000130445 001__ 130445
000130445 005__ 20190316234441.0
000130445 022__ $$a0723-0869
000130445 037__ $$aARTICLE
000130445 245__ $$aMost finite groups are p-nilpotent
000130445 269__ $$a1993
000130445 260__ $$bElsevier$$c1993
000130445 336__ $$aJournal Articles
000130445 6531_ $$astrongly characteristic subgroup
000130445 6531_ $$a finite p-group
000130445 6531_ $$a Alperin's	fusion theorem
000130445 6531_ $$a finite group
000130445 6531_ $$a Sylow p-subgroup
000130445 6531_ $$a central series of subgroups
000130445 6531_ $$a p-fusion
000130445 6531_ $$a group of outer automorphisms
000130445 6531_ $$a p-nilpotence
000130445 700__ $$0243565$$aThévenaz, Jacques$$g123676
000130445 773__ $$j11$$k4$$q359-363$$tExpositiones Mathematicae
000130445 8564_ $$s103236$$uhttps://infoscience.epfl.ch/record/130445/files/p-nilpotent.pdf$$yPreprint$$zn/a
000130445 909C0 $$0252233$$pCTG$$xU10861
000130445 909CO $$ooai:infoscience.tind.io:130445$$particle$$qGLOBAL_SET$$qSB
000130445 917Z8 $$x123676
000130445 937__ $$aCTG-ARTICLE-1993-002
000130445 970__ $$a0809.20013/CTG
000130445 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000130445 980__ $$aARTICLE