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Abstract. We consider the map T, g(z) := fr + o mod 1, which admits a unique
probability measure of maximal entropy pe,g. For z € [0,1], we show that the
orbit of z is p,, g-normal for almost all («, 3) € [0,1) x (1,00) (Lebesgue measure).
Nevertheless we construct analytic curves in [0,1) X (1,00) along them the orbit
of x = 0 is at most at one point jo g-normal. These curves are disjoint and they
fill the set [0,1) x (1,00). We also study the generalized (-transformations (in
particular the tent map). We show that the critical orbit = 1 is normal with
respect to the measure of maximal entropy for almost all 3.

1.  Introduction

In this paper, we consider a dynamical system (X, d,T) where (X, d) is a compact
metric space endowed with its Borel g-algebra B and T': X — X is a measurable
map. Let C(X) denote the set of all continuous functions from X into R. The
set M(X) of all Borel probability measures is equipped with the weak*-topology.
M(X,T) € M(X) is the subset of all T-invariant probability measures. For
w e M(X,T), let h(n) denote the measure-theoretic entropy of . For all x € X
and n > 1, the empirical measure of order n at x is

n—1
En(x) ::%Z&;OT_"EM(X)’ (1)
i=0

where J,, is the Dirac mass at z. Let Vp(x) C M (X,T) denote the set of all cluster
points of {&€,(x)},>1 in the weak*-topology.
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2 B. Fuller and C-E. Pfister

DEFINITION 1. Let u € M(X,T) be an ergodic measure and x € X. The orbit of
x under T is p-normal, if Vp(z) = {u}, ie for all continuous f € C(X), we have

n—1
lim ;; f(Tiz) = / fdu.

By the Birkhoff Ergodic Theorem, p-almost all points are p-normal, however it
is difficult to identify a p-normal point. This paper is devoted to the study of the
normality of orbits for piecewise monotone continuous maps of the interval. We
consider a family {7 }.cx of piecewise monotone continuous maps parameterized
by a parameter £ € K, such that for all Kk € K there is a unique measure of
maximal entropy p,.. In our case K is a subset of R or R2. For a given x € X, we
estimate the Lebesgue measure of the subset of K such that the orbit of x under
T, is px-normal.

For example, let T, g : [0, 1] — [0, 1] be the piecewise monotone continuous map
defined by Tn g(z) = Bz + @ mod 1; here K = (o, 3) € [0,1) x (1,00). In [13],
Parry constructed a T, g-invariant probability measure p,, g absolutely continuous
with respect to Lebesgue measure, which is the unique measure of maximal entropy.
The main result of section 3 is Theorem 3, which shows that for all x € [0, 1] the
set

N(z) :={(a,8) €]0,1) x (1,00) : the orbit of z under T, g is jtq g-normal}

has full 2-dimensional Lebesgue measure. This is a generalization of a theorem
of Schmeling in [17], where the case « = 0 and x = 1 is studied. For the (-
transformations, the orbit of 1 plays a particular role, so the restriction to z = 1
considered by Schmeling is natural. Similarly for T, g, the orbits of 0 and 1 are very
important. In Theorem 4, we show that there exist curves in the plane («, 3) defined
by a = a(f) along which the orbits of 0 or 1 are never p, g-normal. The curve
a = 0 is a trivial example of such a curve for the fixed point = 0. In section 4,
we study the generalized S-transformations introduced by Gdra [7]. A generalized
B-transformation is similar to a (-transformation, but each lap is replaced by an
increasing or decreasing lap of constant slope ( according to a sequence of signs.
For a given class of generalized (-transformations, there exists Gy such that for all
B > Bo, there is a unique measure of maximal entropy pg and the set

{8 > By : the orbit of 1 under T} is pg-normal}

has full Lebesgue measure, denoted below by A. Since the tent maps are generalized
B-transformations, we obtain an alternative proof of results of Bruin in [3].

2. Preliminaries

Let us define properly the coding for a piecewise monotone continuous map of
the interval. The classical papers are [15], [13] and [10]. We consider the
piecewise monotone continuous maps of the following type. Let & > 2 and
O=ap<a1 <---<ap=1 WesetA:={0,...,k—1}, Iy = [ap, 1), I; = (a;,a;41)
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A Point is Normal for Almost All Maps fx + a mod 1 3

forall j € 1,...,k—2, Iy_1 = (ag—1,ax) and So = {a; : j € 1,...,k —1}. For
all j € A, let f; : I; — [0,1] be a strictly monotone continuous map. A piecewise
monotone continuous map T : [0, 1]\So — [0, 1] is defined by

T(z) = fi(z) ifxel.

We will state later in each specific case how to define T on Sy. We set Xo = [0, 1]
and for all n > 1

X, = nfl\Snfl and S, = {SL‘ € X, : Tn(w) € SO}’ (2)

so that 7™ is well defined on X,,. Finally we define S = J,,~,S» such that 7" (x)
is well defined for all = € [0,1]\S and all n > 0. -

Let A be endowed with the discrete topology and X, = A%+ be the product space.
The elements of ¥ are denoted by x = xpx1.... A finite string w = wq ... wp_1
with w; € A is a word. The length of w is |w| = n. There is a single word of
length 0, the empty word . The set of all words is A*. For two words w, z, we
write w z for the concatenation of the two words. For z € ¥, let Lpi ) = Tio o Tj—1
denote the word formed by the coordinates i to j — 1 of z. For a word w € A* of
length n, the cylinder [w] is the set

[w] :={z € T : z7p,,) = W}

The family { [w] : w € A*} is a base for the topology and a semi-algebra generating
the Borel o-algebra. For all 3 > 1, there exists a metric dg compatible with the
topology defined by

0 ife=2a
no._ L =2
dﬁ(&»g) = { 8- min{n>0: z,#2,}  therwise.

The left shift map o : ¥ — X is defined by
o(z) =z22. ...

It is a continuous map. We define a total order on ¥; denoted by <. We set

5(j) = +1 if f; is increasing
)21 if f; is decreasing

and for word w

1 ifw=e
(w) =
0(wp) -+ 0(wp—1) if w has length n.

Let z # 2’ € ), and define n = min{j > 0: x; # 2’ }, then

R T <z, if 5(@07")) =41
o Ty > xy, i 8z ,) = —1.

When all maps f; are increasing, this is the lexicographic order.
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4 B. Fuller and C-E. Pfister

We define the coding map 1 : [0,1]\S — X by
i(z) :==ig(x)ir(x)... withiy(z)=75<T"(x) € I;.

The coding map i is left undefined on S. Henceforth we suppose that 7' is such
that i is injective. A sufficient condition for the injectivity of the coding is the
existence of ¢ > 1 such that |fj(z)| > c for all € I; and all j € A, see [13]. This
condition is satisfied in all cases considered in the paper. The coding map is order
preserving, ie for all z, 2’ € [0,1]\S

r <z =i(x)<i(a).

Define ¥7 := i([0,1]\\S). We introduce now the ¢-expansion as defined by Parry.
For all j € A, let ¢/ : [§,5 + 1] — [a;,a;41] be the unique monotone extension of
f;l : (¢,d) = (aj,a;j41) where (c,d) := f;((aj,aj41)). The map ¢ : X) — [0,1] is
defined by

SD(Q) = nh_)ngo s0300 (x() + SOI1 («Tl 4+ (pacn (-Tn)))

Parry proved that this limit exists if i is injective. The map ¢ is order preserving.
Moreover ¢|;(o,1\s) =i~ " and for all n > 0 and all z € [0,1]\S

T"(z) = oo™ oi(x). (3)

If the coding map is injective, one can show that the map ¢ is continuous (see
Theorem 2.3 in [6]). Using the continuity and the monotonicity of ¢, we have
©(X7) = [0,1]. Remark that there is in general no extension of i on [0, 1] such that
equation (3) is valid on [0, 1]. For all j € A, define

w = limi(z) and ¢/ := lim i(z) with = € [0, 1]\ S.

xla; zTajt1
The strings u/ and v? are called critical orbits and (see for instance [10])
Sr={x €Y :u" <o"z <v" Vn > 0}. (4)

Moreover the critical orbits u’, v’ satisfy for all j € A

w'h < oyl < ph
er-od =2 Vi > 0. (5)

u'n < 0"yl <t
Let us recall the construction of the Hausdorff dimension. Let (X, d) be a metric

space and E C X. Let D.(E) be the set of all finite or countable cover of E with
sets of diameter smaller then . For all s > 0, define

H.(E,s) := inf{ ) _(diam B)* : C € D.(E)}
BeC

and the s-Hausdorff measure of E, H(E,s) := lim._o H.(E,s). The Hausdorff
dimension of E is
dimg F :=inf{s > 0: H(E,s) = 0}.
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A Point is Normal for Almost All Maps fx + a mod 1 5

In [1], Bowen introduced a definition of the topological entropy of non compact set
for a continuous dynamical system on a metric space. We recall this definition. Let
(X, d) be a metric space, T : X — X a continuous map. For n > 1, ¢ > 0 and
x e X, let

Bu(z,e)={y € X :d(T?(2), T (y)) <eV¥j=0,...,n—1}.

For E C X, such that T(E) C E, let G,(E,¢) be the set of all finite or countable
covers of E with Bowen’s balls B,,(x,¢) for m > n. For all s > 0, define

Cn(E,¢,s) := inf{ Z e " CeGy(z,e)}

B, (z,e)€C
and C(E,¢, s) :=lim,—o Cr(E, €, s). Now, let
hiop(E,€) :==inf{s > 0: C(E,¢e,s) = 0}

and finally hiop(E) = lime_g hyop(E, €) (this last limit increase to hyop(E)). There
is an evident similarity of this definition with the Hausdorff dimension. This
similarity is the key of the next lemma.

LEMMA 1. For B > 1, consider the dynamical system (Xj,dg,0). Let E C ¥y be
such that o(F) C E, then
htop(E)

logB
Proof: Let ¢ € (0,1),s > 0,n > 0 and C € G,(F,¢). Since diam B,,(x,¢e) <
eB~mtl < ¢+ for all B,,(z,¢) € C, C is a cover of E with sets of diameter
smaller than e3~"*!. Moreover

3 diam (B (r,e) = < (8w Y e

B,,(z,e)eC By, (z,e)eC

dimH FE S

Thus Hs(E, :25) < (e8) ™7 Cy(E, €, s) with § = ¢3!, Taking the limit n — oo,
we obtain

s .
H(E < e C(E .
( ’logﬁ)i(gﬁ) C( 7578)

If s > hiop(E,€), then H(E, 575) = 0 and 35 > dimy E. This is true for all

s> hiop(E, €), thus

htop(Ea 5) < htop(E)
logB8 — logf
The next lemma is a classical result about the Hausdorff dimension, it is
Proposition 2.3 in [4].

dimyg E < O

LEMMA 2. Let (X,d), (X', d") be two metric spaces and p : X — X' be an a-Holder
continuous map with o € (0,1]. Let E € X, then
< dimH E.

dimpy p(E) o
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6 B. Faller and C-E. Pfister

Finally we report Theorem 4.1 from [14]. This theorem is used to estimate the
topological entropy of sets we are interested in.

THEOREM 1. Let (X,d,T) be a continuous dynamical system and F C M (X,T) be
a closed subset. Define

G:={zx e X :Vp(x)NF #0}.

Then

hiop(G) < sup h(v).
veF

3. Normality for the maps fx + a mod 1

In this section, we study the piecewise monotone continuous maps Ty, g defined
by Top(z) = Bz + a« mod1l with 8 > 1 and a € [0,1). These maps were
studied by Parry in [13] as a generalization of the S-transformations. In his paper
Parry constructed a T, g-invariant probability measure po g, which is absolutely
continuous with respect to Lebesgue measure. Its density is

L __dpag 1 ZnZO 1oc<Tg;,ﬁ(1) - ano 1z<T;;ﬂ5(0) 6
oeﬂ(x) = W(z) = N s g+t ) ( )

with N, s the normalization factor. In [8], Halfin proved that hq g(z) is nonnegative
for all = € [0,1]. Let i®# denote the coding map under Ta 8, ¢ the corresponding
p-expansion, X, 5 1= X1, , C Xy with k := [a + 3], u®P = lim, 0 1*?(z) and
p®h = limg 11 10 (z). We specify how T, is defined at the discontinuity points.
We choose to define T, g by right-continuity at a; € Sp. Doing this we can also
extend the definition of the coding map i®”? using the disjoint intervals laj,a;41)
for j € A, so that i*P is now defined for all z € [0,1) {. We can show that
u®? = i%#(0) and

i([0,1) ={z € oy : u™? < 0"z <> V¥n >0}
and equation (3) is true for all z € [0,1). It is easy to check that formula (4)

becomes
Yap={z €Sk u*’ 20"z v’ ¥n>0} (7)

and inequalities (5) become

{ua,ﬁ < o™ < B

> 0.
uoB < gnyod < yout 020 ®

It is known that the dynamical system (X, g,0) has topological entropy log (.
Moreover, Hofbauer showed in [11] that it has a unique measure of maximal entropy
fiops Hag = flap © (9*P)~! and p,. g is the unique measure of maximal entropy
for T,, 5. In view of (7) and (8), for a couple (u,v) € X3 satisfying

{

1 This convention differs from that made in the previous section; however it is the most convenient
choice when all f; are increasing.

"y

IS

1S
I TA
1S

Vn > 0, (9)

I
A TA
I

g
o™
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A Point is Normal for Almost All Maps fx + a mod 1 7

we define the shift space
Suv={zeXy:u=xc"z<v ¥Yn>0} (10)

We give now a lemma and a proposition which are the keys of the main theorem
of this section. In the lemma, we show that for given x and «, there is exponential
separation between the orbits of  under the two different dynamical systems T, g,
and T, g,. The proposition asserts that the topological entropy of %, , is upper
semi-continuous with respect to the critical orbits u and v.

LEMMA 3. Let x € [0,1), @ € [0,1) and 1 < 31 < B2. Define | = min{n > 0 :
il (z) # i%(2)} with i9(z) = i%% for j =1,2. Ifx # 0, then

G- o< 250,

x

If x =0 and a # 0, then ,
B —tr < Pt

Proof: Let § := (B, — #; > 0. We prove by induction that for all m > 1,

i[107m) () = 1[207m)(x) implies

T3 (x) = T/ () > By b,
where T; =Ty, 5, For m =1,

Ty(x) — Ti(z) = Box + a — ig(x) — (1 + a — ij(w)) = oz,

1
[0,m+1

2

Suppose that this is true for m, then i 0,m+1)

)= i implies

T (2) =T 2) = BT3"(x) +a—if(2) — (BT () + a — iy, (2))
= Oo(T5"(2) = T{"(2)) + 017" () = 3" 0.

On the other hand, 1 > Ty"(x) — T (z) > G5 '6x. Thus 6 < B2_:+1 for all m such
[QO,m)' If = 0, then T} (z) = Ty(z) = o and we can apply the first
statement toy =a > 0. O

.1 .
that ijgmy =1

PROPOSITION 1. Let the pair (u,v) € X7 satisfy (9). For all § > 0, there exists
L(6,u,v) such that for all L > L(6,u,v), the following claim is true: let the pair
(u',v') € 3% satisfy (9); suppose further that u, u' have a common prefiz of length
L and v, v' have a common prefir of length L, then

htoz)(zg’,g’) < htOD(Zg,y) +9.

To prove Proposition 1 one associates to the subshift ¥, , a graph G(u,v), called
the Markov diagram [11]. One then proves an equivalent proposition to Proposition
1 for these graphs, see section 5.

We now state our first theorem and his corollary about the normality of orbits
under T, g. The proof of the theorem is inspired by the proof of Theorem C in
[17], where the case © = 1 and o = 0 is considered.
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8 B. Faller and C-E. Pfister

THEOREM 2. Let x € [0,1) and o € [0,1) except for (x,c) = (0,0). Then the set
{B > 1: the orbit of 1% () under o is fin g-normal}

has full A\-measure.

COROLLARY 1. Let z € [0,1) and o € [0,1) except for (z,a) = (0,0). Then the set
{8 > 1: the orbit of x under T, g is pq g-normal}

has full A\-measure.

Remark that the theorem and its corollary may also be formulated for = € (0, 1]
using a left-continuous extension of T, 3 on (0,1] and a coding i*# defined using
intervals (a;,aj+1] for all j € A.

Proof of the theorem: We briefly sketch the proof. It is sufficient to consider a
finite interval [f3, B]. We use the uniqueness of the measure of maximal entropy o,
for x € ¥, not fi, g-normal, there exists v € V,(x) such that h(v) < h(fia,g) =

log 3. Therefore we cover the set of abnormal § in [3, 3] by sets Qn, N € N,

Qn = {B € [B,8] : {€.(i*"(2))} clusters on v with h(v) < (1 — 1/N)log3}.

We consider each )y separately and cover them by appropriate intervals, which we
generically denote by [31,32]. The main idea is to imbed {i*(x) : B € [B1, 2]}
in a shift space ¥* := X« ,» with u* and v* well chosen. Writing D* C X* for
the range of the imbedding, we estimate the Hausdorff dimension of the subset of
D* corresponding to points 1%%(x) which are not fia,p-normal. Then we estimate
the coefficient of Holder continuity of the map p. defined as the inverse of the
imbedding. This gives us an estimate of the Hausdorff dimension of the non fi, g-
normal points in the interval [3, Ba].

To obtain uniform estimates, we restrict our proof to the interval [3, 3] with
1 < < < oo. All shift spaces below are subshifts of ¥j, with k = [« + 3]. Let
Q:={B €8, :1i*F(z) is not fla,s-normal}. For B € Q, we have V,(i*?(z)) #
{fia,3}. Since fin g is the unique T, g-invariant measure of maximal entropy log 3,
there exist N € N and v € V,(i%#(x)) such that h(v) < (1 — 1/N)log 3. Setting

Qn = {6 €3, : v € V,(i*?(x)) s.t. h(v) < (1 —1/N)log 8},

we have Q = (Jy~; Q. We will prove that dimy Qn < 1, so that A(Q2n) = 0 for
all N > 1. -

For N € N fixed, define ¢ := g;’f? > 0 and 6 :=log (1+¢/3). Let 8 € [3,0]
and define Lg = L(§/2,u®?,v*?) as in Proposition 1. Choose gg in Q such that
log 3 —6/2 <loggg < logf. Let

J(ﬁ, L,H7 qB) = {51 S [CI,&B] : Hﬁ)ﬁ;ﬁ) = E%’iﬁ)’y%ﬁfﬁ) = Qﬁ)ﬁ/ﬁ)} .

This set is an interval; if 5/ € J(B8,Lg,q3), f < p” € J(B,Lg,qp) then
[3',8"] € J(B,Ls,qs) since the maps 3’ — u®? and B’ — v*? are both
monotone increasing. Moreover 8 € J(8,Lg,q3). Notice also that the family
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A Point is Normal for Almost All Maps fx + a mod 1 9

{J(B,Lg,qp) : B € [B,B]} is countable. Indeed the interval J(3, Lg, qg) is entirely

characterized by g BLﬁ) ﬁ)’iﬁ) h o
in A* x A* x Q. Thus {J(8, Ls,qs) : B € [B, 3]} is a countable cover of [, 3]. T
prove that A(Qy) = 0, it is sufficient to prove that A(Qnx N J(8,Lgs,¢q3)) = 0 for
all B € [, B). The interval J(3, Lg,qz) may be open, closed or neither open nor
closed. We need to work on a closed interval, thus we prove an equivalent result:
for any closed interval [31, B2] C J(B, Lg, q3), we have A(Qy N [B1,62]) =0

Let w/ = u®? and v/ = v®%. Using (8) and the monotonicity of 3 — u®? and
B — v™P we have

and gg. But there are only countably many triples

1
1

SIS
IATA
\Q Q

g

2L

Hence the couple (u!,v?) satisfies (9)
D*:={ze€ ¥ :3B € [B1,B] s:t. z=1%P(z)}.

We define an map p, : D* — [31, B2] by p«(2) = 8 < i%?(z) = z. This map is well

defined: by definition of D*, for all z € D* there exists a 3 such that z = i%#(z);

moreover this 3 is unique, since by Lemma 3, 3 + i%P(z) is strictly increasing.
On the other hand, for all § € [y, O], we have from (7)

u' 2uf 20" (x) 2™ 20 Wi >0,

and we set X* := X1 ,2 and

whence i%?(x) € ¥* and p. : D* — [, B2] is surjective. Let log B, := hop(X*);
then by Proposition 1
logﬂ* = htop(z*) < htop(za,ﬁ) + 5/2 = logﬁ + 6/2 .

By definition of gg, we have log 3 — §/2 < log gg < log 31, thus log 3* < log 31 + ¢
and
Bo =< Pui(e’ —1) <e. (11)
Let us compute the coefficient of Holder continuity of p, : (D*,dg,) — [01, 82]. Let
z# 2 € D* and n = min{l > 0: 2z # z/}, then dg_(z,2') = 5;". By Lemma 3,
there exists C such that
log 8

|p* (Z) — Px (é/)l < CP* (§>—n < Cﬁfn = C(dﬁ* (17 él))log Px

where o
C= max{g %}

By equation (11) and the choice of &, we have

Blog Pilog i
bombison—y = Pohsayy
6*_51
s 1 <1
T Bilogh =T AN -1
L lefitZEt N
log 61 ~ 2N -1
N logﬁl2 log 51 1o L
log 8. ™ log py + 252 2N
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10 B. Fuller and C-E. Pfister

In the last line, we use the concavity of the logarithm, so the first order Taylor

development is an upper estimate. Thus p,. has Holder-exponent 1 — ﬁ

Define
Gy ={zeX":IveV,(2) st. h(v) < (1—1/N)logp.}.
Let 8 € Qn N [B1,B2]. Then there exists v € V, (1% (z)) such that
W) < (1— 1/N)log f < (1 — 1/N) log 5.

Since 1*#(z) € D* C ¥*, we have 1%/ (z) € G’ . Using the surjectivity of p., we
obtain Qn N [B1, B2] C p«(Gy N D*). We claim that hyop(Gy) < (1 — 1/N)log S
This implies, using Lemmas 2 and 1,

dimH(QNﬂ[ﬂhﬁz]) < dlme*(G}kvﬂD*)

dimy Gy __ hop(G) 1= L

< <
]-_ﬁ (l_ﬁ)logﬂ* 1- LN

<1

Thus /\(QN N [ﬁl,ﬁg}) =0

It remains to prove hiop(Gy) < (1 — 1/N)logfB.. Recall that h(v) =
lim,, %Hn(y), where H,(v) is the entropy of v with respect to the algebra A,
of cylinder sets of length n,

Hy(v) == > v([w])logv([w]).
[w]€An

Since the cylinders are both open and closed, v — H,(v) is continuous in the
weak*-topology. Moreover %Hn(u) is decreasing in n. For all m > 1, we set

Fi(m) = {veM(E"o): %Hm(l/) <(1-1/N)log .}
Gy(m) = {z€X":V,(z) NFx(m)#£0}.

Let z € Gy, then there exists v € V,(z) such that h(v) < (1 — +)log 3. Since
L H,.(v) | h(v), there exists m > 1 such that L H,,(v) < (1—1/N)log 3., whence
v € Fy(m) and z € G (m). This implies Gy C U,,>; Gy (m). Since H,,(-) is
continuous, F7 (m) is closed for all m > 1. Finally we obtain using Theorem 1

hiop(GN) = sUp hiop (G (m)) < sup  sup  h(v)

m veF} (m)

1
< sup sup —H,(r)<(1-1/N)logf.. O
m yeFy(m) m

Proof of the Corollary: Let 3 > 1 be such that the orbit of i*#(z) under o
is flo,g-normal. Let f € C([0,1]), then f : X, 3 — R defined by f := f o ¢®F is
continuous, since ¢®? is continuous. Using fi 8= flago ()=, we have

fditas / fdas = lim 3 f(0'1%7(2)
‘/[Oal] Ya,8 e Z
n—1

_ ,ﬁ iso,f3 %
—&Zfalﬁ—%zﬁﬁ>
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A Point is Normal for Almost All Maps fx + a mod 1 11

The second equality comes from the i, g-normality of the orbit of 18 (x) under
o, the last one is (3) which is true for all € [0,1) with our convention for the
extension of T, g and i*# on [0,1). O

The next step is to consider the question of ji, g-normality in the whole plane
(a, B) instead of working with « fixed. Define R :=[0,1) x (1, c0).

THEOREM 3. For all x € [0,1), the set
N (z) :={(a,8) € R : the orbit of x under Tp g S fia,s-n0OTMAL}
has full 2-dimensional Lebesgue measure.

Proof: We have only to prove that A(z) is measurable and to apply Fubini’s
Theorem and Corollary 1. The first step is to prove that for all z € [0,1) and all
n > 0, the maps (a, ) — i%?(z) and (a,8) — 1% 5(z) are measurable. First
remark that for alln > 1

n n—1 ]
Bole) = Bt al - Y a0 g (12
j=0

The proof by induction is immediate. To prove that (a, 8) — i%”(z) is measurable,
it is enough to prove that for all n > 0 and for all words w € A* of length n

{(a,8) € R: 10 () = w}
is measurable, since the o-algebra on ¥, is generated by the cylinders. This set is
the subset of R? such that
B>1
0<ax<l
w; <6Tgﬁ(a:)+oz§wj+1 YO<j<n

Using (12), this system of inequalities can be rewritten

8>1

0<ax<l1

o> % zzowzﬂjﬂ' —/BjJrl:E) VO<j<n
a < % 1+Z{:Owlﬂj*i —5j+1x) YO<j<mn

From this, the measurability of i®# follows. If (a,3) + i%#(z) is measurable,
then by formula (12), (a, 3) — T} 5(z) is clearly measurable for all n > 0. Then

for all f € C([0,1]) and all n > 1, the map («, 8) — Sp(f) :== %Z?;Ol f(Téﬁ(x))
is measurable and consequently

{(e, B) : lim S,,(f) exists}

n—o0

is a measurable set.
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12 B. Fuller and C-E. Pfister

On the other hand, if f € C([0,1]), then (a,3) — [ fdpa,p is measurable.

Indeed
[ fdros = [ fhapix

and in view of equation (6) and the measurability of («, ) — T, g(x), the map
(o, B) — hqp is clearly measurable. Therefore

n—oo

{(e,8) : Iim S,(f) = / Fdbto s}

is measurable for all f € C([0,1]). Let {fm}men C C([0,1]) be countable subset
which is dense with respect to the uniform convergence. Then setting

Dy = {(a, ) € R+ lim Sy, (fm) = / Fmdpto. 3},

we have N'(z) = (,,eny Dm, Whence it is a measurable set. O

We have shown that for a given z € [0,1), the orbit of x under Ty, g iS fa,a-
normal for almost all (a, 3). The orbits of 0 and 1 are of particular interest (see
equation (6)). Now we show that through any point (ag, 5y), there passes a curve
defined by o = a(3) such that the orbit of 0 under T,,(g) g is pa(g),s-normal for
at most one 3. A trivial example of such a curve is @ = 0, since x = 0 is a fixed
point. The idea is to consider curves along which the coding of 0 is constant, ie to
define () such that u®P):P is constant. The results below depend on reference
[6], where we solve the following inverse problem: given u and v verifying (9), can
we find «, 8 such that u = u®? and v = v*P ?

Let

U:={u:3 (a,0) € R s.t. g:ya’ﬁ}.

We define an equivalence relation in R by
(0, 8) ~ (o, ) = u? =u".
An equivalence class is denoted by [u]. The next lemma describes [u].

LEMMA 4. Let u € U and set
Ua
O‘(IB) = (ﬁ - l)z 6jil .

Jj=20

Then there exists B, > 1 such that
[u] = {((B),8) : B € I}
with I, = (B, 00) or I, = [By, ).

Proof: If w = 000..., then the statement is trivially true with a(8) = 0 and
By = 1. Suppose u # 000.... First we prove that

(a,3) ~ (', ) = a=d

then

(o, ) € [u] = (a(f),0) € [u] V3" =B
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Let (a,B) € [u]. Using (3), we have p*#(ou) = T, 3(0) = a. Since the map
a +— p*P(ou) — o is continuous and strictly decreasing (Lemmas 3.5 and 3.6 in
[6]), the first statement is true. Let 8’ > §. By Corollary 3.1 in [6], we have
that *#(ou) > ¢*? (ou). Therefore there exists a unique o/ < a such that
0% (ou) = /. We prove that %" = u. By point 1 of Proposition 2.5 in [6], we
have u < u®#". By Proposition 3.3 in [6], we have

htop(zgyga’ﬁ’) = htop(Za’,B’) = IOg 6/'

Since ¥y 5 = ¥, pe.s and B’ > 3, we must have v®? < v 8" Therefore
Vn >0,

are the inequalities (4.1) in [6] for the pair (u, ya/’ﬁ,). We can apply Proposition
3.2 and Theorem 4.1 in [6] to this pair and get u = u®#". Tt remains to show that
o/ = o). Following the definition of the p-expansion of Rényi, we have for all
z €[0,1) and alln >0

Since T 5(x) € [0,1), for all 3> 1 we find an explicit expression for ©*P on ¥, 5

i%(2) —a
w=ZJBT~

Jj=0

In particular, applying this equation to z = 0, we have for all (o, 5) € R

u”?
a:(ﬁ—l)zﬂjﬂ

Jj=0
Since for all 8 > ,, we have u € ¥, 3, this completes the proof. O
For each u € U, the equivalence class [u] defines an analytic curve in R, which
is strictly monotone decreasing (except for u = 000...),

] = (@ 0) :a= (8- 1) 3 53ty B e L)

J=0

These curves are disjoint two by two and their union is R.

THEOREM 4. Let (o,) € R, u = u™® and define o(B) and B, as in Lemma 4.
Then for all 3 > By, the orbit of x = 0 under Ty gy, is N0t pa(g),3-normal.

Proof: Let v € M (X, 0) (with k large enough) be a cluster point of {&, (w)}n>1
(see (1)). By Lemma 4, u®(®+# =y for any 3 > f3,. Therefore

h(?) < hiop(Za(p),p) =logB VB> By
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14 B. Fuller and C-E. Pfister

and 7 is not a measure of maximal entropy, as well as vg := Do (goo‘(ﬁ)ﬁ)’l for all
B > By (see [10]). O
Recall that

N(0) = {(a, B) € R : the orbit of 0 under T, g is q,g-normal}.

By Theorem 3, A/(0) has full Lebesgue measure. On the other hand, by Theorem
4, we can decompose R into a family of disjoint analytic curves such that each
curve meets N(0) in at most one point. This situation is very similar to the one
presented in [12] by Milnor following an idea of Katok.

4. Normality in generalized [(B-transformations
In this section, we consider another class of piecewise monotone continuous maps,
the generalized [-transformations. Introduced by Géra in [7], they have only one
critical orbit like g-transformations, but they admit increasing and decreasing laps.
A family {Ts}g>1 of generalized (§-transformations is defined by & > 2 and a
sequence s = (S, )o<n<k With s; € {—1,1}. For any 8 € (k—1,k], let a; = j/5 for
j=0,....,k—1and ay =1. Then for all j =0,...,k—1, the map f; = I, — [0,1]
is defined by

fi() = {ﬁx mod 1 %f s; =+1

1—(Bx modl) ifs; =-1

In particular when s = (1,—1), then T is a tent map. Here we left the map
undefined on a; for j =1,...,k — 1.

Goéra constructed the unique measure pg absolutely continuous with respect
to Lebesgue measure (Theorem 6 and Proposition 8 in [7]). Using the same
argument as Hofbauer in [9], we deduce that a measure of maximal entropy is
always absolutely continuous with respect to Lebesgue measure, hence the measure
pp is the unique measure of maximal entropy. Let k = [3] and let us denote
i? for the coding map under T, ¢” := (i#)~! for the inverse of the coding map,
Y5 = S, and n® := lim,yy 1%(x). Now it is easy to check that formula (4) becomes

Yg={z€Sp:0"z =7’ VYn>0} (13)
and inequalities (5) become
O'nﬁﬁ =< ﬂﬁ Vn > 0. (14)

It is known, in all cases treated below, that the dynamical system (¥Xg3,0) has
topological entropy log 5 and, by general theory of Hofbauer in [12], it has a unique
measure of maximal entropy jig such that pg = fig o (¢7)~! (see [5]).

As in the previous section, we state two lemmas which we need for the proof of
the main theorem of this section. We study the normality only of x = 1, so these
lemmas are formulated only for = 1. Let S, (8) = S, and S(8) = S be defined

by (2).

LEMMA 5. For any family of generalized B-transformations defined by (sn)o<n<ks
the set {f € (k—1,k] : 1 € S(8)} is countable.
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Proof: For a fixed n > 1, we study the map 3+ T} (1). This map is well defined
everywhere in (k — 1, k] except for finitely many points and it is continuous on each
interval where it is well defined. Indeed this is true for n = 1. Suppose it is true for
n, then Tg“(l) is well defined and continuous wherever 77 (1) is well defined and
continuous, except for T (1) € So(8). By the induction hypothesis, there exists a
finite family of disjoint open intervals J; and continuous functions g; : J; — [0,1]
such that (k —1,k]\(UU, J:) is finite and

Then

(B € (k—1,k] : T}(1) is well defined and Tg(1) € So(8)} = | J{B € Ji : g:(8) = %}.
1)

We claim that {8 € J; : g;(8) = %} has finitely many points. From the form of the

map T, it follows immediately that each g;(8) is a polynomial of degree n. Since
p>1,

9:(8) =5 < Ba(B)-i=0.

This polynomial equation has at most n + 1 roots. In fact, using the monotonicity
of the map (3 +— 7°, we can prove that this set has at most one point. The lemma

follows, since S(3) = U5 Sn(8). O

LEMMA 6. Consider a family {Ts}s>1 of generalized B-transformations defined by
a sequence s = (Sp)o<n<k- Let 1 < 31 < B2 and Qj = Qﬁf for j = 1,2; define
l:=min{n >0 :Q}l + Qi}

If k> 3, for all By > 2, there exists K such that 81 > By implies

Be — 1 < KBy

If s = (+1,41), then

B2 — 1 < ﬂ2_1+1~
If s = (+1,-1) or (=1,41), then for all By > 1, there exists K such that 31 > (o
mmplies

Bo— B < KBy
If s = (—1,—1), then there exists By > 1 and K such that 81 > [y implies
Bo—B1 < KB

The proof is very similar to the proof of Brucks and Misiurewicz for Proposition
1 of [2], see also Lemma 23 of Sands in [16].

Proof: Let ¢ := 32 — #1 > 0 and denote T; = Tp, and i/ = if% for j = 1,2. Let
ai,as € [0,1] such that r := i}(a1) = i3(a2). Considering four cases according to
the signs of as — a; and s,., we have

|T2(az) — Ti(a1)| > Palaz —a1| — 0.
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Applying this formula n times, we find that i[10 n)(al) = i[2O,n)(a’2) implies

)
730) = 1) 2 75 (Jon = ol - ).
f2—1
Consider the case k > 3. Then a; = T;(1) for ¢ = 1,2 are such that
0 )
— =9 > .
laz —ai| >ﬂo*1_52*1

Using |75 (a2) — 17" (a1)] < 1, we conclude that for all 8y < 1 < B, if ﬂ[lo.n) = ﬁ[20 ")

then /
5 < Bo—1

Bo —2

For the case s = (+1,+1), we can apply Lemma 3 with & = 0 and « = 1.

The case s = (+1, —1) or (—1,+1) is considered in Lemma 23 of [16].

For the case s = (—1,—1): for a fixed n, we want to find Gy such that for all

Bo < B1 < P2 we have

ﬂz—n—i-l .

0
f2—1
Then we conclude as in the case k > 3. Formula (15) is true, if |%Tg(1)| > ﬁ
for all B > By. When n increases, (3 decreases. With n = 3, we have 5y ~ 1.53. O

In the tent map case, the separation of orbits is proved for 3 € (v/2,2] and
then extended arbitrarily near By = 1 using the renormalization. In the case

15 (1) = T (1)] >

(15)

s = (=1, —1), there is no such argument and we are forced to increase n to obtain
a lower bound (y. With the help of a computer, we obtain Gy ~ 1.27 for n = 12.
For more details, see [5].

Now we turn to the question of normality for generalized (-transformations. The
structure of the proof is very similar to the proof of Theorem 2 and Corollary 1.

THEOREM 5. Consider a family {Tg}r—1<p<kr of generalized [(-transformations
defined by a sequence s = (Sn)o<n<k- Let Bo be defined as in Lemma 6. Then
the set

{B > Bo : the orbit ofg’g under o is fig-normal}
has full A-measure.

COROLLARY 2. Consider a family {Ig}s>1 of generalized [(-transformations
defined by a sequence s = (Sp)n>0. Let Bo be defined as in Lemma 6. Then the set

{8 > By : the orbit of 1 under T is pg-normal}

has full \-measure.

Proof of Theorem: Let

By :={B € (fo,0) : 1 ¢ S(B)}.

Prepared using etds.cls



A Point is Normal for Almost All Maps fx + a mod 1 17

From Lemma 5, this subset has full Lebesgue measure. To obtain uniform estimates,
we restrict our proof to the interval [, 8] with By < B< B < co. Let k := [(] and
Q:={Beb, BN By : Qﬁ is not fig-normal}. As before, setting

Qn = {B€[8,8]NBo: v e Vy(1) sit. h(v) < (1-1/N)logp},

we have Q = UN21 Qn. We prove that dimyg Qy < 1. For N € N fixed, define

€= gﬁf? > 0 and L such that Q[ﬁo L= Q[BOI L) implies |5 — §'| < & (see Lemma 6).

Consider the family of subsets of [3, 3] of the following type

J(w) ={B € [B,0] 5ﬂ[ﬁ0,L) =w}

where w is a word of length L. J(w) is either empty or it is an interval. We cover
the non-closed J(w) with countably many closed intervals if necessary. We prove
that M(Qn N [B1,52]) = 0 where 51 < 2 are such that Q[BOI’L) = ﬂ[ﬁ(iL)'

Let n/ = n%. Let

D*:={z€X,p: 3B € [Br,B]NBys.t. z= Qﬁ}

Define p, : D* — [y, 82]NBy by p«(2) = 8 & ﬂﬂ = z. As before, from formula (13)
and strict monotonicity of g +— Qﬂ, we deduce that p, is well defined and surjective.
We compute the coefficient of Hélder continuity of p. : (D*,dg,) — [B1,32]. Let
z# 2 € D* and n = min{l > 0: 2z # z/}, then dg,(z,2') = 5;". By Lemma 6,
there exists C such that

log 81

p«(2) = p«(2)] < Cpu(2) ™" < CBI™ = Cdp. (2,2))) o7~

By the choice of L and e, we have

log 51 -1 L,
logﬁ* o 2N

thus p, has Holder-exponent of continuity 1 — ﬁ Define
Gy ={zeX : T eV,(2)st. h(v) < (1—-1/N)logp.}.

As before, we have Qn N[5, B2] C p«(Gy N D*) and hiop(Gy) < (1 —1/N)log B..
Finally dimg (Qx N [B1,082]) <1 and A(Qny N [B1,52]) =0. O
Proof of the Corollary: The proof is similar to the proof of Corollary 1. Equation
(3) is true, since we work on By. O

In particular, when we consider the tent map (s = (1, —1)), we recover the main
Theorem of Bruin in [3]. We do not state this theorem for all z € [0, 1] as for the
map T, 3, because we do not have an equivalent of Lemma 3 for all = € [0,1]. This
is the unique missing step of the proof.

5. Appendiz
Let G be an oriented labeled right-resolving graph and denote by V the set of vertices
of G. We assume that G has a root v € V. Let v € V, the level of v is the length
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of the shortest path on G from vy to v. For K € N, the graph G is the subgraph
of G whose set of vertices is

Vi :={v e V: thelevel of v is at most K} .
We set
£(n,G) := card{paths of length n in G starting at vo} .

Since the graph is right-resolving, a path in G is uniquely prescribed by the initial
vertex of the path and the (ordered) set of labels of its edges. The right-resolving
rooted graph G has the property P, if for any path starting at v there is a unique
path starting at the root vy with the same set of labels. If G has the property P,
then

U +m,G) < £(n, G)(m,G) .
It follows that

h(G) := lim 1 log ¢(n,G) = inf % log ¢(n,G) . (16)

n—oo N,
The quantity h(G) is the entropy of G.

LEMMA 7. Let G be a right-resolving rooted graph which has the property P. For all
0 > 0, there exists L(G,0) such that for all L > L(G,0) and for all right-resolving
rooted graph G' satisfying the property P, we have G, = G} implies that

hG") <h(G)+6.
Proof: Given G and § > 0, choose L(G,d) such that, for all L > L(G, ), we have
1
7 log¢(L,G) < h(G)+56.

Let G’ be a right-resolving rooted graph with the property P such that G; = Gr.
Then using (16) and the fact that a path of length L in G (or in G’) remains in Gy,
(or in G7), we get

hG') < —logl(L,G") = %logé(L,g’L)

] ]

log¢(L,Gr) = %logE(L,g) <h(G)+¢6. O

Let (u,v) satisfy (9); we define a labeled graph G = G(u,v). A vertex v of the
graph is a couple (p,q) € Zy x Z,. We define the out-going labeled edges from
v=(p,q) tov' = (p,q'), the successors of v.

1. If u, = vg, then there is a unique out-going edge labeled by u, from v to
vV =(p+1q+1).
2. If u, < w4, then there is an out-going edge labeled by u, from v to

v/ = (p+1,0), and an out-going edge labeled by v, from v to v/ = (0,¢ + 1).
Furthermore, if there exists a, up, < a < vy, then there is an out-going edge
labeled by a from v to v/ = (0,0).
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The graph G is the minimal graph containing (0,0), the root of G, such that if v
is a vertex of G, then all successors of v are vertices of G. All vertices of G are of
the form (p, q) with p # ¢, except for the root. Furthermore, (p, q) is a vertex of G
with p > ¢ if and only if the longest suffix of ug - - - up—1, which is a prefix of v has
length ¢. Using the map from the vertices of G to the subsets of X, ,,

(p,q) = [oPu, 0] :={z € ¥y ,: oPu Xz <o},

and the results of section 3.1 of [6], one checks that G has property P, h(G) =
hiop(Xy,0) and the level of v = (p,q) is max{p,¢}. This last result implies that
for (uv/,v') satisfying (9), if u and %’ have a common prefix of length L and v and
v’ have a common prefix of length L, then G = G;. Therefore Lemma 7 implies
Proposition 1.

Acknowledgements: We thank H. Bruin for correspondence about Proposition
1 and for communicating us results before publication.
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