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In this note we give explicit descriptions of certain maximal closed, con-
nected subgroups of the exceptional algebraic groups F, and E,, defined
over an algebraically closed field of nonzero characteristic. Qur original
goal was to complete the work of [12], where we determined all possibie
closed subgroups of exceptional algebraic groups which act irreducibly on
some nontrivial rational module for the overgroup. However, in three cases
(A, < Eq, Gy < Eq, and G, < F,), we omitted the proof of the existence of
an appropriate subgroup; this is contained in the proof of Theorem 1
below. As well, this work is part of the larger problem of describing (up to
conjugacy) all maximal closcd connccted subgroups of the exceptional
algebraic groups over a field of nonzero characteristic. Qur main result is
the following:

THEOREM 1. Let k be an algebraically closed field of characteristic p.

(a) Ifp#2,7, the simply connected, simple algebraic group of type E,
over k has exactly two conjugacy classes of closed, connected subgroups of
type G, which act irreducibly on some nontrivial rational module for E,. The
subgroups are maximal among closed connected subgroups of Eq and the two
classes are conjugate in Aut(E).

(b) If p#12,5, the simply connected, simple algebraic group of type E,
over k has exactly two conjugacy classes of closed, connected subgroups of
type A, (isomorphic to PSL;) which act irreducibly on some nontrivial
rational module for E,. The subgroups are maximal among closed connected
subgroups of Eg if and only if p # 3. Moreover, the two classes are conjugate
in Aut(Ey).

(c) If p=11, the simple algebraic group of type F, has exactly one con-
Jugacy class of closed, connected subgroups of type G, which act irreducibly
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on some nontrivial rational module for F,. The subgroups are maximal
among closed connected subgroups of F,.

(d) If p=S5, the simply connected, simple algebraic group of type E,
has two conjugacy classes of closed, connected subgroups of type A, which
are maximal among closed connected subgroups of E, and which act
reducibly on every nontrivial rational module for E,. The two classes are
conjugate in Aut(E,).

We obtain the results of (a), (b), and (¢) by first working inside the
overgroup E, or F,, using the necessary action of the subgroup on a par-
ticular module (given by [12]) and the general theory of the structure of
algebraic groups to describe (up to conjugacy) necessary conditions on the
embedding. We then take a faithful representation of the overgroup and
show that the necessary conditions are in fact sufficient to establish the
conjugacy (in GL,) of the subgroup to a known algebraic group. Noting
that our embedding and the conjugating matrix are describable over a
more general field ¢°, we obtain the following:

THEOREM 2. Let X" be an arbitrary field of characteristic p and ] an
algebraic closure of A". Let E¢(X"), F(A"), and G,(A) denote universal
Chevalley groups of type Eq, F., and G, respectively.

@) If p#2,7and (—7)?e X, E{(X") has a subgroup isomorphic to
G (A) which acts irreducibly on the restricted, 27-dimensional rational
modules for the group E¢(R).

(b) Ifp#2,5and (—1)?ex, E(A) has a subgroup isomorphic to
PSL,(A") which acts irreducibly on the restricted, 27-dimensional rational
modules for the group E(R).

(¢) If p=7, F(X') has a subgroup isomorphic to G,(A") which acts
irreducibly on the restricted, 26-dimensional rational module for the group
F,(R).

We note that a version of Theorems 1(a) and 2(a) has been proven with
different methods by M. Aschbacher in [1] and that A. Ryba has com-
municated to the author a sketch of another proof of Theorem 2(a). Both
Aschbacher and Ryba view E((F), the universal Chevalley group of type F,
over a field F, as the group of isometries of a symmetric trilinear form on a
27-dimensional module. Aschbacher shows that if char(F)#2, 3,7, then
G,(F), acting on a certain 27-dimensional module, preserves (up to scalar
multiple) exactly two forms similar to the E,(F) form if and only if F con-
tains (—7)"? and determines the conjugacy classes of such G,(F) in E¢(F).
Ryba uses the Eg trilinear form and obtains precisely the result of
Theorem 2(a). In concluding this introduction, the author wishes to thank
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Ron Solomon for helpful conversations concerning the conjugacy questions
in Theorem 1.

Notation, Throughout the paper, let & denote an arbitrary field of
characteristic p and k an algebraically closed field of characteristic p. For X
a Chevalley group or a semisimple algebraic group, let 2(X) denote the
root system associated with X, II(X) a base of 2Z(X), and Z*(X) the
corresponding set of positive roots. For a semisimple algebraic group
defined over k, let T denote a maximal torus of X, U, the Ty-root sub-
group associated withye Z(X), U, = {x ()l1ek}, By=<U.lye 2" (X)) Ty
(a Borel subgroup). If u is a Ty weight in a nontrivial rational kX module V,
let Vodu)={veVitw=p(t)v, for all reT,}. Other notation will be
standard as in [5] or [10]. We refer to {7] for a set of structure constants
for the groups E, and F, and to [5] for the structure constants for G,. In
addition to the notation introduced thus far, we will use the following:

A:an algebraic group of type 4, over k, II(A)= {«,, 2, }.
G: an algebraic group of type G, over k, IT1(G)={y,, y,}, with

[ == ]
1 2

E:a simply connected algebraic group of type E, over &, JI{E)=
{B;|1<i<6}, with

F: an algebraic group of type F, over k, II(F)= {n,, #,, 13, #4}, with

*—06——9—9
T2 3 4

The proofs of Theorems | and 2 are contained in the proofs of the
following seven results (the first of which is a straightforward, technical
lemma). We use detailed information about certain rational representations
of the universal Chevalley groups E,(#"), F.(A"), G,(A), and A,(X"). For
the sake of continuity, we have compiled this in an appendix (results in
Appendixes E, A, G, and F) and refer to it when necessary.

Lemma.  Let SLy(k)= X, and X, = SLy(k). Let II(X,) = {f}, [T(X,)=
{6,,0,} and let W, be the natural module for X, for i=1,2. Suppose X,



302 DONNA M. TESTERMAN

a simple algebraic group of type A, is a closed subgroup of X, with
II(X)={a}, such that W,| X is a restricted irreducible rational kX module,
Ty< Ty, and U, <<U, |y 1(X,)).

(@) If i=1, then h,(c)=hg(c) for all cek*, and there exists de k*
such that x,{t)=x(dt) and x _ (t)=x _4(1/d) 1), for all 1€k,

(b) If i=2, then h,(c)=hs(c?) hs(c?) for all cek*, and there exists
c,ek* such that xa(t)=x(;|(c1t)x()-z(czt)x(,l+(,z( Nicie, %) and x_ (1) =
X 5(2tfc)) x5 (21/¢s) x 5 _5,(N28/(c ¢y)), for all tek, where N is given
by [x5(1), xs5,(u)] = x5, 5,(Ntu).

Proof. Consider the case where i=2, so X<X,. Since Ty<Ty,,
ha(c) = hs (c*) hs(c') for some k, Ie Z. But W,| X a 3-dimensional restricted
irreducible implies that p#2, W¥| X=W,|X, and k=2=/ Since
U, U li=1,2), x,(1)=x5(/1(2)) x;5,(f2(t )xol+oz f3(2)), for some
f:€ek[t]. Moreover, f,(1)#0+#f,(¢), else U, lies in the unipotent radical of
a proper parabolic of X, and hence has a fixed point space on W, or W#¥
of dimension greater than [. Conjugating x,(t) by #h,(c) we have
f(c*t)y=c*(fAt)) for i=1,2, and f5(c*t)=c*f;(t), for cek* and rek.
Letting =1, we find that f,(t)=c,t for i=1,2 and f;(t)=c,¢* for some
c,ek,c,c,#0. Also, x,(1) x,(u)=x,(t+u) implies that c¢;= —1iNc,c,,
where N is as in the statement of the result

Let 0: X — SLy(k) be given by 8(x (1))=1[} /] and 8(x _(t))=[! 9
Let {x, y} be a basis of the natural module for SL,(k) and let W be the
vector space of degree two homogeneous polynomials in {x,y}. Let
n: SL,(k) - SL,(k) be the corresponding representation, where SL,(W) is
identified with SL,(k) via the ordered basis {x?, xy, y*}. Let p: SL4(k) > X,
be the isomorphism such that

1t 0 100
01 0| J=xs0. o]0 1 | }=xs0
00 I 0 0 1
100 1 00
pl | 1 0] )=x,0, and pl]o0 1 0] )=x_s0
0 0 1:| ( 0 ¢ 1

Then let ¢ =pomo0: X — X,. One checks that @(x,(t))=x;/()x;,(2t)
Xopral = NE) @(x L(D)=x 420X 4(1)x 5 5(NF), and o(h,(c)=
hs,(c®) hs(c?). Let 4 X X, be the inclusion map. Then ¢ and .% are
equivalent representations of X; so there exists yeX, such that
H(g) = yo(g) y ! for all g e X. Now, hs(c?) hy(c?) = Hh,(c)) =
yo(h,(c)) y ' =yhs(c?) hy(c?) y " implies that y = h, (e) b, ,(f) for some e,
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fek* Also, £(x,(t))=yo(x, (1)) y ' implies e’/ '= ¢,,2¢"'f*=¢,, and
ef =3cie5. Thus, F(x_ (1)) =x . 5(2t/c)) x_5(2t/c3) x 5, 5(N2%/(c, ;)
and (b) holds.

We omit the proof of (a), which is similar to but easier than the
above. }§

We now begin our consideration of the irreducible G,’s in E, and
mention that the methods we use were developed in [8, 12].

PropPOSITION (G.1). Suppose G is isomorphic to a closed subgroup of E
and, identifying G with the subgroup, suppose V|G is irreducible for some
nontrivial rational kE module V. Then p#2, 7 and up to conjugacy in E

X, (1) = x5, (1) x5, (0) 2,y (= 307) X, (2) X (1) X (1) X, o (—327),
X (D=x_5Q0x_ 520 x 5 g2 x_p(0) x _p(20) x4 (20)
X g p(20%),
X () =xpy plart) Xp, g lart) xp, . pl(a; +3a5) 1),

and

X=Xy pltfar) x g, plt/ar) x 5 plt/(a+4as)),
for some a e k* with 2%+ a,a,+ a%=0.

Proof. By the Main Theorem of [12], ps2,7 and G acts irreducibly
on ¥{(4,), the irreducible kE module with high weight 4,, where 4, is the
fundamental dominant weight corresponding to §,. Also, V{4,)|G is the
irreducible AG module with high weight 2(2y, +v,). Let V= V(4,). Let
P= B be the parabolic subgroup of G with Levi factor L=<U,, > T,
and unipotent radical Q. By the Borel-Tits theorem [2], there exists a
parabolic P, of E (with Levi factor L, and unipotent radical Q,),
such that P< P, and 0<Q,. Up to conjugacy in E, we may assume
Te<Tp<L, and Bg<B,. It follows from [9] that V2=V% is a
restricted 3-dimensional irreducible kL module. But V9 is an irreducible
kL module with high weight 1, (T~ L}); thus <U,,, U, > is a simple
component of L. Considering the action of G on V*, we conclude as well
that U, g, U, > is a component of L).. However, L} # CUsp Uspdx
{U g, Uy, since otherwise, b, (—1)=1. Hence, L. = Usp Uppox
U g, > x (UL, Uyp,>. Moreover, the above argument shows that P, is
minimal with respect to the conditions: P a parabolic of E, P< P, and
Q< R[(Pg). Hence, by (29) of [8], Z(L)°<Z(L;)°. But Z(L)° and
Z(L;)° are 1-dimensional tori, so Z(L)° = Z(L,)°. So L < CplZ(Ly))=
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Ly and L'S{U,p, Uy p > x<Uop>x{U, g, U,p>. Moreover, the
projection of L' in (U,g, U,p > (respectively, U, g, U,p>) acting on
V2 (resp., (V*)9) satisfies the hypotheses of the lemma. Note that 0 #we
V4 — B — Bs— B,4) is the maximal vector of an L} composition factor of
V' and hence of an L’ composition factor of V. One checks that (for all
p#2) VIL has no 6-dimensional tensor decomposable composition factor,
The action of Ton L' on w then implies that the natural module for
(Uyp,» 18 a restricted irreducible module for the projection of L' in
(U 4p,>. So by the lemma, there exist d;, e;, r € k* such that

h;’((c) = kﬁg(cz) h{ﬁ(cz) hﬁz((.) hﬁg;(cz) k,’?ﬁ(cz)s
X, (1)=xy(d 1) xp(dst) x5, p(—1d,ds1%) Xp{rt) xple 1) xg(ey1)
‘x/s5+ﬂ6(—%€1€212)»

and
Xy ()= x5 (2td)) X _g,(2t/dy) x g, 5 (26°)d dy) x _ 4 (t)r)

X _p(2tfe ) x _p(2tfer) Xy 4 (20 e €5),

for all rek and cek* Moreover, conjugating by an element of T if
necessary, we may assume ¢,=1=d,=r.

We must now consider the embedding of (U, ,) in E. One checks that
Z(LY = {z{c)=h(c) h (M) cek*} and Z(Ly)° = {hg(d®) hy(d’) hy(d*)
hp(d®) hy(d®) hydd®) =z, (d)|de k*}. Now, z(c) =z (c") for some /e Z and
the action of z(c) on V,(4,) implies that /= 1. Combining this with the
known factorization of A, (c), we have h.,(c)=hg(c)hg(c) hg(c®) hylc).
Let To= {h,(e’)h,(e*)leck*}. Then (U,,><CgT,), a connected
reductive group containing T,.. One checks that Cg(T,) has root system
{£(Bs+ B2 (Bt B £(Baths)) S0 (Ur)> < (Usipyypy) X
Uaiprep) X Vs pn>- Since Uy, SQ SO, x,(1) = x4 5, /1(1))
Xp, 4 gl Sf28)) Xp, 4 g f5(1)) for some f.ek[r]. Now, f,#0, else O0#we
Vil — B, —B5—B,) is fixed by By, contradicting the irreducibility of G
on V. Arguing similarly with V*, we see that f;#0. So (U.,,> projects
nontrivially into {(U_ s, p,> and (U, gz, In fact, <U,,,»> projects
nontrivially into (U, 4, p,,>- For otherwise, Tsn (U, ,,> < {hg,, p(c))-
hg, s p{c2)c;ek*}, contradicting the given factorization of 4, (c). Finally,
we note that the factorization of A, (c) implies that the projection of
(U,,,> into each of the components {U. s 44,7 <Usipapyrs and
(U p,+ps» satisfies the hypotheses of the lemma. Thus x,(7)=
Xgy 4 pl@1 )X, 4 pl@2t) Xg, 4 plast), for some a; € k*, and x_,(¢) =
X_pyplt/a)) x _p_pft/ay) x 4, s(t/as). The relation [x _, (1), x,(u)}=1
implies that a;=a, +1a,; the relation [x, (¢), x_,(1)]=1 implies that
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1/a, + 1/a,=l/a;. So 2a? +a,a,+ a3=0. This completes the proof of the
proposition.

Notation. Assume char(#')#2,7, (=7)"?ex, and let ] be an
algebraic closure of #". Let a,, a, € A * such that 243+ a,a,+a%2=0 and
fix ee A such that e2+7=0; so a,=4~1+¢)a,. Let G, (a,,a,)<
E¢(X') be defined as follows: G ,(a;,a,)=<X (1), X (1), X,(1),
x_,(0)te A >, where

X, (1) =0, () X8 X 4 (= 51) X, (1) X (1) X (1) X4 (=387,
X (=x 52t)x ,2t)x 4 /,](212))( plt) X p(28) x /,6(2t)
X g p(207),
Xo()=xp plart) xp playt) xg, 5 l(a, +3as) 1),

and

X _L()=x 4 plt/a)x 4 plt/as)x g5 plt/(a,+3a,)).

The statements of Theorems 1(a) and 2(a) will follow immediately from
Proposition (G.1) and the following:

THEOREM (G.2). Let notation be as above. Then

(@) Gyla,a)=Gy(X).

(b) G la,,a,) acts irreducibly on the restricted, 27-dimensional
rational modules for the group E (R).

() Gyla, 3(—1+¢)a)is conjugate in E¢(A) to G (b, {—1+¢)b),
for any a, be A *

(d) Let t be the graph automorphism of E(X"). Then
(G pla, 3(—1+e)a))=G (b, (—1—¢)b), where b= —4(3+¢) a

(e) OQver the algebraically closed field k (characteristic k+#2,7)
G (1, 3(—1+¢)) is not conjugate in E to G, (1, 3(—1—¢)).

(fy With k as in (e), G,la,, a,) is maximal among closed, connected
subgroups of E.

Proof. In the Appendix, we explicitly describe faithful matrix represen-
tations of E¢(#") and G(X') in SL,,(#"). More precisely, ¢.: E((A) -
SL,;(A") corresponds to a representation on a 27-dimensional vector space
V' with a fixed ordered basis #,={v,|1<i<27} and ¢.: G,(¥)—
SLy;(A) corresponds to a representation on a 27-dimensional vector space
W with a fixed ordered basis #; = {u,;|1 <i<27}.
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Let P:V — W be given by

Pv,=2u,, Pv,=u,, Pvy=u;, Pvy= —a u,,

Pos=3(2a, — a,) us — 3a,ug, .

Pog= —1(3a, +3a;) us— (3a, + 3a,) us,

Pu;=¢(2a, — ay) u, — i(a, +3a,) u,

Pog= —3(3a, +3a,) u; + §(2a, — a,) ug,

Pvg= —Ja,uq, Pvig=ay(a, +3a,) uo,

Puyy = ga,(2a, + ay) uy, — 3ax(2a, — ay) uyy,

Pvy,=ga,(2a, — a;) uy, —5a,(3a, + 3a;) uy,,

Py = —day(a, +4ay) uys —3a(a +5a;) uy,
+ 14 —5aj +3a a5) uys,

Poiy=5a,(5a, —3a,) uys + [15a] — 55031 uy4
+ [5%a] + 5a1a>1 uss,

PU15=2L8(5{1%_%‘11“2)“13—[%sa%‘*%alaz] Uys

3.2, 5
+ [5xai + %aa2] uys,

— 1 1 1, (1 L
Pvig= —3a,(3a, +3a,) uy6 + 3a,(3a; +3a,) U7,

_ 1 1 1, (1 1
Pv; = —gay(a, —3a,) uis + 30,(3a, + 34;) uy7,

— 1 _ 12 1
Pvy=—4a,(2a, — ay) ujg, Pvig= —3aj(a; +1a;) uyo,

12 1 1,2 1
Pvyy = 15a3(3a; + 3a,) uyy — gas(a, + 3a;) uyy,

1.2 1 1 1
Pvyy = —gas(a, —3a,) ux + 3, ax(a, + 3a;) uyy,

— 1,2 1 12 1
Poy, = ggas(ay — 3aa) Uy + 5a3(a; + 3a,) s,

— 1.2 1 1 1
Pv,yy = —{eas(a; + 3a,) uy — ga,ax(a; + 3a,) U,
1,2 1 _ 1,2 1, 2
Pv,,=Jai(a, + 3a,) uy, Pvys=3ai(a, + 3a,)" uys,

1,2 1, 32 _ 1.2 1, \2
Pv,s = —4at(a, +3a,)° uys, Pvyy=3ai(a, + 3a,)" uy;.

One checks that, for all rex’, for 1<i<27, and for j=1,2,
0o(x, (1) Po, = P (%,(1))v, and  @u(x_, (1) Po, = Ppy(_,(1)v,.
Thus, conjugation by P is an isomorphism between ¢g(G,(%")) and
@G (a,, as)). So Gy(a,, a)=G,(A"). The statement of (b) follows from
Appendixes E and G. For (c), let z=hg(d*) hs(d’) hp(d*) hp(d®) -
hp(d*) hg(d?), for d = bja. Then one checks that zG ,(a, 3(—1+¢) a) z7!
=G (b, }(—1+¢) b). The statement of (d}) is easily checked.



MAXIMAL SUBGROUPS OF ALGEBRAIC GROUPS £, AND F, 307

Now suppose there exists ye E such that yG.(l,3(—1+¢))y '=
G (1,4(—1-¢)). By (c) and (d), there exists heE such that
h(G (LA =1+e))h'=G (1,4 —1—¢)). Set G,=G,(1,(—1+¢)) (a
simple algebraic group of type G,). Then y~'ht(G) h 'y =G,. We first
note that G, is not pointwise fixed by y At (viewed as an element of
Aut(E)). For there are two conjugacy classes of involutions in the coset TE
(in Aut(E)), with fixed point subgroups of types F, and C,. (See [6].) The
F, (a conjugate of the fixed point subgroup of 7) acts reducibly on the
27-dimensional kF module V(4,), so does not contain G,. Since p # 2, the
C, acts irreducibly on F(4,). (See [12].) But the Main Theorem of [8]
implies that no proper closed connected subgroup of C, acts irreducibly on
a 27-dimensional C, module when p#2. So y~'ht induces a nontrivial
(algebraic group) automorphism of G,. By Steinberg (see [10]), any such
automorphism is induced by an inner automorphism. However, we then
have G, pointwise fixed by an involution in tFE, contradicting the above
remarks. This completes the proof of (¢). Finally, we note that (f) follows
from (b} and the Main Theorems of [8, 12]. |

Note that if char(#")=7, the definition of G, (a,, a,) < E{(#") makes
sense, and in fact, we could argue that G ,.(a,, a,) = G,(X’) in this case as
well. Moreover, it is easy to see that when p=7, G4 (a;, a,) is fixed by 1,
thus giving an embedding of G,(#") in F,(#"). However, we will work
inside F,(") instead, in order to obtain the conjugacy statement in
Theorem 1(c). The proofs of Theorems 1{c) and 2(c) closely parallel the
above proofs, so we give an abbreviated version.

ProprosITION (F1). Suppose G is isomorphic to a closed subgroup of F
and, identifying G with the subgroup, suppose V|G is irreducible for some
nontrivial rational kF module V. Then p =T and up to conjugacy in F,

X, (1) =x,,(£) x,(6) x,,(1) X, ¢ 0 —327),

X () =x_, (1) x_, (21) x_,(20) x 2r2),

— 14

Xo(1) = Xy, 1 0y (4D1) X, 4 (1),

—H3— N

and

X_ (1) =x_, _,,(2t/b) X - ns(2/b),

for some bek*,

Proof. By the Main Theorem of [12], p=7 and G acts irreducibly on
the rational kF module with high weight A=y, + 25, + 35, + 2n,, and for

481,122/2.4
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V=V{(4), V|G is the irreducible £G module with high weight 2(2y, +7,).
Let P be as in the proof of (G.1). Arguing as in (G.1), we see that if
P> B, is the parabolic subgroup of F with Levi factor L= ({U,,, > x
{Uspy» Uigy>) T, then up to conjugacy in F, P< P, Q< R(Pr)=Qp,
L' <Ly, T;<Tg and Z(L)°=Z(L;)°. Moreover, again arguing as in
(G.1), we see that the projection of L' in each of the components of L}
satisfies the hypotheses of the lemma. Thus, there exist d, e, € k* such that

hy ()= hy (c) hyy(c?) By (c?),
x,, (1) =x, (dt) x, (e, 1) x, (e21) X, 4y (—Sei€20%),
and
x_,(=x_,(t/dyx_,(2t/e,) x _,(2t/e;) x_,,_ W 207 e e5),

for all tek and cek*. Moreover, conjugating by an element of T, if
necessary, we may assume d=1=e¢,.

We now consider the embedding of (U,,,> in F. Arguing as in (G.1),
we find that h,,(c)=h,(c)h,(c*) h,(c). Let To={h,(e?) h (e’)eck*}.
Then <U.,,,>»<CHT,), a connected reductive group containing 7.
One checks that C(T,) has root system {+{n,+n,), +{n,+#3)}}. So
<Ui?3> < <Ui(m+nz)>x <Ui(nz+n3)>' Since U}'z < Q < QF’ X7,Z(t) =
Xy +mlS1(1)) X4 0 (fo(2)) for some fiek[t]. Now, f,#0, else 0#we
VrdA—ny—n3—ny4) is fixed by B, contradicting the irreducibility of G on
V. So (U,,,> projects nontrivially into (U, .. In fact, <U,,»0
projects nontrivially into (U, 4> For otherwise, Tcn{(U,,,» <
{Ry, . () ¢, €k*}, contradicting the given factorization of #,,(c). Finally,
we note that the factorization of h,(c) implies that the projection of
(U,,,> into each of the components (U, 1y> and (Uyipim?
satisfies the hypotheses of the lemma. Thus x.,(1)=x,, , ,(at) X,, ; ,,(bt)
and x_,(t)=x_, ,(t/ayx_,, ,(t/b) for some a,bek*. The relation
[x_, (1), x,,(«)] =1 implies that a —4b=0. This completes the proof of the
proposition. |

Notation. Let & be an arbitrary field of characteristic 7 and let 8 be an
algebraic closure of . Let be o * and let G, (b) < F (X'} be defined as
follows: G ,(b)={x, (1), X_, (1), X,(1), X _,()|1e A ), where

%, (1) = %, (8) %, (1) %, () X,y 4 ( —52°),
% (0=x_,(t)x_,(20) x_,(20) x_,,_,(28%),
)Z.}’Z(t) = x'll + ’72(4bt) x'lz"“ ’13(bt)’

and
X_,0=x_, Qbyx_,, _,(1/b).
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The statements of Theorems 1(c) and 2(c) follow from Proposition (F.1)
and the following:

THEOREM(F.2). Let notation be as above. Then

(@) Gp(b)z=G,(X).
(b) G, (b) acts irreducibly on the restricted, 26-dimensional rational
module for the group F,(R).

(c) G (b)) is conjugate in FHX") to G {a), for any ac A *.

(d) Over the algebraically closed field k (of characterstic 7), G, (b) is
maximal among closed, connected subgroups of F.

Proof. In the Appendix, we explicitly describe a faithful matrix
representation of F,(X'), @p: FA') > S»(H), where ¢, corresponds
to a representation on a 26-dimensional vector space V with a fixed
ordered basis Z,.={y, |1 <i<26}. Asin (G.2), @g: Go(H') = SLyy(X) is
a faithful representation of G,(#") on a 27-dimensional vector space W
with basis Z; = {u,|1<i<27}. As noted in the Appendix, when p=7,
@AG(A')) fixes a l-space on W, namely {u,;—2u,,+2u;5>. Let
W=W/{uy—2u,s+2u;s»> and let ¢, denote the corresponding faithful
representation @g: Go(#') > SLys(W). Let By={a,|1<ig27, i#15},
where w denotes the image of w in W, for we W. Then %, is a basis of W.
Let P: V- W be defined as follows: Py, =2w,, Py,=w,, Py,=6;,
Pyy=bw,, Pys=2bws+3bWwg, Pyo=2bwi+5bw,, Py,=2bw,+ bw,
Pyg=bw,+ 5bwg, Pyo=4bwy, Py,o=23b"%,, Py, =6b% +4b>%,,,
Pya=6b"w +5b*W,,, Py,3=2b%+6b%%,,, Py,=3b%%,,, Pys=
262 16+ 2% 14,  Pyio=6b7W o + SbW 5, Py =002, Pyg=3bW,
Pyio=b* s+ bWay,  Pysg= 600+ 5hYy, Py =4b3,, + 203y,
Pyy, =6b"Way + 46N 5, Pyyy=20Way, Pyay=3b%,s, Pyys=2b%,
Py, =5b*w,,.

One checks that, for all re#, for 1<i<26, and for j=1,2,
Palx, (1)) Py; = Pop(x, (1) y; and  @o(x_ (1)) Py, = Pog(x_, (1)) y,.
Thus, conjugation by P is an isomorphism between @(G,(#)) and
@p(Gy(h)). So G,(b)= G,(X"). The statement of (b) follows from
the remarks of Appendixes G and F. For (c), we note that if
h=h, (d*) h,(d®) - h,(d*) h,(d*), for d=a/b, then hG (b)Y h ' =G ,(a).
Finally, (d) follows from (b) and the Main Theorems of [8, 127. §

We now begin our consideration of irreducible A%s in E.

ProposiTion (A.1).  Suppose A is isomorphic to a closed subgroup of E
and, identifying A with the subgroup, suppose V| A is irreducible for some
nontrivial KE module V. Then p 2,5 and up to conjugacy in E
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X, (1) =x4(1) xﬁ3({)xﬁ(+ﬁ3(”%t2)x{iz(t) Xp (1) x4,(1) xﬁg+ﬁ5(—%t2)s
X () =x_p 20 x_4(20) x _p5 20V x_p (1) x5 (28) x _p(20)
X o207,
Xa(8) =Xy 4 s pa@r 1) Xpy v pil@1)
Xps pas s 2 (301 Q21 Xy oy pi((@ +5a5) 1)
X s+ gl @i+ A2) 1) Xy y gy plart)
"xﬁz+ﬁ3+2ﬁ4+ﬁs+56((%alaz'*“léa%) 52),
X_o{)=X_pg_p. pl2t/a) x _p,_p, p(2t/a;)
"X gy oy 2pe—pl =200 /a1a2))
Xy plla +da) )
X g g p20ay +a)) 7YY X gy g p(20/ay)
'x—/32~/i‘3*2ﬁ47ﬁ5—/35("2t2(ala2+a%)—l)
for some a,e k* such that 2a? +2a,a,+ a3 =0.

Proof. By the Main Theorem of [127, p#2,5 and 4 acts irreducibly
on ¥(4,), the irreducible k£ module with high weight 4,. Also, ¥(4,)| 4 is
the irreducible k4 module with high weight 2{x, +«;). We argue as in
Proposition (G.1) to see that up to conjugacy in E the following hold:

Xy (1) =xp(8) Xp,(1) x5, 4 il —11%) Xp,(1) Xp 1) xp() X, 4 il —ir%),
X o (N=x_pQ20x 5200 x 4 (20 x5 (1) x5 (20) x_p(21)
"X g p(20%),
ha(€)= Ry () ) hpf€) e} e,
and
U, <<UplB=Zc,y,c,eZ",¢p,>0).

As well, if L= (U, > T4, Z(LY = {h,(c) h{c?)=z(c)|cek*} = {hy (d)-
hp(d®) hp(d*) hp(d®) hp(d*) hy(d®) =z (d)|dek*}. Now z{c)=z{c') for
some /e Z and the action of z(c) on V', (4,) implies that /=3. So h,,(c) =
B (c?) hg(c*Y hyp () hg, (%) hg(c®) hg(c?). Let To= {h,(e?) hy,(e)leck*}.
Then (U.,,»> <Cg(T,), a connected reductive group containing 7. One
checks that Ci(T,) has root system {+(f,+fs+B4), T(B:+Bs+Ps)
(B + B2+ B3+2B4+Bs), T(Bs+Ba+Bs), £(BatPBs+Bs) (Bt

Bi+Ba),  £(Br+B:+2B,+Bs+Ps)} So (U, uy) SCUiipispypor
Ut(/3z+/34+ﬁs>> X <Ui(ﬁs+ﬁ4+ﬁs)> X <U'r(x‘34+35+!36)’ Ui(ﬁz+63+ﬁa)>'
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Now, 0#we V,(4,) affords a 3-dimensional (restricted) composition
factor for (U.,,>. Thus, the projection of {U,,,> in {Uyp g4 g0
U (p,+ po+ ps) » Satisfies the hypotheses of the lemma. Arguing similarly with
V*, we see that the same is true of the projection of (U,,,) in
CU s gt ps+ 600 Us (gt py+pn - Finally, note that <U,,,» projects non-
trivially into {U, 5,4 .+ 55> €lse A (—1)=1. In fact, one checks that

.2 2

N — 2 , 2
hzg(c)_h[f1+ﬁ3+ﬁ4(( )h/fz+/}4+ﬂ5(( )h/13+/34+/xs(c) h/]4+[15+/i5(c ). h/;:+/13+/u(c )s
so the projection of (U,,,> in U, yyp4p> also satisfies the
hypotheses of the lemma. Thus,

X (1) = X, 4 v @1 8) Xy 4 g4 pl@at)
1 2
Xy i+ 260+ (20142 17)
“Xpya et pslBPE) Xy ps v p€18) Xy iy pileat)

1. . 42
‘X/;z+/13+2/14+/15+/x<,(ih(2t ),
and

X_p()=X_p _p_p2tfay) x _y,_p, p(2t/a;)
Xy 2pe—psl =20/ @1@2)) X g, 1/b))
X gy psop2t/C) X gy gy p(20/c35)
X gy gy 2peps— el —20/(c165)),

for some a,, b, c,e k*.

The. relatlor'ls [x,(t), x ,(u)]=1 and [x_,(t), x,(u)]=1 force the
following relations among the constants: b=a, + la,, ¢, =a, + a,, ¢, =a,,
and 2a} + 2a,a,+ a3=0. Thus the result holds. J

Notation. Assume char(X")#2, (—1)"?e ", and let | be an algebraic
closure of X". Let a,, a, € #* such that 2a?+ 2a,a,+a3=0 and fix e .
such that 8°+1=0; so a,=(—1+8)a,. Let A, (a,,a,)<E{A) be
defined as follows: 4 ,(a,, ay) = (X, (1), X _, (1), X,(t), X _,()|teA ),
where

fa.(t)zx/il(t)x/h(t)xﬁ|+/13(—%t2)xﬁz(t)X/fs(’)x/;(,(’)x/fﬁ/fé(—%fz),
¥ oo()=x_pQ0)x 5200 x 4 520 ) x 5 (1) x 5(20) x _p(2t)
X g, ,ﬂ6(2t2).
Xl 1) =Xpg, 4 gy p{@10) Xp, 1 g, 1 pil@at)
"Xt ey 28 ps(301G28%) Xy gy p((ay 4+ 4a5) 1)
Xpowps+pl (@1 +a2) 1) X, 4 gy pl@st)

2
Xyt 2pat s+ el (301 @2 + 303) 1),
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X o(t)=x_p g, p(2t/ar) x _p, 4, p(2t/as)
X g g ape e —200(a1a3)) X g g, pllay +3a5) " 1)
X _peps—p20@ +ay) ) x g g (21ar)

2 _
X gy gy 2paps - gl —20(a1ay +a3) .

The statements of Theorems 1b, 1d, and 2b follow from Proposition (A.1)
and the following:

THEOREM (A.2). Let notation be as above. Then

(@) Axlay,a)=PSLy(X).

(b) If p#5, Ay(ay, ay) acts irreducibly on the restricted, 27-dimen-
sional rational modules for the group E¢(R).

(¢) Ay(a (—1+0d)a)is conjugate in Eg(A') to A, (b, (—1+6)b),
for any a, be A *.

(dy Let t be the graph automorphism of Eg(A"). Then
(A p(a, (—=1+8)a))=A,(b, (—1—10)b), where b=ad.

(¢) Over the algebraically closed field k (char(k) # 2),
A, (1, (=14 9)) is not conjugate in E 10 A, (1, (—1—19)).

() Owver the algebraically closed field k (char(k)#2), Aia;, ay) is
maximal among closed connected subgroups of E if and only if char(k) # 3. If
char(k) =5, A.(a,, a,) acts reducibly on every nontrivial rational kE module.

Proof. In the Appendix, we explicitly describe a faithful matrix
representation of PSL;(¢") in SL,,(¢"). More precisely, ¢ ,: PSLy(X") -
SL,,(A") corresponds to a representation on a 27-dimensional vector
space W with a fixed ordered basis #,={w,|1<i<27}. As well, let
Qg Eg(A)—> SLo;(H), V and %, be as in the proof of (G.2).

If char(A")#5, let P: V — W be given by

Pv,=2w,, Pvy=w,, Poy=ws, Poy=a,wy,
Pos=14(2a, + 3a,) ws+ Ha, —a,) we,

Pog=15(2a, + 3a,) ws+ L(2a, + La,) we,

Pv, = 15(2a, + 3a,) wo + (Fa, + 3a,) ws,

Pog = 15(2a, + 3a,) wy + §(a, — a;) ws,

— |

Pvg = 3a,wy, Pojg= —aza,w,
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Pu, =15(3a,a; + 2a3) wyy + aay( —a, + ay) wis,
Puyy=15(3a,a;+ 2a3) w +4ax(2a, + 3a;) wis,
Puyy=[da,a, + 5031 Wiy + %a2(a; +302) wis
+ 15ax(a, +3a5) Wys,
Poyy= —[Ha3+ fa1a2] wis ~ [$aza,+ a3l wyy
— [fa,a; + 5a3] wis,
Po o= [4ad+ia,a,] wis+ [dad +55a1a,3 wia

3.2, 1
— [5a3 + 1681021 wis,

Pojg=—[558,; + 2a3] Wis—1as(a; + 3a,) w7,
Pug= —[f5a,a, + 3a5] wis + 502(a, — @) Wiz,
Pojg=—3a,a, Wy, Poig=j}a,aiwy,,

Puyy= —35a3(a; + 3a,) Wag + 56a5(a; — @3) W1y,
Poy, = _11_035(31 + %02) Wzo“"fl@a?z(az‘* 3a,) war,

23 i , L2 1
Pvyy = a3(55a; + 1982) W + j9a5(a; + 3a2) was,
1,2 1 12 ,
Puys = {ga3(a, + 3a,) way — zpaz(a, — ay} was,
— 1, 2 1, 2
P,y = —ga,a5wyy, Prps= —3ga,a3(a, + a) was,

Pvyg=ta,a3(a, +a;) Wae, Poyy= —ga aj(a, + a,) wyy.
If char(#")=35, let Q: V' — W be given by

v, =2w,, Quy=w,, Quy=wy, Qvs=a,wy, Qvs=4a,ws+a,ws,
Qve=2a,ws+ a,wg, Qu,=2a,w,+4a,wg, Qvg=2a,w,+a,ws,
Qv =3a,wy, Qv o =4aiw,y, Qv,y =4aiw, +3aiw,,,
Qv,=4aiw, +aiwy, Quis=3aiws+3aiwy +ajws,
Qviy=4adw s +4a2ws, Quys=3aiw,; +daiw, +daiw,s,
Qvis=2atw,y, Qv =4aiwie+ajwys, Quig=ajwss,

Qo= —aiwyg, QU =2aiwy +aiwy, Quay=4dajwy + 3aiwy,
Quy, =2a}wy; +4aiwys, Quyy = 2ai Wy, Quay = 3aiwy,,

g — Arb -
Ov,s = 2atw,s, Ov,g=4atwag, Qvay =atw,,.
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One checks that when char(#")# 8§, for all te A", for 1 €i<27, and for
j=12, ()DA(xa,'(I))Pvi:P(pE(jaj(t))vi and ‘PA(x»aj(t))Pvi=P@A(x—uj(t))vr
Thus, conjugation by P is an isomorphism between ¢ ,(PSL,(A")) and
og(Ay(a, ay)). So if p#£S, A (a,,a,)=PSLy(X"). If char(#)=35,
a,=a, or a,=2a,. If a,=a,, then for all te X", for 1<i<27, and for
J=1,2,04(x,(1)) Qv,= Qo (x,(1))v; and ¢ 4(x _, (1)) Qv;= Qo 4(X _,(1))v,.
So conjugation by @ is an isomorphism between ¢ ,(PSL;(X")) and
@r(A{a,, a)) and when p=35, 4 (a,,a;)= PSL,(X).

The statement of (b) follows from the remarks of Appendixes E and A.
Let z be as in the proof of (G.2)(c). Then zA, (a, (—1+é6)a)z"'=
A (b, (—1+8)b). So {c) holds. The statement of (d) is easily checked. In
particular, since (d) holds for all p#2, we now have A,{a), a,)=
PSL,(¢") when p=35, for any choice of a, and a,.

Now suppose p#5 and there exists y & E such that yA4,(1, —1+48)p~
=A,(1, —1—3). Then by {(c) and (d), there exists A E such that
ht(A, (1, =14+8)h "= A, (1, —=1=3). Set A,=A,(1, —1+0), a simple
algebraic group of type 4,. Then y~'ht(A,) h "'y =A,. Now argue as in
the proof of Theorem (G.2) to see that 4, is not pointwise fixed by y ~'ht
(viewed as an element of Aut(Y)). So y ~'ht induces a nontrivial (algebraic
group) automorphism of A4,. Let p be the graph automorphism of 4.
Then by Steinberg (see [10]), there exists ae 4, such that (y~'ht)|, =
(pa)l 4, (where we view a as an element of Aut(E)}).

1

Cram.  There exists we N (Ty) such that wA,w™"' = A, and conjugation
by w induces p.

Proof of Claim. For re Z*(E), let n,e Ng(Tg) be as defined in Sec-
tion 7 of [5]. (For r=§,, denote n, by n;; for r=Za,p, ¢ I1(E), denote n,
bY  Musyasasasass)  SEL W' =Ry33331 RaleoriioMioriit B3y RsRgNsMaRiori00 *
Ro10110M 101100 M0001 11 Ho11100M000111 Moot 1101 B3l RsMghshy; w' is the product of
the long word of the Weyl group of E and the long word of the Weyl group
of A,. Let h=hg(—1) hg(—0—1) hy(1—3) hy(—08) hg(—1). Then one
checks that w= Aw' satisfies the claim.

Thus, (y~'ht)| 4 = (wa)| 4. But now we have 4, pointwise fixed by an
element of tE in {Aut(E)) so we may argue as in (G.2) to produce a
contradiction. Thus, (e) holds when char{k) #5.

Now, let k be an algebraically closed field of characteristic 5 and set
A, = A(a,, a;). By Proposition (A.1) and (A.2)(a), 4, acts reducibly on
every nontrivial rational kE module. Moreover, by the remarks of Appen-
dix A and the previous work of this result, V| 4, has composition factors of
dimensions 8 and 19. (Recall V is the rational kE module with high weight
4,.) It is a straightforward check to see that 4,(a,, a,) leaves invariant an
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8-space on V while A,(a,, 2a,) does not. Thus, (e) holds when char(k)=15
also.

Now, with 4, = 4,(a,, a,), k an algebraically closed field, char(k) #2, 3,
suppose 4, < X <E, for X a closed connected subgroup of E. Then X is
reductive, since [9] and the action of 4, on V imply that 4, does not lie in
a proper parabolic of E. So 4, <X =[X, X], a semisimple algebraic
group. Now, suppose X' acts irreducibly on ¥, which must be the case if
char(k)# 5. Then by the Main Theorem of [12], X' =G, or C,. f X' =C,,
A, must lie in a proper parabolic of C,. Now, V(4,)|C, is the 27-dimen-
sional irreducible occurring in the wedge product of the natural C, module
with itself. But [9] implies that every proper parabolic of C, stabilizes a
nontrivial subspace of this 27-dimensional irreducible of dimension less
than 8. So X" =G, and since char(k)# 3, A4, is generated by the long root
subgroups of G,. But then 4, has a 6-dimensional composition factor on
the 27-dimensional module for G,, contradicting the above remarks.
Hence, V| X’ is reducible, char(k)=35, and V| X" has an 8- and a 19-dimen-
sional composition factor. But now one checks, using Table 1 of [4] and
(1.10) of [8], that there is no semisimple group, other than A,, having
both 8- and 19-dimensional irreducible representations when p=35. So
X' =A,and X=A4,T,, where T is a torus lying in Cg(A,). But the above
remarks about the action of A,(a,, 2a,) on V imply that V| 4, is indecom-
posable. Hence, any semisimple element in SL,,(k) centralizing ¢ (A4,)
must be a scalar and therefore T, < Z(E)° = {1}. Thus, if char(k) # 3, 4, is
maximal among closed connected subgroups of E.

Now suppose char(k) = 3. Then Propositions (G.1), (G.2), and (A.1) and
Theorem (4.1) of [8] imply that 4, < B< E, where B is a closed connected
simple subgroup of E of type G,. Hence, 4, is not maximal and (f)
holds. |

APPENDIX.

In this section, we describe certain matrix representations of Chevalley
groups associated with finite-dimensional Lie algebras of types Eq, F,, 4,,
and G,, over arbitrary fields. We include enough information to check the
statements made in the proofs of the previous results.

Let #(E) be a finite-dimensional complex simple Lie algebra of type Ej.
Fix a Chevalley basis {eg, f, hs|fe Z*(E)} of Z(E). If f=Za,p,, we will
WIIte [, maraasas 10T fg. Let V be the irreducible #(E) module with high
weight 4,, where A, is the fundamental dominant weight corresponding to
B.. Choose O£ v* € V such that e,v™ =0 for all we X *(E). Fix the follow-
ing (Kostant) basis of V.
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vy=0v", U10=F1112100" Uio=f1123210 "

V2= f1000000 " vy = v’ 20 =f100000 S 1123210
3= f1010000 " vi2=f1122100 " V21 =Ff122300 "

va=f1o11000 " vis=flinv " 22 =/f100000 f1223210
Us=/f1111000" Via=f112107" v23=/101000 S112321 0 *
ve=fro1100 " V15 = /100000 /1122100 " 24 =f101000 /1223210
v7=froni 0" V16 =f100000 S 112211 0" V25 =f1o1100 f12231 0
vg=fii11100 " U7 =f112210" V26 =J101110 f122321 0"
vo=frmv" v18= /100000 /1122210 " vy =S1o1111 fr223210 .

Appendix E

Let #,= {v;|]1<i<27} (an ordered basis) and set M = 27Zv,. It is well
known that M is invariant under {(e?)/n!, (f7)/n!|a e Z*(E),neZ"*} and
that e? and f7 act as zero on V for sufficiently large values of n. Set
V(A y=M®, #. Then, for re ¥, we have an action of exp(te,)=
L+ 25 (te,)*/n! and exp(y,) on V(). We may then define a faithful
rational representation ¢ E¢{A ) — SL,,(A") on the generators of E (X")
by @g(x4(t)) =explte;) and @ g(x_4(1))=exp(ify). Note that if & is an
algebraic closure of ", then @ {(E ') acts irreducibly on V(R), the
irreducible rational E(R) module with high weight 4,. (See [11] and
Section 12 of [10].) We identify SL(¥V(2¢")) with SL,,{¢") via the ordered
basis #;. A description of ¢, is given below, with E,; denoting the
27 x 27 matrix whose (k, /) entry is 6,0, and I denoting the 27 x 27 identity
matrix.

Pelxp(t) =1+ ~E;s—Egg5— Eqo— E5 3 — Ex 2 — Ey3 24),
Qexp () =I+HE, ,+Ep s+ Eys6+Eimis+ Erg a0+ Ez o)
Qelxp (1)) =1+ UEs 3~ Eo 12~ Erq 13— Erg 17+ E0,23+ Es 24),
Qelxp 4 p () =T+ HE 3+ Ejo s+ Ey 16+ Epg s+ Eio 3+ Ex2a)
Qe(xp (1)) =1+ UE; ¢+ Esg—E( 14— Ei317— Ei6.18 + E2s,26)s
Qelxp (1)) =1+ HEg;+Eg o+ Eyg 1+ Epp 3+ Eisi6+ Exe 2 )h
Qe(Xps 4 (1)) =1+ UE4 7+ Es o+ Eg1a+ Eiy 17+ Eys 15+ Eps 27),
Qe(xp, 4 (1)) =T+ (Es5 s+ Eg 1o+ Eq 11— Ey7.21 — Eig 20— En3 25),
Qe(Xpy g (1)) =1+ UE, 4—Eg 13— Eg 13+ E4 10+ Eg 53+ Ex; 25),
Qe(xp, 1 p{1)) =T+ HEs 6+ Es 10+ Es1a~E310— Ev620+ Eza26)s
QelXp 1 py s gD =T+ HE\ 4+ Eg 15+ Eo 16— Evg 20+ Ej7.23+ Ezi 25)s
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Esg—Eq 10— E7 18— Ei321— Ei6.20— E23,26),
Ere+ Esin+tEq 7+ Ej 19+ Eg ot Ex ),
Es7—Eg i+ Es 1+ Epp 9+ Eps 0+ Ez ),
Eys+EcintEr i+ Eun—Eyas+ Eg o)

@ e(Xp, 1 gy psl1)

( (1))
E(Xp i paspl))=T+1

( (1) =

( (1))=

S

I+t
I+t

S

E\X g4 Bs+ 86 4

— — p—

P e\ Xy 4 gy gl
@ E(Xp, 4 pyv gy 20+ (1)
=1+ 1E; s+ E 10t E720— Ei325+ Eg 20+ Ey7.26),

O (X gy 4 s+ 280+ ps+ el 1))
=1+ 1(Ey 1+ Eg 19— E5 13+ Eg 21+ Ejs 55+ Eg27),

Qelx_p () =1+ HE,  +Eisint Eie st Eg 17+ Exi9t+ Epah
Qp(x g (W) =T+UE;,—Epo—Eizii—Er1at Exz ot Ea ),

Qp(x_p g (1)) =T+ UE; + Eys 10+ Er11+ Eis 14+ Egs 10+ Eng 21)s
Ou(x_p(D))y=1+H—Es4—Ey6— Eg7—Es) 10— Ey 20— Egg 23),

Qe(x_ ﬂs(t))=I+t(E64+E85—E1411‘E1713 Ei5 16+ Ez, 25)
Pe(x_p()=T+HE; ¢+ Egs+E 10+ Eis1at Eig15+ Exg26),

(plz(x g g =T+ HE; 4+ Eg s+ Ey 10+ E7 12+ Ejg 15+ Exr05),
Pe(x g (1)) =1+ HEs 3+ Eyg o+ Ey1 7= Eay 17— Exp s — Eas03),
Pe(X_p_p (1)) =1+ UE; ;—Epns—E;3 90+ Eg 14+ Eps 15+ Eps 2),
QX _p_p()) =1+ UEg3+ Eyo 5+ Eg0— Eg 13— Ey 16+ E26,24),
Qe(x_p pp 1)) =T+ UEy + Esg+ Ego+ Eyz 17— Ey1at+ Ess 51),
Op(x_p, p_p (1) =T+ HEgs— Eg4a—E\s47— Esi 15— Ep 16— Es 23)s

wE(x*/ﬁ‘ﬂzfﬂJfﬂhfﬁs(l))
=1+UEjo 1+ Es3+Ey7+ Eno—Eys 3+ Ex 7).

Pe(x_p g p(I)=1+HEc 2+ E\y s+ Eg 11+ Eiz9+ Eps 16+ Esg 22),
QX g g p()) =T+ HE73+ E s—E45+E 5 124 Ezg 15+ Egr24),
Oe(x g, p_p()=T+HUEs, + Ep g+ Ei3 7+ Eyy 14+ Esg 15— Eas.20)s

PelX gy gy 2peps— gl 1))
=1+HE 2~ Ejs+Egst+Eyg+ Eps s+ Exg)

Let #(A) be a simple, finite-dimensional complex Lie algebra of type A4,.
Let {€,,, €1 fais s €1 4 200 Sy 4 ap Poys Hoy } D€ @ Chevalley basis of £(4).
We take the structure constants to be determined by [e,,, e,,]=e,,,,, and
relations (4.1.2) of [5]. Let W be the 27-dimensional irreducible £(A4)
module with high weight 2(a, +«,). Choose 0#w* e W such that

* =0 for all we 2*(A4). Fix the following (Kostant) basis of W.
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w2 =foqw+a

Wy = %(fal)z w
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Wm:%(faz)z W+, w19=%f1x+a2(fa2)z W+

Wi :fu1+mzfazw+a W20=%(f11+12)2fmzw+

+, W12=%fa1(f12)2 W+, W21=%fa1+12fa1(fxz)zw+

wy=f,w", w13=%(fa1)2 (fa;)z w, w22=é(f11+a2)3w+

Ws =.fa1+a2w+a Wl4=fal+12fmx.f12w+’ W23=%(faz1+ocz)2fa1fmzw+
We=fa, fuW " W15=%(f11+1z)2 w, w24=%(fa1+az)3fapw+
W7=fa;+azfalw+’ w16=%(f11+a2)2fmw+5 w25:%(foq+a2)z (fxz)zw+

w8 = %(fa;)zfazw+’ Wi = %fa; +a2(fa;)2fazw+s Wag = %(fac1+a2)3fx2")+

w9=%fa1+az(fa;)2 W+, WIS Z%(fmu-%-ag)z (fx1)2 W+, W27:%(fm+az)4 W+.

Appendix A

As in Appendix E we obtain a rational representation ¢ ,: Ay(A")—
SL,, (o), where we have now identified SL(W(¢")) with SL,,(") via the
ordered basis #,= {w,;|1<i<27}. However, the center of A,(X") acts
trivially, so we have ¢ : PSLy(A") — SL,,("), a faithful representation.
Let & be an algebraic closure of 2. Then, [3] implies that if char(4") #
2,5, ¢ 4: PSLy(K)— SL(W(RK)) is the irreducible representation with high
weight 2(a, + o). Moreover, if char(#") =35, ¢ (PSL;(])) acts on W(R)
with two composition factors, of dimensions 19 and 8. As in Appendix E, if
char(X")# 5, @ {PSL,(X}) acts irreducibly on W(&). A description of ¢,
is given below:

QX () =T+ H2E, ;+ E; 3~ E4 s +3E, 6+ Es7— Eg7+2Eg s — Eyg

—2E5 11 +4E 012+ 3E 5 13+ 2E 1 14— 2E 5 14— Eyy s
—Ey6t Eur—2E5317—Eg8— E618—2E19.20
+3E951 — Ego20+ E0,23— 2E51,23— Ex3 24— En3.24
—2Ep5 26— En627) + 1(E, 3 —2E; 7+ 3E, s — Eg 9 —6E g 14
+6E013+ Eio1s— Enie+ Eq i+ Eng 6 — 412,17
+E5 15+ Er920—4E 1923+ Egy 54+ Eas 27)
+(—Ey9+2E g 16— 6E 517+ Ein 18+ Er9.24) + 1(Ejg,15)-

QX _(IN=T+HE; | +2E;,+ Egy+ Eys+2E5 s +2E5 ;—3E5 4

+Ep ot Ewu+2E;3,,—3E;713—3E6 13+ 2E17 14
+Eg15+2E1516— 6E 517+ Enio+ Eys oo~ 2E» 5
—~2Ey3 21 + Ea4 20— 4E 4 53— Exg 25— 2E27.26) + t*(Es 1 + Eg 4
+Egs—3Eg s+ Ei3 10— 3E1712—3E 512+ Ev7 1

+6E 5 13+ Eg15—6E 514 — En 10— Ez 10+ 3E24.2)
—2Es 50+ Ex725) + (= Es 4= Ey7.00— Es10
+4E g 15— 2E 5 11 + Ezg10) + 1*(Eis.10)-
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(PA(xaz(t)) =

@ alx_,(2) =

I+ 1tQ2E 4+ Es 10+ Eys+2E; +2Es 1+ Egy + Eq 12

+E 9t Eni9+2Ey 7+ 2E5 5+ Eg 3+ 2E; 14+ 2E, 44
+E; st 2E 500+ Ers20+ Eva +2E 35 + Eyg 25+ Ezy 25
+2Eq 16— Eo 17+ Ej620+2E1623+2E 753+ 2Ey 5

+ Ej3 06+ 2E 524+ Ezg29) + P(Ey 10+ 2E> i+ Eyya+ Es 1o
+Eq 19+t 4E; 14+ Es s+ Es 13+ 2E5 5+ 2E5 50+ E7 5

+ Egr+ Eisast Ewaas+ Epnas+ Eg s+ Eg a3+ 2E 6 5

+E 1726+ Eig27) + (Ey 19+ 2E3 50+ 2E5 5y + Eg s

+ E; 55+ Eg 26) + 1*(E5 25).

I+ HE; 1 +2E 04+ Es;+Eer+ Ep s+2E 6+ Eyy6
+2E 511+ Eg i+ Egs+ Eqs+ Eyq+2Es,+2E;3

+ Ey s+ Epat2Ey 14+ 2E5 14+ Eyors+ 2E55 50
+2Ey501+ Er90t2E 160+ 3E3; 16+ Exz 16— 2E5.17

+ Eze 20+ Eng 23+ Eza 15+ 2E2; 24) + 1(Ero 1 + Ey 2+ Era
+Eost2E56+EustEns+Ess+2Ey,+Exs

+ Ey 7+ 2Ey 3+ Exs 3+ Eps s+ 4E5s 14+ 2E0 0+ Ens g
+2E5616— Esg 17+ E,18) + T(E19 s+ Ezp 3+ Eng 3
+2Ess7+ 2E5s 3+ Exg o) + 11(Ess ).

Let #(G) be a simple, finite-dimensional Lie algebra of type G,. Let {e,,,
Fos €hyt s 92> €301+ 2925 Siom 4935 Sy w2900 Byl i=1,2,k=1,2,3} be a Chevalley
basis for .Z(G). Let W be the irreducible £ (G) module with high weight
2(2y, +7,). Choose 0#u* e W such that e,u™ =0 for all ye Z*(G). Fix
the following (Kostant) basis of W:

uy=u, “10=%(fy1+-,-2)2u+ Uio=fap v 2 St
uy=f,u", Ui =fopennentt Uzo = [y 429 Soy 4t T
Uy = %(fyl)z u’, Uy =fa 424" Uy = %(fzy1+y2)2fm+y2“+
u4‘—“f~,1+y2“+, u13=%(f2y1+72)2u+a u22=%(f2y1+~,2)3“+

Us =f2y1+72u+’ “14=f3~/,+2y2f~;1“+’ Uz =f3vn+2vzf3vn+vzu+
“6=f~,1+y2fy1u+, Ups =f3-“+«,2fv1+~,2u+5 u24=%(f3y1+72)2fy1+v2u+
Uy =f3y1+y2u+5 Ui =f3“,'1+vzf2y1+yzu+’ u25=%(f3y1+2y2)2u+

Ug =f2y1+y2 y;“+, u17=%(f2y1+v2)2f:,’1u+’ u26=%(f271+72)3fy1+y2u+

2
u9=f371+-,'2fy1u+’ u18=%(f3~,v1+72) u+9 u27=21_4(f2y1+72)4u+'
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Appendix G

As in Appendix E we obtain a faithful rational representation,

GAA ) > SL27(:>£’" ), where we have identified SL{W{(X")) with
SL,,() via the ordered basis #; = {u;|1 <i<27}. Let & be an algebraic

Alagiiera ~f w  Than T‘nl—dc 1 nf‘ 471 imnlieg hor 1f r\har( ’K/'\ —# 7 7
ciosure o1 4. Luva 1rauvi L1 1apies G BICAL o1 4

G,(8)) = SL(W(8)) is the irreducible rational representation w1th hlgh
weight 2(2y, +7,). If char(#')=7, one checks that ¢(G,(X")) fixes the
i-space {u,3—2u4+ 2u,s». The quotient is again the irreducible G,{K)
module with high weight 2(2y,+7,). Thus, as in Appendix E if
char(A')#7, @u(Go(X')) acts irreducibly on W(R) and if char(X)=
©s(G(A)) acts irreducibly on the quotient of W(R) by
{tty; — 2uys + 2uys ). A description of @ is given below:

. f PRGN Y 2 INE ' = N ¥ ) nd T P Y E L YE LY E
X\ ))=1+ el p T La3 T Lly s Lo sy T a5y T 4bgg™T &by g

—Ego+4E ;g +2E ;3= 3E 3+ 2Ep u— Evs
+2E516—2E316— Era17—2E13.07 + 2E 57— Eyg 15
+2E 950+ Eio21~3E.20— Es 23+ 2E51 20— E 24
~Ey32a—2E526— Ese )+ 1(E; s — Es 7+ Eg 5~ Ego
—2Esg—2E 0 5+4E 013~ 3E 16— 3E 17+ 3E 3 16
+2E 17+ Eisis— Eisis—2E1920— Er923+ 2E50,24
— Epy 24+ Es27) + (= Eq9—4E 19 16— 4E 1017+ E 1
—Ep18+ Er920) + 1*(Ejo15)-

Oa(x () =T+ HE, | +2E;5+2Es 4+ Eg4—3E; s+ 2E; 6+ Eg s+ Eg 5
—Egs+E\ 10~ Ennot Egn+2E531,—2E5 1
+E i+ Eig3—3E 63+t 2E 64— 2B 14+ Eyq s
~4E 5 16— 4E 1517+ 2E20,10 — E3110 = 2E53 20— 32 20
—2Ey351—2E34 20— Ess 23— Eng 25 — 2E3726) + r(Es +Egy
~2E; 43— 2Es s+ Eg g+ Ey3 10— Ers,10— 2E611
~EqntEgin—En+4Es13—2E 55— Exn e
—Ens3 19+ Epa 21+ 2E24 20+ Exy 55) + (= Eg 4= E6 10
+4E g 11+ Eaa9) + 1(Eg10)-

Pelx, () =1+ —E; 4 —2E; ¢~ Es10— Es o= Esii— Er 2 Eo 14

"‘Eo,xs—Em.m"‘Exs,w_Em,:zo"En,zl—2E18.23"E23,25
~ Ess26) + P(Es 1o+ Eg 19+ E g 35).

Pelx_,())=I+H—E;,—Es3—E¢3—2E g~ Epn7—E13— Enso
w'E3533_l’:lc)_m'”Em.ls_Ezo,m“‘Ezt.i?_Ezs,as"‘2E25,23
— Ez24) + 1(Ero 3+ Ejg9+ Ess 13).
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Let £(F) be a finite-dimensional complex simple Lie algebra of type F,.
Fix a Chevalley basis {e;, f3, hg|fe X+ (F)} of #(F)and write f,, ,,4,4, for
fp, where f=2a,p,. Let V be the irreducible #(F) module with high
weight A=#n,+2n,+3n;+2n,, the fundamental dominant weight
corresponding to #x,. Choose O#y* eV such that e,y* =0 for all
ae X" (F). Fix the following (Kostant) basis of V.

n=y", Yo=funy', Yis=fiany "

Va=fooo1 ¥ s Vo=l y", Yie=frnny"

y3=foou ¥, =Sy, Yao=Si22for V"
Va=fony", Vie=Sfimy ', va=finfuny’
ys=fony ", Y=y, Vo =fi fon ¥
Ye=finy", Yu=funfouny", Y =finfuny®
yi=fimy®, Vis=fay’, Vaa =S fon ¥y*

Ys=fo2 ¥ ", Yie=lunfounuy ", Yas=fnafon y*
Vir=funfony” Yas=Inarforn ¥ '

Appendix F

As in Appendix E, we obtain a faithful rational representation ¢,
Fy(A)— SL,g(#), where we have now identified SL, (W(X')) with
SL,s(A") via the ordered basis Z,.={y, |1 <i<26}. Let & be an algebraic
closure of . Then Tablel of [4] implies that if char(')#3,
@r: Fy(]) = SLys(R) is the irreducible rational representation with high
weight 4. So as in Appendix E, ¢ (F,(#")) acts irreducibly on W(R).
A description of ¢, is given below:

(pF(xm(z))=I+t(_E4,6—E5,7_E8,9+E18,19_E20,21_E22.23),
Prx, (1) =1+ t(—Ey3s+E;s+Eg7+Eg 2+ 2E 13+ E 14
+Epast Eigir+ Exn+ Exoy+ Esg 25) + 17(Eyy ys),
QX (D)) =T+ HEss+E;9+E o1 +E 13— Eypa+Epse
—E16t+ Eisi+ Eg 10— Er921 + Eas 56) + 12(Ey3.16),
(Pf‘(xn3+q4(t))=[+t(E1.3+E4,8+E6,9_E10,13”2E10,14+E11,16
—EpistEir—Egnt Ept Eye) +17(—Eg ),
O Xy () =1+ —E;6—Es c—Eg \y—Es 1o+ E 75 + Ey; 24),
Qe Xy () =1+ 1U(—Ey 4 —Ess—Eg o+ E; 3+ 2E5 13+ Eg 14
—Eis—Ere0t Ernant Exyaa— Exas) + 13— Eg 1),
(pF(x—m(t))21+t(_E6,4—'E7.5_E9,8+E19,18~E21.20_E23,22)a
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Orx_ (1)) =T+ —E; 3+ Esy+ E; g+ Ep ot Es i +2E5 13
+Eis it Eig 6+ Exoot Exs oy + Es24) + (Eys 1),

opx_, (1)) =T+UE, + Egs+Es7+Ey 10+ Eis 2= B+ Eie s
—Eig1a+ Ei715+ Exo 15— Eai 19+ Esg25) + 1(Eg.12)s

Op(x gy n(D))=1+1E; + Eg 4+ Eg6—Eis 10— Eis 12+ Es 1y

+E713+2E 7 14— Ep s+ Exs 1o+ Exs04) + *(—Ej7.10)

Qix_, ,(1)=T+ U —E¢3—E\gs—E 3— Ejg 5+ Ey 17+ Ez )
(Pr(x—nz—m(t)) =I+t(—E;,—Ess—E st Ep+E;s, —2E 513

11.
12,

- E18,14 - E20.16 + E22,17 + E24,21 - E25,23) + t2( _EIS,Q)'
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