 1, and suppose that there exists w such that

∀n : u ¹ σnu ¹ w with ϕα,β
∞ (w) = 1 , ϕα,β

∞ (σw) ≤ γ .

Then

uα,β
∗ ¹ u ¹ uα,β where uα,β

∗ := a′vα,β and a′ := (pa)(ap−1 − 1) . (2.29)

Moreover, u = uα,β ⇐⇒ a is a prefix of u ⇐⇒ ϕα,β
∞ (σpu) < 1.

3) Let v be a solution of (2.28), and let vα,β = (b)∞ be periodic with minimal period

q > 1, and suppose that there exists w such that

∀n : w ¹ σnv ¹ v with ϕα,β
∞ (w) = 0 , ϕα,β

∞ (σw) ≥ α .
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Then

vα,β ¹ v ¹ vα,β
∗ where vα,β

∗ := b′uα,β and b′ := (pb)(bq−1 + 1) . (2.30)

Moreover, v = vα,β ⇐⇒ b is a prefix of v ⇐⇒ ϕα,β
∞ (σqv) > 0.

3. Shift space Σ(u, v)

Let u ∈ AZ+ and v ∈ AZ+ , such that u0 = 0, v0 = k − 1 (k ≥ 2) and (2.22) holds.

These assumptions are valid for the whole section, except subsection 3.2. We study the

shift-space

Σ(u, v) := {x ∈ AZ+ : u ¹ σnx ¹ v ∀n ≥ 0} . (3.1)

It is useful to extend the relation ≺ to words or to words and strings. We do it only in

the following case. Let a and b be words (or strings). Then

a ≺ b iff ∃c ∈ A∗ , ∃k ≥ 0 such that a = cak · · · , b = cbk · · · and ak < bk .

If a ≺ b then neither a is a prefix of b, nor b is a prefix of a.

In subsection 3.1 we introduce one of the main tool for studying the shift-space

Σ(u, v), the follower-set graph. In subsection 3.2 we give an algorithm which assigns

to a pair of strings (u, v) a pair of real numbers (ᾱ, β̄) ∈ [0, 1] × [1,∞). Finally in

subsection 3.3 we compute the topological entropy of the shift space (u, v).

3.1. Follower-set graph G(u, v)

We associate to Σ(u, v) a graph G(u, v), called the follower-set graph (see [LiM]). The

graph G(u, v), or its variants, have been systematically studied by Hofbauer in his works

about piecewise monotone one-dimensional dynamical systems; see [Ho1], [Ho2] and

[Ho3] in the context of this paper, as well as [Ke] and [BrBr]. Our presentation differs

from that of Hofbauer, but several proofs are directly inspired by [Ho2] and [Ho3].

We denote by L(u, v) the language of Σ(u, v), that is the set of words, which are

factors of x ∈ Σ(u, v) (including the empty word ε). Since σΣ(u, v) ⊂ Σ(u, v), the

language is also the set of prefixes of the strings x ∈ Σ(u, v). To simplify the notations

we set in this subsection Σ := Σ(u, v), L := L(u, v), G := G(u, v).

Let Cu be the set of words w ∈ L such that

w =





w′ : w′ 6= ε , w′ is a prefix of u

w0w
′ : w0 6= u0 , w′ is a prefix of u , possibly ε .

Similarly we introduce Cv as the set of words w ∈ L such that

w =





w′ : w′ 6= ε , w′ is a prefix of v

w0w
′ : w0 6= v0 , w′ is a prefix of v , possibly ε <, .

Definition 3.1 Let w ∈ L. The longest suffix of w, which is a prefix of v, is denoted by

v(w). The longest suffix of w, which is a prefix of u, is denoted by u(w). The u-parsing

of w is the following decomposition of w into w = a1 · · · ak with aj ∈ Cu. The first word
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a1 is the longest prefix of w belonging to Cu. If w = a1w′ and w′ 6= ε, then the next word

a2 is the longest prefix of w′ belonging to Cu and so on.

The v-parsing of w is the analogous decomposition of w into w = b1 · · · b` with

bj ∈ Cv.

Lemma 3.1 Let wc and cw′ be prefixes of u (respectively of v). If wcw′ ∈ L, then wcw′

is a prefix of u (respectively of v). Let w ∈ L. If a1 · · · ak is the u-parsing of w, then only

the first word a1 can be a prefix of u, otherwise u(aj) = saj. Moreover u(ak) = u(w).

Analogous properties hold for the v-parsing of w.

Proof: Suppose that wc and cw′ are prefixes of u. Then w is a prefix of u. Assume

that wcw′ ∈ L is not a prefix of u. Then u ≺ wcw′. Since w is a prefix of u, σ|w|u ≺ cw′.
This contradicts the fact that cw′ is a prefix of u. By applying this result with c = ε

we get the result that only the first word in the u-parsing of w can be a prefix of u.

Suppose that the u-parsing of w is a1 · · · ak. Let k ≥ 2 and assume that u(w) is not a

suffix of ak (the case k = 1 is obvious). Since ak is not a prefix of u, u(w) has ak as a

proper suffix. By the first part of the lemma this contradicts the maximality property

of the words in the u-parsing.

Lemma 3.2 Let w ∈ L. Let p = |u(w)| and q = |v(w)|. Then

{x ∈ Σ : w is a prefix of x} = {x ∈ AZ+ : x = wy, y ∈ Σ, σpu ¹ y ¹ σqv}.
Moreover,

{y ∈ Σ : wy ∈ Σ} = {y ∈ Σ : u(w)y ∈ Σ} if p > q

{y ∈ Σ : wy ∈ Σ} = {y ∈ Σ : v(w)y ∈ Σ} if q > p .

Proof: Suppose that x ∈ Σ and w, |w| = n, is a prefix of x. Let n ≥ 1 (the case n = 0

is trivial). We can write x = wy. Since x ∈ Σ,

u ¹ σ`+nx ¹ v ∀ ` ≥ 0 ,

so that y ∈ Σ. We have

u ¹ σn−px = u(w)y .

Since u(w) is a prefix of u of length p, we get σpu ¹ y. Similarly we prove that y ¹ σqv.

Suppose that x = wy, y ∈ Σ and σpu ¹ y ¹ σqv. To prove that x ∈ Σ, it is

sufficient to prove that u ¹ σmx ¹ v for m = 0, . . . , n − 1. We prove u ¹ σmx for

m = 0, . . . , n − 1. The other case is similar. Let w = a1 · · · a` be the u-parsing of w,

|w| = n and p = |u(w)|. We have

σpu ¹ y =⇒ u ¹ σju ¹ σju(w)y ∀ j = 0, . . . , p .

If a` is not a prefix of u, then p = n − 1 and we also have u ¹ aky. If a` is a prefix

of u, then p = n (and ` = 1). This proves the result for ` = 1. Let ` ≥ 2. Then a` is

not a prefix of u and a`−1a` ∈ L. Suppose that a`−1 is not a prefix of u. In that case

u ¹ a`−1a`y and we want to prove that u ¹ σja`−1a`y for j = 1, . . . , |a`−1|. We know
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that σa`−1 is a prefix of u, and by maximality of the words in the u-parsing and Lemma

3.1 u ≺ σa`−1a`; hence u ≺ σa`−1a`y. Therefore

u ¹ σju ¹ σja`−1a`y ∀ j = 0, . . . , |a`−1| .
Similar proof if ` = 2 and a`−1 is a prefix of u. Iterating this argument we prove that

u ¹ σmx for m = 0, . . . , n− 1.

Suppose that |u(w)| > |v(w)| and set a = u(w). We prove that v(a) = v(w). By

definition v(w) is the longest suffix of w which is a prefix of v; it is also a suffix of a,

whence it is also the longest suffix of a which is a prefix of v. Therefore, from the first

part of the lemma we get

{y ∈ Σ : wy ∈ Σ} = {y ∈ Σ : u(w)y ∈ Σ} .

Definition 3.2 Let w ∈ L. The follower-set∗ of w is the set

Fw := {y ∈ Σ : wy ∈ Σ} .

Lemma 3.2 gives the important results that Fw = Fu(w) if |u(w)| > |v(w)|, and

Fw = Fv(w) if |v(w)| > |u(w)|. Moreover,

Fw = {y ∈ Σ : σpu ¹ y ¹ σqv}where p = |u(w)| and q = |v(w)| . (3.2)

We can define an equivalence relation between words of L,

w ∼ w′ ⇐⇒ Fw = Fw′ .

The collection of follower-sets is entirely determined by the strings u and v. Moreover,

the strings u and v are eventually periodic if and only if this collection is finite. Notice

that Σ = Fε = Fw when p = q = 0.

Definition 3.3 The follower-set graph G is the labeled graph whose set of vertices is the

collection of all follower-sets. Let C and C ′ be two vertices. There is an edge, labeled

by a ∈ A, from C to C ′ if and only if there exists w ∈ L so that wa ∈ L, C = Fw and

C ′ = Fwa. Fε is called the root of G.

The following properties of G are immediate. From any vertex there is at least

one out-going edge and at most |A|. If A = {0, 1, . . . , k − 1} and k ≥ 3, then for each

j ∈ {1, . . . , k − 2} there is an edge labeled by j from Fε to Fε. The out-going edges

from Fw are labeled by the first letters of the strings y ∈ Fw. The follower-set graph G
is right-resolving. Given w ∈ L, there is a unique path labeled by w from Fε to Fw.

Lemma 3.3 Let a be a u-prefix and suppose that b = v(a). Let p = |a| and q = |b| so

that Fa = {y ∈ Σ : σpu ¹ y ¹ σqv}. Then there are more than one out-going edges

from Fa if and only if up < vq.

∗ Usually the follower-set is defined as Fw =
{
y ∈ L : wy ∈ L}

. Since L is a dynamical language, i.e.
for each w ∈ L there exists a letter e ∈ A such that we ∈ L, the two definitions agree.
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Assume that up < vq. Then there is an edge labeled by vq from Fa to Fbvq , an edge

labeled by up from Fa to Faup and v(aupc) = v(c). If there exists up < ` < vq, there is an

edge labeled by ` from Fa to Fε. Moreover, there are at least two out-going edges from

Fb, one labeled by vq to Fbvq and one labeled by `′ = u|u(b)|+1 < vq to Fu(b)`′. Furthermore

u(bvqc) = u(c).

Proof: The first part of the lemma is immediate. Suppose that there is only one out-

going edge from Fb, that is from Fb to Fbvq . This happens if and only if u(b)vq is a

prefix of u. By Lemma 3.1 we conclude that avq is a prefix of u, which is a contradiction.

Therefore u(bvq) = ε; hence u(bvqc) = u(c).

Lemma 3.4 Let b be a v-prefix and suppose that a = u(b). Let p = |a| and q = |b| so

that Fb = {y ∈ Σ : σpu ¹ y ¹ σqv}. Then there are more than one out-going edges from

Fb if and only if up < vq.

Assume that up < vq. Then there is an edge labeled by up from Fb to Faup, an

edge labeled by vq from Fb to Fbvq and u(bvqc) = u(c). If there exists up < ` < vq,

there is an edge labeled by ` from Fb to Fε. Moreover, there are at least two out-going

edges from Fa, one labeled by up to Faup and one labeled by `′ = v|v(a)|+1 > up to Fv(a)`′.

Furthermore v(aupc) = v(c).

Scholium 3.1 The main property of the graph is the following one. Let w be a prefix

of u for example. Suppose that v(w) = b, that the letter following w in u is e′′, and that

the letter following b in v is e′. We have an out-going edge labeled by e′, from Fw to

Fb e′ if and only if e′′ ≺ e′. Moreover we necessarily have an an edge labeled by e from

Fb to Fa e with e ≺ e′, where a = u(b). We also have e ¹ e′′.

Definition 3.4 Let Σ be a shift-space and L its language. We denote by Ln the set of

all words of L of length n. The entropy of Σ is

h(Σ) := lim
n→∞

1

n
log2 card(Ln) .

The number h(Σ) is also equal to the topological entropy of the dynamical system

(Σ, σ) [LiM]. In our case we can give an equivalent definition using the graph G. We

set

`(n) := card{n− paths in G starting at the root Fε} .

Since the graph is right-resolving and for any w ∈ Ln there is a unique path labeled by

w, starting at the root Fε, so that h(Σ) = h(G) where

h(G) = lim
n→∞

1

n
log2 `(n) .

3.2. The algorithm for finding (ᾱ, β̄)

We describe an algorithm, which assigns to a pair of strings (u, v), such that u0 = 0 and

v0 = k − 1, a pair of real numbers (ᾱ, β̄) ∈ [0, 1] × [1,∞). We assume tacitly that for

the pair (α, β) one has α ∈ [0, 1], β ≤ k, and that the map ϕα,β verifies

0 < ϕα,β(t) < 1 ∀t ∈ (1, k − 1) .



Computation of topological entropy 21

In particular β ≥ k− 2. When k = 2 we assume that β ≥ 1. Recall that ϕα,β(t) is given

by (2.18),

γ = α + β − k + 1 ,

and notice that our assumptions imply that 0 ≤ γ ≤ 1.

Definition 3.5 The map ϕα,β dominates the map ϕα′,β′ if and only if ϕα,β(t) ≥ ϕα′,β′(t)

for all t ∈ [0, k] and there exists s ∈ [0, k] such that ϕα,β(s) > ϕα′,β′(s).

Lemma 3.5 If ϕα,β dominates ϕα′,β′, then, for all x ∈ AZ+, ϕα,β
∞ (x) ≥ ϕα′,β′

∞ (x). If

0 < ϕα,β
∞ (x) < 1 or 0 < ϕα′,β′

∞ (x) < 1 ,

then the inequality is strict.

Proof: If ϕα,β dominates ϕα′,β′ , then by our implicit assumptions we get by inspection

of the graphs that

∀t ≥ t′ : ϕα,β(t) > ϕα′,β′(t′) if t, t′ ∈ (α, α′ + β′) ,

otherwise ϕα,β(t) ≥ ϕα′,β′(t′). Therefore, for all n ≥ 1,

ϕα,β
n (x) ≥ ϕα′,β′

n (x) .

Suppose that 0 < ϕα,β
∞ (x) < 1. Then x0 + ϕα,β

∞ (σx) ∈ (α, α + β) and

ϕα,β
∞ (x) = ϕα,β(x0 + ϕα,β

∞ (σx)) > ϕα′,β′(x0 + ϕα′,β′
∞ (σx)) = ϕα′,β′

∞ (x) .

Similar proof for 0 < ϕα′,β′
∞ (x) < 1.

Lemma 3.6 Let α = α′ ∈ [0, 1] and 1 ≤ β < β′. Then, for x ∈ AZ+,

0 ≤ ϕα,β
∞ (x)− ϕα,β′

∞ (x) ≤ |β − β′|
β′ − 1

.

Let γ = γ′ ∈ [0, 1], 0 ≤ α′ < α ≤ 1 and β′ > 1. Then, for x ∈ AZ+,

0 ≤ ϕα′,β′
∞ (x)− ϕα,β

∞ (x) ≤ |α− α′|
β′ − 1

.

The map β 7→ ϕα,β
∞ (x) is continuous at β = 1.

Proof: Let α = α′ ∈ [0, 1] and 1 ≤ β < β′. For t, t′ ∈ [0, k],

|ϕα,β′(t′)− ϕα,β(t)| ≤ |ϕα,β′(t′)− ϕα,β′(t)|+ |ϕα,β′(t)− ϕα,β(t)|
≤ |t− t′|

β′
+
|β − β′|

β′
.

(The maximum of |ϕα,β′(t)− ϕα,β(t)| is taken at α + β). By induction

|ϕα,β′
n (x0, . . . , xn−1)− ϕα,β

n (x0, . . . , xn−1)| ≤ |β − β′|
n∑

j=1

(β′)−j .

Since β′ > 1 the sum is convergent. This proves the first statement. The second

statement is proved similarly using

|ϕα′,β′(t′)− ϕα,β(t)| ≤ |ϕα′,β′(t′)− ϕα′,β′(t)|+ |ϕα′,β′(t)− ϕα,β(t)|
≤ |t− t′|

β′
+
|α− α′|

β′
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which is valid for γ = γ′ ∈ [0, 1] and 0 ≤ α′ < α ≤ 1. We prove the last statement.

Given ε > 0 there exists n∗

ϕα,1
n∗ (x) ≥ ϕα,1

∞ (x)− ε .

Since β 7→ ϕα,β
n∗ (x) is continuous, there exists β′ so that for 1 ≤ β ≤ β′,

ϕα,β
n (x) ≥ ϕα,β′

n∗ (x) ≥ ϕα,1
n∗ (x)− ε ∀n ≥ n∗ .

Hence

ϕα,1
∞ (x)− 2ε ≤ ϕα,β

∞ (x) ≤ ϕα,1
∞ (x) .

Corollary 3.1 Given x and 0 ≤ α∗ ≤ 1, let

gα∗(γ) := ϕα∗,β(γ)
∞ (x) with β(γ) := γ − α∗ + k− 1 .

For k ≥ 3 the map gα∗ is continuous and non-increasing on [0, 1]. If 0 < gα∗(γ0) < 1,

then the map is strictly decreasing in a neighborhood of γ0. If k = 2 then the same

statements hold on [α∗, 1].

Corollary 3.2 Given x and 0 < γ∗ ≤ 1, let

hγ∗(α) := ϕα,β(α)
∞ (x)with β(α) := γ∗ − α + k− 1 .

For k ≥ 3 the map hγ∗ is continuous and non-increasing on [0, 1]. If 0 < hγ∗(α0) < 1,

then the map is strictly decreasing in a neighborhood of α0. If k = 2 then the same

statements hold on [0, γ∗).

Proposition 3.1 Let k ≥ 2, u, v ∈ AZ+ verifying u0 = 0 and v0 = k − 1 and

σu ¹ v and u ¹ σv .

If k = 2 we also assume that σu ¹ σv. Then there exist ᾱ ∈ [0, 1] and β̄ ∈ [1,∞) so

that γ̄ ∈ [0, 1]. If β̄ > 1, then

ϕᾱ,β̄
∞ (σu) = ᾱ and ϕᾱ,β̄

∞ (σv) = γ̄ .

Proof: We consider separately the cases σv = 0 and σu = (k− 1)∞ (i.e. uj = k− 1 for

all j ≥ 1). If σv = 0, then u = 0 and v = (k−1)0; we set ᾱ := 0 and β̄ := k−1 (γ̄ = 0).

If σu = (k − 1)∞, then v = (k − 1)∞ and u = 0(k − 1)∞; we set ᾱ := 1 and β̄ := k.

From now on we assume that 0 ≺ σv and σu ≺ (k − 1)∞. Set α0 := 0 and β0 := k.

We consider in details the case k = 2, so that we also assume that σu ¹ σv.

Step 1. Set α1 := α0 and solve the equation

ϕα1,β
∞ (σv) = β + α1 − k + 1 .

There exists a unique solution, β1, such that k − 1 < β1 ≤ k. Indeed, the map

Gα1(γ) := gα1(γ)− γ

with

gα1(γ) := ϕα1,β(γ)
∞ (σv) and β(γ) := γ − α1 + k− 1
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is continuous and strictly decreasing on [α1, 1] (see Corollary 3.1). If σv = (k − 1)∞,

then Gα1(1) = 0 and we set β1 := k and we have γ1 = 1. If σv 6= (k − 1)∞, then there

exists a smallest j ≥ 1 so that vj ≤ (k − 2). Therefore ϕα1,k
∞ (σjv) < 1 and

ϕα1,k
∞ (σv) = ϕα1,k

j−1 (v1, . . . , vj−1 + ϕα1,k
∞ (σjv)) < 1 ,

so that Gα1(1) < 0. On the other hand, since σv 6= 0, ϕα1,k−1
∞ (σv) > 0, so

that Gα1(0) > 0. There exists a unique γ1 ∈ (0, 1) with Gα1(γ1) = 0. Define

β1 := β(γ1) = γ1 − α1 + k − 1.

Step 2. Solve in [0, γ1) the equation

ϕα,β(α)
∞ (σu) = α with β(α) := γ1 − α + k− 1 = β1 + α1 − α .

If σu = 0, then set ᾱ := 0 and β̄ := β1. Let σu 6= 0. There exists a smallest j ≥ 1 such

that uj ≥ 1. This implies that ϕα1,β1∞ (σju) > 0 and consequently

ϕα1,β(α1)
∞ (σu) = ϕα1,β1

j−1 (u1, . . . , uj−1 + ϕα1,β1
∞ (σju)) > 0 .

Since σu ¹ σv,

0 < ϕα1,β1
∞ (σu) ≤ ϕα1,β1

∞ (σv) = γ1 .

We have γ1 = 1 only in the case σv = (k−1)∞; in that case we also have ϕα1,β1∞ (σu) < 1.

By Corollary 3.2, for any α > α1 we have ϕα1,β1∞ (σu) > ϕα,β(α)
∞ (σu). Therefore, the map

Hγ1(α) := hγ1(α)− αwith hγ1(α) := ϕα,β(α)
∞ (σu)

is continuous and strictly decreasing on [0, γ1), Hγ1(α1) > 0 and limα↑γ1 Hγ1(α) < 0.

There exists a unique α2 ∈ (α1, γ1) such that Hγ1(α2) = 0. Set β2 := γ1 − α2 + k − 1 =

α1 + β1 − α2 and γ2 := α2 + β2 − k + 1 = γ1. Since α2 ∈ [0, γ1), we have β2 > 1. Hence

α1 < α2 < γ1 and 1 < β2 < β1 and γ2 = γ1 . (3.3)

If σv = (k − 1)∞, γ2 = 1 and we set ᾱ := α2 and β̄ := β2.

Step 3. From now on σu 6= 0 and σv 6= (k − 1)∞. Set α3 := α2 and solve in [α3, 1] the

equation

ϕα3,β(γ)
∞ (σv) = γwith β(γ) := γ − α3 + k− 1 .

By Lemma 3.5 (k = 2),

ϕα3,β(α3)
∞ (σv) = ϕα2,1

∞ (σv) ≥ ϕα2,1
∞ (σu) > ϕα2,β2

∞ (σu) = α2 ,

since 0 < α2 < 1. On the other hand by Corollary 3.2,

ϕα3,β(γ1)
∞ (σv) = ϕα3,1+γ1−α3

∞ (σv) < ϕα1,1+γ1−α1
∞ (σv) = ϕα1,β1

∞ (σv) = γ1 (3.4)

since 0 < γ1 < 1. Therefore, the map Gα3 is continuous and strictly decreasing on

[α3, 1], Gα3(α3) > 0 and Gα3(γ1) < 0. There exists a unique γ3 ∈ (α3, γ1) such that

Gα3(γ3) = 0. Set β3 := γ3 − α3 + k − 1, so that β3 < γ1 − α2 + k − 1 = β2. Hence

α3 = α2 and 1 < β3 < β2 and 0 < γ3 < γ2 < 1 . (3.5)

Step 4. Solve in [0, γ3) the equation

ϕα,β(α)
∞ (σu) = α with β(α) := γ3 − α + k− 1 = β3 + α3 − α .
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By Lemma 3.5

ϕα3,β(α3)
∞ (σu) = ϕα3,β3

∞ (σu) > ϕα3,β2
∞ (σu) = ϕα2,β2

∞ (σu) = α2 , (3.6)

since 0 < α2 < 1. On the other hand,

0 < ϕα3,β(α3)
∞ (σu) = ϕα3,β3

∞ (σu) ≤ ϕα3,β3
∞ (σv) = γ3 < 1 .

By Corollary 3.2

ϕα,β(α)
∞ (σu) < ϕα3,β(α3)

∞ (σu) ∀α ∈ (α3, γ3) .

Therefore, the map

Hγ3(α) := hγ3(α)− α with hγ3(α) := ϕα,β(α)
∞ (σu)

is continuous and strictly decreasing on [α3, γ3), Hγ3(α3) > 0 and limα↑γ3 Hγ3(α) < 0.

There exists a unique α4 ∈ (α3, γ3). Set β4 := γ3 − α4 + k − 1 = α3 + β3 − α4 and

γ4 := α4 + β4 − k + 1 = γ3. Hence

α3 < α4 < γ3 and 1 < β4 < β3 and γ4 = γ3 . (3.7)

Repeating steps 3 and 4 we get two monotone sequences {αn} and {βn}. We set

ᾱ := limn→∞ αn and β̄ := limn→∞ βn.

We consider briefly the changes which occur when k ≥ 3. Step 1 remains the same.

In step 2 we solve the equation Hγ1(α) = 0 on [0, 1) instead of [0, γ1). The proof that

Hγ1(α1) > 0 remains the same. We prove that limα↑1 Hγ1(α) < 0. Corollary 3.2 implies

that

γ1 = ϕα1,β1
∞ (σv) = ϕα1,β(α1)

∞ (σv) > ϕα,β(α)
∞ (σv) ∀α > α1 .

Since σu ¹ v and β(α1) = β1,

ϕα,β(α)
∞ (σu) ≤ ϕα,β(α)(v0 + ϕα,β(α)

∞ (σv)) ≤ ϕα1,β(α1)(v0 + ϕα,β(α)
∞ (σv)) < 1 .

Instead of (3.3) we have

α1 < α2 < 1 and 1 < β2 < β1 and γ2 = γ1 .

Estimate (3.4) is still valid in step 3 with k ≥ 3. Hence Gα3(γ1) < 0. We solve the

equation Gα3(γ) = 0 on [0, γ1]. We have

ϕα3,β(γ1)
∞ (σu) = ϕα2,β2

∞ (σu) = α2 .

By Corollary 3.1 we get

ϕα3,β(γ)
∞ (σu) > ϕα2,β2

∞ (σu) = α2 ∀γ < γ1 .

Since u ¹ σv,

ϕα3,β(0)
∞ (σv) ≥ ϕα3,β(0)(u0 + ϕα3,β(0)

∞ (σu))

≥ ϕα2,β(γ1)(u0 + ϕα3,β(0)
∞ (σu)) > 0 .

Estimate (3.6) is still valid in step 4 so that Hγ3(α3) > 0. Corollary 3.2 implies that

γ3 = ϕα3,β3
∞ (σv) = ϕα3,β(α3)

∞ (σv) > ϕα,β(α)
∞ (σv) ∀α > α3 .
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Therefore

ϕα3,β(α3)
∞ (σu) ≤ ϕα,β(α)(v0 + ϕα,β(α)

∞ (σv))

≤ ϕα3,β(α3)(v0 + ϕα,β(α)
∞ (σv)) < 1 .

Instead of (3.7) we have

α3 < α4 < 1 and 1 < β4 < β3 and γ4 = γ3 .

Assume that β̄ > 1. Then 1 < β̄ ≤ βn for all n. We have

ϕαn,βn
∞ (σv) = γn , n odd

and

ϕαn,βn
∞ (σu) = αn , n even .

Let γ̄ = ᾱ + β̄ − k + 1. For n odd, let β∗n := γ̄ − αn + k − 1; using Lemma 3.6 we get

|ϕᾱ,β̄
∞ (σv)− γ̄| ≤ |ϕᾱ,β̄

∞ (σv)− ϕαn,β∗n∞ (σv)|+ |ϕαn,β∗n∞ (σv)− ϕαn,βn
∞ (σv)|

+ |γn − γ|
≤ 1

β̄ − 1
(2|ᾱ− αn|+ |β̄ − βn|) + |γn − γ| ,

since β∗n = β̄ + ᾱ − αn. Letting n going to infinity we get ϕᾱ,β̄
∞ (σv) = γ̄. Similarly we

prove ϕᾱ,β̄
∞ (σv) = ᾱ.

Corollary 3.3 Suppose that (u, v), respectively (u′, v′), verify the hypothesis of

Proposition 3.1 with k ≥ 2, respectively with k′ ≥ 2. If k ≥ k′, u ¹ u′ and v′ ¹ v,

then β̄′ ≤ β̄ and ᾱ′ ≥ ᾱ.

Proof: We consider the case k = k′, whence σv′ ¹ σv. From the proof of Proposition

3.1 we get γ′1 ≤ γ1 and α′1 ≥ α1. Suppose that γ′j ≤ γj and α′j ≥ αj for j = 1, . . . , n. If

n is even, then α′n+1 = α′n and αn+1 = αn. We prove that γ′n+1 ≤ γn+1. We have

γ′n+1 = ϕ
α′n+1,β(γ′n+1)∞ (σv′) ≤ ϕ

α′n+1,β(γ′n+1)∞ (σv) ≤ ϕ
αn+1,β(γ′n+1)∞ (σv)

=⇒ γn+1 ≥ γ′n+1 .

If n is odd, then γ′n+1 = γ′n and γn+1 = γn. We prove that α′n+1 ≥ αn+1. We have

αn+1 = ϕαn+1,β(αn+1)
∞ (σu) ≤ ϕαn+1,β(αn+1)

∞ (σu′) = ϕαn+1,γn+1−αn+1+k−1)
∞ (σu′)

≤ ϕ
αn+1,γ′n+1−αn+1+k−1)
∞ (σu′) =⇒ α′n+1 ≥ αn+1 .

We state a uniqueness result. The proof uses Theorem 3.1.

Proposition 3.2 Let k ≥ 2, u, v ∈ AZ+, u0 = 0 and v0 = k−1, and assume that (2.22)

holds. Then there is at most one solution (α, β) ∈ [0, 1]× [1,∞) for the equations

ϕα,β
∞ (σu) = α and ϕα,β

∞ (σv) = γ .
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Proof: Assume that there are two solutions (α1, β1) and (α2, β2) with β1 ≤ β2. If

α2 > α1, then

α2 − α1 = ϕα2,β2
∞ (σu)− ϕα1,β1

∞ (σu) ≤ 0 ,

which is impossible. Therefore α2 ≤ α1. If β1 = β2, then

0 ≥ α2 − α1 = ϕα2,β2
∞ (σu)− ϕα1,β1

∞ (σu) ≥ 0 ,

which implies α2 = α1. Therefore we assume that α2 ≤ α1 and β1 < β2. However,

Theorem 3.1 implies that

log2 β1 = h(Σ(u, v)) = log2 β2 ,

which is impossible.

3.3. Computation of the topological entropy of Σ(u, v)

We compute the entropy of the shift space Σ(u, v) where u and v is a pair of strings

verifying u0 = 0, v0 = k − 1 and (2.22). The main result is Theorem 3.1. The idea for

computing the topological entropy is to compute ᾱ and β̄ by the algorithm of section 3.2

and to use the fact that h(Σ(uᾱ,β̄, vᾱ,β̄)) = log2 β̄ (see e.g. [Ho1]). The most difficult case

is when u and v are both periodic. Assume that the string u := a∞ has minimal period

p, |a| = p, and that the string v := b∞ has minimal period q, |b| = q. If a0 = ap−1 = 0,

then u = 0 and p = 1. Indeed, if a0 = ap−1 = 0, then aa = (pa)00(sa); the result follows

from (2.22). Similarly, if b0 = bq−1 = k − 1, then v = (k − 1)∞ and q = 1. These cases

are similar to the case when only one of the strings u and v is periodic and are simpler

than the generic case of two periodic strings, which we treat in details.

The setting for subsection 3.3 is the following one. The string u := a∞ has minimal

period p ≥ 2 with u0 = 0, or u = (1)∞. The string v := b∞ has minimal period q ≥ 2

with v0 = k− 1, or v = (k− 2)∞. We also consider the strings u∗ = a′b∞ and v∗ = b′a∞

with a′ = pa(up−1 − 1) and b′ = pb(vq−1 + 1). We write Σ ≡ Σ(u, v), Σ∗ ≡ Σ(u∗, v∗),
G ≡ G(u, v) and G∗ ≡ G(u∗, v∗). The main point is to prove that h(G) = h(G∗) by

comparing the follower-set graphs G and G∗.
Lemma 3.7 1) In the above setting the vertices of the graph G are Fε, Fw with w a

prefix of pa or of pb, pa and pb included.

2) Let r := |v(pa)|. If up−1 6= vr, then Fa = Fε and there is an edge labeled by up−1

from Fpa to Fε. If up−1 = vr, then Fa = Fv(pa)vr and there is a single edge, labeled by

up−1 = vr, from Fpa to Fv(pa)vr . If k = 2 the first possibility is excluded.

3) Let s := |u(pb)|. If vq−1 6= us, then Fb = Fε and there is an edge labeled by vq−1

from Fpb to Fε. If vq−1 = us, then Fb = Fu(pb)us and there is a single edge, labeled by

vq−1 = us, from Fpb to Fu(pb)us. If k = 2 the first possibility is excluded.

Proof: Suppose that w and ww′ are two prefixes of pa. We show that Fw 6= Fww′ . Write

u = wx and u = ww′y and suppose that Fw = Fww′ . Then (see (3.2)) x = y = σpu, so
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that u = (w′)∞, contradicting the minimality of the period p. Consider the vertex Fpa

of G. We have

Fpa = {x ∈ Σ : σp−1u ¹ x ¹ σrv} where r = |v(pa)| .
Let d be the prefix of v of length r + 1, so that pd = v(pa). If up−1 6= vr, then there are

an edge labeled by up−1 from Fpa to Fa = Fε (since σpu = u) and an edge labeled by

vr from Fpa to Fd. There may be other labeled edges from Fpa to Fε (see Lemma 3.3).

If up−1 = vr, then there is a single out-going edge labeled by up−1 from Fpa to Fa and

v(a) = d. We prove that Fa = Fd. If u(d) = ε, the result is true, since in that case

Fd = {x ∈ Σ : u ¹ x ¹ σr+1v} = {x ∈ Σ : σpu ¹ x ¹ σr+1v} = Fa .

We exclude the possibility u(d) 6= ε. Suppose that w := u(d) is non-trivial (|u(d)| < p).

We can write a = a′′w and a = wâ since w is a prefix of u, and consequently aa = a′′wwâ.

From Lemma 3.1 we conclude that ww is a prefix of u, so that au = a′′www · · ·, proving

that u has period |w|, contradicting the hypothesis that p is the minimal period of u.

If k = 2 the first possibility is excluded because up−1 6= 0 and we have up−1 ¹ vr by

σp−ru ¹ v. The discussion concerning the vertex Fpb is similar.

Proposition 3.3 Consider the above setting. If h(Σ) > 0, then h(Σ) = h(Σ∗).

Proof: Consider the vertex Fpa of G∗. In that case (up−1 − 1) 6= vr so that we have an

additional edge labeled by up−1− 1 from Fpa to Fa′ (see proof of Lemma 3.7), otherwise

all out-going edges from Fpa, which are present in the graph G, are also present in G∗.
Let v∗(w) be the longest suffix of w, which is a prefix of v∗. Then

Fa′ = {x ∈ Σ∗ : σpu∗ ¹ x ¹ v∗} = {x ∈ Σ∗ : v ¹ x ¹ v∗} .

Similarly, there is an additional edge labeled by vq−1 + 1 from Fpb to Fb′ . Let u∗(w) be

the longest suffix of w, which is a prefix of u∗. Then

Fb′ = {x ∈ Σ∗ : u∗ ¹ x ¹ σqv∗} = {x ∈ Σ∗ : u∗ ¹ x ¹ u} .

The structure of the graph G∗ is very simple from the vertices Fa′ and Fb′ . There is a

single out-going edge from Fa′ to Fa′v0 , from Fa′v0 to Fa′v0v1 and so on, until we reach

the vertex Fa′pb. From that vertex there are an out-going edge labeled by vq−1 to Fa′

and an out-going edge labeled by vq−1 + 1 to Fb′ . Similarly, there is a single out-going

edge from Fb′ to Fb′u0
, from Fb′u0

to Fb′u0u1
and so on, until we reach the vertex Fb′pa.

From that vertex there are an out-going edge labeled by up−1 to Fb′ and an out-going

edge labeled by up−1−1 to Fa′ . Let us denote that part of G∗ by G∗\G. This subgraph is

strongly connected. The graph G∗ consists of the union of G and G∗\G with the addition

of the two edges from Fpa to Fa′ and Fpb to Fb′ . Using Theorem 1.7 of [BGMY] it easy

to compute the entropy of the subgraph G∗\G (use as rome {Fa′ ,Fb′}). It is the largest

root, say λ∗, of the equation

λ−q + λ−p − 1 = 0 .

Hence λ∗ is equal to the entropy of a graph with two cycles of periods p and q, rooted

at a common point. To prove Proposition 3.3 it sufficient to exhibit a subgraph of G
which has an entropy larger or equal to that of G∗\G.
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If k ≥ 4, then there is a subgraph with two cycles of length 1 rooted at Fε. Hence

h(G) ≥ log2 2 > λ∗. If Fa = Fε or Fb = Fε, which could happen only for k ≥ 3 (see

Lemma 3.7), then there is a subgraph of G consisting of two cycles rooted at Fε, one of

length p or of length q and another one of length 1. This also implies that h(G) ≥ λ∗.
Since the minimal periods of u and v are p and q, it is impossible that Fw = Fε for w a

non trivial prefix of pa or pb. Therefore we assume that k ≤ 3, Fa 6= Fε and Fb 6= Fε.

Let H be a strongly connected component of G which has strictly positive entropy.

If Fε is a vertex of H, which happens only if k = 3, then we conclude as above that

h(G) ≥ λ∗. Hence, we assume that Fε is not a vertex of H. The vertices of H are

indexed by prefixes of pa and pb. Let Fc be the vertex of H with c a prefix of u and |c|
minimal; similarly, let Fd be the vertex of H with d a prefix of v and |d| minimal. By

our assumptions r := |c| ≥ 1 and s := |d| ≥ 1. The following argument is a simplified

adaptation of the proof of Lemma 3 in [Ho3]. The core of the argument is the content

of the Scholium 3.1. Consider the v-parsing of a from the prefix pc, and the u-parsing

of b from the prefix pd,

a = (pc)a1 · · · ak and b = (pd)b1 · · · b` .

(From pc the v-parsing of a does not depend on pc since there is an in-going edge at

Fc.)

We claim that there are an edge from F(pc)a1 to Fd and an edge from F(pd)b1 to Fc.

Suppose that this is not the case, for example, there is an edge from F(pc)a1···aj to Fd,

but no edge from F(pc)a1···ai to Fd, 1 ≤ i < j. This implies that v(aj) = saj = p(d)

and (pc)a1 · · · ajf ′ is a prefix of u with f ′ ≺ f and f defined by d = (pd)f . On the

other hand there exists an edge from F(pc)a1···aj−1 to Fv((pc)a1···aj−1)∗ = Fv(aj−1)∗ with ∗
some letter of A and v(aj−1)∗ 6= d by hypothesis. Let e be the first letter of aj. Then

∗ = (e+1) since we assume that Fε is not a vertex of H and consequently there are only

two out-going edges from F(pc)a1···aj−1 . There exists an edge from Fv(aj−1) to Fu(v(aj−1))∗,
where ∗ is some letter of A (see Scholium 3.1). Again, since Fε is not a vertex of H
we must have ∗ = e. Either u(v(aj−1))e = c or u(v(aj−1))e 6= c. In the latter case,

by the same reasoning, there exists an edge from Fu(v(aj−1)) to Fv(u(v(aj−1)))(e+1) and

v(u(v(aj−1)))(e + 1) 6= d by hypothesis; there exists also an edge from Fv(u(v(aj−1))) to

Fu(v(u(v(aj−1))))e. After a finite number of steps we get

u(· · · v(u(v(aj−1))))e = c .

This implies that pc is a suffix of aj−1, and the last letter of c (or the first letter of a1)

is e. Hence a1 = ed · · ·. If we write aj−1 = g(pc) we have

(pc)a1 = cd · · · = c(pd)f · · · and aj−1ajf = g(pc)e(pd)f ′ = gc(pd)f ′ .

We get a contradiction with (2.22) since c(pd)f ′ ≺ c(pd)f .

Consider the smallest strongly connected subgraph H′ of H which contains the

vertices Fc, F(pc)a1 , Fd and F(pd)b1 . Since H has strictly positive entropy, there exists

at least one edge from some other vertex A of H to Fc or Fd, say Fc. Define G ′ as the

smallest strongly connected subgraph of H, which contains H′ and A. This graph has
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two cycles: one passing through the vertices Fc, F(pc)a1 , Fd, F(pd)b1 and Fc, the other

one passing through the vertices Fc, F(pc)a1 , Fd, F(pd)b1 , A and Fc. The first cycle has

length |a1|+ |b1|, and the second cycle has length |a1|+ |b1|+ · · ·+ |bj| if A = Fp(d)b1···bj .

We also have

|c| = |b1| = |bj| and |a1| = |d| .
Therefore one cycle has period

|a1|+ |b1| ≤ |a1|+ |c| ≤ p ,

and the other one has period

|d|+ |b1|+ · · ·+ |bj| ≤ q .

Theorem 3.1 Let k ≥ 2 and let u ∈ AZ+ and v ∈ AZ+, such that u0 = 0, v0 = k − 1

and

u ¹ σnu ¹ v ∀n ≥ 0 and u ¹ σnv ¹ v ∀ n ≥ 0 .

If k = 2 we also assume that σu ¹ σv. Let ᾱ and β̄ be the two real numbers defined by

the algorithm of Proposition 3.1. Then

h(Σ(u, v)) = log2 β̄ .

If k = 2 and σv ≺ σu, then h(Σ(u, v)) = 0.

Proof: Let β̄ > 1. By Propositions 3.1 and 2.5 we have

Σ(uᾱ,β̄, vᾱ,β̄) ⊂ Σ(u, v) ⊂ Σ(uᾱ,β̄
∗ , vᾱ,β̄

∗ ) .

From Proposition 3.3 we get

h(Σ(uᾱ,β̄, vᾱ,β̄)) = h(Σ(uᾱ,β̄
∗ , vᾱ,β̄

∗ )) = log2 β̄ .

Let limn αn = ᾱ and limn βn = β̄ = 1. We have αn < 1 and βn > 1 (see proof of

Proposition 3.1). Let

un := uαn,βn
∗ and vn := vαn,βn

∗ .

By Proposition 2.5 point 3,

vα1,β1 ¹ v ¹ v1 .

By monotonicity,

ϕα2,β2
∞ (σv1) ≤ ϕα1,β1

∞ (σv1) = γ1 = γ2ϕ
α2,β2
∞ (σv2) .

Therefore v1 ¹ v2 (v1
0 = v2

0) and by Proposition 2.5 point 2,

u2 ¹ u ¹ uα2,β2 and v ¹ v2 .

By monotonicity,

ϕα3,β3
∞ (σu3) = α3 = α2 = ϕα2,β2

∞ (σu2) ≤ ϕα3,β3
∞ (σu2) .
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Therefore u3 ¹ u2 and

u3 ¹ u and vα3,β3 ¹ v ¹ v3 .

Iterating this argument we conclude that

un ¹ u and v ¹ vn .

These inequalities imply

h(Σ(u, v)) ≤ h(Σ(un, vn)) = log2 βn → 0 for n →∞ .

Finally let k = 2 and σv ≺ σu. If σu = (1)∞, then vj = 0 for a single value of j,

so that h(Σ(u, v)) = 0. Suppose that σu 6= (1)∞ and fix any β > 1. The function

α 7→ ϕα,β
∞ (σu) is continuous and decreasing since ϕα,β dominates ϕα′,β if α < α′.

There exists α ∈ (0, 1) such that ϕα,β
∞ (σu) = α. If v0 < vα,β

0 , then v ≺ vα,β and

Σ(u, v) ⊂ Σ(u, vα,β), whence h(Σ(u, v)) ≤ log2 β. If v0 = vα,β
0 = 1, then

ϕα,β
∞ (σv) ≤ ϕα,β

∞ (σu) = α < γ = ϕα,β
∞ (σvα,β) .

The map ϕα,β
∞ is continuous and non-decreasing on AZ+ so that σv ≺ σvα,β, whence

v ≺ vα,β and h(Σ(u, v)) ≤ log2 β. Since β > 1 is arbitrary, h(Σ(u, v)) = 0.

4. Inverse problem for βx + α mod 1

In this section we solve the inverse problem for βx + α mod 1, namely the question:

given two strings u and v verifying

u ¹ σnu ≺ v and u ≺ σnv ¹ v ∀n ≥ 0 , (4.1)

can we find α ∈ [0, 1) and β ∈ (1,∞) so that u = uα,β and v = vα,β?

Proposition 4.1 Let the ϕ-expansion be valid. Let u be a solution of (2.27) and v a

solution of (2.28). If (4.1) holds, then

uα,β = u ⇐⇒ ∀n ≥ 0 : ϕα,β
∞ (σnu) < 1

⇐⇒ ∀n ≥ 0 : ϕα,β
∞ (σnv) > 0 ⇐⇒ vα,β = v .

Proof: The ϕ-expansion is valid, so that (2.23) is true,

∀n ≥ 0 : ϕα,β
∞ (σnuα,β) = T n

α,β(0) < 1 .

Proposition 2.3 and Proposition 2.5 point 2 imply

u = uα,β ⇐⇒ ∀n ≥ 0 : ϕα,β
∞ (σnu) < 1 .

Similarly

v = vα,β ⇐⇒ ∀n ≥ 0 : ϕα,β
∞ (σnv) > 0 .

Let x ≺ x′, x, x′ ∈ Σ(u, v). Let ` := min{m ≥ 0 : xm 6= x′m}. Then

ϕα,β
∞ (x) = ϕα,β

∞ (x′) =⇒ ϕα,β
∞ (σ`+1x) = 1 and ϕα,β

∞ (σ`+1x) = 0 .
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Indeed,

ϕα,β
`+1(x0, . . . , x`−1, x` + ϕα,β

∞ (σ`+1x)) = ϕα,β
`+1(x0, . . . , x`−1, x

′
` + ϕα,β

∞ (σ`+1x′))

Therefore x′` = x` + 1, ϕα,β
∞ (σ`+1x) = 1 and ϕα,β

∞ (σ`+1x) = 0. Suppose that

ϕα,β
∞ (σku) = 1, and apply the above result to σku and v to get the existence of m

with ϕα,β
∞ (σmv) = 0.

Let u ∈ AZ+ with u0 = 0 and u ¹ σnu for all n ≥ 0. We introduce the quantity

û := sup{σnu : n ≥ 0} .

We have

σnû ≤ û ∀n ≥ 0 .

Indeed, if û is periodic, then this is immediate. Otherwise there exists nj, with nj ↑ ∞
as j →∞, so that û = limj σnju. By continuity

σnû = lim
j→∞

σn+nju ≤ û .

Example. We consider the strings u′ = (01)∞ and v′ = (110)∞. One can prove that

u′ = uα,β and v′ = vα,β where β is the largest solution of

β6 − β5 − β = β(β2 − β + 1)(β3 − β − 1) = 0

and α = (1 + β)−1. With the notations of Proposition 2.5 we have

a = 01 a′ = 00 b = 110 b′ = 111 .

Let

u := (00110111)∞ = (a′bb′)∞ .

We have

û = (11100110)∞ = (b′a′b)∞ .

By definition ϕα,β
∞ (σu) = α. We have

(b)∞ ¹ û ¹ b′(a)∞ .

From Proposition 2.5 point 3 and Proposition 3.3 we conclude that log2 β = h(Σ(u, û)).

Theorem 4.1 Let k ≥ 2 and let u ∈ AZ+ and v ∈ AZ+, such that u0 = 0, v0 = k − 1

and (4.1) holds. If k = 2 we also assume that σu ¹ σv. Set log2 β̂ := h(Σ(u, û)). Let ᾱ

and β̄ be defined by the algorithm of Proposition 3.1.

1) If β̂ < β̄, then u = uᾱ,β̄ and v = vᾱ,β̄.

2) If β̂ = β̄ > 1 and uᾱ,β̄ and vᾱ,β̄ are not both periodic, then u = uᾱ,β̄ and v = vᾱ,β̄.

3) If β̂ = β̄ > 1 and uᾱ,β̄ and vᾱ,β̄ are both periodic, then u 6= uᾱ,β̄ and v 6= vᾱ,β̄.

Proof: Let β̂ < β̄. Suppose that u 6= uᾱ,β̄ or v 6= vᾱ,β̄. By Proposition 4.1 u 6= uᾱ,β̄

and v 6= vᾱ,β̄, and there exists n such that ϕᾱ,β̄
∞ (σnu) = 1. Hence ϕᾱ,β̄

∞ (û) = 1. If γ̄ > 0,

then û0 = v0 = k − 1 whence σû ¹ σv, so that ϕᾱ,β̄
∞ (σû) = γ̄. By Propositions 2.5 and

3.3 we deduce that

log2 β̂ = h(Σ(u, û)) = h(Σ(u, v)) = log2 β̄ ,
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a contradiction. If γ̄ = 0, either û0 = k−1 and ϕᾱ,β̄
∞ (σû) = γ̄, and we get a contradiction

as above, or û0 = k− 2 and ϕᾱ,β̄
∞ (σû) = 1. In the latter case, since σû ¹ û, we conclude

that û1 = k − 2 and ϕᾱ,β̄
∞ (σ2û) = 1. Using σnû ¹ û we get û = (k − 2)∞ = vᾱ,β̄, so that

h(Σ(u, û)) = h(Σ(u, v)), a contradiction.

We prove 2. Suppose for example that uᾱ,β̄ is not periodic. This implies that ᾱ < 1, so

that Proposition 2.3 implies that u = uᾱ,β̄. We conclude using Proposition 4.1. Similar

proof if vᾱ,β̄ is not periodic.

We prove 3. By Proposition 4.1, u = uᾱ,β̄ or v = vᾱ,β̄ if and only if u = uᾱ,β̄ and

v = vᾱ,β̄. Suppose u = uᾱ,β̄, then u is periodic so that û = σpu for some p. This implies

that

ϕᾱ,β̄
∞ (σû) ≤ ϕᾱ,β̄

∞ (û) = ϕᾱ,β̄
∞ (σpu) < 1 .

by Proposition 4.1. Let û0 ≡ k̂−1. We can apply the algorithm of Proposition 3.1 to the

pair (u, û) and get two real numbers α̃ and β̃ (if k̂ = 2, using β̂ > 1 and Theorem 3.1, we

have σu ¹ σû). Theorem 3.1 implies β̂ = β̃, whence β̃ = β̄. The map α 7→ ϕα,β̄
∞ (σu) is

continuous and decreasing, so that α 7→ ϕα,β̄
∞ (σu)−α is strictly decreasing, whence there

exists a unique solution to the equation ϕα,β̄
∞ (σu) − α = 0, which is ᾱ = α̃. Therefore

ϕᾱ,β̄
∞ (σû) < 1 and we must have k̂ = k, whence

ϕᾱ,β̄
∞ (σû) = ᾱ + β̄ − k + 1 = ϕᾱ,β̄

∞ (σv) .

But this implies ϕᾱ,β̄
∞ (û) = 1, a contradiction

Theorem 4.2 Let k ≥ 2 and let u ∈ AZ+ and v ∈ AZ+, such that u0 = 0, v0 = k − 1

and (4.1 holds. If k = 2 we also assume that σu ¹ σv. Let ᾱ and β̄ be defined by the

algorithm of Proposition 3.1. If h(Σ(u, û)) > 1, then there exists u∗ º û such that

u∗ ≺ v =⇒ u = uᾱ,β̄ and v = vᾱ,β̄

u∗ Â v =⇒ u 6= uᾱ,β̄ and v 6= vᾱ,β̄ .

Proof: As in the proof of Theorem 4.1 we define k̃ and, by the algorithm of Proposition

3.1 applied to the pair (u, û), two real numbers α̃ and β̃. By Theorem 3.1, log2 β̃ =

h(Σ(u, û)). We set

u∗ :=





vα̃,β̃
∗ if vα̃,β̃ is periodic

vα̃,β̃ if vα̃,β̃ is not periodic.

It is sufficient to show that u∗ ≺ v implies β̄ > β̃ (see Theorem 4.1 point 1). Suppose

the contrary, β̄ = β̃. Then

1 = ϕα̃,β̄
∞ (û) ≤ ϕα̃,β̄

∞ (v) .

We have ϕᾱ,β̄
∞ (v) = 1 and for α > ᾱ, ϕα,β̄

∞ (v) < 1 (see Lemma 3.5). Therefore α̃ ≤ ᾱ. On

the other hand, applying Corollary 3.3 we get α̃ ≥ ᾱ so that α̃ = ᾱ and k̃ = k. From

Propositions 2.4 or 2.5 we get v ¹ u∗, a contradiction.

Suppose that u∗ Â v. We have û ¹ v ≺ u∗, whence h(Σ(u, û)) = h(Σ(u, u∗)) and

therefore β̄ = β̃. As above we show that ᾱ = α̃. Notice that if uα̃,β̃ is not periodic, then
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by Proposition 2.3 uα̃,β̃ = u. If vα̃,β̃ is not periodic, then by Proposition 2.4 vα̃,β̃ = v. If

vα̃,β̃ is periodic, then inequalities (4.1) imply that we must have vα̃,β̃
∗ ≺ v. Therefore we

may have u∗ Â v and inequalities (4.1) only if uα̃,β̃ and vα̃,β̃ are periodic. Suppose that

it is the case. If u is not periodic, then using Proposition 4.1 the second statement is

true. If u is periodic, then û = σpu for some p, whence ϕα̃,β̃
∞ (σpu) = 1; by Proposition

4.1 u 6= uα̃,β̃.
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