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For indecomposable representations of a finite group G in characteristic p , the theory of vertices and
sources introduced by J.A. Green in 1959 [G1] is a fundamental tool in modular representation theory. The
vertex and source of an indecomposable module are (up to conjugation) two invariants of the module and only
finitely many modules (up to isomorphism) have the same invariants. Thus a natural question is the existence
of a third invariant which would distinguish further the modules and lead to a bijective parametrization of
indecomposable modules using three invariants. When the base field of characteristic p is algebraically
closed, the answer lies in the concept of multiplicity module introduced by Puig [P3], although the result is
not explicitly stated in Puig’s work. It turns out that this third invariant is an indecomposable projective
module over a twisted group algebra of the group N/P , where P is a vertex and N is the inertial subgroup
of a source. This invariant has been used for the solution of some problems concerning almost split squences
of group representations [P5], [T2]. More generally the same question arises for interior G-algebras but
further complications appear (essentially because of the existence of outer automorphisms). The purpose
of this paper is to give a complete description of the parametrization of primitive interior G-algebras with
three invariants, including a description of the special case of indecomposable modules.

Let O be a complete local commutative ring with residue field k of non-zero characteristic p (allowing
the possibility O = k ). We assume that k is algebraically closed. By an O-algebra (or simply an algebra),
we always mean an O-algebra which is finitely generated as an O-module. Let G be a finite group. Recall
that an algebra A is called a G-algebra if it is endowed with an action of G by algebra automorphisms,
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and it is called an interior G-algebra if there is a group homomorphism G → A∗ . Any interior G-algebra
is a G-algebra, using the conjugation action of G on A . The main two examples of interior G-algebras are
on the one hand the algebra EndO(M) of O-endomorphisms of an OG-module M and on the other hand
the group algebra OG , as well as the block algebras eOG .

A G-algebra A is called primitive if 1A is a primitive idempotent of the algebra AG of G-fixed
elements. It is equivalent to require that AG is a local ring with residue field k . This is the case for
instance when A = EndO(M) where M is an indecomposable OG-module, or when A = eOG is a
block algebra. From the work of Puig [P1], [P3] (extending earlier work of Green [G2]), we know that
with any primitive G-algebra A are associated several fundamental objects: a defect group P , which is
a p-subgroup of G , unique up to G-conjugation; a source algebra B , which is a primitive P -algebra,
unique up to conjugation (and isomorphism); finally a multiplicity module V , which is an indecomposable
projective module over a twisted group algebra of the group NG(Pγ) = NG(Pγ)/P , where NG(Pγ) is the
stabilizer of a defect pointed group Pγ of A .

In the case of interior algebras, a result of Puig [P3, 9.9] asserts in essence that for any given triple
(P,B, V ) as above (with B interior), there exists a primitive interior G-algebra A with defect group P ,
source algebra B and multiplicity module V . For this result one has to consider the right twisted group
algebra in order to give the correct meaning to the word “multiplicity module”. Now it turns out that
two non-isomorphic multiplicity modules may give rise to isomorphic primitive algebras A . Therefore for a
parametrization of primitive interior G-algebras in terms of three invariants, the third invariant has to be
analyzed in more detail. Our purpose is to provide complete answers to these questions. This will correct
the too optimistic statement made in the Appendix of [T1], where the three invariants above were presented
as giving a parametrization of primitive interior algebras.

We are forced to attach several multiplicity modules to any given primitive interior G-algebra A . Firstly
for a given defect pointed group of A , we prove that one has to consider an orbit of multiplicity modules
under some natural action of the group Out(B) of outer automorphisms of B . Secondly two distinct
defect pointed groups may be conjugate under an element of NG(P ) which stabilizes the isomorphism
class of B . In other words the inertial subgroup NG(P,B) of the P -algebra B may be larger than the
group NG(Pγ) (but this complication does not occur for OG-lattices). We prove that NG(Pγ) is always
a normal subgroup of NG(P,B) , as a by-product of a detailed analysis of the group Out(IndG

P (B)) . If
we now take into account the conjugation action of NG(P,B) on NG(Pγ) , we obtain that the multiplicity
modules have not only to be defined up to the action of Out(B) , but also (in a rough sense) up to the
conjugation action of NG(P,B)/NG(Pγ) . In fact we have to consider the action of a single group, namely
Out(IndG

P (B)) , which has a normal subgroup isomorphic to Out(B) with quotient NG(P,B)/NG(Pγ) . This
group does not depend on G , but only on NG(P,B) .

Thus for any primitive interior G-algebra, we have three invariants (P,B, V ) defined up to conjuga-
tion by G and also up to conjugation by Out(IndG

P (B)) for the third one. In this way we obtain the
parametrization we are looking for, namely a bijection between the set of isomorphism classes of primitive
interior G-algebras and the set of equivalence classes of triples as above.

As a by-product of this bijection, we make explicit that the Green correspondence holds for primitive
interior algebras with a given defect group P . The proof consists in the mere observation that if H ≥
NG(P ) , then any triple of invariants (P,B, V ) as above also corresponds to a uniquely determined primitive
interior H-algebra.

We note that all the complications disappear when A = EndO(M) is the algebra of endomorphisms
of an OG-lattice M , because Out(IndG

P (B)) = 1 by the Skolem-Noether theorem. Thus the multiplicity
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module of an indecomposable OG-lattice M can be uniquely defined (but we emphasize that one needs to
define carefully the multiplicity module structure). In particular we recover the well-known parametrization
of trivial source modules.

When B is the source algebra of a block algebra, simple examples show that a non-trivial action of
Out(B) does occur and also that NG(P,B) can be larger than NG(Pγ) . Thus the group NG(P,B) seems
to be a new invariant associated with a block.

In Section 1, we gather all the necessary background of the theory of G-algebras and pointed groups,
and in Section 2, we recall the construction of multiplicity modules and twisted group algebras. Then in
Section 3, we start with the proof of the main result, which proceeds in several steps, scattered over all
sections of the paper. We fix a defect group P and a source algebra B , and we consider the set A(G,P,B)
of isomorphism classes of primitive interior G-algebras with defect group P and source algebra B . We first
note that any A ∈ A(G,P,B) can be embedded in IndG

P (B) so that the whole proof takes place within
this fixed interior G-algebra. Each step consists in showing that A(G,P,B) is in bijection with some set
of orbits of points, or some set of orbits of multiplicity modules, the final description being expressed in
terms of B alone, independently of G . In order to facilitate the understanding of the main ideas, a detailed
description of the successive steps is given at the end of Section 3.

Acknowledgment. This work would not have existed without Lluis Puig’s influence. Not only did he mention
to me a few years ago the possibility of using the multiplicity module as a third invariant for the parametriza-
tion, but he also contributed directly to this work by making decisive comments on a preliminary version
of the paper. I am very grateful to him and I would like in particular to thank him for mentioning to me
a significant improvement of the main result. After this paper was written, Lluis Puig communicated to
me another approach of the parametrization [P6], which sheds some new light on the question, and which
corresponds better to his own view of the subject.

1. Preliminaries

In this section, we fix our notation and review some basic facts in the theory of G-algebras, see [P1], [P3].
If A is a G-algebra, the (left) action of g ∈ G on a ∈ A is written ga . If A is an interior G-algebra, the
image of g ∈ G in A is denoted g·1A , and more generally we write

g·a = (g·1A)a and a·g = a(g·1A) .

Thus the conjugation action of g becomes ga = g·a·g−1 . Note that we cannot identify G with its image
in A and this explains why we systematically use a dot for the left and right action of g ∈ G on A . We
write Inn(b) for the inner automorphism of A defined by b ∈ A∗ , that is, Inn(b)(a) = bab−1 . This is an
automorphism of O-algebras. If Inn(b) stabilizes a subalgebra X (or a subgroup X of A∗ ), then we write
Conj(b) : X → X for the restriciton of Inn(b) , which may not be any longer an inner automorphism. If H
is a subgroup of G , then AH denotes the algebra of H-fixed elements in A . For K ≤ H , rH

K : AH → AK

is the inclusion map and tHK : AK → AH is the relative trace map (i.e. tHK(a) =
∑

h∈[H/K]
ha ). The notation

[H/K] always refers to an arbitrary system of representatives of cosets.
A homomorphism of G-algebras is a homomorphism of O-algebras f : A→ B which is not necessarily

unitary and such that f( ga) = g(f(a)) for every a ∈ A and g ∈ G . A homomorphism of interior G-algebras
is a non necessarily unitary homomorphism of O-algebras f : A → B such that f(g·a) = g·f(a) and
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f(a·g) = f(a)·g for every a ∈ A and g ∈ G . Thus in both cases f(1A) is an idempotent in A , necessarily

fixed under G , and the image of f is contained in the subalgebra f(1A)Bf(1A) (with identity element

f(1A) ). Note that f induces for each subgroup H of G a homomorphism of algebras fH : AH → BH .

We can compose a homomorphism of G-algebras f : A → B with all possible inner automorphisms

Inn(a) of A and Inn(b) of B , where a ∈ (AG)∗ and b ∈ (BG)∗ . This yields an equivalence class of

homomorphisms, called an exomorphism of G-algebras. In fact it suffices to compose with inner automor-

phisms of B , and as a result, the composition of exomorphisms is well-defined. We use the script letter F
for the exomorphism containing a homomorphism f , and we use the notation F : A→ B . We also write

F(1A) = { f(1A) | f ∈ F } ; this is always a (BG)∗-conjugacy class of idempotents of BG . An exomorphism

F : A→ B is called an embedding if for some f ∈ F (or for every f ∈ F ), f is injective and the image of f

is the whole of f(1A)Bf(1A) . An exomorphism F : A→ B is called an exo-isomorphism if some f ∈ F
(or every f ∈ F ) is an isomorphism. In case A = B , we use the more common term “outer automorphism”

(instead of “exo-automorphism”) and we write Out(A) for the group of outer automorphisms of A . We

shall also use the notation Out(X) for the group of outer automorphisms of a group X . Moreover by an

outer action of a group H on a group X , we mean a group homomorphism H → Out(X) .

For an interior G-algebra B , an inner automorphism Inn(b) is a homomorphism of interior G-algebras

if and only if b ∈ BG . Thus an exomorphism is obtained by composing with all inner automorphisms which

are homomorphisms of interior G-algebras. However for an arbitrary G-algebra B , an inner automorphism

Inn(b) is an automorphism of G-algebras if and only if the image of b in B∗/Z(B)∗ is fixed under G (where

Z(B) denotes the centre of B ). But b itself need not be fixed under G . Thus an exomorphism is obtained

by composing with fewer inner automorphisms than those which are homomorphisms of G-algebras. It turns

out that this is the relevant definition of exomorphism for arbitrary G-algebras. The reason is that we do

not want to allow an inner automorphism to move the points of BG .

If H is a subgroup of G , a G-algebra A can be viewed as an H-algebra by restriction and is written

ResG
H(A) . For an exomorphism F : A → B , its restriction to H is an exomorphism of H-algebras

ResG
H(F) : ResG

H(A) → ResG
H(B) . As it is obtained by composition with all inner automorphisms Inn(b)

with b ∈ (BH)∗ , the set ResG
H(F) is in general larger than F . But for interior algebras, one of the key

results asserts that the restriction of an exomorphism determines uniquely this exomorphism.

Proposition 1.1 (Puig [P1, 3.7], [P3, 2.12.2]). Let F : A→ B and F ′ : A→ B be two exomorphisms of

interior G algebras. If ResG
H(F) = ResG

H(F ′) for some subgroup H of G , then F = F ′ .

Recall that a point of an O-algebra A is an A∗-conjugacy class of primitive idempotents of A . The

set P(A) of points of A is in bijection with the set of maximal ideals of A (see the discussion of pointed

groups below). An important feature of exomorphisms is the following cancellation result. The proof of the

second statement uses Proposition 1.1 above to reduce to the case of the trivial group (i.e. O-algebras).

Proposition 1.2. Let G : A→ B be an embedding of G-algebras.

(a) (Puig [P3, 2.3.3]) Let F : C → A and F ′ : C → A be two exomorphisms of G-algebras such that

GF = GF ′ . Then F = F ′ .
(b) (Puig [P1, 2.7], [P3, 2.3.4]) Assume that A and B are interior G-algebras and that G is an embedding

of interior G-algebras. Assume also that A and B have the same number of points. Let F : B → C

and F ′ : B → C be two exomorphisms of interior G-algebras such that FG = F ′G . Then F = F ′ .
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Another feature of interior algebras is induction. If H is a subgroup of G and B is an interior

H-algebra, the induced algebra IndG
H(B) is the O-module OG⊗OHB⊗OHOG , endowed with the O-bilinear

extension of the product

(x⊗ b⊗ y)(x′ ⊗ b′ ⊗ y′) =
{
x⊗ b·yx′·b′ ⊗ y′ if yx′ ∈ H,
0 otherwise.

Then IndG
H(B) is an O-algebra isomorphic to a matrix algebra M|G:H|(B) , with identity element∑

x∈[G/H] x⊗ 1B ⊗ x−1 . An interior G-algebra structure on IndG
H(B) is defined by mapping g ∈ G to∑

x∈[G/H] gx⊗1B⊗x−1 . Then the left multiplication by g·1 coincides with the left action of g coming from

the natural OG-module structure on IndG
H(B) , and similarly on the right. There is a canonical homomor-

phism dG
H : B → ResG

H IndG
H(B) defined by dG

H(b) = 1⊗ b⊗1 . The exomorphism DG
H : B → ResG

H IndG
H(B)

containing dG
H is an embedding, called the canonical embedding of B into the induced algebra.

A pointed group on a G-algebra A is a pair (H,α) , always written Hα , where H is a subgroup of G

and α is a point of AH (i.e. α is an (AH)∗-conjugacy class of primitive idempotents of AH ). The set

of all points of AH is denoted P(AH) . It is in bijection with the set Max(AH) of all maximal ideals

of AH , thanks to the theorem on lifting idempotents (which holds since O is complete by assumption).

Given a point α , the corresponding maximal ideal mα is characterized by the property α 6⊆ mα . We write

S(α) = AH/mα for the corresponding simple k-algebra and πα : AH → S(α) for the canonical surjection.

Thus πα(α) 6= {0} but πβ(α) = {0} for every β ∈ P(AH) with β 6= α . The simple algebra S(α) is

called the multiplicity algebra of α . Since k is algebraically closed, S(α) ∼= Endk(V (α)) for some finite-

dimensional k-vector space V (α) . The dimension of V (α) is the multiplicity of α , that is, the number

of occurences of primitive idempotents of α in a decomposition of 1A as an orthogonal sum of primitive

idempotents of AH . The G-algebra A is called primitive if 1A is a primitive idempotent of AG , so that

α = {1A} is the unique point of AG (with multiplicity one) and AG/J(AG) ∼= k , where J(AG) is the

Jacobson radical of AG . (This notion of primitivity has nothing to do with the ring-theoretic notion of

primitive ring.)

The group G acts by conjugation on the set of pointed groups on A . The stabilizer of Hα is written

NG(Hα) . It is a subgroup of the normalizer NG(H) and it contains H . We write NG(Hα) = NG(Hα)/H .

If A is an interior G-algebra, then NG(Hα) contains HCG(H) , because the centralizer CG(H) maps into

(AH)∗ .

There is an essentially unique embedding associated with a pointed group Hα on a G-algebra A . It

is defined to be an embedding F : B → ResG
H(A) , where B is an H-algebra, such that F(1B) = α , that

is, f(1B) ∈ α for some (or for every) f ∈ F . Such an embedding associated with Hα will always be

written Fα : Aα → ResG
H(A) . As a typical choice, one can take Aα = iAi where i ∈ α and consider the

embedding Fα containing the inclusion iAi→ A . The H-algebra Aα is necessarily primitive and we call

it the localization of A with respect to α (but we emphasize that this has nothing to do with the notion of

local point to be defined below). In fact if A is commutative, AH
α is the localization of AH with respect

to the maximal ideal mα . The essential uniqueness of an embedding associated with Hα is provided by

the following result (which is only stated by Puig for interior G-algebras, but the proof carries over without

change to arbitrary G-algebras).
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Proposition 1.3 (Puig [P3, 2.13.1]). Let Hα be a pointed group on a G-algebra A and let Fα : Aα →

ResG
H(A) and F ′α : A′α → ResG

H(A) be two embeddings associated with Hα . Then there exists a unique

exo-isomorphism H : Aα → A′α such that F ′αH = Fα .

Notice that the notions of localization Aα and of embedding associated with Hα are distinct. The

second one consists of a pair (Aα,Fα) where Aα is a localization and Fα is an embedding. In particular

one gets a new embedding associated with Hα by composing Fα with an outer automorphism of Aα .

Two distinct points may have isomorphic localizations (but this does not occur when A = EndO(M)

for an OG-lattice M ). We shall say that Hα and Hα′ are isomorphic if the primitive interior H-algebras

Aα and Aα′ are isomorphic. We also say that the points α and α′ are isomorphic. In order to have Gα

and Gα′ isomorphic (assuming H = G for simplicity), an easy sufficient condition is the existence of an

outer automorphism of interior G-algebras F : A ∼→ A such that F(α) = α′ . Indeed if Fα : Aα → A

and Fα′ : Aα′ → A denote embeddings associated with α and α′ respectively, the composite FFα :

Aα → A is an embedding mapping {1Aα
} to α′ , hence is an embedding associated with the point α′ .

By Proposition 1.3, there exists a unique exo-isomorphism H : Aα → Aα′ such that FFα = Fα′H . In

particular Gα and Gα′ are isomorphic.

We write ≥ (and ≤ ) for the order relation between pointed groups. By definition Hα ≥ Kβ if and

only if H ≥ K and for some i ∈ α , there exists j ∈ β appearing in a primitive decomposition of the

idempotent rH
K(i) (and then this holds for every i ∈ α ). The latter condition can be written πβ r

H
K(i) 6= 0

for some (or for every) i ∈ α , and this in turn is equivalent to the condition (rH
K)−1(mβ) ⊆ mα . An

important characterization of the order relation uses associated embeddings. Again Puig only proves the

result for interior G-algebras, but a careful analysis of the proof shows that it holds for arbitrary G-algebras.

Proposition 1.4 (Puig [P1, p.277], [P3, 2.13.2]). Let Hα and Kβ be two pointed groups on a G-algebra A.

Let Fα : Aα → ResG
H(A) and Fβ : Aβ → ResG

K(A) be associated embeddings. Assume that H ≥ K . Then

Hα ≥ Kβ if and only if there exists an exomorphism Fα
β : Aβ → ResH

K(Aα) such that ResH
K(Fα)Fα

β = Fβ .

If this condition is satisfied, the exomorphism Fα
β is an embedding and is unique.

A pointed group Pγ on a G-algebra A is called local if for every proper subgroup Q < P , we

have γ 6⊆ tPQ(AQ) (where tPQ denotes the relative trace map). This forces P to be a p-subgroup of G .

Given a pointed group Hα , a defect pointed group of Hα , or simply a defect of Hα , is a minimal pointed

group Pγ such that H ≥ P and α ⊆ tHP (AP γAP ) . Then Pγ is necessarily local, and in fact it can also be

characterized as a maximal pointed group such that Pγ is local and Hα ≥ Pγ . The subgroup P is called

a defect group of Hα and it is a p-subgroup of G . All defect pointed groups of Hα are conjugate under

the action of H (with stabilizer NH(Pγ) ). In particular all defect groups of Hα are conjugate under H .

When the context is clear we sometimes say that Pγ is a defect of α rather than a defect of Hα . For

interior algebras, there is also the following characterization of defect pointed groups in terms of associated

embeddings and induced algebras.
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Proposition 1.5 (Puig [P1, 3.4], [P3, 2.14.4]). Let Hα and Pγ be pointed groups on an interior

G-algebra A . Assume that Hα ≥ Pγ and let Fα
γ : Aγ → ResH

P (Aα) be a corresponding embedding (Propo-

sition 1.4). Let also DH
P : Aγ → ResH

P IndH
P (Aγ) be the canonical embedding. Then Pγ is a defect of Hα if

and only if Pγ is local and there exists an embedding F : Aα → IndH
P (Aγ) such that ResH

P (F)Fα
γ = DH

P .

If this condition is satisfied, the embedding F is unique.

Proposition 1.5 shows in particular that one can always find Aα embedded into IndH
P (Aγ) . It turns

out that such an embedding is not unique (unless the extra condition of 1.5 is satisfied) and the first purpose
of the present paper is in fact to describe all possible embeddings of a given Aα (Section 4). If Pγ is a
defect of Hα , the localization Aγ is called a source algebra of Hα , or also a source algebra of the primitive
algebra Aα . In fact it is often convenient to view the invariants associated with a pointed group Hα as
invariants of the primitive algebra Aα (provided these invariants only depend on the isomorphism class of α
rather than α itself). In particular if A is a primitive G-algebra, its defect pointed group and its source
algebra are by definition those of the pointed group Gα , where α = {1A} is the unique point of AG . The
source algebra Aγ is a primitive P -algebra for a p-group P and the unique point {1Aγ

} of AP
γ is local.

More generally a P -algebra B will be called a source algebra if it is primitive and if the unique point {1B}
of BP is local (so that P is a p-group). In fact B is a source algebra of itself.

An important property of embeddings is that they induce maps between pointed groups, preserving the
relations between them. We include the full statement, whose proof is straightforward.

Proposition 1.6. Let F : A→ B be an embedding of G-algebras.

(a) For every pointed group Hα on A , the image ResG
H(F)(α) is a point of BH . Thus F induces an

injective map from the set of pointed groups on A to the set of pointed groups on B .

(b) Let Hα , Pγ be two pointed groups on A and let Hα′ , Pγ′ be their images in B under the map

defined in (a). Then

(i) NG(Pγ) = NG(Pγ′) ,

(ii) Hα ≥ Pγ if and only if Hα′ ≥ Pγ′ ,

(iii) Pγ is local if and only if Pγ′ is local,

(iv) Pγ is a defect of Hα if and only if Pγ′ is a defect of Hα′ .

We shall also need the following property of induction of a source algebra.

Proposition 1.7 (Puig [P1, 3.9], [P3, 2.14.3]). Let P be a p-subgroup of G , let B be an interior

P -algebra which is a source algebra and let γ be the point of IndG
P (B)P containing 1⊗ 1B ⊗ 1 . Then Pγ

is a local pointed group on IndG
P (B) . If moreover Pδ is a local pointed group on IndG

P (B) , then Pδ is

NG(P )-conjugate to Pγ .

We consider now a local pointed group Pγ and its multiplicity algebra S(γ) = AP /mγ . By definition
the group N = NG(Pγ) is the stabilizer of mγ and therefore N acts by conjugation on S(γ) . Since P

acts trivially on AP , we obtain a structure of N -algebra on S(γ) , where N = N/P . Thus we can consider
pointed groups on S(γ) , in particular pointed groups N δ corresponding to the full group N . In fact we
are particularly interested in the pointed groups N δ which are projective. Here a pointed group is called
projective if it has the trivial subgroup as a defect group. This means that δ is contained in the image of the
trace map from the trivial subgroup S(γ)N

1 := tN1 (S(γ)) . Since the canonical surjection πγ : AP → S(γ)
is a homomorphism of N -algebras, the composite πγ r

G
P : AG → S(γ) has an image contained in S(γ)N .

With this notation, we can now describe the Puig correspondence which is an essential tool in the theory.

– 7 –



Proposition 1.8 (Puig correspondence [P1, 1.3], [P3, 2.10.3]). Let Pγ be a local pointed group on a

G-algebra A , let S(γ) be the multiplicity algebra of γ , let πγ : AP → S(γ) be the canonical map and let

N = NG(Pγ)/P . The map

AG πγ rG
P−→ S(γ)N

induces a bijection

{α ∈ P(AG) | Pγ is a defect of Gα }
∼−→ { δ ∈ P(S(γ)N ) | N δ is projective } .

If α corresponds to δ under this bijection, the corresponding maximal ideals mα and mδ satisfy

mα = (πγ r
G
P )−1(mδ) .

Moreover πγ r
G
P induces an isomorphism between the multiplicity algebras

S(α) = AG/mα
∼−→ S(δ) = S(γ)N/mδ .

If a point α ∈ P(AG) corresponds to a projective point δ ∈ P(S(γ)N ) under the Puig correspondence,
we shall say that δ is the Puig correspondent of α .

One can say more about the multiplicity algebra S(γ) in the special case when A is a primitive
G-algebra with defect Pγ .

Proposition 1.9 (Puig [P1, 1.3]). Let A be a primitive G-algebra with defect Pγ , let S(γ) be the

multiplicity algebra of γ and let N = NG(Pγ)/P . Then S(γ) is a primitive N -algebra and the unique

point δ = {1S(γ)} of S(γ)N is projective, i.e. S(γ)N
1 = S(γ)N . Moreover the map πγ r

G
P : AG → S(γ)N

is surjective. The Puig correspondence reduces in this case to a bijection between the two singletons {Gα}
and {N δ} (where α = {1A} denotes the unique point of AG ).

In the situation of Proposition 1.8, it is not difficult to see that the homomorphism πγ r
G
P : AG → S(γ)N

which induces the Puig correspondence behaves well with respect to localization (using Proposition 1.11
below). More precisely if δ ∈ P(S(γ)N ) is the Puig correspondent of α ∈ P(AG) , then there is an induced
map AG

α → S(γ)N
δ which is exactly the surjective map of Proposition 1.9. In Section 6, we shall come back

to this point in an important special case.
We shall also use the following basic property of the relative trace map (which is in fact the cornerstone

for the proof of both Propositions 1.8 and 1.9).

Proposition 1.10 (Puig [P1, 1.3]). Let A be a G-algebra, let Pγ be a local pointed group on A , let

πγ : AP → S(γ) be the canonical map onto the multiplicity algebra of γ and let N = NG(Pγ)/P . Then

for any a ∈ AP γAP , we have πγ r
G
P t

G
P (a) = tN1 πγ(a) .

Finally we mention how embeddings induce embeddings between multiplicity algebras. Let F : A→ B

be an embedding. The identification of pointed groups on A with pointed groups on B (Proposition 1.6)
does not preserve multiplicities. Let Pγ be a pointed group on A and let Pγ′ be its image. Both multiplicity
algebras S(γ) and S(γ′) are N -algebras where N = NG(Pγ)/P = NG(Pγ′)/P . For any f ∈ F the
composite

AP f−→ BP πγ′−→ S(γ′)

induces an injective homomorphism of N -algebras f : S(γ)→ S(γ′) , because by definition of an embedding
Ker(πγ) = f−1(Ker(πγ′)) . Thus we have πγ′ f = f πγ . Clearly if f, f ′ ∈ F , then f and f

′
belong to the

same exomorphism, which we write
F : S(γ)→ S(γ′) .

As F is an embedding, the image of f is the whole of f(1)S(γ′) f(1) . Therefore F is an embedding.
Summarizing this analysis, we have the following result.
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Proposition 1.11. Let F : A → B be an embedding. Then for every pointed group Pγ on A with

image Pγ′ , there is an induced embedding F : S(γ)→ S(γ′) between the multiplicity algebras of γ and γ′ .

2. Multiplicity modules

In this section we recall how multiplicity modules are attached to multiplicity algebras and how these modules
behave under embeddings. We first start with a general setting. Let X be a finite group and let S be an
X-algebra over the field k which is simple as a k-algebra. Since k is algebraically closed, S ∼= Endk(V )
for some finite dimensional k-vector space V , and therefore S∗ ∼= GL(V ) and S∗/k∗ ∼= PGL(V ) . The
Skolem-Noether theorem implies that for each x ∈ X , the action of x on S is an inner automorphism
Inn(s) for some s ∈ S∗ . Since k∗ is the centre of S∗ , the element s is only defined up to a scalar and
it follows that we obtain a group homomorphism ρ : X → S∗/k∗ mapping x to the class of s . We wish
to lift ρ to a group homomorphism ρ̂ : X̂ → S∗ ∼= GL(V ) (for a suitable group X̂ ). This will define a
representation of the group X̂ .

Let X̂ be the central extension of the group X by the central subgroup k∗ defined by the following
pull-back diagram.

1 −→ k∗
φ−→ X̂

π−→ X −→ 1yid

yρ̂

yρ

1 −→ k∗ −→ S∗ −→ S∗/k∗ −→ 1

If X̂ ′ is another pull-back in the above situation, and if the corresponding maps are ρ̂′ : X̂ ′ → S∗ and
π′ : X̂ ′ → X , then there is a unique isomorphism h : X̂ ′ → X̂ making the obvious diagrams commute, that
is, πh = π′ and ρ̂h = ρ̂′ . Thus the isomorphism type of the pair (X̂, ρ̂) is unique. But we emphasize that
the group X̂ is constructed at the same time as its representation ρ̂ . It is convenient in practice to choose
X̂ to be the subgroup of S∗ ×X consisting of pairs (s, x) such that s and x map to the same element
of S∗/k∗ .

We define the twisted group algebra k]X̂ to be the quotient of the group algebra kX̂ of the infinite
group X̂ by the ideal I generated by the elements φ(λ)− λ·1 , where λ ∈ k∗ . Thus the central subgroup
φ(k∗) ∼= k∗ is identified with the scalars k∗ of the group algebra. Multiplying the generators of I by
arbitrary elements x ∈ X̂ , we see that I is the k-linear span of the elements φ(λ)x− λ·x , where λ ∈ k∗

and x ∈ X̂ . Thus if σ : X → X̂ is a map such that σπ = idX , the images of the elements σ(x) , for
x ∈ X , form a basis of the algebra k]X̂ satisfying σ(xy) = λσ(x)σ(y) for some λ ∈ k∗ .

The (infinite) group X̂ has an ordinary representation ρ̂ on the vector space V , but this representation
is not arbitrary since it maps the central subgroup k∗ to the centre k∗ of S∗ by the identity map. Taking
only into account this special type of representation comes down to the same thing as considering modules
over the twisted group algebra k]X̂ , just in the same way as a representation of X over k is the same
thing as a kX-module. More precisely ρ̂ extends to an algebra homomorphism ρ̂ : kX̂ → S and since
ρ̂(φ(λ)) = λ·1 , it is clear that the ideal I is in the kernel of ρ̂ , so that we obtain an algebra homomorphism
ρ : k]X̂ → S . Since S ∼= Endk(V ) , this provides V with a structure of k]X̂-module.

We need to modify slightly the previous setting by introducing a normal subgroup Y of X . Suppose
that on restriction to Y , the X-algebra structure on S comes from an interior Y -algebra structure, so
that V is in fact a kY -module. In other words a homomorphism ρ̂

Y
: Y → S∗ is given, which lifts the
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restriction of ρ to Y . By definition of a pull-back, there is a group homomorphism Y → X̂ which allows

to identify Y with a normal subgroup of X̂ . Then the homomorphism ρ̂ : X̂ → S∗ extends the map ρ̂
Y

and this gives a k]X̂-module structure on V whose restriction to Y is the given kY -module structure.

Now we apply the constructions above to the multiplicity algebra S(γ) ∼= Endk(V (γ)) of a pointed

group Pγ on an interior G-algebra A . In order to be able to pass to the quotient by P , we also assume

that P is a p-group. Here the group X is N = N/P where N = NG(Pγ) , and clearly N acts on S(γ)

(even if P is not a p-group). We choose for Y the normal subgroup CG(P ) = PCG(P )/P . To prove that

we can indeed make this choice, we must show that S(γ) has a structure of interior CG(P )-algebra. Since

CG(P )·1A ⊆ AP , it is clear that there is an interior CG(P )-structure. Now CG(P ) = CG(P )/Z(P ) where

Z(P ) is the centre of P , and Z(P ) maps to the centre k∗ of S(γ)∗ because Z(P ) ⊆ P acts trivially

on S(γ) . But since Z(P ) is a p-group and since there is no non-trivial p-th root of unity in k∗ , the

image of Z(P ) is trivial. Thus we obtain a map CG(P ) → S(γ)∗ as required. The N -algebra structure

on S(γ) ∼= Endk(V (γ)) is interior on restriction to CG(P ) . Therefore V (γ) is endowed with a structure of

module over a twisted group algebra k]N̂ , and the restriciton to CG(P ) is the canonical kCG(P )-module

structure on V (γ) . With this structure, the module V (γ) is called the multiplicity module of the pointed

group Pγ .

We note that CG(P ) is not the largest possible normal subgroup of N for which S(γ) has an interior

structure. Indeed let P ·1A be the image of P in A∗ , let CG(P ·1A) be its centralizer in G (which by

definition maps to AP ) and let CN (P ·1A) = CG(P ·1A) ∩N . Then PCN (P ·1A)/P is a normal subgroup

of N for which S(γ) has an interior structure. Clearly CG(P ) ≤ CN (P ·1A) and if the map P → A∗

is not injective, CN (P ·1A) may be larger than CG(P ) . Unfortunately CN (P ·1A) is not invariant under

embeddings. In order to avoid such complications and to simplify the approach, we only work with CG(P ) .

The only cost is that we loose a small portion of canonical interior structure on S(γ) , coming from the

discrepancy between CG(P ) and CN (P ·1A) .

We define

(2.1) EG(Pγ) = N/CG(P ) = NG(Pγ)/PCG(P ) .

Since CG(P ) is identified with a normal subgroup of N̂ , we can also define ÊG(Pγ) = N̂/CG(P ) and

consider the central extension

(2.2) 1 −→ k∗ −→ ÊG(Pγ) −→ EG(Pγ) −→ 1 .

Then the central extension N̂ is in fact obtained from (2.2) by restriction (i.e. pull-back) along the map

N → EG(Pγ) .

We now recall a result of Puig concerning the behaviour of multiplicity modules with respect to embed-

dings.
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Proposition 2.3 (Puig [P3, 6.18]). Let F : A→ A′ be an embedding of G-algebras, let Pγ be a pointed

group on A , let Pγ′ be its image and let N = NG(Pγ) = NG(Pγ′) . Let N̂ and N̂
′

be the central

extensions associated with the N -algebras S(γ) ∼= Endk(V (γ)) and S(γ′) ∼= Endk(V (γ′)) respectively.

Then the embedding F induces an isomorphism of central extensions F∗ : N̂
′
→ N̂ , inducing the identity

on both k∗ and N .

For completeness we recall the definition of the isomorphism F∗ , which is very natural. Choose f ∈ F ,

let i = f(1A) and let (s′, x) ∈ N̂
′
, where s′ ∈ S(γ′)∗ and x ∈ N . Lifting arbitrarily s′ to a′ ∈ (A′)P , the

element ia′i is the image under the embedding f of a unique element a ∈ AP . Then F∗(s′, x) = (s, x) ,
where s = πγ(a) ∈ S(γ)∗ . Puig proved in [P3, 6.15] that the definition is independent of the choices.

Using the isomorphism F∗ : N̂
′
→ N̂ of the proposition, V (γ) has a structure of k]N̂

′
-module (defined

by ρ̂F∗ where ρ̂ : N̂ → GL(V (γ)) is the structural map). Endowed with this structure, V (γ) is isomorphic
to a direct summand of V (γ′) , via the embedding

F : S(γ) ∼= Endk(V (γ)) −→ S(γ′) ∼= Endk(V (γ′))

of Proposition 1.11. Explicitly V (γ) is isomorphic to the direct summand jV (γ′) , where j = f(1S(γ))

and f ∈ F . Note that the isomorphism F∗ : N̂
′
→ N̂ depends on the embedding F : A → A′ (or more

precisely it depends on the embedding F : S(γ) → S(γ′) ). Thus a different embedding yields a different

isomorphism, hence a different structure of k]N̂
′
-module on V (γ) . This remark will be crucial in the sequel.

3. Description of the setting

In this section, we describe the various mathematical objects we are going to work with, we fix our notation,
and finally we give an overview of the successive steps of the proof of the main result on the parametrization.

Let A be a primitive interior G-algebra. We know that a defect Pγ of A is unique up to G-conjugation
and consequently that a source algebra B = Aγ of A is also unique up to G-conjugation. Thus the defect
group P and the source algebra B are, up to G-conjugation, two well understood invariants. The first one
is a p-group and the second one is an interior P -algebra which is a source algebra (i.e. B is primitive and
P{1B} is local). Thus we fix P and B and we want to distinguish up to isomorphism the possible primitive
interior G-algebras with defect group P and source algebra B .

To say that B is a source algebra of A means by definition that there exists a point γ of AP such that
Aγ = B . In that case there is an embedding Fγ : B → ResG

P (A) associated with γ , but Fγ is not unique
since it can be composed with any outer automorphism of B . Moreover γ is not uniquely determined by
P and B . Indeed let NG(P,B) be the stabilizer of (P,B) under the action of G , that is, NG(P,B)
is the set of all x ∈ NG(P ) such that B and xB are isomorphic interior P -algebras. Here xB denotes
the conjugate interior P -algebra (defined in the obvious way). Then NG(Pγ) is a subgroup of NG(P,B)
because if i ∈ γ and g ∈ NG(Pγ) , then there exists a ∈ (AP )∗ such that gi = aia−1 and conjugation by a

induces an isomorphism of interior P -algebras between iAi ∼= B and giA gi ∼= gB . But NG(P,B) may be
larger than NG(Pγ) and it follows that for g ∈ NG(P,B) the point gγ may be different from γ , whereas
the localization A gγ is isomorphic to B .

Let A be a primitive interior G-algebra with defect Pγ and source algebra B = Aγ and let Fγ : B →
ResG

P (A) be an embedding associated with γ . Note that if α = {1A} denotes the unique point of AG , then
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Aα = A and by Proposition 1.4 the relation Gα ≥ Pγ corresponds to an embedding Fα
γ : B → ResG

P (A) ,

which in this case coincides with Fγ . Now by Proposition 1.5, there exists a unique embedding F : A →
IndG

P (B) such that

(3.1) ResG
P (F)Fα

γ = DG
P

where DG
P : B → ResG

P IndG
P (B) is the canonical embedding. Since A is primitive, F is an embedding

associated with a point of IndG
P (B)G which we still denote α (namely α = F(1A) ). Thus A = IndG

P (B)α

and F = Fα .

We use the embedding F to identify pointed groups on A with pointed groups on IndG
P (B) , using

Proposition 1.6. If one considers the image of 1B under both sides of Equation 3.1, we see that the image of

the point γ under the embedding F is the point DG
P ({1B}) of IndG

P (B)P which we also denote γ . Thus

γ contains 1⊗1B⊗1 and DG
P is an embedding associated with γ . It follows that on the interior G-algebra

IndG
P (B) , we have two pointed groups Gα and Pγ , with associated embeddings F and DG

P respectively,

and the relation Gα ≥ Pγ corresponds to the embedding Fα
γ , thanks to (3.1) and Proposition 1.4. Note

that the identification above is compatible with the group NG(Pγ) , which is the same when computed with

respect to A or to IndG
P (B) by Proposition 1.6.

By Proposition 1.5, F is the unique embedding such that (3.1) holds. However F is not necessarily

unique without this condition. If F ′ : A → IndG
P (B) is another embedding, then F ′ is an embedding

associated with a point α′ of IndG
P (B)G , namely α′ = F ′(1A) , and thus A ∼= IndG

P (B)α′ . It follows that

for the two points α and α′ of IndG
P (B)G , the localizations IndG

P (B)α and IndG
P (B)α′ are isomorphic

interior G-algebras. In other words Gα and Gα′ are isomorphic. Therefore we do not only have to find all

pointed groups Gα on IndG
P (B) with defect Pγ , but we also have to decide when two such pointed groups

are isomorphic.

This analysis shows the importance of the following setting, which will be used as a fixed notation for

the largest part of this paper.

Notation 3.2. Given a finite group G , let P be a p-subgroup of G , let B be an interior P -algebra

which is a source algebra, and let C = IndG
P (B) .

Let γ be the point of CP containing i = 1 ⊗ 1B ⊗ 1 . Let DG
P : B → ResG

P (C) be the canonical

embedding, containing the map dG
P : B → ResG

P (C) defined by dG
P (b) = 1⊗ b⊗ 1 .

Let N = NG(Pγ) and N = N/P . Let S(γ) be the multiplicity algebra of γ (which is an N -algebra)

and let πγ : CP → S(γ) be the canonical surjective ring homomorphism. Write S(γ) = Endk(V (γ)) for

some finite dimensional k-vector space V (γ) . The action of N on S(γ) defines a central extension N̂
C

,

and V (γ) is endowed with a structure of k]N̂
C

-module.

Let A(G,P,B) be the set of isomorphism classes of primitive interior G-algebras with defect group P

and source algebra B . Let P(CG)Pγ
be the set of points of CG with defect Pγ .

The following statement summarizes our analysis.
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Proposition 3.3. With the notation 3.2, write ∼ for the isomorphism relation between the points

in P(CG)Pγ
. Then the set A(G,P,B) is in bijection with the set of isomorphism classes P(CG)Pγ

/
∼ .

We can now give an outline of the different steps leading to the parametrization. In Section 4 we use

the (left) action of the group Out(C) on P(CG)Pγ
and we show that the set of orbits Out(C)

∖
P(CG)Pγ

coincides with P(CG)Pγ

/
∼ (Corollary 4.4).

The Puig correspondence sets up a bijection between P(CG)Pγ
and P(S(γ)N ) , because every point

of S(γ)N is projective (Corollary 6.2). Moreover Out(C) also acts on P(S(γ)N ) , via a homomorphism

Out(C)→ Out(S(γ)N ) (Proposition 7.3). We prove that the Puig correspondence commutes with the action

of Out(C) , so that A(G,P,B) is now in bijection with Out(C)
∖
P(S(γ)N ) (Corollary 8.2).

In this situation, a result of Puig asserts that the k]N̂
C

-module V (γ) is free of rank one (Propo-

sition 6.1), so that a point of S(γ)N corresponds to an isomorphism class of indecomposable projec-

tive k]N̂
C

-modules. Again Out(C) acts on these isomorphism classes of modules, via a homomorphism

Out(C)→ Outk∗(N̂
C

) (Proposition 7.4), and now A(G,P,B) is in bijection with the set of orbits (Corol-

lary 8.4).

We need to describe now these orbits directly in terms of B , without reference to G . First Out(C)

is isomorphic to the group Outskew(B) of skew outer automorphisms of B (Proposition 5.1) and this only

depends on B and NG(P,B) . By a result of Puig (Proposition 9.5), N̂
C

is isomorphic to a central extension

(N̂
B

)
◦

defined in terms of B alone. We prove that this isomorphism commutes with the “outer action”

of Outskew(B) , for some naturally defined group homomorphism Outskew(B) → (N̂
B

)
◦

(Proposition 9.7).

As a result A(G,P,B) is in bijection with the set of Outskew(B)-orbits of indecomposable projective modules

over the twisted group algebra k](N̂
B

)
◦

.

Finally the orbit of modules corresponding to some A ∈ A(G,P,B) can be described directly from B

and its various embeddings into ResG
P (A) , without going through the process involving C (Proposition 10.1).

This defines the third invariant associated with A . The main theorem giving the parametrization follows

easily from this (Section 11).

4. Isomorphic points

In this section we show that two points in P(CG)Pγ are isomorphic if and only if they are in the same orbit

of Out(C) .

Recall from Section 1 that if F is an outer automorphism of C such that F(α) = α′ , then α and α′

are isomorphic. The fact that the converse holds for points of CG with defect Pγ is probably one of the

most crucial steps in this paper.

Proposition 4.1. With the notation 3.2, let Gα be a pointed group on C with defect Pγ . A point

α′ ∈ P(CG) is isomorphic to α if and only if there exists an outer automorphism F of C such that

F(α) = α′ . Moreover if this condition is satisfied, then Pγ is also a defect of Gα′ .
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For the proof, we need the following basic construction of automorphisms of C , which works for an
arbitrary subgroup P and an arbitrary interior P -algebra B . First recall that for any exomorphism H :
B → B′ of interior P -algebras, there is a unique exomorphism IndG

P (H) : IndG
P (B) → IndG

P (B′) such that
ResG

P IndG
P (H)DG

P (B) = DG
P (B′)H , where DG

P (B) : B → ResG
P IndG

P (B) and DG
P (B′) : B′ → ResG

P IndG
P (B′)

denote the canonical embeddings. For h ∈ H , the induced homomorphism IndG
P (h) is defined by

IndG
P (h)(x⊗ b⊗ y) = x⊗ h(b)⊗ y for all b ∈ B and x, y ∈ G .

Thus in particular for any outer automorphism H of B , we obtain an outer automorphism IndG
P (H)

of C , but there are in general more outer automorphisms of C . Note that if h = Inn(b) is inner, then
IndG

P (h) = Inn(c) is also inner where c =
∑

x∈[G/P ] x ⊗ b ⊗ x−1 . Thus induction is well defined on
exomorphisms.

Extending this construction, we want to define induction of an exo-isomorphism H between B and
some NG(P )-conjugate of B . But as it is more convenient to view H as an outer automorphism of B

which twists the interior P -algebra structure, we make the following definitions. A skew automorphism of
the interior P -algebra B is an automorphism of O-algebras h : B → B such that there exists g ∈ NG(P )
with the following property:

h(u·1B) = gu·1B for all u ∈ P .

We shall say that h is a g-skew automorphism of B . It is elementary to translate the condition of the defini-
tion into the existence of an (ordinary) isomorphism between B and the conjugate interior P -algebra g−1

B

and therefore g must belong to the group NG(P,B) . In other words NG(P,B) is the group of all elements
x ∈ NG(P ) such that there exists an x-skew automorphism of B . Note that in the definition of a g-skew
automorphism, the element g is only defined up to an element which centralizes the image of P in B∗ ,
that is, up to CG(P ·1B)∩NG(P ) . Thus a g-skew automorphism is also a zg-skew automorphism for every
z ∈ CG(P ·1B) ∩ NG(P ) . Composing a skew automorphism with all inner automorphisms Inn(b) where
b ∈ (BP )∗ yields an equivalence class of skew automorphisms called a skew exo-automorphism of B . We
reserve the name “skew outer automorphism” for another equivalence class of skew automorphisms (see
Section 5).

Now we define induction which produces an ordinary outer automorphism of C . Let H be a skew
exo-automorphism of B and let h ∈ H . Then h is a g-skew automorphism for some g ∈ NG(P,B) .
Consider the automorphism ĥ of C defined by

ĥ(x⊗ b⊗ y) = xg−1 ⊗ h(b)⊗ gy for all b ∈ B and x, y ∈ G .

Using the fact that g normalizes P , it is elementary to check that ĥ(xu ⊗ b ⊗ vy) = ĥ(x ⊗ ubv ⊗ y)
for u, v ∈ P . Thus ĥ is a well defined map. Moreover ĥ is an automorphism of algebras (with inverse
x⊗ b⊗ y 7→ xg ⊗ h−1(b)⊗ g−1y ). Finally for every z ∈ G we have ĥ(z·(x⊗ b⊗ y)) = z·ĥ(x⊗ b⊗ y) , and
similarly on the right. Thus ĥ is an automorphism of interior G-algebras.

However ĥ is not uniquely defined because it depends on the choice of g . If g is replaced by zg where
z ∈ CG(P ·1B)∩NG(P ) , we obtain an automorphism ĥ′ of C defined by ĥ′(x⊗b⊗y) = xg−1z−1⊗h(b)⊗zgy .
Then ĥ′ is the composition of ĥ with the inner automorphism Inn(c) where c =

∑
x∈[G/P ] xz

−1⊗1B⊗x−1

(with inverse c−1 =
∑

x∈[G/P ] x⊗1B⊗zx−1 ). We shall check below that this expression of c is independent
of the choice of the coset representatives [G/P ] and that c ∈ CG . Thus ĥ and ĥ′ belong to the same
exomorphism which we write IndG

P (H) . Since we already know that the induction of an inner automorphism
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is an inner automorphism, it follows that we have associated to the skew exo-automorphism H of B an
outer automorphism IndG

P (H) of C .
We now prove the claim above concerning c . It suffices to prove that z−1 ⊗ 1B ⊗ 1 is fixed under P .

Indeed this implies that c = tGP (z−1 ⊗ 1B ⊗ 1) is fixed under G . For all u ∈ P we have

u·(z−1 ⊗ 1B ⊗ 1) = z−1 zu⊗ 1B ⊗ 1 = z−1 ⊗ zu·1B ⊗ 1 = z−1 ⊗ u·1B ⊗ 1 = (z−1 ⊗ 1B ⊗ 1)·u ,

using the fact that z normalizes P and centralizes P ·1B . This establishes the claim.
Note also that for z ∈ CG(P ·1B) ∩NG(P ) ,

z−1·(1⊗ 1B ⊗ 1)·z = z−1 ⊗ 1B ⊗ z = c·(1⊗ 1B ⊗ 1)·c−1 ∈ γ ,

so that z ∈ NG(Pγ) . Thus CG(P ·1B) ∩NG(P ) ≤ NG(Pγ) = N and therefore

CG(P ·1B) ∩NG(P ) = CN (P ·1B) .

An ordinary outer automorphism H of B has the property ResG
P IndG

P (H)DG
P = DG

P H . Here DG
P :

B → ResG
P (C) denotes the canonical embedding. Moreover IndG

P (H) is the unique exomorphism with
this property. In order to state a similar property in the skew case, we let Cg denote the conjugation
by g viewed as an exomorphism of ResG

P (C) , that is, Cg is obtained by composing Conj(g·1C) with
all inner automorphisms Inn(c) where c ∈ CP . Note that it suffices to compose on the left with inner
automorphisms Inn(c) , because g·c = gc·g and gc ∈ CP again since g normalizes P . Clearly Cg is a
g-skew exo-automorphism of ResG

P (C) .

Lemma 4.2. With the notation above, let H be a g-skew exo-automorphism of B for some g ∈ NG(P,B) .

Then

Cg ResG
P IndG

P (H)DG
P = DG

P H ,

and IndG
P (H) : C → C is the unique exomorphism with this property.

Proof. Let h ∈ H and ĥ ∈ IndG
P (H) with ĥ(x⊗ b⊗ y) = xg−1 ⊗ h(b)⊗ gy . If dG

P ∈ DG
P denotes the map

dG
P (b) = 1⊗ b⊗ 1 , then we have

Conj(g·1C) ĥ dG
P (b) = g·(g−1 ⊗ h(b)⊗ g)·g−1 = 1⊗ h(b)⊗ 1 = dG

P h(b) ,

as required. For the proof of uniqueness, we let F : C → C be an exomorphism such that Cg ResG
P (F)DG

P =
DG

P H . Using the similar property of IndG
P (H) and cancelling Cg (by composition with Cg−1 ), we obtain

ResG
P (F)DG

P = ResG
P IndG

P (H)DG
P , which is a relation between ordinary exomorphisms. By Proposition 1.2

we can cancel DG
P in this equation because the O-algebras B and C have the same number of points

(since C is a matrix algebra over B as an O-algebra). Thus we have ResG
P (F) = ResG

P IndG
P (H) and it

follows that F = IndG
P (H) by Proposition 1.1.

Remark 4.3. The property in Lemma 4.2 depends on the choice of g . If H is also a g′-skew exo-
automorphism of B , then it satisfies the property obtained from (4.2) by replacing g by g′ . But in
general Cg may be different from Cg′ . Indeed if we write g′ = zg with z ∈ CN (P ·1B) , then

Conj(g′·1C) = Conj(z·1C) Conj(g·1C) .

But it may happen that z·1C does not belong to CP , because although z centralizes P ·1B it does
not necessarily centralize P ·1C . This problem does not occur if P is mapped injectively in B∗ because
CG(P ·1B) = CG(P ·1C) = CG(P ) = CN (P ) in that case.
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Proof of Proposition 4.1. As observed earlier one implication is easy. So we assume that α and α′ are
isomorphic and we have to construct an outer automorphism of C mapping α to α′ . Since α and α′

are isomorphic, we can use the same primitive G-algebra A for the localization with respect to α and α′ .
Thus we let Fα : A → C be an embedding associated with Gα and Fα′ : A → C be an embedding
associated with Gα′ . Since B is a primitive P -algebra, the canonical embedding DG

P : B → ResG
P (C) is

an embedding associated with Pγ . By Proposition 1.4 the relation Gα ≥ Pγ corresponds to an embedding
E : B → ResG

P (A) such that ResG
P (Fα) E = DG

P .
Now we prove that the pointed group Gα′ also has defect Pγ . Let δ = E({1B}) , a point of AP .

Thus Pδ is a defect pointed group of the primitive G-algebra A and Pδ is mapped to Pγ under the
embedding Fα (but we do not make the identification of δ and γ ). The image of Pδ under the other
embedding Fα′ is a pointed group Pγ′ which is a defect of Gα′ . But by Proposition 1.7, the only local
points of CP are the NG(P )-conjugates of γ . Thus γ′ = g−1

γ for some g ∈ NG(P ) (the choice of g−1 is
more convenient for the sequel). Conjugating by g , we obtain that Pγ is also a defect of Gα′ .

In particular Gα′ ≥ Pγ and by Proposition 1.4 again there exists a unique embedding E ′ : B → ResG
P (A)

such that ResG
P (Fα′) E ′ = DG

P . Thus we have the following commutative diagram of embeddings.

ResG
P (C) Res G

P (C)
↖ResG

P (Fα) ↗ResG
P (Fα′)

DG
P

x ResG
P (A)

xDG
P

↗E ↖E′
B B

Since ResG
P (Fα′)(δ) = g−1

γ and DG
P ({1B}) = γ , we deduce that E ′({1B}) = gδ (as both sides map to γ

via Fα′ ).
Now we choose e ∈ E and we let i = e(1B) ∈ δ . Since E ′({1B}) = gδ we can choose e′ ∈ E ′ such that

i′ = e′(1B) = gi . Then e , Conj(g·1A) and e′ induce isomorphisms

B
∼−→ iAi

∼−→ i′Ai′
∼←− B ,

and the composite h : B → B is by construction a g-skew automorphism of B . If H denotes the skew
exo-automorphism containing h , then E ′H = Cg E , where Cg is the skew exo-automorphism of ResG

P (A)
containing the conjugation by g·1A . Writing again Cg for the similar skew exo-automorphism of ResG

P (C)
and using Lemma 4.2 for the outer automorphism IndG

P (H) of C constructed above, we have

Cg ResG
P IndG

P (H) ResG
P (Fα) E = Cg ResG

P IndG
P (H)DG

P = DG
P H = ResG

P (Fα′) E ′H

= ResG
P (Fα′) Cg E = Cg ResG

P (Fα′) E ,

and therefore ResG
P IndG

P (H) ResG
P (Fα) E = ResG

P (Fα′) E . Now by Proposition 1.2 we can cancel E in
this equation, because the O-algebras B and A have the same number of points. Indeed since there are
embeddings of B in ResG

P (A) and of A in C , we have |P(B)| ≤ |P(A)| ≤ |P(C)| , and since C is a
matrix algebra over B (as an O-algebra), we also have |P(B)| = |P(C)| . Thus we have proved that
ResG

P IndG
P (H) ResG

P (Fα) = ResG
P (Fα′) and it follows that IndG

P (H)Fα = Fα′ by Proposition 1.1. Finally

IndG
P (H)(α) = IndG

P (H)Fα({1A}) = Fα′({1A}) = α′ .

Thus the outer automorphism IndG
P (H) maps α to α′ , as required.

Combining Proposition 4.1 with Proposition 3.3, we obtain the following result.
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Corollary 4.4. With the notation 3.2, the set A(G,P,B) is in bijection with the set of orbits Out(C)
∖
P(CG)Pγ .

5. Automorphisms of source algebras

In the previous section we have seen the importance of the group of outer automorphisms Out(C) . Con-

tinuing with our notation 3.2, we now analyze in detail the structure of this group and show that it is an

extension, with a normal subgroup Out(B) and a quotient group NG(P,B)/NG(Pγ) . Thus in particular it

only depends on B and NG(P,B) .

Recall from Section 4 that a skew exo-automorphism H of B is g-skew for some g ∈ NG(P,B) and

that g is defined up to an element of CG(P ·1B) ∩ NG(P ) = CN (P ·1B) . Let Autskew(B) be the group

of skew automorphisms of B and Ãutskew(B) be the group of skew exo-automorphisms of B (we reserve

the notation Outskew(B) for another version of outer automorphisms to be defined below). By definition of

Ãutskew(B) and NG(P,B) , there is a surjective group homomorphism

π : Ãutskew(B) −→ NG(P,B)
/
CN (P ·1B) ,

mapping a g-skew exo-automorphism to the class of g . Moreover Ker(π) = Out(B) , the group of ordinary

outer automorphisms of B . This is the first normal subgroup of interest in Ãutskew(B) . The second one

is the subgroup Iskew(B) of all skew exo-automorphisms of B consisting of inner automorphisms Inn(b)

for some b ∈ B∗ . The unit element of Ãutskew(B) contains all inner automorphisms Inn(b) for some

b ∈ (BP )∗ , but here in the definition of Iskew(B) we do not require b to P -invariant. In fact if Inn(b) is

a g-skew automorphism, then b satisfies b·u·b−1 = gu·1B for all u ∈ P . Passing now to the quotient by

all possible inner automorphisms, we obtain the group Outskew(B) = Ãutskew(B)/Iskew(B) , which we call

the group of skew outer automorphisms of B . We now show how these groups are related. For simplicity

the results are only stated for a source algebra B , but in fact some of the statements below hold for an

arbitrary interior P -algebra.

Proposition 5.1. With the notation 3.2, the following statements hold.

(a) The group homomorphism π : Ãutskew(B)→ NG(P,B)
/
CN (P ·1B) is surjective with kernel Out(B) .

(b) The group homomorphism IndG
P : Ãutskew(B) → Out(C) is surjective with kernel Iskew(B) . Thus

IndG
P induces an isomorphism Outskew(B) ∼= Out(C) .

(c) Iskew(B) ∩Out(B) = {1} . Thus Iskew(B)×Out(B) is a normal subgroup of Ãutskew(B) .

(d) Iskew(B)×Out(B) = π−1
(
NG(Pγ)

/
CN (P ·1B)

)
. In particular NG(Pγ) is a normal subgroup of NG(P,B) .

Moreover NG(Pγ) only depends on P , B and NG(P,B) .

(e) Outskew(B) has a normal subgroup isomorphic to Out(B) , with quotient isomorphic to NG(P,B)/NG(Pγ) .

More precisely, π induces a surjective group homomorphism π : Outskew(B)→ NG(P,B)/NG(Pγ) with

kernel Out(B) .

(f) The image of Out(B) under the isomorphism Outskew(B) ∼= Out(C) is the stabilizer Out(C)γ of the

point γ . Thus Out(C)γ is a normal subgroup of Out(C) , with quotient isomorphic to NG(P,B)/NG(Pγ) .
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Proof. Statement (a) holds by definition. Statement (c) is clear since a g-skew inner automorphism Inn(b)
is an ordinary automorphism if and only if b ∈ BP , which means that Inn(b) represents the trivial element
of Ãutskew(B) . Part (e) immediately follows from (a) and (d). Part (f) follows from (b) and (e), together
with the fact that if H is a skew outer automorphism and h ∈ H is g-skew, then the automorphism
ĥ ∈ IndG

P (H) defined by ĥ(x ⊗ a ⊗ y) = xg−1 ⊗ h(a) ⊗ gy maps the idempotent i = 1 ⊗ 1B ⊗ 1 to
g−1 ⊗ 1B ⊗ g = g−1

i and therefore IndG
P (H)(γ) = g−1

γ .
We show together the equalities

Iskew(B) = Ker(IndG
P ) and π(Iskew(B)) = NG(Pγ)

/
CN (P ·1B)

(the second one is equivalent to (d)), for both proofs use exactly the same arguments. Let H ∈ Ãutskew(B)
and let h ∈ H be g-skew. Then IndG

P (H) is represented by the automorphism ĥ defined by ĥ(x⊗a⊗y) =
xg−1 ⊗ h(a)⊗ gy for a ∈ B .

Assume first that H ∈ Iskew(B) , so that h = Inn(b) for some b ∈ B∗ with b·u·b−1 = gu·1B for all
u ∈ P . Let

c =
∑

x∈[G/P ]

xg−1 ⊗ b⊗ x−1 ∈ C .

This expression is independent of the choice of cosets representatives [G/P ] , for if we replace x by xux

where ux ∈ P , then∑
x∈[G/P ]

xuxg
−1 ⊗ b⊗ u−1

x x−1 =
∑

x∈[G/P ]

xg−1 ⊗ gux·b·u−1
x ⊗ x−1 =

∑
x∈[G/P ]

xg−1 ⊗ b⊗ x−1 = c .

It follows that c is fixed under G because if z ∈ G , then

z·c·z−1 =
∑

x∈[G/P ]

zxg−1 ⊗ b⊗ (zx)−1 = c .

Moreover c is invertible with inverse c−1 =
∑

x∈[G/P ] x⊗ b−1 ⊗ gx−1 . Now we have

Inn(c)(x⊗ a⊗ y) = xg−1 ⊗ bab−1 ⊗ gy = ĥ(x⊗ a⊗ y) ,

proving that ĥ is inner, that is, IndG
P (H) = 1 . Thus Iskew(B) ⊆ Ker(IndG

P ) .
On the other hand c(1⊗ 1B ⊗ 1)c−1 = g−1 ⊗ 1B ⊗ g = g−1

(1⊗ 1B ⊗ 1) and since c ∈ CP , this proves
that g−1

(1⊗1B⊗1) belongs to the point γ . Thus g ∈ NG(Pγ) and so π(Iskew(B)) ⊆ NG(Pγ)
/
CN (P ·1B) .

Assume now that H ∈ Ker(IndG
P ) so that ĥ = Inn(c−1) for some c ∈ CG . We choose c−1 instead

of c for notational convenience because this allows to consider g rather than g−1 in the proof below. We
have in particular g−1⊗h(a)⊗ g = c−1(1⊗ a⊗ 1)c for all a ∈ B . Writing c =

∑
x,y∈[G/P ] x⊗ cx,y ⊗ y and

choosing a system of representatives [G/P ] containing 1 and g , we have∑
x∈[G/P ]

x⊗ cx,gh(a)⊗ g = c (g−1 ⊗ h(a)⊗ g) = (1⊗ a⊗ 1) c =
∑

y∈[G/P ]

1⊗ ac1,y ⊗ y .

It follows that cx,g = 0 for x 6= 1 , c1,y = 0 for y 6= g and c1,gh(a) = ac1,g . Viewing C as a matrix
algebra over B , we see that c1,g is the only non-zero entry in the first row and in the g-th column. As c

is invertible, it follows that c1,g ∈ B∗ . Then h(a) = c−1
1,gac1,g = Inn(c−1

1,g)(a) , proving that H ∈ Iskew(B) .
Thus Ker(IndG

P ) ⊆ Iskew(B) . Together with the other inclusion, this proves half of the statement in (b) .
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Assume now that π(H) ∈ NG(Pγ)
/
CN (P ·1B) , which simply means that the class of g belongs to

NG(Pγ)
/
CN (P ·1B) , that is, g ∈ NG(Pγ) . Therefore there exists c ∈ (CP )∗ such that g−1

(1⊗ 1B ⊗ 1) =
c−1(1 ⊗ 1B ⊗ 1)c . The same argument as above (with a = 1 ) shows that c1,g is the only non-zero entry
in the first row and in the g-th column of c , so that c1,g is invertible. Since c is fixed under P , we have
c·u = u·c for all u ∈ P . The (1, g)-entry of u·c is 1 ⊗ u·c1,g ⊗ g and that of c·u is 1 ⊗ c1,g· gu ⊗ g .
Therefore u·c1,g = c1,g· gu and Inn(c−1

1,g) is a g-skew inner automorphism of B . As h is also g-skew,
Inn(c1,g)h is an ordinary automorphism of B . This proves that H ∈ Iskew(B)×Out(B) , as required. Thus
(d) is established since we already proved the other inclusion.

We are left with the proof of the other statement in (b), namely the surjectivity of IndG
P . Let F ∈

Out(C) . As the local points of CP are just the NG(P )-conjugates of γ by Proposition 1.7 and since F
necessarily permutes the local points of CP , we must have ResG

P (F)(γ) = g−1
γ for some g ∈ NG(P ) . Recall

that the canonical embedding DG
P : B → ResG

P (C) is associated with the point γ . Since ResG
P (F)DG

P is an
embedding which maps {1B} to g−1

γ , it is an embedding associated with g−1
γ and so B is isomorphic

to the conjugate algebra g−1
B , proving that g ∈ NG(P,B) . If Cg denotes the skew exo-automorphism of

ResG
P (C) containing the conjugation by g·1C , the composition Cg ResG

P (F) fixes γ and therefore induces
by “restriction” a skew exo-automorphism H of the localization B , that is, Cg ResG

P (F)DG
P = DG

P H . But
since IndG

P (H) is the unique exomorphism satisfying (4.2), we must have F = IndG
P (H) . This completes

the proof of (b).

Remarks 5.2. (a) Among the numerous reasons for considering exomorphisms rather than homomorphisms,
we note that the surjectivity of induction proved in the proposition does not hold in general for automor-
phisms, since an inner automorphism may not be in the image of induction.

(b) Part (d) of Proposition 5.1 is not new. It says that an element g ∈ NG(P ) belongs to NG(Pγ) if
and only if there exists b ∈ B∗ such that b·u·b−1 = gu·1B for all u ∈ P (that is, Inn(b) is g-skew). This
is a special case of a result of Puig which relates the group EG(Pγ) = NG(Pγ)/PCG(P ) with the group of
fusions FB(Pγ) (see [P2] for details).

(c) Given F ∈ Out(C) , we have F(γ) = gγ for some g ∈ NG(P,B) . It is easy to check directly that
the map Out(C)→ NG(P,B)/NG(Pγ) sending F to the class of g−1 is a group homomorphism with kernel
Out(C)γ . For another way of seeing this, notice that if H ∈ Outskew(B) is g-skew, then F = IndG

P (H)
maps γ to g−1

γ by construction.

Example 5.3. This example shows that NG(P,B) can be larger than NG(Pγ) , or equivalently that
Outskew(B) can be larger than Out(B) . Take B = OP , the group algebra. As P is a p-group, B

is primitive. Then Out(B) = 1 because any automorphism which is the identity on P is the identity
on B . Moreover NG(P,B) = NG(P ) because for g ∈ NG(P ) , the map u 7→ gu (for u ∈ P ) extends by
linearity to a g-skew automorphism of B . Finally NG(Pγ) = PCG(P ) . This is easy to see when P is
abelian because B cannot have any non-trivial inner automorphism so that Iskew(B) = 1 ; this implies that
NG(Pγ) = CG(P ) by part (d) of Proposition 5.1. The equality NG(Pγ) = PCG(P ) still holds if P is not
necessarily abelian by a result of Coleman [C]. It follows that NG(P,B)/NG(Pγ) = NG(P )/PCG(P ) which
is often non-trivial. In particular Outskew(OP ) = NG(P )/PCG(P ) .

This example appears in some cases of nilpotent blocks. Therefore when B is the source algebra of
a block algebra, the group NG(P,B) can be larger than the inertial group NG(Pγ) , and so could be an
invariant of interest in block theory. An explicit example occurs when G is the dihedral group of order 6p
where p ≥ 5 . Then P = Cp is cyclic of order p and CG(P ) = Cp × C3 . The two non-trivial characters
of C3 are permuted by C2 , thus correspond to a block of G (the non-principal block), which is in fact
nilpotent [P4]. Its source algebra is B = OP and so we are in the situation described above.
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6. Defect multiplicity modules

In this section we recall that any A ∈ A(G,P,B) has a defect multiplicity module Wγ , which is an

indecomposable projective module over a twisted group algebra k]N̂
A

. We also recall a result of Puig which

says that Vγ is free of rank one over k]N̂
C

, and we discuss the relationship between those modules.

Let A be a primitive interior G-algebra with defect group P and source algebra B . Then there is a

local point γ of AP such that Pγ is a defect of A and B ∼= Aγ , but we know that γ is not unique, for

any NG(P,B)-conjugate of γ has the same property.

By Proposition 1.5 there is an embedding F : A→ C , where C = IndG
P (B) . Since A is primitive, F

is an embedding associated with a point α of CG , namely α = F(1A) , and thus A ∼= Cα and F = Fα .

As in Section 3, we use the embedding Fα to identify pointed groups on A with pointed groups on C .

Thus γ also denotes the point of CP which contains 1⊗ 1B ⊗ 1 and so the notation is coherent with that

of (3.2).

Viewed as a point on CP , the point γ has a multiplicity algebra S(γ) with canonical map πγ : CP →
S(γ) , and viewed as a point on AP , it has a multiplicity algebra T (γ) with canonical map ργ : AP → T (γ) .

By Proposition 1.11, the embedding Fα induces an embedding Fα : T (γ)→ S(γ) . Since A is a primitive

G-algebra, T (γ) is a primitive N -algebra (Proposition 1.9) and therefore Fα is an embedding associated

with a point α ∈ P(S(γ)N ) . Thus T (γ) = S(γ)α and Fα = Fα . Finally α is the Puig correspondent

of α . Indeed the Puig correspondent of α is πγ r
G
P (α) = πγ(α) (as rG

P is just the inclusion map) and we

have

πγ(α) = πγ Fα({1A}) = Fα ργ({1A}) = Fα({1T (γ)}) = α .

Therefore to the embedding of (interior) G-algebras Fα : A→ C associated with a pointed group Gα with

defect Pγ corresponds an embedding of N -algebras Fα : T (γ)→ S(γ) associated with the Puig correspon-

dent α of α .

We let T (γ) ∼= Endk(W (γ)) and S(γ) ∼= Endk(V (γ)) and we use Proposition 2.3 to relate the multi-

plicity module structures of W (γ) and V (γ) . Let us write N̂
A

for the central extension of N associated

with T (γ) and N̂
C

for the central extension of N associated with S(γ) , so that W (γ) is a k]N̂
A

-module

and V (γ) is a k]N̂
C

-module. By Proposition 2.3 both central extensions are isomorphic via an isomorphism

(Fα)∗ induced by Fα , and this induces a structure of k]N̂
C

-module on W (γ) . With respect to this new

structure, W (γ) is isomorphic to a direct summand of V (γ) . We now analyze both modules in more detail.

By Proposition 1.9, the N -algebra T (γ) is primitive and projective (that is, T (γ)N
1 = T (γ)N ). Thus

by Higman’s criterion the k]N̂
A

-module W (γ) is indecomposable projective. It is called a defect multiplicity

module of A . (This notion depends on the choice of defect Pγ , and therefore is uniquely defined up to

conjugation). We note immediately that this canonical structure of module on W (γ) is not the one which

can be used for the parametrization of G-algebras: we shall first need the other central extension N̂
C

, and

later in Section 10 we shall view W (γ) as a module over a central extension (N̂
B

)
◦

defined in terms of B

alone.

By a result of Puig, the k]N̂
C

-module structure on V (γ) turns out to be extremely easy to describe.
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Proposition 6.1 (Puig [P3, 9.12]). With the notation 3.2, consider V (γ) with its structure of k]N̂
C

-module.

Then V (γ) is free of rank one.

Proof. For the convenience of the reader, we sketch a proof of the proposition. Consider the canonical
map πγ : CP → S(γ) and let i = 1 ⊗ 1B ⊗ 1 ∈ γ , so that πγ(i) is a primitive idempotent of S(γ) .
By construction of induced algebras, we have 1C = tGP (i) and the decomposition 1C =

∑
g∈[G/P ]

gi is
orthogonal. Since {1B} is local by assumption, γ is also local and therefore Proposition 1.10 applies. We
obtain

1S(γ) = πγ r
G
P (1C) = πγ r

G
P (tGP (i)) = tN1 (πγ(i)) .

The decomposition 1S(γ) =
∑

x∈N
x(πγ(i)) is primitive and orthogonal. Therefore the multiplicity module

V (γ) decomposes as k-vector space as a direct sum of one-dimensional subspaces

V (γ) =
⊕
x∈N

x(πγ(i))V (γ) .

Let us write the one-dimensional space πγ(i)V (γ) = kw for some w ∈ πγ(i)V (γ) . Since, by definition, the

action of N̂
C

on V (γ) lifts the conjugation action of N on S(γ) , it follows that

V (γ) =
⊕
x∈N

x̂·kw ,

where x̂ ∈ N̂
C

lifts x ∈ N . This proves that V (γ) is generated as a module over the twisted group algebra

k]N̂
C

by the single element w . Moreover the surjective homomorphism of k]N̂
C

-modules

k]N̂
C

→ V (γ) , x̂ 7→ x̂·w

is an isomorphism because both modules are k-vector spaces of the same dimension, namely |N | .

Note that Proposition 6.1 provides another proof of the fact that any defect multiplicity module W (γ)
is projective, because by the analysis above, we know that W (γ) is isomorphic to a direct summand of V (γ)

as a k]N̂
C

-module, hence is projective as a module over either k]N̂
C

or k]N̂
A

. Moreover Proposition 6.1
also implies that every direct summand of V (γ) is projective, that is, every point of S(γ)N is projective.
Let us write P(S(γ)N )proj = { δ ∈ P(S(γ)N ) | δ is projective } .

Corollary 6.2. P(S(γ)N )proj = P(S(γ)N ) .

The distinction between k]N̂
C

and k]N̂
A

is crucial in many respects. Firstly the isomorphism (Fα)∗ :

k]N̂
C ∼→ k]N̂

A

depends on the embedding Fα : A → C and therefore a different embedding may yield

a different structure of k]N̂
C

-module on W (γ) . But there is another phenomenon which appears even
if the embedding Fα is unique (and this is the case for instance for OG-lattices). Two non-isomorphic
primitive interior G-algebras A and A′ may have the same defect group P , the same source algebra B

and isomorphic defect multiplicity algebras (even with a canonical isomorphism). Since the defect multiplicity
module is uniquely constructed from the defect multiplicity algebra, one may be tempted to conclude that the
defect multiplicity modules W (γ) of A , and W ′(γ) of A′ , are isomorphic, and this would make impossible

– 21 –



the parametrization we are looking for. Explicitly the isomorphism of defect multiplicity algebras induces an

isomorphism of central extensions N̂
A ∼= N̂

A′

, which could be used to identify the corresponding multiplicity

modules W (γ) and W ′(γ) . But we do not do so: we use rather the two isomorphisms N̂
C ∼= N̂

A

and

N̂
C ∼= N̂

A′

to view W (γ) and W ′(γ) as k]N̂
C

-modules, in which case they are no longer isomorphic. Thus
it is absolutely essential to view all defect multiplicity modules as modules over a single uniquely defined

twisted group algebra, namely k]N̂
C

. We shall see in Section 9 an even better way of doing this by defining
yet another central extension, directly in terms of the source algebra B .

We wish to illustrate these important points with two easy examples.

Example 6.3. Let G = S3 be the symmetric group on 3 letters, generated by an element u of order 3 and
an element x of order 2. We take a field k of characteristic 3. There are two indecomposable kG-modules
L and L′ of dimension 2. The top composition factor of L is the trivial representation and its socle is the
sign representation, while the opposite holds for L′ . Both L and L′ restrict to the same 2-dimensional
module M for P =< u > , which is a source of both modules. In matrix terms, we have

u 7→
(

1 0
1 1

)
, x 7→

(
1 0
0 −1

)
for L , and the same for L′ with a change of sign for the image of x . Let A = Endk(L) and A′ = Endk(L′) .
In both cases the unique point γ = {1} of AP = A′P (corresponding to the source module M ) has a
multiplicity algebra Endk(W (γ)) isomorphic to k , and we have NG(Pγ) = G and NG(Pγ) = C2 , the
cyclic group of order 2. Thus in both cases we have GL(W (γ)) = k∗ and PGL(W (γ)) = 1 , so that both
central extensions are determined by the pull-back diagram

Ĉ2 = k∗ × C2 −→ C2

ρ̂

y y
k∗ −→ 1 .

Despite the fact that our two one-dimensional k-algebras are canonically isomorphic, we do not identify
the corresponding central extensions, but we use two different isomorphisms with the central extension
Ĉ

C

2 determined by C = IndG
P (Endk(M)) = Endk(IndG

P (M)) (corresponding to the two embeddings L →
IndG

P (M) and L′ → IndG
P (M) ). With their structure of module over k]Ĉ

C

2 , the two multiplicity modules
are now distinguished by a sign: since the central extension Ĉ

C

2 splits, the twisted group algebra k]Ĉ
C

2 is
isomorphic to the ordinary group algebra kC2 and the two possible multiplicity modules are the trivial and
the sign representations of C2 (which are indeed projective modules since the characteristic is 3). One of
these corresponds to L and the other one to L′ .

There is another subtle point which we want to emphasize. The two kG-modules L and L′ now
correspond respectively to each of the two distinct one-dimensional representations of k]Ĉ

C

2 , in a uniquely
determined fashion. However one cannot say which is the trivial and which is the sign representation, because
this depends on the isomorphism k]Ĉ

C

2
∼= kC2 . Indeed the twisted group algebra k]Ĉ

C

2 has no canonical
basis and is isomorphic to the ordinary group algebra kC2 in two different ways, which swap the role of
the trivial and the sign representations. This phenomenon is in fact not surprising in view of the complete
symmetry between L and L′ .
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Example 6.4. Consider again G = S3 , generated by u and x , and k a field of characteristic 3. Take
A = kG , the group algebra, which is a primitive G-algebra. Then A has defect group P =< u > , source
algebra B = ResG

P (A) and multiplicity algebra of dimension 1. As in the previous example we have a
twisted group algebra of the group C2 and there are two possible multiplicity modules. But this time A

is (up to isomorphism) the unique primitive G-algebra with these invariants. Our aim is to explain this
by showing that the two multiplicity modules are in the same orbit under some natural action of Out(B) .
This corresponds to the fact that there are two distinct embeddings of A into C , which determine two
isomorphic points of CG , hence in the same orbit under the action of Out(C) ∼= Out(B) .

7. Automorphisms of central extensions

In this section, we describe two group homomorphisms σ : Out(C) → Out(S(γ)N ) and τ : Out(C) →

Out(N̂
C

) , and we prove some properties of τ .
Given a central extension 1→ k∗ → X̂

π→ X → 1 , we let Autk∗(X̂) be the group of all automorphisms
of X̂ inducing the identity on k∗ , which we call k∗-automorphisms of X̂ . Any k∗-automorphism of X̂
induces an automorphism of the quotient X and we let Aut0k∗(X̂) be the normal subgroup consisting of all
automorphisms which induce the identity on X . Thus we have an exact sequence

1 −→ Aut0k∗(X̂) −→ Autk∗(X̂) −→ Aut(X) .

Any h ∈ Aut0k∗(X̂) necessarily maps x ∈ X̂ to λx where λ ∈ k∗ only depends on the image π(x) of x
in X . Therefore h(x) = χ(π(x))x for a uniquely determined group homomorphism χ : X → k∗ and we
obtain an isomorphism

Aut0k∗(X̂) ∼−→ Hom(X, k∗) , h 7→ χ ,

where Hom(X, k∗) is the group of k∗-valued characters of X .
Continuing with the notation 3.2, we specialize to the case X = N and we consider the central extension

N̂
C

associated with the multiplicity algebra S(γ) of the point γ of CP . Recall that CG(P ) = PCG(P )/P

is identified with a normal subgroup of N̂
C

mapping by the identity to the corresponding normal subgroup

of N and that we have defined EG(Pγ) = N/CG(P ) . Let Autk∗(N̂
C

)CG(P ) be the stabilizer of CG(P ) .

Its intersection with Aut0k∗(N̂
C

) induces the identity on N , hence fixes CG(P ) pointwise, and we write

Aut0
k∗CG(P )

(N̂
C

) for this intersection. In other words Aut0
k∗CG(P )

(N̂
C

) is the subgroup of Aut0k∗(N̂
C

)
consisting of automorphisms inducing the identity on CG(P ) . These automorphisms correspond to charac-

ters of N vanishing on CG(P ) , under the isomorphism Aut0k∗(N̂
C

) ∼= Hom(N, k∗) , so that we obtain by

restriction an isomorphism Aut0
k∗CG(P )

(N̂
C

) ∼= Hom(EG(Pγ), k∗) . Thus there is an exact sequence

1 −→ Hom(EG(Pγ), k∗) −→ Autk∗(N̂
C

)CG(P ) −→ Aut(N)CG(P ) .

By Proposition 5.1, N is a normal subgroup of NG(P,B) and we consider the conjugation action
of NG(P,B) on N (which stabilizes CG(P ) ). The group NG(P,B) does not act directly on the cen-

tral extension N̂
C

. Thus we let AutN(P,B)(N) be the image of NG(P,B) in Aut(N)CG(P ) and we let

AutN(P,B)

k∗ (N̂
C

) be the inverse image of AutN(P,B)(N) in Autk∗(N̂
C

)CG(P ) . In other words AutN(P,B)

k∗ (N̂
C

)
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is the group of all k∗-automorphisms of N̂
C

stabilizing CG(P ) and inducing on N an automorphism
which is the conjugation by some element of NG(P,B) . Thus there is an exact sequence

(7.1) 1 −→ Hom(EG(Pγ), k∗) −→ AutN(P,B)

k∗ (N̂
C

) −→ AutN(P,B)(N) .

We shall see below that this is a short exact sequence, that is, the last map is surjective.

We introduce the analogous sequence for outer automorphisms. Let I be the normal subgroup of Aut(N̂
C

)

consisting of inner automorphisms. Then I ⊆ Autk∗(N̂
C

) and we define Outk∗(N̂
C

) = Autk∗(N̂
C

)/I . We

also consider the images in Outk∗(N̂
C

) of various subgroups of Autk∗(N̂
C

) , in particular Out0k∗(N̂
C

) ,

Out0
k∗CG(P )

(N̂
C

) , Outk∗(N̂
C

)CG(P ) and OutN(P,B)

k∗ (N̂
C

) . In other words OutN(P,B)

k∗ (N̂
C

) is the subgroup

of Outk∗(N̂
C

)CG(P ) whose image in Out(N) is contained in the image of NG(P,B) (written OutN(P,B)(N) ).
Since the image of N in Out(N) consists of inner automorphisms, the group OutN(P,B)(N) is in fact the
image of NG(P,B)/N in Out(N) . We also write H̃om(EG(Pγ), k∗) for the quotient of Hom(EG(Pγ), k∗) ,

that is, H̃om(EG(Pγ), k∗) ∼= Out0
k∗CG(P )

(N̂
C

) . The group OutN(P,B)

k∗ (N̂
C

) is described by the following
exact sequence (in which again the last map is surjective, as we shall see below)

(7.2) 1 −→ H̃om(EG(Pγ), k∗) −→ OutN(P,B)

k∗ (N̂
C

) −→ OutN(P,B)(N) .

Now we want to show that Out(C) has an outer action on S(γ)N , as well as on the central exten-

sion N̂
C

. Let F ∈ Out(C) and choose f ∈ F . Then f acts on CP , but it does not necessarily fix γ . In
fact by Proposition 5.1 (f) (see also Remark 5.2 (c)), we have f(γ) = g−1

γ for some g ∈ NG(P,B) and g is
well-defined up to an element of N = NG(Pγ) . The automorphism fg = Conj(g·1C) f leaves invariant CP

and γ , hence induces an automorphism of S(γ) , still written fg .

Proposition 7.3. Let F ∈ Out(C) , let f ∈ F , and let g ∈ NG(P,B) be such that f(γ) = g−1
γ .

(a) The automorphism fg = Conj(g·1C) f of S(γ) induces by restriction an automorphism f : S(γ)N → S(γ)N

which only depends on f (not on g ).

(b) There is a group homomorphism σ : Out(C) → Out(S(γ)N ) mapping F to the outer automorphism

of S(γ)N containing f .

Proof. (a) If x ∈ N and c ∈ CP , we have

fg(x·c·x−1) = gx·f(c)·x−1g−1 = (gxg−1)·fg(c)·(gxg−1)−1 .

Applying πγ : CP → S(γ) and setting s = πγ(c) , we obtain fg( xs) = gxg−1
fg(s) , for all s ∈ S(γ) . If

now s is fixed under N , then fg(s) is also fixed under N (because N / NG(P,B) by Proposition 5.1),
and therefore fg restricts to an automorphism f of S(γ)N . If g is replaced by gx where x ∈ N , then f

has to be composed with the action of x , which by definition is the identity on S(γ)N . Therefore f only
depends on f , not on the choice of g .

(b) If we change the choice of f ∈ F , we have to compose f with an inner automorphism Inn(c)
where c ∈ CG . Since c commutes with g , we have to compose fg with Inn(c) , but since c ∈ CN ,
πγ(c) ∈ S(γ)N and so f has to be composed with Inn(πγ(c)) , which is an inner automorphism of S(γ)N .
It follows that F induces a well-defined outer automorphism of the k-algebra S(γ)N . Thus the map σ :
Out(C)→ Out(S(γ)N ) is well-defined.

If F ′ ∈ Out(C) and if f ′ ∈ F ′ with f ′(γ) = g′−1
γ , then since g′ commutes with f we have

fg f
′
g′ = Conj(g·1C) f Conj(g′·1C) f ′ = Conj(gg′·1C) ff ′ = (ff ′)gg′ ,

and the class of gg′ is indeed the element of NG(P,B)/N associated with ff ′ (see Remark 5.2 (c)). It
follows that σ is a group homomorphism.
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Now we show that Out(C) acts as a group of outer automorphisms of the central extension N̂
C

.

Proposition 7.4. Let F ∈ Out(C) , let f ∈ F , let g ∈ NG(P,B) be such that f(γ) = g−1
γ , and let

fg = Conj(g·1C) f , viewed as an automorphism of S(γ) .

(a) There is a k∗-automorphism τ(fg) : N̂
C

→ N̂
C

, inducing Conj(g) on N and satisfying ρ̂ τ(fg) = fg ρ̂ ,

where ρ̂ : N̂
C

→ S(γ)∗ is the structural map. Moreover the outer automorphism of N̂
C

contain-

ing τ(fg) only depends on F .

(b) There is a group homomorphism τ : Out(C) → Outk∗(N̂
C

) mapping F to the outer automorphism

of N̂
C

containing τ(fg) .

(c) The image of τ is contained in OutN(P,B)

k∗ (N̂
C

) , and the image of the normal subgroup Out(C)γ is

contained in H̃om(EG(Pγ), k∗) .

Proof. The automorphism fg of C acts on N ·1C by conjugation by g because f is the identity

on G·1C (since it is an automorphism of interior G-algebras). It follows that the conjugation action

of g on N satisfies ρ Conj(g) = fg ρ where fg is the automorphism of S(γ)∗/k∗ induced by fg , and

where ρ : N → S(γ)∗/k∗ is the structural map (obtained from the action of N on S(γ) ). It follows that

the automorphism Conj(g) of N together with the automorphism fg of S(γ)∗ induce by pull-back an

automorphism τ(fg) of N̂
C

with the required properties.

This construction depends on the choice of g ∈ NG(P,B) . If g is replaced by xg with x ∈ N ,

then τ(fxg) is the composite of τ(fg) with the automorphism of N̂
C

defined by the conjugation action

of x on N and the action of Conj(x·1C) on S(γ)∗ . Since x ∈ N , the conjugation action of x on N

is the inner automorphism Inn(x) . On the other hand Conj(x·1C) = Inn(a) for some a ∈ S(γ)∗ and

by definition of the map ρ : N → S(γ)∗/k∗ , the image of x is equal to the class of a . Therefore the

pair (a, x) defines an element x̂ ∈ N̂
C

and it is clear that Inn(x̂) is the automorphism induced by Inn(x)

and Conj(x·1C) . Therefore τ(fxg) differs from τ(fg) by an inner automorphism and we have a well-defined

outer automorphism of N̂
C

, which we write τ(f) .

If we modify the choice of f in F , this does not change τ(f) . Indeed we now show that an inner

automorphism Inn(c) with c ∈ CG acts trivially on N̂
C

. The element c = πγr
G
P (c) belongs to S(γ) and

is fixed under N . Therefore if (a, x) ∈ N̂
C

, where x ∈ N and a ∈ S(γ)∗ lifts the action of x , then c

commutes with a and c fixes x·1C . Thus the automorphism of N̂
C

induced by Inn(c) fixes (a, x) , that

is, it is the identity.

(b) We have already noticed in the proof of the previous proposition that fgf
′
g′ = (ff ′)gg′ . Together

with the equation Conj(gg′) = Conj(g)Conj(g′) , this implies that τ is a group homomorphism.

(c) The action of τ(f) on N̂
C

stabilizes the normal subgroup CG(P ) = PCG(P )/P . Clearly Conj(g)

stabilizes CG(P ) . The structure of interior CG(P )-algebra on S(γ) is given by the composite of the map

CG(P ) → CP , x 7→ x·1C , and the surjection πγ : CP → S(γ) . It suffices to show that fg , viewed as an

automorphsim of CP , stabilizes CG(P )·1C . But this is clear since, for x ∈ CG(P ) , we have

fg(x·1C) = Conj(g)f(x·1C) = Conj(g)(x·1C) = gx·1C .
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In fact this proves that τ(f) acts on CG(P ) by conjugation by g . Therefore the image of τ is contained in

the group Outk∗(N̂
C

)CG(P ) and its image in Out(N) consists of conjugations by elements of NG(P,B)/N .

Thus we have τ(Out(C)) ⊆ OutN(P,B)

k∗ (N̂
C

) by definition (see 7.2).

If F belongs to the normal subgroup Out(C)γ = Ker
(
Out(C) → NG(P,B)/N

)
, then we can choose

g = 1 , and by construction τ(F) induces the identity on the quotient N . Thus τ(F) ∈ Out0k∗(N̂
C

) , and

since τ(F) fixes CG(P ) pointwise, τ(F) belongs to Out0
k∗CG(P )

(N̂
C

) ∼= H̃om(EG(Pγ), k∗) .

Note that the argument given in the proof of part (a) shows that it is only the consideration of g ∈

NG(P,B)/N which forces to introduce outer automorphisms of N̂
C

. Thus the normal subgroup Out(C)γ

acts in fact on N̂
C

as a group of genuine automorphisms. Therefore the restriction τ0 : Out(C)γ →
H̃om(EG(Pγ), k∗) factorizes through a map τ ′ : Out(C)γ → Hom(EG(Pγ), k∗) .

The results of this section are summarized in the following result.

Proposition 7.5. There is a commutative diagram of exact sequences

1 −→ Out(C)γ −→ Out(C) π−→ NG(P,B)/N −→ 1yτ0

yτ

yconjugation

1 −→ H̃om(EG(Pγ), k∗) −→ OutN(P,B)

k∗ (N̂
C

) −→ OutN(P,B)(N) −→ 1 .

In particular both sequences 7.1 and 7.2 are short exact.

Proof. By construction of τ and τ0 , all diagrams are commutative. The top sequence is exact by Proposi-

tion 5.1. Thus we are left with the proof that the bottom sequence is right exact. This an immediate conse-

quence of the surjectivity of both the maps NG(P,B)/N → OutN(P,B)(N) and π : Out(C)→ NG(P,B)/N

(which was proved by inducing to C a g-skew automorphism of B ). This proves that the sequence 7.2 is

right exact.

In order to show that the sequence 7.1 is right exact, we note that an inner automorphism Inn(x)

of N lifts to an inner automorphism Inn(x̂) of N̂
C

by surjectivity of N̂
C

→ N , and Inn(x̂) belongs

necessarily to AutN(P,B)

k∗ (N̂
C

) . Therfore the surjectivity of AutN(P,B)

k∗ (N̂
C

)→ AutN(P,B)(N) is equivalent to

the surjectivity of the map OutN(P,B)

k∗ (N̂
C

)→ OutN(P,B)(N) .

Example 7.6. The examples given at the end of Section 6 do not illustrate the phenomenon analyzed here,

because we have NG(P,B) = N in these examples, so that AutN(P,B)

k∗ (N̂
C

) = Hom(EG(Pγ), k∗) . On the

other hand we have N < NG(P ;B) in Example 5.3, but Hom(EG(Pγ), k∗) = 1 because EG(Pγ) = 1 .

For an example where the short exact sequence 7.1 is not trivial, take G = S4 , the symmetric group, P

the normal four-subgroup, and B = OA4 , the group algebra of the alternating group. Then N = A4 ,

NG(P,B) = G and E = A4/P ∼= C3 . Then in the exact sequence 7.1, the middle group is isomorphic

to S3 , with kernel C3 and quotient C2 .
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8. Reduction to the defect multiplicity algebra

In this section we prove that the Puig correspondence commutes with the action of Out(C) and we deduce

that A(G,P,B) is in bijection with the set of Out(C)-orbits of indecomposable projective k]N̂
C

-modules.

Continuing with the notation 3.2, we know from Corollary 4.4 that the set A(G,P,B) which we are

interested in is in bijection with Out(C)
∖
P(CG)Pγ

. The Puig correspondence is a bijection between the set

P(CG)Pγ and the set P(S(γ)N )proj of projective points of S(γ)N , and by Corollary 6.2 P(S(γ)N )proj =

P(S(γ)N ) . We have seen in Proposition 7.3 that Out(C) has an outer action on S(γ)N . It follows that

Out(C) acts on the set of points P(S(γ)N ) , because inner automorphisms act trivially on points.

Lemma 8.1. The map πγ r
G
P : CG → S(γ)N commutes with the outer action of Out(C) . In particular

the Puig correspondence P(CG)Pγ

∼→ P(S(γ)N )proj = P(S(γ)N ) commutes with the action of Out(C) .

Proof. Let F ∈ Out(C) , choose f ∈ F , let g ∈ NG(P,B) be such that f(γ) = g−1
γ , let fg =

Conj(g·1C) f , and let f be the restriction of fg to S(γ)N . Then by Proposition 7.3, f represents the

outer action of F on S(γ)N . If c ∈ CG , then f(c) ∈ CG commutes with g and therefore

πγ r
G
P (f(c)) = πγ r

G
P (Conj(g·1C)f(c)) = πγ r

G
P (fg(c)) = f(πγ r

G
P (c)) .

The second statement follows immediately since the Puig correspondence is induced by the map πγ r
G
P and

since P(S(γ)N )proj = P(S(γ)N ) by Corollary 6.2.

Combining this lemma with Corollary 4.4, we obtain the following form of the parametrization.

Corollary 8.2. With the notation 3.2, the set A(G,P,B) is in bijection with the set of orbits Out(C)
∖
P(S(γ)N ) .

Our aim is now to view the points of S(γ)N as indecomposable direct summands of the multiplicity

module V (γ) (where S(γ) = Endk(V (γ)) ), and then to use the action of Out(C) on these modules. We

have constructed in Proposition 7.4 an outer action τ : Out(C)→ Outk∗(N̂
C

) . Since any k∗-automorphism

is by definition the identity on k∗ , the map τ extends to a homomorphism τ : Out(C)→ Out(k]N̂
C

) and

we deduce an action of Out(C) on isomorphism classes of k]N̂
C

-modules in the following way. For every

k]N̂
C

-module W and F ∈ Out(C) we write FW for the isomorphism class of modules obtained by first

applying the outer automorphism τ(F)−1 and then the structural map k]N̂
C

→ Endk(W ) . Note that this

is well defined since for any inner automorphism Inn(r) of a ring R and for any R-module W given by a

map ρ : R→ End(W ) , the two module structures on W given by the structural maps ρ and ρ Inn(r) are

isomorphic (via the isomorphism ρ(r) ). Note also that one needs the inverse τ(F)−1 for a left action.

Since S(γ) = Endk(V (γ)) , we can identify a point δ in P(S(γ)N ) with an isomorphism class of inde-

composable direct summands Wδ of the k]N̂
C

-module V (γ) . For simplicity we do not distinguish between

a direct summand Wδ and its isomorphism class. By Proposition 6.1, V (γ) is free of rank one over k]N̂
C

,

so that Wδ runs over the set of isomorphism classes of indecomposable projective k]N̂
C

-modules.

We have to prove that the action of Out(C) on P(S(γ)N ) and on the corresponding k]N̂
C

-modules

are related in the expected fashion.
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Lemma 8.3. Let δ, δ′ ∈ P(S(γ)N ) and let respectively Wδ and Wδ′ be the corresponding isomorphism

classes of direct summands of V (γ) . Suppose that δ′ = F(δ) for some F ∈ Out(C) . Then Wδ′ = F(Wδ) .

Proof. Choose f ∈ F . We have f(γ) = g−1
γ for some g ∈ NG(P,B) and for the description of the

action of F on N̂
C

, we have to consider the action of fg = Conj(g·1C) f on S(γ) . The restriction of fg

to S(γ)N is the automorphism f which defines the action of F on S(γ)N and therefore fg(δ) = δ′ by
assumption.

The k]N̂
C

-module structure on V (γ) is given by a homomorphism ρ̂ : N̂
C

→ S(γ)∗ lifting the map

N → S(γ)∗/k∗ . Now the outer action of F on N̂
C

is represented by the automorphism τ(fg) of N̂
C

induced by fg and therefore ρ̂ τ(fg) = fg ρ̂ . Moreover the k]N̂
C

-module structure on F(V (γ)) corresponds

to the homomorphism ρ̂′ : N̂
C

→ S(γ)∗ , where ρ̂′ = ρ̂ τ(fg)−1 = f−1
g ρ̂ . By the Skolem-Noether theorem,

the automorphism fg of S(γ) = Endk(V (γ)) is equal to Inn(s) for some k-linear automorphism s of V (γ) .

Moreover s is an isomorphism between F(V (γ)) and V (γ) because for each x ∈ N̂
C

we have ρ̂′(x) =
f−1

g ρ̂(x) = s−1 ρ̂(x) s , hence s ρ̂′(x) = ρ̂(x) s .
For the direct summand Wδ of V (γ) , we can choose jV (γ) where j ∈ δ . Since fg(δ) = δ′ , we let

j′ = fg(j) ∈ δ′ and choose Wδ′ = j′V (γ) . Then sjs−1 = j′ and therefore s maps the summand jV (γ)
to the summand j′V (γ) . It follows that the direct summand F(jV (γ)) of F(V (γ)) is mapped by the

k]N̂
C

-linear isomorphism s to the summand j′V (γ) of V (γ) , as was to be shown.

Combining this lemma with Corollary 8.2, we obtain the first version of the parametrization we are
looking for.

Corollary 8.4. With the notation 3.2, the set A(G,P,B) is in bijection with the set of orbits of isomor-

phism classes of indecomposable projective k]N̂
C

-modules under the action of Out(C) .

9. The central extension associated with the source algebra

In this section we describe a central extension N̂
B

, defined in terms of B alone, and an outer action
of Outskew(B) on it.

Corollary 8.4 shows how primitive interior G-algebras can be parametrized using Out(C)-orbits of

k]N̂
C

-modules. We need to show that this action can be described directly from B and NG(P,B) , because
our final goal is to parametrize primitive interior algebras with three invariants which are independent
of G . We can obviously replace Out(C) by its isomorphic group Outskew(B) , and consequently the
normal subgroup Out(C)γ by Out(B) (cf. Proposition 5.1). Also by Proposition 5.1, we know that the
group N = NG(Pγ) only depends on P , B and NG(P,B) . But we still need to have on the one hand
a definition of a central extension of N in terms of B and on the other hand a direct description of the
action of Outskew(B) on it. The first problem has been solved by Puig and we use his result to handle the
second.

In [P3, Section 6] Puig describes a central extension N̂
B

entirely in terms of B and shows that the

opposite extension (N̂
B

)
◦

is isomorphic to the central extension N̂
C

. Puig’s result holds for an arbitrary
pointed p-group on an interior G-algebra and for later use we state the result in this generality.
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Let D be an interior G-algebra and let Pγ be a pointed p-group on D , with an associated embedding

F : Dγ → ResG
P (D) , and write B = Dγ . From the multiplicity algebra S(γ) is constructed a central

extension

(9.1) 1 −→ k∗ −→ N̂
D

−→ N −→ 1 ,

where as usual N = NG(Pγ) and N = N/P .

We now describe the other central extension of N . Let NB(P ) be the set of all b ∈ B∗ which normal-

ize P ·1B . Then (BP )∗ is the normal subgroup of NB(P ) which centralizes P ·1B and so NB(P )/(BP )∗

is a group of automorphisms of P ·1B (hence it is finite). Since B is primitive, BP /J(BP ) ∼= k where

J(BP ) denotes the Jacobson radical of BP . Therefore (BP )∗
/
(1 + J(BP )) ∼= k∗ and it follows that there

is a central extension

1 −→ k∗ −→ NB(P )
/
(1 + J(BP )) −→ NB(P )/(BP )∗ −→ 1 .

The normal p-subgroup P ·1B of NB(P ) intersects k∗ trivially because there are no non-trivial p-th roots

of unity in a field of characteristic p . Thus we obtain a central extension

(9.2) 1 −→ k∗ −→ NB(P )
/
P ·(1 + J(BP )) −→ NB(P )/P ·(BP )∗ −→ 1 ,

and NB(P )/P ·(BP )∗ is now a group of outer automorphisms of P ·1B .

Recall that EG(Pγ) = NG(Pγ)/PCG(P ) = N/CG(P ) is a group of outer automorphisms of P . There

is a natural map

q : EG(Pγ) −→ NB(P )/P ·(BP )∗ , σ 7→ σ

described as follows. If an outer automorphism σ of P belongs to EG(Pγ) , then it turns out that σ

necessarily induces an outer automorphism σ of P ·1B (in other words the kernel of P → P ·1B is necessarily

invariant under σ ). Moreover it also turns out that σ necessarily belongs to the subgroup NB(P )/P ·(BP )∗

(provided we identify it with a subgroup of Out(P ·1B) ). Then by definition σ is the image of σ . To make

clear why these properties hold, note that the embedding F : B → ResG
P (D) induces an isomorphism

f : B ∼= iDi where i = f(1B) and f ∈ F . If σ is represented by x ∈ N = NG(Pγ) , then xi ∈ γ , so

that there exists a ∈ (DP )∗ such that axi = i . Then it is easy to check that the element i·ax·i ∈ iDi

corresponds under the isomorphism f−1 to an element of B which belongs to NB(P ) and whose image

in NB(P )/P ·(BP )∗ is the outer automorphism σ .

The restriction (i.e. the pull-back) of the central extension 9.2 along the group homomorphism q :

EG(Pγ)→ NB(P )/P ·(BP )∗ defines a central extension

(9.3) 1 −→ k∗ −→ Ê
B

G (Pγ) −→ EG(Pγ) −→ 1 ,

and by restriction along the projection N → EG(Pγ) , this defines in turn a central extension

(9.4) 1 −→ k∗ −→ N̂
B

−→ N −→ 1 .
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Recall that the opposite of a central extension 1→ k∗ → X̂ → X → 1 is the extension

1→ k∗
−1→ X̂ → X → 1 , with the same map X̂ → X , but where the embedding of the central subgroup k∗

is the composite of the automorphism λ 7→ λ−1 with the given embedding. We write (X̂)◦ for this op-

posite extension. Thus a homomorphism of central extensions φ : X̂ ′ → (X̂)◦ is a group homomorphism

φ : X̂ ′ → X̂ which induces on the central subgroup k∗ the map λ 7→ λ−1 .

Puig proved that the extensions 9.1 and 9.4 are related by a homomorphism of central extensions

ψF : N̂
D

→ (N̂
B

)
◦

induced by the embedding F : B → ResG
P (D) . It is obtained by pull-back from a map

ψ′F : N̂
D

−→
(
NB(P )/P ·(1 + J(BP ))

)◦
.

In fact we describe a homomorphism

ψ′′F : N̂
D
−→

(
NB(P )/(1 + J(BP ))

)◦
where N̂

D
is the extension obtained by restriction from N̂

D

along the map N → N , so that P is identified

with a normal subgroup of N̂
D

and N̂
D
/P = N̂

D

. Choosing f ∈ F (where F : B → ResG
P (D) is the

given embedding), there is an isomorphism of interior P -algebras f : B ∼= iDi where i = f(1B) . An

element of N̂
D

is a pair (a, x) ∈ S(γ)∗×N where x and a have the same action on S(γ) (i.e. map to the

same element of S(γ)∗/k∗ ). Let a ∈ (DP )∗ be any element such that πγ(a) = a , where πγ : DP → S(γ)

is the canonical map (which is also surjective on invertible elements). Then ia−1·x·i ∈ iDi corresponds

under the isomorphism f−1 to an element b ∈ B which in fact belongs to NB(P ) . Then by definition

ψ′′F (a, x) = b , where b denotes the class of b in NB(P )/(1 + J(BP )) .

Puig proved that the map ψ′′F is well-defined, independent of the choice of f ∈ F , and is a group

homomorphism (see Proposition 6.10 of [P3]). Moreover ψ′′F maps P to P ·1B by the obvious map and so

induces the required map

ψ′F : N̂
D

−→
(
NB(P )/P ·(1 + J(BP ))

)◦
.

We need the opposite central extension because ψ′F maps a scalar λ ∈ k∗ to its inverse λ−1 ∈ NB(P )/P ·(1+

J(BP )) . Passing to the quotient by k∗ , we obtain the natural map q : N → NB(P )/P ·(BP )∗ described

above. Therefore ψ′F induces ψF : N̂
D

→ (N̂
B

)
◦

, which is necessarily an isomorphism since it induces the

identity on N .

Both central extensions are obtained by restriction from central extensions of EG(Pγ) . It is an easy

exercise to check that the isomorphism ψF induces also an isomorphism between the opposite of the central

extension 9.3 and the extension 2.2.

We now summarize this discussion and state Puig’s result.

Proposition 9.5 Puig [P3, 6.10-6.12]). The map ψF : N̂
D

→ (N̂
B

)
◦

described above is a k∗-isomorphism

of central extensions inducing the identity on N .
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We now return to outer automorphisms and to our usual setting described in the notation 3.2. The

canonical embedding DG
P : B → ResG

P (C) induces an isomorphism ψDG
P

: N̂
C

→ (N̂
B

)
◦

and we want to
prove that it commutes with some natural outer action of the group Outskew(B) . We know that Out(C) has

an outer action on N̂
C

and we first replace Out(C) by its isomorphic group Outskew(B) . The isomorphism
is given by induction (Proposition 5.1) and we define

θ : Outskew(B) −→ Outk∗(N̂
C

)

to be the composite of IndG
P : Outskew(B) ∼→ Out(C) and τ : Out(C) → Outk∗(N̂

C

) , where τ is the

map defined in Proposition 7.4. We write θ0 : Out(B) → Out0k∗(N̂
C

) for the restriction of θ . In fact we

know from Proposition 7.4 that the image of θ is contained in OutN(P,B)

k∗ (N̂
C

) and that the image of θ0 is
contained in H̃om(EG(Pγ), k∗) . We shall come back to the map θ0 at the end of this section.

The group Outskew(B) also has a natural outer action on the extensions 9.2 and 9.4.

Proposition 9.6. Let H ∈ Outskew(B) and let g ∈ NG(P,B) be a representative of the image of H
in NG(P,B)/N .

(a) The outer action of H on B induces an outer action of H on the central extension 9.2.

(b) The outer action of H on the central extension 9.2 together with the conjugation action of g on N

induce an outer action of H on N̂
B

. This procedure defines a group homomorphism η : Outskew(B)→

Out(N̂
B

) .

Proof. Let h ∈ H be g-skew.
(a) Since h normalizes P ·1B (because h(u·1B) = gu·1B by definition), h leaves invariant NB(P ) ,

(BP )∗ and 1+J(BP ) , and it is the identity on k∗ . Hence h induces an action on the central extension 9.2.
We now modify the choice of h ∈ H and g ∈ NG(P,B) . It suffices to consider a modification by an

arbitrary skew inner automorphism of B because by part (d) of Proposition 5.1, any change of the choice
of g can be realized by a skew inner automorphism. Thus we have to replace h by Inn(b)h where Inn(b) is
a g′-skew inner automorphism of B for some g′ (and g′ ∈ N by Proposition 5.1). Then clearly the action
of Inn(b) on the central extension 9.2 is by the inner automorphism Inn(b) of NB(P )

/
P ·(1 + J(BP )) ,

where b denotes the class of b (since b ∈ NB(P ) by definition). It follows that we have defined a natural
outer action of Outskew(B) on the central extension 9.2.

(b) We want to show that the action of h on NB(P )
/
P ·(1 + J(BP )) is compatible with the action

of g by conjugation on N , in the sense that they induce the same action on NB(P )/P ·(BP )∗ . Let σg

be the automorphism of P ·1B defined by σg(u·1B) = gu·1B (that is, σg is the restriction of h to P ·1B )
and let σg be the class of σg in the group of outer automorphisms of P ·1B . Then the action of h on
NB(P )/P ·(BP )∗ is by conjugation by σg . We check that at the level of NB(P )/(BP )∗ (which is a group of
automorphisms of P ·1B ). If b ∈ NB(P ) , then b·u·b−1 = φ(u·1B) for every u ∈ P , where φ ∈ Aut(P ·1B) ,
and therefore h(b·u·b−1) = h(b)· gu·h(b)−1 = g(φ(u·1B)) . This means that

h(b)·u·h(b)−1 = g(φ( g−1
u·1B)) = σg φσ

−1
g (u·1B)

as claimed. Now the natural map N → NB(P )/P ·(BP )∗ commutes with the action of g (that is, conjugation
by g on N and conjugation by σg on NB(P )/P ·(BP )∗ ). It follows from all this that the action of h on
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the central extension 9.2 together with the conjugation action of g on N induce an action on the central

extension N̂
B

.
Again if we modify h by Inn(b) where Inn(b) is a g′-skew inner automorphism of B , then g′ ∈ N

and we let g′ be the image of g′ in N . Let also b be the image of b in NB(P )/P ·(1 + J(BP )) . Then

the pair (b, g′) defines an element z ∈ N̂
B

and we have modified the action of h on N̂
B

by the inner
automorphism Inn(z) .

We have now defined an outer action of H ∈ Outskew(B) on the central extension N̂
B

, such that
the induced outer action on N is by conjugation by g if H is g-skew. In particular if H is an ordinary
automorphism (so that we can choose g = 1 ), then H induces the identity on N .

We now show that the isomorphism ψDG
P

commutes with the action of Outskew(B) . Note that the

central extensions N̂
B

and (N̂
B

)
◦

have the same automorphisms.

Proposition 9.7. For every skew outer automorphism H of B , the isomorphism of central extensions

ψDG
P

: N̂
C ∼→ (N̂

B

)
◦

commutes with the outer action of H , that is, the exomorphisms ψDG
P
θ(H) and

η(H)ψDG
P

are equal.

Proof. Since ψDG
P

is constructed from ψ′DG
P

: N̂
C

→
(
NB(P )/P ·(1 + J(BP ))

)◦ and since the outer action
of Outskew(B) is also constructed from NB(P )/P ·(1 + J(BP )) , it suffices to show that ψ′DG

P

commutes

with the action of H ∈ Outskew(B) . Let h ∈ H be g-skew, where g ∈ NG(P,B) . Let (a, x) ∈ N̂
C

where
x ∈ N and a ∈ S(γ)∗ (with Inn(a) equal to the action of x on S(γ) ). Let a ∈ (CP )∗ lifting a (i.e.
a = πγ(a) ) and let x ∈ N lifting x . Write i = 1⊗ 1B ⊗ 1 . Then ia−1·x·i = 1⊗ b⊗ 1 where b ∈ NB(P )
and ψ′DG

P

(a, x) = b by definition. Therefore

hψ′DG
P
(a, x) = h(b) = h(b) .

For the action of h on N̂
C

, recall that IndG
P (H) ∈ Out(C) is represented by the automorphism ĥ

defined by ĥ(x ⊗ b ⊗ y) = xg−1 ⊗ h(b) ⊗ gy . Moreover the action on N̂
C

is obtained from the action
of ĥg = Conj(g·1C) ĥ on S(γ)∗ and the conjugation action of g on N . Therefore the action of h

on (a, x) is the element (ĥg(a), gxg−1) and its image under ψDG
P

is determined by the following element
of iCi = 1⊗B ⊗ 1 :

iĥg(a)−1·gxg−1·i = iĥg(a−1)ĥg(x·1C)i = ĥg(ia−1·x·i) = ĥg(1⊗ b⊗ 1)

= g(g−1 ⊗ h(b)⊗ g)g−1 = 1⊗ h(b)⊗ 1 ,

using ĥg(i) = i and ĥg(x·1C) = gxg−1·1C (because ĥ(x·1C) = x·1C since it is an automorphism of interior
G-algebras). Therefore ψ′DG

P

h(a, x) = h(b) , proving the result.

We end this section with a few more facts about the map θ0 : Out(B) → Out0k∗(N̂
C

) defined earlier

in this section, as well as the map η0 : Out(B) → Out0k∗(N̂
B

) defined similarly from η . We have already

noticed that Out(B) induces in fact genuine automorphisms of N̂
C

and from the argument of Section 2,

we know that Aut0k∗(N̂
C

) is isomorphic to the group of k∗-valued characters Hom(N, k∗) . Moreover by
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Proposition 7.5 θ0 factorizes through a homomorphism θ′ : Out(B)→ Hom(EG(Pγ), k∗) and similarly η0

factorizes through a homomorphism η′ : Out(B)→ Hom(EG(Pγ), k∗) . We give here a direct description of
these maps and we prove that they are “opposite”. The description of η′ is due to Puig [P3, 6.9 and 14.8].

Since the action of Out(B) on N̂
B

is obtained by restriction from the action on the central exten-
sion 9.2, we consider instead the group Hom(NB(P )/P ·(BP )∗, k∗) . In fact the natural map q : EG(Pγ)→
NB(P )/P ·(BP )∗ induces a group homomorphism

q∗ : Hom(NB(P )/P ·(BP )∗, k∗) −→ Hom(EG(Pγ), k∗)

and we describe a map ηB : Out(B)→ Hom(NB(P )/P ·(BP )∗, k∗) such that η′ is the composite

Out(B)
ηB−→ Hom(NB(P )/P ·(BP )∗, k∗)

q∗−→ Hom(EG(Pγ), k∗) .

Puig’s description of ηB is the following. Let H ∈ Out(B) and choose h ∈ H . Since the action of H on
the extension 9.2 induces the identity on the quotient NB(P )/P ·(BP )∗ , we have h(b)b

−1 ∈ k∗ for every
b ∈ NB(P )/P ·(1 + J(BP )) and this defines a scalar ηB(H)(b) ∈ k∗ . In other words ηB is characterized by
the property

h(b) ≡ ηB(H)(b)·b mod
(
P ·(1 + J(BP ))

)
for every b ∈ NB(P ) and h ∈ H .

We turn now to the description of θ′ : Out(B) → Hom(EG(Pγ), k∗) . We use the action of Out(B)

on N̂
C

, via the isomorphism Out(B) ∼= Out(C)γ given by induction and the action of Out(C)γ , which
we now recall. If H ∈ Out(B) and h ∈ H , then IndG

P (h) fixes γ and hence induces an action on S(γ) .
Moreover since IndG

P (h) is an automorphism of interior G-algebras, the induced automorphism of S(γ) is an
automorphism of NG(Pγ)-algebras and also an automorphism of interior PCG(P )-algebras. Since S(γ) is
simple, this automorphism is of the form Inn(s) and we have s ∈ (S(γ)∗/k∗)NG(Pγ) and s ∈ (S(γ)∗)PCG(P ) .
This defines an element s ∈

(
(S(γ)∗)PCG(P )

/
k∗

)EG(Pγ) . Taking fixed points under EG(Pγ) in the short
exact sequence

1 −→ k∗ −→ (S(γ)∗)PCG(P ) −→ (S(γ)∗)PCG(P )
/
k∗ −→ 1 ,

one obtains a connecting homomorphism in group cohomology

(S(γ)∗)NG(Pγ) −→
(
(S(γ)∗)PCG(P )

/
k∗

)EG(Pγ) −→ H1(EG(Pγ), k∗) = Hom(EG(Pγ), k∗) .

We have just seen that the automorphism IndG
P (h) defines an element of the middle group and it is easy

to check that its image in Hom(EG(Pγ), k∗) is independent of the choice of h ∈ H . This defines a
map θ′′ : Out(B) → Hom(EG(Pγ), k∗) which turns out to be the “opposite” of the map θ′ , that is,
θ′′(H) = θ′(H)−1 for all H ∈ Out(B) . The proof of this fact is left to the reader.

The isomorphism ψDG
P

: N̂
C ∼= (N̂

B

)
◦

of Proposition 9.7 commutes with the action of Outskew(B) ,
hence in particular with the action of Out(B) , which in both cases maps to Hom(EG(Pγ), k∗) ⊆ Hom(N, k∗) .

Now ψDG
P

induces an isomorphism ψ∗ from Hom(N, k∗) ∼= Aut0k∗(N̂
C

) to Hom(N, k∗) ∼= Aut0k∗(N̂
B

) .
Since ψDG

P
maps a scalar λ ∈ k∗ to its inverse, it is easy to see that ψ∗ consists simply in taking inverses.

But as ψDG
P

commutes with the action of H ∈ Out(B) , clearly ψ∗ maps θ′(H) to η′(H) , from which it
follows that

η′(H) = θ′(H)−1 = θ′′(H) .

Therefore we obtain the following result.
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Proposition 9.8. The maps η′ and θ′′ described above are equal.

Note that we have only worked with C = IndG
P (B) , but the proposition holds for an arbitrary interior

G-algebra C , a local pointed group Pγ on C with associated embedding B → ResG
P (C) .

10. Description of the third invariant

We finally come to the exact definition of the orbit of multiplicity modules needed for the parametrization.
Let A be a primitive interior G-algebra with defect group P and source algebra B . We have asso-

ciated with A its various embeddings in C = IndG
P (B) and proved that the corresponding points of CG

form a single orbit under Out(C) (Corollary 4.4). Then we have used the Puig correspondence to obtain an
Out(C)-orbit of points of S(γ)N (Corollary 8.2) and we have interpreted this as an Out(C)-orbit of indecom-

posable projective k]N̂
C

-modules (Corollary 8.4). We replace Out(C) by its isomorphic group Outskew(B)

(the isomorphism being given by induction). By the previous section the isomorphism ψDG
P

: N̂
C ∼→ (N̂

B

)
◦

commutes with the outer action of Outskew(B) , and therefore we obtain an Outskew(B)-orbit of indecompos-

able projective k](N̂
B

)
◦
-modules, which we temporarily call the Outskew(B)-orbit of multiplicity modules

of A determined by C . This is a precise definition of the third invariant we are looking for, but we now
want to describe this invariant directly from A , without going through this process involving C .

To say that A has defect group P and source algebra B means that there is an embedding
G : B → ResG

P (A) such that G(1B) = γ is a source point of A . But G is not unique for two reasons.
First one can compose G with an outer automorphism of B . Second the point γ is not uniquely deter-
mined by B since it can be replaced by any isomorphic point gγ where g ∈ NG(P,B) .

For a given choice of G , we have a central extension N̂
A

associated with the multiplicity algebra

T (γ) ∼= Endk(W (γ)) of γ , and the k]N̂
A

-module W (γ) is a defect multiplicity module of A , hence

indecomposable projective. Here N = NG(Pγ) as usual. (Note that the notation N̂
A

does not say that the
central extension in fact depends on γ , which is not uniquely determined by A , but this will not create any

problem for the following arguments). By Proposition 9.5, there exists an isomorphism ψG : N̂
A ∼→ (N̂

B

)
◦

induced by the embedding G , and this allows to view W (γ) as a module over k](N̂
B

)
◦

. We write WG

for this indecomposable projective k](N̂
B

)
◦
-module, and we call it again a defect multiplicity module of A

(although the canonical structure of module of W (γ) is the k]N̂
A

-module structure). We have already

noticed at the end of Section 6 that it is crucial to distinguish between N̂
A

and N̂
C

. The same remarks

hold here for N̂
A

and (N̂
B

)
◦

, since we simply use the uniquely defined isomorphism ψDG
P

: N̂
C ∼→ (N̂

B

)
◦

to pass from N̂
C

and (N̂
B

)
◦

. In particular the whole discussion in Example 6.3 applies with (N̂
B

)
◦

instead of N̂
C

.
When G varies in the set E(B,ResG

P (A)) of all embeddings of B into ResG
P (A) , the module WG varies

in the set of isomorphism classes of indecomposable projective k](N̂
B

)
◦
-modules. We call the set

{WG | G ∈ E(B,ResG
P (A)) }

the set of defect multiplicity modules of A . As usual we do not distinguish between a module and its
isomorphism class. Note that this set depends on the pair (P,B) , which is unique up to G-conjugation.
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Proposition 10.1. Let A be a primitive interior G-algebra with defect group P and source algebra B .

Then the set of defect multiplicity modules of A is equal to the Outskew(B)-orbit of multiplicity modules

of A determined by C .

The proof is an immediate consequence of the following two results of Puig. The first result allows to

identify the k](N̂
B

)
◦
-module structures, and the second one implies that both sets of multiplicity modules

coincide. We let E(A,C) be the set of all embeddings of A into C .

Lemma 10.2. Let C = IndG
P (B) and let DG

P : B → ResG
P (C) be the canonical embedding. Let G ∈

E(B,ResG
P (A)) and F ∈ E(A,C) be such that ResG

P (F)G = DG
P . Let ψG : N̂

A ∼→ (N̂
B

)
◦

be the

isomorphism induced by G , let ψDG
P

: N̂
C ∼→ (N̂

B

)
◦

be the isomorphism induced by DG
P , and let F∗ :

N̂
C ∼→ N̂

A

be the isomorphism induced by F (see Proposition 2.3). Then ψG F
∗

= ψDG
P

.

Proof. If γ = G(1B) , then G is an embedding associated with the pointed group Pγ , and DG
P is an

embedding associated with the image of Pγ under F . Proposition 6.21 in [P3] says that the isomorphisms ψ

behave well with respect to embeddings. Applying this to the case of the embedding F , one gets the

statement of the lemma.

Lemma 10.3. Let C = IndG
P (B) and let DG

P : B → ResG
P (C) be the canonical embedding. The set

E(B,ResG
P (A)) is in bijection with the set E(A,C) , as follows: G ∈ E(B,ResG

P (A)) corresponds to F ∈
E(A,C) if and only if ResG

P (F)G = DG
P .

Proof. Given G : B → ResG
P (A) , the existence of a unique F : A → C such that ResG

P (F)G = DG
P

follows from Proposition 1.5. Given F : A → C , we choose a defect Pδ of A and also write Pδ for its

image under F . Then we have Gα ≥ Pδ where α = F(1A) . By Proposition 1.6 Pδ is local and so by

Proposition 1.7 Pδ is conjugate to Pγ , where γ denotes the point of CP containing 1⊗1B⊗1 . Therefore

we also have Gα ≥ Pγ . Since F is an embedding associated with the pointed group Gα and DG
P is an

embedding associated with the pointed group Pγ , the existence of a unique G : B → ResG
P (A) such that

ResG
P (F)G = DG

P follows from Proposition 1.4.

Remark 10.4. We emphasize that each module in the set of defect multiplicity modules of A has a structure

obtained by using a specific isomorphism ψG between two central extensions. This isomorphism is not

unique since it can be composed with an arbitrary k∗-automorphism of N̂
B

inducing the identity on N ,

that is, an element of the group Aut0k∗(N̂
B

) ∼= Hom(N, k∗) . The use of another isomorphism would produce

another set of modules (and hence another parametrization). However the isomorphism ψG constructed by

Puig is very “natural”, so that the procedure which defines the set of defect multiplicity modules is the most

“natural” one. It seems to be an interesting open problem to find some “natural” extra properties of ψG
which would make it unique.
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11. The parametrization of interior algebras and modules

We have now paved the way for the main result giving the parametrization of primitive interior G-algebras,

for a fixed finite group G . Let A(G) be the set of isomorphism classes of primitive interior G-algebras. Let

Ω(G) be the set of triples (P,B,W) where P is a p-subgroup of G , B is an interior P -algebra which

is a source algebra, and W is an Outskew(B)-orbit of isomorphism classes of projective indecomposable

k](N̂
B

G(Pγ))◦-modules. By Proposition 5.1, the group NG(Pγ) only depends on P , B and NG(P,B) .

The group G acts by conjugation on Ω(G) and we are interested in the set of orbits Ω(G)/G . The group

NG(P,B) is the stabilizer of a triple (P,B,W) .

We define a map

∆ : A(G) −→ Ω(G)/G

by sending a primitive interior G-algebra A to the G-orbit of the triple (P,B,W) , where P is a defect

group of A , B is a source algebra of A , and W is the set of defect multiplicity modules of A (as defined

in Section 10). In the other direction we define a map

Γ : Ω(G)/G −→ A(G)

by sending the G-orbit of a triple (P,B,W) to the primitive interior G-algebra Cα , where C = IndG
P (B)

and α ∈ P(CG) is defined as follows. Let γ be the point of CP containing 1 ⊗ 1B ⊗ 1 , let S(γ) =

Endk(V (γ)) be its multiplicity algebra, let N = NG(Pγ) , let DG
P : B → ResG

P (C) be the canonical em-

bedding, and let ψDG
P

: N̂
C ∼→ (N̂

B

)
◦

be the isomorphism of central extensions induced by DG
P . Now

choose a module W in the set W , view it as a N̂
C

-module by means of the isomorphism ψDG
P

. This

defines an indecomposable direct summand of the multiplicity module V (γ) (because V (γ) is free of rank

one by Proposition 6.1), hence a point α of S(γ)N . Then the Puig correspondent of the point α is the

point α of CG . Since we started with an Outskew(B)-orbit of multiplicity modules and since we have

proved that each step commutes with the action of Outskew(B) ∼= Out(C) , only the Out(C)-orbit of such

points α is well-defined, but all the localizations Cα are isomorphic. On the other hand if we choose the

triple g(P,B,W) instead of (P,B,W) , for some g ∈ G , then the whole situation has to be conjugated

by g ; but since IndG
gP ( gB) can clearly be identified with IndG

P (B) , we end up with the g-conjugate of the

point α , which is equal to α since C is an interior G-algebra. Thus the map Γ is well-defined.

We now apply the analysis of the previous sections to each subset of the disjoint union

A(G) =
⋃

(P,B)
up to G−conjugacy

A(G,P,B) .

Using in particular Corollary 8.4 and Proposition 10.1, we obtain our main result.
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Theorem 11.1. The maps ∆ and Γ are inverse bijections.

We end this section with a discussion of the parametrization of indecomposable OG-lattices. Recall
that an OG-lattice M is a finitely generated OG-module which is free as an O-module. The algebra
A = EndO(M) is an interior G-algebra which is O-simple, that is, A is isomorphic to a matrix algebra
over O . Conversely any interior G-algebra which is O-simple has the form A = EndO(M) for some
OG-lattice M . Moreover M and M ′ are isomorphic OG-lattices if and only if A and A′ = EndO(M ′)
are isomorphic interior G-algebras. Since AG = EndOG(M) , the lattice M is indecomposable if and only
if A is primitive, and we assume this in the sequel. The defect group of A is known as a vertex of M . If Pγ

is a defect of A and if i ∈ γ , then the source algebra B = iAi of A is isomorphic to EndO(iM) and the
indecomposable OP -module Q = iM is known as a source of M . Thus in this case the first two invariants
are just a vertex P and a source Q of M . Given B = EndO(Q) , the induced algebra C = IndG

P (B) is by
construction isomorphic to EndO(IndG

P (Q)) , where IndG
P (Q) denotes the induced module. Thus we do not

quit the category of modules.
By the Skolem-Noether theorem, every automorphism of the O-simple algebra A is an inner auto-

morphism Inn(a) , and Inn(a) is an automorphism of G-algebras if and only if a ∈ AG . Thus every
automorphism of the G-algebra A is inner and Out(A) = 1 . This also holds for B and C , and it follows
that all Out(C)-orbits (or equivalently all Outskew(B)-orbits) are trivial. Therefore Proposition 4.1 asserts
that two distinct points of CG with defect Pγ can never be isomorphic. However this can be proved in the
following much more elementary way.

Lemma 11.2. Let D be an interior G-algebra which is O-simple. If two points α and α′ of DG are

isomorphic, then α = α′ .

Proof. By assumption D = EndO(X) for some OG-lattice X . The points α and α′ correspond to
isomorphism classes of indecomposable OG-direct summands Y and Y ′ of X . We can choose Y = iX

where i ∈ α and Y ′ = i′X where i′ ∈ α′ . Since α and α′ are isomorphic, the localizations Dα
∼=

iDi ∼= EndO(iX) and Dα′
∼= i′Di′ ∼= EndO(i′X) are isomorphic, and therefore the OG-modules iX and

i′X are isomorphic. By the Krull-Schmidt theorem, the complementary modules (1 − i)X and (1 − i′)X
are also isomorphic. Thus there is an automorphism h ∈ EndOG(X) = DG such that h(iX) = i′X and
h((1 − i)X) = (1 − i′)X . Then the idempotent hih−1 has the same image and the same kernel as i′ .
Therefore hih−1 = i′ and this proves that α = α′ .

The fact that Out(C) = 1 also implies that its quotient group NG(P,B)/NG(Pγ) is trivial. Thus
in the case of lattices we have NG(P,B) = NG(Pγ) . This group is known as the inertial subgroup of the
source Q and we write it NG(P,Q) . Since NG(P,B) = NG(Pγ) and since Out(B) = 1 , there is a unique
embedding B → A , and therefore the set of defect multiplicity modules of M (that is, of A ) is a singleton.

We write N̂
Q

G(P,Q) instead of N̂
B

G(P,Q) .
We can now describe the parametrization of OG-lattices by restricting the parametrization of interior

algebras to O-simple algebras. Since the restrictions of the maps ∆ and Γ can be defined directly without
considering Outskew(B)-orbits, the parametrization of OG-lattices does not depend on the results of this
paper, but only on the Puig correspondence and Puig’s Proposition 6.1. Let M(G) be the set of isomorphism
classes of indecomposable OG-lattices. Let Π(G) be the set of triples (P,Q,W ) where P is a p-subgroup
of G , Q is an indecomposable OP -module which is its own source (up to isomorphism), and W is an
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indecomposable projective k](N̂
Q

G(P,Q))◦-module (up to isomorphism). The group G acts by conjugation
on Π(G) and the group NG(P,Q) is the stabilizer of a triple (P,Q,W ) .

If an OG-lattice M ∈ M(G) is mapped to the triple (P,Q,W ) (up to conjugation), where P is a
vertex of M , Q is a source of M , and W is a defect multiplicity module of M , this defines a map

∆mod :M(G) −→ Π(G)/G , M 7→ (P,Q,W ) ,

which is the restriction of the map ∆ defined for arbitrary primitive interior G-algebras (up to suitable
identifications of OG-lattices with their corresponding interior algebras). Thus we have the following result.

Corollary 11.3. The map ∆mod :M(G)→ Π(G)/G is a bijection.

Example 11.4. In the special case of trivial source OG-lattices, we have Q = O , the trivial module. Then

NG(P,Q) = NG(P ) and the twisted group algebra k]N̂
Q

G(P ) turns out to be canonically isomorphic to
the ordinary group algebra kNG(P ) . Indeed since the source algebra is the trivial algebra O , the central
extension 9.2 is the trivial sequence 1→ k∗ → k∗ → 1→ 1 , and so the restriction of this sequence along the
map NG(P ) → 1 splits canonically. Therefore trivial source lattices are parametrized by pairs (P,W ) up
to conjugation, where P is a p-subgroup of G and W is an indecomposable projective kNG(P )-module
(up to isomorphism). Thus we recover the well-known parametrization of trivial source modules. Since a
trivial source OG-lattice M has the same two invariants as the trivial source kG-module k ⊗O M , one
deduces also the well-known fact that trivial source kG-modules lift to O .

12. The Green correspondence

An important consequence of the Puig correspondence is another bijection between pointed groups, which
is a first form of the Green correspondence. We provide a proof because the result is not explicitly stated in
Puig’s work. Then we shall discuss the Green correspondence for primitive interior algebras.

Proposition 12.1 (Green correspondence for pointed groups). Let Pγ be a local pointed group on a

G-algebra A and let H be a subgroup of G containing NG(Pγ) . There is a bijection

{α ∈ P(AG) | Pγ is a defect of Gα }
∼−→ {β ∈ P(AH) | Pγ is a defect of Hβ } ,

which is characterized by the following property: if α corresponds to β under this bijection, then β is the

unique point of AH such that Gα ≥ Hβ ≥ Pγ .

Proof. Let S(γ) be the multiplicity algebra of γ . Since H ≥ NG(Pγ) by assumption, we have NH(Pγ) =
NG(Pγ) and we set N = NH(Pγ) = NG(Pγ) . Instead of working with points, it is here more convenient to
work with the corresponding maximal ideals. Recall that a point α of AG corresponds to a maximal ideal
mα ∈ Max(AG) . Consider the following sets:

X = { mα ∈ Max(AG) | Pγ is a defect of Gα } ,

Y = { mβ ∈ Max(AH) | Pγ is a defect of Hβ } ,

Z = { mδ ∈ Max(S(γ)N ) | N δ is projective } .
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By the Puig correspondence (Proposition 1.8), X is in bijection with Z via (πγ r
G
P )−1 and similarly Y is

in bijection with Z via (πγ r
H
P )−1 . Thus it is clear that X is in bijection with Y via (rG

H)−1 . If mα ∈ X
corresponds to mβ ∈ Y , we have (rG

H)−1(mβ) = mα and in particular Gα ≥ Hβ .
Let β′ ∈ P(AH) such that Gα ≥ Hβ′ and β′ 6= β . Since we have the two relations Gα ≥ Hβ and

Gα ≥ Hβ′ , then for i ∈ α there is an orthogonal decomposition rG
H(i) = j + j′ + e where j ∈ β , j′ ∈ β′

and e is some idempotent in AH . By the construction of the bijection, we have πγ r
G
P (α) = δ = πγ r

H
P (β) ,

where δ is the Puig correspondent of both α and β , and therefore πγ r
G
P (i) and πγ r

H
P (j) are primitive

idempotents. Now the orthogonal decomposition

πγ r
G
P (i) = πγ r

H
P (j) + πγ r

H
P (j′) + πγ r

H
P (e)

forces to have πγ r
H
P (j′) = 0 = πγ r

H
P (e) and the first of these equalities means that Hβ′ 6≥Pγ . This proves

that β is the unique point of AH such that Gα ≥ Hβ ≥ Pγ .

Remark 12.2. If α corresponds to β under the Green correspondence, then the following properties also
hold:
(a) mα = (rG

H)−1(mβ) = AG ∩mβ .
(b) rG

H induces an isomorphism S(α) = AG/mα
∼−→ S(β) = AH/mβ .

(c) α ⊆ tGH(AHβAH) .
Only the proof of the third statement requires some work. In the case of interior algebras (and under
the assumption Gα ≥ Hβ ), (c) is equivalent to the assertion that the localization Aα can be embedded
in IndG

H(Aβ) , in such a way that the pointed group Hβ on Aα is identified with the pointed group Hβ′

on IndG
H(Aβ) , where β′ corresponds canonically to β (i.e. contains 1⊗β⊗1 ). The proof of this equivalence

follows the same line as that of Proposition 1.5.

The Green correspondence for primitive interior algebras is essentially a consequence of the parametriza-
tion. Let P be a p-subgroup of G , let B be an interior P -algebra which is a source algebra and let H be
a subgroup of G containing NG(P,B) . As before we set N = NG(Pγ) , where γ is the point of IndG

P (B)P

containing 1 ⊗ 1B ⊗ 1 , and we know by Proposition 5.1 that in fact N only depends on P and B .
Consequently if γ′ is the point of IndH

P (B)P containing 1 ⊗ 1B ⊗ 1 , then we also have NH(Pγ′) = N .
Since NH(P,B) = NG(P,B) by the choice of H , the group Outskew(B) is the same when computed with
respect to G or to H . It follows that both sets A(G,P,B) and A(H,P,B) are parametrized by the set

of Outskew(B)-orbits of isomorphism classes of indecomposable projective k](N̂
B

)
◦
-modules. Therefore by

composing the parametrization for G with the inverse of the parametrization for H , we obtain a bijection
between A(G,P,B) and A(H,P,B) .

Proposition 12.3 (Green correspondence for interior algebras). Let P be a p-subgroup of G , let B

be an interior P -algebra which is a source algebra, and let H be a subgroup of G containing NG(P,B) .

Then there is a bijection between A(G,P,B) and A(H,P,B) mapping a primitive interior G-algebra A ∈
A(G,P,B) to the unique primitive interior H-algebra A′ ∈ A(H,P,B) having the same set of defect

multiplicity modules as A .

We can also fix the defect group P and allow the source B to vary. Let A(G,P ) be the set of
isomorphism classes of primitive interior G-algebras with defect group P . For each source B , the sub-
group NG(P,B) is contained in NG(P ) and is equal to it in some cases (Examples 5.3 and 11.4). Thus
the disjoint union of the Green correspondences for each B yields an overall correspondence, provided the
subgroup H contains NG(P ) .
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Corollary 12.4. Let P be a p-subgroup of G and let H ≥ NG(P ) . Then there is a source-preserving

bijection between A(G,P ) and A(H,P ) .

We now briefly indicate how the Green correspondence can be described directly and how it is related
with the Green correspondence for pointed groups. Clearly IndH

P (B) can be identified with a subalgebra
of IndG

P (B) . In other words there is a canonical embedding

DG
H : IndH

P (B) −→ ResG
H IndG

P (B)

containing the inclusion dG
H . By the embedding DG

H , the pointed group Pγ′ is identified with Pγ , because
it is clear that ResH

P (DG
H)DH

P = DG
P where DH

P : B → ResH
P IndH

P (B) and DG
P : B → ResG

P IndG
P (B) are the

canonical embeddings. In general an embedding does not preserve multiplicities, but induces an embedding
between corresponding multiplicity algebras (Proposition 1.11). But here we have the following result, which
shows that we can identify the multiplicity algebras S(γ) and S(γ′) , as well as the multiplicity modules
V (γ) and V (γ′) .

Lemma 12.5. With the notation above, the embedding DG
H : S(γ′) → S(γ) induced by DG

H is an

exo-isomorphism.

Proof. It suffices to note that, by Proposition 6.1, S(γ′) and S(γ) have the same dimension (namely |N | )
since both are the algebra of k-endomorphism of a free module of rank one over a suitable twisted group
algebra k]N̂ .

By Corollary 4.4, A(G,P,B) is in bijection with Outskew(B)
∖
P(IndG

P (B)G)Pγ , and similarly A(H,P,B)
is in bijection with Outskew(B)

∖
P(IndH

P (B)H)Pγ′ . By Proposition 5.1 (b), the outer action of Outskew(B)
is obtained by inducing up to G (respectively up to H ) the skew outer automorphisms of B .

Lemma 12.6. The embedding DG
H : IndH

P (B) → ResG
H IndG

P (B) commutes with the outer action

of Outskew(B) . Moreover DG
H

(
P(IndH

P (B)H)Pγ′

)
= P(IndG

P (B)H)Pγ
and consequently

DG
H

(
Outskew(B)

∖
P(IndH

P (B)H)Pγ′

)
= Outskew(B)

∖
P(IndG

P (B)H)Pγ .

Proof. Let H ∈ Outskew(B) and let h ∈ H be g-skew, for some g ∈ NG(P,B) . Then IndG
P (H) is

represented by ĥ , where ĥ(x ⊗ b ⊗ y) = xg−1 ⊗ h(b) ⊗ gy for x, y ∈ G and b ∈ B . The same formula
describes IndH

P (H) for x, y ∈ H (note that g ∈ H by assumption on H ). Thus it is clear that the inclusion
dG

H : IndH
P (B)→ ResG

H IndG
P (B) commutes with the action of ĥ .

For the second assertion, we note that the set P(IndH
P (B)H)Pγ′ is in bijection by the Puig cor-

respondence with the set P(S(γ′)N ) (which consists of projective points by Corollary 6.2). Similarly
P(IndG

P (B)H)Pγ is in bijection with P(S(γ)N ) . By Lemma 12.5 the inclusion dG
H induces an isomor-

phism dG
H : S(γ′)→ S(γ) . Thus we have a commutative diagram

IndH
P (B)H rH

P−→ IndH
P (B)P

πγ′−→ S(γ′)ydG
H

ydG
H

ydG
H

IndG
P (B)H rH

P−→ IndG
P (B)P πγ−→ S(γ)

and since the Puig correspondence is induced by πγ′ r
H
P (respectively πγ r

H
P ), it follows that

dG
H

(
P(IndH

P (B)H)Pγ′

)
= P(IndG

P (B)H)Pγ .
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It follows that we can identify P(IndH
P (B)H)Pγ′ and P(IndG

P (B)H)Pγ , as well as the Outskew(B)-orbits
on these sets. Now the Green correspondence for pointed groups (Proposition 12.1) is a bijection between
P(IndG

P (B)G)Pγ and P(IndG
P (B)H)Pγ , and since it is induced by the restriction map rG

H , the bijection
commutes with the action of Outskew(B) . Therefore the Green correpondence for pointed groups induces a
bijection

Outskew(B)
∖
P(IndG

P (B)G)Pγ

∼−→ Outskew(B)
∖
P(IndG

P (B)H)Pγ ,

which is essentially the Green correspondence for primitive interior algebras in view of the canonical bijections
of Corollary 4.4

A(G,P,B) ∼= Outskew(B)
∖
P(IndG

P (B)G)Pγ

and A(H,P,B) ∼= Outskew(B)
∖
P(IndH

P (B)H)Pγ′
∼= Outskew(B)

∖
P(IndG

P (B)H)Pγ
.

Remarks 12.7. (a) Let A ∈ A(G,P,B) and let D ∈ A(H,P,B) be its Green correspondent. By the
third property of the Green correspondence mentioned in Remark 12.2, we also have an embedding of A

into IndG
H(D) (which “commutes” with the embedding of the source algebra B ).

(b) The characterization of the Green correspondence given in Proposition 12.1 includes the Burry-
Carlson-Puig theorem. We state it here for interior algebras. Let A be a primitive interior G-algebra and
let NG(P,B) ≤ H ≤ G for some p-subgroup P and source algebra B . Suppose that a primitive interior
H-algebra D embeds into ResG

H(A) and that D has defect group P and source algebra B . Then A has
defect group P and source algebra B , and D is the Green correspondent of A . One can easily deduce a
version of this result for a subgroup H ≥ NG(P ) without any mention to B , as in Corollary 12.4 above.

(c) We warn the reader that the Green correspondent of a block algebra OGb is not the block algebra of
the Brauer correspondent of b . It is a primitive interior algebra which has no reason to be a block algebra.
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