A Point is Normal for Almost All Maps $\beta x+\alpha \bmod 1$ or Generalized β-Transformations.

B. Faller and C-E. Pfister
EPF-L, SB IACS, Station 8, CH-1015 Lausanne, Switzerland
(e-mail: bastien.faller@a3.epfl.ch)
(e-mail: charles.pfister@epfl.ch)

(Received 18 June 2008)

Abstract

We consider the map $T_{\alpha, \beta}(x):=\beta x+\alpha \bmod 1$, which admits a unique probability measure of maximal entropy $\mu_{\alpha, \beta}$. For $x \in[0,1]$, we show that the orbit of x is $\mu_{\alpha, \beta}$-normal for almost all $(\alpha, \beta) \in[0,1) \times(1, \infty)$ (Lebesgue measure). Nevertheless we construct analytic curves in $[0,1) \times(1, \infty)$ along them the orbit of $x=0$ is at most at one point $\mu_{\alpha, \beta}$-normal. These curves are disjoint and they fill the set $[0,1) \times(1, \infty)$. We also study the generalized β-transformations (in particular the tent map). We show that the critical orbit $x=1$ is normal with respect to the measure of maximal entropy for almost all β.

1. Introduction

In this paper, we consider a dynamical system (X, d, T) where (X, d) is a compact metric space endowed with its Borel σ-algebra \mathcal{B} and $T: X \rightarrow X$ is a measurable map. Let $C(X)$ denote the set of all continuous functions from X into \mathbf{R}. The set $M(X)$ of all Borel probability measures is equipped with the weak*-topology. $M(X, T) \subset M(X)$ is the subset of all T-invariant probability measures. For $\mu \in M(X, T)$, let $h(\mu)$ denote the measure-theoretic entropy of μ. For all $x \in X$ and $n \geq 1$, the empirical measure of order n at x is

$$
\begin{equation*}
\mathcal{E}_{n}(x):=\frac{1}{n} \sum_{i=0}^{n-1} \delta_{x} \circ T^{-i} \in M(X) \tag{1}
\end{equation*}
$$

where δ_{x} is the Dirac mass at x. Let $V_{T}(x) \subset M(X, T)$ denote the set of all cluster points of $\left\{\mathcal{E}_{n}(x)\right\}_{n \geq 1}$ in the weak*-topology.

Definition 1. Let $\mu \in M(X, T)$ be an ergodic measure and $x \in X$. The orbit of x under T is μ-normal, if $V_{T}(x)=\{\mu\}$, ie for all continuous $f \in C(X)$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} f\left(T^{i} x\right)=\int f d \mu
$$

By the Birkhoff Ergodic Theorem, μ-almost all points are μ-normal, however it is difficult to identify a μ-normal point. This paper is devoted to the study of the normality of orbits for piecewise monotone continuous maps of the interval. We consider a family $\left\{T_{\kappa}\right\}_{\kappa \in K}$ of piecewise monotone continuous maps parameterized by a parameter $\kappa \in K$, such that for all $\kappa \in K$ there is a unique measure of maximal entropy μ_{κ}. In our case K is a subset of \mathbf{R} or \mathbf{R}^{2}. For a given $x \in X$, we estimate the Lebesgue measure of the subset of K such that the orbit of x under T_{κ} is μ_{κ}-normal.

For example, let $T_{\alpha, \beta}:[0,1] \rightarrow[0,1]$ be the piecewise monotone continuous map defined by $T_{\alpha, \beta}(x)=\beta x+\alpha \bmod 1$; here $\kappa=(\alpha, \beta) \in[0,1) \times(1, \infty)$. In [13], Parry constructed a $T_{\alpha, \beta}$-invariant probability measure $\mu_{\alpha, \beta}$ absolutely continuous with respect to Lebesgue measure, which is the unique measure of maximal entropy. The main result of section 3 is Theorem 3, which shows that for all $x \in[0,1]$ the set

$$
\mathcal{N}(x):=\left\{(\alpha, \beta) \in[0,1) \times(1, \infty): \text { the orbit of } x \text { under } T_{\alpha, \beta} \text { is } \mu_{\alpha, \beta} \text {-normal }\right\}
$$

has full 2-dimensional Lebesgue measure. This is a generalization of a theorem of Schmeling in $[\mathbf{1 7}]$, where the case $\alpha=0$ and $x=1$ is studied. For the β transformations, the orbit of 1 plays a particular role, so the restriction to $x=1$ considered by Schmeling is natural. Similarly for $T_{\alpha, \beta}$, the orbits of 0 and 1 are very important. In Theorem 4, we show that there exist curves in the plane (α, β) defined by $\alpha=\alpha(\beta)$ along which the orbits of 0 or 1 are never $\mu_{\alpha, \beta}$-normal. The curve $\alpha=0$ is a trivial example of such a curve for the fixed point $x=0$. In section 4 , we study the generalized β-transformations introduced by Góra [7]. A generalized β-transformation is similar to a β-transformation, but each lap is replaced by an increasing or decreasing lap of constant slope β according to a sequence of signs. For a given class of generalized β-transformations, there exists β_{0} such that for all $\beta>\beta_{0}$, there is a unique measure of maximal entropy μ_{β} and the set

$$
\left\{\beta>\beta_{0}: \text { the orbit of } 1 \text { under } T_{\beta} \text { is } \mu_{\beta} \text {-normal }\right\}
$$

has full Lebesgue measure, denoted below by λ. Since the tent maps are generalized β-transformations, we obtain an alternative proof of results of Bruin in [3].

2. Preliminaries

Let us define properly the coding for a piecewise monotone continuous map of the interval. The classical papers are [15], [13] and [10]. We consider the piecewise monotone continuous maps of the following type. Let $k \geq 2$ and $0=a_{0}<a_{1}<\cdots<a_{k}=1$. We set A : $=\{0, \ldots, k-1\}, I_{0}=\left[a_{0}, a_{1}\right), I_{j}=\left(a_{j}, a_{j+1}\right)$
for all $j \in 1, \ldots, k-2, I_{k-1}=\left(a_{k-1}, a_{k}\right]$ and $S_{0}=\left\{a_{j}: j \in 1, \ldots, k-1\right\}$. For all $j \in \mathrm{~A}$, let $f_{j}: I_{j} \rightarrow[0,1]$ be a strictly monotone continuous map. A piecewise monotone continuous map $T:[0,1] \backslash S_{0} \rightarrow[0,1]$ is defined by

$$
T(x)=f_{j}(x) \quad \text { if } x \in I_{j}
$$

We will state later in each specific case how to define T on S_{0}. We set $X_{0}=[0,1]$ and for all $n \geq 1$

$$
\begin{equation*}
X_{n}=X_{n-1} \backslash S_{n-1} \quad \text { and } \quad S_{n}=\left\{x \in X_{n}: T^{n}(x) \in S_{0}\right\} \tag{2}
\end{equation*}
$$

so that T^{n} is well defined on X_{n}. Finally we define $S=\bigcup_{n \geq 0} S_{n}$ such that $T^{n}(x)$ is well defined for all $x \in[0,1] \backslash S$ and all $n \geq 0$.

Let A be endowed with the discrete topology and $\Sigma_{k}=\mathrm{A}^{\mathbb{Z}_{+}}$be the product space. The elements of Σ_{k} are denoted by $\underline{x}=x_{0} x_{1} \ldots$ A finite string $\underline{w}=w_{0} \ldots w_{n-1}$ with $w_{j} \in \mathrm{~A}$ is a word. The length of \underline{w} is $|\underline{w}|=n$. There is a single word of length 0 , the empty word ε. The set of all words is A*. For two words $\underline{w}, \underline{z}$, we write $\underline{w} \underline{z}$ for the concatenation of the two words. For $\underline{x} \in \Sigma_{k}$, let $\underline{x}_{[i, j)}=x_{i} \ldots x_{j-1}$ denote the word formed by the coordinates i to $j-1$ of \underline{x}. For a word $\underline{w} \in \mathrm{~A}^{*}$ of length n, the cylinder $[\underline{w}]$ is the set

$$
[\underline{w}]:=\left\{\underline{x} \in \Sigma_{k}: \underline{x}_{[0, n)}=\underline{w}\right\} .
$$

The family $\left\{[\underline{w}]: \underline{w} \in \mathrm{~A}^{*}\right\}$ is a base for the topology and a semi-algebra generating the Borel σ-algebra. For all $\beta>1$, there exists a metric d_{β} compatible with the topology defined by

$$
d_{\beta}\left(\underline{x}, \underline{x}^{\prime}\right):= \begin{cases}0 & \text { if } \underline{x}=\underline{x}^{\prime} \\ \beta^{-\min \left\{n \geq 0: \underline{x}_{n} \neq \underline{x}_{n}^{\prime}\right\}} & \text { otherwise }\end{cases}
$$

The left shift map $\sigma: \Sigma_{k} \rightarrow \Sigma_{k}$ is defined by

$$
\sigma(\underline{x})=x_{1} x_{2} \ldots
$$

It is a continuous map. We define a total order on Σ_{k} denoted by \prec. We set

$$
\delta(j)= \begin{cases}+1 & \text { if } f_{j} \text { is increasing } \\ -1 & \text { if } f_{j} \text { is decreasing }\end{cases}
$$

and for word \underline{w}

$$
\delta(\underline{w})= \begin{cases}1 & \text { if } \underline{w}=\varepsilon \\ \delta\left(w_{0}\right) \cdots \delta\left(w_{n-1}\right) & \text { if } \underline{w} \text { has length } n .\end{cases}
$$

Let $\underline{x} \neq \underline{x}^{\prime} \in \Sigma_{k}$ and define $n=\min \left\{j \geq 0: x_{j} \neq x_{j}^{\prime}\right\}$, then

$$
\underline{x} \prec \underline{x}^{\prime} \Leftrightarrow \begin{cases}x_{n}<x_{n}^{\prime} & \text { if } \delta\left(\underline{x}_{[0, n)}\right)=+1 \\ x_{n}>x_{n}^{\prime} & \text { if } \delta\left(\underline{x}_{[0, n)}\right)=-1 .\end{cases}
$$

When all maps f_{j} are increasing, this is the lexicographic order.

We define the coding map i : $[0,1] \backslash S \rightarrow \Sigma_{k}$ by

$$
\mathrm{i}(x):=\mathrm{i}_{0}(x) \mathbf{i}_{1}(x) \ldots \quad \text { with } \mathbf{i}_{n}(x)=j \Leftrightarrow T^{n}(x) \in I_{j} .
$$

The coding map i is left undefined on S. Henceforth we suppose that T is such that i is injective. A sufficient condition for the injectivity of the coding is the existence of $c>1$ such that $\left|f_{j}^{\prime}(x)\right| \geq c$ for all $x \in I_{j}$ and all $j \in \mathrm{~A}$, see [13]. This condition is satisfied in all cases considered in the paper. The coding map is order preserving, ie for all $x, x^{\prime} \in[0,1] \backslash S$

$$
x<x^{\prime} \Rightarrow \mathrm{i}(x) \prec \mathrm{i}\left(x^{\prime}\right) .
$$

Define $\Sigma_{T}:=\overline{\mathrm{i}([0,1] \backslash S)}$. We introduce now the φ-expansion as defined by Parry. For all $j \in \mathrm{~A}$, let $\varphi^{j}:[j, j+1] \rightarrow\left[a_{j}, a_{j+1}\right]$ be the unique monotone extension of $f_{j}^{-1}:(c, d) \rightarrow\left(a_{j}, a_{j+1}\right)$ where $(c, d):=f_{j}\left(\left(a_{j}, a_{j+1}\right)\right)$. The map $\varphi: \Sigma_{k} \rightarrow[0,1]$ is defined by

$$
\varphi(\underline{x})=\lim _{n \rightarrow \infty} \varphi^{x_{0}}\left(x_{0}+\varphi^{x_{1}}\left(x_{1}+\cdots+\varphi^{x_{n}}\left(x_{n}\right)\right)\right) .
$$

Parry proved that this limit exists if i is injective. The map φ is order preserving. Moreover $\left.\varphi\right|_{\mathrm{i}([0,1] \backslash S)}=\mathrm{i}^{-1}$ and for all $n \geq 0$ and all $x \in[0,1] \backslash S$

$$
\begin{equation*}
T^{n}(x)=\varphi \circ \sigma^{n} \circ \mathrm{i}(x) \tag{3}
\end{equation*}
$$

If the coding map is injective, one can show that the map φ is continuous (see Theorem 2.3 in [6]). Using the continuity and the monotonicity of φ, we have $\varphi\left(\Sigma_{T}\right)=[0,1]$. Remark that there is in general no extension of i on $[0,1]$ such that equation (3) is valid on $[0,1]$. For all $j \in \mathrm{~A}$, define

$$
\underline{u}^{j}:=\lim _{x \downarrow a_{j}} \mathbf{i}(x) \quad \text { and } \quad \underline{v}^{j}:=\lim _{x \uparrow a_{j+1}} \mathbf{i}(x) \quad \text { with } x \in[0,1] \backslash S .
$$

The strings \underline{u}^{j} and \underline{v}^{j} are called critical orbits and (see for instance [10])

$$
\begin{equation*}
\Sigma_{T}=\left\{\underline{x} \in \Sigma_{k}: \underline{u}^{x_{n}} \preceq \sigma^{n} \underline{x} \preceq \underline{v}^{x_{n}} \forall n \geq 0\right\} . \tag{4}
\end{equation*}
$$

Moreover the critical orbits $\underline{u}^{j}, \underline{v}^{j}$ satisfy for all $j \in \mathrm{~A}$

$$
\left\{\begin{array}{l}
\underline{u}^{u_{n}^{j}} \preceq \sigma^{n} \underline{u}^{j} \preceq \underline{v}^{u_{n}^{j}} \tag{5}\\
\underline{u}^{v_{n}^{j}} \preceq \sigma^{n} \underline{v}^{j} \preceq \underline{v}_{n}^{v^{j}}
\end{array} \quad \forall n \geq 0 .\right.
$$

Let us recall the construction of the Hausdorff dimension. Let (X, d) be a metric space and $E \subset X$. Let $\mathcal{D}_{\varepsilon}(E)$ be the set of all finite or countable cover of E with sets of diameter smaller then ε. For all $s \geq 0$, define

$$
H_{\varepsilon}(E, s):=\inf \left\{\sum_{B \in \mathcal{C}}(\operatorname{diam} B)^{s}: \mathcal{C} \in \mathcal{D}_{\varepsilon}(E)\right\}
$$

and the s-Hausdorff measure of $E, H(E, s):=\lim _{\varepsilon \rightarrow 0} H_{\varepsilon}(E, s)$. The Hausdorff dimension of E is

$$
\operatorname{dim}_{H} E:=\inf \{s \geq 0: H(E, s)=0\}
$$

In [1], Bowen introduced a definition of the topological entropy of non compact set for a continuous dynamical system on a metric space. We recall this definition. Let (X, d) be a metric space, $T: X \rightarrow X$ a continuous map. For $n \geq 1, \varepsilon>0$ and $x \in X$, let

$$
B_{n}(x, \varepsilon)=\left\{y \in X: d\left(T^{j}(x), T^{j}(y)\right)<\varepsilon \forall j=0, \ldots, n-1\right\} .
$$

For $E \subset X$, such that $T(E) \subset E$, let $\mathcal{G}_{n}(E, \varepsilon)$ be the set of all finite or countable covers of E with Bowen's balls $B_{m}(x, \varepsilon)$ for $m \geq n$. For all $s \geq 0$, define

$$
C_{n}(E, \varepsilon, s):=\inf \left\{\sum_{B_{m}(x, \varepsilon) \in \mathcal{C}} e^{-m s}: \mathcal{C} \in \mathcal{G}_{n}(x, \varepsilon)\right\}
$$

and $C(E, \varepsilon, s):=\lim _{n \rightarrow \infty} C_{n}(E, \varepsilon, s)$. Now, let

$$
h_{\mathrm{top}}(E, \varepsilon):=\inf \{s \geq 0: C(E, \varepsilon, s)=0\}
$$

and finally $h_{\mathrm{top}}(E)=\lim _{\varepsilon \rightarrow 0} h_{\mathrm{top}}(E, \varepsilon)$ (this last limit increase to $h_{\mathrm{top}}(E)$). There is an evident similarity of this definition with the Hausdorff dimension. This similarity is the key of the next lemma.

Lemma 1. For $\beta>1$, consider the dynamical system $\left(\Sigma_{k}, d_{\beta}, \sigma\right)$. Let $E \subset \Sigma_{k}$ be such that $\sigma(E) \subset E$, then

$$
\operatorname{dim}_{H} E \leq \frac{h_{\mathrm{top}}(E)}{\log \beta}
$$

Proof: Let $\varepsilon \in(0,1), s \geq 0, n \geq 0$ and $\mathcal{C} \in \mathcal{G}_{n}(E, \varepsilon)$. Since $\operatorname{diam} B_{m}(x, \varepsilon) \leq$ $\varepsilon \beta^{-m+1} \leq \varepsilon \beta^{-n+1}$ for all $B_{m}(x, \varepsilon) \in \mathcal{C}, \mathcal{C}$ is a cover of E with sets of diameter smaller than $\varepsilon \beta^{-n+1}$. Moreover

$$
\sum_{B_{m}(x, \varepsilon) \in \mathcal{C}} \operatorname{diam}\left(B_{m}(x, \varepsilon)\right)^{\frac{s}{\log \beta}} \leq(\varepsilon \beta)^{\frac{s}{\log \beta}} \sum_{B_{m}(x, \varepsilon) \in \mathcal{C}} e^{-m s}
$$

Thus $H_{\delta}\left(E, \frac{s}{\log \beta}\right) \leq(\varepsilon \beta)^{\frac{s}{\log \beta}} C_{n}(E, \varepsilon, s)$ with $\delta=\varepsilon \beta^{-n+1}$. Taking the limit $n \rightarrow \infty$, we obtain

$$
H\left(E, \frac{s}{\log \beta}\right) \leq(\varepsilon \beta)^{\frac{s}{\log \beta}} C(E, \varepsilon, s)
$$

If $s>h_{\mathrm{top}}(E, \varepsilon)$, then $H\left(E, \frac{s}{\log \beta}\right)=0$ and $\frac{s}{\log \beta} \geq \operatorname{dim}_{H} E$. This is true for all $s>h_{\mathrm{top}}(E, \varepsilon)$, thus

$$
\operatorname{dim}_{H} E \leq \frac{h_{\text {top }}(E, \varepsilon)}{\log \beta} \leq \frac{h_{\text {top }}(E)}{\log \beta}
$$

The next lemma is a classical result about the Hausdorff dimension, it is Proposition 2.3 in [4].

Lemma 2. Let $(X, d),\left(X^{\prime}, d^{\prime}\right)$ be two metric spaces and $\rho: X \rightarrow X^{\prime}$ be an α-Hölder continuous map with $\alpha \in(0,1]$. Let $E \in X$, then

$$
\operatorname{dim}_{H} \rho(E) \leq \frac{\operatorname{dim}_{H} E}{\alpha}
$$

Finally we report Theorem 4.1 from [14]. This theorem is used to estimate the topological entropy of sets we are interested in.

Theorem 1. Let (X, d, T) be a continuous dynamical system and $F \subset M(X, T)$ be a closed subset. Define

$$
G:=\left\{x \in X: V_{T}(x) \cap F \neq \emptyset\right\} .
$$

Then

$$
h_{\mathrm{top}}(G) \leq \sup _{\nu \in F} h(\nu) .
$$

3. Normality for the maps $\beta x+\alpha \bmod 1$

In this section, we study the piecewise monotone continuous maps $T_{\alpha, \beta}$ defined by $T_{\alpha, \beta}(x)=\beta x+\alpha \bmod 1$ with $\beta>1$ and $\alpha \in[0,1)$. These maps were studied by Parry in $[\mathbf{1 3}]$ as a generalization of the β-transformations. In his paper Parry constructed a $T_{\alpha, \beta}$-invariant probability measure $\mu_{\alpha, \beta}$, which is absolutely continuous with respect to Lebesgue measure. Its density is

$$
\begin{equation*}
h_{\alpha, \beta}(x):=\frac{d \mu_{\alpha, \beta}}{d \lambda}(x)=\frac{1}{N_{\alpha, \beta}} \frac{\sum_{n \geq 0} 1_{x<T_{\alpha, \beta}^{n}(1)}-\sum_{n \geq 0} 1_{x<T_{\alpha, \beta}^{n}(0)}}{\beta^{n+1}} \tag{6}
\end{equation*}
$$

with $N_{\alpha, \beta}$ the normalization factor. In [8], Halfin proved that $h_{\alpha, \beta}(x)$ is nonnegative for all $x \in[0,1]$. Let $\mathrm{i}^{\alpha, \beta}$ denote the coding map under $T_{\alpha, \beta}, \varphi^{\alpha, \beta}$ the corresponding φ-expansion, $\Sigma_{\alpha, \beta}:=\Sigma_{T_{\alpha, \beta}} \subset \Sigma_{k}$ with $k:=\lceil\alpha+\beta\rceil, \underline{u}^{\alpha, \beta}:=\lim _{x \downarrow 0} \mathrm{i}^{\alpha, \beta}(x)$ and $\underline{v}^{\alpha, \beta}:=\lim _{x \uparrow 1} \mathrm{i}^{\alpha, \beta}(x)$. We specify how $T_{\alpha, \beta}$ is defined at the discontinuity points. We choose to define $T_{\alpha, \beta}$ by right-continuity at $a_{j} \in S_{0}$. Doing this we can also extend the definition of the coding map $\mathrm{i}^{\alpha, \beta}$ using the disjoint intervals $\left[a_{j}, a_{j+1}\right)$ for $j \in \mathrm{~A}$, so that $\mathrm{i}^{\alpha, \beta}$ is now defined for all $x \in[0,1) \dagger$. We can show that $\underline{u}^{\alpha, \beta}=\mathrm{i}^{\alpha, \beta}(0)$ and

$$
\mathrm{i}([0,1))=\left\{\underline{x} \in \Sigma_{k}: \underline{u}^{\alpha, \beta} \preceq \sigma^{n} \underline{x} \prec \underline{v}^{\alpha, \beta} \quad \forall n \geq 0\right\}
$$

and equation (3) is true for all $x \in[0,1)$. It is easy to check that formula (4) becomes

$$
\begin{equation*}
\Sigma_{\alpha, \beta}=\left\{\underline{x} \in \Sigma_{k}: \underline{u}^{\alpha, \beta} \preceq \sigma^{n} \underline{x} \preceq \underline{v}^{\alpha, \beta} \quad \forall n \geq 0\right\} \tag{7}
\end{equation*}
$$

and inequalities (5) become

$$
\left\{\begin{array}{l}
\underline{u}^{\alpha, \beta} \preceq \sigma^{n} \underline{u}^{\alpha, \beta} \preceq \underline{v}^{\alpha, \beta} \tag{8}\\
\underline{u}^{\alpha, \beta} \preceq \sigma^{n} \underline{v}^{\alpha, \beta} \preceq \underline{v}^{\alpha, \beta}
\end{array} \quad \forall n \geq 0 .\right.
$$

It is known that the dynamical system $\left(\Sigma_{\alpha, \beta}, \sigma\right)$ has topological entropy $\log \beta$. Moreover, Hofbauer showed in [11] that it has a unique measure of maximal entropy $\hat{\mu}_{\alpha, \beta}, \mu_{\alpha, \beta}=\hat{\mu}_{\alpha, \beta} \circ\left(\varphi^{\alpha, \beta}\right)^{-1}$ and $\mu_{\alpha, \beta}$ is the unique measure of maximal entropy for $T_{\alpha, \beta}$. In view of (7) and (8), for a couple $(\underline{u}, \underline{v}) \in \Sigma_{k}^{2}$ satisfying

$$
\left\{\begin{array}{l}
\underline{u} \preceq \sigma^{n} \underline{u} \preceq \underline{v} \tag{9}\\
\underline{u} \preceq \sigma^{n} \underline{v} \preceq \underline{v}
\end{array} \quad \forall n \geq 0,\right.
$$

\dagger This convention differs from that made in the previous section; however it is the most convenient choice when all f_{j} are increasing.
we define the shift space

$$
\begin{equation*}
\Sigma_{\underline{u}, \underline{v}}:=\left\{\underline{x} \in \Sigma_{k}: \underline{u} \preceq \sigma^{n} \underline{x} \preceq \underline{v} \quad \forall n \geq 0\right\} . \tag{10}
\end{equation*}
$$

We give now a lemma and a proposition which are the keys of the main theorem of this section. In the lemma, we show that for given x and α, there is exponential separation between the orbits of x under the two different dynamical systems $T_{\alpha, \beta_{1}}$ and $T_{\alpha, \beta_{2}}$. The proposition asserts that the topological entropy of $\Sigma_{\underline{u}, \underline{v}}$ is upper semi-continuous with respect to the critical orbits \underline{u} and \underline{v}.

Lemma 3. Let $x \in[0,1), \alpha \in[0,1)$ and $1<\beta_{1} \leq \beta_{2}$. Define $l=\min \{n \geq 0$: $\left.\mathbf{i}_{n}^{1}(x) \neq \mathbf{i}_{n}^{2}(x)\right\}$ with $\mathbf{i}^{j}(x)=\mathbf{i}^{\alpha, \beta_{j}}$ for $j=1$, 2 . If $x \neq 0$, then

$$
\beta_{2}-\beta_{1} \leq \frac{\beta_{2}}{x} \beta_{2}^{-l}
$$

If $x=0$ and $\alpha \neq 0$, then

$$
\beta_{2}-\beta_{1} \leq \frac{\beta_{2}^{2}}{\alpha} \beta_{2}^{-l}
$$

Proof: Let $\delta:=\beta_{2}-\beta_{1} \geq 0$. We prove by induction that for all $m \geq 1$, $\mathrm{i}_{[0, m)}^{1}(x)=\mathrm{i}_{[0, m)}^{2}(x)$ implies

$$
T_{2}^{m}(x)-T_{1}^{m}(x) \geq \beta_{2}^{m-1} \delta x
$$

where $T_{i}=T_{\alpha, \beta_{i}}$. For $m=1$,

$$
T_{2}(x)-T_{1}(x)=\beta_{2} x+\alpha-\mathbf{i}_{0}^{2}(x)-\left(\beta_{1} x+\alpha-\mathbf{i}_{0}^{1}(x)\right)=\delta x .
$$

Suppose that this is true for m, then $\mathbf{i}_{[0, m+1)}^{1}=\mathbf{i}_{[0, m+1)}^{2}$ implies

$$
\begin{aligned}
T_{2}^{m+1}(x)-T_{1}^{m+1}(x) & =\beta_{2} T_{2}^{m}(x)+\alpha-\mathbf{i}_{m}^{2}(x)-\left(\beta_{1} T_{1}^{m}(x)+\alpha-\mathbf{i}_{m}^{1}(x)\right) \\
& =\beta_{2}\left(T_{2}^{m}(x)-T_{1}^{m}(x)\right)+\delta T_{1}^{m}(x) \geq \beta_{2}^{m} \delta x
\end{aligned}
$$

On the other hand, $1 \geq T_{2}^{m}(x)-T_{1}^{m}(x) \geq \beta_{2}^{m-1} \delta x$. Thus $\delta \leq \frac{\beta_{2}^{-m+1}}{x}$ for all m such that $\mathrm{i}_{[0, m)}^{1}=\mathrm{i}_{[0, m)}^{2}$. If $x=0$, then $T_{1}(x)=T_{2}(x)=\alpha$ and we can apply the first statement to $y=\alpha>0$.

Proposition 1. Let the pair $(\underline{u}, \underline{v}) \in \Sigma_{k}^{2}$ satisfy (9). For all $\delta>0$, there exists $L(\delta, \underline{u}, \underline{v})$ such that for all $L \geq L(\delta, \underline{u}, \underline{v})$, the following claim is true: let the pair $\left(\underline{u}^{\prime}, \underline{v}^{\prime}\right) \in \Sigma_{k}^{2}$ satisfy (9); suppose further that $\underline{u}, \underline{u}^{\prime}$ have a common prefix of length L and $\underline{v}, \underline{v}^{\prime}$ have a common prefix of length L, then

$$
h_{\mathrm{top}}\left(\Sigma_{\underline{u}^{\prime}, \underline{v}^{\prime}}\right) \leq h_{\mathrm{top}}\left(\Sigma_{\underline{u}, \underline{v}}\right)+\delta .
$$

To prove Proposition 1 one associates to the subshift $\Sigma_{\underline{u}, \underline{v}}$ a graph $\mathcal{G}(\underline{u}, \underline{v})$, called the Markov diagram [11]. One then proves an equivalent proposition to Proposition 1 for these graphs, see section 5 .

We now state our first theorem and his corollary about the normality of orbits under $T_{\alpha, \beta}$. The proof of the theorem is inspired by the proof of Theorem C in $[\mathbf{1 7}]$, where the case $x=1$ and $\alpha=0$ is considered.

Theorem 2. Let $x \in[0,1)$ and $\alpha \in[0,1)$ except for $(x, \alpha)=(0,0)$. Then the set $\left\{\beta>1\right.$: the orbit of $\mathrm{i}^{\alpha, \beta}(x)$ under σ is $\hat{\mu}_{\alpha, \beta}$-normal $\}$
has full λ-measure.
Corollary 1. Let $x \in[0,1)$ and $\alpha \in[0,1)$ except for $(x, \alpha)=(0,0)$. Then the set

$$
\left\{\beta>1: \text { the orbit of } x \text { under } T_{\alpha, \beta} \text { is } \mu_{\alpha, \beta} \text {-normal }\right\}
$$

has full λ-measure.
Remark that the theorem and its corollary may also be formulated for $x \in(0,1]$ using a left-continuous extension of $T_{\alpha, \beta}$ on $(0,1]$ and a coding $\mathrm{i}^{\alpha, \beta}$ defined using intervals $\left(a_{j}, a_{j+1}\right]$ for all $j \in \mathrm{~A}$.
Proof of the theorem: We briefly sketch the proof. It is sufficient to consider a finite interval $[\underline{\beta}, \bar{\beta}]$. We use the uniqueness of the measure of maximal entropy $\hat{\mu}_{\alpha, \beta}$: for $\underline{x} \in \Sigma_{\alpha, \beta}$ not $\hat{\mu}_{\alpha, \beta}$-normal, there exists $\nu \in V_{\sigma}(\underline{x})$ such that $h(\nu)<h\left(\hat{\mu}_{\alpha, \beta}\right)=$ $\log \beta$. Therefore we cover the set of abnormal β in $[\underline{\beta}, \bar{\beta}]$ by sets $\Omega_{N}, N \in \mathbb{N}$,

$$
\Omega_{N}:=\left\{\beta \in[\underline{\beta}, \bar{\beta}]:\left\{\mathcal{E}_{n}\left(\mathrm{i}^{\alpha, \beta}(x)\right)\right\}_{n} \text { clusters on } \nu \text { with } h(\nu)<(1-1 / N) \log \beta\right\} .
$$

We consider each Ω_{N} separately and cover them by appropriate intervals, which we generically denote by $\left[\beta_{1}, \beta_{2}\right]$. The main idea is to imbed $\left\{\mathbf{i}^{\alpha, \beta}(x): \beta \in\left[\beta_{1}, \beta_{2}\right]\right\}$ in a shift space $\Sigma^{*}:=\Sigma_{\underline{u}^{*}, \underline{v}^{*}}$ with \underline{u}^{*} and \underline{v}^{*} well chosen. Writing $D^{*} \subset \Sigma^{*}$ for the range of the imbedding, we estimate the Hausdorff dimension of the subset of D^{*} corresponding to points $\mathrm{i}^{\alpha, \beta}(x)$ which are not $\hat{\mu}_{\alpha, \beta}$-normal. Then we estimate the coefficient of Hölder continuity of the map ρ_{*} defined as the inverse of the imbedding. This gives us an estimate of the Hausdorff dimension of the non $\hat{\mu}_{\alpha, \beta^{-}}$ normal points in the interval $\left[\beta_{1}, \beta_{2}\right]$.

To obtain uniform estimates, we restrict our proof to the interval $[\underline{\beta}, \bar{\beta}]$ with $1<\underline{\beta}<\bar{\beta}<\infty$. All shift spaces below are subshifts of Σ_{k} with $k=\lceil\alpha+\bar{\beta}\rceil$. Let $\Omega:={ }^{-}\left\{\beta \in[\underline{\beta}, \bar{\beta}]: \mathbf{i}^{\alpha, \beta}(x)\right.$ is not $\hat{\mu}_{\alpha, \beta}$-normal $\}$. For $\beta \in \Omega$, we have $V_{\sigma}\left(\mathrm{i}^{\alpha, \beta}(x)\right) \neq$ $\left\{\hat{\mu}_{\alpha, \beta}\right\}$. Since $\hat{\mu}_{\alpha, \beta}$ is the unique $T_{\alpha, \beta}$-invariant measure of maximal entropy $\log \beta$, there exist $N \in \mathbb{N}$ and $\nu \in V_{\sigma}\left(\mathrm{i}^{\alpha, \beta}(x)\right)$ such that $h(\nu)<(1-1 / N) \log \beta$. Setting

$$
\Omega_{N}:=\left\{\beta \in[\underline{\beta}, \bar{\beta}]: \exists \nu \in V_{\sigma}\left(\mathrm{i}^{\alpha, \beta}(x)\right) \text { s.t. } h(\nu)<(1-1 / N) \log \beta\right\}
$$

we have $\Omega=\bigcup_{N \geq 1} \Omega_{N}$. We will prove that $\operatorname{dim}_{H} \Omega_{N}<1$, so that $\lambda\left(\Omega_{N}\right)=0$ for all $N \geq 1$.

For $N \in \mathbb{N}$ fixed, define $\varepsilon:=\frac{\beta \log \underline{\beta}}{\overline{2} N-\overline{1}}>0$ and $\delta:=\log (1+\varepsilon / \bar{\beta})$. Let $\beta \in[\underline{\beta}, \bar{\beta}]$ and define $L_{\beta}=L\left(\delta / 2, \underline{u}^{\alpha, \beta}, \underline{v}^{\alpha, \beta}\right)$ as in Proposition 1. Choose q_{β} in \mathbf{Q} such that $\log \beta-\delta / 2 \leq \log q_{\beta} \leq \log \beta$. Let

$$
J\left(\beta, L_{\beta}, q_{\beta}\right):=\left\{\beta^{\prime} \in\left[q_{\beta}, \bar{\beta}\right]: \underline{u}_{\left[0, L_{\beta}\right)}^{\alpha, \beta^{\prime}}=\underline{u}_{\left[0, L_{\beta}\right)}^{\alpha, \beta}, \underline{v}_{\left[0, L_{\beta}\right)}^{\alpha, \beta^{\prime}}=\underline{v}_{\left[0, L_{\beta}\right)}^{\alpha, \beta}\right\} .
$$

This set is an interval; if $\beta^{\prime} \in J\left(\beta, L_{\beta}, q_{\beta}\right), \beta^{\prime}<\beta^{\prime \prime} \in J\left(\beta, L_{\beta}, q_{\beta}\right)$ then $\left[\beta^{\prime}, \beta^{\prime \prime}\right] \subset J\left(\beta, L_{\beta}, q_{\beta}\right)$ since the maps $\beta^{\prime} \mapsto \underline{u}^{\alpha, \beta^{\prime}}$ and $\beta^{\prime} \mapsto \underline{v}^{\alpha, \beta^{\prime}}$ are both monotone increasing. Moreover $\beta \in J\left(\beta, L_{\beta}, q_{\beta}\right)$. Notice also that the family
$\left\{J\left(\beta, L_{\beta}, q_{\beta}\right): \beta \in[\beta, \bar{\beta}]\right\}$ is countable. Indeed the interval $J\left(\beta, L_{\beta}, q_{\beta}\right)$ is entirely characterized by $\underline{u}_{\left[0, L_{\beta}\right)}^{\alpha, \bar{\beta}}, \underline{v}_{\left[0, L_{\beta}\right)}^{\alpha, \beta}$ and q_{β}. But there are only countably many triples in $\mathrm{A}^{*} \times \mathrm{A}^{*} \times \mathbf{Q}$. Thus $\left\{J\left(\beta, L_{\beta}, q_{\beta}\right): \beta \in[\underline{\beta}, \bar{\beta}]\right\}$ is a countable cover of $[\underline{\beta}, \bar{\beta}]$. To prove that $\lambda\left(\Omega_{N}\right)=0$, it is sufficient to prove that $\lambda\left(\Omega_{N} \cap J\left(\beta, L_{\beta}, q_{\beta}\right)\right)=0$ for all $\beta \in[\underline{\beta}, \bar{\beta}]$. The interval $J\left(\beta, L_{\beta}, q_{\beta}\right)$ may be open, closed or neither open nor closed. We need to work on a closed interval, thus we prove an equivalent result: for any closed interval $\left[\beta_{1}, \beta_{2}\right] \subset J\left(\beta, L_{\beta}, q_{\beta}\right)$, we have $\lambda\left(\Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right]\right)=0$.

Let $\underline{u}^{j}=\underline{u}^{\alpha, \beta_{j}}$ and $\underline{v}^{j}=\underline{v}^{\alpha, \beta_{j}}$. Using (8) and the monotonicity of $\beta \mapsto \underline{u}^{\alpha, \beta}$ and $\beta \mapsto \underline{v}^{\alpha, \beta}$, we have

$$
\begin{aligned}
& \underline{u}^{1} \preceq \sigma^{n} \underline{u}^{1} \preceq \underline{v}^{1} \preceq \underline{v}^{2} \\
& \underline{u}^{1} \preceq \underline{u}^{2} \preceq \sigma^{n} \underline{v}^{2} \preceq \underline{v}^{2}
\end{aligned} \quad \forall n \geq 0 .
$$

Hence the couple ($\underline{u}^{1}, \underline{v}^{2}$) satisfies (9) and we set $\Sigma^{*}:=\Sigma_{\underline{u}^{1}, \underline{v}^{2}}$ and

$$
D^{*}:=\left\{\underline{z} \in \Sigma^{*}: \exists \beta \in\left[\beta_{1}, \beta_{2}\right] \text { s.t. } \underline{z}=\mathrm{i}^{\alpha, \beta}(x)\right\} .
$$

We define an map $\rho_{*}: D^{*} \rightarrow\left[\beta_{1}, \beta_{2}\right]$ by $\rho_{*}(\underline{z})=\beta \Leftrightarrow \mathrm{i}^{\alpha, \beta}(x)=\underline{z}$. This map is well defined: by definition of D^{*}, for all $\underline{z} \in D^{*}$ there exists a β such that $\underline{z}=\mathrm{i}^{\alpha, \beta}(x)$; moreover this β is unique, since by Lemma $3, \beta \mapsto \mathrm{i}^{\alpha, \beta}(x)$ is strictly increasing. On the other hand, for all $\beta \in\left[\beta_{1}, \beta_{2}\right]$, we have from (7)

$$
\underline{u}^{1} \preceq \underline{u}^{\alpha, \beta} \preceq \sigma^{n} \mathbf{i}^{\alpha, \beta}(x) \preceq \underline{v}^{\alpha, \beta} \preceq \underline{v}^{2} \quad \forall n \geq 0
$$

whence $\mathrm{i}^{\alpha, \beta}(x) \in \Sigma^{*}$ and $\rho_{*}: D^{*} \rightarrow\left[\beta_{1}, \beta_{2}\right]$ is surjective. Let $\log \beta_{*}:=h_{\mathrm{top}}\left(\Sigma^{*}\right)$; then by Proposition 1

$$
\log \beta^{*}=h_{\mathrm{top}}\left(\Sigma^{*}\right) \leq h_{\mathrm{top}}\left(\Sigma_{\alpha, \beta}\right)+\delta / 2=\log \beta+\delta / 2
$$

By definition of q_{β}, we have $\log \beta-\delta / 2 \leq \log q_{\beta} \leq \log \beta_{1}$, thus $\log \beta^{*} \leq \log \beta_{1}+\delta$ and

$$
\begin{equation*}
\beta_{*}-\beta_{1} \leq \beta_{1}\left(\mathrm{e}^{\delta}-1\right) \leq \varepsilon \tag{11}
\end{equation*}
$$

Let us compute the coefficient of Hölder continuity of $\rho_{*}:\left(D^{*}, d_{\beta_{*}}\right) \rightarrow\left[\beta_{1}, \beta_{2}\right]$. Let $\underline{z} \neq \underline{z}^{\prime} \in D^{*}$ and $n=\min \left\{l \geq 0: z_{l} \neq z_{l}^{\prime}\right\}$, then $d_{\beta_{*}}\left(\underline{z}, \underline{z}^{\prime}\right)=\beta_{*}^{-n}$. By Lemma 3, there exists C such that

$$
\left|\rho_{*}(\underline{z})-\rho_{*}\left(\underline{z}^{\prime}\right)\right| \leq C \rho_{*}(\underline{z})^{-n} \leq C \beta_{1}^{-n}=C\left(d_{\beta_{*}}\left(\underline{z}, \underline{z}^{\prime}\right)\right)^{\frac{\log \beta_{1}}{\log \beta_{*}}}
$$

where

$$
C=\max \left\{\frac{\bar{\beta}}{x}, \frac{\bar{\beta}^{2}}{\alpha}\right\} .
$$

By equation (11) and the choice of ε, we have

$$
\begin{aligned}
\beta_{*}-\beta_{1} \leq \frac{\beta \log \underline{\beta}}{2 N-1} & \Rightarrow \beta_{*}-\beta_{1} \leq \frac{\beta_{1} \log \beta_{1}}{2 N-1} \\
& \Leftrightarrow 1+\frac{\beta_{*}-\beta_{1}}{\beta_{1} \log \beta_{1}} \leq 1+\frac{1}{2 N-1} \\
& \Leftrightarrow \frac{\log \beta_{1}+\frac{\beta_{*}-\beta_{1}}{\beta_{1}}}{\log \beta_{1}} \leq \frac{2 N}{2 N-1} \\
& \Rightarrow \frac{\log \beta_{1}}{\log \beta_{*}} \geq \frac{\log \beta_{1}}{\log \beta_{1}+\frac{\beta_{*}-\beta_{1}}{\beta_{1}}} \geq 1-\frac{1}{2 N}
\end{aligned}
$$

In the last line, we use the concavity of the logarithm, so the first order Taylor development is an upper estimate. Thus ρ_{*} has Hölder-exponent $1-\frac{1}{2 N}$.

Define

$$
G_{N}^{*}:=\left\{\underline{z} \in \Sigma^{*}: \exists \nu \in V_{\sigma}(\underline{z}) \text { s.t. } h(\nu)<(1-1 / N) \log \beta_{*}\right\} .
$$

Let $\beta \in \Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right]$. Then there exists $\nu \in V_{\sigma}\left(\mathrm{i}^{\alpha, \beta}(x)\right)$ such that

$$
h(\nu)<(1-1 / N) \log \beta \leq(1-1 / N) \log \beta_{*} .
$$

Since $\mathrm{i}^{\alpha, \beta}(x) \in D^{*} \subset \Sigma^{*}$, we have $\mathrm{i}^{\alpha, \beta}(x) \in G_{N}^{*}$. Using the surjectivity of ρ_{*}, we obtain $\Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right] \subset \rho_{*}\left(G_{N}^{*} \cap D^{*}\right)$. We claim that $h_{\text {top }}\left(G_{N}^{*}\right) \leq(1-1 / N) \log \beta_{*}$. This implies, using Lemmas 2 and 1 ,

$$
\begin{aligned}
\operatorname{dim}_{H}\left(\Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right]\right) & \leq \operatorname{dim}_{H} \rho_{*}\left(G_{N}^{*} \cap D^{*}\right) \\
& \leq \frac{\operatorname{dim}_{H} G_{N}^{*}}{1-\frac{1}{2 N}} \leq \frac{h_{\mathrm{top}}\left(G_{N}^{*}\right)}{\left(1-\frac{1}{2 N}\right) \log \beta_{*}} \leq \frac{1-\frac{1}{N}}{1-\frac{1}{2 N}}<1
\end{aligned}
$$

Thus $\lambda\left(\Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right]\right)=0$.
It remains to prove $h_{\text {top }}\left(G_{N}^{*}\right) \leq(1-1 / N) \log \beta_{*}$. Recall that $h(\nu)=$ $\lim _{n} \frac{1}{n} H_{n}(\nu)$, where $H_{n}(\nu)$ is the entropy of ν with respect to the algebra \mathcal{A}_{n} of cylinder sets of length n,

$$
H_{n}(\nu)=-\sum_{[\underline{w}] \in \mathcal{A}_{n}} \nu([\underline{w}]) \log \nu([\underline{w}]) .
$$

Since the cylinders are both open and closed, $\nu \mapsto H_{n}(\nu)$ is continuous in the weak*-topology. Moreover $\frac{1}{n} H_{n}(\nu)$ is decreasing in n. For all $m \geq 1$, we set

$$
\begin{aligned}
F_{N}^{*}(m) & :=\left\{\nu \in M\left(\Sigma^{*}, \sigma\right): \frac{1}{m} H_{m}(\nu) \leq(1-1 / N) \log \beta_{*}\right\} \\
G_{N}^{*}(m) & :=\left\{\underline{z} \in \Sigma^{*}: V_{\sigma}(\underline{z}) \cap F_{N}^{*}(m) \neq \emptyset\right\} .
\end{aligned}
$$

Let $\underline{z} \in G_{N}^{*}$, then there exists $\nu \in V_{\sigma}(\underline{z})$ such that $h(\nu)<\left(1-\frac{1}{N}\right) \log \beta_{*}$. Since $\frac{1}{m} H_{m}(\nu) \downarrow h(\nu)$, there exists $m \geq 1$ such that $\frac{1}{m} H_{m}(\nu) \leq(1-1 / N) \log \beta_{*}$, whence $\nu \in F_{n}^{*}(m)$ and $\underline{z} \in G_{N}^{*}(m)$. This implies $G_{N}^{*} \subset \bigcup_{m \geq 1} G_{N}^{*}(m)$. Since $H_{m}(\cdot)$ is continuous, $F_{N}^{*}(m)$ is closed for all $m \geq 1$. Finally we obtain using Theorem 1

$$
\begin{aligned}
h_{\mathrm{top}}\left(G_{N}^{*}\right)=\sup _{m} h_{\mathrm{top}}\left(G_{N}^{*}(m)\right) & \leq \sup _{m} \sup _{\nu \in F_{N}^{*}(m)} h(\nu) \\
& \leq \sup _{m} \sup _{\nu \in F_{N}^{*}(m)} \frac{1}{m} H_{m}(\nu) \leq(1-1 / N) \log \beta_{*}
\end{aligned}
$$

Proof of the Corollary: Let $\beta>1$ be such that the orbit of $\mathrm{i}^{\alpha, \beta}(x)$ under σ is $\hat{\mu}_{\alpha, \beta}$-normal. Let $f \in C([0,1])$, then $\hat{f}: \Sigma_{\alpha, \beta} \rightarrow \mathbf{R}$ defined by $\hat{f}:=f \circ \varphi^{\alpha, \beta}$ is continuous, since $\varphi^{\alpha, \beta}$ is continuous. Using $\mu_{\alpha, \beta}:=\hat{\mu}_{\alpha, \beta} \circ\left(\varphi^{\alpha, \beta}\right)^{-1}$, we have

$$
\begin{aligned}
\int_{[0,1]} f d \mu_{\alpha, \beta} & =\int_{\Sigma_{\alpha, \beta}} \hat{f} d \hat{\mu}_{\alpha, \beta}=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \hat{f}\left(\sigma^{i} \mathbf{i}^{\alpha, \beta}(x)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(\varphi^{\alpha, \beta}\left(\sigma^{i} \mathbf{i}^{\alpha, \beta}(x)\right)\right)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(T_{\alpha, \beta}^{i}(x)\right) .
\end{aligned}
$$

The second equality comes from the $\hat{\mu}_{\alpha, \beta}$-normality of the orbit of $\mathbf{i}^{\alpha, \beta}(x)$ under σ, the last one is (3) which is true for all $x \in[0,1)$ with our convention for the extension of $T_{\alpha, \beta}$ and $\mathrm{i}^{\alpha, \beta}$ on $[0,1)$.

The next step is to consider the question of $\mu_{\alpha, \beta}$-normality in the whole plane (α, β) instead of working with α fixed. Define $\mathcal{R}:=[0,1) \times(1, \infty)$.

Theorem 3. For all $x \in[0,1)$, the set

$$
\mathcal{N}(x):=\left\{(\alpha, \beta) \in \mathcal{R}: \text { the orbit of } x \text { under } T_{\alpha, \beta} \text { is } \mu_{\alpha, \beta} \text {-normal }\right\}
$$

has full 2-dimensional Lebesgue measure.
Proof: We have only to prove that $\mathcal{N}(x)$ is measurable and to apply Fubini's Theorem and Corollary 1. The first step is to prove that for all $x \in[0,1)$ and all $n \geq 0$, the maps $(\alpha, \beta) \mapsto \mathrm{i}^{\alpha, \beta}(x)$ and $(\alpha, \beta) \mapsto T_{\alpha, \beta}^{n}(x)$ are measurable. First remark that for all $n \geq 1$

$$
\begin{equation*}
T_{\alpha, \beta}^{n}(x)=\beta^{n} x+\alpha \frac{\beta^{n}-1}{\beta-1}-\sum_{j=0}^{n-1} \mathbf{i}_{j}^{\alpha, \beta}(x) \beta^{n-j-1} \tag{12}
\end{equation*}
$$

The proof by induction is immediate. To prove that $(\alpha, \beta) \mapsto \mathrm{i}^{\alpha, \beta}(x)$ is measurable, it is enough to prove that for all $n \geq 0$ and for all words $\underline{w} \in \mathrm{~A}^{*}$ of length n

$$
\left\{(\alpha, \beta) \in \mathcal{R}: \mathrm{i}_{[0, n)}^{\alpha, \beta}(x)=\underline{w}\right\}
$$

is measurable, since the σ-algebra on Σ_{k} is generated by the cylinders. This set is the subset of \mathbf{R}^{2} such that

$$
\left\{\begin{array}{l}
\beta>1 \\
0 \leq \alpha<1 \\
w_{j}<\beta T_{\alpha, \beta}^{j}(x)+\alpha \leq w_{j}+1 \quad \forall 0 \leq j<n
\end{array}\right.
$$

Using (12), this system of inequalities can be rewritten

$$
\begin{cases}\beta>1 & \\ 0 \leq \alpha<1 & \\ \alpha>\frac{\beta-1}{\beta^{j+1}-1}\left(\sum_{i=0}^{j} w_{i} \beta^{j-i}-\beta^{j+1} x\right) & \forall 0 \leq j<n \\ \alpha \leq \frac{\beta-1}{\beta^{j+1}-1}\left(1+\sum_{i=0}^{j} w_{i} \beta^{j-i}-\beta^{j+1} x\right) & \forall 0 \leq j<n\end{cases}
$$

From this, the measurability of $\mathrm{i}^{\alpha, \beta}$ follows. If $(\alpha, \beta) \mapsto \mathrm{i}^{\alpha, \beta}(x)$ is measurable, then by formula $(12),(\alpha, \beta) \mapsto T_{\alpha, \beta}^{n}(x)$ is clearly measurable for all $n \geq 0$. Then for all $f \in C([0,1])$ and all $n \geq 1$, the map $(\alpha, \beta) \mapsto S_{n}(f):=\frac{1}{n} \sum_{i=0}^{n-1} f\left(T_{\alpha, \beta}^{i}(x)\right)$ is measurable and consequently

$$
\left\{(\alpha, \beta): \lim _{n \rightarrow \infty} S_{n}(f) \text { exists }\right\}
$$

is a measurable set.

On the other hand, if $f \in C([0,1])$, then $(\alpha, \beta) \mapsto \int f d \mu_{\alpha, \beta}$ is measurable. Indeed

$$
\int f d \mu_{\alpha, \beta}=\int f h_{\alpha, \beta} d \lambda
$$

and in view of equation (6) and the measurability of $(\alpha, \beta) \mapsto T_{\alpha, \beta}(x)$, the map $(\alpha, \beta) \mapsto h_{\alpha, \beta}$ is clearly measurable. Therefore

$$
\left\{(\alpha, \beta): \lim _{n \rightarrow \infty} S_{n}(f)=\int f d \mu_{\alpha, \beta}\right\}
$$

is measurable for all $f \in C([0,1])$. Let $\left\{f_{m}\right\}_{m \in \mathbb{N}} \subset C([0,1])$ be countable subset which is dense with respect to the uniform convergence. Then setting

$$
D_{m}:=\left\{(\alpha, \beta) \in \mathcal{R}: \lim _{n \rightarrow \infty} S_{n}\left(f_{m}\right)=\int f_{m} d \mu_{\alpha, \beta}\right\}
$$

we have $\mathcal{N}(x)=\bigcap_{m \in \mathbb{N}} D_{m}$, whence it is a measurable set.
We have shown that for a given $x \in[0,1)$, the orbit of x under $T_{\alpha, \beta}$ is $\mu_{\alpha, \beta^{-}}$ normal for almost all (α, β). The orbits of 0 and 1 are of particular interest (see equation (6)). Now we show that through any point $\left(\alpha_{0}, \beta_{0}\right)$, there passes a curve defined by $\alpha=\alpha(\beta)$ such that the orbit of 0 under $T_{\alpha(\beta), \beta}$ is $\mu_{\alpha(\beta), \beta}$-normal for at most one β. A trivial example of such a curve is $\alpha=0$, since $x=0$ is a fixed point. The idea is to consider curves along which the coding of 0 is constant, ie to define $\alpha(\beta)$ such that $\underline{u}^{\alpha(\beta), \beta}$ is constant. The results below depend on reference [6], where we solve the following inverse problem: given \underline{u} and \underline{v} verifying (9), can we find α, β such that $\underline{u}=\underline{u}^{\alpha, \beta}$ and $\underline{v}=\underline{v}^{\alpha, \beta}$?

Let

$$
\mathcal{U}:=\left\{\underline{u}: \exists(\alpha, \beta) \in \mathcal{R} \text { s.t. } \underline{u}=\underline{u}^{\alpha, \beta}\right\} .
$$

We define an equivalence relation in \mathcal{R} by

$$
(\alpha, \beta) \sim\left(\alpha^{\prime}, \beta^{\prime}\right) \Longleftrightarrow \underline{u}^{\alpha, \beta}=\underline{u}^{\alpha^{\prime}, \beta^{\prime}} .
$$

An equivalence class is denoted by $[\underline{u}]$. The next lemma describes $[\underline{u}]$.
Lemma 4. Let $\underline{u} \in \mathcal{U}$ and set

$$
\alpha(\beta)=(\beta-1) \sum_{j \geq 0} \frac{u_{j}}{\beta^{j+1}} .
$$

Then there exists $\beta_{\underline{u}} \geq 1$ such that

$$
[\underline{u}]=\left\{(\alpha(\beta), \beta): \beta \in I_{\underline{u}}\right\}
$$

with $I_{\underline{u}}=\left(\beta_{\underline{u}}, \infty\right)$ or $I_{\underline{u}}=\left[\beta_{\underline{u}}, \infty\right)$.
Proof: If $\underline{u}=000 \ldots$, then the statement is trivially true with $\alpha(\beta) \equiv 0$ and $\beta_{\underline{u}}=1$. Suppose $\underline{u} \neq 000 \ldots$. First we prove that

$$
(\alpha, \beta) \sim\left(\alpha^{\prime}, \beta\right) \Longrightarrow \alpha=\alpha^{\prime}
$$

then

$$
(\alpha, \beta) \in[\underline{u}] \Longrightarrow\left(\alpha\left(\beta^{\prime}\right), \beta^{\prime}\right) \in[\underline{u}] \quad \forall \beta^{\prime} \geq \beta
$$

Prepared using etds.cls

Let $(\alpha, \beta) \in[\underline{u}]$. Using (3), we have $\varphi^{\alpha, \beta}(\sigma \underline{u})=T_{\alpha, \beta}(0)=\alpha$. Since the map $\alpha \mapsto \varphi^{\alpha, \beta}(\sigma \underline{u})-\alpha$ is continuous and strictly decreasing (Lemmas 3.5 and 3.6 in $[6]$), the first statement is true. Let $\beta^{\prime}>\beta$. By Corollary 3.1 in [6], we have that $\varphi^{\alpha, \beta}(\sigma \underline{u})>\varphi^{\alpha, \beta^{\prime}}(\sigma \underline{u})$. Therefore there exists a unique $\alpha^{\prime}<\alpha$ such that $\varphi^{\alpha^{\prime}, \beta^{\prime}}(\sigma \underline{u})=\alpha^{\prime}$. We prove that $\underline{u}^{\alpha^{\prime}, \beta^{\prime}}=\underline{u}$. By point 1 of Proposition 2.5 in $[\mathbf{6}]$, we have $\underline{u} \preceq \underline{u}^{\alpha^{\prime}, \beta^{\prime}}$. By Proposition 3.3 in [6], we have

$$
h_{\text {top }}\left(\Sigma_{\underline{u}, \underline{v}^{\alpha^{\prime}}, \beta^{\prime}}\right)=h_{\text {top }}\left(\Sigma_{\alpha^{\prime}, \beta^{\prime}}\right)=\log \beta^{\prime} .
$$

Since $\Sigma_{\alpha, \beta}=\Sigma_{\underline{u}, \underline{v}^{\alpha, \beta}}$ and $\beta^{\prime}>\beta$, we must have $\underline{v}^{\alpha, \beta} \prec \underline{v}^{\alpha^{\prime}, \beta^{\prime}}$. Therefore

$$
\left\{\begin{array}{l}
\underline{u} \preceq \sigma^{n} \underline{u} \prec \underline{v}^{\alpha, \beta} \prec \underline{v}^{\alpha^{\prime}, \beta^{\prime}} \\
\underline{u} \preceq \underline{u}^{\alpha^{\prime}, \beta^{\prime}} \prec \sigma^{n} \underline{v}^{\alpha^{\prime}, \beta^{\prime}} \preceq \underline{v}^{\alpha^{\prime}, \beta^{\prime}}
\end{array} \quad \forall n \geq 0,\right.
$$

are the inequalities (4.1) in $[\mathbf{6}]$ for the pair $\left(\underline{u}, \underline{v}^{\alpha^{\prime}, \beta^{\prime}}\right)$. We can apply Proposition 3.2 and Theorem 4.1 in $[\mathbf{6}]$ to this pair and get $\underline{u}=\underline{u}^{\alpha^{\prime}, \beta^{\prime}}$. It remains to show that $\alpha^{\prime}=\alpha\left(\beta^{\prime}\right)$. Following the definition of the φ-expansion of Rényi, we have for all $x \in[0,1)$ and all $n \geq 0$

$$
x=\sum_{j=0}^{n-1} \frac{\mathbf{i}_{j}^{\alpha, \beta}(x)-\alpha}{\beta^{j+1}}+\frac{T_{\alpha, \beta}^{n}(x)}{\beta^{n}} .
$$

Since $T_{\alpha, \beta}^{n}(x) \in[0,1)$, for all $\beta>1$ we find an explicit expression for $\varphi^{\alpha, \beta}$ on $\Sigma_{\alpha, \beta}$

$$
x=\sum_{j \geq 0} \frac{\mathbf{i}_{j}^{\alpha, \beta}(x)-\alpha}{\beta^{j+1}}
$$

In particular, applying this equation to $x=0$, we have for all $(\alpha, \beta) \in \mathcal{R}$

$$
\alpha=(\beta-1) \sum_{j \geq 0} \frac{u_{j}^{\alpha, \beta}}{\beta^{j+1}} .
$$

Since for all $\beta>\beta_{\underline{u}}$, we have $\underline{u} \in \Sigma_{\alpha, \beta}$, this completes the proof.
For each $\underline{u} \in \mathcal{U}$, the equivalence class $[\underline{u}]$ defines an analytic curve in \mathcal{R}, which is strictly monotone decreasing (except for $\underline{u}=000 \ldots$),

$$
[\underline{u}]=\left\{(\alpha, \beta): \alpha=(\beta-1) \sum_{j \geq 0} \frac{u_{j}}{\beta^{j+1}}, \beta \in I_{\underline{u}}\right\} .
$$

These curves are disjoint two by two and their union is \mathcal{R}.
Theorem 4. Let $(\alpha, \beta) \in \mathcal{R}, \underline{u}=\underline{u}^{\alpha, \beta}$ and define $\alpha(\beta)$ and $\beta_{\underline{u}}$ as in Lemma 4. Then for all $\beta>\beta_{\underline{u}}$, the orbit of $x=0$ under $T_{\alpha(\beta), \beta}$ is not $\mu_{\alpha(\beta), \beta}$-normal.

Proof: Let $\hat{\nu} \in M\left(\Sigma_{k}, \sigma\right)$ (with k large enough) be a cluster point of $\left\{\mathcal{E}_{n}(\underline{u})\right\}_{n \geq 1}$ (see (1)). By Lemma $4, \underline{u}^{\alpha(\beta), \beta}=\underline{u}$ for any $\beta>\beta_{\underline{u}}$. Therefore

$$
h(\hat{\nu}) \leq h_{\mathrm{top}}\left(\Sigma_{\alpha(\beta), \beta}\right)=\log \beta \quad \forall \beta>\beta_{\underline{u}}
$$

and $\hat{\nu}$ is not a measure of maximal entropy, as well as $\nu_{\beta}:=\hat{\nu} \circ\left(\varphi^{\alpha(\beta), \beta}\right)^{-1}$ for all $\beta>\beta_{\underline{u}}$ (see [10]).

Recall that

$$
\mathcal{N}(0)=\left\{(\alpha, \beta) \in \mathcal{R}: \text { the orbit of } 0 \text { under } T_{\alpha, \beta} \text { is } \mu_{\alpha, \beta} \text {-normal }\right\} .
$$

By Theorem 3, $\mathcal{N}(0)$ has full Lebesgue measure. On the other hand, by Theorem 4, we can decompose \mathcal{R} into a family of disjoint analytic curves such that each curve meets $\mathcal{N}(0)$ in at most one point. This situation is very similar to the one presented in [12] by Milnor following an idea of Katok.

4. Normality in generalized β-transformations

In this section, we consider another class of piecewise monotone continuous maps, the generalized β-transformations. Introduced by Góra in $[\mathbf{7}]$, they have only one critical orbit like β-transformations, but they admit increasing and decreasing laps. A family $\left\{T_{\beta}\right\}_{\beta>1}$ of generalized β-transformations is defined by $k \geq 2$ and a sequence $s=\left(s_{n}\right)_{0 \leq n<k}$ with $s_{i} \in\{-1,1\}$. For any $\beta \in(k-1, k]$, let $a_{j}=j / \beta$ for $j=0, \ldots, k-1$ and $a_{k}=1$. Then for all $j=0, \ldots, k-1$, the map $f_{j}=I_{j} \rightarrow[0,1]$ is defined by

$$
f_{j}(x):= \begin{cases}\beta x \bmod 1 & \text { if } s_{j}=+1 \\ 1-(\beta x \bmod 1) & \text { if } s_{j}=-1\end{cases}
$$

In particular when $s=(1,-1)$, then T_{β} is a tent map. Here we left the map undefined on a_{j} for $j=1, \ldots, k-1$.

Góra constructed the unique measure μ_{β} absolutely continuous with respect to Lebesgue measure (Theorem 6 and Proposition 8 in [7]). Using the same argument as Hofbauer in [9], we deduce that a measure of maximal entropy is always absolutely continuous with respect to Lebesgue measure, hence the measure μ_{β} is the unique measure of maximal entropy. Let $k=\lceil\beta\rceil$ and let us denote i^{β} for the coding map under $T_{\beta}, \varphi^{\beta}:=\left(\mathrm{i}^{\beta}\right)^{-1}$ for the inverse of the coding map, $\Sigma_{\beta}:=\Sigma_{T_{\beta}}$ and $\underline{\eta}^{\beta}:=\lim _{x \uparrow 1} \dot{\mathrm{i}}^{\beta}(x)$. Now it is easy to check that formula (4) becomes

$$
\begin{equation*}
\Sigma_{\beta}=\left\{\underline{x} \in \Sigma_{k}: \sigma^{n} \underline{x} \preceq \underline{\eta}^{\beta} \quad \forall n \geq 0\right\} \tag{13}
\end{equation*}
$$

and inequalities (5) become

$$
\begin{equation*}
\sigma^{n} \underline{\eta}^{\beta} \preceq \underline{\eta}^{\beta} \quad \forall n \geq 0 \tag{14}
\end{equation*}
$$

It is known, in all cases treated below, that the dynamical system $\left(\Sigma_{\beta}, \sigma\right)$ has topological entropy $\log \beta$ and, by general theory of Hofbauer in [12], it has a unique measure of maximal entropy $\hat{\mu}_{\beta}$ such that $\mu_{\beta}=\hat{\mu}_{\beta} \circ\left(\varphi^{\beta}\right)^{-1}$ (see [5]).

As in the previous section, we state two lemmas which we need for the proof of the main theorem of this section. We study the normality only of $x=1$, so these lemmas are formulated only for $x=1$. Let $S_{n}(\beta) \equiv S_{n}$ and $S(\beta) \equiv S$ be defined by (2).

Lemma 5. For any family of generalized β-transformations defined by $\left(s_{n}\right)_{0 \leq n<k}$, the set $\{\beta \in(k-1, k]: 1 \in S(\beta)\}$ is countable.

Proof: For a fixed $n \geq 1$, we study the $\operatorname{map} \beta \mapsto T_{\beta}^{n}(1)$. This map is well defined everywhere in $(k-1, k]$ except for finitely many points and it is continuous on each interval where it is well defined. Indeed this is true for $n=1$. Suppose it is true for n, then $T_{\beta}^{n+1}(1)$ is well defined and continuous wherever $T_{\beta}^{n}(1)$ is well defined and continuous, except for $T_{\beta}^{n}(1) \in S_{0}(\beta)$. By the induction hypothesis, there exists a finite family of disjoint open intervals J_{i} and continuous functions $g_{i}: J_{i} \rightarrow[0,1]$ such that $(k-1, k] \backslash\left(\bigcup_{i} J_{i}\right)$ is finite and

$$
T_{\beta}^{n}(x)=g_{i}(\beta) \quad \text { if } \beta \in J_{i} .
$$

Then
$\left\{\beta \in(k-1, k]: T_{\beta}^{n}(1)\right.$ is well defined and $\left.T_{\beta}^{n}(1) \in S_{0}(\beta)\right\}=\bigcup_{i, j}\left\{\beta \in J_{i}: g_{i}(\beta)=\frac{j}{\beta}\right\}$.
We claim that $\left\{\beta \in J_{i}: g_{i}(\beta)=\frac{j}{\beta}\right\}$ has finitely many points. From the form of the map T_{β}, it follows immediately that each $g_{i}(\beta)$ is a polynomial of degree n. Since $\beta>1$,

$$
g_{i}(\beta)=\frac{j}{\beta} \quad \Longleftrightarrow \quad \beta g_{i}(\beta)-j=0
$$

This polynomial equation has at most $n+1$ roots. In fact, using the monotonicity of the map $\beta \mapsto \underline{\eta}^{\beta}$, we can prove that this set has at most one point. The lemma follows, since $S(\bar{\beta})=\bigcup_{n \geq 0} S_{n}(\beta)$.
Lemma 6. Consider a family $\left\{T_{\beta}\right\}_{\beta>1}$ of generalized β-transformations defined by a sequence $s=\left(s_{n}\right)_{0 \leq n<k}$. Let $1<\beta_{1} \leq \beta_{2}$ and $\underline{\eta}^{j}:=\underline{\eta}^{\beta_{j}}$ for $j=1,2$; define $l:=\min \left\{n \geq 0: \underline{\eta}_{n}^{1} \neq \underline{\eta}_{n}^{2}\right\}$.
If $k \geq 3$, for all $\beta_{0}>2$, there exists K such that $\beta_{1} \geq \beta_{0}$ implies

$$
\beta_{2}-\beta_{1} \leq K \beta_{2}^{-l}
$$

If $s=(+1,+1)$, then

$$
\beta_{2}-\beta_{1} \leq \beta_{2}^{-l+1}
$$

If $s=(+1,-1)$ or $(-1,+1)$, then for all $\beta_{0}>1$, there exists K such that $\beta_{1} \geq \beta_{0}$ implies

$$
\beta_{2}-\beta_{1} \leq K \beta_{2}^{-l} .
$$

If $s=(-1,-1)$, then there exists $\beta_{0}>1$ and K such that $\beta_{1} \geq \beta_{0}$ implies

$$
\beta_{2}-\beta_{1} \leq K \beta_{2}^{-l} .
$$

The proof is very similar to the proof of Brucks and Misiurewicz for Proposition 1 of [2], see also Lemma 23 of Sands in [16].
Proof: Let $\delta:=\beta_{2}-\beta_{1} \geq 0$ and denote $T_{j}=T_{\beta_{j}}$ and $\mathbf{i}^{j}=\mathbf{i}^{\beta_{j}}$ for $j=1,2$. Let $a_{1}, a_{2} \in[0,1]$ such that $r:=\mathbf{i}_{0}^{1}\left(a_{1}\right)=\mathbf{i}_{0}^{2}\left(a_{2}\right)$. Considering four cases according to the signs of $a_{2}-a_{1}$ and s_{r}, we have

$$
\left|T_{2}\left(a_{2}\right)-T_{1}\left(a_{1}\right)\right| \geq \beta_{2}\left|a_{2}-a_{1}\right|-\delta .
$$

Applying this formula n times, we find that $i_{[0, n)}^{1}\left(a_{1}\right)=i_{[0, n)}^{2}\left(a_{2}\right)$ implies

$$
\left|T_{2}^{n}\left(a_{2}\right)-T_{1}^{n}\left(a_{1}\right)\right| \geq \beta_{2}^{n}\left(\left|a_{2}-a_{1}\right|-\frac{\delta}{\beta_{2}-1}\right)
$$

Consider the case $k \geq 3$. Then $a_{i}=T_{i}(1)$ for $i=1,2$ are such that

$$
\left|a_{2}-a_{1}\right|=\delta>\frac{\delta}{\beta_{0}-1} \geq \frac{\delta}{\beta_{2}-1}
$$

Using $\left|T_{2}^{n}\left(a_{2}\right)-T_{1}^{n}\left(a_{1}\right)\right| \leq 1$, we conclude that for all $\beta_{0} \leq \beta_{1} \leq \beta_{2}$, if $\underline{\eta}_{[0, n)}^{1}=\underline{\eta}_{[0, n)}^{2}$ then

$$
\delta \leq \frac{\beta_{0}-1}{\beta_{0}-2} \beta_{2}^{-n+1}
$$

For the case $s=(+1,+1)$, we can apply Lemma 3 with $\alpha=0$ and $x=1$.
The case $s=(+1,-1)$ or $(-1,+1)$ is considered in Lemma 23 of [16].
For the case $s=(-1,-1)$: for a fixed n, we want to find β_{0} such that for all $\beta_{0} \leq \beta_{1} \leq \beta_{2}$ we have

$$
\begin{equation*}
\left|T_{2}^{n}(1)-T_{1}^{n}(1)\right|>\frac{\delta}{\beta_{2}-1} \tag{15}
\end{equation*}
$$

Then we conclude as in the case $k \geq 3$. Formula (15) is true, if $\left|\frac{d}{d \beta} T_{\beta}^{n}(1)\right|>\frac{1}{\beta-1}$ for all $\beta \geq \beta_{0}$. When n increases, β_{0} decreases. With $n=3$, we have $\beta_{0} \approx 1.53$.

In the tent map case, the separation of orbits is proved for $\beta \in(\sqrt{2}, 2]$ and then extended arbitrarily near $\beta_{0}=1$ using the renormalization. In the case $s=(-1,-1)$, there is no such argument and we are forced to increase n to obtain a lower bound β_{0}. With the help of a computer, we obtain $\beta_{0} \approx 1.27$ for $n=12$. For more details, see [5].

Now we turn to the question of normality for generalized β-transformations. The structure of the proof is very similar to the proof of Theorem 2 and Corollary 1.

Theorem 5. Consider a family $\left\{T_{\beta}\right\}_{k-1<\beta \leq k}$ of generalized β-transformations defined by a sequence $s=\left(s_{n}\right)_{0 \leq n<k}$. Let β_{0} be defined as in Lemma 6. Then the set

$$
\left\{\beta>\beta_{0}: \text { the orbit of } \underline{\eta}^{\beta} \text { under } \sigma \text { is } \hat{\mu}_{\beta} \text {-normal }\right\}
$$

has full λ-measure.
Corollary 2. Consider a family $\left\{T_{\beta}\right\}_{\beta>1}$ of generalized β-transformations defined by a sequence $s=\left(s_{n}\right)_{n \geq 0}$. Let β_{0} be defined as in Lemma 6. Then the set

$$
\left\{\beta>\beta_{0}: \text { the orbit of } 1 \text { under } T_{\beta} \text { is } \mu_{\beta} \text {-normal }\right\}
$$

has full λ-measure.
Proof of Theorem: Let

$$
B_{0}:=\left\{\beta \in\left(\beta_{0}, \infty\right): 1 \notin S(\beta)\right\}
$$

From Lemma 5, this subset has full Lebesgue measure. To obtain uniform estimates, we restrict our proof to the interval $[\underline{\beta}, \bar{\beta}]$ with $\beta_{0}<\underline{\beta}<\bar{\beta}<\infty$. Let $k:=\lceil\bar{\beta}\rceil$ and $\Omega:=\left\{\beta \in[\underline{\beta}, \bar{\beta}] \cap B_{0}: \underline{\eta}^{\beta}\right.$ is not $\hat{\mu}_{\beta}$-normal $\}$. As before, setting

$$
\Omega_{N}:=\left\{\beta \in[\underline{\beta}, \bar{\beta}] \cap B_{0}: \exists \nu \in V_{\sigma}\left(\underline{\eta}^{\beta}\right) \text { s.t. } h(\nu)<(1-1 / N) \log \beta\right\},
$$

we have $\Omega=\bigcup_{N \geq 1} \Omega_{N}$. We prove that $\operatorname{dim}_{H} \Omega_{N}<1$. For $N \in \mathbb{N}$ fixed, define $\varepsilon:=\frac{\beta}{2} \log \underline{\beta}>0$ and L such that $\underline{\eta}_{[0, L)}^{\beta}=\underline{\eta}_{[0, L)}^{\beta^{\prime}}$ implies $\left|\beta-\beta^{\prime}\right| \leq \varepsilon($ see Lemma 6$)$. Consider the family of subsets of $[\underline{\beta}, \bar{\beta}]$ of the following type

$$
J(\underline{w})=\left\{\beta \in[\underline{\beta}, \bar{\beta}]: \underline{\eta}_{[0, L)}^{\beta}=\underline{w}\right\}
$$

where \underline{w} is a word of length $L . J(\underline{w})$ is either empty or it is an interval. We cover the non-closed $J(\underline{w})$ with countably many closed intervals if necessary. We prove that $\lambda\left(\Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right]\right)=0$ where $\beta_{1}<\beta_{2}$ are such that $\underline{\eta}_{[0, L)}^{\beta_{1}}=\underline{\eta}_{[0, L)}^{\beta_{2}}$.

Let $\underline{\eta}^{j}=\underline{\eta}^{\beta_{j}}$. Let

$$
D^{*}:=\left\{\underline{z} \in \Sigma_{\underline{\eta}^{2}}: \exists \beta \in\left[\beta_{1}, \beta_{2}\right] \cap B_{0} \text { s.t. } \underline{z}=\underline{\eta}^{\beta}\right\} .
$$

Define $\rho_{*}: D^{*} \rightarrow\left[\beta_{1}, \beta_{2}\right] \cap B_{0}$ by $\rho_{*}(\underline{z})=\beta \Leftrightarrow \underline{\eta}^{\beta}=\underline{z}$. As before, from formula (13) and strict monotonicity of $\beta \mapsto \underline{\eta}^{\beta}$, we deduce that ρ_{*} is well defined and surjective. We compute the coefficient of Hölder continuity of $\rho_{*}:\left(D^{*}, d_{\beta_{*}}\right) \rightarrow\left[\beta_{1}, \beta_{2}\right]$. Let $\underline{z} \neq \underline{z}^{\prime} \in D^{*}$ and $n=\min \left\{l \geq 0: z_{l} \neq z_{l}^{\prime}\right\}$, then $d_{\beta_{*}}\left(\underline{z}, \underline{z}^{\prime}\right)=\beta_{*}^{-n}$. By Lemma 6, there exists C such that

$$
\left|\rho_{*}(\underline{z})-\rho_{*}\left(\underline{z}^{\prime}\right)\right| \leq C \rho_{*}(\underline{z})^{-n} \leq C \beta_{1}^{-n}=C\left(d_{\beta_{*}}\left(\underline{z}, \underline{z}^{\prime}\right)\right)^{\frac{\log \beta_{1}}{\log \beta_{*}}} .
$$

By the choice of L and ε, we have

$$
\frac{\log \beta_{1}}{\log \beta_{*}} \geq 1-\frac{1}{2 N}
$$

thus ρ_{*} has Hölder-exponent of continuity $1-\frac{1}{2 N}$. Define

$$
G_{N}^{*}:=\left\{\underline{z} \in \Sigma^{*}: \exists \nu \in V_{\sigma}(\underline{z}) \text { s.t. } h(\nu)<(1-1 / N) \log \beta_{*}\right\} .
$$

As before, we have $\Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right] \subset \rho_{*}\left(G_{N}^{*} \cap D^{*}\right)$ and $h_{\text {top }}\left(G_{N}^{*}\right) \leq(1-1 / N) \log \beta_{*}$. Finally $\operatorname{dim}_{H}\left(\Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right]\right)<1$ and $\lambda\left(\Omega_{N} \cap\left[\beta_{1}, \beta_{2}\right]\right)=0$.
Proof of the Corollary: The proof is similar to the proof of Corollary 1. Equation (3) is true, since we work on B_{0}.

In particular, when we consider the tent map $(s=(1,-1))$, we recover the main Theorem of Bruin in [3]. We do not state this theorem for all $x \in[0,1]$ as for the $\operatorname{map} T_{\alpha, \beta}$, because we do not have an equivalent of Lemma 3 for all $x \in[0,1]$. This is the unique missing step of the proof.

5. Appendix

Let \mathcal{G} be an oriented labeled right-resolving graph and denote by V the set of vertices of \mathcal{G}. We assume that \mathcal{G} has a root $\mathrm{v}_{0} \in \mathrm{v}$. Let $\mathrm{v} \in \mathrm{v}$, the level of v is the length
of the shortest path on \mathcal{G} from v_{0} to v . For $K \in \mathbb{N}$, the graph \mathcal{G}_{K} is the subgraph of \mathcal{G} whose set of vertices is

$$
\mathrm{V}_{K}:=\{\mathrm{v} \in \mathrm{~V}: \text { the level of } \mathrm{v} \text { is at most } K\} .
$$

We set

$$
\ell(n, \mathcal{G}):=\operatorname{card}\left\{\text { paths of length } n \text { in } \mathcal{G} \text { starting at } \mathrm{v}_{0}\right\}
$$

Since the graph is right-resolving, a path in \mathcal{G} is uniquely prescribed by the initial vertex of the path and the (ordered) set of labels of its edges. The right-resolving rooted graph \mathcal{G} has the property \mathcal{P}, if for any path starting at v there is a unique path starting at the root v_{0} with the same set of labels. If \mathcal{G} has the property \mathcal{P}, then

$$
\ell(n+m, \mathcal{G}) \leq \ell(n, \mathcal{G}) \ell(m, \mathcal{G})
$$

It follows that

$$
\begin{equation*}
h(\mathcal{G}):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \ell(n, \mathcal{G})=\inf _{n} \frac{1}{n} \log \ell(n, \mathcal{G}) \tag{16}
\end{equation*}
$$

The quantity $h(\mathcal{G})$ is the entropy of \mathcal{G}.
Lemma 7. Let \mathcal{G} be a right-resolving rooted graph which has the property \mathcal{P}. For all $\delta>0$, there exists $L(\mathcal{G}, \delta)$ such that for all $L \geq L(\mathcal{G}, \delta)$ and for all right-resolving rooted graph \mathcal{G}^{\prime} satisfying the property \mathcal{P}, we have $\mathcal{G}_{L}=\mathcal{G}_{L}^{\prime}$ implies that

$$
h\left(\mathcal{G}^{\prime}\right) \leq h(\mathcal{G})+\delta
$$

Proof: Given \mathcal{G} and $\delta>0$, choose $L(\mathcal{G}, \delta)$ such that, for all $L \geq L(\mathcal{G}, \delta)$, we have

$$
\frac{1}{L} \log \ell(L, \mathcal{G}) \leq h(\mathcal{G})+\delta
$$

Let \mathcal{G}^{\prime} be a right-resolving rooted graph with the property \mathcal{P} such that $\mathcal{G}_{L}^{\prime}=\mathcal{G}_{L}$. Then using (16) and the fact that a path of length L in \mathcal{G} (or in \mathcal{G}^{\prime}) remains in \mathcal{G}_{L} (or in \mathcal{G}_{L}^{\prime}), we get

$$
\begin{aligned}
h\left(\mathcal{G}^{\prime}\right) & \leq \frac{1}{L} \log \ell\left(L, \mathcal{G}^{\prime}\right)=\frac{1}{L} \log \ell\left(L, \mathcal{G}_{L}^{\prime}\right) \\
& =\frac{1}{L} \log \ell\left(L, \mathcal{G}_{L}\right)=\frac{1}{L} \log \ell(L, \mathcal{G}) \leq h(\mathcal{G})+\delta
\end{aligned}
$$

Let $(\underline{u}, \underline{v})$ satisfy (9); we define a labeled graph $\mathcal{G}=\mathcal{G}(\underline{u}, \underline{v})$. A vertex v of the graph is a couple $(p, q) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}$. We define the out-going labeled edges from $\mathrm{v}=(p, q)$ to $\mathrm{v}^{\prime}=\left(p^{\prime}, q^{\prime}\right)$, the successors of v .

1. If $u_{p}=v_{q}$, then there is a unique out-going edge labeled by u_{p} from v to $\mathrm{v}^{\prime}=(p+1, q+1)$.
2. If $u_{p}<v_{q}$, then there is an out-going edge labeled by u_{p} from v to $\mathrm{v}^{\prime}=(p+1,0)$, and an out-going edge labeled by v_{q} from v to $\mathrm{v}^{\prime}=(0, q+1)$. Furthermore, if there exists $a, u_{p}<a<v_{q}$, then there is an out-going edge labeled by a from v to $\mathrm{v}^{\prime}=(0,0)$.

The graph \mathcal{G} is the minimal graph containing $(0,0)$, the root of \mathcal{G}, such that if v is a vertex of \mathcal{G}, then all successors of v are vertices of \mathcal{G}. All vertices of \mathcal{G} are of the form (p, q) with $p \neq q$, except for the root. Furthermore, (p, q) is a vertex of \mathcal{G} with $p>q$ if and only if the longest suffix of $u_{0} \cdots u_{p-1}$, which is a prefix of \underline{v} has length q. Using the map from the vertices of \mathcal{G} to the subsets of $\Sigma_{\underline{u}, \underline{v}}$,

$$
(p, q) \mapsto\left[\sigma^{p} \underline{u}, \sigma^{q} \underline{v}\right]:=\left\{\underline{x} \in \Sigma_{\underline{u}, \underline{v}}: \sigma^{p} \underline{u} \preceq \underline{x} \preceq \sigma^{q} \underline{v}\right\},
$$

and the results of section 3.1 of $[\mathbf{6}]$, one checks that \mathcal{G} has property $\mathcal{P}, h(\mathcal{G})=$ $h_{\text {top }}\left(\Sigma_{\underline{u}, \underline{v}}\right)$ and the level of $\mathrm{v}=(p, q)$ is $\max \{p, q\}$. This last result implies that for $\left(\underline{u}^{\prime}, \underline{v}^{\prime}\right)$ satisfying (9), if \underline{u} and \underline{u}^{\prime} have a common prefix of length L and \underline{v} and \underline{v}^{\prime} have a common prefix of length L, then $\mathcal{G}_{L}=\mathcal{G}_{L}^{\prime}$. Therefore Lemma 7 implies Proposition 1.
Acknowledgements: We thank H. Bruin for correspondence about Proposition 1 and for communicating us results before publication.

References

[1] R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
[2] K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergod. Th. and Dynam. Sys., 16 (1996), 1173-1183.
[3] H. Bruin, For almost every tent map, the turning point is typical, Fund. Math., 155 (1998), 215-235.
[4] K. Falconer, Fractal geometry, Wiley, Chichester, 2003.
[5] B. Faller, PhD thesis, EPF-L, 2008.
[6] B. Faller and C.-E. Pfister, Computation of Topological Entropy via φ-expansion, an Inverse Problem for the Dynamical Systems $\beta x+\alpha \bmod 1$, arXiv:0806.0914v1 [mathDS].
[7] P. Góra, Invariant densities for generalized β-maps, Ergod. Th. and Dynam. Sys., 27 (2007), 1-16.
[8] S. Halfin, Explicit construction of invariant measures for a class of continuous state Markov processes, The Annals of Probability, 3 (1975), 859-864.
[9] F. Hofbauer, Maximal measures for piecewise monotonically increasing transformations on [0, 1], in Ergodic Theory, vol. 729 of Lecture Notes in Mathematics, 1979, 66-77.
[10] F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math., 34 (1979), 213-237.
[11] F. Hofbauer, Maximal measures for simple piecewise monotonic transformations, Z. Wahrschein. Gebiete, 52 (1980), 289-300.
[12] J. Milnor, Fubini foiled: Katok's paradoxical example in measure theory, The Math. Intelligencer, 19 (1997), 30-32.
[13] W. Parry, Representations for real numbers, Acta Math. Acad. Sci. Hung., 15 (1964), 95-105.
[14] C.-E. Pfister and W. Sullivan, On the topological entropy of satured sets, Ergod. Th. and Dynam. Sys., 27 (2007), 929-956.
[15] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8 (1957), 477-493.
[16] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal maps, PhD thesis, University of Cambridge, St John's College, 1993.
[17] J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergod. Th. and Dynam. Sys., 17 (1997), 675-694.
[18] P.C. Shields, The Ergodic Theory of Discrete Sample Paths, Graduate Studies in Mathematics Volume 13, American Mathematical Society (1996).

