Nilpotent Subalgebras of Semisimple Lie Algebras

Sous-algèbres Nilpotentes d’Algèbres de Lie Semi-simples

Paul Levy a George McNinch b Donna M. Testerman c,1

a Ecole Polytechnique Fédérale de Lausanne. IGAT, Bâtiment BCH, CH-1015 Lausanne, Switzerland
b Department of Mathematics, Tufts University, 503 Boston Ave. Medford, MA 01255
c Ecole Polytechnique Fédérale de Lausanne. IGAT, Bâtiment BCH, CH-1015 Lausanne, Switzerland

Abstract

Let g be the Lie algebra of a semisimple linear algebraic group. Under mild conditions on the characteristic of the underlying field, one can show that any subalgebra of g consisting of nilpotent elements is contained in some Borel subalgebra. In this note, we provide examples for each semisimple group G and for each of the torsion primes for G of nil subalgebras not lying in any Borel subalgebra of g. To cite this article: P. Levy, G. McNinch, D. Testerman C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Version française abrégée

Soit k un corps algébriquement clos de caractéristique $p > 0$. Par ‘groupe algébrique sur k’ nous entendons un schéma en groupes affine de type fini sur k. Soit G un groupe algébrique semi-simple défini sur k (G est lisse et connexe) et soit U un sous-groupe (algébrique) unipotent de G. Si U est réduit, on

Email addresses: paul.levy@epfl.ch (Paul Levy), george.mcninch@tufts.edu (George McNinch), donna.testerman@epfl.ch (Donna M. Testerman).

1 Research supported in part by the Swiss National Science Foundation grant number PP002-68710.
saït que \(U \) est contenu dans un sous-groupe de Borel de \(G \) (cf. [6, 30.4]). Nous nous intéressons au cas où \(U \) n’est pas réduit, plus précisément au cas des \(p \)-sous-algèbres de \(\text{Lie}(G) \).

Theorem 0.1 Supposons que \(p \) ne soit pas un nombre premier de torsion de \(G \). Alors tout sous-groupe unipotent (non nécessairement réduit) de \(G \) est contenu dans un sous-groupe de Borel de \(G \).

La démonstration repose essentiellement sur Theorem A de [9].

Theorem 0.2 Supposons que \(p \) soit un nombre premier de torsion pour \(G \). Il existe un sous-groupe unipotent de \(G \), de dimension 0, qui n’est contenu dans aucun sous-groupe de Borel de \(G \).

On démontre ce théorème en construisant des \(p \)-sous-algèbres de \(\text{Lie}(G) \), formées d’éléments nilpotents, et qui ne sont contenues dans aucune sous-algèbre de Borel. Il y a deux types de constructions :

a) Si \(\tilde{G} \to G \) est le revêtement universel de \(G \) et \(p \) divise l’ordre du noyau (schématique) de \(\tilde{G} \to G \), on peut construire une \(p \)-sous-algèbre commutative de \(\text{Lie}(G) \), formée d’éléments nilpotents, dont l’image réciproque dans \(\text{Lie}(\tilde{G}) \) n’est pas commutative ; une telle sous-algèbre n’est pas contenue dans une sous-algèbre de Borel de \(G \). Lorsque \(G \) est simple, l’algèbre ainsi construite est de dimension 2, et elle est annulée par la puissance \(p \)-ième.

b) Si \(p \) est de torsion pour le système de racines de \(G \) (par exemple \(p = 2, 3, \) ou 5 si \(G \) est de type \(E_8 \)), il existe une \(p \)-sous-algèbre commutative de \(\text{Lie}(G) \), de dimension 3, annulée par la puissance \(p \)-ième, et non contenue dans une sous-algèbre de Borel.

1. Introduction

Let \(k \) be an algebraically closed field of characteristic \(p > 0 \) and let \(G \) be a semisimple linear algebraic group over \(k \). Let \(g \) be the Lie algebra of \(G \). Under mild conditions on \(G \) and \(p \) it is straightforward to show that any nil subalgebra of \(g \), that is, a subalgebra consisting of nilpotent elements, is contained in a Borel subalgebra (see §2 below). J.-P. Serre has asked the following question: is it true that if \(p \) is a torsion prime for \(G \) then there exists a nil subalgebra of \(g \) which is contained in no Borel subalgebra? In this note, we establish a positive answer to this question. Moreover, if \(p \) is not a torsion prime for \(G \), every nil subalgebra of \(g \) lies in a Borel subalgebra. Our argument in fact applies to the more general setting of unipotent subgroup schemes of a semisimple group scheme over \(k \).

We outline two separate cases. In the first case, assume that \(G \) is simply connected. The scheme-theoretic centre \(Z \) of \(G \) is a finite group scheme. Now by a Heisenberg-type subalgebra of \(g \), we mean a \(p \)-subalgebra which is a central extension of an abelian nil algebra by a 1-dimensional algebra. If \(p \) divides the order of \(Z \), we exhibit a Heisenberg-type restricted subalgebra of \(g \) whose centre is central in \(g \). This gives a construction of a suitable nil algebra in \(\text{Lie}(G_{ad}) \), where \(G_{ad} \) is the corresponding adjoint group. In [3], Borel, Friedman and Morgan study a similar situation. More precisely, for \(K \) a compact, connected and semisimple Lie group with simply connected cover \(\hat{K} \), they study pairs and triples of elements in \(\hat{K} \) whose images commute in \(K \). Secondly, assume \(p \) is a torsion prime for the root system of \(G \). Then we will exhibit a commutative 3-dimensional restricted nil subalgebra of \(g \) which is not contained in any Borel subalgebra.

In [5], Draisma, Kraft and Kuttler study subspaces of \(g \), rather than subalgebras, consisting of nilpotent elements. Under certain restrictions on \(p \), they show that the dimension of such a subspace is bounded above by the dimension of the nil-radical of a Borel subalgebra. Moreover, they show that when the restrictions on the prime are relaxed there exist subspaces of this maximal possible dimension which do not lie in a Borel subalgebra. We refer the reader as well to the article of Vasiu ([11]) in which he studies normal unipotent subgroup schemes of reductive groups.
Acknowledgements

We wish to thank Alexander Premet for communicating a proof of Theorem 2.2 in the case of very good primes and Jean-Pierre Serre for several useful suggestions, in particular for a cleaner proof of Theorem 2.2 in the case $G = G_2$ and $p = 3$.

2. Good characteristics

Throughout this note, k is an algebraically closed field of characteristic $p > 0$. By ‘linear algebraic group defined over k’ we mean an affine group scheme of finite type over k. Let G be a semisimple linear algebraic group over k; in particular, G is a smooth group scheme with restricted Lie algebra \mathfrak{g}, the p-operation being denoted by $X \mapsto X^p$. Let T be a fixed maximal torus of G, $W = W(G,T)$ the Weyl group of G, $\Phi = \Phi(G,T)$ the root system, Φ^+ a positive system in Φ, $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ the corresponding basis and $B \subset G$ the associated Borel subgroup containing T. For $\alpha \in \Phi$, let α^\vee denote the corresponding coroot. If Φ is an irreducible root system then there is a unique root of maximal height with respect to Δ, B basis and G group defined over k.

Throughout this note, k is an algebraically closed field of characteristic $p > 0$. By ‘linear algebraic group defined over k’ we mean an affine group scheme of finite type over k. Let G be a semisimple linear algebraic group over k; in particular, G is a smooth group scheme with restricted Lie algebra \mathfrak{g}, the p-operation being denoted by $X \mapsto X^p$. Let T be a fixed maximal torus of G, $W = W(G,T)$ the Weyl group of G, $\Phi = \Phi(G,T)$ the root system, Φ^+ a positive system in Φ, $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ the corresponding basis and $B \subset G$ the associated Borel subgroup containing T. For $\alpha \in \Phi$, let α^\vee denote the corresponding coroot. If Φ is an irreducible root system then there is a unique root of maximal height with respect to Δ, noted here by β. Write $\beta = \sum_{i=1}^\ell m_i \alpha_i$ and $\beta^\vee = \sum_{i=1}^\ell m'_i \alpha_i^\vee$. Recall that p is bad for Φ if $m_i = p$ for some i, $1 \leq i \leq \ell$, and p is torsion for Φ if $m_i' = p$ for some i, $1 \leq i \leq \ell$. (If the Dynkin diagram is simply-laced then $m_i = m'_i$ for all i.) We say that p is good for Φ if p is not bad for Φ and that p is very good for Φ if p is good for Φ and $p \nmid (\ell + 1)$ when Φ is of type A_ℓ. Finally, we will say p is good, (respectively, very good) for G if p is good (resp. very good) for every irreducible component of $\Phi = \Phi(G,T)$. We will say that p is bad for G if p is bad for some irreducible component of Φ and that p is torsion for G if p is torsion for some irreducible component of Φ or p divides the order of the fundamental group of G.

Before considering the case of non-torsion primes, we introduce one further definition:

Definition 2.1 ([1, Exposé XVII, 1.1]) An algebraic group U over k is said to be unipotent if U admits a composition series whose successive quotients are isomorphic to some subgroup scheme of the algebraic group G_u.

We include the proof of the following theorem which follows directly from the literature in the case of very good primes.

Theorem 2.2 Let G be a semisimple group and p a non-torsion prime for G. Let U be a unipotent subgroup scheme of G. Then U is contained in a Borel subgroup of G.

Proof. Consider first the case where G is of type A_ℓ. The result follows from [1, 3.2, Exposé XVII] and induction if $G = SL_{\ell+1}$. For the other cases, as p does not divide the order of the fundamental group of G, we have a separable isogeny $\pi : SL_{\ell+1} \rightarrow G$ which induces a bijection on the set of Borel subgroups, whence the result follows.

In case $G = Sp_{2\ell}$, we argue similarly: a unipotent subgroup of G fixes a nonzero, isotropic vector in the natural representation of G and again by induction lies in a Borel subgroup of G. Indeed, this argument works as well for the orthogonal groups when $p \neq 2$.

Consider now the case where $G = G_2$ and $p = 3$. By the result for SO_7, we know that U fixes a nontrivial singular vector in the action of G on its 7-dimensional orthogonal representation. One checks that the stabilizer of such a vector is a parabolic subgroup of G_2. Indeed this is clear for the group of k-points as the long root parabolic lies in the stabilizer and is a maximal subgroup. One checks directly that the stabilizer in \mathfrak{g} of a maximal vector with respect to the fixed Borel subgroup is indeed a parabolic subalgebra with Levi factor a long root \mathfrak{sl}_2.

Now consider the case where p is a very good prime for G. As G is separably isogenous to a simply connected group, we may take G to be simply connected. Then G satisfies the following so-called standard hypotheses for a reductive group G (cf. [7, 5.8]):
- p is good for each irreducible component of the root system of G,
- the derived subgroup (G,G) is simply connected, and
- there exists a non-degenerate G-equivariant symmetric bilinear form $\kappa : \mathfrak{g} \times \mathfrak{g} \to k$.

We proceed by induction on $\dim G$, the case where $\dim G = 3$ and $G = \text{SL}_2$ having been handled above. By [1, Exposé XVII, 3.5], U has a nontrivial center $Z(U)$ and either there exists $X \in \text{Lie}(Z(U))$ with $X^p = 0$ and so $U \subset C_G(X)$ or there exists $u \in Z(U)$ with $u^p = 1$ and $U \subset C_G(u)$. Then applying Theorem A of [9], together with a Springer isomorphism between the variety of nilpotent elements and the variety of unipotent elements, we have that U lies in a proper parabolic subgroup P of G. Let L be a Levi subgroup of P; then L satisfies the standard hypotheses as well. Taking the image of U in $P/R_u(P)$, we obtain a unipotent subgroup scheme of (L,L) which is, by induction on the dimension of G, contained in a Borel subgroup B_L of L. We then have that $B_L \cdot R_u(P)$ is a Borel subgroup of G containing U.

It remains to consider the case where the root system of G is not irreducible and p is not a very good prime for G. In this case, G is separably isogenous to a direct product of simply connected almost simple groups, and the result follows as in the case of type A_r above. \square

We note that the conclusion of the proposition holds for reduced unipotent subgroup schemes even if the characteristic is a torsion prime for G. (See [6, 30.4].)

Before presenting our examples, we fix some additional notation. If G is separably isogenous to a simply connected group then we can and will choose a Chevalley basis $\{h_i, e_\alpha, f_\alpha : 1 \leq i \leq \ell, \alpha \in \Phi^+\}$ for \mathfrak{g}, satisfying the usual relations. If G is not separably isogenous to a simply connected group, then we can choose $\{h_i, e_\alpha, f_\alpha : 1 \leq i \leq \ell, \alpha \in \Phi^+\}$ satisfying the usual Chevalley relations; however, the h_i will not be linearly independent and a basis of \mathfrak{g} can be obtained by extending $\{h_i : 1 \leq i \leq \ell\}$ to a basis of $\text{Lie}(T)$. We use the structure constants given in [10] for \mathfrak{g} of type F_4; for \mathfrak{g} of type E_i, we use those given in [8]. Our labelling of Dynkin diagrams is taken as in [4]. It will sometimes be convenient to represent roots as the ℓ-tuple of integers giving the coefficients of the simple roots, arranged as in a Dynkin diagram.

3. Heisenberg-type subalgebras

Here we take G to be simply connected. For $G = \text{SL}_{mp}$, let E_{ij} denote the elementary $mp \times mp$ matrix with (r,s) entry $\delta_{ir}\delta_{js}$. Set $X = \sum_{j=0}^{m-1} \sum_{p=1}^{n-1} E_{jp+p,jp+p+1}\mathbb{Z}$ and $Y = \sum_{j=0}^{m-1} \sum_{p=1}^{n-1} iE_{jp+p+1,jp+p+1}\mathbb{Z}$. Then $X^p = 0 = Y^p$, $[X,Y] = I$ and hence the Lie algebra generated by X and Y is nilpotent.

Similar examples exist for other types with a non-trivial centre:
- if $p = 2$ and $G = \text{Spin}(2\ell + 1,k)$ then let $X = e_{\alpha\ell}$ and $Y = f_{\alpha\ell}$.
- if $p = 2$ and $G = \text{Sp}(2\ell,k)$ then let $X = \sum_{j=0}^{\ell/2} e_{2j-1\ell}$ and $Y = \sum_{j=0}^{\ell/2} i f_{2j-1\ell}$.
- if $p = 2$ and $G = \text{Spin}(2\ell,k)$ then let $X = e_{\alpha\ell-1} + e_{\alpha\ell}$ and $Y = f_{\alpha\ell-1} + f_{\alpha\ell}$.
- if $p = 3$ and G is of type E_6 then let $X = e_{\alpha_1} + e_{\alpha_2} + e_{\alpha_3} + e_{\alpha_6}$ and $Y = f_{\alpha_1} - f_{\alpha_2} + f_{\alpha_3} - f_{\alpha_6}$.
- if $p = 2$ and G is of type E_7 then let $X = e_{\alpha_2} + e_{\alpha_3} + e_{\alpha_7}$ and $Y = f_{\alpha_2} + f_{\alpha_3} + f_{\alpha_7}$.

In each of the above cases $X^p = 0 = Y^p$ and $[X,Y]$ is a nontrivial element of $\mathfrak{g}(\mathfrak{g})$, the center of \mathfrak{g}; in particular $[X,Y]$ is a nontrivial semisimple element. Hence there does not exist a Borel subalgebra of \mathfrak{g} which contains both X and Y.

Now let G_{ad} denote an adjoint type group with root system Φ and $\pi : G \to G_{ad}$ the corresponding central isogeny (cf. §22 of [2]); then $\ker(d\pi)$ is central in \mathfrak{g}. Applying 22.6 of [2], we see that π induces a bijection between Borel subgroups of G and Borel subgroups of G_{ad}. Moreover, by ([2, 22.4]), $d\pi$ is bijective on nilpotent elements in the unipotent radical of a Borel subgroup. We deduce that there is no Borel subalgebra of $\text{Lie}(G_{ad})$ which contains both $d\pi(X)$ and $d\pi(Y)$. Setting $\mathfrak{h} = kd\pi(X) + kd\pi(Y)$, we have our desired example.
Suppose now that the root system of G is not irreducible. Set $X = \sum_{i=1}^{r} e_{\alpha_i} \in \mathfrak{g}$, so $X \in \text{Lie}(B)$. Then there exists a cocharacter $\tau : G_m \to T$ with X in $\mathfrak{g}(\tau;2)$, the 2-weight space with respect to τ and $\text{Lie}(B) = \oplus_{i \geq 0} \mathfrak{g}(\tau;i)$. In particular, $\text{ad}(X) : \mathfrak{g}(\tau;i) \to \mathfrak{g}(\tau;i+2)$ for all $i \in \mathbb{Z}$. It is clear that $\text{ad}(X) : \mathfrak{g}(\tau;-2) \to \mathfrak{g}(\tau;0) = \text{Lie}(T)$ is surjective.

Suppose now that G_0 is isogenous to G and p divides the order of the fundamental group of G_0. Let $\pi : G \to G_0$ be a central isogeny; our assumption on p implies that there exists $0 \neq W \in \ker(d\pi)$. Then $W \in \text{Lie}(T)$; hence there exists a unique $Y \in \mathfrak{g}(\tau;-2)$ for which $[X,Y] = W$. Set $\mathfrak{h} \subset \text{Lie}(G_0)$ to be the restricted subalgebra generated by $d\pi(X)$ and $d\pi(Y)$. The proof that \mathfrak{h} does not lie in any Borel subalgebra of $\text{Lie}(G_0)$ goes through as above. Note that in most cases, $X^p \neq 0$.

4. Commutative subalgebras

In this section we study the case where p is a torsion prime for an irreducible component of the root system of G. In each case we construct a 3-dimensional commutative restricted subalgebra of \mathfrak{g} spanned by nilpotent elements e, X, Y, with $e^p = X^p = Y^p = 0$, which lies in no Borel subalgebra of G. It suffices to consider the case where G is simple. In what follows we will use the Bala-Carter-Pommerening notation for nilpotent orbits in \mathfrak{g}.

The case $p = 2$.

Here we take e to be an element of type A_3^3 if G is of type D_4 or E_6, of type $A_1 \times \tilde{A}_1$ if G is of type B_3 or F_4, and of type A_1 if G is of type G_2.

If the Dynkin diagram of G is simply-laced then it has a (unique) subdiagram of type D_4. We will work within this subsystem subalgebra. Set $e = e_{100} + e_{001} + e_{000}$, $X = e_{110} + e_{011} + e_{010}$, $Y = f_{111} + f_{110} + f_{011}$.

If G is of type B_3 or F_4 then the Dynkin diagram of G has a (unique) subdiagram of type B_3, which we label with roots $\beta_1, \beta_2, \beta_3$, where β_3 is short. Here we let $e = e_{\beta_1} + e_{\beta_3}$, $X = e_{110} + e_{011}$, $Y = f_{111} + f_{012}$.

Finally, if G is of type G_2 then let $e = e_{\alpha_1}$, $X = e_{11}$, $Y = f_{21}$.

The case $p = 3$.

Here either G is of type E_6, E_7, E_8 or G is of type F_4. We take e to be an element of type $A_3^3 \times A_1$ if G is of type E_8 and of type $A_1 \times A_2$ if G is of type F_4. If G is of type E_6, E_7 or E_8 then we can restrict to the (standard) subsystem of type E_6: let $e = e_{10000} + e_{01000} + e_{00100} + e_{00010} + e_{00001} + e_{00000}$, $X = e_{11100} + e_{00110} + e_{00011} + e_{01011} + e_{01110}$, $Y = f_{11110} + f_{00111} + f_{11100} + f_{01110}$.

If G is of type F_4 then let $e = e_{\alpha_1} + e_{\alpha_3} + e_{\alpha_4}$, $X = e_{0111} + e_{1110} - e_{0120}$ and $Y = 2f_{1111} - 2f_{1110} + f_{012}$.

The case $p = 5$.

Here G is of type E_6. We choose e to be an element of type $A_4 \times A_3$. Let $e = e_{\alpha_1} + e_{\alpha_2} + e_{\alpha_3} + e_{\alpha_4} + e_{\alpha_5} + e_{\alpha_6}$, $X = e_{1111000} + 2e_{0111110} + 2e_{1111100} + 2e_{0111111} + 2e_{0111110} - e_{0121000} - e_{0111100} + e_{0111000}$, $Y = f_{1111110} + f_{1110000} + f_{0111100} + 2f_{0011111} + 2f_{0011110} + f_{0012100} - 2f_{0011111}$.

Note that in each of the above cases, there exists e_α (resp. e_β, f_γ) in the expression for e (resp. X, Y) such that $\alpha + \beta - \gamma = 0$.

Proposition 4.1 Let $\mathfrak{h} = ke + kX + kY$, with e, X, Y as above. Then \mathfrak{h} is not contained in any Borel subalgebra of \mathfrak{g}.

Proof. Suppose \mathfrak{h} is contained in a Borel subalgebra. Then for some $g \in G$, $\text{Ad}(g(\mathfrak{h})) \subset \mathfrak{h}$, where \mathfrak{b} is the Borel subalgebra corresponding to the positive Weyl chamber. By the Bruhat decomposition, we have $g = u^\prime nu$, where $u, u'^\prime \in U^+$ and $n \in N_G(T)$. But now $\text{Ad}(\mathfrak{h}) \subset \mathfrak{b}$ if and only if $\text{Ad}(nu)(\mathfrak{h}) \subset \mathfrak{b}$, thus we may assume that $u' = 1$. Let $w = nT \in W$. We will explain our argument for the case where G
is of type D_4 and $p = 2$. Note that $\text{Ad}(u(e)) = e + x$, where x is in the span of all positive root subspaces for roots of length greater than 1. Thus $\text{Ad}(u(e)) \in \mathfrak{b}$ implies, in particular, that $w(\alpha_1) \in \Phi^+$. Applying a similar argument to X and Y, we see that $w(\alpha_2 + \alpha_3) \in \Phi^+$ and $w(-\alpha_1 + \alpha_2 + \alpha_3) \in \Phi^+$. Taking the sum $w(\alpha_1) + w(\alpha_2 + \alpha_3) + w(-\alpha_1 + \alpha_2 + \alpha_3) = 0$, we have a contradiction. This argument works for all the examples given above, using the observation that if e_1 and e_2 have non-zero coefficients in the expression for e then α and β are not congruent modulo the subgroup $\mathbb{Z}\Phi$ (and similarly for X, Y).

Finally, the examples of §3 and Proposition 4.1 give the following result:

Theorem 4.2 Let G be a semisimple algebraic group over k and p a torsion prime for G. Then there exists a non-reduced unipotent subgroup scheme of G which does not lie in any Borel subgroup of G.

We conclude with one further proposition which describes to some extent the nature of the 3-dimensional subalgebras defined above.

Proposition 4.3 Let e, X and Y be as in Proposition 4.1. Any non-zero element of $\mathfrak{h} = ke \oplus kX \oplus kY$ is conjugate to e and $N_G(\mathfrak{h})/C_G(\mathfrak{h}) \cong \text{SL}(3, k)$.

Proof. In each case, e is a regular nilpotent element in $\text{Lie}(L, L)$, for some Levi factor L of G normalized by T. Note that (L, L) is a commuting product of type A_m subgroups and hence p is good for (L, L). We choose τ to be a cocharacter of (L, L) (and hence a cocharacter of G), associated to e (see [7, 5.3]). In particular $e \in g(2; \tau)$. Then one checks that $g(\tau; -1) \cap C_G(e) = kX \oplus kY$. This then implies that the group $C = C_G(e) \cap C_G(\tau(k^\times))$ normalizes \mathfrak{h}. It can be checked that the adjoint representation induces a surjective morphism $C \twoheadrightarrow \text{SL}(kX \oplus kY)$. But we can apply a similar argument to an analogous subgroup of $C_G(Y)$. Thus $N_G(\mathfrak{h})$ contains the subgroups $\text{SL}(ke \oplus kX)$ and $\text{SL}(kX \oplus kY)$, and hence contains $\text{SL}(\mathfrak{h})$. In particular, all non-zero elements of \mathfrak{h} are conjugate by an element of $N_G(\mathfrak{h})$. It follows from our remark on root elements in the expressions for e, X and Y that there can be no cocharacter in G for which e, X and Y are all in the sum of positive weight spaces. This then implies that $N_G(\mathfrak{h})/C_G(\mathfrak{h})$ is isomorphic to $\text{SL}(\mathfrak{h})$.

References

