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0. INTRODUCTION AND NOTATION

This work is a contribution to the study of the overgroups of unipotent
elements in finite and algebraic groups of Lie type and to the more general
study of the subgroup structure of these groups. We consider the following
natural question: Given G a finite or algebraic simple group of Lie type
defined over F, a finite or, respectively, algebraically closed field of
nonzero characteristic p, and a unipotent element u € G, when does
there exist a subgroup 4 < G with A4 isomorphic to SL,(F) or PSL,(F)
and with u € A7 An answer to the analogous question for nilpotent
elements in simple Lie algebras over algebraically closed fields has been
available for many years now in the Jacobson—Morozov theorem. It was
shown in [8] that in simple Lie algebras defined over algebraically closed
fields of characteristic 0 or sufficiently large characteristic p, every nilpo-
tent element can be embedded in an sl, subalgebra. In [12], this result was
shown to be valid for all algebraically closed fields of “good” characteristic.
(See the statement of Theorem 0.1 below for a definition of “good”.) We
establish here the best possible group theoretic version of the
Jacobson-Morozov theorem under the condition that p is a good prime
for G; namely, we find that a unipotent element in G lies in a subgroup
isomorphic to (P)SL,(F) precisely when its order allows it to. That is.
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every element of order p is contained in a subgroup isomorphic to
(P)SL,(F). The algebraic group result is precisely stated as follows:

THEOREM 0.1. Let G be a semisimple algebraic group defined over an
algebraically closed field k of nonzero characteristic p. Assume p is a good
prime for G (i.e., p > 2 if G has a factor of type B;, C;,, D;, p > 3if G has a
factor of type G,, F,, E;, E;; and p > 5 if G has a factor of type Ey). Let
u € G such that u? = 1. Then there exists a closed connected subgroup X of
G, X isomorphic to SL,(k) or PSL,(k), with u € X.

We obtain the finite group result by viewing the finite groups as fixed
point subgroups of certain endomorphisms of the algebraic groups and
then applying the following strong version of Theorem 0.1.

THEOREM 0.2. Let G be a semisimple algebraic group defined over an
algebraically closed field k of nonzero characteristic p. Assume p is a good
prime for G. Let o be a surjective endomorphism of G with finite fixed-point
subgroup G,. Let u € G, with u? = 1. Then there exists a closed connected
subgroup X of G with o(X) C X, X isomorphic to SL,(k) or PSL,(k) and
withu € X.

In the study of simple algebraic groups, the (P)SL, subgroups of these
groups have been used to establish many results in the theory. For
example, (P)SL,’s arise in the classification of the conjugacy classes of
unipotent elements, a fundamental result of [1, 2, 11, and 12]. More
recently, Suprunenko has used the existence of (P)SL,’s overlying unipo-
tent elements in determining the minimal polynomials of unipotent ele-
ments on certain representation spaces. (See [20] and [21].) With our
Theorem 0.1, one will be able to remove certain prime restrictions in that
result. The proof of Theorem 0.1 provides as well a construction of the
maximal A, subgroups in the exceptional simple algebraic groups over
algebraically closed fields of nonzero characteristic, with certain mild
restrictions on the characteristic. (See [14] and [24].) Thus, we have reason
to expect that these results will be quite useful in the study of the
subgroup structure and representation theory of simple groups of Lie type.
Additionally, one of our preliminary results provides a formula for the
order of a unipotent element in a simple algebraic group and can be used
to determine the exponent of the Sylow p-subgroup of the finite fixed-point
subgroups of G. (See 0.4 and 0.5.) We should mention here that the
assumption that p is a good prime is not known to be necessary. However,
our proof depends upon the Bala—Carter-Pommerening classification of
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the conjugacy classes of unipotent elements (see 0.3 below) which requires
that p is a good prime.

We make a few comments about the organization of the paper here. In
Section 1 we establish the tools which will be used for constructing the A,
subgroups overlying certain elements of order p in the algebraic groups.
We present these results separately because the exponentiating process
which we use is not restricted to the construction of subgroups of type A,.

In Section 2, we establish the order formula for exceptional algebraic
groups and construct the A, subgroups overlying certain unipotent ele-
ments in the exceptional algebraic groups. We do the same thing for the
classical groups in Section 3. In fact, Theorem 0.1 for the classical
algebraic groups can be deduced from work in the literature. (See the
opening remarks of Section 3 for a more complete discussion of this.) We
include a proof here both because it is elementary and because the work is
necessary for establishing the order formula. The main content of Section
4 is the proofs of Theorems 0.1 and 0.2.

The appendix consists of explicit (matrix) descriptions of the images of
certain root groups of E, and E,, including those associated with the roots
in a base, under the smallest dimensional nontrivial restricted irreducible
rational representations of these groups. For the purposes of this paper,
the given matrices were used to obtain the orders of certain distinguished
unipotent elements in the exceptional algebraic groups. For further details,
see Section 2. We have included this information in detail with the hopes
that duplication of elementary but tedious computations can be avoided.

We introduce here the terminology and notation to be used throughout
the paper and recall certain basic notions about the conjugacy classes of
unipotent elements in simple algebraic groups.

Let G be a semisimple algebraic group defined over an algebraically
closed field k of characteristic p > 0. We will assume throughout that p is
a good prime for G, except where specifically noted. That is, p > 2 if G
has a factor of type B,, C,, D;; p > 3 if G has a factor of type G,, F,, E,,
E,; and p > 5if G has a factor of type Ej. Fix 7 to be a maximal torus of
G and let ®(G) denote the root system of G relative to T, and take
TKG) = {«,, a,,...} to be a fundamental system of ®(G), with ®*(G)
(respectively, @~ (G)) the associated set of positive (negative) roots. We fix
the following labeling of Dynkin diagrams, where the darkened nodes
represent the short roots:

o b7} oy oy
A, [ e ¢ EEEEEPERE )
o 273 Oy_2 o_q oy

B, OO = --- - ————— g
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Let r, be the highest root in ®(G) with respect to the partial ordering
on ®(G) induced by our choice of base [T(G). For a subset J ¢ TI(G), let
D(J) = PG)N Y.acsZa and let d7(J) =P (G) N Y, acsZa. For
a € O(G), let U, denote the corresponding T-root subgroup of G and let
{x,(#) 1t € k} denote the collection of elements in U,. For g = p“, if o is
the endomorphism of G induced by the map x,(¢) — x,(¢?), we will call &
a p-power Frobenius endomorphism of G. For an arbitrary field F of
characteristic p, let G(F) denote the adjoint Chevalley group of type
®(G) defined over F and let T, U,, x,(¢), t € F, be as in the algebraic
group G.

We now recall some notions regarding unipotent conjugacy classes in .
Let P be a parabolic subgroup of G with unipotent radical R,(P). Then
by [13], there exists an open dense subset & of R,(P) which is a single
P-orbit under the action of P on R, (P). (The subset & is called the
Richardson dense orbit.) Recall that a unipotent element u € G is distin-
guished if C;(u)° contains no nonidentity semisimple element. A parabolic
subgroup P of G, with Levi factor L and unipotent radical R, (P), is
distinguished if dim L = dim(R,(P)/R,(P)"). The classification of the
conjugacy classes of unipotent elements in G can then be stated as follows:

THEOREM 0.3 [1, 2, 11, 12].  Let G be a simple algebraic group defined
over an algebraically closed field k of good characteristic.



38 DONNA M. TESTERMAN

i. There is a bijective map between conjugacy classes of distinguished
unipotent elements of G and conjugacy classes of distinguished parabolic
subgroups of G. The unipotent class corresponding to a given parabolic
subgroup P contains the dense orbit of P on its unipotent radical.

ii. There is a bijective map between conjugacy classes of unipotent elements
of G and G-classes of pairs (L, P,.), where L is a Levi subgroup of G and P, .
is a distinguished parabolic subgroup of the semisimple part L' of L. The
unipotent class cormesponding to the pair (L, P,.) contains the dense orbit of
P,. on its unipotent radical.

To work with the above classification one needs to know explicitly which
parabolic subgroups are distinguished. As in [5], we will parametrize each
parabolic by a labeled Dynkin diagram, where we label with a zero any
node corresponding to a simple root in the root system of the semisimple
part of the Levi factor and label with a two any simple root for which the
corresponding root group lies in the unipotent radical of the parabolic. A
description of the distinguished parabolics is given in [5]. When all nodes
are labeled with a two, that is, when the distinguished parabolic P is a
Borel subgroup, the elements lying in the conjugacy class which contains
the dense orbit of P on its radical are called regular unipotent elements.

We now introduce a height function on ®(G) associated with a subset
J c TI(G): this was first defined in [24):

m,( Y kyy)= Yk,

yelG) yees

Recall, we have the ordinary height function ht(Zkyy) = Zky. For a
parabolic subgroup P of G corresponding to a subset J < TI(G), we will
write ht(P) = ht,(r,). We can now state the

Order Formula 0.4. Let G be a simple algebraic group defined over an
algebraically closed field k& of good characteristic p > 0. Let P be a
distinguished parabolic subgroup of G, and let u € R, (P) lie in the dense
orbit of P on R,(P). Then o(u) = min{p* | p* > ht(P)}.

We note that by applying Theorem 0.3 and Order Formula 0.4, we have
a “formula” for the order of every unipotent element in G. We will show
as well

COROLLARY 0.5. Let G be a simple algebraic group defined over an
algebraically closed field of arbitrary characteristic p > 0 and let o be a
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surjective endomorphism of G such that G, is finite. Then the exponent of a
Sylow p-subgroup of G, is min{p* | p* > ht(r,)}.

The order formula and Corollary 0.5 will be established in Sections 2
and 3. All additional notation pertains to the work of a particular section
of the paper and will be introduced when necessary.

Finally, we acknowledge helpful conversations with Gary Seitz, Alexan-
der Borovik, and Ross Lawther.

1. EXPONENTIATING IN SMALL CHARACTERISTICS

Throughout this section, let G be a simple algebraic group. Let #,(C)
be a finite-dimensional complex simple Lie algebra of type ®(G) with
Chevalley basis & = {e,, f,, h, | « € ®(G), y € TI(G)}. Let Z(Z) be
the Z-span of 4&. Then for any field F, we can form the F-Lie algebra
S AF)=%,(2) ®, F. Now suppose F has characteristic p > 0. Let
e € X, co-) Le,. Then if p > 3 ht(r,), we can form an automorphism of
the Lie algebra .#,(F) by exponentiating ad te for + € F. (See Chapter 5
of [5]) In this section, we show that the restriction on p need not be this
strong. Also, we are able, in certain cases, to describe the one-dimensional
subgroup fexplad te) | t € F} < Aut(.Z,(F)).

We briefly recall some of the ideas discussed in [24)]. Fix F as a field of
nonzero characteristic p. Let Z ,, be the localization of Z at the prime
ideal pZ. Let ¥;(Z,)) be the set of Z,, linear combinations of elements
in #; so FH(Z,)) =ZLG(Z) 8, Z,, and FG(F) =7G(Z,) ® F. Let
e = Y.c.e,, where a ranges over ®*(G) and c, € Z. Suppose (ad e)’ /j!
preserves (Z, ) for all j > 0; that is, [(ad e} /jINHH(Z, ) < Z(Z, )
for all j > 0. Then, as described in [24, Lemma 1}, we can form x(¢) =
exp(ad te), ¢ € F, to obtain automorphisms of #,(F). Moreover, under the
assumption that p is a good prime for G, x(¢t) € G(F), the adjoint
Chevalley group of type ®(G). Suppose in addition that there exists f
€ Y Zf,, where a ranges over ®*(G) such that [(ad Y /iNE2 ) <
Z(Z,) for all j > 0 and such that e and f canonically generate an s/,(C)
subalgebra of %;(C). Let y(¢) be the automorphism of #;(F) correspond-
ing to explad ¢f) for t € F. Then the subgroup {(x(1), y(t)|t € F) of
G(F) is isomorphic to SL,(F) or PSL,(F) (Lemma 2 of [24]). We have
followed the standard construction of (P)SL,’s in Chevalley groups as
exposed in [6] or [18], with the variation that we require the ad-nilpotent
elements to preserve only a Z, -form in <,{F) rather than a Z-form. This
slight weakening of a hypothesis enables us to “exponentiate” nilpotent
elements which do not preserve .%;(Z). For example, in the simple Lie
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algebra sl;(C) with Chevalley basis {e,, f,, €, +a,» fa,+ap By, 11 = 1,2} if
e=e, +e,, then (ade)/ /j! does not preserve %,(Z) for all j=0;
however for p > 2 it does preserve Zi(Z,) forall j = 0.

The above remarks lead us to ask the following question: How can one
easily check that the condition

[(ad ) /j!](Z(2,,))) €%(Z,))  forallj =0

is satisfied? Before addressing this question, we will describe some charac-
teristics of the (P)SL,’s obtained by exponentiating. In this way, we will
restrict the set of nilpotent elements which must be considered in answer-
ing this question. We first establish a rather easy result which will be
needed for passing to the finite groups.

LEMMA L1, Lete €%,(C), e Y Ze
such that

where a ranges over ®*(G),

w?

[(ad &)/ /it)(Z(Z,,))) SZu(Z,,),  forall j = 0.

Assume further that F is an algebraically closed field of characteristic p. Let
x(t) be the automorphism of Z,(F) corresponding to exp(ad te), fort € F.
Let o be a p-power Frobenius endomorphism of the algebraic group G(F).
Then the one-dimensional subgroup {x(¢) |t € F} of G(F) is a o-invariant
subgroup and x(1) is fixed by o.

Proof. We first recall the construction of exp(adte). For A € C,
explad Ae) € Aut(F;(0)) is represented with respect to the basis <& by a
matrix A(A), whose entries lie in Z( [,)[)x] Applying the patural homomor-
phism of matrix rings Z ,[X] - F[.X], we obtain a matrix 4(X) whose
entries lie in F[X]. Then for t € F, explad te) is the transformation of
.(F) represented by A(¢) with respect to the basis {v ® 1] 1 € #}. Now
view G(F) as a subgroup of the group of matrices GL(%;(F)), which itself
is a subvariety of F“’"" “aFY* So for (a) € G(F) < GL(ZG(F)) o((a)) =
(af;) where g = p* for some k € Z. Say A(t) has (i, j) entry fi,(1) € Flt].
Then by construction, the coefficients of f;; actually lie in the prime
subfield of F. So o(A(t) = (£ /()7 = (f; (t")) So a(A(2) = A(t9) is
the matrix corresponding to the transformatlon exp(ad t%¢). The result
follows.

In the following lemma, we describe to some extent the unipotent
elements lying in the one-dimensional group {x(¢) | 1 € F} < Aut(%,;(F)).

LEMMA 1.2 Let e € 7(Z) such that (ad e) /j! preserves ¥(Z,,,)) for
all j = 0. Moreover, assume that there exists J € TI(G) with e = Xc_e,,
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where the sum ranges over the roots a with ht,(a) = 1. Let F be an
algebraically closed field of characteristic p and let t € F. Let x(t) € G(F) be
the automorphism of #;(F) corresponding to exp(ad te). Then there exist an
ordering of ®*(G) and polynomials g, € FI %), in the indeterminant X, such
that with respect to this ordering

x(1) = IT x.(8.(1)) andg,(%) = c, %
acdr(G)
ht,(a)>1

forall « such that ht,(a) = 1.

Proof.  For the purposes of this proof, we view G(F) as a subgroup of
Aut(.Z;(F)) and make the following simplification of notation. While
.(F) has the natural basis {v ® 1| v € %}, we will suppress the tensor
and use & itself as a basis for Z;(F). So G(F) will act on the basis
vectors e, f,, h,. For a € ®*(G), let L, (respectlvely L_,) denote the
root-subspace (e > (respectively, {f, >). Let " (respectlvely, 47) denote
the subspace of ¥;(F) generated by the collection of root-subspaces L,
for @ € ®*(G) (respectively, ®~(G)). Recall that we have T a maximal
torus of G(F) with corresponding root subgroups U,, a € ®(G).

Fix 1, € F* and write u = x(t)) = b,nb, where b, € T(U, | a € ®*(G))
and n € N;(T), the Bruhat expression for u. (See 8.2.3 in [6].)

Claim: n €t. Suppose not. Then if nT represents the nonidentity
element w of the Weyl group W = N (T)/T, there exists @ € ®*(G)
such that w(a) € ®(G). Choose a, € ®*(G) of maximal height such
that w(a, ) € ®~(G). We have

bye, =ce, + Y te,,

w r“y
{yiht(y)>ht(a, )}

for some ¢ € F* and ¢, € F. Then, by our choice of «,,

"bzea,, = df_w(uw) + X,

for some d € F*, X €. Thus,

+Y,

u“’aw = af—w(uw) + ( Z ayfy
ye®+((1‘)
y# —w(a,)

for some a € F*, a € F, Yert So ue, ¢.#". However, this contra-
dicts the fact that [(ad e) /ilNes) e’ forall € & (G), for all j = 0.
Thus the claim holds.
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By the previous claim, we have u a unipotent element in TXU, | @ €
®*(G)), and thus u € (U, | @ € ®*(G)). Now introduce a partial order-
ing on ®*(G) and hence a partial ordering on {U, | & € ®*(G)}, such that
u=uyu, - u, where u; € U, | a € ®*(G), ht,(a) = i}.

Claim: u, = 1. Suppose not. Write u, = ['[;_, x,(dy), where ht,(B))
= 0 and d, # 0 for all i. Without loss of generality, we may assume that
if i <k then ht(B) < ht(B,). For k >0, u,fs — fz €<e,la € d”).
Also, for k > 1, xg(dy )y, — fs € {e, | a € ®) since ht(B, — B) =
ht(B,) — ht(B,) = 0 and B, # B,. So ufs =fs +dyley, fgl+ X for
some X €.4". However, since e € {e, | ht,(r) = 1), [(ad eY /il f,) €
A" for j >0, so exp(ad e)fg, — I3, e#”. Thus we have arrived at a
contradiction and the claim holds.

R

We have shown that for any choice of t € F, x() € (U, | @ € O(G),
ht,(a) > 1). Since {x(¢) |1 € F} is a closed one-dimensional unipotent
subgroup of (U, | @ € ®*(G), ht,(a) = 1), we have

x(r)y = JT x.(8.(1))
acd*(G)
ht (alz1

for some polynomials g, € F[x]. Moreover, we may write

x(t) =

n x(Y(gﬂ(t)))Y(t)’
a€PH(G)
ht (a)=1

where y(t) € (U, | ht,(«) > 1). Now fix a € ®7(G) with ht,(«) = 1 and
note that y((Xf,) — f, €47, For r € ®*(G) with ht,(r) = 1, x (c)f, —
f.eL, , +47,if r+ a,and x()f, — f, = cle,. f,1+ X, for X s,
if r = a. Also, for B € ®(G) with ht,(8) = 0, and for r € ®7(G) with
ht,(r) =1, x(c}Ly C Ly +.#°". Thus,

x(t)f‘(l —f‘ll = g(Y(t)h(! + X + Y
where X e#” and Ye(L_, | € ®*(G), ht,( B) =0).

By similar reasoning, we have that exp(ad te)f, = f, + c,tle,, f,]+ X' +
Y',where X' €# " and Y’ € (L_4 | B € ®*(G), ht,(B) = 0). Thus the
lemma follows.

The following result is a group-theoretic version of Proposition 5.8.5
of 15].
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LEMMA 13. Ler P2 T{U,| a € ®*(G)) be a distinguished parabolic
subgroup of G corresponding to a subset J € TI(G). Let

u=JI x.(d,)
aced(G)
ht (a)>1

lie in the dense orbit of P on R (P). Then the R (P)-orbit containing u
consists precisely of elements of the form | ]x(c,) for which ¢, = d, for all
a with ht (a) = 1. In particular, the element

IT x.(d,)
ae ®*(G)
ht(a)=1

lies in the same R (P)-orbit as u.

Proof. See (4.5) of [14].

We can now explain how we choose the ad-nilpotent elements we will
need to “exponentiate”. The classification of unipotent conjugacy classes
(0.3) shows that for the proof of Theorem 0.1 it will suffice to construct an
A, subgroup overlying each distinguished unipotent clement of order p in
every semisimple algebraic group. Suppose we are given a distinguished
unipotent element « lying in the dense orbit of P on its radical R (P), for
some distinguished parabolic P of G, corresponding to the subset J C
TIG). By (1.3), it will suffice to produce an A, overlying a unipotent
element x € R, (P) where x has coordinates in the root groups U,, for
ht,(a) = 1, which match the coordinates of u in these root groups. On the
other hand, if these coordinates happen to lie in Z, using (1.2) we choose
an ad-nilpotent e € #,(Z) such that if (ad e)’ /j! preserves #;,(Z,,)) for all
j = 0, then we can form the exponential of ad e and this exponential will
indeed have the same coordinates as u in the root groups U, with
ht,(a) = 1.

Finally, we address the question of how to determine if
[(ad e)! /j!](.?G(Z( p>)) c-Z5(Z, p)) for all j > 0. This was considered in [24],
where we constructed the maximal A, subgroups of the exceptional
algebraic groups. We include here the crucial result from that paper, along
with a sketch of its proof.

LEMMA 1.4, Lete € L, - ()-ou) Le,, for some ] C TI(G). Assume

=e +e,  wheree, & Y Ze
asd T (GYy-dU)

o

for some J, € T(G) with p > ht (r,) and p > 2ht,(r,), for i =1, 2. Then
((ad e) /)] preserves Z,(Z, ) forall j = 0.

()
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Sketch of Proof. Let n € L .4+ )- oy, Ce,- We first note that
if / > ht,(r,), then (ad n)’(e,) = Oforall y € *(G) — &(J), (1)
and
if j > 2ht,(r,) then (ad n)’ = 0. (2)

Therefore, (ad n)2»p = 0. Thus, the only possible p-divisible denomina-
tors in a term (ad e)’ /j! arise from the term j = p itself. So for e as given,
it suffices to show that (ad e)? /p! preserves L(Z ).

Let g(x, y) € Z[x, y] such that ©7' (l/p)(f_’)xiy”“ =(x —y)g(x, y).
Then in any associative algebra .o, we have

p—-1
(a +b) =a?+b”+ Y s(a,b), (3)
i=1
where for i = 1,..., p — 1, is,(a, b) is the coefficient of A"~ in

(ad(Aa + b))? " '(a) — pg((Aa +b),, (Aa + b)g)(a).

Here a, b €« and, for A €9, we write 4;, Ay for the left and right
multiplications determined by A.

Let & = gl(#), where # is the universal enveloping algebra of .Z,(C).
Now take a = ad e, and b = ad e, in (3). Then we have

(ade)’ = (ade;)” + (ade,)” + "fs,.(ad e, ade,), (4)
i-1
where s,(ad e,, ad e,) is (1/i) times the coefficient of A”"! in
(ad,(Aade, + ade,))” '(ade,)
—pg((Aade, +ade,),,(Aade, + ade,),)(ade,)
= ad((ad( Ae, +e,))" I(e,))
—pg((rade, +ade,),,(Aade, +ade,);)(ade)).

But applying (1) to Ae, + e, in place of n, and recalling the fact that
p > ht(ry), we have ad(de; + e,)? 'e)) =0.Sofor1 <i <p -1,

s(ade,,ade,) = —( p/i) coefficient of A’ ! in
g((Aade, +ade,),,(Aade, + ade;);)(ade,).
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So dividing by p! gives something which clearly preserves #;(Z,). Fi-
nally, we note that since e; € L, ¢ ¢+ Gy- o)) L€, and p > 2ht,(ry), (2)
implies that (ade;)? =0, for i = 1, 2. So, by (4), (ad e)?/p! preserves
Z(Zy).

Now as described prior to Lemma 1.4, if we are given a distinguished
parabolic subgroup P corresponding to a subset J and u lying in the dense
orbit of P on R(P), we will choose e € %;(Z) such that e €
Loe o6y oy L€, Then e will satisty the hypotheses of Lemma 1.4 if

p > ht;(ry) and p > 2ht,(ry) for some J;, J, < [I(G)
with I1(G) =J, U J,and J, nJ, =J. (1)
In fact, the condition (1) does not hold for every J C II(G) correspond-
ing to a distinguished parabolic subgroup of G. However, our inductive
proof will require the use of Lemma 1.4 for only a few distinguished

parabolic subgroups, and in these cases we shall exhibit the appropriate J,
and J,.

We point out the following corollary of Lemma 1.4.

PROPOSITION 1.5. Lete € L, ¢ 4+, Le, and suppose p > ht(r,). Then

[(ad e)j/j!](—?c(z(p))) CH(Z,)

forallj = 0.

Proof. 'The result is clear if ®(G) is a rank 1 root system. Otherwise,
this follows from Lemma 1.4, taking J to be the empty set, choosing
J, € II(G), as indicated, and setting J, = [I(G) \ J,.

G=4,,8,C,D,, Ji={a,a...}={ay 11gj<[3(n+1)]}.
G=G, I ={a).

G=F, J ={a,a,).

G=E,, J,={a), a,, a;}.

G=E,, Jo={e, a;, a,;}.

G =E,, J ={a,, a,, a;, a,}.
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2. A, SUBGROUPS AND UNIPOTENT ELEMENTS IN
EXCEPTIONAL ALGEBRAIC GROUPS

In this section we consider distinguished unipotent elements in the
exceptional algebraic groups over algebraically closed fields of good char-
acteristic p. We establish (0.4) and the existence of p-power Frobenius
invariant A, subgroups overlying certain distinguished elements of order
p. We first divide the unipotent conjugacy classes into two subsets, each of

which will be considered separately.

LEMMA 2.1. Let G be an exceptional algebraic group defined over an
algebraically closed field of good characteristic p. Let u be a distinguished
unipotent element in G. Then, either u lies in a maximal rank semisimple
subgroup of G or one of the following holds, where ~ denotes G-conjugacy
and the given labeled diagram indicates a distinguished parabolic subgroup P
for which u lies in the dense orbit of P on R,(P).

() G=G,u~ x, (Dx, (1) E Z.
G G =F,, u ~xal(l)xaz(1)x (Dx, (1); 2 2 2 2,

ay oy . .

2
2 2

Gii) G =E,, u ~ xu](l)xal(l)xl,l(l)xm(l)xa_‘(l)xaﬁ(l); % 2 o2

[}

2
(1V) G = Eh’ u ~ xaw_(l)xa4(1)xas(l)xab(l)xu,+u}(1)xa3+n4+1x<(1) ~
]

xlxz(l)x(th 114( - 1)xn5(1)xnﬁ(1)xa l(l)x(v“#- (x;'( - 1)’ 2 2, ‘ 27 2
V) G=E,u~ xul(l)xaz(l)xﬂ_‘(1)x"‘(l)xu;(l)x‘,h(l)x;(l);
2
2 2 . 2 2 2

5l

(Dx, 4o DX0s aJ(l)x(,S(l)xm(l)xa?(l);

3 by

(vi) G =E;, u ~Lxu‘(1)x

0
2 2 ) 2 2 2

(Vll) G =E7’ u ~;(xi(l)xal(l)xuﬂl)xuz%‘114(1)x(14+(15(1)xrxg+a,,(l)xah+07(1);

0
2 2 o 2 0 2

«

s ,
i) G = Eg, u ~ xal(l)x":(l)xa
2 2 P, 2 2 2.

(1)x(,4(l)xm(l)x(,((l)x(,v(l)xw(l);

3 h

(1)x(r‘+ (u(l)xu;(l)xuh(l)x(h(l)xn\\(1);

4

(ixX) G =Eg,u~ xul(l)xn:(l)xuﬁ”
0
> 2 . 2 2 2 12

2
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(x) G =E,,

i~ x, (D%, (Dx, (Dx, o (D, , o (Dx, o (Dx, . (Dx, (1;

Proof.  This follows directly from [15] for type F,, from [19] for type G,,
and from [9] and [10] for type E, except for (iv). The first representative in
(iv) is listed in [9] and the second can be obtained by conjugating by
(n,)™", an element in N;(T) corresponding to the Weyl group reflection
w,.. (It is necessary to use the structure constants in [7] and refer to [6] for
the relevant formulae.)

We now consider the classes (i)—(x) described in the above lemma.

ProroSITION 2.2. Let G be a simple algebraic group defined over an
algebraically closed field of arbitrary (that is, not necessarily good) positive
characteristic p.

(i) Let G = G,. Then o(x,(Dx, (1) = 23,32, 52 p, forp=2,3,5,
p > 5, respectively. )

(i) Let G = F,. Then o(x,(Dx, (Dx, (Dx, (1) = 24, 3%, 52, 7%, 112, p,
forp =2,3,5,17,11, p > 11, respectively.

(i) Let G = E,. Then o{x, (Dx, (Dx, (Dx, (Dx, (Dx, (1)) = 2%, 3%, 57,
7%, 113, p, forp ——2 3,5,7, 11 p > 11, respectu'ely

(iv) LetG Eq. Then o(x, (Dx, (Dx,(Dx, (Dx, . ,(Dx, ., .o {1) =
24,3%,5%, 7%, p, forp =2, 3,~,7 p>7 respecttlely ‘

) Let G = E,. Then o(x,(Dx,Dx,(Dx,(Dx,(Dx, (1)
x x, (1)) = 25 3% 52, 2112, 132, 172, P forp—2 3 57,11, 13,'17,
p > 17, respectively.

(i) Let G = E;. Then o(x,(Dx,(Dx, ., (Dx, ., (Dx, (Dx, (1)
Xx (1) =2% 3% 5%, 7%, 113,132, p, for p=12,3,5, 7, 11, 13 p> 13,
respectively.

(vii) Let G =E;. Then o(x,(Dx,(Dx,Dx, ,,(Dx, ., Dx, (1)

Xos o) =2%3% 52, 7211, p, forp—2 3,5,7, 11, p > 11, respec-
tuely

(viii) Let G = Eg. Then o(x,(Dx, (l)x (Dx, (Dx, (Dx, (Dx, (1D
X x, (1) = 2°, 3% 53 2,112,132, 172 19 232 292 D forp—2 3,5,7
11, 13 17,19,23,29, p > 29, respectwely

(ix) Let G = E,. Then o(x,(Dx, (Dx, M(l)x“ +adDx, (Dx, (Dx, (1)
Xx, (1) =27 35 7% 117, 132, 172 192,232, p, forp = 2,3,'5,7, 11,
13,17, 19, 23, p > 23, respecuvely

(x) Let G = E;. Then o(x,(Dx,(Dx, (l)xa +m(1)xa M(l)x(wfa(l)
X X, 4o (11, (1))—2i 33, 57, 7 112,13, 175, 19%, p, forp = 2,3, 5
11, 13 17,19, p > 19, respectwely
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Proof. We first note that if we view F, as lying naturally in £, the two
elements described in (ii) and (iil) above are in fact conjugate in E,. (That
is, the regular unipotent elements in F, will also be regular in E,.) Thus,
we need not consider F; at all. For ecach of the remaining groups, we
choose a low-dimensional nontrivial rational representation ¢:G —
GL(V). In particular, for G of type G,, E,, E;, E,, V is the Weyl module
of high weight A,, A, A;, A, respectively (where A; is the fundamental
dominant weight corresponding to «;). For a € ®(G), such that x_ (¢)
occurs in the factorization of one of these elements, we compute the
action of ¢(x (1)) on V, and fixing an ordered basis of V, obtain a matrix
with entries in Z[¢] corresponding to ¢(x (1)). For G of type G, these
7 % 7 matrices are given in [23, p. 43]. For G of type E,, the computation
was carried out for the work of [22]). We include the necessary matrices
here. For the ordered basis of V, see [22, p. 316]. Here E, ; is the 27 x 27
matrix whose &/ entry is &, 8, and I denotes the 27 X 27 identity matrix.

b x

(2, () =T+H{(E ;v Ep s +E; g+ Ey g+ Ejg o+ Ey 5);
(. (r))
b(x,(1))
¢(xa (1))
¢(x. (1)
(% (0))
)

)

It

I+i(—Ey s —E w—E79—Ega —Eyan—Exnau);

ll

I+ I(Ez,z - EH).IZ - En‘m - Eu.n + E20,23 + E22.24)§

I+ t( E3.4 —Ex.m - E«),n ‘En,w ‘Exx,zu + E24.25)§

lI

T+ 1(Ey o+ Esy—Ey 1y —Eis 17— Ejg s + Eas 20)s

ll

B(x. (1)
( rl’|+(l;(t)
4)( (1;+(14+ﬂ(t)

I+1(E+Es ot By +En 3+ Eis 16t Ey )

[l

T+1(E s+ Ey s E st E gt Ega+Esy )

T+ (B ot Es p+ Eg 7+ Ey g+ Eg o + Ex g

For G of type E; and Ej, the ordered bases and matrices are given in
the appendix of this paper.

We then use the matrices ¢(x (¢)) as input for a computer program
written by Voirol. Given an element of the form u = I1_ _ x (1), for some
subset § < P(G), this program:

(1) forms the appropriate product of matrices to yield a matrix A(w)
representing the action of ¢(u) on V, and

(2) computes A()?" for all primes p and for all k > 1 such that
p* < dim V, where A(u) is the image of A(u) under the natural homomor-
phism GL 4, ,(Z) = GL;, (F,), where F, is the finite field of order p.

For primes p and integers l € Z such thd[ p' > dimV, we know that
A(u)”" = I, since the maximal order of a unipotent element in GL(V) is
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the order of the regular unipotent element, that is, the minimal p“ such
that p? > dim V. Thus, we have (i)—(x).

We include here the highest roots for each of the exceptional-type root
systems:

Gyt 3a,+ 20y

Fyi: 20, + 3w, + 4o + 204

E: o +2a,+2a;+3a;, +2a; + o

E;: 2a+2a; +3a; +4a, + 3a; + 2a, + ay

Eqt 2a) +3a; +4a, + 6a, + Sas + 4o + 3a, + 2ay

Then an immediate consequence of (2.1) and (2.2) is

PROPOSITION 2.3.  Let G be an exceptional algebraic group defined over an
algebraically closed field of good characteristic p. Let u be one of the
distinguished unipotent elements listed in (2.1), which lies in the dense orbit of
a distinguished parabolic subgroup P on its radical R (P). Then o(u) =
min{p“ | p* > ht(P)}.

We now turn to the construction of the A4, subgroups overlying the 10
distinguished elements of (2.1). At this moment it is not clear why we need
only construct A, subgroups overlying these 10 elements. It will be shown
in Section 4 that each of the other distinguished unipotent elements lies in
a o-invariant connected reductive subgroup of G.

PROPOSITION 2.4. Let G be an exceptional algebraic group of adjoint type
defined over an algebraically closed field k of good characteristic p and let o
be a p-power Frobenius endomorphism of G. Let u be one of the 10 elements
listed in (2.1) and assume o(u) = p. Then there exists a closed connected
subgroup X of G with X of type A,, 0(X) C X, and u € X.

Proof. We will apply the exponentiating process described in Section 1.
For this, we first describe for each u an appropriate sl,(C) subalgebra of
Z.,(C). Again, we remark that since the regular unipotent element in F, is
regular in E, and we may take F, C E to be o-invariant, we will not need
to consider the regular unipotent element in E,, that is, the element of
Lemma (2.1Xiii). Recall that & = {e,, f,, h, | a € PH(G), ye II(G)}isa
Chevalley basis of %;(C). We also note that we use a set of structure
constants for ,?ES(C) constructed by Gilkey and Seitz for [7]. It is available
from the authors upon request.

Given u as in Lemma 2.1, let J ¢ II(G) be the set of roots with a zero
labeling in the diagram given for u. We then take e = Y. c,e,, where the
sum ranges over a with ht,(a) = 1. Moreover, we choose ¢, € Z to be
exactly the coordinate of u in the root group U,. We then set f = Y.d, f,,
where again the sum ranges over the a with ht,(a) = 1 and use the
identities [[e, f], e]l = 2¢e and [[e, f1, f1 = —2f to solve for the d,. One
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checks that the e, f given in each case do indeed “canonically” generate
an sl,(C) subalgebra of .#,(C). For the “nonregular” cases, we give as well
subsets J, J|, J, € II(G), satistying the condition (1) following Lemma 1.4,
which will be needed in what follows.

G = G, and u is as in Lemma 2.1G):
e=¢e, +e,,

f=6f, + 10f,..

G = F, and u is as in Lemma 2.1(ii):
e=e, +e, te, +e,
f= 22f + 42f + 30f + 16f,,.

G = E, and u is as in Lemma 2.1Gv):
e=¢€, T e, ~€ia ~ Cayra, T €a T €,
3 4 5

f= 12f +16f = 8furia, +14f 22f = 8fpras T 14 + 12/,

(a4} J, = {al, a,, a5, azl, 12 {ag, 015, ag}.

G = E, and u is as in Lemma 2.1(v):
e=e, te, te, te, te, +e, te,,

@

f=34f, +49f, + 66f, +96fa +75f "4 52f, + 27f,..
G = E, and u is as in Lemma 2.1(vi):
e=e, te, te, . te, a Te, e, Te,,
f= 26f“ — 15f + 37f, ey T 15] +35f1+“4
+57f +35fa+a +40fu +21fa, ’

J = {a4}, I, =Aay, a,, a3, a,}, J') {a4, as, @, ;).

G , and u is as in Lemma 2.1(vii):
=eﬂ’ +e +€ +e(1 + ay +ea +ag+eag+ah+eah+a7’
f= 22f +3f +42f 28f,+,,4+28f oy +32f0u+a5

+3fa + 15]"(1 +ag 17f ot g 3fa7

= {a4’ a(,} -] {ap as, Oy, a(’}, Jy_ = {azy Gy, Qg, g, Ot7}.

S~

G = E, and u is as in Lemma 2.1(viii):
e=e, 5Ye +e +e +e +e +e +e

as @ oy ¢33 ag, a5 ayg?

f=92f, +136f,. + 182f, + 270f, + 220f, + 168f, + 114f, + S8, .

G = E; and u is as in Lemma 2.1(ix):

e=e, te, te, o Tl TeE, Te, Te, +e,

f=T2f, +38f,. + 68f, 1u ~ 38fr + 142f, .
Y1728, € 68f, . + 132f, + 90f, +46f,,

ay+ ag

J = {a4} -] {0(1, Ay, Uy, a4}a J"v = {a4a a;, O, O, O g}

G = Ey and u is as in Lemma 2.1(x):

e=e, te, te, te,,, te, H,1;+ea +%+ear+m+e

= 60f, +22f, ¥ 66f, .o + 118, — 66fr . +22f,
F108f, oo+ 34f, s + 22f, + T4f, 1, + 38,

J={ay, o}, Ja = (e, a,, a;, a,, a(,} I =la,, a;, a,, a,, ay}.
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Now by (2.3), o(u) = p implies that p > ht,(r,) in each case. So for the
cases where u is a regular element in G, that is, cases 2.1(i), (ii), (v), and
(viii), Proposition 1.5 shows that (ad e)’ /j! and (ad f) /j! preserve Z,(Z, ,,)
for all j > 0. For the remaining cases, where J, J,, J, are given, p > ht ,(r,)
implies p > 2ht,(r,) for i = 1, 2. Therefore, the condition (1) following
Lemma 1.4 is satisfied, and again (ad )/ /j! and (ad f)' /j! preserve A(Z, )
for all j > 0. So we may apply Lemmas 1 and 2 of [24] to exponentiate
ad te and ad #f to form X, a PSL,(k) or SL,(k) subgroup of the adjoint-type
Chevalley group G(k). Moreover, by (1.1), ¢(X) € X and by (1.2) and
(1.3), there exists x € G(k) with u* € X and o(u*) = u*. Finally, we note
that for each of the classes we are considering, C(u) is connected. (See [9,
10, 15, and 19]) So by (E,1,3.4) of [4], G-conjugacy implies G,-conjugacy.
So, in fact, there exists y € G, such that u* = u*. Then yXy ™' is a
o-invariant subgroup of G of type A, containing u, as desired.

We now turn our attention to the distinguished unipotent elements
which lie in a maximal rank semisimple subgroup of G. We first establish a
result which “identifies” the F, distinguished classes.

LEMMA 2.5. Let G be a simple algebraic group of type F,, defined over an
algebraically closed field k of characteristic p > 3. Then there are four classes
of distinguished unipotent elements with representatives and labelled diagrams
as follows:

uy =x,(Nx, (Nx, (Do (1), 2 2 2 2

U, =xnl(l)xnz(l)xa3(1)xa2+203+2a‘(1)’ i i [.) 3;

Ll3 :xul+az(l)xa2+a3(1)xu1+u:+2a](1)xa3+u4(])’2 o P .;

U, = xal+az(l)xa2+2a3(l)xaz+203+204( - 1)

Q 2 0 0
ot xa|+az+2a3+2a4(_l)’ I o . P

Proof. That the distinguished classes in G have representatives «; for
i=1,2, 3, 4 follows directly from [15]. As well, Shoji describes the last
three elements as regular unipotent elements in maximal rank subgroups
of types B,, C, X 4,, and 4, X A,, respectively.

We will identify the labelled diagram corresponding to the last three
elements. (It is clear that u, is a regular unipotent element in G and so

has labelled diagrami 2} 2 f.)

Consider first the labelled diagram > * 0 2 and let P, 2 TXU, | @
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e ®*(G)) be the corresponding distinguished parabolic subgroup. Set
J = {a;}. Note that both u, and u, lie in R (P,). According to (1.3), if u,
lies in the dense orbit of P, on R, (P)), then u, is R, (P )-conjugate to
Xo,voafDX, o, (1). But this last element is clearly not in the dense orbit of
P, on its radical as its P-orbit lies in the closed set {1 (.. *,(c,) |
2 2 0

) L

Cop = 0}. So u, does not have labeled diagram -

o

’ f Similarly, we
see that i, does not lie in the dense orbit of P, on its radical. Thus this

leaves u, as the distinguished element with labeled diagram ? 2 (.’ f
Now consider the labeled diagram f’ 2 2 3, and let P, 2 T{U, |

a € ®*(G)) be the distinguished parabolic corresponding to this diagram.
Then u, € R {P,). Again, if u, lics in the dense orbit of P, on its radical,
then u, is R (P,)-conjugate to x, ,,(Dx, ,,,(1), an element which is
clearly not in the dense orbit of P, on its radical. Thus u, must have labelled

diagram " 2 U 2 which completes the proof of the lemma.

We can now establish the order formula for all distinguished unipotent
elements in exceptional groups.

PROPOSITION 2.6.  Let G be an exceptional algebraic group defined over an
algebraically closed field of good characteristic p. Let u be a distinguished
unipotent element of G lying in the dense orbit of the distinguished parabolic P
on its radical. Then o(u) = min{p* | p* > ht(P)}.

Proof. By (2.3), we may assume u is not conjugate to any of the 10
elements listed in (2.1). Then, we refer to [9, 10, 15, 19) and the above
lemma for the information contained in the following table. Namely, in the
first column we give the type of (. In column 2 we give the labeled
diagram corresponding to the distinguished parabolic P. Column 3 gives
the type of a maximal rank semisimple subgroup D < G containing u.
Moreover, in each case, since u is a distinguished unipotent element in D,
there is a distinguished parabolic P, of D for which u lies in the dense
orbit of P, on its radical R, (P,). In column 4 we give the labeled diagram
for the parabolic Pj,.

G Diagram of P D Diagram of F,,
G, 0 2 A, 2 2
F, 2 0 2 B, 2 2 2 2
F, 0 2 0 2 AxC, 2 x 2 2 2
FF 0 2 0 0 Ay xA, 2 2 x 2 2
E, 20 7 02 AgxA, 2 2 2 2 2 x 2
E, 20 2 022 D 2
. o pXA 2 2 2 2 5 % 2
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G Diagram of P D Diagram of £,

2 2
E, 207002 DyxA, 2220 % x 2
E- 00 2 0002 DyxA, 2020 2 x 2
szo(z)ozzz ExxA, 22322 2 x 2

2 2
E. 202020 2 b 22222 2 ]
Ec 2022002 0 D 2222 2 0o ?
8 0 g 5
ExnogoozoA8 22222 2 22
E, 008200()A,,><A42222><2222
E*203002257><A,22(2)222x2
E. 002002 2 Ex4 229520 2 x2

2 2
E. 005000 2 b 20202 0 2

Given the information in the above table, together with (3.4) (the order
formula for the classical groups), one checks that in each case o(u) =
min{p“ | p? > ht(P)}.

We close this section with a lemma which identifies a representative of
one of the distinguished classes in E, (listed in (2.1)) as lying in a proper
connected reductive subgroup. In Section 4, we will use this result to
establish the o-invariance of one of the algebraic 4, subgroups con-
structed in Proposition 2.4.

LEMMA 2.7.  Let G have type E; and assume p > 3. Let T be the graph
automorphism of G, let x = hy 130 v20,+30,+20.+ 2l 1), and let i, be the
inner automorphism corresponding to x. Then G, is a closed connected
subgroup of G of type C, and if u is a regular unipotent element in G; then u
lies in the E, conjugacy class having the labeled diagram

Proof. We first refer to (5.0) of [23] to see that u is conjugate to
xal(l)xnﬁ(l)xaj(l)xus(l)xnu(])xn3+nz+ a4(l)xn3+u4+u5( - 1)’
and so « is not a regular unipotent element in G. We have that G, acts
irreducibly on the restricted 27-dimensional modules for E,; moreover, the

high weight of these modules as C,-modules is u, where u, is the
fundamental dominant weight corresponding to the simple root «,. This
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C,-module can be realized as a direct summand of W A W where W is the
natural module for C, and the complement is a one-dimensional submod-
ule of W A W. Thus, we will compare the action of the unipotent elements
in E, on the 27-dimensional modules and the action of u on W A W. One
checks that on W A W u has a four-dimensional fixed point space so on
the 27-dimensional E, irreducible module u has a fixed point space of
dimension 3. But one can check by using [9] that each of the nonregular
unipotent elements in £, which do not lie in the E; class with given
labeled diagram have fixed point space on the 27-dimensional module of
dimension strictly greater than 3. In most cases, the element is regular in a
Levi factor of G of type 4, or D, for some n and the 27-dimensional
module decomposes as a direct sum of natural modules or spin modules or
wedge products for the Levi factor. For the class having labeled diagram

2.0 ‘; 0 2, the element is a regular unipotent element in a maximal

rank subgroup of type As X A, which acts on the 27-dimensional E,
module as the wedge product of the natural module for A; plus the
natural module for 45 X A4,. One can then compute the fixed point spaces
of the regular unipotent elements on these modules and see that in all
cases the fixed point space on the 27-dimensional module is strictly greater
than 3. Thus, we are left with the indicated class.

3. A, SUBGROUPS AND UNIPOTENT ELEMENTS IN
CLASSICAL ALGEBRAIC GROUPS

In this section we consider distinguished unipotent elements in the
classical algebraic groups over algebraically closed fields of good character-
istic p. We establish the order formula and the existence of p-power
Frobenius invariant A4, subgroups overlying certain distinguished unipo-
tent elements of order p.

As we mentioned in the Introduction, Theorem 0.1 can in fact be
deduced from the literature. For this, it is necessary to combine informa-
tion from [4, 11, 12, 16, and 25] concerning the relation between the
Jordan canonical forms of unipotent elements and the labeled diagrams.
We have included a proof here because it is elementary, it lends complete-
ness to the paper, and it is necessary for Theorem 0.2.

PROPOSITION 3.1. Let G be an adjoint-type algebraic group of type C,
defined over an algebraically closed field k of characteristic p # 2. There is a
bijection between the distinguished unipotent elements of G and the partitions
of | which have distinct parts. Namely, let ny > ny > === >n, >0 be inte-
gers with Z:=|”i =1[ Let H< G be a maximal rank subgroup of type
C, X XC,. Let u be a regular unipotent element in H. Then u is a
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distinguished unipotent element in G and all distinguished unipotent elements
in G can be obtained in this manner.

Proof. By (5.1.1) of [S], it will suffice to work inside the group Sp(2/, k).
Let {n,, n,,...,n,} be a partition of ! with distinct parts. Say n, > n, >

©>n,>0 Forj=1,...,r, let V. be a 2n;-dimensional vector space
over k. Fix 1 <j < r. We will define a bilinear form on ¥V, and certain
elements of SL(}V}) which preserve this form. Fix a basis {v;,,. .. ’Ull?",} of
V.. Define a bilinear form f,-( , )on V; by

[0 1) = 8 (=1, forl<k,is2n,
Now for 1 <i < n, define g;; € SL(})) as follows:
gij(uj,i+l) =0 U5
8V 2n-i01) = Ciam—iv1 F U i3 (1
8i(vix) = v fork & {i+1,2n, —i+ 1},
Then let
Uy =81 " &ny- (2)

Then one easily checks that the following holds.

Claim. f; is a nondegenerate symplectic form on V; and, for 1 <i <n,,
g,; preserves f;. In particular, u; preserves f. Moreover, u; is a regular
unipotent element in Sp(V}).

Now, let V=V, ® V, ® --- & V,, a 2/-dimensional vector space over k.
Define a nondegenerate symplectic form f( , ) on V' as the orthogonal
sum of the forms f;. So

f(ijs tem) = 8y 5m.2n,—j+l(—1)j+l' (3)

Extend the action of u; to all of V' by letting «; act as the identity on V]
for i # j. Then set

u=u " u,. (4

By the above claim, u € Sp(}V).
We now define a flag of totally isotropic subspaces of V. For &k =
1,...,n, let

W,=<Cv,\n, —t=n —k).
Then
FW <W +W, < <W + - +W, (5)

ny
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is a flag of totally isotropic subspaces in V. Let

P = stabg,, (F), (6)

a parabolic subgroup of Sp(}).

Claim. Let u and P be as defined above in (4) and (6). Then Cg, (1)
lies in the unipotent radical of P. In particular, u is a distinguished
unipotent element of Sp(V). Moreover, P is a distinguished parabolic
subgroup of Sp(V).

Proof of Claim. We will first examine Cou)- Let x=u—1 in
gl(V). Then Cg; (1\(u) must leave invariant ker(x") = (v;),..., 011 =) <
ry and im(x') =<0, Ui i 11 ST <ry, for all i. Now let g€
Co y(u) and for a fixed 1 <p <r and 1 < q < 2n,, set

gqu = ): bsluxt .

l<s<r
1<t<2n;

Since v, € ker(x?), gu,, also lies in ker(x¥) and so b, = 0 for 1 > gq.
Similarly, since v,, € im(x 7=2) b, = 0for t >2n, — 2n, — g

Now suppose b, # 0;s0 t <g and g — 1 > 2n, — 2n,. It n, —n, =0,
then p =s and 2ns—21+1=2np—2t+122np—2q+1, with
equality only if t = g. If n, — n, <0 then since g —t=>0,gq—t>n,—
n,.So2n, —2t+1>2n,—-2q+ l.Ifnp-ns>O,thenq—t22n,7 -
2n, implies ¢ — ¢ > n, — n; and again 2n,—2t+1>2n,~2q+1.50

8Upy = Cpglpg + Ylagu, )20, —2t+1>2n, - 2q + 1},

for some ¢, . (*)

That is, g(W,) C L, . W

Now fix 1 <i < and again let g € Cg (u). Comparing the coeffi-
cients of v; ; ., in gu(v;;) and ug(v,;), we see that ¢;; = ¢; ;_, for all j > 1.
Thus,

Cp =¢ forl <j, k <2n,. (**)

ije

Finally, we restrict our attention to the centralizer of u in Sp(V). Let
g € Cgp{u) and let ¢, be as in (») above. Suppose f(v,;, t,) # 0, 50
i=k and m =2n;~j+ 1. Then one checks that f(gr;;, &im) =
CiiCian o (=1L But this  gives (=1Y*" = i, o~ 1Y

ijvi,2n, i,
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SO €;;C; 2n~j+1 = 1. Together with (* ), we then have ¢}, = 1, for all 4, j.
Soforg € Cyyy(w)andforl <p<randl<gq<2n,

8lpg = Cpglpg + {040 120, = 2t + 1> 2n, ~ 2q + 1}
2

and € =1

Thus, Cg, () lies in the unipotent radical of P. Thus, u is a distin-
guished unipotent element of Sp(V'). Moreover, P is a distinguished
parabolic subgroup of Sp(¥). For note that the Levi factor of the parabolic
P has structure (GL(W)) X -+ X GL(W, ) X T,)°, for some central torus
Ty, and that dimW, =1 for j=1,...,n) —n,, dmW, _, ., =2 and
dimW,,, =dimW, or dimW, + 1 for £k > n;, — n, + 1. This is precisely
the condition which ensures that P is a distinguished parabolic subgroup
of Sp(V). See [1, Chap. 5]. We note here that we have made no claims that
u lies in the dense orbit of P on its radical. We will discuss this further in
the proof of (3.3).

We have described a method of starting with a partition of / (having
distinct parts) and a corresponding element u and obtaining a distin-
guished parabolic P having u € R, (P). We next describe how to choose a
partition corresponding to a given distinguished diagram. Let

be the given labeled diagram. So by (1], my > 0, my, = 2, and m; ., = m,
or m; + 1 for i > 1. Now set

r=m,;
n,=m,+k;
n, =k;

no—n, =#{jlm =t} for2<t<r-1.

Then it is clear that n, >n, > - >n,> 0. Note that #{j > 1|
mo=ry=k—-—#jztIm>ry=k-(n,_, —n,+n,_, - n,_,
+ -+ +n, — ny) = n,. Also,

t=my+m + - +m,
=my+2(#{jIm; =2}) + - +r(#{j I m, = r})
=my+2(n, —ny) + - +(r—=(n,_, —n,) +m,

=n +n,+ - +n

re
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So {n;, n,,...,n,} is a partition of [ with distinct parts. Moreover, it is
straightforward to check that the above described processes of starting
with a partition and obtaining a labeled diagram and the reverse are
inverses. Finally, we point out that given two distinct partitions of /, having
distinct parts, the corresponding distinguished unipotent elements are not
conjugate, as they have different Jordan block sizes. The proposition
follows.

We now sketch the analogous result for G of type B, and D,.

PROPOSITION 3.2.  Let G be an adjoint-type algebraic group of type B, or
D, over an algebraically closed field k of characteristicp # 2. Set N = 21 + 1
or 21, according to whether G has type B, or D,. Then there is a bijection
between the conjugacy classes of distinguished unipotent elements of G and the
partitions of N having distinct odd parts. Namely, letn, > n, > - >n, 20
be integers with XI_\2n, + 1) =N. Let H< G be a subgroup of type
B, X+ X B,. Let u be a regular unipotent efement in H. Then u is a
dzstmgmshed umpotent element in G and all distinguished unipotent elements
in G can be obtained in this manner.

Proof. By (5.1.1) of [5], it will suffice to work in SO(N, k). Let
n, >n,> - >n >0 be integers with X/_,2n,+ 1) =N. For j=
I...,r,fet V), bea (2n + 1)-dimensional vector space over k. Fix 1 <j <
r. le a basis {1 2+ 1} of V. We define a bilinear form f,( , )on ¢,
as follows:

}],..., I

fJ(Lﬂ, ,k) 8y 2n, 42 (=1, forl <i, k< an + 1.

Then one checks that fj is a nondegenerate, symmetric bilinear form on
V.. Now for each 1 < i < n;, we define g;; € SL(V)):

iU 1) = Ui U
gij(uj,_?n“rzfi) = U2 T U2, w10
&i(tu) = Uy ifkéE{i+1,2nj+2—i}
and
8n (i) =0y, fork <njandfork >n; +3;
gn/j(l"j,m )= Uinvr T U

gn’,j(l'j,nntz) = I‘}' n+2 + l} n+t + "Ijn
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Now one checks that g;; preserves the form f; for all 1 <i < n,. Now
set u; =g,;-8,; ** 8, ;- Then u, preserves the form f;- Moreover, u is a
regular umpotent element in SO(V)

Let V=V ®- - @V, an N-dimensional vector space over k. Define a
nondegenerate symmetric bilinear form f on V' as the orthogonal sum of
the forms f;. So

f( Uijs Ug) = 5:1;-5:,2",+2~j( -1’

Extend the action of u; to all of V' by letting «; act as the identity on V;
for i #j. Nowset u = u, - u,,so u € SO(V).

We now define a flag of totally isotropic subspaces in V. For 1 < k < n,
set W, = (v, 1 2n, + 2 — 2t = 2n, + 2 — 2k). Then

FW<sW+W, < <W + W, + - +W,
is a flag of totally isotropic subspaces. Let P = stabgg (), a parabolic
subgroup of SO(V). One checks (basically as in the Sp(}') case) that
Cso (w)° lies in the unipotent radical of P, which implies that u is a
distinguished unipotent element of SO(V).

We will now show that P is in fact a distinguished parabolic subgroup of
SO(V) (by describing its labeled diagram) and show that all distinguished
diagrams are obtained in this way. We first note that (W, + -+« + W, )* =
(o 12n,+2 =2t 20). Let W, <1”|2n +2—2t—0> Then the
Levi factor of P has structure (GL(W) X - X GL(W, ) X SO, ) X
T, ), for some central torus 7,. We note that

(1) dimW, = 1for j = 1,...,n, — ny,

2) dimW Cpr1 =2, and

(3) dlkaH = dimW, ordimW, + 1 for k>n, —n, + 1.

As in type C}, these are precisely the conditions which ensure that P is a
distinguished parabolic subgroup of G. (See [1, Chap. 5].) Thus we have
described how to start with a partition of N having distinct odd parts and
obtain a distinguished diagram. It is described in [1] how to start with a
distinguished diagram of G and obtain a partition of the appropriate type.
Moreover, one can check that these two processes are inverses. As in the
previous proposition, the unipotent elements thus obtained represent
distinct conjugacy classes. The proposition follows.

We are now ready to establish the order formula for the classical groups.
This will follow from the previous two propositions and the following
lemma which was pointed out to me by Ross Lawther.

LEMMA 3.3. Let G be a simple algebraic group and let Py, ..., P, be a
complete list of nonconjugate distinguished parabolic subgroups of G. Let
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u;, € R,(P.) be such that u,,...,u, are nonconjugate distinguished unipotent
elements of G. Then u; lies in the dense orbit of P, on R (P,).

t

Proof. let &,...,%, be the unipotent conjugacy classes of G with
u; € &, for all i. Let Rich(P,) denote the unipotent class containing the
dense orbit of P. on R_(P). Then since the P, form a complete set of
distinguished parabolics and the u; a complete set of representatives of the
distinguished unipotent conjugacy classes, either %, = Rich(P,) for all i as
desired, or after renumbering we may assume that there exists & such that

= Rich(P,), ..., %, = Rich(P,), &, = Rich(P)). Now for x €
RlCh(P) dim CG(x) = dim Cp(x) = dim P, — dim R (P) while for x' €
R, (P) with x’ & Rlch(P) dim C,,(x') > dim P; — dim R, (P). So
dim C(,(x ) > dim Cg(x). Applymg this to our situation, when &, *
Rich(P,) for some i, we get dim C,(u,) < dim Cgluy) < -+ <

dim C; (1) < dim C;(u,), a contradiction.

Thus the bijection we had in Propositions 3.1 and 3.2 between distin-
guished unipotent classes and classes of distinguished parabolic subgroups
actually gives us a representative in the dense orbit of the parabolic on its
radical. We now establish the order formula for the classical groups.

PROPOSITION 3.4. Let G be a simple algebraic group defined over an
algebraically closed field k of characteristic p. Assume that G is of type A,, B,,
C,, or D), and assume p > 2 when G has type B;, C,, or D,. Let P be a
distinguished parabolic subgroup of G and let u lie in the dense orbit of P on
R, (P). Then o(u) = min{ p® | p* > ht(P)}.

Proof. In type A,, the only distinguished parabolic (up to conjugacy) is
B, a Borel subgroup, and the height of B is ht(r,) = /. Moreover, the
elements lying in the dense orbit of B on its radical are regular unipotent
elements, which are easily seen to have order min{p* | p¢ > 1.

Consider the group Sp(V') = Sp(2/, k). Recall from (3.1) that we have a
distinguished parabolic P as the stabilizer of a flag of isotropic subspaces
W, <W + W, < <W + - +W,, where W, + - +W, is a maxi-
mal isotropic subspdce of V. A]so we have u € R «(P) where uisa regular
unipotent element in Sp(V,) X «-- X Sp(V}) and dimV, = 2n; and n, >
ny, > -+ >n > 0Iis a partition of 1. Moreover, by Lemma 3.3, u Iies in
the dense orbit of P on R (P). Since u has a maximal Jordan block size of
2n,, olu) = min{p® | p* = 2n} = min{p* | p? > 2n, — 1}. But we have
that the Levi factor of P has structure (GL(W)) X GL(W,) X - X
GL(W, ) X T,,)°, so the number of zeroes in the labeled diagram for P is
dimW, =1+ - +dimW, —1=dmW, + - +dimW, —n, =1-n,
and the zero labelings occur on short root nodes of the Dynkin diagram.
So ht(P) = 2n, — 1. So the order of the unipotent elements lying in the
dense orbit is min{ p® | p* > ht(P)} as claimed.
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Now consider the group SO(V'), where V is a (2! + 1)- or 2/-dimen-
sional vector space over k. We recall from (3.2) that P is the stabilizer of a
flag of isotropic subspaces W), < W, + W, < --- < W, + --- + W, , where
again W, + --- + W, is a maximal isotropic subspace of V. On the other
hand, we have as above x in the dense orbit of P on R, (P) with x
conjugate to a regular unipotent element in SO(V;) X --- X SO(V,) where
dim(V))=2n,+1 and n, >n, > - >n,>0 and £2n,+1=2/+1
(respectively, 2/). So x has a maximal Jordan block size of 2xn; + 1. So the
order of the unipotent elements lying in the dense orbit of P on R, (P)
is min{p® | p* = 2n, + 1} = min{p” | p* > 2n,;}. But we have that the
Levi factor of P has structure (GL(W,) X GL(W,) X -+ X GL(W, ) X
SOW, . 1) X Ty)°, where W, .= <v,|2n;+ 2~ 2t=0). (Note that
Wy + -+ W, ) =W, + - +W, + W, ,,. Also note that dim W, ., =r
so is odd if dim V' is odd and even otherwise.)

Case . dim(W, . ) = 3. Then, as in C;, we count the number of zeroes
in the labeled diagram for P and obtain

dim(W,) ~ 1 + -+ +dim(W, )

3(dimW, | - 1), if dim ¥ is odd;

-1+, . e
3(dimW, . ), if dim V' is even.

Now using the fact that
dimV = 2(dim W, + --- +dim W, ) + dim W, . |,

we get that the number of zeroes is [ — n,. So there are n,; nodes labeled
with a 2, namely the nodes corresponding to the roots «,...,a_, if
dim V' is odd and those corresponding to the roots a,..., a;_, if dim V' is
even. So ht(P) =1+ 2(rn, — 1) = 2n, — 1. Since p # 2, min{p° | p® >
2n, — 1} = min{p® | p® > 2n,}. So the order of the unipotent elements
lying in the dense orbit is min{ p® | p* > ht(P)} as claimed.

Case II.  dim(W, ) < 3.In this case, if dim V' is odd then dim (W, . ,)
= 1, and if dim V is even then dim(W, ,,) = 2. In particular, if dim V' is
odd, then r = 1 and », = and the corresponding unipotent element is
the regular unipotent element and the order formula clearly holds. So
consider the case where dim } is even and r = 2. So SO(W, . ) = *1 and
the Levi factor of the parabolic is GL(W,) X GL(W,) X -+ X GL(W,, ) X
T,, and by counting the zeroes we obtain

dmW, -1+ - +dimW, — 1.

But now, 2! = dimV = 2Adim W, + --- +dim W, ) + 2. So the number of
zeroes is | — n; — 1. So there are n, + 1 nodes labeled with a 2. More-
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over, the nodes «,_,, a;, and «a, are labelled with a 2. So ht(P) = 2n, — 1
as in case I. This completes the proof of the proposition.

We close the section with the following:

PROPOSITION 3.5.  Let G be an adjoint simple algebraic group of type A,,
B,, or C,, I > 1, defined over an algebraically closed field k of characteristic
p >0, where p > 2 if G has type B, or C,. Let o be a fixed p-power
Frobenius endomorphism of G and let u be a regular unipotent element of G.
If o(u) = p there exists a closed connected subgroup X < G, X of type A,
with u € X. Moreover, if o(u) = u, X can be chosen so that o(X) C X.

Proof. 'The proof is exactly the same as the Proof of Proposition 2.4 for
the regular unipotent elements. Thus, we need only exhibit the appropriate
sl, subalgebras of the comp]ex Lie algebras Z‘(C) of types A,, B,, and C,.

In.&”(C) let e=7X|_ e, andlet f=L]_ lj(l—j+1)f

In .?’B(C) let e=Yl_ 1€, and let f= Z 1](21+1——j)f +
RS l)f

In %, (CS let e = X!_ e, andlet f=E'_, j@l - j)f,.

Then one checks that m each case the arguments of (2.4) go through.

We point out the following alternative proof for the case G of type A,.
Since o(u) = p, p > 1. Let SL,(k) act on the homogeneous polynomi-
als of degree ! in two variables, a k-vector space of dimension / + 1.
Let ¢ :SL,(k) - SL,, (k) be the corresponding representation. Then,

¢( ((’) ; )) =aq, t " for some a,; in the prime subfield of & and for some
ij

integer k;;. Then as p > I, ¢ is the unique restricted irreducible rational

representation of A4, of dimension / + 1. Moreover, ¢((1) 1) is a regular

11
o 1}
let o be the Frobenius endomorphism of A, induced by the map

(0(M)),; = (m;), for any M € GL(/ + 1, k). Then o-(d>((l) :))=

oy 1) and ofefl ) = o} %) ana o{ef; 1)) = o} 1) s

H(SL,(k)) is the desired closed connected o-invariant subgroup of
type A,.

Now

unipotent element in A4, As C,{(u) is connected, G-conjugacy implies
G -conjugacy, and therefore we may assume that u = d)f

4. PROOFS OF THEOREMS 0.1 AND 0.2

This section contains the proofs of Theorems 0.1 and 0.2 and Corollary
0.5. Theorems 0.1 and 0.2 will be established together in the following.
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THEOREM 4.1. Let G be a semisimple algebraic group defined over an
algebraically closed field k of good characteristic p > 0. Let o be a surjective
endomorphism of G such that either o = 1 or G is finite. Let u € G, such
that o(u) = p. Then there exists a closed connected subgroup X < G, X of
type A, with u € X. Moreover, if o # 1 then X can be chosen so that
o(X)cX.

Proof. We will use induction on dim G, the case where dimG = 3
being clear. Thus, whenever we have u lying in a proper closed connected
reductive o-invariant subgroup, the induction hypothesis ensures the exis-
tence of the o-invariant A,.

Claim 1. We may assume G is simple.

This is clear if o = 1. Suppose o # 1 and suppose we have established
the result for simple groups. Now suppose G = G, G, - - = G, for
simple algebraic groups G;. By induction, we may assume { ¢ ) has just one
orbit on the {G,). Reorder this so that G, = o' (G,). Then G, is
o*-invariant and u = u,o(u)) - o* u)) for some u, € G, with
o(u,) = p; moreover, u = o(u) implies that *(4;) = u,. By induction,
there exists a o “-invariant subgroup X, < G, of type A, containing u,.
Then u lies in a diagonally embedded o-invariant A, subgroup of
X,o(X) - o* (X).

Claim 2. We may assume G has adjoint type.

We suppose we have established the result for simple groups of adjoint
type. Let G be an arbitrary simple algebraic group and let u € G with
o(u) = p. Now o (Z(G)) € Z(G), so o induces a surjective endomorphism
7 of the adjoint group G/Z(G). If o = 1 then & = 1, and if G, is finite
then (G /Z(G)), is finite. So by our assumption there exists a o-invariant
closed connected X < G/Z(G) with X of type A, and uZ(G) € X. The
lift of X to G gives the desired subgroup X.

Claim 3. We may assume # is a distinguished unipotent element of G.

Suppose u is not distinguished. Then by (7.3.3) of [17], C,(u)° contains a
semisimple element, and so contains a torus. Then by Lang’s theorem,
there exists a o-invariant maximal torus 7, of C;(u)°. So C,(T,) is a
o-invariant reductive group containing u, properly contained in G, and so
by induction we are done.

Claim 4. Let o =i,rq where i is conjugation by x, 7 is a graph
automorphism of G, and g is a p-power Frobenius endomorphism of G.
Then we may assume that i, = 1.
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Suppose that the result is true for all endomorphisms of the form
o' = 7q’. Then via a direct application of Lang’s theorem we establish the
result for the endomorphism i, o'

We now will reduce to the case where Cg;(u) is connected, thereby
avoiding difficulties with the splitting of classes in G,. This will involve a

series of claims.

Claim 5. Let Q < G be a connected unipotent group and let a €
N, (Q) with o(a) = r for some prime r # p. Let b € (a)Q such that
o(b) = oa). Then there exists x € Q with <b) = (a)".

Let Q% =[Q%~ D Q% D] and Q" = Q and suppose Q") =1 but
QW1 # 1. We will use induction on N.

Suppose N = 1 so Q is abelian. Say b = a*q, for some g, € Q. Now by
(9.3) of [3], the product map induces an isomorphism of varieties:

Q = [a*, Q] x Cy(d").
So
b =a*q, = a*a~*q, 'a*q,q, = q, 'a*q,q,,

where g, € Q and g, € Cy(a*). Now, olq, 'a*q,q,) = o(a*)o(q,) implies
that g, = 1. So b = (a*)? as desired.

Now suppose N > 1. By the abelian case, there exists x € Q with
(bQ'y = (aQ'y?". So b = (a*)'q, for some ¢, € Q'. Now Q' is a con-
nected unipotent group and a € N,(Q") and b € (a*)*Q’ so, by induction,
there exists y € Q' with {(b) = {(a*)”, which is the desired result.

Claim 6. Let Q, D < G, with Q a normal connected unipotent sub-
group of D with D/Q an elementary abelian r-group for some prime
r #+ p. Then there exists A < D with A N Q = 1 and D = AQ. Moreover,
if D = BQ for some B < D then B = A for some g, € Q.

Suppose |D/Q| = r'. We will use induction on ¢, the case ¢ = 1 follow-
ing from the previous claim.

Let a € D with o(a) = r. Then (a)(Q is a normal subgroup of D. So for
d € D, (a)*Q = {a)Q. So by the previous claim (a) = {a)® for some
g, € Q. So dq,;' € N,({a)), and hence D = N,({a)»)Q. If Ny({a)) N
Q =1, then we have the desired complement. Otherwise, we have
Ny({a))/{a) with normal p-subgroup (N,({a)) N Q)a)/{a) and the
quotient is an elementary abelian group of order r'~'. So, by induction,
there exists B < N,({a)) with {a) < B and BN Q0 =1 and N,((a)) =
B(Ny({a)) n Q)Xa). But D = Ny({a))Q so D = BQ as desired.

Now we must show that all such complements are Q-conjugate. If £ = 1
this follows from the previous claim. So suppose ¢ > 1 and D = AQ = BQ
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with |A| = r' = |B|. Let a € A. Then there exists b € B with a € {(b)Q.
Then, by the first claim, there exists g, € Q with (a) = {(b)?. As above,
we work inside N,({(a)). We have in N,({a))/{(a) the complements
A/{a) and B% /{a) to the p-group (Q N N,({a)))a)/{a). So, by induc-
tion, there exists g, € Q with (A/{a))¥‘*> = B% /(a), which gives the
desired conjugacy statement.

Now we are ready to show

Claim 7. We may assume C(u) is connected.

Recall that we have C;(u)°, a unipotent group, by Claim 3. Suppose
Ci;(u) is not connected. Then C,(u)/C;(u)° is either an elementary
abelian r-group for some prime r # p or Sym,, Sym,, or Sym.. (See [9, 10,
15, and 19].)

If Co(u)/Cq(u) is an clementary abelian r-group for some prime
r # p, we apply the above claims and Lang’s theorem to get A4, a o-in-
variant complement to Cg(u)° in Ci(u). Then u € C;(A)°, a proper
connected reductive maximal rank o-invariant subgroup of G. So in this
case we are done by induction.

Now suppose Cg(u)/C,;(u)° = Sym,, which occurs only if G is an
exceptional group in which case we are assuming p > 3. Then the above
claims imply that for all x, y € C;(u) with o(x) = 3 = o(y), there exists
qo € Cs(u)y with (y> = (x>?. So by Lang’s theorem there exists z €
C(w) such that o(z) = 3 and o({z)) € (z). Then u € C;({z))°. Again,
we are done by induction.

Now suppose C;(u)/C;(u)° = Sym,, which occurs only if G has type
F,. By [15], there exists § < C;(u) with Cg(u) = SC;(uw)° and S = Sym,.
Let A <§ be the alternating subgroup. Then AC;(u)° is o-invariant.
Also, taking V < A, o(V) = 4, we have VC;(u)° a o-invariant group. Now
we are in the elementary abelian case as above.

This leaves us with the case Cg(u)/Cs(u)° = Sym,, which occurs for
exactly one class in the group E;. Now E; has no nontrivial graph
automorphism, so by Claim 4, o = ¢, a p-power Frobenius endomorphism.
By Lemma 70 in [10], there exists v € G, v conjugate to u such that o
acts trivially on C;(v)/Ci(v) and C4(v) = AC;(v)°, where o |, = id.

Now for g € G such that g~'vg € G,, we claim that we have an
isomorphism (of groups)

ch(g" Ug)/CGU(g_lug) N CG(g—lUg)o

= CCG(1~)/CG(1-)°(g(T(g) »]CG( L')o)-

Now recall that for g™'vg, v € G, then go(g)~! centralizes v. Define

6: Ccn(gglvg) - C(‘G(,,)/C(;(,,,c(go(g)71CG(L‘)°)
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via 6(z) = gzg~' C;(v). Now note that for z € C,; (g™ ' vg),

g8 'go(g) gz g —go(g) 'z
=go(g) 'o(g)o(2)a(g) g

—1 -1

=go(g) o(gg Ve g
So modulo C(¢')°, and recalling that o acts trivially on C;(v)/C,(v), we
have

= g“(g)ilc(;(“)o(’(ngfI)CG(U)OSZ_ IgflC(;(U)o
= 80(8)_1C(;(1~")0g2g71C(;(L’)ngflgflc(;(l')c =go(g) IC(;(U)o

as desired. Thus 6 is a well-defined map into C¢_.,,c . {87(g)" IC(,(L ).

Note that 6 is clearly a homomorphism and that ker(8) = C(, (g ‘g)
N C.(g "1g). Also 8 is onto. For if x € C,(v) such that x~'go(g) 'x
€ grr(g) 'C(v), then by (2.7) of [4, E.I], there exists y €
g 'xgC,(g 'vg)y with o(y) =y. Then 6(y) =gyg 'C.(v)°. But y=
g 'xga for some a € C;(g~'vg). So gyg™' =xgag™' € xC,;(g "vg). So
8(y) = xC,(v)° and we have that @ is also onto.

Now we use this isomorphism to show that there exists a semisimple
element in C;(g 'vg). Let s€A\{1}, so (o(s), p)=1. Let z¢€
Colg™'vg) such that 6(z) = sC.(v)°. Note that z &€ C;(v')°, so z is not
umpotent Write z = tn, the Jorddn decomposmon of z with ¢+ 1
semisimple and n unipotent. Then 27" = 7" for some integer k large
enough. So 7" # 1isa semisimple element inC, (g vg) as desired. Now
we could choose g such that u = g~'vg and we would have a semisimple
element in C;; (1) and we are again done by induction. This completes the
proof of the claim.

As a result of the previous claim, if # € G, has G-class &, then G, N &
is the G -class of u. In particular, we are left with the following G-classes
of elements (refer to Prop 3.2, [4, 9, 10, 11, 12, 15, and 19)]).

G,: regular.

F,: regular.

E,: regular, and the distinguished class with diagram.
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and
0
22 ) 2 0 2.
E,: regular, and the distinguished classes with diagrams
0
2 2 ) 2.2 2 2
and
0
2 2 2 2.0 2 2.

A,;, B, C,: regular.
D,: distinguished classes corresponding to the partitions of 2/ consisting
of two distinct odd parts.

Claim 8. Theorem 4.1 holds for G of type D,, [ > 4.

Consider first the case where o = g7, ¢ ap-power Frobenius endomor-
phism and 7 a (possibly trivial) graph automorphism of G such that
72 = 1. Fix a partition {2m + 1, 2n + 1}, m > n = 0 of 2/. Then the
unipotent class corresponding to this partition has representative a regular
unipotent element in a closed connected reductive subgroup of type
B, X B,,. (See the proof of Proposition 3.2.) We will construct such a
subgroup of G.

Set B=a, + a,,, + - +_,, and then set

H =, Uy, - Uiy s Xgya () Xp0a(1),
X_pg_o (D)x_pg ()11 EK),
and
Hy=U., U, o Usq %, (£)X,(1),
X_ o (Dx_ ()11 € k>,

Now it is easy to see that {«,, a,,...,,_;, B+ a,_,, B+ «a;} (respec-
tively, {e, .y, @,i2,---> €2, &;_, ay}) is the base of a D, - (respec-
tively, D,,, ,-) type root subsystem of ®(G). Thus, taking fixed points of
the involuntary graph automorphisms of the corresponding closed con-
nected subgroups, we obtain the subgroups H, and H,, which therefore
have types B, and B,, respectively.

We now show that [H,, H,] = 1. For this, we must show that, for all ¢,
u €k,

) [xgsq, (Dxg,,(1), x, x (W] =1,

(D) [xgeq, (Dxg, (0 x_, (x_, (W] =1,
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Gii) [x_g_,, (Dx_g_ (D) x,, Gx (W)=

(v) [x_g_ (t)x_ﬁ,a(t) x_,, (u)x,a(u)] = 1

For a, 6 € ®(G) such that « + 5 & B(G), we write [e,, e;] = N, se,, ;5.
Then, using the relations in 4.1.2 of [6], it is stralghtforward to show that
()—(iv) are satisfied if and only if the following hold:

(D) N, Bta;_ . a + NB*'U‘/ ap_ 0,

(I Ny o, + Ngo , =0

Using the algorithm given in [6] for choosing a set of structure constants,
we see that we can arbitrarily choose the values for the structure constants
NBM[ ap Nﬂ‘"[, and Nﬁ-m- - Moreover, again using 4.1.2 of [6], we have

that
N N =N, aNo 5

ap Broap ey, Bra;

1, and get N,

a;_ ., Bta

Sowe choose N, s =1L N, = -1, N, g, , =
= —1, which ensures that (I) and (II) are satisfied.
We next show that H, is invariant under ¢ for i = 1, 2. This is clear if
7= 1. Suppose 7 # I; s0, o(x ., (1)) =x,, (t7), for 1 <i <[ — 2, for all
t €k, and o(x, () =x, (tq§ olx_,, (D) =x_,(t7), olx, (1) =
(¢9), and cr(x_a(t)) =x,, (t), for all 't € k. Then it is clear that
o'(H ) C H,. Also,

T (Xpra, (D)) = o ([xa(1), xo, (D]) = [x5 (1), 2, (D] =55, 0(~19),
U(xﬁ+“1(t)) = U([XB(I), x“l(_l)])
= [xﬁ(tq)axa, .(—1)] =xﬂ+a,,,(_tq)’

o(x (D) =[x s(0)x_o (-D)])
=[x a1 x (- D] = x4 (—19),
and
a(xp o)) = o([x (1), x_(D])

[xfﬂ(’q)a x-nl,l(l)] =X_g_q. (—t7).

So o(H,) € H, as well.

Finally, we show that there exists a regular unipotent element of
H, X H, which is fixed by ¢. Fix ¢ € k such that if 7= 1 then ¢t = 1 and if
T+ 1 then t*~' = —1. Then set

w=x, (1) x,  (DXgig (D) Xgralt)Xa, (1) Xa (1) X, (1)xg(1).

Clearly u is a regular unipotent element in H, X H, and one checks that
o(u) = u. We have shown that there exists a representative of the class
corresponding to the partition {2m + 1, 2n + 1} which lies in G, and
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moreover that this representative lies in a closed connected reductive
o-invariant subgroup of G. Thus we are done by induction.

Finally, consider the case where G has type D, and o = gr for 7 a
nontrivial graph automorphism of G with 73 = 1. For the regular class,
we take the representative u =x,(Dx,(Dx,(Dx,(1). Then o(u) =u
and 7(u) = u. So u € G, which is a proper closed connected reductive
o-invariant subgroup of G.

It remains to consider the unique nonregular semiregular class of
unipotent elements in G of type D,. The assumption that the elements in
this class have order p implies that p > 3. (See Propositions 3.2 and 3.3.)
Let ¢: A, = D, be the (irreducible) adjoint representation of 4, and set
Y = ¢(A4,). We note that the regular unipotent elements in Y have
Jordan blocks of sizes 5 and 3 on the natural module for D, and hence are
representatives of the nonregular semiregular class in D,. As well, we note
that o (Y) acts irreducibly on the natural module for G. But there exists a
unique conjugacy class of irreducible A,-type subgroups of D,, so there
exists g € G such that o(Y) = g 'Yg. So, by Lang’s theorem, there exists
x € D, with o(x™'Yx) Cx 'Yx. Again by Lang’s theorem, there exists
u € x 'Yx with o(u) = u and u a regular unipotent element in x 'Yx.
Thus u is a nonregular semiregular unipotent element in G, is fixed by o,
and lies in a closed connected reductive o-invariant subgroup of G. Thus
we are once again done by induction. This completes the proof of Claim 8.

Claim 9. We may assume ¢ = g, a p-power Frobenius endomorphism.

By Claim 8, we need only consider the groups E, and A, as these are
the only remaining groups having a nontrivial graph automorphism. Sup-
pose o = tq, where 7t is a nontrivial graph automorphism and g is as
above. If u is a regular unipotent element in A, where / is odd, then we
may assume

u =X (D ()X (Dx (1) %o, (Dxe (Dxa,., (D).

Then v € G, N Gq; in particular, ¥ € G,, a o-invariant closed connected
reductive subgroup of G. So we are done by induction. If u is regular
unipotent in A4, where ! is even, then o(u) = p implies p > 2 and we may
assume

u= xa,(l)xa,(l)xaz(I)xa,,l(l) o xa,/l(l)xa‘“_z,/»z(l)xa,/brx(Hl)’,,z(—%)'

Again one may check that u € G, N G, and argue as above. Suppose G
has type E¢ and u is a regular unipotent element. Then we may assume

U =x, (1) x, (1) x, (D x, (1) x, (1) x,(1)

and argue as in the A, case.
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Finally, consider the case where G has type £, and u is a distinguished

unipotent element in the E, class with diagram 2 2 (2) 2 2. Then by

(2.7), u ~ v, where v is a regular unipotent element in G,; for some
x € G. Moreover, from the expression for ¢ given in (2.7), we see that
g{v) = v. Soif ¢’ = gri, then o'(¢) = v and v lies in the o'-invariant
closed connected subgroup G, and, by induction, there exists a o'
invariant subgroup X < G with v € X and X of type A,. But if o(a)a!
= o(x) for @ € G (given by Lang’s theorem), then since o'(¢) =r,
o(a'va)=a 'va and a 'va € a 'Xa, a subgroup of type A, and
o(a 'Xa) C a ' Xa. But since C,,(#) is connected, a~'va is G,-conjugate
to u and we have the desired o-invariant A, subgroup overlying u.

We may now complete the Proof of Theorem 4.1. By the above series of
claims, it remains to establish the existence of A4, subgroups in each of the
adjoint simple groups, excepting type D,, overlying the elements listed
prior to Claim 8, and show that the A4, subgroups are invariant under
p-power Frobenius endomorphisms. This was done in (2.4) and (3.4).

We close this section with the

Proof of Corollary 0.5. Let G be a simple algebraic group defined over
an algebraically closed field of arbitrary positive characteristic p. Let
x € G be an arbitrary unipotent element. We first note that o(x) < o(u)
where u is a regular unipotent element of G. For otherwise, we fix B, a
Borel subgroup of G with u € R,(B), and g € G such that g 'xg €
R,(B). Then the B-orbit of u, being dense in R (B), must intersect the
nonempty open set {¢ € R,(B) | v # 1}. But clearly the elements in the
B-orbit of u all have order o(u).

We now recall that G, nontrivially intersects the class of regular
unipotent elements in . Thus to establish Corollary 0.5 it remains to
show that the regular unipotent elements in G have order min{p* | p* >
ht(r,)}. This was established in Proposition 2.2 for G of exceptional type
and in Proposition 3.3 for G of type A4,. For G of type C,, the regular
unipotent element is a regular unipotent in A,,_, (using the natural
representation of C;) and so has order min{p? | p* > 2/ — 1} as desired.
For G of type B,, the corollary follows from Proposition 3.3 if p > 2. If
p = 2, there exist bijective morphisms 8, : G — H and 6: H — G, where
H is a simple algebraic group of type C,, and u;, u;, are regular unipotent
elements in G, H, respectively, such that 6,(u;) = u, and 8,(u,) = u,.
(See Theorem 28 of [18]) Thus o(u;) = oluy,) = min{p* | p* > 21 — 1}
as desired. Finally, for G of type D), there exists a regular unipotent
element which lies in the fixed point subgroup of the involuntary graph
automorphism, a simple algebraic group of type B,_,. Moreover, this
element is a regular unipotent element in B,_,. So, by the above, it has
order min{p? | p* > 2(1 — 1) — 1} as desired.
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APPENDIX

In this section we describe certain matrix representations of the Cheval-
ley groups associated with the finite-dimensional Lie algebras of types £,
and E;, over an arbitrary field 7. (We denote these groups E,(#) and
E (%), respectively.) We have included more than enough information to
check the statements about orders of unipotent elements in (2.2). Indeed,
we have given a complete description of the images of the fundamental
root groups under the representation, with the hopes that this computation
itself may be of use in the field. For the purposes of this computation, we
used a set of structure constants for the complex Lie algebra of type Eg
constructed by Gilkey and Seitz for their work [7]. It is available from them
upon request.

Let £(E,) be a finite-dimensional complex simple Lie algebra of type
E;. Let {e,, f,, h, | a € ®*, y € T1} be a Chevalley basis for Z(E;). Let
T ={y,11<i <7} with the ordering chosen to be consistent with the
labeling of Dynkin diagrams given in the introduction. For g € ®*, if
B==Xl_ ay we wil wrte f, , _, for f;. Let W be the irreducible
Z(E,) module with high weight A,. Choose 0 # w*& W such that e,w* = 0
for all « € ®*. Fix the following (Kostant) basis of W:

wy = wt w3g = fooooor1fra243m1w0
wao = foooo111 f1224321w
ws1 = foooooo1 fr23s321w

wa2 = fooocoo1 f2234321

_ +
wao = foooooo1 for12221w
way = fi f wt

21 0000001 f1112221
wa2 = foooooo1 fiizzeziw™
wa3 = f1123211w+

wy = faonoomw
w3 = fopo0om1 W
wyq = foooor11w

o+

Ws = fooannw
we = foronnw
wq = fnmnuw
wg = fi;mnnmw
g = funnnw
wio =f1111111“’1L
wyy =f0112111w+
wyy = f11121|1w+
Wiy = f01122nw+
wy4 = f11122|1w+
w1y = f0112221w+
g = f1112221w+
7 = fn22111w+
wig = f1122211w+
iy :fnzzz'zlw+

TR+ 4+ o+ o+

Let & ={w; |1 <i < 56) (an ordered basis) and set M = XZw,. It is
well known that M is invariant under {(e?}/n!, (f)/ntla € &, n € Z7}

Wwz4 = f1223211w+
Was = f||23221w+
Wy == f|223221w+
War = f0000001f1123221w+
wag = f0000001f1223221w+
Wyg = f1123321w+
W3g = f1223321w+
wai = fooooo01 fr123321w
W3z = f0000001f1223321w
w33 = fooooo11 fi123321W
w34 = f0000011f1223321w
w3s = f1224321w+
w3 = f1234321w+
w3y = f2234321w+
w3g = foooooo1 fiz24321 w0

+
+
+
+

+

w43 = fooooo11 f12343210
Weq4 = f0000011f2234321w+
wys = f0000111f1234321w+
W46 — f0000111f2234321w+
Wit = f()o()1111f1234321w+
wqag = f0001111f2234321w+
Wy = f010n]1f1234321w+
wso = fumn11f2234321w+
ws1 = foon111f2234321w+
wsz = f0111111f2234321w+
ws3z = f0112111f2234321w+
Wsq = f0x12211f2234321w+
wss = for12221 f223032107

Wse = fDOOODDl f0112221 f2234321 w+
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and that e] and f; act as zero on W for sufficiently large values of n. Set
W(x) =M ®,%. Then, for t €%, we have an action of exp(te,) =
1+ X, _(te,)"/n! and exp(sf,) on W(Z). We may then define a faithful
representation ¢ : E,(F) —» SLIW(Z)) on certain elements of E,(Z) by
d(x5(1)) = explte;) for B € & and ¢ €7 We identify SL(IW(Z)) with
SL. (%) via the ordered basis # = {w; ® 1|1 < i < 56). A description of
¢ is given below, with E, ; denoting the 56 X 56 matrix whose (k, {) entry
is 8,6, and I denoting the 56 X 56 identity matrix.

Haa,(t)) =1 +t(—ET,E - Eg,m - En,n - Em,m e E)s,xe - Ezo,'u — Ess,:s'r —Eji 40—
Ei3.44 — Eys,46 — Ea7.48 — Es9,50)-

¢(xa,(1)) =1+ t{(—FEs6 — E79 — Eg 10 — E23 24 — E25.26 — E27.28 — E29 30 — E31,32 —
E33.34 — E47.49 — Ess 50 — Es1,52)-

O(ray(t)) =1+ t(—Es7— Es9g — Ei217 — E14,18 — E16,19 — E21,22 — E35.36 — E38.41 —
Ej39.43 — Eqo.45 — Eas 51 — Eso,52)-

Hza,(t)) =T +t(—Es5 — Eg11 — Ejo12 — E1s,23 — E9,25 — Ea2,271 — Es0,35 — E32.38 —
E3439 — E4s a1 — Ess 48 — Esz53)-

Hzag(t)) = I +¥{(~E3z4a—Ev1,13 — E12,14 — E17.18 — E25,20 — E26,30 — E27,31 ~ E8,32 —
E39.490 — Eq3.45 — Eq4.46 — Es3.54)-

&(rag(t)) =I+t(~Ez3— Ei315 — Eve,16 — E18,09 — E23,25 — E24.26 — E3133 — E32.34 —
Esg0 — Ear a3 — Eq2.44 — Esq55)-

{20, (1) =T+ (B2 + Ejs.20 + Er6.21 + Evg 20 + E2521 + E26,28 + E28,31 + Es032 +
Eys a8 + Eze.41 + E37.42 + Ess 56).

W Tagtaslt)) = T+ —Ey 7+ Eg 11— Er0.17+ Era23+ Er6,25 + E21 27 — E30,36 — E32.41 —
Esy 43 + Eqour — Eas 51 + Esos3).

N Tagtas(t)) =T+t —Esy6+E7 11+ Es 12— Eis24 — E19.26 — E22,28+ E29,35 + E3138 +
Es330 — Eq5.49 — Eqg50 + Es1,53).

HTagtas(t)) = I+H—E3 5+ Eg 13+ Er0,14 — E17,23+ Er9,20 + E22,31 — F26 35 — E2s 33 +
Es440 — Eq3.47 — Eqq.48 + Esz 54).

A Tagtas(t)) = T +t(—Ez4 + Ev1as + E12716 + E1719 — E2320 — Esa 30 + Ez733 +
B35 — E38.40 — Ed1.45 — Eaz a6 + Eszss).

N Lagtar(t)) =T+t Er3— Ei3 20— E14.21 ~ Evs.20 - E2327 — E2a 28+ E29 33 + E30,34 +
Ess539 + Es6.a3 + E37.44 — Es456).

This completes our description of the representation of E,{(:%). We will
now describe a representation of E (7).

Let Z(E,) be a finite-dimensional complex simple Lie algebra of type
Eg. Let{e,, f,, h, | a € ®*, y € I} be a Chevalley basis for Z(E,). Let
IT ={y,11 <i < 8 with the ordering chosen to be consistent with the
labeling of Dynkin diagrams given in the introduction. For 8 € ®*, with
B =L} | a;y,; we will write (a,a, - a,) for B. Fix the following ordering
of ¢*:
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31 = (23465432)
3y = (23465431)
33 = (23465421)
dy = (23465321)
35 = (23464321)
3 = (23454321)
B = (22454321)
3y = (23354321)
3q = (22354321)
310 = (13354321)
B = (22344321)
12 = (12354321)
813 = (12344321)

B1a = (22343321)
s = (12244321)

B = (22343221)
B1s = (12243321)
Je = (22343211)
430 = (12343221)
3y = (12233321)
,"igg ( 12243221 )
33 = (12343211)
s = (22343210)
a5 = (11233321)
3y = (12243211)
Ja7 = (12233221)
3,5 = (12343210)
29 = (12233211)
330 = (11233221)

We now fix an ordered basis of #(E;) as follows: For 1 <i <

B = (12232221)
B33 = (12232211)
B34 = (11233211)
B3¢ = (12233210)
Ba7 = (12232111)
Bss = (11232211)
B39 = (11222221)
B0 = (11233210)
Ba1 = (12232210)
B4y = (11232111)
B3 = (11222211)
Bas = (11122221)
B4s = (12232110)
Ase = (11232210)
847 = (11122211)
Bss = (11222111)
Aso = (12232100)
Bs1 = (11232110)
352 = (11222210)
853 = (11122111)
Bsa = (11221111)
Bs7 = (11232100)
Hss = (01122211)
Bse = (11121111)
Beo = (01122111)

v =eg; for 129 < i < 248, set v,

Let & =

Y2007
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81 = (01122210)
B2 = (11222100)
Bes = (11122110)
Bss = (11221110)
Bes = (01121111)
Bs6 = (11122100)
/367 = (01122110)
Bes = (11221100)
Bse = (11121110)
Br0 = (11111111)
71 = (01122100)
B72 = (11221000)
Br3 = (01121110)
Brs = (11121100)
875 = (10111111)

e = (01111111)
Brz = (11111110)
B7s = (01121100)

B7e = (11121000)
Bso = (00111111)
Bs1 = (01011111)
Bs2 = (01111110)

Bs3 = (10111110)
Bss = (01121000)

By7 = (01011110)
Bss = (00111110)
Bse = (01111100)
Ba0 = (10111100)

=f,, 5 for 121 <i <
{v,I1<i< 248} and’ ‘et M = Y Zv,. As above, we

Be1 = (11111000)
B9z = (00001111}
Be3 = (00011110)
Beq4 = (00111100)
Bes = (01011100)
Beg = (01111000)
Ber = (10111000)
Bes = (11110000)
B99 = (00000111)

Bioo = (00001110)
Bio1 = (00011100)
8102 = (00111000)
B1o3 = (01011000)
Bios = (01110000)

Bro6 = (00000011)
B1o7 = (00000110)
Bres = (00001100)
Broe = (006011000)
B111 = (01010000)
Bh12 = (10100000)
B113 = (00000001)
B114 = (00000010)
8115 = (00000100)
B116 = (00001000)
ﬂ]]g = (00100000)
Bi1e = (01000000)
B120 = (10000000)

120, set
< 128, set v, =

obtain a matrix representation ¢ : E{(%) —» SL(Z(%Z)), where V(%) =

A ®,%. We identify SL{V(%Z)) with SL, (%) via the ordered basis & =
{v; ® 111 <i < 248}. The description of the images under ¢ of certain
root group elements x4(¢), B € @7, t €.7, is given below, where E; ; now

denotes the 248 X 248 matrix whose (k, /) entry is §;, 5

the 248 X 248 identity matrix.

and [/ denotes
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W{za, (1) =T+ Es 10+ Eo12 + En1 13 + Erg,16 + E17,20 + Erg 23 + E24,28 + Egq a0 +
Ey758 + Esz g0 + Ese 61 + Esoes + Eg3e7 + Ees,71 + Eeo,13 + E70,76 + Er4,78 + E75,80 +
Ez7 42+ E19.85 + Es3 .88 + Esa 89 4+ Foo.94 + Eo1.96 + Eo7,102 + Egs,104 + E105,110 + Er12,118 —
2Ev00n +Eraon2s+ Erg1 120 — s 137 — Erze.144— Eras,351 — F1a7,15:— E1s3.158 — Ess.159 —
Ers0.16s — Ever.tee — Elsa 170 ~ Ere7,112~ Ere0.174 — Ev7y 115 — Ev73,179 — Ev1e,180— Ev7s,083 —
Ers2185 — Evsaioo — Esa 93 — E1ss 196 — Ev91 202 — E200 205 — E721,225 — E226,230 — E220 232 —
Ey33.235 — Ea36.238 — Easz.2400 — Eu30241) — t*E120,126.

Wra,(t) = I+ t(Es 7+ Esg + E1012 + E21.25 + E27.30 + E20 34 + E3135 + Faz 38 +
Es 40 + E371a2 + Egr a6 + Ess 51 + Esost + Ez075 + E16,80 + Ev783 + Es186 + Es288 +
Eys 90+ Esr 93+ Egg 94+ Eg1 97+ Eas.101 4 Ess, 102+ Eos 105 + E103,100 + Eroa110 + Evvi 17 —
2F119.122+ Evi9124+ Ev22,130— Ey22,138— Ei39 145~ Frao 146 — Evas 51— Era7,153— Er4s 154 —
Es2 58— Eis5,160 — Ess.162 — E159,165 — E161,167 — El63,168 — E166,172 — E169,173 — Er 74,179 =
E192.199 ~ Ev98,204 — E203,208 — E207,212 — Ez08.213 — E211 216 — Ea14.218 — E215,220 — E210 222 —
Ey24.208 — Ea37239 — Easopa — Eza2.243) — 2 E119.130-

Wraytan(t)) = I+H(—Es 7+ Es 11+ Ev,13~ E1s25— E22,30 — 26,34 — E32 40+ E31 30+
Eus a3+ E37,48+ Eay 52+ Eg5 55 + Es0.62 — Es9.75 — Ees,80 — Egg.83 — E73.88 — E14,90 — Er5,01 —
Erg 97 + B¢y 92 — Egs.o2 + Es1300 + Egsa08 — Eesni2 + Evoznie — Eroqyie — Ennaee +
Einnas—Enmawa+Enmass —EntasetEvgase+ Erz2a38+ Er24,138 + Eisr1a5 — Er3s 146 +
Eyyras1— Erar,54 — Erg9,162 — Ers7.068 + Evaz 164 + Erse 110+ Eyss ami + Evsgars + Evey y76 +
Erse.180+ Erso 184+ Er74.100 — E187.109 — E194,204 — E197 208 — E201.212 — E206,216 + E209 217~
Eyina1a + E21s.203 + Ez19207 + E224,231 — Eu3s 230 — Euszs 241 + Eaan24a) — t2E111 138

P(ra,(t)) = I +t(Ess + E79 + Er3s + Ev6,18 + E20,22 + E23 26 + E28,32 + E39,34 +
Eaz.a7+ Eqss3+ Es2.56 + Esq 59 + Ess 63+ Eg2.66 + Eoa,60 + Ees 74 + E72,70 + E76 81 + E30,86 +
Eg2.81 + Eys 93 + Es9,95 + Eos 101 + Eos 103 + Er02,109 + Erosan + Evro1r — Errzaze +
Ensan—2Ens 023+ Ensaza+ Eresnsy +Ei29.137— Er32139 — Fi3s,145— E140,47— Ev46,153 —
E\48.155 — Erss060 — Eis6,161 — Ev62,167 — E1s3.160 — E168,173— E170,177 — E175.181 — E180,185 —
Ers3.187 ~ Ergs 194 — Evo0,195 — Ev93 107 — Erg6 201 — E202 206 — 205,210 — E217,200 — E223 206 —
E227,229 - E'Zfil,'zil.’l - E234\236 - E240‘242 - E24l.243) - t2E1]8‘]3l'

W(za () =T+t Ess+ Eg 11 4+ Er213 + Evs o1 + F22.27 + Eag 20 + E32.36 + E3s5 30 +
Ejs.43+ Esp a8+ Eqs 52+ Es155 + Es7 62+ Esg 7o+ Ees,76 + E¢o,77+ Ev3 82 + E74 84 + E7s 89 +
Eq9.91 + Egs.92 + Ess,96 + Ev3 100 + E101,108 — E1os,112 + Er09.116 — Err0,118 — Evin11e +
EirantEnrina—2E07 1244+ Eiiries+ Er2a,132+ Er30,138 + Erar 39— Evsa ta0 + Eraz 44—
Eya10as— Er40156 — E157.163 — E153,164 — E158,170 — E160.111 — Ev65,175 — E167,176 — E172.180 —
Ei73.184 = Ev79,100 — Eis7,102 — E194,108 — E107,203 — E201,207 — Ev06,210 — E210. 214 — Ea13.217 —
Erq.223 — Ev22.097 — Enzs 23y — Eaze 237 — Enas 20 — Ezaszad) — 2 Enirisa.

Wtay4a,(t)) = I+tH{(—E55+E7r j1— E2.15 + Etez1 + Ea027+ E23 20+ E2s 36 — E3s 40—
Ess,47 — E42.53— Es6 56 — Es1,63+ Es4,70 — Es7.66 + Es1.77 — E6s5.81 + Egs,84 + E72.91 — Ev3.87 —
E:395 + Ego92 — Ess 103 + Ess.100 + Eoes 108 + Ero2,116 — Eros,119 — Eros,120 + Er10122 —
Eivoa2s— Ereaza+Eroa21 +Enoaes — Bz +Erisase + Eres 130+ Er2a 130+ Erze 144 +
Eiav145 — Eraznar— Ersrass + Erssi6a — Erae 61+ Ersairi — Evs7169 — Eiss 177+ Ersz,176 —
Ei65,1814 E16s,184 — E172,185 — E179,195 + E183,1902+ E1386,198 + £193 203+ E196,207 + E202.211 +
Eq05.214— E213.221— Ea20 206~ E222 220 — E228 233+ Ea34,237 — E238 242+ 241 244)—t* E110.130.

W(ras(t)) =TI +t(Eys+ Eyy 14 + Evs,i6 + Evs,18 + Eo7,31 + Ea9 33 + F30,35 + E34.38 +
E3641 + Eq046 + Esgss + Eszse + Ess 64 + Feoss + Es268 + Esze0 + Ee7,73 + Ege74 +
E71 78 — Eo1.98 + Eg2.99 — Egg.104 — Eo7.105 + E100,107 = Eto2,110 — Erez, 11 + Eros,11s —
Eroo 117+ Eni6124—2E116,125 + Evis.126 + Er25 133+ E132,140 — Fras 141+ E13g, 146+ E139 147 —
Eja20a0+ Ersaasa+ Evas 53 — Erso i1+ Evsiass — Errn 178 — Eyre,182 — Ev7s,183 — E1so 186 —
Evsias7— E1s4.189 — E1ss 194 — E190,196 — E195,200 — E203,200 — E208,213 — E211.215— Ea14.210 —
E}HLL’ZU - E'I]S.ZZZ - EQ?KI‘Z%'Q - E233,231i - EZ'{S.Z:’B - E244,245) - sz]lG,lflf!‘
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Wlastas(t)) = I+t(—Es 6+ Eo 14+ Er2.16 — Eys 21+ E22.31 + E26,33 — E30.39 + E32,41 —
E3443—FEqo 50+ E42 54+ Es1 64 — Es3 70+ Es7.68 — Ego,76 ~FEs377— Eg6,84 — Es7.80 — E71 89—
E79.98 — Egs.104 + Egs,99 + Fe3.107 — Eo7.112 + E101.115 — Ey92.118 — Ev03119 — Ero9,124 +
Erve 22+ Erog.123— Eros,125 + Er09,126 — Ev16,132+ E117,133 + E124,140 + E125,140 + Er30.146 +
E\s1147— Erza.148 + Ei37.152 — Evazs6 + Er45,164 — 150,163+ E151.170 + 160,178 + Er65.183 +
Ersias2+ Evraas6+ Eima109 + E179,106 — E181,102— E18s.108 — E195 207 + E197 200 + B206 215 ~
E208.217t E210 210~ E216,223 — E218 227+ E228 234 — E233 237 — E235 240+ E243,245) — t* E109.140-

i rae(t)) =T+t Ez 4+ Evan7+ Eve20 + Ers 22+ Ezy 27+ Ezs 30+ Ezs 37+ Egg a2 +
Eaias + Eqz a8 + Eses1 + Ear53 + Esps5 + Esse0 + Esees + Ee1,67 — Eesr2 — Erq 70 —
Eq15.85— Esa.91— Es9.96 — Eo0,07— Foa.102 — E9s,103 + Fa9,106 — E101,100 + E107.114 — Er08,116 +
Evy5425—2F 5,126+ P15 027+ Er26.13a+ Eras1e1—~ Evzs 142+ Erg0,148 — Era3 150+ Erge 154+
Ers7055+ Eisz.15 + Eysa 160+ Ess,165 + Eiea,171 + E170,175 + E177,181 ~ E182.188 — Erse 191 —
E1s6.193— E194,197— E195.202 — E198,203 — E201.206 — E204,208 — E207.211 —~ E212,216 — Ea19.224 —
Ez22.328 — E227,231 — Eu20,233 — Fas2.235 — E245.246) — 2 Ev15,134.

{(Lastas(t)) = T+H{(~E3s+E1 11+ Eis20+ E15,22— E21,31 — Eas 35+ Eg9 37+ Eag a2+
E36,45+ Ea0,51 — E43,56 — E47,50 — Es2,64 — Ese.69 — Ess,65 — E61,73 — Ee2,72 — E¢6,79 — E71 85 —
Eg4.95 — Eso.104 — Eg0,105 + Eo92,106 — Eoas.110 — Eos 111 + Er00,114 — Er01,117 + Evos124 —
Eyos,125— Evos,126 + Er0s 127 — E115,133 + E116.134 + E125,141 + E126 141 + E132 148 — E135,140 +
Ei3s,154+ E130.155 — E143,157 + E144,150 + E145,160 + E151,165 + E164,178 + E170,183 + E176,188 +
E177.187+ E1g0.193 + E1s4.191 + E185,197+ E190,202 + E195,206 — E198,200 — E204,213 — E207 215 —
E2,020 + Ez14,224 + E215.228 — Ea27 234 — E229.236 — E232,238 + Eo44,246) — #2Fy08.141-

W Zay (1)) = I+ t(Ez3 + Ev7,09 + F20,23 + E22,26 + E27,20 + E31,33 + Es0 34 + E3s a8 +
Ess.43 + Eqa.47 — Ess50 — Esy 57 + Esp58 — Ess,e2 — Fsae6 — Ees,68 — E67,71 — Ego,74 —
E+3.78 — E77 84— Es2.80 — Es3,90 — 38,94 — Es7,95 — E93,101 — E100.108 + E106,113 — E107,115 +
EIH,I‘ZG‘2EH4,127+E114,I2B+E127,135+E134‘l42‘E]36,143+E141,149+E148,]56+E155,]61+
Eis4.162+ Evs9,166 + E160.167 + Enes,172+ E171,176 + E175, 180 + Ei 78,182 + E181,185 + E183.186 +
Ey87.191+ Ey92,198 — Ei91,200 + E199,201 — E202 205 — E06,210 — E211,214 — E216,218 — E215,219 —
Eusz0222 — E223.227 — E296 220 — E230,232 — Enas,247) — 2 Ev14,135.

W Tagrar(t)) = I + H(—E24 + Evg19 + Er6,23 + Eis,26 + E21,20 + Fas 34 — E3 37 —
Essuz— E39 48— E41 50~ E44,53 — Ea6 57— Eao .60 — Es2,62 — Es6 66 — Ee1,7) — Eea.712 — Es9,79 —
E33.85 — E77.91 — Es2.96 — Es3,07 — Es7,103 — £88,102 — Fo3 100 + Eas 113 — E100,116 — E107,126 —
Eror127+ Evor125 + E107.128 — E114,134 + E115.135 + Ev26,142 + E127.142+ E133,140 — Ei36,150 +
Ei40.156 + Ev46,162+ E1a7.161 + E152,186 + F153,167+ E158,172 + Et64,176 + E170,180 + E177.185 +
Ei78.188 + E1s3.193+ Eis7,197 + E189,200 + E192,203 + E196 205 + E199.208 + E201,210 + E207,214 +
Eyvia1s — Eais,224 — Ez20,228 — En23,231 ~ Baze 233 — Fa3o.23s + Eras 247) — 2 Ero7,142-

(2ay{#)) =T +t(Ey 2 — E1924 — E23,28 — E26 32 — E29,35 — E34,40 — Eaz 41 — E37.45 —
Essas — Eqz 51 — Eazs2 — Essss — Esr56 — Ess 61 — Ess63 — Esa,64 — Ee0,67 — Es9,69 —
E¢s73 — Er0.71 — E76.82 — E75.33 — Es1.87 — F30,88 — Es6,93 — Ev2,100 — E9.107 — Etoe,114 +
El13,[27_2E113,]28+E128,136+E135,143+E142,150+El49.157+E156,163+E162.168+E161.169+
Eis7.173+ Evr66,174 + E172.170 + E176,184 + E182,150 + E180,190 + E18s,101 + E185,195 + E186 106 +
Er9s.201+ Er93 202+ Er97 206 + Er9s.207 + E203,211 + E204.212+ E200.215 + E208 216 + E313,200+
E217.223 + Ea21 226 + E225.230 — E247.248) — t* E113.136-
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