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In this note we give explicit descriptions of certain maximal closed, con- 
nected subgroups of the exceptional algebraic groups F4 and E,, defined 
over an algebraically closed field of nonzero characteristic. Our original 
goal was to complete the work of [12], where we determined all possible 
closed subgroups of exceptional algebraic groups which act irreducibly on 
some nontrivial rational module for the overgroup. However, in three cases 
(A, <E,, G, <E,, and G, < F4), we omitted the proof of the existence of 
an appropriate subgroup; this is contained in the proof of Theorem 1 
below. As well, this work is part of the larger problem of describing (up to 
conjugacy) all maximal closed connected subgroups of the exceptional 
algebraic groups over a field of nonzero characteristic. Our main result is 
the following: 

THEOREM 1. Let k he an algebraically closed field of characteristic p 

(a) Ifp # 2, 7, the simply connected, simple algebraic group of type E, 
over k has exactly two conjugacy classes of closed, connected subgroups of 

type Gz which act irreducibly on some nontrivial ratio& module for E,. The 
subgroups are maximal among closed connected subgroups qf E6 and the two 
classes are conjugate in Aut(E,). 

(b) If p # 2, 5, the simply connected, simple aIgebraic group of type E, 
over k has exactly two conjugucy classes of closed, connected subgroups qf 
type A2 (isomorphic to PSL3) which act irreducibly on some nontrivial 
rational module for E,. The subgroups are maximal among closed connected 
subgroups of E, if and only ifp # 3. Moreover, the two classes are conjugate 
in Aut( E6). 

(c) Ifp = 7, the simple algebraic group qf‘type F4 has exact<y one con- 
jugacy class of cfosed, connected subgroups of type G, which act irreducihll, 
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on some nontrivial rational module ,for F4. The subgroups are maximal 
among closed connected subgroups qf F4. 

(d) If p = 5, the simply connected, simple algebraic group of type E, 
has two conjugacya classes of closed, connected subgroups of type A, which 
are maximal among closed connected subgroups of E, and which act 
reducibly on every nontrivial rational module for E,. The two classes are 
conjugate in Aut( Eb). 

We obtain the results of (a), (b), and (c) by first working inside the 
overgroup E, or F4, using the necessary action of the subgroup on a par- 
ticular module (given by [ 123) and the general theory of the structure of 
algebraic groups to describe (up to conjugacy) necessary conditions on the 
embedding. We then take a faithful representation of the overgroup and 
show that the necessary conditions are in fact sufficient to establish the 
conjugacy (in CL,,) of the subgroup to a known algebraic group. Noting 
that our embedding and the conjugating matrix are describable over a 
more general field X, we obtain the following: 

THEOREM 2. Let X’ be an arbitrary field of characteristic p and 52 an 
algebraic closure of X. Let E6(X), F4(X)), and G,(X) denote universal 
Chevalley groups of type E,, F4, and G2, respectively. 

(a) If p # 2, 7 and ( -7)‘j2 E X, E6(X) has a subgroup isomorphic to 
G,(X) which acts irreducibly on the restricted, 27-dimensional rational 
modules for the group E6(SZ). 

(b) Jf p # 2,5 and (- 1 )‘I2 E X, E6(.X) has a subgroup isomorphic to 
PSL,(X) which acts irreducibly on the restricted, 27-dimensional rational 
modules .for the group E6(Si). 

(c) Ifp = 7, F4(X) has a subgroup isomorphic to G,(X) which acts 
irreducibly on the restricted, 26dimensional rational module for the group 
F,(R). 

We note that a version of Theorems 1 (a) and 2(a) has been proven with 
different methods by M. Aschbacher in [ 1 ] and that A. Ryba has com- 
municated to the author a sketch of another proof of Theorem 2(a). Both 
Aschbacher and Ryba view E,(F), the universal Chevalley group of type Eb 
over a field F, as the group of isometries of a symmetric trilinear form on a 
27-dimensional module. Aschbacher shows that if char(F) # 2, 3, 7, then 
G,(F), acting on a certain 27-dimensional module, preserves (up to scalar 
multiple) exactly two forms similar to the E,(F) form if and only if F con- 
tains (-7)“* and determines the conjugacy classes of such G,(F) in E,(F). 
Ryba uses the E, trilinear form and obtains precisely the result of 
Theorem 2(a). In concluding this introduction, the author wishes to thank 
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Ron Solomon for helpful conversations concerning the conjugacy questions 
in Theorem 1. 

Notation. Throughout the paper, let X” denote an arbitrary field of 
characteristic p and k an algebraically closed field of characteristic p. For X 
a Chevalley group or a semisimple algebraic group, let C(X) denote the 
root system associated with X, II(X) a base of Z(X), and C’(X) the 
corresponding set of positive roots. For a semisimple algebraic group 
defined over k, let T,Y denote a maximal torus of .I’, U, the T,-root sub- 
groupassociatedwithy~~(~), U,= {x,,(t)lrsk),BX= (U;,/~EZ+(X))T~ 
(a Bore1 subgroup). If p is a T,y weight in a nontrivial rational kX modufe V, 
let V,(p) = {U E V! tv = p(t) u, for all t E T,). Other notation will be 
standard as in [5] or [lo]. We refer to [7] for a set of structure constants 
for the groups E, and F4 and to [5] for the structure constants for G,. In 
addition to the notation introduced thus far, we will use the following: 

A: an algebraic group of type A2 over k, Z7(A) = {r,, q}. 

G: an algebraic group of type G2 over k, Ii’(G)= (y,, y2}, with 

1 2 

E: a simply connected algebraic group of type 
{fii/16i<46),with 

E, over k, II(E) = 

}, with F: an algebraic group of type F4 over k, 17(F) = lyI,l f?2* 735 yI4 

0 
1 2 3 4 

The proofs of Theorems 1 and 2 are contained in the proofs of the 
foltowing seven results (the first of which is a straightforward, technical 
lemma). We use detailed information about certain rational representations 
of the universal Chevalley groups E6(X), F4(X), G,(X)), and A,(X). For 
the sake of continuity, we have compiled this in an appendix (results in 
Appendixes E, A, G, and F) and refer to it when necessary. 

LEMMA. Let X,(k) Zx, and X2 2 2X,(k). Lrr ZT(X,) = {j?), 17(X,) = 
{8, ,6, > and let Wi be the natural module .for Xi, .for i = 1, 2. Suppose X, 
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a simple algebraic group of type A,, is a closed subgroup of A’;, with 
IT(X) = {a}, such that W,i X is a restricted irreducible rational kX module, 
Tx<Tx,, and lJ,,< (U,IYEU(X,)>. 

(a) If i= 1, then h,(c) = h,(c) ,for all CE k*, and there exists dEk* 
such that x,(t) = xO(dt) and x- Jt) = x mB(( l/d) t), for all t E k. 

(b) If i= 2, then h,(c) = h&,(c’) h,,(c2) ,for all c E k*, and there exists 
ciEk* such that .~,(t)=xa,(c,t)x,,(c2t)x,,+,,(-N~c,c,t2) and x-,(t)= 
xpd,(2t/c,) xpii2(2t/c2) x~ii,~a,(N2t2/(cl~2)), .for all tEk, bt,here N is given 
by [x,,(t), ,x,,(u)1 = x;il +a2 (Ntu). 

ProoJ Consider the case where i = 2, so X d X2. Since T, 6 TX,, 
h,(c) = h,,(ck) hs,(c’) for some k, 1 E Z. But W, 1 X a 3-dimensional restricted 
irreducible imphes that p # 2, W,*) Xz W,j X, and k =2 = 1. Since 
UN< <ug,li= 1, 2), x,(t)=xdf,(t)) x62(f2(t))x;i,+iiz(f3(t))3 for SOme 

fr E k[t]. Moreover, f,(t) # 0 #fi(t), else U, lies in the unipotent radical of 
a proper parabolic of X2 and hence has a fixed point space on Wz or Wf 
of dimension greater than 1. Conjugating x,(t) by h,(c) we have 
f,(c*t)= c*(,f,(t)) for i= 1, 2, and f3(c2t)= c!f,(t), for CE k* and tE k. 
Letting t = 1, we find that L.(t) = c,t for i = 1, 2 and ,f3(t) = cj t2 for some 
ci E k, c, c2 # 0. Also, x,(t) x3(u) = x,( t + U) implies that cI = - $Nc, c2, 
where N is as in the statement of the result. 

Let 8: X+SL,(k) be given by Q(x,(t))=[A I] and 0(x .(t))=[) y]. 
Let {x, y} be a basis of the natural module for S,!,,(k) and let W be the 
vector space of degree two homogeneous polynomials in (x, y f. Let 
n: S,,(k) + S,!,,(k) be the corresponding representation, where SL,( W) is 
identified with SL,(k) via the ordered basis {x’, xy, y2}. Let p: SL,(k) + X2 
be the isomorphism such that 

P 

Then let cp = p 0 ~0 8: X -+ X2. One checks that cp(x,( t)) = x6,(t) x,,(2t) 
xg,+62(-Nt2), cp(x-.(t))=x-a,(2t)x -62(t)x.-6,-;i,(Nt2), and dh,(c))= 
h,,(c2) h6*(c2). Let ,aZ: X%X, be the inclusion map. Then cp and 9, are 
equivalent representations of X; so there exists ye X2 such that 
Y*(g) = y’p(g)y-’ for all g E X. Now, h,,(c2) h,?(c*) = .Y2(h,(c)) = 
w(Uc)) y ’ =yhii,(c2) h,,(c2)ymm’ implies that y= h,,(e) ha>(f) for some e, 
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.f~k*. Also, &,(x,(t)) =~cp(-u,(t)) y- ’ implies ezf ’ = cl, 2e -lf” = c2, and 
ef=tclcz. Thus, c&(x_.(t))=x 61(2tlCI) -~.-6,(2tlc2) ux 6, s2(N2f2/(CI Cz)) 
and (b) holds. 

We omit the proof of (a), which is similar to but easier than the 
above. # 

We now begin our consideration of the irreducible C,‘s in E6 and 
mention that the methods we use were developed in [S, 121. 

PROPOSITION (G. I ). Suppose G is isomorphic to a chwd subgroup qf E 
and, ident~~~~?zg G ~~~it~~ the ~~u~group, suppo.~e VI G is irreducibly for Some 
nontrivial rational kE module V. Then p # 2, 7 and up to conjugacy in E 

.for some ai E k* with 24 + a, a2 + a: = 0. 

Proqf: By the Main Theorem of [ 121, p # 2, 7 and G acts irreducibly 
on V(;l,), the irreducible kE module with high weight ;1,, where 1, is the 
fundamental dominant weight corresponding to /?, . Also, V(A, )I G is the 
irreducible kG module with high weight 2(2y, +y2). Let V= V(A,). Let 
P 3 B, be the parabolic subgroup of G with Levi factor L = (U,,,, > T, 
and unipotent radical Q. By the Borel-Tits theorem [Z], there exists a 
parabolic P, of E (with Levi factor L, and unipotent radical QE), 
such that P< P, and Q Q Q,. Up to conjugacy in E, we may assume 
T, d TE< L, and B, < B,. It follows from [9] that Va = V=‘” is a 
restricted 3-dimensional irreducible kL module. But Vat is an irreducible 
kL’, module with high weight 2, I( T,n L’& thus (U+,),, U,.,)3) is a simple 
component of LL. Considering the action of G on V*, we conclude as well 

) is a component of LI,. However, L; # (U,,,, U+,li) x 
otherwise, /I;,(-l)= 1. Hence, L>= (U,,,, Ul,,,>x 

Moreover, the above argument shows that P, is 
to the conditions: P, a parabolic of E, P < P, and 

Q<R,(P,). Hence, by (2.9) of [IS], Z(L)” dZ(L,)“. But Z(L)O and 
Z(L,)’ are l-dimensional tori, so Z(L)’ = Z(L,)“. So L < C,,(Z(L,)“) = 
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L, and L’G <u+p,, u+,,> x C&p,> x (u,o,7 u,,>. Moreover, the 
projection of L’ in (UlO,, 
VQ (resp., 

u+p,) (respectively, (u,,,, u,,,>) acting on 
( V*)p) satisfies the hypotheses of the lemma. Note that 0 # w E 

V,,(i, - p, - p3 - /14) is the maximal vector of an Li composition factor of 
V and hence of an L’ composition factor of V. One checks that (for all 
p # 2) I/) L’ has no 6-dimensional tensor decomposable composition factor. 
The action of T,n L’ on w then implies that the natural module for 
( U+,)*) is a restricted irreducible module for the projection of L’ in 
( Ui,3Z). So by the lemma, there exist di, e,, r~:k* such that 

and 

for all t E k and CE k*. Moreover, conjugating by an element of T, if 
necessary, we may assume ei = I = d, = r. 

We must now consider the embedding of (U,,,) in E. One checks that 
Z(L)O = (z(c) = h,,(c) h,,(c’)j f E k * f and Z(L,)O = (As,(&) hp,(d3) hp3(d4) 
h,i,(~) &V’+) &&‘) = 44 dEk* >. N ow, z(c) = zE(ct) for some 1 E Z and 
the action of z(c) on VTE(je,) implies that I= 1. Combining this with the 
known factorization of h,,(c), we have hyz(c) = h,,(c) ha,(c) hs4(c3) h,,(c). 
Let To = {h,,(e2) h,,(e3)1 e E k*}. Th en ( U, y2 ) < C,( To), a connected 
reductive group containing T,. One checks that C,(T,) has root system 
{t-(P3+P4)> +@2+84), +@,+P,))* so (u,,,> d (&(@J+& x 
<u ;ttfi2+dx W,,,j4+fi,,>. Since Uj’L~~e~es,x,,(t)=xg,+B4 u-,(t)) 
XRZ+P4(S*(t))XP4+PS (f3(t)) for some f,~k[t]. Now, f,#O, else O#WE 
V,(J., - fil - p3 -/Id) is fixed by B,, contradicting the irreducibiIity of G 
on I? Arguing similarly with V*, we see that f3 # 0. So (U,,,} projects 
nontrivially into (Ui(D,+84t) and ( Ultlp4+ps)). In fact, (Ufyl) projects 
nontrivially into ( U, (82 + 134) >. For otherwise, T,n (iJ,,,>< (hB3+B4(~,). 
h, + a,(cz)l ci E k* >, contradicting the given factorization of &(c). Finally, 
we note that the factorization of h,,(c) implies that the projection of 
(U,,,) into each of the components ( U+c82+84)), < Ufc82+B4)), and 
(U Ituh4,h) ) satisfies the hypotheses of the lemma. Thus x?*(t) = 
XB~+B~(alt)XP*+~~h(aZt)X/ld+85(a3t), for SOme aj E k*, and x-Jf) = 
~-~,-~~(t/a,)x-,,,-~~(t/a,)x-~,-~~(t/a~). The relation [x-,,(t), x,,(u)] = I 
implies that a3 = a, + +a, ; the relation [x,,(t), X-J f) J = 1 implies that 
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l/a, + l/a, = l/a,. So 24 + ala2 + u: = 0. This completes the proof of the 
proposition. 1 

Notation. Assume char(X) # 2, 7, ( -7)‘j2 E X, and let A be an 
algebraic closure of X. Let a,, a2 E Xx* such that 24 + a, a2 + ui = 0 and 
fix EEX such that e2+7=O; so a,=+(-l+s)a,. Let G,,(a,,a,)< 
&(xX) be defined as follows: G,,(a,, a2)= (-f;.,(t), .? ;.,(t), ,u,Jt), 
.ipyz(t)l TV X), where 

The statements of Theorems l(a) and 2(a) will follow immediately from 
Proposition (G.l) and the following: 

THEOREM (G.2). Let notation he as uhove. Then 

(a) G.,(Q,~ a2) g G,(X). 

(b) G.,(a,, u2) acts irreducibly on the restricted, 27-dimensional 
rational modules ,for the group E,(H). 

(c) G,,(a, f( - 1 + E) a) is conjugate in E6(X) to G,,(b, t( - 1 + e) h), 
,for any a, h E .X”*. 

(d) Let z he the graph automorphism of Eb(X). Then 
t(G., (a, f( - 1 + E) a)) = G,, (b, i( - 1 - E) 6), where b = - a( 3 + e) a. 

(e) Over the ulgebraically closed field k (characteristic k # 2, 7) 
G,(l, i( - 1 + E)) is not conjugate in E to Gk( 1, $( - 1 - e)). 

(f) With k as in (e), G,.a,, a2) is maximal among closed, connected 
subgroups of E. 

Proof: In the Appendix, we explicitly describe faithful matrix represen- 
tations of E&X) and G>(X) in SL,,(X). More precisely, qE: E6(X)+ 
SL,,(X) corresponds to a representation on a 27-dimensional vector space 
V with a fixed ordered basis BE= (v, 1 1 6 i< 27) and ‘pc: G,(x) -+ 
SL,,(X) corresponds to a representation on a 27-dimensional vector space 
W with a fixed ordered basis BG = {u, / 1 < i < 27}. 
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Let P:V+ W be given by 

PV,=2U,, PVz=u2, Pvj=ux, Pv,= -a,u,, 

Pv, = $(2a, -a*) u5 - $a,u,, 

PO6 = -8(3a, + ia*) us - (;a, + +a2) u6, 

Pv7 = $(2a, - a2) u, - $(a, + +a*) u8, 

Pug = -$(3a, + $a,) u7 + $(2a, - az) us, 

Pv9 = -ja, 24, Pv,,= a2(a, + ia2) u,~, 

PV,, =$a,(2a, + az) u,, - $a,(2a, - a2) u,~, 

Pv12 =$a,(2a, -al) u,, - +a,(3a, + +a2) u,~, 

pV13 = -+,(a, + +a*) u13 -fa,(a, + +a*) u,~ 

+A(-5a:++a,a,)u,,, 

Pv14 = &,(5a, - fa2) u,~ + [&a: -&a:] u,~ 

PO16 = -Qa,(3a, + fa,) u,6 + +a,(fa, + +az) u,~, 

p0l7 = -ba2(ul -;a,) u16 + +al(tal + au2) #,7, 

P~H = -Qa,(2a, - az) u18, Pv,, = -+af(a, + $a,) u,~, 

PU2, = &a:(3a, + +a,) uzo - ga:(a, + fa,) u2,, 

PV2, = -$a:(a, - fa2) ulo + ia, a2(a, + ia*) u2,, 

PO22 = #(a, - +a2) u22 + ba:(a, + $a*) u13, 

Pv,, = -+&(a, + ia2) u22 - $a,a,(a, + ta2) uz3, 

PO24 = &:(a, + $a2) U24, Pu,, = iaf(al + $az)’ u25, 

PV2, = -$af(a, + +a2)2 u26, Pv,, = +a:(a, + $a2)2 u27. 

One checks that, for all t E X, for 1 d i < 27, and for j= 1,2, 
%bJfN pvi = &E(qo) vi and cpG(x-,(t)) Pvi = Pp,(K,(t)) v,. 
Thus, conjugation by P is an isomorphism between (p,(G,(X)) and 
cp,(G,(a,, a2)). So G,(a,, a2) g G,(X)). The statement of (b) follows from 
Appendixes E and G. For (c), let z =h,,(d2) h8,(d3) hB,(d4) /I,(&). 
hP5(d4) ha,(d2), for d = b/a. Then one checks that zG,(a, f( - 1 + E) a) z-’ 
= G,(b, 4( - 1 + E) b). The statement of (d) is easily checked. 
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Now suppose there exists y E E such that yGk( 1, t( - 1 + E)) y-’ = 
G,(l, t( - 1 -E)). By (c) and (d), there exists h E E such that 
hr(G,(l,+(-l+~)))h~‘=G,(l,&(-1-s)). Set Gk=Gk(l,+(-l+s)) (a 
simple algebraic group of type G2). Then y -‘ht(G,) h ~ ‘y = G,. We first 
note that Gk is not pointwise fixed by y -‘ht (viewed as an element of 
Aut(E)). For there are two conjugacy classes of involutions in the coset TE 
(in Aut(E)), with fixed point subgroups of types F4 and C,. (See [6].) The 
F4 (a conjugate of the fixed point subgroup of T) acts reducibly on the 
27-dimensional kE module V(n,), so does not contain G,. Since p # 2, the 
C, acts irreducibly on V(L,). (See [12].) But the Main Theorem of [8] 
implies that no proper closed connected subgroup of C4 acts irreducibly on 
a 277dimensional C4 module when p # 2. So y-'hz induces a nontrivial 
(algebraic group) automorphism of G,. By Steinberg (see [lo]), any such 
automorphism is induced by an inner automorphism. However, we then 
have Gk pointwise fixed by an involution in SE, contradicting the above 
remarks. This completes the proof of (e). Finally, we note that (f) follows 
from (b) and the Main Theorems of [S, 123. 1 

Note that if char(X) = 7, the definition of G, (a,, u2) < Eh(X) makes 
sense, and in fact, we could argue that G,(u,, az) = G2(X) in this case as 
well. Moreover, it is easy to see that when p = 7, G,,-(n,, a2) is fixed by T, 

thus giving an embedding of G,(X) in F4(X). However, we will work 
inside F4(X) instead, in order to obtain the conjugacy statement in 
Theorem l(c). The proofs of Theorems l(c) and 2(c) closely parallel the 
above proofs, so we give an abbreviated version. 

PROPOSITION (Fl ). Suppose G is isomorphic to a closed subgroup of F 
und, identifying G with the subgroup, suppose VI G is irreducible for some 
nontrivial rational kF module V. Then p = 7 und up to conjugacy in F, 

x,,(t) = x,,(t) x,Jt) xJt) x,,+,,( -4t’h 

x-,,(t) = x -r,,(t) x-,,,W) x-,,(2r) X-,,.-,pZ), 

-xx(f) = xv, + ,,(Qt) x,,s + ,,(bt), 

for some b E k*. 

Proof By the Main Theorem of [ 121, p = 7 and G acts irreducibly on 
the rational kF module with high weight A= ye, + 2r], + 31, + 2q4, and for 
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I/= V(n), Vi G is the irreducible kG module with high weight 2(2y, + y2). 
Let P be as in the proof of (G.1). Arguing as in (G.l), we see that if 
PF> B, is the parabolic subgroup of F with Levi factor L,= (( Ur,,, > x 
(U *,,,, U,,,)) T,, then up to conjugacy in F, P< P,, Q<R,(P,)=Q,:, 
L’ ,< L>, T, < T,, and Z(L)’ = Z(L,..)“. Moreover, again arguing as in 
(G.l), we see that the projection of L’ in each of the components of L; 
satisfies the hypotheses of the lemma. Thus, there exist d, e, E k* such that 

h,,(c) = h,,(c) kJc2) kJC2h 

and 

x-,,(tf=x-,,(t/d)x-,,(2t/e,)x..,,(2t/e,)n-.,,-,,(2t2le,ez), 

for all t E k and CE k*. Moreover, conjugating by an element of T, if 
necessary, we may assume d = 1 = e;. 

We now consider the embedding of ( UfY2) in F. Arguing as in (G.1 ), 
we find that h,,(c) = h,,(c) h,,(c3) h,,(c). Let To = (h,,(e2) hr2(e3)1 e E k* ). 
Then ( U,,,> ,< C,( To), a connected reductive group containing TF. 
One checks that C,(T,) has root system { + (qb + q2), +(qz + q,)>. So 
(U,,,) G (Uical+qZi) x (U+f’12+,,13j). Sin= U,, d Q G QF, x,,(t) = 
xq, ~~~~~~(~)) x 12+ ~~(~2(~)) for some .f, E k[r]. Now, f2 # 0, else 0 # tv E 
V,&(A - q2 - q3 - q4) is fixed by BG, contradicting the irreducibility of G on 
V. So {U,,,) projects nontrivially into ( Ui(r12+q3j). In fact, (U+7L) 
projects nontrivially into (U*(,,, ,.V2)). For otherwise, T, n ( UfyZ) d 
P nl + q3(c)I cI E k*}, contradicting the given factorization of h,,(c). Finally, 
we note that the factorization of h,,(c) implies that the projection of 
(U,y2> into each of the components (Ukc,,,+,,2,) and (U+c,,2+r,31) 
satisfies the hypotheses of the lemma. Thus xY2(t) = xv, + ,,(at) x,, + ,,,(ht) 
and X-,,(t)=~-,, q2 (t/a) x-,] ,,(t/h) for some a, h E k*. The relation 
[IX-~,(~), X-/~(U)] = 1 implies that a - 4h = 0. This completes the proof of the 
proposition. 8 

~~o~u~~on. Let X be an arbitrary field of characteristic 7 and let R be an 
algebraic closure of X. Let b E X* and let Go, 6 F4(X) be defined as 
follows: G,,(b) = (f,,(t), X-;,,(t), -?,,(t), X Jr)/ t E X), where 

q,(f) = x,,(t) x,,(t) +?,(t) x,,+,,( -tt2x 

x_,,(t)=x~,,(t)x_,,(2t)x_,,(2t)x .q3-J2t2)’ 

XyJf) = xv, +tJ4bf) xv,, ,,W~ 
and 

X-,,(t)=x-,,-,,(2t/b)x -,,-,,(#). 
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The statements of Theorems l(c) and 2(c) follow from Proposition (F.l) 
and the following: 

THEOREM(F.2). Ler notation be as above. Then 

(a) G,db) z G2(Jf”h 
(b) G,, (h) acts irreducibly on the restricted, 26-dimensional rational 

moduie ,for the group FJSZ ). 

(c) G,% (b) is conjugate in F4(.X) to G,x (a), for any aEX*. 

(d) Over the algebraically closed,field k (of characterstic 7), G,(h) is 
maximal among closed, connected subgroups of F. 

ProoJ In the Appendix, we explicitly describe a faithfui matrix 
representation of FJX), v~: F4(X j + 5’,,(X), where qo, corresponds 
to a representation on a 26dimensionai vector space V with a fixed 
ordered basis &?,..= {y, / 1 d i 6 26). As in (G.2), 40~: G,(X) -t S&,(X) is 
a faithful representation of Gz(X) on a 27-dimensional vector space W 
with basis B5,= (~4~ 1 I did27 ‘/. As noted in the Appendix, when p= 7, 
P~(G~(-X)) fixes a l-space on W, namely (u,,-~u,~+~u~~). Let 

iT= W/(&3- 2~~~+224~~) and let 9;; denote the corresponding faithful 
representation cp;: G7_(.X) --f SL,,( iii). Let .a& = (Ui / I 6 i< 27, i# 151, 
where W denotes the image of M’ in W, for u’ E W. Then 98; is a basis of E’. 
Let P: V --+ w be defined as follows: Py , = 2@, , Py2 = t,, Py3 = 6W,, 
Fy4 = bGd, Pys = 2b@, + 3b@,, qyb = 2b@, + 5bcr,,, Py7 = 2hc, + b%,, 
P~~,=b~,+5b~,, Pyg=4hGg, 2- PyIo=3b N’,~, Pyi, =6b%,, +4b’wIz, 

PY I2 = 6b%,, + 5b%&, PJ.~,~ = 2b*t?,, + 6h2Kj,, Pyls= 3b*K,,,, PyLs = 
2b*w,, + 2b2b;i,,, 4~,~=6h~li;,~~5b~1~,~, Py,,=6b**,,, Pyls=3b3w,,, 
PY,~ = b’w,, + b3C2,, PyzO = 6b3cT2, + 5b’C,, , Py2, = 4hi@,z + 2b3@23, 
Pyz2 = 6b’u’,, + 4h7Cz3, PJJ~~ = 2h%,,, PQ~ = 3b%,-,, Py,, = 2b4L1’26, 
Pyz6 = 5b4Gz,. 

One checks that, for all t E X, for 1 6 i < 26, and for j= 1, 2, 
cpb(x.,(t)) P.vj = Pv,.(.fi,,(t)))ti and cp;(x-,(t)j Pyi = PqF(X_,,(t))yj. 
Thus, conjugation by P is an isomorphism between (p’JG,(x)) and 

ql.(Gx(b)). So G,,(b) z G*(X). The statement of (b) follows from 
the remarks of Appendixes G and F. For (c), we note that if 

13 = h,,(d3) h,Jd6) . h,,(d4) hJd*), for d= a/b, then hG,,(b) h .” ’ = G,,(a). 
Finally, (d) follows from (b) and the Main Theorems of [S, 121. 1 

We now begin our consideration of irreducible A js in E,. 

PROPOSITION (A.1 ). Suppose A is isomorphic to u closed subgroup of E 
and, ~dent~~~~ng A with the slibgroup~ suppo~f’ V / A is jrreducib~e for some 
ilontrivi~~ kE module V. Then p # 2, 5 and up to conjugucy in E 
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~x-p4--Bs-&t(al +~2)-‘).x-~~--~-~~(2r/a~) 

‘*~-lh-8,-w-Bs-lra ( -2t2(a,a, + a:)-‘) 

for some ai E k* such that 2a: + 2a, a2 f a: = 0. 

Proof: By the Main Theorem of [ 121, p # 2, 5 and A acts irreducibly 
on V(l,), the irreducible kE module with high weight ;ir. Also, V(,I,)/ A is 
the ~rredu~ibIe kA module with high weight 2(cr, + q). We argue as in 
Proposition (G.1) to see that up to conjugacy in E the following hold: 

and 

As well, if L= (U,,,) TA, sZ(L)~= (h,,(c) h,t(c2)=~(~)lc~k*) = (hs,(d2)- 
hpz(d3) hp,(d4f h,(8) has(d) ha&d*) = zE(dfl de k*). Now z(c) = zE(c’) for 
some 1~ Z and the action of z(c) on V,(L,) implies that I= 3. So h,,(c) = 
h~,tc*) hp2(c4) ha,(c’) ho,(c9) hPs(c5) hBb(c2). Let To = (ha,(e2) h,,(e)leEk*}. 
Then ( UFa2) d C,( T,), a connected reductive group containing TE. One 
checks that C,(T,J has root system { jr:(pl +f13 +p4), +(pz+/?4+p5), 
+(P,+h+&+284+b5)r +(ih+b,+&h +(84+/35+/3d, ,:(&I+ 

h+P.dr +&+!h+2~4+8~+hi)). so <u,,,>G <u+(p,+~,+fi~p 
u rtm+i&+P~~)x (U*clJz+P4+Pst) x Wt(B4+Br+/kP U+wz+8,+li4,). 
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Now, 0 # w E VTE(l,) affords a 3-dimensional (restricted) composition 
factor for (U,,,). Thus, the projection of (U,,,) in (U+(B,+pi+841, 
u +Cp2+ p4+ pSJ) satisfies the hypotheses of the lemma. Arguing similarly with 
V*, we see that the same is true of the projection of ( Ufz2) in 
<u +(/h+Bs+/k) U *Cp2+p3+1(4J). Finally, note that ( Ukxz) projects non- 
trivially into ( U, ,B3 + 84 + 85j ) else hJ - 1) = 1. In fact, one checks that 
k?(C) =~,~I+B3+84(~*) b+/14+&*) h,hfhi,15(C) b+,k+,&*). ~/Jz+p3+,&*)~ 
so the projection of ( Uflz) in ( Uf,,r3+,j4+,js,) also satisfies the 
hypotheses of the lemma. Thus, 

and 

for some ai, b, ci E k*. 
The relations [x,,(t), x I,(~)] = 1 and [x-~.,(t), x,,(u)] = 1 force the 

following relations among the constants: b = a, i$,, c, = a, + a2, c2 = az, 
and 24 + 2u, a, + uz = 0. Thus the result holds. 1 

Notation. Assume char(X) # 2, ( - 1 )I’* E X, and let R be an algebraic 
closure of Xx. Let a,,u,~X* such that 2uf+2u,u2+u~=0 and fix 6~3” 
such that 6* + 1 = 0; so u2 = (- 1 f 6) a,. Let A,.(u,, a,) 6 E6(X) be 
defined as follows: A,,(u,, a,)= (x,,(t), x-,,(t), z,,(t), xpr2(t)l tex)), 
where 
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The statements of Theorems lb, Id, and 2b follow from Proposition (A.l) 
and the following: 

THEOREM (A.2). Let notation be us above. Then 

(a) A,-(a,, u2) z PSL,(X). 
(b) If p # 5, A,(u,, u2) acts irreducibly on the restricted, 21-dimen- 

sionul rational modules for the group E6(R). 
(c) A,(u, (- 1 + 6) a) is conjugate in EC(X) to A,(b, (- 1 + 6) b), 

for any a, b E Xx*. 
(d) Let z be the graph automorphism of EJX). Then 

t(A,(u, (- 1 + 6) a)) = A,,(b, (- 1 - 6) b), where b = us. 
(e) Over the algebraically closed field k (char(k) # 2), 

Ak( 1, (- 1 + 6)) is not conjugate in E to Ak( 1, ( - 1 - 6)). 
(f) Over the algebraically closed field k (char(k) # 2), Ak(ul, u2) is 

maximal among closed connected subgroups of E ifund only if char(k) # 3. Zf 
char(k) = 5, Ak(u, , u2) acts reducibly on every nontrivial rational kE module. 

Proof In the Appendix, we explicitly describe a faithful matrix 
representation of PSL,(X) in SL,,(X). More precisely, qA: PSL,(X) + 
SL,,(X) corresponds to a representation on a 27-dimensional vector 
space W with a fixed ordered basis W, = ( W, 11 < i < 27). As well, let 
qE: &(xX) + SL,,(X)), V and BE be as in the proof of (G.2). 

If char(X) # 5, let P: V-+ W be given by 

Pv, = 2W,) Pv, = w2, Pv, = WJ, Pvq=u,w,, 

PV, = 324 + %Z,) W5 + +(a2 -a,) W6, 

Pv, = jj(2q + 34 w5 + 4(2u, + $2,) wg, 

PV, = +j(2U, + 3U,) W7 + (AU, + &Z2) W8, 

Pv, = &(2Ul + 34) w7 + +(a, - al) wg, 

Pv,=&,w,, PVIO = -Q2U1 WIO, 
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Pu,, = &(3a,a2 + 2a$) w,, + &a*( -a, + a2) w12, 

PO,* = &(3a,az + 2a:) w,, -t ju*(2u, + $u*, w,2, 

PO13 = CfU,% + ~41 w13 + $juAa, + $4 w,4 

Puss= [+p:+~u,u,] w,,+ [&t,+&qa,] w,4 

PO,, = - [&)a, a, + &a;] WI6 - $22(u, + $u,) w,7, 

Ph, = - C~%~, -t 2$41 u’16 -t- &da, - a2) w,7, 

Pqs= -&,u,w,,, PU,9=gqa;W19, 

PO20 = -&F:@h + 5%) w20 “t- &;b, - %) w2,, 

Pu,, = -+&(u, + &) w20-&:(u,f $u,) w>,, 

PO,, = u:(&pl+ &uz) u’22 + &:(a, + +u2, W23) 

PUZ) = $4(u2 + au*, w22 - +ju;(u, -a,) w23, 

Pu24= -$U,U$W24, PUzs= -+IU:(UI +a,) W25, 

Pz$j=gu,a:(u, +a,) M’26, Pl’z7= -&qa;(u, +a,) w27, 

If char(X) = 5, let Q: V--f W be given by 

Qul = 2wr, Qv2 = w2, Qv, = w3, Qv, = a, w4, Qus = 4a, ws + a, w6, 

Qv6 = 2u, ws + a, w6, Qv, =2u11.~~~+4u,w~,Qu~=2u,~~,+alw,, 

Qug=3u,w,, Qv,,,=~u~w~~, Qu,, =4u;w,, +3u;w,,, 

Qu,~=4u~w,,+u;w12,Qv13=3a~~13+3u~w,4+u~wl,, 

Qv14=4u;w ,3+4a:w,,, Qv,~=3a:w,,+4u:w,,+4u~w1,, 

QQ~ = 2~4w,,, Qv17 = 4a:wici + a:~,,, Qvlg = a:~,,, 

Qv,~ = -u: wig, (I&0 = 2~: w 20 + a: w2,, Qvzt = 4a: WY20 + 3u: w21, 

Qvz2 = 24 w22 i- 4~: w23, Qv*~ = 2a: wz3, Qvz4 = 3a: w14, 

Qu~~=~u;‘w~,, Qvz6=4a’:w,,, Qv~~=~~w~,. 
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One checks that when char(X) # 5, for all t E X, for 1~ i < 27, and for 
j= 1,2,cp,(x,(t))Pv,=P~,(x,(tf)vi and 5DA(x_,,(t))PUi=PSPA(~-,,(t))Z(i. 
Thus, conjugation by P is an isomorphism between v,(PSL,(X)) and 
qE(As(uI, q)). So if p # 5, A,(a,, az) 2 PSL,(X). If char(X) = 5, 
u2=ai or a,=2a,. If ~,=a,, then for all tfX, for l<i<27, and for 
j= 1,2,~3~tXy,tt))Qui= Q~,d~,,tt))ui and (I1A(X-,jtt))Qui=Qcp,(x-,,(t))ui. 
So conjugation by Q is an isomorphism between qA(PSL,(X)) and 
qo,(A,(a,, a,)) and when p = 5, A&a,, ai) z PSL,(X). 

The statement of (b) follows from the remarks of Appendixes E and A. 
Let z be as in the proof of (G.~)(c). Then zA,(a, (- I+&) a) z-i = 
A,(& ( - 1 + 6) b). So (c) holds. The statement of (d) is easily checked. In 
particular, since (d) holds for all p # 2, we now have A,(a,, a*) r 
PSL,(,X) when p = 5, for any choice of a, and a2. 

Now suppose p # 5 and there exists y E E such that yA,( 1, - 1 + ?i) y - ’ 
= A,(l, -1-6). Then by (c) and (d), there exists hs E such that 
hr(A,(l, -1$6))h-‘=A,(l, -1 -8). Set A,=A,(l, -1+6), a simple 
algebraic group of type A,. Then )‘-‘hr(Ak) h--‘y = Ak. Now argue as in 
the proof of Theorem (G.2) to see that A, is not pointwise fixed by y-‘hz 
(viewed as an element of Aut( Y)). So ye- ‘ht induces a nontrivial (algebraic 
group) automorphism of Ak. Let p be the graph automorphism of Ak. 
Then by Steinberg (see [lo]), there exists a~& such that (j-‘hr)lAn = 
(pa)lA, (where we view a as an element of Am(E)). 

CLAIM. There exists w E NE( TE) such that WA, w - ’ = Ak and conjugation 
by w induces p. 

Proof of Claim. For r EZ+(E), let n,.~ NE(TE) be as defined in Sec- 
tion 7 of [.5]. (For r = fii, denote n, by n,; for r = Zaifii & n(E), denote n, 
by n a,ozn3a4aga6.) Set W’=n122321n4n091110~101111~ln3~l~5~6~5~2~1011~’ 

nOlOllOnlOllOOnOOOlllnOlll~n~llln~lllOnl~311ln5n6n5n2~ . w’ is the product of 
the long word of the WeyI group of E and the long word of the Weyl group 
of Ak. Let h=h~,(-l)h~~(-~-l)h~~(l-~) h,,(-6) ha&--I). Then one 
checks that w = hw’ satisfies the claim. 

Thus, W’Wl.,=tw4l.,. But now we have A, pointwise fixed by an 
element of 7E in (Aut(E)) so we may argue as in (G.2) to produce a 
contradiction. Thus, (e) holds when char(k) # 5. 

Now, let k be an algebraically closed field of characteristic 5 and set 
A, = Ak(al, a2). By Proposition (A-1) and (A.2)(a), A, acts reducibly on 
every nontrivial rational kE module. Moreover, by the remarks of Appen- 
dix A and the previous work of this result, VI A, has composition factors of 
dimensions 8 and 19. (Recall V is the rational kE module with high weight 
A,.) It is a straightforward check to see that A&a,, a,) leaves invariant an 
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g-space on V while A,(a,, 2a,) does not. Thus, (e) holds when char(k) = 5 
also. 

Now, with Ak = A,(a,, a,), k an algebraically closed field, char(k) # 2, 3, 
suppose Ak < X < E, for X a closed connected subgroup of E. Then X is 
reductive, since [9] and the action of A, on V imply that Ak does not lie in 
a proper parabolic of E. So A, 6 x’ = [X, X], a semisimple algebraic 
group. Now, suppose x’ acts irreducibly on V, which must be the case if 
char(k) # 5. Then by the Main Theorem of [12], x’ = G, or Cd. If X’ = C,, 
Ak must lie in a proper parabolic of Cd. Now, V(%,)l C4 is the 27-dimen- 
sional irreducible occurring in the wedge product of the natural C, module 
with itself. But [9] implies that every proper parabolic of C4 stabilizes a 
nontrivial subspace of this 27-dimensional irreducible of dimension less 
than 8. So x’ = G, and since char(k) # 3, A, is generated by the long root 
subgroups of G,. But then A, has a 6-dimensional composition factor on 
the 27-dimensional module for G,, contradicting the above remarks. 
Hence, VI x’ is reducible, char(k) = 5, and VI x’ has an 8- and a 19-dimen- 
sional composition factor. But now one checks, using Table 1 of [4] and 
(1.10) of [8], that there is no semisimple group, other than A,, having 
both 8- and 19-dimensional irreducible representations when p = 5. So 
x’ = Ak and X= Ak T,, where T, is a torus lying in C,(A,). But the above 
remarks about the action of A,(a,, 2a,) on V imply that VI Ak is indecom- 
posable. Hence, any semisimple element in XL,,(k) centralizing (pE(Ak) 
must be a scalar and therefore r, < Z(E)’ = ( 1). Thus, if char(k) # 3, A, is 
maximal among closed connected subgroups of E. 

Now suppose char(k) = 3. Then Propositions (G.l ), (G.2), and (A.l) and 
Theorem (4.1) of [S] imply that A, < B < E, where B is a closed connected 
simple subgroup of E of type G,. Hence, A, is not maximal and (f) 
holds. i 

APPENDIX. 

In this section, we describe certain matrix representations of Chevalley 
groups associated with finite-dimensional Lie algebras of types E,, F4, A,, 
and GZ, over arbitrary fields. We include enough information to check the 
statements made in the proofs of the previous results. 

Let 9(E) be a finite-dimensional complex simple Lie algebra of type E,. 
Fix a Chevalley basis {ep,fa, h, I j3 E z+(E)} of Y(E). If /3 = &fii, we will 
write f'l,02aja4a5a6 for fa. Let V be the irreducible T(E) module with high 
weight Ai, where I, is the fundamental dominant weight corresponding to 
pi. Choose 0 #v+ E V such that e,v+ = 0 for all c1 E C + (E). Fix the follow- 
ing (Kostant) basis of V. 
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v, =vt, 
4 =.f,ooooo~ + 
u3 =flolooo~ + 
u4 =.fm IOOU + 
v5 =f,11100~+ 
ofi =.f,or I IO u + 
07 =f,o, I Ii u + 
~8=f*,lIl*G’+ 
%=.f,Illll~+ 

Appendix E 

DONNA M. TESTERMAN 

v10- IllZlO~ -f +, v,9 - -f 112321 v + 

811 - 11,211 t’ -f + 020 = f *00ooof,,232, v 
+ 

012 - ll22lOU -.f ‘- l)Zl - 122321 v -f + 
v13- ,122llV -f + v22 = f ,ooomf,2232,v 

+ 

014 - 111221 fJ -f + v23 = f ,OlOOOf, 12321v 
+ 

015 =f;ooooo 112210~ f + u24 =f,0,WOf,2232,v+ 

ui6 = f loOOOO.fll22,l u 
+ 

u25 - 101100 122321 u -f f + 

017 - 1122212’ -f ' O26 =flOll ,Ofl22321 v + 

V18 - looooo 1122210 -f f + ~27=f,o,*,if,2232,~~+~ 

Let &?E = { Vi1 1 d i 6 27) (an ordered basis) and set M= Zhvi. It is well 
known that M is invariant under ((e;)/n!, (f ;)/n! 1 a E ,Z’+ (E), n E Z + > and 
that e; and f: act as zero on V for sufficiently large values of n. Set 
V(X) = MO* X. Then, for t E X, we have an action of exp(te,) = 
1 + ZF(te,)“/n! and exp(tf,) on V(X). We may then define a faithful 
rational representation rp,: &(X) --+ &5,,(X) on the generators of &(X) 
by ~~(x~(~)~=exp~te~) and ~~(~-~(r))=exp(~~~). Note that if U is an 
algebraic closure of -X, then ~~~~~(~)) acts irreducibly on Y(R), the 
irreducible rational &,(SZ) module with high weight 2,. (See [ 1 l] and 
Section 12 of [lo].) We identify SL( V(X)) with SL,,(X) via the ordered 
basis gE. A description of qE is given below, with E,,j denoting the 
27 x 2’7 matrix whose (k, I) entry is a,~?~, and I denoting the 27 x 27 identity 
matrix. 

cp,(xgz(t))=~+t(--4.~-E6,8-E~,~-E,~,2,-E20,22--E23.24), 

(P~(x~,(t))=~+t(E,,z+E,~,,~+E,~,,~+E,7,,~+E,9.zo+E~,,2~), 

~~~x~~(t)~=Z+ WL-&o,,2- 4,,,3- EM,,,+ Ezo.23 f-&,.24), 

~~(x~‘+~~~t)) =I+ ttE,,, + E,o,,s + E,,,,,+ EM,,, + E,,.,, + &,,dt 

(P~(xB~(~))=Z+~(E~,~+ES,E-E,,,I~- E,,,,,-E,,.,, + E,,,,,f, 
‘T.tAXp6(t))=I+ t(Ee,,+Eg,g +E,o,,, + E,2,,3+E,,,,,+E,6,27), 

vdxp,+p,(t)) = ~+~(E~~~+E~,~+EIo,I~+E,Z,,~+E,~,,~+EZ~,~~), 

CD~(Xp~+~4(t))=z+f(E3,5+E6,,o+E7,,,-E,7,2,-E,R,22-E23,25), 

40E(X/3j+dt))=z+ @2,4-Es,12 -E,,,, + E,,,,,+ E,s,23 + &,.,,), 

~Os(xp,+,dt))=z+ ~(E~,,+E,,Io+E,,,,-E,,.,,-E,,.,,+ &4,xJ, 

(P.e-(Xp,+/i,+f)-r(t))=z+ GE,,, +&,,s+ &,,6-E14.20+&,.23 + &,,zd, 
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= I+ ~(&,Is + EL,, + E,,,, - En,x + E,,,, + E,,,,,), 

dx-p,(t))=z+ QE,,, +E,s,rz +E,,,,, +E,s,,,+Ezo,,s +E,,,,,), 
(PAX -,~,(t))=z+t(E,,z-El,,,,-El,,,, -E,,,,,+E*3,2o+E24,22), 

(PE(x-s,~~~(~))=Z+~(E~,, +E IS,IO+EICII +E,s,14+E23,,9+E24,2,), 

~~(~~~2(t))=z+t(-E~,4-E8,6-Es,,-Ez,.,9-E22,2o-E24,*3), 

(PAX-p,(f)) = I+ f(&,4 + E,., -El,,,, - f,,.n - Em,,, + E,,,,,), 

(PE(X-p&f)) = I+ t(E,,, + E,,, + E,,,,o + En,,, + E,e,,s + En,,,), 

c~~(x--lii-dt))=z+ t(E,,4+&,5 +E,,,,o+E,,,,,+E,,,,, + &,.,,I, 

c~~(x-~z-df))=z+ ~(Es.~+E,o,,+E,,,,-E,,,,,-E,,,,,-E~~,~~)~ 

(~~kp-df)) =I+ t(&,,- En,, -Em + El,,14+ En.,8 + &,,A, 

~PE(X~~~~~~~(~))=~+~(E~,~+EIO,~+EI~.~-E,~,,~-E~~,,~+E~~,~~), 

‘PE(X-MI,-- /dt))=I+f(E4,1 +E,,,,+E,,,,+E,,,,,-E,,,,,+E,,,,,), 

(PE(x-P~-B~~B~(~))=~+ t(E,.,-E,o,,-E,,,,-E,,,,,-E,,,,,-E,,,23), 

(PE(X-B,-8,~~,~284~Bs(t)) 

Let Y(A) be a simple, finite-dimensional complex Lie algebra of type A,. 

Let h,, e12Tfi,Ji2r e,,+.,J,,+.,, h,,, ha,} be a Chevalley basis of .9(A). 

We take the structure constants to be determined by [e,, , eor2] = ecr, + a2 and 
relations (4.1.2) of [5]. Let W be the 27-dimensional irreducible P’(A) 

module with high weight 2(1x, + CQ). Choose 0 #IV+ E W such that 
e,w+ =0 for all aeC+(A). Fix the following (Kostant) basis of W. 
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WI =w+, WI0 = f(fJ” w+, w19 = %, + .,(f,,)” u’ + 

wz=.f&+, Wll =fir+**f*p+> w20 = %f,, + x*)2f%z I+’ + 

w3= $(fa,Y w+, w12 = ffqcfz,,” “+1 w21 =tfq+,fa,(f,,)" M:+ 
w4=fapf, W 13 = XfzJ2 (faJ2 w+, W22=b(fi,+crz)3 W’ 

w5 =.fn,fa*W+, hl=fi,+zzfx*fr*~~fl w23 = t(fz, + q)2f,, f&W+ 

w6=f,,f,,w+* W 15=$tfz1+&~+? w,,=~~fq+.,,'f,,~' 
W7=fa,+atfqWf, W16=~(frr+ar)2falU)+, %=acfa,+.,)2 (f&Y WC 
%3=151fa,)2fe,W+* w17=ffi,+a?(fa1)2f?*w+, W26=;(fq+q)3f,,bV’ 

W9=ifz,+a2(fn,)2~+, w,,=~tf,,+.2)2(fr,)2Eli+, ~27=~(f~,+~~)4~‘~+. 

Appendix A 
As in Appendix E we obtain a rational representation qA: A,(X) -+ 

,X,,(X), where we have now identified SL(W(X)) with Z,,(X) via the 
ordered basis BA = { wil 1 6 i6 27). However, the center of A*(X) acts 
trivially, so we have q A : PSL,(X) -+ S&(X)), a faithful representation. 
Let R be an algebraic closure of Xx. Then, [S] implies that if char(X) # 
2, 5, qA : P,.%,(R) -+ SL( W(R)) is the irreducible representation with high 
weight 2(a, + cz2). Moreover, if char(X) = 5, (p,(PSL,(R)) acts on W(fi} 
with two composition factors, of dimensions 19 and 8. As in Appendix E, if 
char(S) # 5, (p,(PSL,(X)) acts irreducibly on W(st). A description of pPA 
is given below: 

(PAX&)) = I+ @EL, + &,3 -E,,,+3E,,,iE,,,-E,,,~2E6.,-Ex.9 
- =,,.,I + 4~510.12 + 3E-‘12,13 + ‘%,14 - =,2.,4 - Em15 

- El4,,6 + E14.17 - 2E13.17 -E,7.18 - El,,,, - 2E19.20 

+3E 19,21 - E20.22 + E20,23 - =21,23 - E22,24 - E23,24 

-~~2~,26-E26,27~+t2(E,,~-2~4,7+3E4,,-~6,9-6E,~,~4 

+6E,o,,3+E,o,,s-E,,,,6+E,,,~7+E~2,,6-4E,2,,7 

+ En,,, + El,,22 - ~E,Q,x +E21.24 + E25.27) 

f t3t -E4,9 + 2Ej0, 16 - 6Ei0.17 + E,z,,s + E,,,,) + t4Eo,d 

40&-ezl(t)) = I+ GE,,, + 2E,,, + 456,~ + E,,, + 2E8& + 2E,,, - 3E,,, 
+E,2,io+E,4,1,+~~,3,12-3E,7,,3-3E,,,,~+2E,~,~~ 

+E~6,15+2E~~,,6-6E,8,,7+E21,~9+E23,20-2E22,2~ 

- 2E23.21 + E24,22 - 4~59,~~ - E26,25 - 2E27.26 1 i- t2(E3,1 i- Eg.4 
+E,,,- 3E9,6 + E13,10- 3&7,12 - 3&6,12 + &7,,, 

+6E,,,,3+E,,,,,-6E,8.,4-E22,~9-E23,,~+3E24,2, 

-2&,20+~27,25)+ t3(-E9.4-E,7,10-E16,,o 

f4E 18.12-2E18.11 +&4,&t t4(&.1d. 
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cp/dx&))=~+ @EL, + &,,o+ E,, +2&x,+ ‘W,,, + &,I, + &,I2 

+E,I,N+EQ,w+ 2E3.7 + W, 8 + Es, 13 + 2&, 14 + W, 14 

+ 6.15 + =15,m + Ew20 + EWI + 2E13.2, + E20.25 + E21.25 

+ 2E9.16 - 41, + Em + 2E1.53 + =,,,,, + 2&,.x 
+E 23,26+2E18,24+E24,27)+f2(E1,,0+2E2,,,+E2,,2+E5,,9 

+ E6,19 +4E,,,,+E3,,5+E3,,3+2Es.z~+2E7,2o+E,,2, 

+ E8,20 + E15.25 + f14,25 + E13,25 + E9,22 + E9,23 + 2E16,26 

+ E17,26 + EM,,, ) + t3(&,19 + 2E3.2, + 2&,2, + 4~5 

+ E7.25 + E9,26) + t4(E3,25). 

(P~(x-,~(t)) = I+ f(E4.1 + ZE,,,, + E5,2 + E6,2 + E,,,, + =,2,6 + El,,, 

+~E,~,H+E,~,I~+E~L~+E,,~+E~~,,+~E,~J+~E,~,~ 

+ E14.s + E21.13 + 2E21.14 + 2E2,,14 + E,,, 15 + 2E25,20 

+ 2E25.21 + En, + =I,,, + 3E22.1, + E23,16 - 2E,,, ,7 

+ E26,22 + E26,23 + E24,,, + =2,,24) + t2(E,o,, + E11.2 + E12,2 

+ E19,5 +2E,9,6+E,,,,+E~3.3+E,5,3+2E20,,+E2o,8 

+ E21,7 •t 2E21,, + E25,13 + E25,15 + 4E25.14 + 2E22.9 + E23.9 

+2E 26,16-E26,17 +&7,d + t3(E,9,2 + E21,3 + E,,,, 

+ =25,7 + =,,,a + E26.9) + f4(E25,3). 

Let Y(G) be a simple, finite-dimensional Lie algebra of type G2. Let {e,,, 
fw e kvl +v2' e3y,+2y*’ fky,+yyz' f3y,+ 2y*’ h,, I i = 1, 2, k = 1, 2, 3 } be a Chevalley 
basis for Z’(G). Let W be the irreducible Z(G) module with high weight 
2(2y, + y2). Choose 0 #u+ E W such that eyu+ = 0 for all y E Z+(G). Fix 
the following (Kostant) basis of W: 

u, = u+, 

u2=f$+> 
2.43 =gfJ" u+, 
u4 =Jt* + y*u+ > 

u5 =f2?j +y*u+, 

u6=fy,+y*fy,“+’ 

U7=f3y,+y*Uf> 

%=f2yl+y*fy*u+, 

u9 =f3p, +,,f,1 u+, 

Ull =f2y,+./*fYI+.1*U+’ 

u12 - 3y, + 2y*u -f +, 

u14- 3’/1+2y* ylLl -f f +9 

U15- 3YICY2 vI+Y2” -f f +r 

‘16 - ~YI+Y* 2~1 +nU -f f +9 

u 

U18 = l(f,,,+,,,‘u+, 

~19=f3y,+2y*fy,+y*u+ 

U20 - 37, + 2y* -f f 27, + y* u + 

U22=d(f2v,+v*)3 u+ 

u23 - 3y,+ 2y* 37, + mu -f f + 

u24 = t(f3yl +,*,‘.tp, +.$*U+ 

u25 = t(f3v, + 2v*)2 u + 

U26=~(f2~1+7*)3fv,+Y*~+ 

u27 = &4(f2yl+.,*)4 u+. 
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Appendix G 

As in Appendix E we obtain a faithful rational representation, 
(PC: G,(X)+SL,,(X), where we have identified SL(W(X)) with 
X,,(X) via the ordered basis SYG = {u, 1 1 < i < 27). Let $3 be an algebraic 
closure of X. Then Table 1 of [4] implies that if char(X) # 2, 7, 
COG: G,(A) + SL( W(A)) is the irreducible rational representation with high 
weight 2(2y, + y2). If char(X)= 7, one checks that qG‘(G2(X)) fixes the 
l-space (u,,-2u14 + 2u,,). The quotient is again the irreducible G,(S) 
module with high weight 2(2y, +y2). Thus, as in Appendix E if 
char(X)# 7, (pJG,(X)) acts irreducibly on W(R) and if char(X)= 7, 
(F)G(Gz(~X)) acts irreducibly on the quotient of W(A) by 
(u13 - 2~~~ + 2u,,). A description of 40~ is given below: 

~c(.~~~,(f)) = I+ @EL, + Ez.3 + 2&s - &., -4~ + 2E5.g + 2&i., + 2E7.9 

-~8,,+4~,o,,,+2~,,,,,-3~,,.,3+2~,,,,4-~,,,,5 
+ 2E,,,,, - 2E,3,,6 - EM,,, - 2E,z.,7 -I- 2E,,,,, - E,,.,, 

-t 2E19.20 + Ew, - 3Em.22 - Emn + 2%~ - E-n,,, 
- Et3.24 - 2&5.26 - &cm) + %%s - 4.7 + -48 - E6.9 

- 2E5.9 - 2E,o, is + 4~5~113 - 3E,,.,ci - 3E,,,,, + 3&. 16 
+ 2Eu.1, + E,~,IR - Em,8 - =19,22- E,m + 2&ax24 

-&,,,, + Emu) + t3( -4, - 4~510.16 - 4E,,.,, + E,,.H 
- El-&l8 + E,w,) + t4W,o.,d. 

~~(x-,,(t))=Ift(E,,,+2E,,2+2E,.,+Eg,4-3E7.5+2E,.6+E8,5+E9,, 
- ~79.8 + E,,,,o - En,m +EI,,,,+~E,~,,,-~E,S,,, 

+E14,12+E,7,,3-3E,6,13+2E,6.14-2E,,,,4+E,,,,s 

-4E ,~,1~-4E1~.,,+2E2~,19-E~,,,9-2E~3,2~-E22.2~ 
- 2&w- 2&,22 - Em3 - E,,,zs - 2&,,d + t2(Ew f E,,, 

-~E~,,-~E,.~+E~,~+E,~,,~-E,~,,~-~~~~,,I 

-~I~,Iz+EI~,I~-~,,,II+~~I~,,~-~EI~,,~-~zz,,~ 

-E23,19+E24,2,+2E24,20+E27,25)+t3(-E9,4-E,6,,0 

+4&,,,1 + E24,IP) + f4&,d. 

~c(x~~(t)) = I+ t( -&A - 2E3.6 - &,,o - E,q ,o - E,,, - ET, 12 - G. 14 

-E~,I~-E,~.,~-E,~,,~-E,,,~~-E,,,~,-~EI~.~~-E~~,~~ 

-&AX) + t2W,,,, + E9.19 + EIR,z). 

cPc(x-,,(t))=~+~(-E4,,-E,.~-E~,~-2E,0,6-E,2,7-E,,~R-E,49 
-E 15.9-E,,.,,- E 19.15 -Emu,,- &LIT- E,,,,tx-2%23 

- EZW) + f2(E,o.3 + Em.9 + E,,. 1x1. 
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Let .9(F) be a finite-dimensional complex simple Lie algebra of type F4. 
Fix a Chevalley basis (ea,f,j, h,,jp~C+(F)} of 2’(F) and writef,,,,,,,,for 
fp, where /3 =CaiPi. Let V be the irreducible Y(F) module with high 
weight i = q, + 2q2 + 3~~ + 2q4, the fundamental dominant weight 
corresponding to y14. Choose 0 # y + E V such that e2 y+ = 0 for all 
aeC+(F). Fix the following (Kostant) basis of V. 

Yl =y+, Y9=fl,nY+~ Y,x=f1342Yf 

Yz =fooo, Y+, Yl”=f,22, I’+, YW=f2342Y+ 

Y3 =fOO,, L’+, 
+ 

Yl I =f,222 Y ) Yro =.f,d0,2, Y + 

y4=fo,,, Y+> Y,2 =f,23, L'+> (21 =f,222f,,2, .v+ 

Y5 =fo,2, Y+7 Y,,=f,232Y+> Y22 =f,232f0,2, I?+ 

y,=f,,,, l'+> Y14=f,,,,fo,z, Yf> 1'23 =f,232f,,2, J'+ 

Y7 =f,,2, YC3 Y,s=f,242Yf, Y24 =f2342fO, 1, Y + 

Yx =fo,22 Y +> Yl6=f,,22fO,,, Y+> Y25 =f2342fOU, Y + 

Y17=f,,22fo,2, Y' Y26 =f2342fh,22 Y + 

Appendix F 

As in Appendix E, we obtain a faithful rational representation ‘pF: 
F4(X) + Z,,(X), where we have now identified SL,,( W(X)) with 
SL,,(X) via the ordered basis BF = { yi 1 1 < i < 26). Let 52 be an algebraic 
closure of X. Then Table 1 of [4] implies that if char(X) # 3, 
‘pF: F,(R) + S&(R) is the irreducible rational representation with high 
weight 1. So as in Appendix E, qF(F4(X)) acts irreducibly on W(R). 
A description of (Pi- is given below: 

- E,4> 16 + EI,, 17 + E,,, IO - E~9.2, + E25,26) + t2(E,,. ,6), 

vAx,,+qq (t)) =I+ GE,,, + E4,8 + E6.9 - E,o,,x - 2E,o,,4 + E,,,,, 

- El2,l5 +E~4.~7-E,x,22 + E,,,23 f&4,,,)+ t2( -E,,,,,), 

(PAX ~1+~l,(~))=~+~(-~3,6-~5,10-~8,11-E15,,~+~,7.2,+~22,24), 

'pF(xm + '13 (t))=Z+t(-E2,4- E3.5-E6,~o+E7.,2+2E,,,,+E,,,4 

-E 13. I8 - E,6,20 + E,7,22 + E21.24 - E,,,,,) + t2( - Es,,& 

(P~(x~rl,(f))=Z+f(-E6,4-E7.5-E9,8+E,9,,8-E21,2,~-E~~,~~), 
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(~~(~-~~(f))=z+t(-E3,2+E5,4+E,,6+E,2,,o+E,3,,,+2E,5,,3 
+-%14+E,~,l6 + %m+ &w + E,,,,,) + ~2(E,,,,,), 

(PF(x-,,(~))=I+ t(E,,, +E,,, +E9,,+E,,,,o+&,,2-E,4,,2+E,6,,3 

-El6,14 + E~~,~, + E,,,,, -E2,,,9 + E26,2,) + t*tE,6,,2), 

(PF(X-~,-~~~~(~))=~+~(E~,I+E~,~+E~,~-E,~,IO-E~~.,Z+E,~,,, 

+ En 13 + ‘=,7,14 - E22, 18 + E,,, 19 + E2,,24) + t2( -En, d, 

(P~(~--d,-m(f))=z+ t(-E,,,-El,,,-El,,,-El,,,, +E,,,,,+ E24,22), 

(P~(X-wn(f)) =I+ l(--4,2- E,,, - Em,, + E,,,, + En,9 -=,,,I, 

-E,s,,4- E,,,,, + E,,,,, + E24.2, - ~525~2,) + t2( -E,g,9). 
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