On a Conjecture of Webb

Jacques Thévenaz
Institut de Mathématiques
Université de Lausanne
CH-1015 Lausanne
Switzerland

Let p be a prime divisor of the order of a finite group G and let $S_{p}(G)$ be the poset of non-trivial p-subgroups of G. Associated to this poset, we consider the simplicial complex $\Delta\left(S_{p}(G)\right)$ of chains of non-trivial p-subgroups, called Brown's complex (in honour of K.S. Brown who first introduced it). The group G acts by conjugation on $S_{p}(G)$, hence also on $\Delta\left(S_{p}(G)\right)$, and this natural action of G can be used for handling p-local information in the theory of p-modular representations and mod p cohomology of the group G, as for instance in [W1], [W2], [W3], [KR], [Bo], [Th]. We refer to Webb's survey paper [W2] for more details about Brown's complex and applications.

In connection with these recent developments, P.J. Webb stated the following conjecture.

CONJECTURE (Webb [W2, 4.2]). Let $\left|\Delta\left(S_{p}(G)\right)\right|$ be the geometric realization of the simplicial complex $\Delta\left(S_{p}(G)\right)$. Then the orbit space $\left|\Delta\left(S_{p}(G)\right)\right| / G$ is contractible.

By passing to the barycentric subdivision of $\Delta\left(S_{p}(G)\right)$, one can view $\left|\Delta\left(S_{p}(G)\right)\right| / G$ as the geometric realization of the simplicial complex associated with a suitable poset. Thus we can again work with a poset.

Webb first realized that the Euler characteristic of $\left|\Delta\left(S_{p}(G)\right)\right| / G$ is trivial [W1, 8.2] (see also [Th, 4.4] for another proof), and then more generally he proved that $\left|\Delta\left(S_{p}(G)\right)\right| / G$ is $\bmod p$ acyclic $[\mathrm{W} 3,2.6]$. This is the main evidence for the conjecture. Note also that if G is a group of Lie type in characteristic p, then $\Delta\left(S_{p}(G)\right)$ is G-homotopy equivalent to the Tits building of G (see [TW, 2.4] for details), and the conjecture holds because the orbit complex of the building is a single simplex, hence contractible.

The purpose of this note is to prove the conjecture in a few cases, as follows.

THEOREM A. Webb's conjecture holds for a p-solvable group G.

THEOREM B. Webb's conjecture holds if a Sylow p-subgroup of G is either abelian, or generalized quaternion, or TI.

Recall that a Sylow p-subgroup P is called $T I$ if $P^{g} \cap P=1$ for all $g \notin N_{G}(P)$. In other words every p-subgroup is contained in a unique Sylow p-subgroup.

Both theorems easily follow from rather elementary results on p-subgroups and control of fusion which we describe in the first section. The proofs appear in the second section.

1. The poset of orbits

The orbit set $\Delta\left(S_{p}(G)\right) / G$ is not a simplicial complex, because in general there are several orbits of simplices with given orbits of vertices. Thus we pass to the barycentric subdivision, that is, we consider the poset $\Sigma_{p}(G)$ of (non empty) chains in $S_{p}(G)$. The associated simplicial complex $\Delta\left(\Sigma_{p}(G)\right)$ consists of chains of chains of non-trivial p-subgroups, but we concentrate on the poset $\Sigma_{p}(G)$ itself. An element $\sigma \in \Sigma_{p}(G)$ will be written

$$
\sigma=\left(P_{0}<P_{1}<\ldots<P_{n}\right)
$$

where $P_{i} \in S_{p}(G)$ and $n=\operatorname{dim}(\sigma)$. It is immediate to check that the poset $\Sigma_{p}(G)$ satisfies the crucial condition :

$$
\begin{equation*}
\tau \leq \sigma \quad \text { and } \quad \tau^{g} \leq \sigma \quad \text { imply that } \quad \tau=\tau^{g} \quad\left(\tau, \sigma \in \Sigma_{p}(G), g \in G\right) \tag{1.1}
\end{equation*}
$$

Thus $\Sigma_{p}(G)$ is a regular G-poset in the sense of [CR, $\left.\S 66\right]$.
Now write $[\sigma]_{G}$ for the orbit of σ under G. The orbit set $\Sigma_{p}(G) / G$ is a poset, with the order relation $[\tau]_{G} \leq[\sigma]_{G}$ provided that $\tau^{\prime} \leq \sigma^{\prime}$ for some $\tau^{\prime} \in[\tau]_{G}$ and $\sigma^{\prime} \in[\sigma]_{G}$. An easy consequence of the regularity condition (1.1) (see [CR, 66.6] for details) is that $\Delta\left(\Sigma_{p}(G)\right) / G$ is a simplicial complex and is isomorphic to $\Delta\left(\Sigma_{p}(G) / G\right)$, the simplicial complex associated with the poset $\Sigma_{p}(G) / G$. Moreover by [CR, 66.1 and 66.8$]$, the orbit space $\left|\Delta\left(S_{p}(G)\right)\right| / G$ (which we are interested in) is homeomorphic to the space associated with the poset $\Sigma_{p}(G) / G$. Thus we only have to work with this poset.

Let $f: H \rightarrow G$ be a homomorphism of finite groups. Since $S_{p}(G)$ and $\Sigma_{p}(G)$ do not involve the trivial subgroup, f can induce a map of posets $f_{*}: \Sigma_{p}(H) \rightarrow \Sigma_{p}(G)$ only if no p-subgroup is contained in $K=\operatorname{Ker}(f)$, that is, if p does not divide $|K|$. If this condition is satisfied, it is clear that f_{*} exists, is order preserving and preserves the length of chains of p-subgroups. Moreover if $\sigma, \tau \in \Sigma_{p}(H)$ are H-conjugate, then $f_{*}(\sigma)$ and $f_{*}(\tau)$ are G-conjugate, and therefore f_{*} induces a map $\bar{f}_{*}: \Sigma_{p}(H) / H \rightarrow \Sigma_{p}(G) / G$ which is order preserving.
(1.2) PROPOSITION. Let K be a normal subgroup of G of order prime to p and let $Q=G / K$. Then the canonical group homomorphism $f: G \rightarrow Q$ induces an isomorphism of posets $\bar{f}_{*}: \Sigma_{p}(G) / G \rightarrow$ $\Sigma_{p}(Q) / Q$.

Proof. Let $\sigma=\left(P_{0}<\ldots<P_{n}\right) \in \Sigma_{p}(Q)$ and let H be the inverse image of P_{n} in G. Let Q_{n} be a Sylow p-subgroup of H (so that $H=K Q_{n}$). Then f induces an isomorphism $Q_{n} \cong P_{n}$ and so there is a chain in $\Sigma_{p}(G)$ (with maximal element Q_{n}) mapping onto σ. It follows in particular that $\bar{f}_{*}: \Sigma_{p}(G) / G \rightarrow \Sigma_{p}(Q) / Q$ is surjective.

Let $\sigma=\left(P_{0}<\ldots<P_{n}\right) \in \Sigma_{p}(G)$ and $\tau=\left(Q_{0}<\ldots<Q_{n}\right) \in \Sigma_{p}(G)$. Assume that $[f(\sigma)]_{Q}=$ $[f(\tau)]_{Q}$, so that there exists $g \in G$ with $f(\sigma)=f(\tau)^{f(g)}$. We have to show that $[\sigma]_{G}=[\tau]_{G}$, so replacing τ by τ^{g}, we can assume that $f(\sigma)=f(\tau)$. Then $f\left(P_{n}\right)=f\left(Q_{n}\right)$, that is, $K P_{n}=K Q_{n}$. Since P_{n} and Q_{n} are Sylow p-subgroups of $K P_{n}$, there exists $k \in K$ such that $P_{n}=Q_{n}^{k}$. Replacing τ by τ^{k}, we can assume further that $P_{n}=Q_{n}$. Now f induces an isomorphism $P_{n} \cong f\left(P_{n}\right)$ and the images of the subgroups P_{i} and Q_{i} are equal. Therefore $P_{i}=Q_{i}$ for all i, and $\sigma=\tau$. This proves the injectivity of \bar{f}_{*}.

If $f: H \rightarrow G$ is a group homomorphism, the proposition reduces the study of the induced map $\bar{f}_{*}: \Sigma_{p}(H) / H \rightarrow \Sigma_{p}(G) / G$ to the case of the inclusion $\operatorname{Im}(f) \rightarrow G$. Thus we can assume that f is an inclusion. Recall that a subgroup H of G controls p-fusion in G if some Sylow p-subgroup of G is contained in H (i.e. $|G: H|$ is prime to p) and the following condition is satisfied: whenever Q is a p-subgroup of H and $Q^{g} \leq H$ for some $g \in G$, then $g=c h$ with $c \in C_{G}(Q)$ and $h \in H$. Here $C_{G}(Q)$ denotes the centralizer of Q in G.
(1.3) PROPOSITION. Let H be a subgroup of G which controls p-fusion in G. Then the inclusion $i: H \rightarrow G$ induces an isomorphism of posets $\bar{i}_{*}: \Sigma_{p}(H) / H \rightarrow \Sigma_{p}(G) / G$.

Proof. The surjectivity is easy: if P_{n} is the maximal subgroup of $\sigma \in \Sigma_{p}(G)$, then since $|G: H|$ is prime to p, there exists $g \in G$ such that $P_{n}^{g} \leq H$; then $\sigma^{g} \in \Sigma_{p}(H)$ and $\bar{i}_{*}\left(\left[\sigma^{g}\right]_{H}\right)=\left[\sigma^{g}\right]_{G}=[\sigma]_{G}$, as required.

Now let $\sigma, \tau \in \Sigma_{p}(H)$ such that $[\sigma]_{G}=[\tau]_{G}$, that is, $\tau=\sigma^{g}$ for some $g \in G$. Let P_{n} be the maximal subgroup of σ. Since P_{n}^{g} is the maximal subgroup of τ which is a chain in H, we have $P_{n}^{g} \leq H$. By control of fusion, it follows that $g=c h$ with $c \in C_{G}\left(P_{n}\right)$ and $h \in H$. Since c stabilizes the whole chain σ, we obtain $\tau=\sigma^{h}$, proving the injectivity of \bar{i}_{*}.
(1.4) REMARK. It is possible to express the results above in a categorical setting as in $[\mathrm{Pu}]$, where Puig introduces the Frobenius category. We also introduce a weak form of the Frobenius category. Let $\operatorname{Frob}_{p}(G) \quad$ (respectively $\operatorname{Weak}_{p}(G)$) be the category whose objects are all p-subgroups of G (including 1) and whose set of morphisms between the p-subgroups P and Q is equal to $C_{G}(P) \backslash T_{G}(P, Q)$ (respectively $N_{G}(P) \backslash T_{G}(P, Q)$), where $T_{G}(P, Q)=\left\{g \in G \mid P^{g} \leq Q\right\}$. Similarly we define $\operatorname{CFrob}_{p}(G)$ (respectively $\operatorname{CWeak}_{p}(G)$) to be the category whose objects are all chains of p-subgroups of G (which may include 1) and whose set of morphisms between the chains σ and τ is equal to $C_{G}(\sigma) \backslash T_{G}(\sigma, \tau)$ (respectively $N_{G}(\sigma) \backslash T_{G}(\sigma, \tau)$, where $T_{G}(\sigma, \tau)$ is defined as follows: if $\sigma=\left(P_{0}<\ldots<P_{n}\right)$ and $\tau=\left(Q_{0}<\ldots<Q_{m}\right)$, then $T_{G}(\sigma, \tau)$ is the set of all $g \in G$ such that $P_{i}^{g} \leq Q_{\phi(i)}$ for all i, for some order-preserving injective map $\phi:\{0, \ldots, n\} \rightarrow\{0, \ldots, m\}$.

Given a group homomorphism $f: H \rightarrow G$, we want to understand when f induces an equivalence of categories $f_{*}: \operatorname{Frob}_{p}(H) \xrightarrow{\sim} \operatorname{Frob}_{p}(G)$, and similarly for the other categories. It is not hard to prove that $f_{*}: \operatorname{CWeak}_{p}(H) \xrightarrow{\sim} \operatorname{CWeak}_{p}(G)$ if and only if the map of posets $\bar{f}_{*}: \Sigma_{p}(H) / H \rightarrow \Sigma_{p}(G) / G$ is an isomorphism. On the other hand it is well-known that $f_{*}: \operatorname{Frob}_{p}(H) \xrightarrow{\sim} \operatorname{Frob}_{p}(G)$ if and only if p does not divide $|\operatorname{Ker}(f)|$ and $\operatorname{Im}(f)$ controls p-fusion in G. Therefore the two propositions above say that

$$
f_{*}: \operatorname{Frob}_{p}(H) \xrightarrow{\sim} \operatorname{Frob}_{p}(G), \quad \Longrightarrow \quad f_{*}: \operatorname{CWeak}_{p}(H) \xrightarrow{\sim} \operatorname{CWeak}_{p}(G) .
$$

For completeness, we also mention that

$$
f_{*}: \operatorname{Frob}_{p}(H) \xrightarrow{\sim} \operatorname{Frob}_{p}(G) \Longleftrightarrow f_{*}: \operatorname{CFrob}_{p}(H) \xrightarrow{\sim} \operatorname{CFrob}_{p}(G),
$$

and that

$$
f_{*}: \operatorname{CWeak}_{p}(H) \xrightarrow{\sim} \operatorname{CWeak}_{p}(G) \Longrightarrow f_{*}: \operatorname{Weak}_{p}(H) \xrightarrow{\sim} \operatorname{Weak}_{p}(G) .
$$

We do not elaborate further on this. Indeed only $\operatorname{Frob}_{p}(G)$ seems to play an important role in group theory, for instance in questions of classification (see $[\mathrm{Pu}]$) and in group cohomology (see [Mi]).

2. Webb's conjecture

We start with the well-known observation that Webb's conjecture holds if $O_{p}(G) \neq 1$. As usual, $O_{p}(G)$ denotes the largest normal p-subgroup of G.
(2.1) LEMMA. If $P=O_{p}(G)$ is non-trivial, then $\Sigma_{p}(G) / G$ is contractible.

Proof. It is here more convenient to work with $S_{p}(G)$. By Section 1, $\left|\Delta\left(\Sigma_{p}(G) / G\right)\right|$ is homeomorphic to $\left|\Delta\left(S_{p}(G)\right)\right| / G$. Now the orbit space X / G of a G-space X is contractible if X is G-contractible, because a G-equivariant homotopy $F: X \times[0,1] \rightarrow X$ between $i d_{X}$ and the constant map (onto a G fixed point) induces a homotopy $F: X / G \times[0,1] \rightarrow X / G$. Thus it suffices to prove that $\left|\Delta\left(S_{p}(G)\right)\right|$ is G-contractible. Quillen [Qu, 2.4] proved that it is contractible via the maps

$$
Q \mapsto Q P \mapsto P \quad\left(Q \in S_{p}(G)\right)
$$

and this contraction is obviously G-equivariant (see also [TW, 1.2]).

Our strategy is now simply to use the results of Section 1 to reduce to the situation where $O_{p}(G) \neq 1$. We first consider Theorem A of the introduction.
(2.2) PROPOSITION. If G is p-solvable, then $\Sigma_{p}(G) / G$ is contractible.

Proof. Let $K=O_{p^{\prime}}(G)$, the largest normal subgroup of G of order prime to p, and let $Q=G / K$. By Proposition 1.2, $\Sigma_{p}(G) / G$ is isomorphic to $\Sigma_{p}(Q) / Q$. But by definition of a p-solvable group, the group Q has a non-trivial normal p-subgroup. Therefore by Lemma 2.1, $\Sigma_{p}(Q) / Q$ is contractible.

Next we prove Theorem B of the introduction.
(2.3) PROPOSITION. Let P be a Sylow p-subgroup of G and assume that P is either abelian, or generalized quaternion, or TI. Then $\Sigma_{p}(G) / G$ is contractible.

Proof. If P is abelian, then it was already known to Burnside that $H=N_{G}(P)$ controls p-fusion in G. Therefore by Proposition 1.3, $\Sigma_{p}(G) / G \cong \Sigma_{p}(H) / H$ and the latter is contractible by Lemma 2.1. For the reader's convenience, we recall Burnside's argument. If $Q, Q^{g} \leq N_{G}(P)$, then $Q, Q^{g} \leq P$, and so $Q \leq P$ and $Q \leq P^{g^{-1}}$. Since P is abelian, P and $P^{g^{-1}}$ are Sylow p-subgroups of $C_{G}(Q)$, hence conjugate by some $c \in C_{G}(Q)$. It follows that $g^{-1} c \in N_{G}(P)$, as required.

If P is a generalized quaternion 2-group, then P has a unique subgroup Z of order 2. But $N_{G}(Z)$ controls 2 -fusion in G and we conclude again by Proposition 1.3 and Lemma 2.1. We also recall why $N_{G}(Z)$ controls 2 -fusion. If $Q, Q^{g} \leq N_{G}(Z)$, then $Z, Z^{g} \leq N_{G}(Z)$. But since Z is the unique subgroup of $N_{G}(Z)$ of order 2, we have $Z=Z^{g}$, hence $g \in N_{G}(Z)$.

If P is $T I$, then $N_{G}(P)$ controls p-fusion in G and we conclude again by Proposition 1.3 and Lemma 2.1. The proof that $N_{G}(P)$ controls fusion is a straightforward consequence of the fact that every p-subgroup Q is contained in a unique Sylow p-subgroup.

REMARKS. (a) The Brauer-Suzuki theorem on groups G with a generalized quaternion Sylow 2subgroup asserts that $G / O_{p^{\prime}}(G)$ has a central subgroup of order 2 . Thus the result above is also a consequence of Proposition 1.2.
(b) It is clear that the argument of Proposition 2.3 says that if G has a subgroup H which controls p-fusion and which has a normal p-subgroup, then $\Sigma_{p}(G) / G$ is contractible.

We end this paper with another application of Proposition 1.3.
(2.4) PROPOSITION. If Webb's conjecture (for the prime p) holds for the symmetric group $S_{p n}$, then it also holds for each symmetric group $S_{p n+k}$ where $0 \leq k \leq p-1$.

Proof. It is well-known that S_{m-1} controls p-fusion in S_{m} if p does not divide m. The proof is left to the reader. Repeated applications of this property lead to the result, thanks to Proposition 1.3.
[Bo] S. Bouc, Projecteurs dans l'anneau de Burnside, projecteurs dans l'anneau de Green, modules de Steinberg généralisés, J. Algebra, to appear.
[CR] C.W. Curtis, I. Reiner, Methods of Representation Theory, Volume II, Wiley-Interscience, New-York, 1987.
[KR] R. Knörr, G.R. Robinson, Some remarks on a conjecture of Alperin, J. London Math. Soc. 39 (1989), 48-60.
[Mi] G. Mislin, Group homomorphisms inducing isomorphisms in mod-p cohomology, Comment. Math. Helv., to appear.
[Pu] L. Puig, La classification des groupes finis simples: bref aperçu et quelques conséquences internes, Astérisque 92-93 (1982), 101-128.
[Qu] D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group, Adv. in Math. 28 (1978), 101-128.
[Th] J. Thévenaz, Locally determined functions and Alperin's conjecture, preprint, 1990.
[TW] J. Thévenaz, P.J. Webb, Homotopy equivalence of posets with a group action, J. Combin. Theory Ser. A, to appear.
[W1] P.J. Webb, A local method in group cohomology, Comment. Math. Helv. 62 (1987), 135-167.
[W2] P.J. Webb, Subgroup complexes, Proc. Symp. Pure Math. 47 (1987), 349-365.
[W3] P.J. Webb, A split exact sequence of Mackey functors, preprint, 1989.

