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Glauberman’s classical Z∗-theorem is a theorem about involutions of finite groups (i.e.

elements of order 2). It is one of the important ingredients for the classification of finite

simple groups, which in turn allows to prove the corresponding theorem for elements of

arbitrary prime order p. Let us recall the statement: if G is a finite group with a Sylow

p-subgroup P , and if x is an element of P of order p such that no other G-conjugate of x

lies in P , then the image of x in G/Op′(G) is central, where Op′(G) denotes the maximal

normal subgroup of G of order prime to p. The symbol Z∗(G) is the classical notation

for the inverse image in G of the centre of G/Op′(G) and this explains the name of the

theorem.

One can restate the assumption on x in terms of control of fusion. For an arbitrary

group G and a prime p, we say that a subgroup H of G controls finite p-fusion in G if the

following two conditions are satisfied:

(a) every finite p-subgroup of G is conjugate to a subgroup of H,

(b) if A is a finite p-subgroup of H and if Ag is also a subgroup of H for some g ∈ G,

then g = ch for some h ∈ H and c in the centralizer CG(A) of A in G.

This notion is equivalent to the requirement that the inclusion H → G induces an equiva-

lence between the categories of finite p-subgroups (in a suitable sense, see Section 1). The

assumption on x in the Z∗-theorem is then equivalent (at least for finite groups and more

generally for compact Lie groups) to the condition that the centralizer CG(x) controls

finite p-fusion in G (see Proposition 1.8 below). Also the conclusion of the Z∗-theorem is

readily seen to be equivalent to the equation G = CG(x) ·Op′(G) (see Lemma 2.3 below).
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It is easy to see (see for instance [Br, Proposition 4]) that one can also restate the

Z∗-theorem using the centralizer CG(A) of an arbitrary p-subgroup A. The theorem be-

comes stronger because the centralizer of a larger subgroup is smaller. Explicitly the

statement is now the following.

Z∗-THEOREM FOR FINITE GROUPS. Let G be a finite group and p a prime. Let

A be a p-subgroup of G and assume that CG(A) controls (finite) p-fusion in G. Then

G = CG(A) ·Op′(G).

The purpose of this paper is to show that the Z∗-theorem holds for compact Lie

groups. Recall that a p-toral group is a compact Lie group A whose connected component

A0 is a torus and whose component group A/A0 is a (finite) p-group. Moreover recall

that a (not necessarily finite) p-group is a group in which every element has order a power

of p. Our main result takes the following form.

Z∗-THEOREM FOR COMPACT LIE GROUPS. Let G be a compact Lie group and

p a prime. Let A be either a (not necessarily finite) p-subgroup or a p-toral subgroup of G

and assume that CG(A) controls finite p-fusion in G. Then

G = CG(A) · [A,G] = CG(A) ·Op′(G).

Moreover [A,G] is a finite normal p′-subgroup of G. In particular the connected component

G0 of G centralizes A.

Here [A,G] denotes the subgroup generated by the commutators [a, g] = a−1g−1ag

for a ∈ A, g ∈ G. This is always a normal subgroup of G because [a, g]h = [a, h]−1[a, gh].

Note that CG(A) is clearly a closed subgroup of G but Op′(G) need not be closed

(since for instance it is dense in G when G is the circle group). However Op′(G) is totally

disconnected (since otherwise it would contain a 1-dimensional Lie group), and therefore

its intersection with the connected component G0 of G is necessarily central in G0. Thus

if G0 is a semi-simple Lie group, it has finite centre and consequently Op′(G) is finite in

that case (hence closed).
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Our interest in the questions considered in this paper arose from a recent theorem of

the first author [Mi1] giving a cohomological criterion for the control of finite p-fusion (see

Theorem 1.1 below). However we do not need the full strength of this result here. In fact

only the easy implication of the theorem is used, namely (a restatement of) the classical

result allowing to compute mod-p cohomology using stable elements.

In view of the fundamental importance of the Z∗-theorem for finite groups, we hope

that its generalization can shed some new light on compact Lie group theory, in particular

on the cohomology of these groups. For instance, using the full strength of the theorem

of Mislin mentioned above, we prove that a morphism of compact Lie groups f : H → G

which induces a mod-p cohomology isomorphism induces an isomorphism between Sylow

p-subgroups of H and G, as well as Sylow p-subgroups of Z∗(H) and Z∗(G) (but only the

second case requires the Z∗-theorem). For another application of the theorem, we refer

the reader to [Mi2], where it is proved that the Dwyer-Wilkerson center ZH∗(BG, Z/pZ)

of the cohomology ring is isomorphic to the group of elements of order p in Z(G/Op′(G)).

In the first section of this paper, we give other definitions of control of fusion using

either the category of all p-subgroups or the category of all p-toral subgroups. We prove

that they are all equivalent for compact Lie groups.

For a connected group, or more generally for a group whose component group is a

p-group, we give a direct proof of the Z∗-theorem. For the general result however, we use

a reduction to the case of finite groups. Thus we need the Z∗-theorem for finite groups,

but we did not succeed in finding a suitable reference for this theorem (although the result

is well known to finite group theorists). It is quoted explicitly (but without proof) in [Pu,

Théorème 1.3]. Of course for p = 2 this is Glauberman’s theorem (see for instance [CR,

§63C]). For odd p, there is a reduction to the case of simple groups in [Br] and then the

proof essentially consists in a direct inspection of the list given by the classification of finite

simple groups.
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As long as no direct proof of the Z∗-theorem exists for finite groups and odd primes,

our result unfortunately depends on the classification of finite simple groups. We regret

to be reduced to adopting this approach, but fortunately our fellow countryman Armand

Borel, facing a similar situation [Bo], has paved the way for a decent excuse by quoting

G.B. Shaw:

“You have a low shopkeeping mind. You think of things that would never come into

a gentleman’s head.”

“That’s the Swiss national character, dear lady.”

1. Frobenius categories.

Following Puig [Pu], we define for an arbitrary group G and a prime p the Frobenius

category Frobp(G) as follows. Its objects are the finite p-subgroups of G and its morphisms

are the group homomorphisms induced by conjugation by some element of G. Thus the

set of morphisms from P to Q is equal to

Mor(P,Q) = CG(P )\TG(P,Q) where TG(P,Q) = {g ∈ G |P g ⊆ Q}.

In particular the set of endomorphisms of P is the group NG(P )/CG(P ) (and every en-

domorphism is an automorphism). The conjugation by an element g ∈ G will be written

Inn(g) : x 7→ xg = g−1xg, and P g = g−1Pg.

Any group homomorphism f : H → G induces a functor f∗ : Frobp(H) → Frobp(G).

When f is the inclusion of a subgroup H in G (which is the only case we consider in this

paper), then f∗ is an equivalence of categories if and only if H controls finite p-fusion

in G. Indeed condition (a) in the definition of the introduction means that any object of

Frobp(G) is isomorphic to an object of Frobp(H), and condition (b) states that f∗ is full

(while it is clearly always faithful).

For a finite group G, it follows from the description of the cohomology H∗(G, Z/pZ)

in terms of stable elements in the cohomology of a Sylow p-subgroup that the restriction

H∗(G, Z/pZ) → H∗(H, Z/pZ) is an isomorphism if H controls (finite) p-fusion in G. For

compact Lie groups, the same result holds for the cohomology H∗(BG, Z/pZ) by [FM,

Theorem 2.3]. The main result of [Mi1] asserts that the converse also holds. (The Frobenius

categories are called Quillen categories in [Mi1].) We quote the full result for completeness,

although we shall only use the easy part already mentioned for the proof of the Z∗-theorem.
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(1.1) THEOREM. Let f : H → G be a morphism of compact Lie groups. Then f

induces an equivalence f∗ : Frobp(H) → Frobp(G) if and only if the map of classifying

spaces Bf : BH → BG induces an isomorphism in mod-p cohomology.

It is convenient to introduce also two other categories of subgroups: the category

Sp(G) of all p-subgroups of G and, in case G is a compact Lie group, the category Tp(G)

of all p-toral subgroups of G. In both cases the morphisms are the group homomorphisms

induced by conjugation by an element of G. The maximal elements of Sp(G) (viewed as

a poset) are called Sylow p-subgroup of G (and they always exist by Zorn’s lemma). For

a compact Lie group, the advantage of those two categories compared to Frobp(G) is that

they have maximal elements which are all conjugate (i.e. weak terminal objects).

(1.2) LEMMA. Let G be a compact Lie group.

(a) All Sylow p-subgroups of G are conjugate.

(b) All maximal p-toral subgroups of G are conjugate. The connected component of a

maximal p-toral subgroup is a maximal torus of G.

(c) The closure of a p-subgroup of G is a p-toral subgroup of G.

(d) A Sylow p-subgroup of a p-toral subgroup P is dense in P .

Proof. (b) is proved in [JMO, Lemma A.1]. If A is a p-subgroup of G, then by

[We, 9.4], A contains an abelian normal subgroup B of finite index (because any compact

Lie group is a linear group). Therefore the closure of B is an abelian compact Lie group,

thus a direct product of a torus and a finite abelian group (a p-group in our case). It follows

that the closure A of A is p-toral, proving (c). By (b), we know that A is contained in the

normalizer N of a maximal torus. By [Fe, Corollary 1.5], all maximal torsion subgroups of

N are conjugate. Thus if U and V are two Sylow p-subgroups of G, they are conjugate to

subgroups of Nt where Nt denotes some fixed maximal torsion subgroup of N . But within

Nt all Sylow p-subgroups are conjugate (cf [We, 9.10]). This completes the proof of (a).

From (a) and (b) it is clear that every Sylow p-subgroup of a p-toral group P contains the

p-torsion subgroup of the torus P 0; but that subgroup is dense in P 0 and (d) follows.

The second fact which will be often used is the following.
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(1.3) LEMMA. Let A be a p-subgroup of a compact Lie group G and denote by A

the closure of A. Then there exists a countable increasing sequence of finite p-subgroups

Ai of A such that
⋃

i Ai = A. Moreover CG(Ai) = CG(A) = CG(A) for i sufficiently large.

Proof. Since A is p-toral, the torsion elements of (A)0 form a countable subgroup;

thus A is countable. By a result of Schur, since A is a linear torsion group, it is locally

finite (cf [We, 4.9]), and it follows that A =
⋃

i Ai for a suitable increasing sequence of

finite subgroups {Ai}. Clearly CG(Ai) = CG(A) = CG(A) for i sufficiently large.

The concept of control of fusion extends immediately to our new categories Sp(G)

and Tp(G). We shall say that a subgroup H of G controls p-fusion (respectively controls

p-toral fusion) in G if the inclusion Sp(H) → Sp(G) (respectively Tp(H) → Tp(G)) is an

equivalence of categories. The reader can easily rewrite this definition with two conditions

(a) and (b) as in the case of the control of finite p-fusion. If C denotes either of the three

categories Frobp(G), Sp(G) or Tp(G), we shall also say that H controls fusion in C to refer

to one of the three types of control of fusion.

(1.4) PROPOSITION. Let G be a compact Lie group and H a closed subgroup of G.

The following conditions are equivalent.

(a) H controls finite p-fusion in G.

(b) H controls p-fusion in G.

(c) H controls p-toral fusion in G.

Proof. Since any finite p-subgroup is a p-toral group, it is clear that (c) implies (a).

To see that (a) implies (b), write a p-subgroup P as a countable union of finite p-subgroups

P =
⋃

i Pi (Lemma 1.3). Since H controls finite p-fusion in G, there exists gi ∈ G such

that P gi

i ≤ H. Since G is compact, we can pass to a subsequence and assume that (gi)

converges to some g ∈ G. Then any element of P g can be approximated by an element

of P gi

i and since H is closed, it follows that P g ≤ H. Now suppose that P and P g are

both subgroups of H, for some g ∈ G. Then since H controls finite p-fusion in G, there

exists hi ∈ H and ci ∈ CG(Pi) such that g = cihi . By Lemma 1.3, there exists i such

that CG(Pi) = CG(P ). Thus g = ch with c ∈ CG(P ) and h ∈ H. This completes the
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proof of (b). Finally we prove that (b) implies (c) by a continuity argument: if Q is a

p-toral subgroup of G, choose a dense p-subgroup P in Q. Since H controls p-fusion in G,

there exists g ∈ G such that P g ≤ H. Then Qg ≤ H because H is closed. Similarly if

both Q and Qg are subgroups of H, for some g ∈ G, then since H controls p-fusion in G,

there exists h ∈ H and c ∈ CG(P ) such that g = ch . But CG(P ) = CG(Q) and thus

c ∈ CG(Q).

For any category C of subgroups which is closed under conjugacy (such as Frobp(G),

Sp(G) or Tp(G)), we shall say that a subgroup A ∈ C is isolated in C if for each object

P ∈ C, there is at most one morphism from A to P . Translating this condition, we see that

A is isolated in C if and only if for every h, g ∈ G such that < Ah, Ag > is contained in

a subgroup in C, the element gh−1 centralizes A. Here < Ah, Ag > denotes the subgroup

generated by Ah and Ag. Conjugating by h−1 and replacing gh−1 by g, we see that actually

A is isolated in C if and only if whenever < A,Ag > is contained in a subgroup in C, then

g ∈ CG(A). When C = Frobp(G), if an isolated subgroup A is generated by a single

element x, finite group theorists often say that x is weakly closed in a Sylow p-subgroup.

This condition corresponds to the assumption of the classical statement of the Z∗-theorem.

Any central subgroup belonging to C is isolated in C. Also if an isolated subgroup A is

contained in a group P ∈ C, then the definition immediately implies that A is central in P .

It is obvious that if A ∈ Frobp(G) is isolated in Sp(G), then A is isolated in Frobp(G).

We now show that for a compact Lie group, the converse holds.

(1.5) LEMMA. Let G be a compact Lie group and let A ∈ Frobp(G). Then A is

isolated in Frobp(G) if and only if A is isolated in Sp(G).

Proof. Assume A is isolated in Frobp(G). Let g ∈ G be such that P =< A, Ag > is a

p-group. In order to prove that g centralizes A, it suffices to show that P is finite and then

apply the assumption. As observed earlier, P is locally finite since it is a linear torsion

group [We, 4.9]. But P is finitely generated, hence finite.

Now we come to the link between the definition of isolated subgroups and control of

fusion.
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(1.6) LEMMA. Let G be an arbitrary group, let C be any of Frobp(G), Sp(G) or

Tp(G) (with G a compact Lie group for the latter case) and let A ∈ C. If CG(A) controls

fusion in C, then A is isolated in C.

Proof. The argument in the three cases is the same. Suppose < A, Ag >⊆ P where

P ∈ C. By control of fusion, there exists x ∈ G such that P x ⊆ CG(A). For a ∈ A, we

have ax, agx ∈ CG(A) ⊆ CG(a) and also a ∈ CG(a). Clearly CG(a) also controls fusion

(because CG(A) ≤ CG(a)) and applying this to the morphism Inn(x) :< a >→< ax >,

we obtain x ∈ CG(a). Similarly gx ∈ CG(a) and therefore g ∈ CG(a). This holds for all

a ∈ A, showing that g ∈ CG(A). Thus A is isolated in C.

When all maximal elements of our category are conjugate, the converse of Lemma 1.6

holds. We only give the argument for compact Lie groups.

(1.7) LEMMA. Let G be a compact Lie group.

(a) Let A ∈ Sp(G). If A is isolated in Sp(G), then CG(A) controls p-fusion.

(b) Let A ∈ Tp(G). If A is isolated in Tp(G), then CG(A) controls p-toral fusion.

Proof. Let C be either Sp(G) or Tp(G) and let P ∈ C. Since all maximal elements of C

are conjugate (Lemma 1.2), there exists g ∈ G such that A and P g lie in such a maximal

element Q. Since A is isolated, it follows that Q centralizes A. Therefore P g ⊆ CG(A),

proving the first condition for control of fusion.

Now suppose that P, P g ≤ CG(A) for some g ∈ G. Thus we have A,Ag−1 ⊆ CG(P ).

But CG(P ) is a compact Lie group, so all its Sylow p-subgroups (respectively maximal

p-toral subgroups) are conjugate. Therefore there exists c ∈ CG(P ) such that A and

Ag−1c lie in such a maximal element. Since A is isolated, g−1c centralizes A. Therefore

g ∈ CG(P ) · CG(A), proving the second condition for control of fusion.

Collecting the results above, we obtain the following proposition.
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(1.8) PROPOSITION. Let G be a compact Lie group and let A be either a p-subgroup

or a p-toral subgroup of G. Then the following conditions are equivalent.

(a) CG(A) controls finite p-fusion.

(b) CG(A) controls p-fusion.

(c) CG(A) controls p-toral fusion.

If A is finite, then these conditions are also equivalent to the following ones.

(d) A is isolated in Frobp(G).

(e) A is isolated in Sp(G).

(f) A is isolated in Tp(G).

In order to be able to use the second set of conditions, recall that by Lemma 1.3 one

can always replace A by a finite subgroup without changing its centralizer.

The following corollary will be crucial in the proof of the Z∗-theorem.

(1.9) COROLLARY. Let H be a closed subgroup of a compact Lie group G and let

A ≤ H be a p-subgroup or a p-toral subgroup. If CG(A) controls finite p-fusion in G, then

CH(A) controls finite p-fusion in H.

Proof. We first replace A by a finite p-subgroup B of A such that CG(A) = CG(B) and

CH(A) = CH(B). If CG(B) controls finite p-fusion in G, then B is isolated in Frobp(G)

and therefore B is also isolated in the subcategory Frobp(H). But by Proposition 1.8, this

implies that CH(B) controls finite p-fusion in H.

2. Proof of the Z∗-theorem.

We first treat the following special case.
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(2.1) PROPOSITION. Let G be a compact Lie group and assume that G/G0 is a

p-group. If A is a p-group or a p-toral subgroup of G such that CG(A) controls finite

p-fusion in G, then CG(A) = G, that is, A is central in G.

Proof. By Lemma 1.3 we can assume that A is a finite p-group. Write K =

CG(A). Since G/G0 is a p-group, K/K0 is a (finite) p-group too (cf. [Ad, Lemma 7.1]

or [JMO, Proposition A.4]). By Theorem 1.1, the induced map BK → BG is a mod-p

cohomology isomorphism. First we claim that K covers the quotient G/G0. Otherwise

K · G0 is contained in a maximal subgroup M of G of index p. Let α : G/G0 → Z/p

be a homomorphism with kernel M/G0. Then α ∈ H1(G/G0, Z/p) is non-trivial but its

restriction to K/K0 is trivial. Inflating this to the cohomology of BG and BK (inflation

is injective for H1), we obtain a non-trivial element in the kernel of the restriction from

BG to BK, against our assumption. Thus K/K0 ∼= G/G0 as claimed.

Now we only have to prove that K0 = G0. Note that the fibration G → EG → BG

implies that the group π = π1(BG) is isomorphic to π0(G) = G/G0, and this is a p-group

by assumption. Similarly π1(BK) ∼= π0(K) = K/K0 and so by the first part of the proof,

the inclusion K → G induces an isomorphism π1(BK) ∼= π1(BG) = π. If M is any

finitely generated Z/p[π]-module, then M has a finite filtration by submodules Mi (with

1 ≤ i ≤ n) such that the quotients Mi/Mi+1 are trivial Z/p[π]-modules; indeed the trivial

module Z/p is the only simple Z/p[π]-module since π is a p-group. Now we claim that the

map H∗(BG,M) → H∗(BK,M) of cohomology with local coefficients is an isomorphism;

indeed since BK → BG induces an isomorphism in cohomology with trivial coefficients by

Theorem 1.1, the claim follows by induction on the length of the filtration, using the long

exact sequence of cohomology associated to the sequence 0 → M1 → M → M/M1 → 0.

Now we wish to apply this to the free module Z/p[π] = Indπ
1 (Z/p). By Shapiro’s lemma,

H∗(BG, Z/p[π]) ∼= H∗(BG0, Z/p) , and similarly H∗(BK, Z/p[π]) ∼= H∗(BK0, Z/p) .

It follows that the map H∗(BG0, Z/p) → H∗(BK0, Z/p) is an isomorphism. But since

G0 ' Ω(BG0) and K0 ' Ω(BK0) and since the spaces BG0 and BK0 are simply

connected, the map H∗(G0, Z/p) → H∗(K0, Z/p) is an isomorphism too. Now K0 and G0
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are compact orientable manifolds, so one can conclude that they have the same dimension.

It follows that K0 = G0 since they are both connected. Therefore K = G and the proof is

complete.

For the proof of the general case, we will also need the following lemma. Although it

is certainly well known, we provide a proof for the convenience of the reader.

(2.2) LEMMA. Let G be a compact Lie group and A a finite p-subgroup of G. Then

there exists a finite subgroup F containing A which maps onto G/G0.

Proof. As observed in Lemma 1.2, A normalizes a maximal torus T of G. It is well

known that the normalizer N = NG(T ) maps onto G/G0 and that any maximal torsion

subgroup of N is dense in N . Hence we can choose a torsion subgroup Nt of N containing A

and mapping onto G/G0. Since Nt is locally finite (being a linear torsion group [We, 4.9]),

and since A and G/G0 are finite, we can find a finite subgroup F of Nt containing A and

mapping onto G/G0.

We also need the following result which was partially mentioned in the introduction.

It shows the equivalence between several forms of the conclusion of the Z∗-theorem.

(2.3) LEMMA. Let A be a p-subgroup of a finite group G. The following conditions

are equivalent.

(a) The image of A in G/Op′(G) is central.

(b) G = CG(A) ·Op′(G).

(c) G = CG(A) · [A,G] and [A,G] is a p′-group.

Proof. It is obvious that (c) implies (b) and that (b) implies (a). Assume now (a).

Then clearly [A,G] ⊆ Op′(G) so that N = [A,G] is a p′-group. Let π : G → G/N . We

first show that G = NG(A) ·N . Let g ∈ G. Since π(g) centralizes π(A), we have

Ag ⊆ π−1(π(A)) = N ·A .

Since both A and Ag are Sylow p-subgroups of N · A, we have Ag = An for some n ∈ N

and therefore gn−1 ∈ NG(A). Now we show that NG(A) = CG(A). If h ∈ NG(A) then for
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each a ∈ A, the commutator [a, h] belongs to A. But this commutator also belongs to N

and since A ∩N = 1, it follows that h centralizes a.

Proof of the Z∗-theorem. By Lemma 1.3, we can choose a finite p-subgroup B of A

such that CG(B) = CG(A). The image of B in G/G0 is a p-group, whose inverse image

in G is a compact Lie group K with component group a p-group. Since CG(B) controls

finite p-fusion in G by assumption, CK(B) controls finite p-fusion in K by Corollary 1.9,

and by Proposition 2.1 we obtain that B is central in K, and in particular G0 centralizes B.

Choose now a finite subgroup F mapping onto G/G0 and containing B (Lemma 2.2).

By Corollary 1.9 again, CF (B) controls (finite) p-fusion in F . By the Z∗-theorem for

finite groups, it follows that we have F = CF (B) · Op′(F ) and therefore by Lemma 2.3,

F = CF (B) · [B,F ] and [B,F ] is a p′-group. But since G = G0 ·F = G0 ·CF (B) · [B,F ] and

since G0 centralizes B, we conclude that G = CG(B) · [B,F ]. Note that [B,F ] = [B,G]

because G = G0 · F and G0 centralizes B. Thus G = CG(B) · [B,G], and a fortiori

G = CG(A) · [A,G] and G = CG(A) · Op′(G) since [B,G] is contained in both [A,G] and

Op′(G). This completes the proof of the main statement of the Z∗-theorem.

It remains to show that [A,G] is a finite p′-group. Let A be the closure of A. Since

CG(A) = CG(A) we have G = CG(A) · Op′(G) and so [A,G] lies in Op′(G). Thus [A,G]

is totally disconnected and therefore [A
0
, G] and [A,G0] are trivial groups (because [A

0
, g]

and [a,G0] are connected, hence trivial, for all g ∈ G and a ∈ A). If U and V are finite

subgroups such that A = A
0 ·U and G = G0 ·V , then by using standard rules for expanding

commutators we obtain [A,G] = [U, V ]. It follows that [A,G] is finitely generated. Since it

is also a subgroup of the torsion group Op′(G), we apply once again Schur’s result [We, 4.9]

to deduce that [A,G] and its subgroup [A,G] are finite.

For a compact Lie group G, let Z∗(G) be the inverse image in G of Z(G/Op′(G)).

Since there is a unique maximal torsion subgroup in Z∗(G) (the inverse image of the torsion

subgroup of the abelian group Z(G/Op′(G)) ) and since all Sylow p-subgroups of this

torsion subgroup are conjugate [We, 9.10], all Sylow p-subgroups of Z∗(G) are conjugate.

We denote by Z∗(G)p an arbitrary Sylow p-subgroup of Z∗(G). It is not difficult to show

(using arguments similar to those of Lemma 2.3) that any subgroup of Z∗(G)p is an isolated
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p-subgroup of G (i.e. isolated in Sp(G)). Since conversely the Z∗-theorem asserts that any

isolated p-subgroup of G is contained in Z∗(G), we see that Z∗(G)p and its conjugates are

precisely the maximal isolated p-subgroups of G.

Denote by Gp a Sylow p-subgroup of G. We now combine Theorem 1.1 (this time

using its full strength) with the results of the present paper.

(2.4) COROLLARY. Suppose that f : H → G is a morphism of compact Lie groups

inducing a mod-p cohomology isomorphism. Then f induces isomorphisms Hp
∼= Gp and

Z∗(H)p
∼= Z∗(G)p.

Proof. By Theorem 1.1, f induces an equivalence of categories Frobp(H) → Frobp(G).

This easily implies that the restriction of f to Hp is injective and that f(Hp) is a Sylow

p-subgroup Gp of G; therefore Hp
∼= Gp . Now the inclusion f(H) → G also induces a

mod-p cohomology isomorphism, so by Theorem 1.1, f(H) controls finite p-fusion in G. By

Proposition 1.4, f(H) also controls p-fusion in G and the equivalence Sp(H) → Sp(G) has

to map maximal isolated objects to maximal isolated objects; this implies that Z∗(H)p
∼=

Z∗(G)p.
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