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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 116, Number 3, November 1992

 THE CONSTRUCTION OF THE MAXIMAL A1'S
 IN THE EXCEPTIONAL ALGEBRAIC GROUPS

 DONNA M. TESTERMAN

 (Communicated by Warren J. Wong)

 ABSTRACT. Let G be a simply connected simple algebraic group of excep-

 tional type defined over an algebraically closed field of characteristic p >
 3, 3, 5, 7, 7, for G of type G2, F4, E6, E7, E8, respectively. We con-
 struct the maximal closed connected subgroups of G, that are simple of type
 A1 . This completes Seitz's classification (under the indicated prime restrictions)
 of the maximal closed connected subgroups of G.

 Let G be a simply connected simple algebraic group of exceptional type
 defined over an algebraically closed field k of characteristic p > 0. In this
 paper we construct closed connected subgroups of G that are simple, of type
 A1, and maximal among closed connected subgroups of G. Moreover, under
 certain weak prime restrictions, these are known to be the only maximal A1 's
 in the exceptional algebraic groups. (See [3].) To apply the results of [3], we
 construct subgroups of type A1 with a maximal torus having a prescribed action
 on the Lie algebra of G. We state our main result in these terms, but first we
 introduce some notation.

 Let ?(G) denote the root system of G and take I1(G) = {laI, a2, ... } to
 be a fundamental system of 1(DG), with <)+(G) the associated set of positive

 roots. Let {xa,, ya,I ty I a E D+(G), y E Il(G) } be a basis of L(G), the Lie
 algebra of G, where (ty I y E fl(G)) is the Lie algebra of T, a maximal torus
 of G, and (xa), respectively (yc,), is the T-root subspace corresponding to
 the root a, respectively -a. (See [3, (1.1)].) We fix the following labelling of
 Dynkin diagrams, where the darkened nodes represent the short roots.

 (a4

 FE: 0 0 0 0~~ 0 0
 a I a3 0 an

 0

 02

 F4: 0 0 .
 a1 2 03 04

 G2e 0we r
 We can now state our result:
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 636 D. M. TESTERMAN

 Theorem 1. For each of the groups G given below, and for each of the prime
 restrictions, there exists a closed, connected subgroup X < G such that X has
 type A1 and for some maximal torus Tx = { Tx(c) I c E k* } of X, the
 action of Tx on L(G) is given by Tx (c)x_ = c d(a) x, Tx(c)y_ = c-d(a))y., and
 TX(c)tY = ty for all a E DI+(G), y E fl(G), where d(a +,8) = d(a) + d(,8) and
 { d(a) I a E H(G) } are as indicated.

 (i) G = G2, p > 7, d(a) = 2 for all a E H(G).
 (ii) G=F4, p > 13, d(a) = 2 forall a E H(G).
 (iii) G=E7, p > 19, d(a) = 2 forall a Ef l(G).
 (iv) G=E7, p > 17, d(a) = 2 for a E H(G), aa4, and d(a4) = O.
 (v) G=E8, p > 31, d(a) = 2 forall a Efll(G).
 (vi) G=E8, p > 29, d(a) = 2 for a E H(G), aa4, and d(a4) = O.
 (vii) G = E8, p > 23, d(a) = 2 for a E fl(G), aa4, a6, and d(a4)=

 O = d(a6).

 Combining Theorem 1 with results in [3], we obtain

 Theorem 2. Let G be as above and assume p > 3, 3, 5, 7, 7, for G oftype G2,
 F4, E6, E7, E8, respectively. Then a simple closed connected subgroup Y of G,
 with Y of type A 1, is maximal among proper closed connected subgroups of G if
 and only if G= G2, F4, E7, E7, E8, E8, E8, p > 7, 13, 19, 17, 31, 29, 23,
 respectively, and Y is conjugate in Aut(G) to X as described in Theorem 1(i),
 (ii), (iii), (iv), (v), (vi), (vii), respectively.

 Remarks. (1) Our construction of the A1 's in fact produces A1 's in Cheval-
 ley groups over arbitrary fields of suitable characteristic; we state this result
 (Theorem 3) after introducing further notation.

 (2) The existence of a maximal AI (with the described action) in the algebraic
 group G2 is established in [6]. Nevertheless, we include the proof here, since we
 establish as well the existence of the Al in the Chevalley groups over arbitrary
 fields of characteristic p > 7.

 (3) In [3] under certain weak prime restrictions, Seitz establishes a list of the
 possible maximal (among closed connected subgroups) semisimple subgroups
 of the exceptional algebraic groups in nonzero characteristic. In every case, he
 establishes the maximality of the groups, assuming their existence; if such a
 subgroup has rank greater than 1 , he establishes as well the existence. The
 existence of the rank 1 subgroups appearing on Seitz's list is provided by our
 Theorem 1.

 (4) The method of construction is fairly general and should have further ap-
 plications in the study of the subgroup structure of algebraic and finite groups.
 In particular, we describe a sufficient condition for exponentiating ade, for
 nilpotent elements e in a semisimple complex Lie algebra, to obtain automor-
 phisms of Lie algebras over fields of characteristic p, for certain primes p for

 which (ad e)P $, 0. (See Lemma 3.)
 Before proceeding with the proof of the theorems, we wish to mention that

 the research for this paper was done while the author was in residence at the
 Institute for Advanced Study. We thank this institution for its hospitality and
 extend thanks as well to Professor Richard Lyons of Rutgers University for the
 helpful conversations we had concerning this project.

 The Al 's are constructed by "exponentiating" suitable s12 subalgebras in a
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 MAXIMAL AI'S IN THE EXCEPTIONAL ALGEBRAIC GROUPS 637

 semisimple Lie algebra over C. Indeed, the construction follows the construc-
 tion of Chevalley groups as presented in [1, ??4.3, 4.4; 5, ?3]. The essential
 difference is that we require the exponential to preserve a lattice over a local-
 ization of Z (p-local integers for some prime p ) rather than over Z itself.

 Let LG(C) be a simple Lie algebra over C with root system ?(DG) and

 Chevalley basis q = {ea, f,, hY I ae ED ?(G), y E H(G) } . Fix a prime p,
 and let Z(P) be the localization of Z at the prime ideal pZ. Let LG(Z(p)) be
 the set of Z(p) linear combinations of elements of the Chevalley basis. Then
 LG(Z(p)) _ ZX 0z Z(P) . Let F be any field of characteristic p and LG(F) =
 LG(Z(P)) 0z(p) F ' Z9 oz F . Then LG(F) is a Lie algebra over F with basis
 ' = { v 0 1 v E 9 }. For convenience, write v for v 0 1. Note that the
 multiplication constants of LG(F) with respect to the basis 9' are those of
 LG(C) with respect to 9, interpreted as elements of the prime subfield of F.
 Finally, let G(F) be the adjoint Chevalley group of type (D(G) defined over
 F. So G(F) < Aut(LG(F)).

 We can now state

 Theorem 3. Let G, p, and d(a) be as in Theorem 1 and F be an arbitrary
 field of characteristic p. Then the.e exists a homomorphism $: PSL2(F)
 Aut(LG(F)) such that

 C 0 C?1)e d (a) pa

 7 (0 C-' ) ea = c a

 07f( 0C-' hy =hy
 for all a E D+(G), y E H(G), where 7T: SL2(F) -? PSL2(F) is the natural
 surjection. Moreover, q(PSL2(F)) < G(F).

 We now proceed with the basic lemmas that form the proofs of the theo-
 rems. We continue with the notation introduced thus far, and mention that
 any necessary restrictions on the prime p are indicated in the statements of
 the lemmas. We wish to define automorphisms of LG(F) associated with cer-

 tain elements e E LG(C). Let e = E ce,e, where a ranges over ?+(G) and
 c, E Z, such that ade is a nilpotent transformation of LG(C) with (ad e)k/k!
 preserving LG(Z(P)) for all k > 0. That is, [(ad e)k/k!](LG(Z(p))) C LG(Z(P)) .
 Then for A E C, if exp(ad Ie) acting on LG(C) is represented by the matrix
 A(A) with respect to the basis 9 , then the entries of A(A) lie in Z(p)[A]. Now

 let t E F and A(t) be the matrix obtained from A(i) by replacing each entry
 f({) E Z(p)[iA] by f(t) where f is the image of f under the natural homomor-
 phism Z(p)[x] -? F[x]. Define x(t) to be the linear transformation of LG(F)
 represented by the matrix A(t) with respect to the basis 9 . In Lemmas 1 and
 2 we use the polynomial identities that hold for the entries of A(i) to estab-
 lish identities for the entries of A(t), which then imply the stated results about
 x(t) .

 Lemma 1. (1) x(t) is a Lie algebra automorphism of LG(F) for all t E F.
 (2) Assume p > 3, 2 for G of type E6, E7, respectively. Then x(t) E G(F) <

 Aut(LG(F)) .
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 638 D. M. TESTERMAN

 Proof. Since A(A)A(-A) = I, x(t)x(-t) is the identity transformation of

 LG(F), so x(t) is invertible.
 Let {vI,v2,...} be the Chevalley basis R of LG(C), hence ' =

 {VI, V-2, ...}.Say

 (#) [vjvj] = YijkVk for some Yijk EZ
 k

 Then, letting 2ijk denote Y2ij 1F, we have [ViVj] = Ek YijkVk. For A E C,
 exp(adAe)vi = EjA(X)jivj and x(t)vi = Ej A(t)jjvj. Applying the algebra
 automorphism exp(adAe) to both sides of (#), we obtain

 j A(A)rjA((A)sjyrsi = ZYijkA(A)lk for all i, j, 1.
 r,s k

 That is, the polynomial

 S Yii kA(X)lk - A(X)riA(X)sjYrsl E Z(p)[X]
 k r,s

 vanishes for all A E C; so it is identically 0. Thus, the polynomial

 E 'ij kA(X)lk -E A(X)riA(X)sj?rsj E F[x]
 k r,s

 is also identically 0, guaranteeing that

 x(t)[ViVj] = [x(t)Vi, x(t)Vj] for all i and j and for all t E F.
 Thus, x(t) is a Lie algebra automorphism of LG(F).

 By Steinberg (see [4, ?4]) there exists a normal subgroup A < Aut(LG(F))
 with G(F) < A and such that Aut(LG(F))/A is isomorphic to the group
 of graph automorphisms of LG(F) and A/G(F) is isomorphic to the group
 F*/(F*)d, where d = 1 for G of type G2, F4, E8, d = 3 for G of type E6
 and d = 2 for G of type E7. Since the order of x(t) is p, the restrictions on
 p imply that x(t) E G(F), and the result holds.

 In addition to the above, let f = > dja, a E (D+ (G), dc E Z, such that ad f
 is a nilpotent transformation of LG(C) with (ad f )k/k! preserving LG(Z(p)) for
 k > 0. For t E F, let y(t) be the automorphism of LG(F), represented by
 the matrix B(t) with respect to the basis R', where B(t) is obtained (as with
 A(t) ) from the matrix B(A) representing exp(ad{f) with respect to the basis
 R. Moreover, assume e and f canonically generate an s12(C) subalgebra

 of LG(C) with [e, f] E El{Zhy I y E H(G)}. That is, [[e, f]e] = 2e and
 [[e, f]f] = -2f, and if h = [e, f] then R4 is a basis of eigenvectors for
 adh, with [h, ej = a(h)e,, [h, fj] = -a(h)fa, and [h, hy] = 0 for a E
 (D+(G), Y E 1(G). Moreover, a(h) E Z for all a E 4D+(G).

 Lemma 2. (i) X = (x(t), y(t) I t E F) is isomorphic to (P)SL2(F).
 (ii) Taking Tx = {h(c) I c E F*} where h(c) = x(c)y(-c-')x(c)x(-1) x

 y(l)x(-l), Tx is isomorphic to the multiplicative group of F and its ac-
 tion on LG(F) is a diagonal action with respect to R' given by h(c)e, =
 Ca(h)e, h(c)f, = c-(h)fa, and h(c)hy = hy for a E I?+(G) Y E H(G), C E F*.
 Proof. To see that X r SL2(F) or PSL2(F), we will check the following rela-
 tions of Steinberg (from [5, ?6]):

 (a) x(t) is additive in t.
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 (b) w(t)x(u)w(-t) = y(-t-2u) for t E F*, u e F, where w(t) =

 x(t)y(-t-1)x(t) .
 (c) h (t) is multiplicative in t, where h (t) = w (t) w (- 1).

 Recall the following basic

 Lemma [ 1, 5.1.1]. Let L be a simple Lie algebra over C. Let y E L such that
 ady is nilpotent and let 0 e Aut(L). Then 6 exp(ady)0 - =exp(ad Oy).

 This lemma implies the following identities, where A(i) and B(,u) are the
 matrices corresponding to the automorphisms exp(adAe) and exp(ad,uf), re-
 spectively, and

 W(A) = A(3)B(-A-{)A({) for A E C, A $ 0.

 (A) A(A)A(u) = A(A +,t) for all A, , E C and

 (B) W(A)A(z) W(-A) = B(_A-2ji) for all A, U E C, A $ 0.
 As well, by Lemma 19 of [5],

 (C) W(A) W(- 1) W(,) W(- 1) = W(u) W(- 1) for all A, ,u E C*.
 Now, the identity (A) produces polynomial identities in Z(p)[x, x-l, yI,

 which then imply the polynomial identities in F[x, x-1, y] necessary to es-
 tablish the identity A(t)A(u) = A(t + u) for t, u E F. But this last equation
 is the matrix form of (a). Argue similarly, using (B) and (C), to obtain (b) and
 (c).

 For (ii) we again refer to Lemma 19 of [5] to see that, for A e C*, a E
 D+ (G), yEFJ(G),

 W(A) W(-1l)e, - Aa(h)ea,

 W(A) W(- l)f= A-z(,)f
 and

 W(A)W(-l))hY = hy.

 These equalitites produce the necessary matrix identities to conclude that

 (c)ec,-- Ca(h)ea, h(c)f( a C ,(h)j and h(c)hy = hy for a E 4>+(G), y E
 fl(G), c e F*.

 The following lemma provides a criterion for establishing the condition

 [(ad e)/k !] (LG(Z(P))) C LG(Z(P)).

 The proof is based on a variation of the arguments given in ?5.7 of [2] and
 allows one to "exponentiate" certain nilpotent elements e for some primes p
 for which (ad e)P $ 0. Before stating the lemma, we need additional notation.

 For a subset J C H(G), let D(J) = D(G) n Ef{Za I a E J} and 4>+(J) =
 ?(J) n ?+ (G) . Recall the height function (relative to 11(G) ) defined on (D by

 ht(ZYEH(G) k7Y) = ZYEH(G) ky . Recall as well, the partial ordering induced by
 H(G) on the Euclidean space E spanned by the roots 'D: u -< A if and only if
 A -,u is a sum of positive roots. We define a new height function corresponding
 to a subset J C 11(G),

 ht ( kyy=Zky.
 YEr(G) ylJ
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 640 D. M. TESTERMAN

 So ht0(r) is ht(r) in the usual sense, and for a -< r, htj(a) < htj(r) . For a E

 D+(G), let L, = ( ea ), L-a = ( fa ), and Lo = (hy I y E H(G)) in LG(C) . For
 n = Ea+(G) Caea, Ca E C and for J C 1l(G), write nj = EaE(D+(G)-(D+(J) caea.
 Finally, let r0 denote the highest root in (D(G).

 Lemma 3. Let e E ZaEcD+(G) Zea.
 (i) If p > ht(r0), then (ad e)k/k! preserves LG(Z(p)) for all k > O.
 (ii) Assume e = ej = e1 + e2, where ei E ZaEO+(G) Zea and ei = (ei)j1

 for some J, Ji c n(G) with p > htj(ro), p > 2htj(ro). Then (ade)k/k!
 preserves LG(Z(p)) for all k > 0.
 Proof. We first note some identities in the polynomial ring Z[x, y]. For a

 prime p, (x -y)P= -yP +pZ?i'1P_sixiyP-', mi E Z, and for any integer k,

 xk -y k = (X-y) Eikj I xk-i-Iyi . So the irreducible polynomial (x -y) divides
 p EPi-1 mixiyP-i; so (x - y) divides EPI1 mixiyP-i in Z[x, y]. That is,

 mP_ mixiyP-i - (x-y)g(x, y) for some g(x, y) E Z[x, y] . (It is not difficult
 to express g(x, y) explicitly, however, it is not necessary for our purposes.)
 Combining these statements, we have

 p-l

 (x - y)P = (x - y) E xP`,-yi + p(x - y)g(x, y) .
 i=o

 So

 p-l

 (1) (x _y))P- = ZxP-i-yi +pg(x, y) for some g(x, y) E Z[x, y].
 i=o

 Now following Jacobson [2, 5.7], we use (1) to obtain relations in any asso-
 ciative algebra Y . Let A E V. Then in the above we may take x = AL,
 y = AR, the left and right multiplications determined by A. Doing so, we have

 p-l

 (AL - AR)P1 - AP-'- A' + pg(AL, AR);
 i=o

 so

 p-i

 (2) (adA)P- (a) = AP--'aA' +pg(AL, AR)(a) for any a E VS.
 i=O

 Now let a, b E V and A be an indeterminate. Set

 p-i

 (3) (Aa + b)P = APaP + bP + si(a, b) i,
 i=l

 where si(a, b) is a polynomial in a and b of total degree p.
 Recall that a and b do not necessarily commute. Then, differentiating both

 sides of (3) with respect to A gives

 p-i p-i

 S( a + b)P-'-'a({a + b)' = p)P-1aP + 5 is,(a, b)>''.
 i=O 1=0
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 Then by (2),

 p-i

 (ad(la + b))P- 1 (a) - pg ((Aa + b)L, (Aa + b)R)(a) = pAP- 1 aP + ,isi (a, b)A'- 1
 i=l1

 so

 (4) for i = 1 ... p- 1, isi(a, b) is the coefficient of Ai-I in
 (4) [(ad(Aa + b))P- (a) - pg((la + b)L, (Aa + b)R)(a)] .

 Now let n E ZEE+(G) Cea such that n = nj . We consider the action of
 (ad n)k on V , the Chevalley basis of LG(C) . First note that since (ad n)k (e,) C
 Z{ LS I htj(s) > htj(y) + k },

 (5) if k > htj(r0) then (ad n)k(ey) = 0 for all 2 E D+(G) - D(J).

 Also, since (ad n)'(Lr) C ,{ Ls I htj(s) > htj(r) + j } for all r E ID(G)

 (ad n)i(LG(C)) C {Ls I htj(s) > htj(-r0) + 2htj(r0) + I }.

 In particular,

 (6) if j > 2htj(r0) then (ad n)j = 0.

 Therefore, (ad n)2P = 0. Thus, the only possible p-divisible denominators
 in a kth power arise from the case k = p itself. So to show that (ad n)k/k!

 preserves LG(Z(p)) for all k > 0 it suffices to show that (ad n)P/p! preserves
 LG(Z(p) )

 Let s = gl('), where < is the universal enveloping algebra of LG(C).
 Recalling that ad is a multiplicative homomorphism of Z/ into V and using
 induction on k, one checks the following identity in operators in -:

 (7) (ad, (A adx + ady))k(ad u) = ad((ad(Ax + y))k(U))
 for all k > 0 and for x, y, u E LG(C).

 Now apply (3) and (4) with A = 1, a = ad el , and b = ad e2 to get

 p-l

 (ad e)f = (ad e1)P + (ad e2)f + Esi(adei, ade2),
 i=l

 where si(adel, ade2) is (1/i) times the coefficient of i-I in

 (adv(Aadel +ade2))P I(ade)-pg((Aadel +ade2)L (A adel+ade2)R)(adel).
 By (7),

 (adv (A ad el + ad e2))P I(ad el) = ad((ad(Ael + e2)) (el)).

 Now applying (5) to {el + e2 in place of n, and recalling the fact that p >
 htj (r) ,we have ad(2e1 + e2)p-1 (el) = 0. So for I < i < p -

 si(adei, ade2)

 = --T(coeff. of A'-) in g((A adel +ad e2)L, (2 ade, + ade2)R)(adel).
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 642 D. M. TESTERMAN

 Then dividing by p! gives

 si(adel, ade2)

 = i(p- l)!(coeff. of A'-1) ing((Aadel+ade2)L,(Aadel+ade2)R)(adel),

 which clearly preserves LG(Z(p)). Finally, we note that since ei = (ei)j, and
 p > 2htj (r0), (6) implies that (adej)P = 0. So (adei)P/p! + (ade2)P/p! pre-
 serves LG(Z(P)) as well, and (ii) holds. For (i), we take J = 0 and for each
 root system DI(G), we indicate below J1, J2 such that 11(G) = Ji U J2 and
 such that p > htj(r0) implies p > 2htj (r0). Then (i) follows directly from
 (ii).

 G J1 J2 ro
 G2 {al} {a2} 3a1 + 2a2
 F4 {al, a2} {3, a4} 2a1 + 3a2 + 4a3 + 2a4
 E6 {al, a2, a3} {4, as, a6} a, + 2a2 + 2a3 + 3a4 + 2a5 + a6
 E7 {al, a3, a4} {02, a5, a6, a7} 2a1 + 2a2 + 3a3 + 4a4 + 3a5 + 2a6 + a7
 E8 {fal, a2, a3, a4} {a5, a6, a7, a8} 2a1 + 3a2 + 4a3 + 6a4 + 5a5 + 4a6 + 3a7 + 2a8

 Remark. Lemma 3 holds for G of classical type as well. For (i) one checks that
 in each case there exists a decompostion fl(G) = J1 U J2 such that p > ht(ro)

 implies p > 2htj,(ro).
 In the following lemma, we list the specific s12 subalgebras in LG(C) to

 which we will apply Lemmas 1 and 2. For the purposes of this lemma, we
 simplify our notation for certain elements of q as follows: if y = ai E ll(G),
 we write ei, fi, hi for ey, fy, hy, respectively.

 Lemma 4. In each of the following, {e, f, h} is the standard basis of an s12
 subalgebra in LG(C), for G as indicated, with the action of H(G) on h as
 given. That is, for e, f, and h as given, e and f are ad-nilpotent, [e, f] = h,
 [h, e] = 2e, [h, f] = -2f, and the ai(h) are as indicated.

 (1) G = G2 with Cartan matrix

 2 -1
 (23 2;)

 e =el + e2,
 f = 6fi + 10f2,
 h = 6h1 + lOh2, and
 ao(h) = 2 for i = 1, 2.

 (2) G = F4 with Cartan matrix

 /2 -1 0 0

 1 2 -2 01) 0 -1 2 -1I
 0 0 1 2

 e = el + e2 + e3 + e4,

 f =22fi + 42f2 + 30f3 + 16f4,
 h =22h, + 42h2 + 30h3 + 16h4, and
 ai(h) = 2 for 1 < i < 4.
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 (3) G = E7 with Cartan matrix

 2 0 -1 0 0 0 0
 0 2 0 -1 0 0 0
 -1 0 2 -1 0 0 0
 0 -1 -1 2 -1 0 01;
 0 0 0 -1 2 -1 0
 0 0 0 0 -1 2 -1
 0 0 0 0 0 -1 2

 (a) e= E7- ei,
 f= 34fi + 49f2 + 66f3+ 96f4+ 75f5 + 52f6+ 27f7,
 h = 34h1 + 49h2+ 66h3 +96h4+ 75h5+ 52h6+ 27h7, and

 ai(h)=2 for 1 < i <7.
 (b) e el + e3+ [e3, e4] + [e2, e4] + e5+ e6+ e7 ,

 f = 26ff - 15f2 - 37[f2, f4] + 15f3 - 35[f3, f4] + 57f5 - 35[f4, f5] +
 40f6+ 21f7,
 h = 26h1 + 37h2+ 50h3+ 72h4+ 57h5+ 40h6+ 21h7, and

 ai(h)=2 for i$h4, a4(h)=0.
 (4) G = E8 with Cartan matrix

 2 0 -1 0 0 0 0 0
 0 2 0 -1 0 0 0 0
 -1 0 2 -1 0 0 0 0
 0 -1 -1 2 -1 0 0 0
 0 0 0 -1 2 -1 0 0
 0 0 0 0 -1 2 -1 0
 0 0 0 0 0 -1 2 -1
 0 0 0 0 0 0 -1 2

 (a) e=E81ei,
 f =92fi + 136f2+ 182f3+ 270f4+ 220f5+ 168f6 + 114f7+ 58f8,
 h = 92h, + 136h2+ 182h3+ 270h4+ 220h5+ 168h6+ 114h7+ 58h8, and
 ai(h) = 2 for 1 < i < 8.

 (b) e=el +e2+[e2, e4] +[e3, e4]+e5+e6+e7+e8,
 f= 72f1 + 38f2- 68[f2, f4] - 38f3 - 142[f3, f4] + 172f5- 68[f4, f5]+

 132f6+ 90f7+ 46f8,
 h = 72h, + 106h2 + 142h3 + 210h4 + 172h5 + 132h6 + 90h7 + 46hg8, and
 a1(h)=2 for i$h4, a4(h)=0.

 (c) e= el +e2+ e3+ [e2, e41 +[e4, e5J +[e5, e6 +[e6, e7+ e8,
 f= 60f1 + 22f2- 66[f2, f4] + 118f3+ 66[f3, f4] + 22f5- 108[f4, f5]-

 34[f5, f6] + 22f7 - 74[f6, f7] + 38f8,
 h 60h, + 88h2 + 118h3 + 174h4 + 142h5 + 108h6 + 74h7 + 38hg, and
 ai(h) = 2 for i :$ 4, 6 and a4(h)= O = a6(h)

 Proof. The proof consists of a straightforward check.

 Lemma 5. Let G, e, f, h be as in Lemma 4 and J = E [l(G) I y(h) =0,

 and assume p > htj(ro). Then (ade)k/k! and (ad f)k/k! preserve LG(Z(p))
 for all k > 0.

 Proof. Since we may take -[1(G) = {-y I y e H(G)} as a base of ID(G),
 we may apply Lemma 3 to f as well as e. For e, f as in 1, 2, 3(a), and
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 4(a) of Lemma 4, as(h) # 0 for all i, so J = 0 and Lemma 3(i) implies
 that (ad e)k/k! and (adf)k/k! preserve LG(Z(p)) for all k > 0. For e, f as
 in 3(b) of Lemma 4, where J= {a4}, take J1 ={?a4, a5 , a6 , a7} and J2 =
 {a,, a2 , a3, a4} . Then Ji (respectively -J1 ) satisfy the hypotheses of Lemma
 3 for e (respectively f ). For e, f as in 4(b) of Lemma 4, where J = {a4},
 take J1 ={a4, a5, a6 ,a7, a8} and J2 = {al, a2, a3, a4}. Finally, for e, f
 as in 4(c) of Lemma 4, where J = {a4, a6}, take J1 ={ a4, a5, a6, a7, a8}
 and J2 = {ai, a2, a3, a4, a6}. Then in each case, Lemma 3(ii) implies
 (ade)k/k! and (adf)k/k! preserve LG(Z(p)) forall k>0.

 Proof of Theorems 1 and 3. Theorems 1 and 3 follow directly from Lemmas
 2-5.

 Proof of Theorem 2. Assume p > 3, 3, 5, 7, 7 for G of type G2, F4, E6,
 E7, E8, respectively. Under these prime restrictions, Seitz establishes a list

 of the possible subgroups Y < G, Y of type A1, such that Y is maximal
 among proper closed connected subgroups of G. (See [3, Theorem (4.2)].) Each

 possibility is determined up to conjugacy in Aut(G) by the integers {d(a) I E e
 FI(G)} given in Theorem 1. Moreover, (17.2) of [3] proves that if G has a
 closed connected subgroup A of type A1 with a maximal torus whose action
 on L(G) is given by the integers {d (a) I ae e71(G)} for any of the cases (i)-(vii)
 of Theorem 1, then A is maximal among proper closed connected subgroups
 of G.
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