Number 390

Donna M. Testerman

Irreducible subgroups of exceptional algebraic groups

Memoirs of the American Mathematical Society

Memoirs of the American Mathematical Society Number 390

Donna M. Testerman Irreducible subgroups of exceptional algebraic groups

Published by the
AMERICAN MATHEMATICAL SOCIETY
Providence, Rhode Island, USA

September 1988 • Volume 75 • Number 390 (second of 3 numbers)

Library of Congress Cataloging-in-Publication Data

Testerman, Donna M., 1960-
Irreducible subgroups of exceptional algebraic groups/Donna M. Testerman.
p. cm. - (Memoirs of the American Mathematical Society, ISSN 0065-9266; no. 390)
"September 1988. Volume 75. Number 390 (end of volume)."
Bibliography: p.
ISBN 0-8218-2453-8

1. Linear algebraic groups. 2. Representations of groups. 3. Embeddings (Mathematics)
I. Title. II. Series

QA3.A57 no. 390
[QA171]
510 s-dc19 88-15554
[512'.22] CIP

Subscriptions and orders for publications of the American Mathematical Society should be addressed to American Mathematical Society, Box 1571, Annex Station, Providence, RI 02901-9930. All orders must be accompanied by payment. Other correspondence should be addressed to Box 6248, Providence, RI 02940.

SUBSCRIPTION INFORMATION. The 1988 subscription begins with Number 379 and consists of six mailings, each containing one or more numbers. Subscription prices for 1988 are $\$ 239$ list, $\$ 191$ institutional member. A late charge of 10% of the subscription price will be imposed on orders received from nonmembers after January 1 of the subscription year. Subscribers outside the United States and India must pay a postage surcharge of \$25; subscribers in India must pay a postage surcharge of $\$ 43$. Each number may be ordered separately; please specify number when ordering an individual number. For prices and titles of recently released numbers, see the New Publications sections of the NOTICES of the American Mathematical Society.

BACK NUMBER INFORMATION. For back issues see the AMS Catalogue of Publications.
MEMOIRS of the American Mathematical Society (ISSN 0065-9266) is published bimonthly (each volume consisting usually of more than one number) by the American Mathematical Society at 201 Charles Street, Providence, Rhode Island 02904. Second Class postage paid at Providence, Rhode Island 02940. Postmaster: Send address changes to Memoirs of the American Mathematical Society, American Mathematical Society, Box 6248, Providence, RI 02940.

COPYING AND REPRINTING. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to the Copyright Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0065-9266/88 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotion purposes, for creating new collective works, or for resale.

Copyright © 1988, American Mathematical Society. All rights reserved.
Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. ()

CONTENTS

Introduction 1

1. Preliminary lemmas. 10
2. Parabolic embeddings 24
3. $Y=F_{4}$ or G_{2}. 42
4. The one component theorem 53
5. $\operatorname{Rank}(A) \geq 3$ 63
6. Initial rank two results 87
7. $A=B_{2}$ 112
8. $A=G_{2}$ 131
9. Special cases. 159
Table 1 186
References 189

Abstract

Let Y be a simply connected, simple algebraic group of exceptional type, defined over an algebraically closed field k of characteristic $p>0$. The main result describes all semisimple, closed connected subgroups of Y which act irreducibly on some rational kY module V . This extends work of Dynkin who obtained a similar classification for algebraically closed fields of characteristic 0 . The main result has been combined with work of G. Seitz to obtain a classification of the maximal closed connected subgroups of the classical algebraic groups defined over k .

AMS subject classification (1980).

20E28, 20G05, 20G15.

Key words and phrases.

exceptional algebraic groups, representation theory, embeddings of algebraic groups

INTRODUCTION

Our purpose here is to study triples (A, Y, V), where Y is a simply connected, simple algebraic group of exceptional type, defined over an algebraically closed field k of characteristic $p>0, V$ is an irreducible rational $K Y$ module, and A is a semisimple, closed connected subgroup of Y such that VIA is irreducible. (We refer to the above set of hypotheses as the "main problem.") In our main result, we obtain a precise description of the triples (A, Y, V).

Before stating our result, we introduce the following notation. Let T_{A} be a maximal torus of A, T_{Y} a maximal torus of Y, with $T_{A} \leq T_{Y}$. Let $\Pi(A)=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ and $\Pi(Y)=\left\{\beta_{1}, \beta_{2}, \ldots\right\}$ be bases of the root systems $\Sigma(A)$ and $\Sigma(Y)$, respectively, with μ_{j} the fundamental dominant weight corresponding to α_{j} and λ_{j} the fundamental dominant weight corresponding to $\beta_{\mathfrak{j}}$. Let λ be the high weight of V. (Our labelling of Dynkin diagrams is described on page 8.) Finally, we write $A=G_{2}$, for example, to mean that $\Sigma(A)$ has type G_{2}.

Main Theorem. If VIY is tensor indecomposable, one of the following holds:
(i) $A=A_{1}, Y=G_{2}, \lambda\left|T_{A}=6 \mu_{1}, \lambda\right| T_{Y}=\lambda_{1}$ and $p \geq 7$.
(ii) $Y=G_{2}, p=3, \Sigma(A)$ is a subsystem of $\Sigma(Y)$ containing all long (respectively, short) roots of $\Sigma(Y)$, and $\lambda I T_{Y}$ has long (short) support.

Received by the editors February 8, 1987 and, in revised form September 4, 1987.
(iii) $A=G_{2}, Y=F_{4}, p=7$, and $\lambda \mid T_{A}=2 \mu_{1}$ and $\lambda \mid T_{Y}=\lambda_{4}$.
(iv) $Y=F_{4}, p=2, \Sigma(A)$ is a subsystem of $\Sigma(Y)$ containing all long (respectively, short) roots, and $\lambda \mid T_{Y}$ has long (short) support.
(v) $A=A_{2}, Y=E_{6}, \lambda \mid T_{A}=2 \mu_{1}+2 \mu_{2}, \lambda I T_{Y}=\lambda_{1}$ or λ_{6}, and $p \neq 2,5$.
(vi) $A=G_{2}, Y=E_{6}, \lambda \mid T_{A}=2 \mu_{1}, \lambda I T_{Y}=\lambda_{1}$ or λ_{6}, and $p \neq 2,7$.
(vii) $A=C_{4}, Y=E_{6}, \lambda\left|T_{A}=\mu_{2}, \lambda\right| T_{Y}=\lambda_{1}$ or λ_{6}, and $p \neq 2$.
(viii) $Y=E_{6}, A=F_{4}$ is the fixed point subgroup of the graph automorphism of Y and
(a) $\lambda \mid T_{Y}=\lambda_{1}+(p-2) \lambda_{3}$ or $(p-2) \lambda_{5}+\lambda_{6}$, for $p>2$, or
(b) $\lambda \mid T_{Y}=(p-3) \lambda_{1}$ or $(p-3) \lambda_{6}$, for $p>3$.

Moreover, if the pair (A, Y) is as in (ii), (iv) or (viii) VIA is irreducible. As well, if $p \geq 7$ (respectively, $p=7, p \neq 2,5, p \neq 2,7, p \neq 2$) and Y has type G_{2} (respectively, $F_{4}, E_{6}, E_{6}, E_{6}$), there exists a subgroup $B \leq Y$, of type A_{1} (respectively, $G_{2}, A_{2}, G_{2}, C_{4}$) such that B acts irreducibly on $V\left(\lambda_{1}\right)$ (respectively, $V\left(\lambda_{4}\right), V\left(\lambda_{1}\right), V\left(\lambda_{1}\right), V\left(\lambda_{1}\right)$) with the high weight described in (i) (respectively, (iii), (v), (vi), (vii)).

The results of (i), (ii) and (iv) are proven in [12], where G. Seitz considered the main problem in case Y is a classical group. We establish (iii), (V), (Vi) (vii) and (Viii) and the existence of an irreducible A_{1} in G_{2} in this paper. The proof of the existence of an irreducible C_{4} in E_{6} was communicated to the author by Seitz and is also included here. The remaining existence proofs $\left(A_{2}<E_{6}, G_{2}<E_{6}\right.$ and $\left.G_{2}<F_{4}\right)$ are given in [16], where the conjugacy classes of the irreducible subgroups are also determined.

For an arbitrary irreducible rational kY module V, Steinberg's tensor product theorem ([15]) implies VIY $=V_{1} q_{1} \otimes \cdots \otimes V_{k} a_{k}$, where each V_{i} is a nontrivial irreducible KY module with restricted high weight and $\left\{q_{1}, \ldots, q_{k}\right\}$ are distinct p-powers. (We refer to $V_{i} q_{i}$ as a conjugate of V_{i}.) If $V \mid A$ is irreducible, for some subgroup A, then $V_{j} \mid A$ is irreducible for
each i and the triple $\left(A, Y, V_{j}\right)$ is described in the above theorem. Hence, there is no loss of generality in assuming throughout that VIY is tensor indecomposable.

The consideration of triples (A, Y, V) in the case where char $(K)=0$ was undertaken by E.B. Dynkin in [7]. Given A, a semisimple algebraic group and $\varphi: A \rightarrow S L(V)$ an irreducible rational representation, Dynkin determined all overgroups of A in $S L(V), S p(V)$ or $S O(V)$. In a straightforward way, this information yielded a classification of all maximal, proper, closed connected subgroups of the classical algebraic groups. In our situation, where char $(k)=p$, the Main Theorem has been combined with the results obtained by Seitz in [12] to obtain a similar classification of the maximal proper closed connected subgroups of the classical algebraic groups over k. (This is perhaps the most striking application of the results to date.)

Theorem (A). Let A be a simple algebraic group and $\varphi: A \rightarrow S L(V)$ an irreducible, rational representaion which is tensor indecomposable. Then with specified exceptions, the image of A is maximal among proper, closed connected subgroups in one of $\operatorname{SL}(V), S p(V)$ or $S O(V)$. Moreover, any other maximal, proper closed connected subgroup of the isometry group of V arises naturally as the stabilizer of a subspace of V or the stabilizer of a tensor product decomposition of V.ロ

For a more precise statement and the proof, see Theorem (3) in [12]. By far, the major portion of the proof of Theorem (A) lies in describing the "specified exceptions." These fall into two categories, as follows:

Theorem (B). Let Y be a simple algebraic group and $\varphi: Y \rightarrow \operatorname{SL}(V)$ an irreducible rational representation which is tensor indecomposable. If A
is a proper, closed connected subgroup of Y with $V \mid \varphi(A)$ irreducible, then one of the following holds:
(i) $\varphi(Y)=S L(V), S p(V)$ or $S O(V)$.
(ii) $(\varphi(A), \varphi(Y), V)$ appears in Table $1 . \square$

Table 1 contains the combined results of this paper and [12], and lists all embeddings $A<Y<S L(V)$ where A and Y are irreducible, VIY is tensor indecomposable and $Y \neq S p(V)$ or $S O(V)$. For a complete explanation of the notation in Table 1, see the end of the introduction; we make a few remarks here. To describe the modules VIA and VIY, we give the high weights. To describe the embedding of A in Y, we indicate the action of a covering group of A on the irreducible $k Y$ module W, where W is the natural, classical module for Y, if Y is classical, and W is an irreducible, restricted $K Y$ module of minimal dimension, if Y is exceptional. Finally, we note that there are examples for arbitrarily large primes for which there are no counterparts in the characteristic zero result; e.g. $I_{1}{ }^{\prime}$ and T_{1} in Table 3. Hence, interestingly enough, the philosophy that the answer to the sort of question studied here should be the same for large primes p as the answer to the analogous zero characteristic question fails to be justified.

The methods in [12] and this paper differ greatly from those of Dynkin, by necessity. Since in characteristic p, rational modules for simple groups need not be completely reducible nor tensor indecomposable, as in zero characteristic, some of Dynkin's key reductions do not carry over. Though we may assume that in the triple (A, Y, V), VIY is tensor indecomposable, it happens that VIA can be tensor decomposable. One may notice that throughout the paper, case-by-case analysis is required whenever this possibility persists. If we desired only to prove Theorem (A) or to give a new proof of Dynkin's result, we
could assume VIA to be tensor indecomposable and shorten much of our work. As well, for a new proof of the zero characteristic result the small prime analysis of Chapter 9 and the difficulty created by the absence of formulae for the dimensions of and multiplicities of weights in irreducible modules could be avoided.

We now give a survey of the methods used in this paper. Let (A, Y, V) statisfy the hypotheses of the main problem. We obtain preliminary information about the triple (A, Y, V) via induction. Choose a maximal parabolic P_{A} of A, with unipotent radical Q_{A} and Levi factor L_{A}. By the Borel-Tits theorem [2], there exists a parabolic subgroup P_{Y} of Y with $P_{A} \leq P_{Y}$ and $Q_{A} \leq Q_{Y}=R_{U}\left(P_{Y}\right)$. If L_{Y} is a Levi factor of P_{Y}, a result of Smith ([13]) implies that $L_{A^{\prime}}$ and $L_{Y}{ }^{\prime}$ act irreducibly on the fixed point space $V_{Q_{A}}$. Hence, considering the projection of $L_{A}{ }^{\prime}$ into the quasisimple components of L_{Y}, which act nontrivially on $V_{Q_{A}}$, we obtain a smaller rank version of the original problem. Theorem (7.1) of [12] is a complete solution of the main problem in the case where rank $A=1$. Working inductively, we may describe $V_{Q_{A}}$ (so partially describe V) and partially describe the embedding of $L_{A}{ }^{\prime}$ in $L_{\gamma^{\prime}}$. Though we are inducting on the rank of A, we handle the case where $\operatorname{rank}(A)=2$ and $Y=E_{n}$ in Chapters $6-9$. Hence, in Chapters 4 and 5 , we assume the results of the later chapters.

In Chapter 2, we establish machinery for studying general parabolic embeddings. As well, we prove results applicable only in the context of irreducibility on some module. (Several of the results are proven in [12].) Through this work, we can see the influence of the inductive information on (1) the projections of L_{A} ' in the components of L_{Y} ' which act trivially on $V_{Q_{A}}$ and (2) the embedding of Q_{A} in Q_{Y}. Our considerations are as follows. With L_{Y} acting on Q_{Y} via conjugation, certain quotients of Q_{Y} may be regarded as modules for $L_{Y}{ }^{\prime}$, and hence as modules for $L_{A}{ }^{\prime}$. We consider the image of the L_{A} ' module $Q_{A} /\left[Q_{A}, Q_{A}\right]$ in these quotients. Of course, in an arbitrary parabolic embedding, Q_{A} may appear in few $L_{Y}{ }^{\prime}$
composition factors of Q_{Y}. But another consequence of Smith's result is the equality of the commutator subspaces $\left[V, Q_{A}\right]$ and $\left[V, Q_{Y}\right]$. The existence of particular weight spaces in $\left[V, Q_{Y}\right]$ often forces $Q_{A} /\left[Q_{A}, Q_{A}\right]$ to appear in particular quotients of Q_{Y}. Moreover, in most cases $Q_{A} /\left[Q_{A}, Q_{A}\right]$ must appear as an $L_{A}{ }^{\prime}$ submodule. This will place restrictions on the projection of L_{A} ' in the quasisimple components of L_{Y} ' which act nontrivially on particular composition factors of Q_{Y}. We compare this with the inductively given information and perhaps produce a contradiction, or at least broaden our knowledge of the embedding $P_{A} \leq P_{Y}$.

Throughout the paper, various numerical methods are employed as well. Since $\left.\left[\left[V, Q_{A}\right], Q_{A}\right] \leq\left[V, Q_{Y}\right], Q_{Y}\right]$ and $\left[V, Q_{A}\right]=\left[V, Q_{Y}\right]$, $\operatorname{dim}\left(\left[V, Q_{Y}\right] /\left[\left[V, Q_{Y}\right], Q_{Y}\right]\right) \leq \operatorname{dim}\left(\left[V, Q_{A}\right] /\left[\left[V, Q_{A}\right], Q_{A}\right]\right)$. Moreover, if $Z\left(L_{A}\right)^{\circ} \leq Z\left(L_{Y}\right)^{\circ}$ (which is usually implied by a suitable choice of P_{Y}), then the dimension of a $Z\left(L_{Y}\right)^{\circ}$ weight space of $\left[V, Q_{Y}\right] /\left[\left[V, Q_{Y}\right], Q_{Y}\right]$ is bounded by the dimensions of $Z\left(L_{A}\right)^{\circ}$ weight spaces of $\left[V, Q_{A}\right] /\left[\left[V, Q_{A}\right], Q_{A}\right]$. Seitz gives an explicit upper bound on the dimensions of the latter. This yields further restrictions on the high weight of VIY. When the high weights of VIA and VIY are almost explicitly determined, we attempt to show that dimVIY exceeds the upper bound on dimVIA given by the Weyl degree formula. For this purpose, various methods for obtaining lower bounds on dimensions of KY modules are discussed in Chapter 1.

The absence of a "natural" module for the exceptional group Y gives rise to (expected) differences between Seitz's work in [12] and our work here. If Y is a classical group with natural (classical) module W, Seitz proves that most cases, WIA is irreducible and tensor indecomposable. This provides information about the restriction of elements of $\Sigma(Y)$ to a maximal torus of A and, coupled with an inductive hypothesis, usually implies that VIA is a conjugate of a restricted module. As mentioned before, the tensor indecomposable situation is much easier to handle.

In our situation, where Y is an exceptional group, we may think of the "natural" module W as a restricted rational kY module of minimal dimension. However, there is no complete theory relating the subgroup structure of Y to its action on W. We do however use the module W whenever possible. We consider the action of $L_{A^{\prime}}$ on W, in particular the L_{A} ' composition series of W. (This can be determined only when we have a fairly complete knowledge about the image of $L_{A}{ }^{\prime}$ in $L_{Y}{ }^{\prime}$) If $\operatorname{dim}(W)$ is relatively small (e.g., 26,27 or 56) we can list all rational $k A$ modules of this dimension, determine their $L_{A}{ }^{\prime}$ composition series and compare with the given $L_{A^{\prime}}$ ' composition series of $W I L_{A}{ }^{\prime}$. Though fruitful in specific situations, this analysis does not serve the purpose that the natural module does for the classical groups. Rather, the bounded rank of the exceptional groups and our extensions of Seitz's results on parabolic embeddings enable us to restrict to the few possibilities of the Main Theorem.

For the convenience of the reader, many of the preliminary results from [12] are listed in this paper. It is useful to see that some of the results in Chapter 2 are natural extensions of the results on parabolic embeddings in [12]. A few essential theorems from [12], which we do not state, are often referenced. Theorem (7.1), mentioned already, is the solution of the main problem in case $\operatorname{rank}(A)=1$. Theorem (4.1) is a solution for the case where rank $A=$ rank Y. (See Chapter 3 for a partial statement.) Theorem (8.1) gives the solution of the main problem for certain natural embeddings of classical groups. And finally, we refer to the list of all triples (A, Y, V), where Y has classical type, as the Main Theorem of [12].

Throughout the paper, we use the following labelling of Dynkin diagrams.

Let us make a few remarks about the notation in Table 1. The second column indicates the types of the groups A and Y, respectively When the symbol " \rightarrow '" occurs, $A \leq B<Y$, for a closed, connected subgroup B, which is a commuting product of quasisimple groups as indicated. The notation means that either A projects surjectively to each of the simple factors of Y or some factor is of type B_{2} and the projection is an A_{1} acting irreducibly on the spin module for B_{2}. Moreover, in order to make sure VIA is irreducible, it may be necessary for the projections to involve distinct field twists.

The third column describes the action of a covering group of A on a particular irreducible $K Y$ module, W. If Y is classical, W is the natural module for Y; if Y has type G_{2}, F_{4}, or E_{6} (E_{7} and E_{8} do not arise), W is a restricted module of dimension 7 (6 if $p=2$), 26 (25 if $p=3$) or 27 , respectively.

In the fourth and fifth columns the actions of A and Y on the module V are described, and in the last column any prime restrictions are indicated. Column 1 associates with each example a number. In the cases where there is an analogous zero characteristic example, Dynkin's numbering has been used. So $\mathrm{I}_{1}-\mathrm{I}_{12}, \mathrm{II}_{1}-\mathrm{II}_{\mathrm{g}}, \mathrm{III}_{1}, \mathrm{IV}_{1}-\mathrm{IV} V_{10}, \mathrm{~V}_{1}$ and $V I_{1}-V I_{3}$ appear in [7]. Notation such as $V I_{1}{ }^{\prime}$ refers to a variant of

Dynkin's $V I_{1}$. Examples $M R_{i}$ are those where rank $A=r a n k Y$ and examples labelled $S_{1}-S_{g}$ are special examples occuring only when $p=2$ or 3 ; these were found by Seitz in [12]. Examples T_{1} and T_{2} are found in this paper.

In conclusion, the author would like to express thanks to Gary Seitz, who suggested the problem, read an earlier version of this paper and offered useful advice throughout. As well, special thanks are given to Mark Reeder for numerous mathematical insights.

CHAPTER 1: PRELIMINARY LEMMAS

Let V be a finite dimensional vector space over an algebraically closed field k of characteristic $p>0$, and let X be a semisimple, closed, connected subgroup of $\operatorname{SL}(V)$ with fixed maximal torus T. Let $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a base for the root system $\Sigma(X)$ and let $e_{\alpha_{j}}$ and $f_{\alpha_{j}}$ denote the corresponding elements of the Lie algebra $L(X)$. Labelling Dynkin diagrams as in Table 1, let λ_{j} be the fundamental dominant weight corresponding to α_{j}. Assume $V I X$ is irreducible and let λ be the high weight of V. Then $\left\langle\lambda, \alpha_{j}\right\rangle \geq 0$, for each i and V is said to be restricted if $\left\langle\lambda, \alpha_{j}\right\rangle<p$, for $1 \leq i \leq n$. For a subgroup $N<X$, let V_{N} denote the space of fixed points of N on V and $[V, N]$ the commutator subspace $\langle V-n v \mid V \in V, n \in N\rangle$.
(1.1). (i) $V=v_{1} q_{1} \otimes \cdots \otimes v_{k} q_{k}$, where each V_{i} is an irreducible restricted module for X and q_{1}, \ldots, q_{k} are distinct powers of p.
(ii) If V is restricted, then V is also irreducible when viewed as a module for $L(X)$.

Proof: (i) is Steinberg's tensor product theorem (see [15]). For (ii) see Section A of [1].
(1.2). ([13]) Let P be a proper parabolic subgroup of X with unipotent radical Q and Levi factor L. Then $L \cong P / Q$ acts irreducibly on V_{Q}.
(1.3). ((1.7) of [12]) Let P be a proper parabolic subgroup of X with unipotent radical Q and Levi factor L. Then $V /[V, Q]$ is irreducible for L. In fact, this quotient is L-isomorphic to $\left(\left(V^{*}\right)_{Q}\right)^{*}$. \square
(1.4). ([2]) Let $X \leq Y$, where Y is a closed, connected subgroup of $S L(V)$ and let P be a parabolic subgroup of X with unipotent radical Q. There is a parabolic subgroup P_{Y} of Y with unipotent radical Q_{Y} such that
$P \leq P_{Y}$ and $Q \leq Q_{Y}$. \square
(1.5). Let X, Y, and P be as in (1.4), and choose P_{Y} as in (1.4)
minimal such that $P \leq P_{Y}$ and $Q \leq Q_{Y}=R_{U}\left(P_{Y}\right)$. Suppose $L_{Y}{ }^{\prime}=L_{1} \cdots L_{r}$, where L_{i} is a simple normal subgroup of L_{Y}, with root system of classical type for $1 \leq i \leq r$. Then, $Z(L)^{\circ} \leq Z\left(L_{Y}\right)^{\circ}$.

Proof: This follows from the proof of (2.8) in [12].ם
(1.6). ((1.4) in [12]) Let $X \leq Y, P \leq P_{Y}, Q \leq Q_{Y}$ be as in (1.4). Then, $V_{Q}=V_{Q_{Y}}$. So L and L_{Y} are reductive groups both acting irreducibly on $M=V_{Q}$ and the image of L in $S L(M)$ is contained in the image of $L_{Y} . \square$
(1.7). ((1.6) of [12]) Suppose X is simple. Then V can be expressed as the tensor product, $V=V_{1} \otimes V_{2}$, of two nontrivial restricted $k X$-modules if and only if V is restricted and the following conditions hold:
(i) X has type B_{n}, C_{n}, F_{4}, or G_{2}, with $p=2,2,2,3$, respectively.
(ii) V_{1}, v_{2} may be arranged such that each v_{i} has high weight λ_{i}, $\lambda=\lambda_{1}+\lambda_{2}$, and λ_{1} (respectively, λ_{2}) has support on those fundamental dominant weights corresponding to short (long) fundamental roots.
(1.8) Definition: Suppose X is simple.
(A) We say V is basic (respectively, p-basic) if the following conditions hold.
(i) V is restricted.
(ii) If X has type B_{n}, C_{n}, F_{4}, or G_{2} with $p=2,2,2,3$, respectively, then λ has short (respectively, long) support.
(B) If X and p are as in (ii), we say the pair (X, p) is special.
(1.9). Let X, P, Y, and V be as in (1.4) and suppose $V I X$ is basic. Also, if (X, p) is special (respectively, $\left(G_{2}, 2\right)$), assume $\Pi(X)-\Pi(L)$ is $\{\alpha\}$ (respectively, long). Then there exists a parabolic subgroup P_{Y}, of Y, such that the following hold:
(i) $P \leq P_{Y}$ and $Q \leq Q_{Y}=R_{U}\left(P_{Y}\right)$.
(ii) $L \leq C_{Y}\left(Z(L)^{\circ}\right) \leq L_{Y}$, a Levi complement to Q_{Y} in P_{Y}.
(iii) If T_{Y} is any maximal torus of Y containing T, then $T_{Y} \leq L_{Y}$.

Proof: This follows from the first two paragraphs of the proof of (2.8) in [12].
(1.10). ((2.16) of [12]) Let Y be a simple algebraic group and $\varphi: Y \rightarrow S L(M)$ a basic representation. Suppose X is a simple, closed subgroup of Y and $\varphi \mid X$ is an algebraic conjugate of a restricted representation of X. Then $\varphi \mid X$ is restricted. \square
(1.11). (i) V^{*} is irreducible with high weight $-w_{0} \lambda$, where w_{0} is the long word in the fundamental reflections generating the weyl group of X.
(ii) x leaves invariant a nondegenerate bilinear from on V if and only if $\lambda=-w_{0} \lambda$.
(iii) If X has type B_{n}, C_{n}, D_{n} for n even, E_{7}, E_{8}, F_{4}, or G_{2}, then x necessarily stabilizes a nondegenerate bilinear from on V.
(iv) If X has type A_{n}, D_{n} for n odd, or E_{6}, then X stabilizes a nondegenerate bilinear form on V if and only if $\lambda=\tau \lambda$, where τ is the graph automorphism of the Dynkin diagram of $\Sigma(X)$.

Proof: See Section 31 of [10].ם
(1.12). ((1.14) of [12]) Let $X=S L_{n+1}$. For any integer $p>c>0$, the irreducible module V having high weight $c \lambda_{1}$ or $c \lambda_{n}$ is isomorphic to the space of homogeneous poylnomials of degree c in a basis of the usual module for X, or its dual. Thus, $\operatorname{dimv}=(1 / n!)(c+1)(c+2) \cdots(c+n)$.
(1.13). ((1.13) of [12]) Suppose $x=S L_{2}$. Then the weight spaces of T on V are of dimension $1 . \square$
(1.14). Suppose $X=S L_{2}$. Let $\Pi(X)=\{\alpha\}$ and let λ_{α} be the fundamental dominant weight corresponding to α. Then X fixes a symplectic (respectively, orthogonal) form on the restricted, irreducible $k X$-module with high weight $n \lambda_{\alpha}$, where n is odd (even).

Proof: This follows immediately from Lemma 79 of [14].ם
(1.15). Suppose $X=S L_{2}$. Let $\Pi(X)=\{\alpha\}$ and λ_{α} the fundamental dominant weight corresponding to α. Let W be the rational $k X$-module
$V\left(a_{1} \lambda_{\alpha}\right) \otimes \cdots \otimes V\left(a_{m} \lambda_{\alpha}\right)$ where $V\left(a_{i} \lambda_{\alpha}\right)$ is an irreducible, rational $k X$-module with high weight $a_{i} \lambda_{\alpha}$, for $a_{i}=\Sigma c_{i j} p^{j}, 0 \leq j \leq m_{j}, c_{i j} \in Z^{+}$and $0 \leq c_{i j}<p$. If $p>2$ and $\Sigma \Sigma c_{i j}$ is even (respectively, odd), then there is no submodule of W isomorphic to a conjugate of $V\left(\lambda_{\alpha}\right)$ or $V\left(3 \lambda_{\alpha}\right)$ (respectively, $V\left(2 \lambda_{\alpha}\right)$).

Proof: Suppose $\Sigma \Sigma c_{i j}$ is even. Then $W=\Sigma W_{2 k} \lambda_{\alpha},-r \leq k \leq r$, a sum of T weight spaces. Hence, since p is odd there is no weight vector with weight $q \lambda_{\alpha}$ or $3 q \lambda_{\alpha}$, for any p-power q. Similarly, if $\Sigma \Sigma c_{i j}$ is odd, $W=\Sigma W(2 k+1) \lambda_{\alpha},-r \leq k \leq r-1$, and there is no weight vector with weight $2 q \lambda_{\alpha}$, for any p-power $q . \square$
(1.16). Let X be simple and $\lambda=q_{1} \gamma_{1}+\cdots+q_{\ell} \gamma_{\ell}$, where γ_{1}, \ldots, γ_{ℓ} are restricted dominant weights and q_{1}, \ldots, q_{ℓ} are distinct powers of p. Then X leaves invariant a nondegenerate bilinear form on $V=V(\lambda)$ if and only if X leaves such a form invariant on each of $V\left(\gamma_{1}\right), \ldots, V\left(\gamma_{\ell}\right)$.

Proof: This is immediate from (1.11).口
(1.17). ((1.12) of [12]) Let x be simple and $\lambda=\gamma_{1}+\cdots+\gamma_{\ell}$, where $\gamma_{1}, \ldots, \gamma_{\ell}$ are arbitrary dominant weights. Suppose that X leaves invariant a nondegenerate symplectic form on $V\left(\gamma_{1}\right), \ldots, V\left(\gamma_{k}\right)$ and a nondegenerate orthogonal form on $V\left(\gamma_{k+1}\right), \ldots, V\left(\gamma_{\ell}\right)$. Then
(i) \times leaves invariant a nondegenerate bilinear form on $V\left(\gamma_{1}\right) \otimes \cdots \otimes V\left(\gamma_{\ell}\right)=D$.
(ii) There is a singular subspace S of D such that V is X-isomorphic to a nondegenerate subspace of S^{\perp} / S.
(iii) X leaves invariant a symplectic form on V if k is odd and an orthogonal form if k is even.
(1.18). ((1.9) of [12]) Let X be simple and $L=L(X)$ and suppose that $0<I<L$ is an ideal of L not containing each e_{α}, f_{α} for $\alpha \in \Sigma^{+}(X)$. Then one of the following holds:
(i) $\mathrm{I} \leq \mathrm{Z}(\mathrm{L}) \leq \mathrm{L}(\mathrm{T})$, the Lie algebra of T .
(ii) L has Dynkin diagram of type B_{n}, C_{n}, F_{4}, or $G_{2}, p=2,2,2,3$
respectively, and I contains all e_{β} for β a short root in $\Sigma(X)$.]

Fix a parabolic subgroup $P=Q L$ of X, where $Q=R_{U}(P)$ and L is a Levi complement containing T. Choose P such that Q is the product of those T root subgroups corresponding to the roots $\Sigma^{-}(X)-\Sigma(L)$. Let U be the product of all T-root subgroups for roots in $\Sigma^{+}(X)$. Let $\Pi(L)=\Pi(X) \cap \Sigma(L)$ and $Z=Z(L)^{\circ}$. We now establish notation and list certain useful results regarding the series $V>[V, Q]>[[V, Q], Q]>\cdots>0$, where $\left[V, Q^{0}\right]=V$ and $\left[V, Q^{i}\right]=\left[\left[V, Q^{i-1}\right], Q\right]$. Note that $\left[V, Q^{j}\right]$ is T invariant for all j and hence has a decomposition into a sum of T weight spaces. For $d \geq 1$, set $V^{d}(Q)=$ $\left[V, Q^{d-1}\right] /\left[V, Q^{d}\right]$.
(1.19). ((2.1) of [12]) $V /[V, Q]$ is irreducible as a module for L ' of high weight $\lambda I T \cap L^{\prime} . \square$

Definition: Let μ be a weight of V, say $\mu=\lambda-\Sigma c_{\ell} \alpha_{\ell}$, with each $c_{\ell} \geq 0$. Then, the Q-level of μ is Σc_{j}, where the sum ranges over those j for which $\alpha_{j} \in \Pi(X)-\Pi(L)$. Let $V_{T}(\mu)$ denote the subspace of V consisting of T-weight vectors of weight μ.
(1.20). Suppose X is simple and V is basic, and let $d \geq 0$. If (X, p) is special, assume $\Pi(X)-\Pi(L)=\{\alpha\}$ for some $\alpha \in \Pi(X)$.
(i) If when $(X, p)=\left(G_{2}, 2\right), \Pi(L)$ is short, $\left[V, Q^{d}\right]=\oplus V_{T}(\mu)$, the sum ranging over those weights μ having $Q-l e v e l$ at least d. Consequently, $v^{d+1}(Q)$ is isomorphic to the direct sum of those weights having Q-leveld.
(ii) If when $(X, p)=\left(G_{2}, 2\right), \Pi(L)$ is short, $\operatorname{dim}\left(\left[V, Q^{d}\right] /\left[V, Q^{d+1}\right]\right) \leq$ $s \cdot \operatorname{dim}\left(\left[V, Q^{d-1}\right] /\left[V, Q^{d}\right]\right)$, where s is the number of positive roots β such that $U_{-\beta} \leq Q$ and $\beta=\alpha_{j}+\beta^{\prime}$, for some $\alpha_{j} \in \Pi(X)-\Pi(L)$ and β^{\prime} is 0 or a sum of roots in $\Pi(L)$.
(iii) If when $(X, p)=\left(G_{2}, 2\right), \Pi(L)=\left\{\alpha_{2}\right\}$ is long, $V^{2}(Q)=V^{2}(Q) \lambda-\alpha_{1} \oplus$ $V^{2}(Q) \lambda-2 \alpha_{1}$, a direct sum of Z weight spaces. Moreover, $\operatorname{dimV}^{2}(Q) \lambda-\alpha_{1} \leq$ $2 \cdot \operatorname{dim} V^{1}(Q)$ and $\operatorname{dimV}^{2}(Q) \lambda-2 \alpha_{1} \leq \operatorname{dim} V^{1}(Q)$.

Proof: Statements (i) and (ii) follow from (2.3) of [12]. So consider the case where $(X, p)=\left(G_{2}, 2\right)$ and $\Pi(L)=\left\{\alpha_{2}\right\}$. Since V is restricted, V is irreducible as a module for $L(X)$ and so is spanned by the weight vectors $f_{\gamma_{1}} \cdots \gamma_{\gamma_{m}} v^{+}$, for $\gamma_{j} \in \Sigma^{+}(X)$. Order $\Sigma^{+}(X)=\left\{r_{1}, \ldots, r_{N}\right\}$ so that the roots $\beta \in \Sigma^{+}(X)-\Pi^{+}(L)$ occur first. Then, we may write $f_{\gamma_{1}} \cdots f_{\gamma_{m}} v^{+}$as $\mathrm{f}_{\gamma_{1}} \cdots \mathrm{f}_{j} w$, where $w \notin[V, Q]$ and $\gamma_{i} \in \Sigma^{+}(X)-\Sigma^{+}(L)$ for $1 \leq i \leq j$. Say $w \in V_{T}(\mu)$.

Claim: With $\mathrm{f}_{\gamma_{1}} \cdots \mathrm{f}_{\mathrm{m}} \mathrm{V}^{+}, w$ and j as above, $\mathrm{f}_{\gamma_{1}} \cdots \mathrm{f}_{\gamma_{j}} w \in\left[V, Q^{j}\right]$.
Reason: We use induction on j. If $j=0$, there is nothing to show. So suppose $j>0$ and $0 \neq f_{\gamma_{1}} \cdots f_{\gamma_{j}} W$. By induction, $f_{\gamma_{2}} \cdots f_{\gamma_{j}} W \in\left[V, Q^{j-1}\right]$. But $x_{-\gamma_{1}}(1)\left(f_{\gamma_{2}} \cdots f_{\gamma_{j}} w\right)=f_{\gamma_{2}} \cdots f_{\gamma_{j}} w+f_{\gamma_{1}} \cdots f_{\gamma_{j}} w+\Sigma w_{\ell}$, where the sum ranges over $\ell \geq 2$ and $w_{l} \in V_{T}\left(\mu-\gamma_{2}-\cdots-\gamma_{j}-\ell \gamma_{1}\right)$. In particular, $\left\{f_{\gamma_{1}} \cdots f_{\gamma_{j}} W, W_{l} \mid \ell \geq 2\right\}$ is a set of weight vectors for distinct T weights and so is a set of linearly independent vectors. Since $\left[x_{-\gamma_{1}}(1), f_{\gamma_{2}} \cdots \gamma_{j} W\right] \in\left[V, Q^{j}\right]$ and $\left[V, Q^{j}\right]$ is a sum of T weight spaces, we have $f_{\gamma_{1}} \cdots f_{\gamma_{j}} W \in\left[V, Q^{j}\right]$. Thus the claim holds.

In the situation where $(X, p)=\left(G_{2}, 2\right)$ and $\Pi(L)$ is long, the above claim implies that $V^{2}(Q)$ is spanned by the images of $f \gamma W$, for $w \notin[V, Q]$ and $\gamma \in \Sigma^{+}(Y)-\Sigma^{+}(L)$. But in fact, since $f_{3 \alpha_{1}+2 \alpha_{2}}=$ $\pm(1 / 3)\left[f \alpha_{2}+\alpha_{2}, f_{\alpha_{1}+\alpha_{2}}\right]$ and $f_{3 \alpha_{1}+\alpha_{2}}= \pm(1 / 3)\left[f 2 \alpha_{1}+\alpha_{2}, f_{\alpha_{1}}\right]$, we obtain a spanning set for $V^{2}(Q)$ from the images of $f \gamma W$ for $\gamma \in\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}\right\}$ and $w \notin[V, Q]$. Hence, $V^{2}(Q)$ is spanned by weight vectors of Q-levels 1 and 2. So we may decompose $V^{2}(Q)$ as described in (iii). Moreover, the above remarks imply that the Z weight space $V^{2}(Q) \lambda-\alpha_{1}$ (respectively, $V^{2}(Q) \lambda-2 \alpha_{1}$) is spanned by vectors of the form $f \gamma w$ where $w \notin[V, Q]$ and $\gamma \in\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}\right\}$ (respectively, $\gamma=2 \alpha_{1}+\alpha_{2}$). Thus, we have the given bounds on the dimensions of the Z weight spaces of $V^{2}(Q)$.
(1.21). Suppose X is simple and $V=\left(V_{1}\right) q_{1} \otimes \cdots \otimes\left(V_{k}\right) q_{k}$, where each V_{j} is restricted and q_{1}, \ldots, q_{k} are distinct powers of p. Then for each
$d \geq 0,\left[V, Q^{d}\right]=\Sigma\left[V_{1}, Q^{d_{1}}\right] q_{1} \otimes \cdots \otimes\left[V_{k}, Q^{d_{k}}\right] q_{k}$, the sum ranging over sets of nonnegative integers d_{1}, \ldots, d_{k} with $\sum d_{j}=d$.

Proof: This follows from (2.5) of [12].
(1.22). Let V and X be as in (1.21), with $\Pi(X)-\Pi(L)=\{\alpha\}$. Set $W_{i}=$ $v_{i} q_{i}$, for $i=1, \ldots, k$.
(i) As modules for $L, V^{2}(Q) \cong \oplus\left(W_{1}^{1}(Q) \otimes \cdots \otimes W_{i-1}^{1}(Q) \otimes\right.$ $\left.W_{i}^{2}(Q) \otimes W_{i+1}^{1}(Q) \otimes \cdots \otimes W_{k}^{1}(Q)\right)$, the sum over $i=1, \ldots, k$.
(ii) Assume V_{i} is basic for each i and that α is long when $(X, p)=$ $\left(G_{2}, 2\right)$. The above summands of $V^{2}(Q)$ are the Z weight spaces for the respective weights $\left(\lambda-q_{1} \alpha\right)\left|Z, \ldots,\left(\lambda-q_{k} \alpha\right)\right| Z$. Each such weight space has dimension at most $s \cdot \operatorname{dim}^{1}(Q)$, where s is as in (1.20).
(iii) Any Z weight space of $V^{2}(Q)$ has dimension at most $d \cdot \operatorname{dim} V^{1}(Q)$, where
$d=s$ as in (1.20), if one of the following holds: V_{j} is basic
for all i ; or (X, p) is special and $\Pi(X)-\Pi(L)$ is long; or $(X, p)=$
$\left(G_{2}, 2\right)$ and $\Pi(X)-\Pi(L)$ is long.

$$
d=\frac{1}{2} n(n+1), 2 n-1,14 \text { or } 4 \text {, if }(X, p)=\left(B_{n}, 2\right),\left(C_{n}, 2\right),\left(F_{4}, 2\right) \text { or }
$$

$\left(G_{2}, 3\right)$, respectively, with $\Pi(X)-\Pi(L)$ short.

$$
d=3, \text { if }(X, p)=\left(G_{2}, 2\right) \text { with } \Pi(X)-\Pi(L) \text { short. }
$$

Proof: The proof of this result is found in the proofs of (2.12), (2.13) and (15.3) of [12], except for statement (iii) when ($X, p)=\left(G_{2}, 2\right)$ and $\Pi(x)-\Pi(L)=\left\{\alpha_{1}\right\}$ is short. So we will consider this case. Let N_{j} be the $j^{\text {th }}$ summand of the decomposition of $V^{2}(Q)$ given in (i). Then (1.20)(iii) implies that $N_{j}=N_{j}^{1} \oplus N_{j}^{2}$, where N_{j}^{l} lies in the Z weight space $V^{2}(Q) \lambda-\ell q_{j} \alpha_{1}$, for $\ell=1,2$. Hence, the Z weights in $V^{2}(Q)$ have the form $\left(\lambda-q_{i} \alpha_{1}\right) \mid Z$ or $\left(\lambda-2 q_{i} \alpha_{1}\right) \mid Z$, for $1 \leq i \leq k$. Suppose a Z weight space of $V^{2}(Q)$ intersects N_{m} and N_{ℓ} for some $m \neq \ell$. Then $q_{i}=2 q_{j}$ for some $1 \leq i \neq j \leq k$. Then $q_{j} \neq 2 q_{a}$ for $a \neq j$ and $q_{j} \neq q_{b}$ for $b \neq i$. Thus, the Z weight space $V^{2}(Q)_{\lambda-q_{i} \alpha_{1}}=N_{i}^{1} \oplus N_{j}^{2}$, and by (1.20)(iii), $\operatorname{dim}\left(N_{i}^{1}\right) \leq 2 \cdot \operatorname{dim} V^{1}(Q)$ and $\operatorname{dim}\left(N_{j}{ }^{2}\right) \leq \operatorname{dim} V^{1}(Q)$. So the result of (iii) follows.

Let $X \leq Y$, for Y a closed subgroup of $S L(V)$ and let $P_{Y}=Q_{Y} L_{Y}$ be a parabolic subgroup of Y such that $P \leq P_{Y}, Q \leq Q_{Y}=R_{U}\left(P_{Y}\right)$, and $T \leq T_{Y}$, for T_{Y} a maximal torus of L_{Y}. Set $Z_{Y}=Z\left(L_{Y}\right)^{\circ}$. Let $\Sigma(Y)$ be the root system of Y and $\Pi(Y)$ a fundamental system of $\Sigma(Y)$. We choose $\Pi(Y)$ of $\Sigma(Y)$ such that $U \cap L \leq Q_{Y}\left(U_{Y} \cap L_{Y}\right)$, where U_{Y} is the product of all T_{Y} root subgroups for roots in $\Sigma^{+}(Y)$ and Q_{Y} is the product of T_{Y} root subgroups for roots in $\Sigma^{-}(Y)-\Sigma\left(L_{Y}\right)$. Set $\Pi\left(L_{Y}\right)=\Pi(Y) \cap \Sigma\left(L_{Y}\right)$.
(1.23). (i) $[V, Q]=\left[V, Q_{Y}\right]$.
(ii) $V^{1}(Q)=V^{1}\left(Q_{Y}\right)$ is an irreducible module for L and L_{Y}.
(iii) $V^{2}\left(Q_{y}\right)$ is an L-invariant quotient of $V^{2}(Q)$.
(iv) If w_{0} (respectively, s_{0}) is the long word in the Weyl group of $Y\left(\right.$ respectively, X), then $-w_{0}(\lambda)\left|T \cap L^{\prime}=-s_{0}(\lambda)\right| T \cap L^{\prime}$.

Proof: (i) - (iii) follow from (2.10) in [12].
Let $W=V^{*}$. Then, by (1.11), W has high weight $-W_{0}(\lambda)$ (respectively, $-s_{0}(\lambda)$) as a Y (respectively, X) module. By (ii) and (1.19), $W^{1}(Q)=W^{1}\left(Q_{Y}\right)$ is an irreducible $L^{\prime}\left(\right.$ respectively, L_{Y}) module with high weight $-S_{0}(\lambda) \mid T \cap L^{\prime}\left(-W_{0}(\lambda) \mid T_{Y} \cap L_{Y}{ }^{\prime}\right)$. Since, $U \cap L \leq U_{Y} \cap L_{Y}$, if $\left\langle W^{+}+\left[W, Q_{Y}\right]\right\rangle$ is the unique 1-space of $W^{1}\left(Q_{Y}\right)$ invariant under $U_{Y} \cap L_{Y}$, then $\left\langle W^{+}+\left[W, Q_{Y}\right]\right\rangle$ is also the unique $1-$ space of $W^{1}(Q)$ invariant under UnL. Recalling that $T \leq T_{Y}$, the result follows.

Definition: For $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$, set $V^{\gamma}\left(T_{Y}\right)=\Sigma V_{T_{Y}}(\mu)$, the sum ranging over those μ for which $\lambda-\mu-\gamma$ is a sum of roots in $\Pi\left(L_{y}\right)$. Since the T_{Y} weights in $V^{1}\left(Q_{Y}\right)$ all differ from λ by a sum of roots in $\Pi\left(L_{Y}\right)$, it follows that $V^{\gamma}\left(T_{Y}\right) \leq\left[V, Q_{Y}\right]$ and we let

$$
V_{\gamma}\left(Q_{Y}\right)=\left(V^{\gamma}\left(T_{Y}\right)+\left[V, Q_{Y}{ }^{2}\right]\right) /\left[V, Q_{Y}{ }^{2}\right] .
$$

(1.24). ((2.15) in [12]) Assume $V \mid Y$ is basic and $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$.
(i) If $\langle\lambda, \gamma\rangle \neq 0$, then some L_{Y} ' composition factor of $V_{\gamma}\left(Q_{Y}\right)$ has high weight $\lambda-\gamma$.
(ii) Suppose $\langle\lambda, \gamma\rangle=0$, but $\left(\Sigma \mathrm{L}_{0}, \gamma\right) \neq 0$ for some simple factor L_{0} of L_{Y} satisfying $\left\langle\lambda, \Sigma L_{0}\right\rangle \neq 0$. Then there exist distinct roots
$\beta_{1}, \ldots, \beta_{\ell} \in \Pi\left(L_{\gamma}\right) \cap \Sigma L_{0}$ such that some L_{y} composition factor of $V_{\gamma}\left(Q_{y}\right)$ has high weight $\lambda-\beta_{1}-\cdots-\beta_{k}-\gamma$.
(1.25). Assume $V I Y$ is basic, X is simple, and that $V I X=V_{1} q_{1} \otimes \cdots \otimes$ $v_{k} q_{k}$ with each v_{j} restricted and q_{1}, \ldots, q_{k} distinct powers of p. Then
(i) $\quad V^{2}\left(Q_{Y}\right)=\oplus V_{\gamma}\left(Q_{\gamma}\right)$, the sum ranging over $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$.
(ii) For each $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right), V_{\gamma}\left(Q_{\gamma}\right) \cong V^{\gamma}\left(T_{\gamma}\right)$ (as vector spaces).
(iii) For each $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right), V_{\gamma}\left(Q_{Y}\right)$ is a weight space for Z_{Y} of weight $(\lambda-\gamma) \mid Z_{Y}$. The decomposition in (i) is the decomposition of $V^{2}\left(Q_{Y}\right)$ into distinct weight spaces for Z_{Y}.
(iv) If, in addition, $\Pi(X)-\Pi(L)=\{\alpha\}$ and $Z \leq Z_{Y}$, then for each $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right), \operatorname{dimv}_{\gamma}\left(Q_{Y}\right) \leq \operatorname{dimv}^{1}\left(Q_{A}\right) \cdot d$, where d is as in (1.22)(iii).

Proof: This follows from (2.11) and (2.14) in [12] and (1.22) (iii) above.

In the remainder of this section, we list and establish certain results which will be used in obtaining upper and lower bounds on the dimensions of modules. Beyond the notation established in the next paragraph, this material will be explicitly referenced when necessary and is not required for the reading of the next chapter.

Assume, for the remainder of this chapter, that X is simple. Let $W(\lambda)$ be the Weyl module corresponding to the dominant weight λ. Let δ be the half sum of the positive roots in $\Sigma(X)$. Write $\mathbb{Z} \Sigma(X)$ for the \mathbb{Z}-span of $\Sigma(X)$ and normalize the inner product on $\mathbb{Z} \Sigma(X)$ so that long roots have length 1. Write $\mu \leq \lambda$ if $\mu=\lambda-\Sigma c_{j} \alpha_{j}$, for $c_{j} \in \mathbb{Z}^{+}$. Let $P(\lambda-\mu)$ denote the number of distinct ways of writing $\lambda-\mu$ as an integral linear combination of elements of $\Sigma^{+}(X)$ with nonnegative coefficients. Also, let $m(\mu)$ denote the multiplicitly of the weight μ in $W(\lambda)$. Finally, let $W(X)$ denote the Weyl group of X.
(1.26). (Weyl degree formula): $\operatorname{dimW}(\lambda)=\left(\prod(\lambda+\delta, \alpha)\right) /(\Pi(\delta, \alpha))$, where each product is taken over $\alpha \in \Sigma^{+}(X)$.

Proof: See Section 24 of [9]. [
(1.27). Suppose rank $X=2$ and $\lambda=m_{1} \lambda_{1}+m_{2} \lambda_{2}$.
(a) If X has type $A_{2}, \operatorname{dimW}(\lambda)=(1 / 2)\left(m_{1}+1\right)\left(m_{2}+1\right)\left(m_{1}+m_{2}+2\right)$.
(b) If X has type $B_{2}, \operatorname{dimW}(\lambda)=$
$(1 / 6)\left(m_{1}+1\right)\left(m_{2}+1\right)\left(m_{1}+m_{2}+2\right)\left(2 m_{1}+m_{2}+3\right)$.
(c) If X has type $G_{2}, \operatorname{dimW}(\lambda)=$
$(1 / 5!)\left(m_{1}+1\right)\left(m_{2}+1\right)\left(m_{1}+m_{2}+2\right)\left(m_{1}+2 m_{2}+3\right)\left(m_{1}+3 m_{2}+4\right)\left(2 m_{1}+3 m_{2}+5\right)$.
Proof: This follows directly from (1.26).口
(1.28). (Freudenthal): $m(\mu)=\left(2 \sum m(\mu+i \alpha)(\mu+i \alpha, \alpha)\right) /((\lambda+\delta, \lambda+\delta)-$ $(\mu+\delta, \mu+\delta))$, where the sum is taken over $\alpha \in \Sigma^{+}(X)$ and $i \geq 1$.

Proof: See Section 22 of [9].
(1.29). Let $\left\langle v^{+}\right\rangle$be the unique 1 -space of V invariant under $U=\left\langle U_{r}\right|$ $\left.r \in \Sigma^{+}(X)\right\rangle$. Assume λ is restricted and $\mu \underline{\Omega}$. Let $N=\left|\Sigma^{+}(X)\right|$ and let
$\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$ denote any sequence of nonnegative integers. Given a fixed ordering in $\Sigma^{+}(X)=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N}\right\}, V_{T}(\mu)=\left\langle\left(f_{\beta_{1}} S_{1} \ldots f_{\beta_{N}} S_{N}\right) V^{+}\right| \lambda-\mu=$ $\left.\Sigma s_{j} \beta_{j}\right\rangle$.

Proof: By (1.1), V is irreducible as a module for $L(X)$. As $L(U)$ leaves $\left\langle v^{+}\right\rangle$invariant, $v_{T}(\mu)=\left\langle f \gamma_{1} \cdots \gamma_{t} v^{+} \mid \lambda-\mu=\Sigma \gamma_{j}\right\rangle$. The result then follows from the Poincare-Birkhoff-Witt Theorem. (See Section 17 of [9].) \square
(1.30). Suppose V is a restricted $k X$-module, $\alpha \in \Sigma^{+}(X)$ and $\mu \leq \lambda$, such that $V_{T}(\mu) \neq 0$. Assume $0<\langle\mu, \alpha\rangle<p$.
(i) $V_{T}(\mu-d \alpha) \neq 0$, for each $0 \leq d \leq\langle\mu, \alpha\rangle$.
(ii) If $\alpha \in \Pi(X), \operatorname{dim} V_{T}(\lambda-d \alpha)=1$ for $0 \leq d \leq\langle\lambda, \alpha\rangle$.

Proof: View V as an irreducible module for $L(X)$. (See (1.1).) Let \mathcal{H} be a Cartan subalgebra of $L(X)$ and let $\mathfrak{N}=\left\langle e_{\alpha}, f_{\alpha}, \mathcal{H}\right\rangle$. Then $\mathfrak{N}=\mathfrak{N}_{0} \oplus \mathcal{K}_{0}$ (direct sum of Lie subalgebras), where $\mathfrak{N}_{0}=\left\langle e_{\alpha}, f_{\alpha}\right\rangle$ and $\mathfrak{N}_{0}=C_{\mathfrak{N}}\left(\mathfrak{N}_{0}\right)$. Also, $\Omega_{0} \cong \mathrm{sl}_{2}$.

Now, let $0 \neq v \in V_{T}(\mu)$ and take a composition series of V under the action of \mathfrak{n}, such that $v \in V_{i+1}-V_{i}$. Then, \mathfrak{F}_{0} induces scalars on V_{i+1} / V_{i}, so \mathfrak{N}_{0} acts irreducibly on $V_{i+1} / V_{\mathfrak{j}}$. The irreducible modules for \mathfrak{N}_{0} are all restricted (see Section A of [1]); in particular, the weights form a chain. Since $\langle\mu, \alpha\rangle\langle p$, (i) holds.

The result of (ii) follows from (i) and (1.29).ם
(1.31). For $\alpha \in \Pi(X), \operatorname{dim} V_{T}(\lambda-k \alpha) \leq 1$, for any $k \in \mathbb{Z}^{+}$.

Proof: Write $V=v_{1} q_{1} \otimes \cdots \otimes v_{k} q_{k}$, where v_{j} is a restricted irreducible $k X$-module with high weight v_{i}, and $\mathrm{q}_{1}, \ldots, \mathrm{q}_{k}$ are distinct powers of p. Suppose $\lambda-k \alpha=\Sigma\left(q_{j} v_{j}-n_{j} q_{j} \alpha\right)=\Sigma\left(q_{j} v_{j}-m_{j} q_{j} \alpha\right)$, for some integers $0 \leq m_{j}, n_{j}<p$. Then $k=\sum n_{j} q_{j}=\sum m_{j} q_{j}$ is the p-adic expansion of the integer k. So $m_{j}=n_{j}$ for all i and $V_{T}(\lambda-k \alpha)=\left(v_{1} q_{1}\right)_{T}\left(q_{1}\left(v_{1}-n_{1} \alpha\right)\right) \otimes$ $\cdots \otimes\left(v_{k} q_{k}\right)_{T}\left(q_{k}\left(v_{k}-n_{k} \alpha\right)\right)$. So dimv $V_{T}(\lambda-k \alpha)=\prod \operatorname{dim}\left(\left(v_{j} q_{i}\right)_{T}\left(v_{j}-n_{j} \alpha\right)\right) \leq 1$ by (1.29) and (1.30).
(1.32). ((1.10) in [12]) Let μ be a dominant weight of T and $W_{0} \leq W(X)$ be generated by those fundamental reflections corresponding to simple roots $\alpha \in \Pi(X)$ with $\langle\mu, \alpha\rangle=0$. Then W_{0} is the stabilizer of μ in $W(X)$; so there are $\left|W(X): W_{0}\right|$ distinct conjugates of $V_{T}(\mu)$ in V.
(1.33). (i) (Linkage principle) Assume X is simply connected and let $X(T)$ be the group of rational characters of T. If μ and v are high weights of composition factors of an indecomposable $k X$ module, then
(a) $w(\mu+\delta)-(v+\delta) \in p X(T)$, for some $w \in W(X)$, and
(b) μ and v lie in the same coset of $X(T) / X_{r}(T)$, where $X_{r}(T)$ is the sublattice generated by $\Sigma(X)$.
(ii) Suppose that μ is a dominant weight and that $W(\lambda)$ contains an x-composition factor of high weight μ. Assume that $p>2$, and that $p>3$ when A has type G_{2}. Write $\mu=\lambda-\Sigma c_{j} \alpha_{i}$, where each $c_{j} \geq 0$. Then
(i) $2\left(\lambda+\delta, \Sigma c_{j} \alpha_{j}\right)-\left(\Sigma c_{j} \alpha_{j}, \Sigma c_{j} \alpha_{j}\right) \in(p / 2) Z$, if $X \neq G_{2}$.
(ii) $2\left(\lambda+\delta, \Sigma c_{j} \alpha_{j}\right)-\left(\Sigma c_{j} \alpha_{j}, \Sigma c_{j} \alpha_{j}\right) \in(p / \sigma) Z$ if $X=G_{2}$.

Proof: The statement of (i)(a) is Theorem 3 of [11]. Statement (ii)
is (6.2) of [12]. Part (b) of (i) follows from the fact that $U_{r}\left(V_{T}(\eta)\right) \subset$ $\Sigma V_{T}(\eta+i r)$, for $i \geq 0, \eta$ a weight in a rational $k X$ module V, and $r \in \Sigma(X)$. See Lemma 72 of [14].
(1.34). ((8.6) of [12]) Let $X=S L_{n+1}$ and let V be a restricted irreducible $k X$-module with high weight λ. Suppose $1 \leq r \leq i<j \leq s \leq n$ and $\lambda=a \lambda_{i}+b \lambda_{j}$ for $a \neq 0 \neq b$. Then $v_{T}\left(\lambda-\left(\alpha_{r}+\cdots+\alpha_{s}\right)\right)$ is spanned by vectors $v_{t}=f_{\alpha_{r}}+\cdots+\alpha_{t-1}{ }^{f} \alpha_{t}+\cdots+\alpha_{s} v^{+}$, for $i \leq t \leq j$. Moreover, v_{i}, \ldots, v_{j} are linearly independent unless $a+b+j-i \equiv 0(\bmod p)$, in which case they span a $j-i$ space and $b v_{i}+v_{i+1}+\cdots+v_{j}=0 . \square$
(1.35). Let V be a restricted $k X$-module. Let $\alpha, \beta \in \Pi(X)$, with $(\alpha, \beta)<0$, such that $\langle\lambda, \alpha\rangle=c,\langle\lambda, \beta\rangle=d$, for $0<c, d$. Then $2 \geq$ $\operatorname{dim}_{T}(\lambda-\alpha-\beta)>0$ and
(i) if $(\alpha, \alpha)=(\beta, \beta), \operatorname{dimV}_{T}(\lambda-\alpha-\beta)=1$ if and only if $c+d=p-1$;
(ii) if $(\alpha, \alpha)=2(\beta, \beta), \operatorname{dim}_{T}(\lambda-\alpha-\beta)=1$ if and only if $2 c+d+2 \equiv 0$ $(\bmod p)$; and
(iii) if $(\alpha, \alpha)=3(\beta, \beta), \operatorname{dim}_{T}(\lambda-\alpha-\beta)=1$ if and only if $3 c+d+3 \equiv 0$ $(\bmod p)$.

Proof: This follows from (1.28) and the final proposition of [4].ם
(1.36). Let Y be a simple closed subgroup of $S L(V)$. Let $P_{Y}=Q_{Y} L_{Y}$, T_{Y}, U_{Y} be as in results (1.23) - (1.25). Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $\beta \in \Pi\left(L_{Y}\right)$ be such that $(\gamma, \gamma)=(\beta, \beta),(\gamma, \beta)<0,\left\langle U_{ \pm \beta}\right\rangle$ is a simple normal subgroup of $L^{\prime}{ }^{\prime},\langle\lambda, \gamma\rangle \neq 0$ and $\langle\lambda, \beta\rangle=p-1$. Then, there exists $0 \neq$ $w \in V_{T_{Y}}(\lambda-\gamma-\beta)$ such that $f \gamma V^{+}$and w afford distinct $L_{Y}{ }^{\prime}$ composition factors of $V_{\gamma}\left(Q_{Y}\right)$.

Proof: Note first that for $0 \neq v \in V_{T_{Y}}(\lambda-\gamma-\beta)$, either v is a maximal vector for $L_{Y} \cdot \cap U_{Y}$ or v lies in an L_{Y} composition factor of $V_{\gamma}\left(Q_{Y}\right)$ with high weight $\lambda-\gamma$. Clearly, $f \gamma V^{+}$is a maximal vector for $L_{Y} \cap \cap U_{Y}$, and so affords an L_{Y} composition factor of $V_{\gamma}\left(Q_{Y}\right)$. Moreover, by (1.31), there exists a unique L_{Y} composition factor of $V_{\gamma}\left(Q_{Y}\right)$ with high weight $\lambda-\gamma$. But $\langle\lambda, \beta\rangle=p-1$ and (1.35) imply that $\operatorname{dim} V_{T_{Y}}(\lambda-\gamma-\beta)=2$.

Hence, there exists $0 \neq W \in V_{T_{Y}}(\lambda-\gamma-\beta)$ as claimed.
(1.37). Let rank $X=2$, with $\Pi(X)=\{\alpha, \beta\}$. Let P, Q, and L be as in (1.19) with $L^{\prime}=\left\langle U_{ \pm \beta}\right\rangle$. Suppose $V=V_{1} q_{1} \otimes \cdots \otimes V_{k} q_{k}$, for each V_{i} is a basic module for X and q_{1}, \ldots, q_{k} are distinct powers of p. Then $\operatorname{dim}\left(\left(V_{T}(\lambda\right.\right.$ $\left.\left.\left.-q_{j} \beta-q_{j} \alpha\right)+\left[V, Q^{2}\right]\right) /\left[V, Q^{2}\right]\right) \leq 2$, for each i.

Proof: By (1.22), $0 \neq W \in V_{T}\left(\lambda-q_{i} \beta-q_{j} \alpha\right)$ corresponds to a nonzero vector in $W_{1}^{1}(Q) \otimes \cdots \otimes W_{i}^{2}(Q) \otimes \cdots \otimes W_{k}^{1}(Q)$, where $W_{i}=v_{i} q_{i}$. Let μ_{ℓ} be the high weight of W_{ℓ}, for $1 \leq \ell \leq k$. Suppose $w \notin\left(W_{1}\right)_{T}\left(\mu_{1}\right) \otimes$ $\cdots \otimes\left(W_{j}\right)_{T}\left(\mu_{i}-q_{i} \beta-q_{j} \alpha\right) \otimes \cdots \otimes\left(W_{k}\right)_{T}\left(\mu_{k}\right)$. Then w projects nontrivially into some weight space of the form $\left(W_{1}\right)_{T}\left(\mu_{1}-n_{1} q_{1} \beta\right) \otimes$ $\cdots \otimes\left(W_{j}\right)_{T}\left(\mu_{j}-q_{j} \alpha\right) \otimes \cdots \otimes\left(W_{k}\right)_{T}\left(\mu_{k}-n_{k} q_{k} \beta\right)$, for $0 \leq n_{l}<p$. Hence, $\lambda-\left(\sum n_{l} q_{l} \beta\right)-q_{j} \alpha=\lambda-q_{j} \beta-q_{j} \alpha$. So $\sum n_{l} q_{l}=q_{j}$. Dividing this equation by the highest power of p which occurs, and taking congruences modulo p, we obtain $n \equiv 0(\bmod p)$ for some $0<n<p$. Contradiction. Thus, $w \in\left(W_{1}\right)_{T}\left(\mu_{1}\right) \otimes \cdots \otimes\left(W_{j}\right)_{T}\left(\mu_{j}-q_{j} \beta-q_{j} \alpha\right) \otimes \cdots \otimes\left(W_{k}\right)_{T}\left(\mu_{k}\right)$, which has dimension equal to $\operatorname{dim}\left(\left(W_{j}\right)_{T}\left(\mu_{j}-q_{i} \beta-q_{i} \alpha\right)\right)$. But this is at most 2 , by (1.29). Thus, the result holds.口

Using the methods of (1.26), (1.30), (1.32), (1.34) and referring to [8], we obtain the following lower bounds on dimensions of irreducible $k X$ modules.
(1.38). For V a restricted $k X$-module with high weight λ, let $d(\lambda, p)=\operatorname{dim} V$, where p is the characteristic of k. Then
(i) $x=F_{4}, d\left(2 \lambda_{2}, p\right) \geq 2^{6} \cdot 3 \cdot 5$
(ii) $x=E_{6}$,

1. $d\left(\lambda_{1}+\lambda_{3}+\lambda_{5}+\lambda_{6}, 2\right) \geq 2^{6} \cdot 3^{3} \cdot 5$
2. $d\left(\lambda_{1}+\lambda_{3}+\lambda_{6}, 2\right) \geq 2^{4} \cdot 3^{3} \cdot 19 \quad$ 3. $d\left(\lambda_{1}+\lambda_{2}+\lambda_{6}, 2\right) \geq 2^{4} \cdot 3^{3} \cdot 13$
3. $d\left(\lambda_{3}+\lambda_{4}+\lambda_{5}, 3\right) \geq 2^{4} \cdot 3^{3} \cdot 5 \cdot 13$
4. $d\left(2 \lambda_{1}+2 \lambda_{6}, p\right) \geq 2 \cdot 3^{3} \cdot 5 \cdot 11$

$$
\begin{aligned}
& \text { (iii) } x=E_{7}, \quad \text { 1. } p \neq 3, d\left(\lambda_{6}+\lambda_{7}, p\right) \geq 2^{3} \cdot 3^{2} \cdot 7 \cdot 19 \\
& \text { 2. } d\left(2 \lambda_{1}, p\right) \geq 2 \cdot 3^{2} \cdot 7 \cdot 17 \quad 3 . x \neq 0, d\left(\lambda_{4}+x \lambda_{7}, 3\right) \geq 2^{6} \cdot 3^{2} \cdot 7 \cdot 19 \\
& \text { 4. } d\left(3 \lambda_{7}, p\right) \geq 2^{5} \cdot 5^{2} \cdot 7 \\
& \text { 5. } d\left(2 \lambda_{2}, p\right) \geq 2^{5} \cdot 3^{2} \cdot 37 \\
& \text { 6. } d\left(\lambda_{1}+\lambda_{5}, 2\right) \geq 2^{6} \cdot 3^{2} \cdot 7 \cdot 17 \\
& \text { 7. } d\left(\lambda_{2}+\lambda_{5}, 2\right) \geq 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \\
& \text { 8. } d\left(\lambda_{2}+\lambda_{7}, 2\right) \geq 2^{4} \cdot 3 \cdot 7 \cdot 37 \\
& \text { 9. } d\left(\lambda_{1}+\lambda_{2}, 2\right) \geq 2^{6} \cdot 3^{2} \cdot 7 \cdot 11 \\
& \text { 10. } d\left(2 \lambda_{2}+\lambda_{7}, 3\right) \geq 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \\
& \text { 11. } d\left(\lambda_{4}, 3\right) \geq 2^{5} \cdot 3^{2 \cdot 5 \cdot 7} \\
& \text { 12. } d\left(2 \lambda_{7}, p\right) \geq 2^{2} \cdot 7 \cdot 29 \\
& \text { 13. } d\left(\lambda_{1}+2 \lambda_{7}, 3\right) \geq 2^{4} \cdot 3^{4} \cdot 7 \\
& \text { (iv) } x=E_{8}, \quad \text { 1. }\{a, b\}=\{1,2\}, d\left(a \lambda_{1}+b \lambda_{8}, 3\right) \geq 2^{5} \cdot 3^{3} \cdot 5 \cdot 241 \\
& \text { 2. } d\left(\lambda_{2}+\lambda_{3}+\lambda_{8}, 2\right) \geq 2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \\
& \text { 3. } d\left(2 \lambda_{8}, p\right) \geq 2^{4 \cdot 3 \cdot 5 \cdot 37} \\
& \text { 4. } d\left(\lambda_{1}+\lambda_{2}+\lambda_{7}, 2\right) \geq 2^{10 \cdot 3} \cdot 5 \cdot 5 \cdot 7 \\
& \text { 5. } d\left(4 \lambda_{8}, p\right) \geq 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \\
& \text { 6. } d\left(\lambda_{1}+\lambda_{2}+\lambda_{8}, 2\right) \geq 2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7 \\
& \text { 7. } p>2, d\left(\lambda_{2}, p\right) \geq 2^{6} \cdot 3 \cdot 5^{3} \\
& \text { 8. } d\left(2 \lambda_{1}, p\right) \geq 2^{4} \cdot 3^{4} \cdot 5 \cdot 11 \\
& \text { 9. } d\left(\lambda_{2}+\lambda_{6}+\lambda_{8}, 2\right) \geq 2^{9 \cdot 3} 3 \cdot 5 \cdot 7 \cdot 11 \\
& \text { 10. } d\left(3 \lambda_{8}, p\right) \geq 2^{5} \cdot 3^{3} \cdot 5 \cdot 17 \\
& \text { 12. } d\left(\lambda_{2}, 2\right) \geq 2^{8} \cdot 3^{2} \cdot 5^{2} \\
& \text { 14. } d\left(\lambda_{2}+\lambda_{8}, 3\right) \geq 2^{12 \cdot} \cdot 3^{3} \cdot 5 \\
& \text { 16. } d\left(2 \lambda_{2}+\lambda_{8}, 3\right) \geq 2^{9.5 \cdot 37} \\
& \text { 11. } d\left(\lambda_{5}+\lambda_{8}, 2\right) \geq 2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \\
& \text { 13. } d\left(\lambda_{2}+\lambda_{8}, 2\right) \geq 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 11 \\
& \text { 15. } d\left(\lambda_{1}+\lambda_{8}, 3\right) \geq 2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \\
& \text { 17. } d\left(\lambda_{1}+\lambda_{6}+\lambda_{8}, 2\right) \geq 2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2}
\end{aligned}
$$

CHAPTER 2: PARABOLIC EMBEDDINGS

In this chapter, we establish certain results concerning the embeddings of parabolic subgroups, and in particular, embeddings of unipotent radicals. We will adopt the following notation for this entire chapter.

Notation and Hypothesis (2.0). Let Y be a simply connected, simple algebraic group over an algebraically closed field k of characteristic $p>0$. Let $\theta: Y \rightarrow S L(V)$ be a nontrivial, finite dimensional, irreducible rational representation. Suppose $A=A^{\circ}$ is a simple closed subgroup of Y such that VIA is irreducible.

Let $\Sigma(A), \Sigma(Y)$ denote the root systems of A, Y respectively, and take $\Pi(A)=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ to be a fundamental system of $\Sigma(A)$, with μ_{j} the fundamental dominant weight corresponding to α_{j}. Let $B_{A}=U_{A}{ }^{\top} A$ be a Borel subgroup of A with maximal torus T_{A} and unipotent radical U_{A}, chosen so that U_{A} is the product of T_{A}-root subgroups corresponding to roots in $\Sigma^{+}(A)$. Write $B_{A^{-}}$for $\left(U_{A^{-}}\right) T_{A}$, where $U_{A^{-}}$is the opposite unipotent radical. If $\Sigma(A)$ or $\Sigma(Y)$ has only one root length, we will refer to all roots as being "long." Assume $\Sigma(Y)$ has type G_{2}, F_{4} or E_{n}.

Fix a maximal parabolic subgroup $P_{A}=Q_{A} L_{A}$ of A, where $Q_{A}=$ $R_{U}\left(P_{A}\right)$ and L_{A} is a Levi factor containing T_{A}. Set $\Pi\left(L_{A}\right)=\Pi(A) \cap \Sigma\left(L_{A}\right)$ and $\Pi(A)-\Pi\left(L_{A}\right)=\{\alpha\}$. We will choose P_{A} such that α corresponds to an end node of the Dynkin diagram and Q_{A} is the product of T_{A}-root subgroups corresponding to the roots in $\Sigma^{-}(A)-\Sigma\left(L_{A}\right)$. Let $T\left(L_{A^{\prime}}\right)=$ $T_{A} \cap L_{A}$ and set $Z_{A}=Z\left(L_{A}\right)^{\circ}$. We will abuse notation and write μ_{j} for $\mu_{j} I T\left(L_{A}{ }^{\prime}\right)$.

Let $P_{Y}=Q_{Y} L_{Y}$ be a parabolic subgroup of Y such that $P_{A} \leq P_{Y}$,
$Q_{A} \leq Q_{Y}=R_{U}\left(P_{Y}\right)$. (The existence of such a parabolic P_{Y} is given by the Borel-Tits theorem.) Choose P_{Y} minimal with these properties. Let $T_{A} \leq T_{Y}$ for T_{Y} a maximal torus of L_{Y}. We choose an ordering of $\Sigma(Y)$ and a corresponding base $\Pi(Y)=\left\{\beta_{1}, \ldots \beta_{n}\right\}$, such that $U_{A} \cap L_{A} \leq Q_{Y}\left(U_{Y} \cap L_{Y}\right)$, where U_{Y} is the product of those T_{Y} root subgroups corresponding to the roots in $\Sigma^{+}(Y)$ and Q_{Y} is the product of T_{Y}-root subgroups for roots in $\Sigma^{-}(Y)-\Sigma\left(L_{Y}\right)$. Write $\Pi\left(L_{Y}\right)$ for $\Pi(Y) \cap \Sigma\left(L_{Y}\right)$ and set $Z_{Y}=Z\left(L_{Y}\right)^{\circ}$.

We will write U_{r} for the T_{A} (respectively, T_{Y}) root subgroup corresponding to the root $r \in \Sigma(A)$ (respectively, $\Sigma(Y)$). Also, let $x_{r}(t)$ denote elements of U_{r}, for $t \in K$ and $h_{\gamma}(c)$ denote the element of T_{A}, or T_{Y}, corresponding to the root $\gamma \in \Pi(A)$, or $\Pi(Y)$, for $c \in K^{*}$. As well, let e_{r} and f_{r} denote the corresponding elements of the Lie algebra $L(Y)$ or $L(A)$. For Y of type E_{n}, we will sometimes abbreviate the above notation in the following manner: For $r \in \Sigma^{+}(Y)$ such that $r=\beta_{i_{1}}+\cdots+\beta_{i_{t}},\left\{\beta_{i_{1}}, \ldots, \beta_{i_{t}}\right\} \subset$ $\Pi(Y)$ with $i_{1}<i_{2}<\cdots<i_{t}$, we will write $U_{ \pm i_{1} i_{2}} \cdots i_{t}$ for $U_{ \pm r}, e_{i_{1} i_{2}} \cdots i_{t}$ for e_{r} and similarly for $f_{r}, x_{ \pm r}(t)$ and $h_{r}(c)$. For $r \in \Sigma^{+}(Y), r=\Sigma a_{j} \beta_{j}, a_{j} \in \mathbb{Z}^{+}$ with some $a_{j}>1$, we will write $U_{ \pm}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for $U_{ \pm r}$, etc.

Write $L_{\gamma^{\prime}}=L_{1} \times \cdots \times L_{r}$, a direct product of simple algebraic groups. We will refer to L_{j} as a component of $L_{\gamma^{\prime}}$. By (1.23), $L_{A^{\prime}}$ and $L_{\gamma^{\prime}}$ are irreducible on $V^{1}\left(Q_{Y}\right)$. Then $V^{1}\left(Q_{Y}\right)=M_{1} \otimes \cdots \otimes M_{r}$, where each M_{j} is an irreducible L_{i} module. The embedding $\rho: L_{A} \rightarrow P_{Y} / Q_{Y} \cong L_{Y}$ gives an embedding of $L_{A^{\prime}}$ in $L_{1} \times \cdots \times L_{r}$ and we let $\rho_{j}: L_{A} \rightarrow L_{j}$ be the corresponding projection. Then any module for L_{i}, in particular M_{i}, can be regarded as a module for L_{A}.

Remark: If L_{i} is of classical type, with natural module W_{j}, the proper parabolic subgroups of L_{j} correspond to stabilizers of flags of totally singular subspaces of W_{j}. Thus, P_{Y} minimal implies $W_{j} \mid \rho_{j}\left(L_{A}{ }^{\prime}\right)$ is either irreducible or $\rho_{j}\left(L_{A}\right)$ stabilizes a nonsingular subspace of W_{j}. Hereafter, we will use this fact without reference to this remark.

Write $V=V(\lambda)$, where λ is a dominant weight of T_{Y}. Let λ_{i} denote
the fundamental dominant weight corresponding to the root β_{j}. Let $\left\langle v^{+}\right\rangle$ be the unique 1-space of VIY invariant under $U_{Y} \top_{Y}=B_{Y}$. We may assume, as discussed in the introduction,
(i) VIY is a restricted module, and
(ii) $V \mid A=V_{1} q_{1} \otimes \cdots \otimes V_{k} q_{k}$, where v_{1}, \ldots, V_{k} are nontrivial restricted $k A$-modules and q_{1}, \ldots, q_{k} are distinct powers of p. As well, note that
(iii) V|Y $\not \equiv L(Y)$, the Lie algebra of Y, as $L(X)$, the Lie algebra of X, is always a proper invariant $k X$-submodule of $L(Y)$. We will use this fact frequently without reference.

For each $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$, we define a certain normal subgroup K_{γ} of P_{Y}, which in most cases is just the largest normal subgroup of P_{Y} that is contained in Q_{Y} and does not contain the T_{Y} root subgroup corresponding to $-\gamma$. Let $\Sigma_{\gamma}(Y)$ denote the set of roots in $\Sigma(Y)$ having coefficient of γ equal to -1 and zero coefficient for other roots in $\Pi(Y)-$ $\Pi\left(L_{Y}\right)$. Then let K_{γ} be the product of those T_{Y} root subgroups U_{β} for which $\beta \in \Sigma^{-}(Y)-\Sigma^{-}\left(L_{Y}\right)-\Sigma_{\gamma}(Y)$. From the commutator relations it follows that $K_{\gamma} \unlhd P_{Y}$.
(2.1). ((3.1) of [12])
(i) Q_{y} / K_{γ} is isomorphic to the direct product of those T_{Y} root subgroups for roots $\beta \in \Sigma_{\gamma}(Y)$.
(ii) There is an L_{Y}-module structure on Q_{Y} / K_{γ} such that Z_{Y} acts by scalars and such that there is a maximal vector of weight $-\gamma$.
(iii) Q_{Y} / K_{γ} is an irreducible L_{Y}-module, unless γ is a long root with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $\Sigma(Y)=G_{2}$ or F_{4}, with $p=3$ or 2 , respectively.

The above considerations apply to the parabolic subgroup P_{A}. Here we have only $\alpha \in \Pi(A)-\Pi\left(L_{A}\right)$ and we write $Q_{A} / K_{\alpha}=Q_{A}{ }^{\alpha}$. If (A, p) is not
special and if α is long when (A, $)$ has type $\left(G_{2}, 2\right)$, then $Q_{A}{ }^{\alpha}=Q_{A} /\left[Q_{A}, Q_{A}\right]$.

(2.2). ((3.2) of [12])

(i) $Q_{A}{ }^{\alpha}$ has an L_{A}-module structure and $-\alpha$ is the high weight of a composition factor.
(ii) If (A, p) is not special, $Q_{A}{ }^{\alpha}$ is an irreducible L_{A} module.
(iii) $Q_{A}{ }^{\alpha}$ has a unique maximal L_{A}-invariant subgroup, M_{α}, which is a submodule having quotient module with high weight -a.

Notation: We will write I_{α} for the irreducible quotient, $\left(Q_{A}{ }^{\alpha}\right) / M_{\alpha}$, described in (iii) of the above result.
(2.3). ((3.3) of [12]) Assume $Z_{A} \leq Z_{Y}$ and let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$.
(i) $Q_{A} K_{\gamma} / K_{\gamma}$ is an L_{A} invariant submodule of Q_{Y} / K_{γ}.
(ii) If $V_{\gamma}\left(Q_{\gamma}\right) \neq 0$, then $Q_{A} \not \ddagger K_{\gamma}$.
(iii) Suppose $\operatorname{rank}(\Sigma(A))>1$ and $\langle\lambda, \gamma\rangle \neq 0$. Then $\left(\gamma, \Sigma\left(L_{\gamma}\right)\right) \neq 0 . \square$
(2.4). Assume $Z_{A} \leq Z_{Y}$ and let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$. Suppose that $\delta \in \Sigma(A), \delta$ has α-coefficient equal to -e and $U_{\delta} \nsubseteq K_{\gamma}$. Then
(i) $\gamma\left|Z_{A}=r \alpha\right| Z_{A}$, where r is a positive integral power of p. Moreover, $r=q_{i}$, for some i, in case each V_{j} is basic and $V_{\gamma}\left(Q_{Y}\right) \neq 0$.
(ii) There exist unique roots $\beta_{1}, \ldots, \beta_{S}$ in $\Sigma_{\gamma}(Y)$ and c_{1}, \cdots, c_{S} in k^{*} such that for $t \in k, x_{\delta}(t) K_{\gamma}=x_{\beta_{1}}\left(c_{1} t^{r / e}\right) \cdots x_{\beta_{s}}\left(c_{s} t^{r / e}\right) K_{\gamma}$.
(iii) $\left.\beta_{j}\right|^{T} A=(r / e) \delta$, for $j=1, \ldots, s$ as in (ii).
(iv) If $D=Q_{A} \cap K_{\gamma}$, then $U_{-\alpha} \ddagger D$, so $Q_{A} K_{\gamma} / K_{\gamma}$ has an L_{A} composition factor isomorphic to $\left(I_{\alpha}\right)^{r}$.
(v) If (A,p) is not special, $Q_{A} K_{\gamma} \leq\left\langle U_{-s}\right| U_{-s} \not \ddagger K_{\gamma}, \operatorname{siT}\left(L_{A}{ }^{\prime}\right)=r \eta$, for some $\eta \in \Sigma^{+}(A)$ with $\left.U_{-\eta} \neq Q_{A}{ }^{\prime}\right\rangle K_{\gamma}$. If (A, p) is special and $\eta \in \Sigma^{+}(A)$ with $U_{-\eta} \ddagger M_{\alpha}$ (see $2.2(i i i)$), then $U_{-\eta} K_{\gamma} \leq\left\langle U_{-s}\right| U_{-s} \ddagger K_{\gamma}$, sit $\left.\left(L_{A}{ }^{\prime}\right)=r \eta\right\rangle_{\gamma}$.

Proof: Statements (i) - (iii) are contained in (3.4) of [12]. As well,
if when $(A, p)=\left(G_{2}, 2\right)$ we take α to be long, (iv) follows from the proof of (3.4). Suppose $(A, p)=\left(G_{2}, 2\right)$ and α is short. Let $\Pi\left(L_{A}\right)=\{\beta\}$. Then, $Q_{A^{\prime}}=\left\langle U_{-3 \alpha-\beta}, U_{-3 \alpha-2 \beta}\right\rangle \leq D$. If $U_{-\alpha} \leq D$, then $\left(U_{-\alpha}\right) S_{\beta}=U_{-\alpha-\beta} \leq D$, where s_{β} is the reflection corresponding to the root β. But as well, $\left(U_{-\alpha}\right)^{X_{-\beta}(1)} \leq D$; and a nonidentity element from $U_{-2 \alpha-\beta}$ occurs in the factorization of this last expression. Hence, if $U_{-\alpha} \leq D$, then $Q_{A} \leq D$. contradiction. Thus, (iv) holds. Finally, since $Q_{A} K_{\gamma} / K_{\gamma}$ is an L_{A} invariant submodule of Q_{Y} / K_{γ}, it is a sum of $T\left(L_{A}\right.$ ') weight spaces. The result of (v) then follows from (iv). \square

For the following result, we will need additional notation. Recall that VIA $=V_{1} a_{1} \otimes \cdots \otimes V_{k} a_{k}$, where V_{j} is a restricted irreducible $k A$ module and q_{1}, \ldots, q_{k} are distinct p-powers. Write $V_{i}=V_{i} S \otimes V_{i}{ }^{\ell}$, where $V_{i}=V_{i}$ s unless (X, p) is special. If (X, p) is special, $V_{i}{ }^{s}$ and $V_{i}{ }^{l}$ are the short and long parts of V_{j}, as in (1.7). We will write $V_{j} \sim$ to indicate one of $v_{i}, v_{i}{ }^{s}, v_{i}^{l}$.
(2.5). ((3.5) of [12])
(i) For $i=1, \ldots, r, M_{j}$ is restricted.
(ii) For $i=1, \ldots, r, M_{i}$ is irreducible under the action of L_{A} and there is a uniquely determined subset $\left\{q_{i_{1}}, \ldots, q_{i_{d}}\right\}$ of $\left\{q_{1}, \ldots, q_{r}\right\}$ such that $M_{i} L_{A}{ }^{\prime} \cong\left(V_{i_{1}} \sim 1_{\left.\left(Q_{A}\right)\right)} q_{i_{1}} \otimes \cdots \otimes\left(V_{i_{d}} \sim 1^{1}\left(Q_{A}\right)\right) q_{1_{d} .} \square\right.$

Definition: Suppose one of the following holds:
(i) L_{i} is a classical group with natural module W_{i} and W_{j} / L_{A} is an algebraic conjugate, by a p-power q, of a nontrivial restricted module.
(ii) $\rho_{j}\left(L_{A}\right) \leq L_{i}$ is the natural embedding of a group of type B_{m} in. a group of type D_{m+1} and taking $\Pi\left(L_{A}\right)=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}, \Pi\left(L_{j}\right)=$ $\left\{\tau_{1}, \ldots, \tau_{m+1}\right\}$, we have $\rho_{j}\left(x_{ \pm \gamma_{\ell}}(t)\right)=x_{ \pm} \tau_{\ell}(t q)$ for $1 \leq \ell<m$ and $\rho_{j}\left(x_{ \pm \gamma_{m}}(t)\right)$ $=x_{ \pm \tau_{m}}\left({ }^{(q)} x_{ \pm \tau_{m+1}}(t q)\right.$, for all $c \in k^{*}$.
(iii) $L_{A^{\prime}} \cong L_{i}$ and if $\Pi\left(L_{A}\right)=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ and $\Pi\left(L_{i}\right)=\left\{\tau_{1}, \ldots, \tau_{m}\right\}$,
$\rho_{j}\left(x_{ \pm \gamma_{j}}(t)\right)=x_{ \pm \tau_{j}}(t q)$, for $1 \leq j \leq m$, for all $t \in K$.
Then we call q the field t wist on the embedding of $L_{A}{ }^{\prime}$ in L_{j}.
(2.6). Suppose L_{i} is a classical group and $M_{j} L_{A}{ }^{\prime}$ is the q_{j} twist of a nontrivial basic or p-basic module. Then, q_{j} is the field twist on the embedding of L_{A} in L_{i}.

Proof: If $\left.\rho_{j}\left(L_{A}\right)^{\prime}\right) \leq L_{i}$ is not the usual embedding of a group of type B_{m} in a group of type D_{m+1}, this follows from (9.1) of [12]. Suppose $\rho_{j}\left(L_{A}\right) \leq L_{i}$ is of type $B_{m} \leq D_{m+1}$. Let $\Pi\left(L_{A}\right)$ and $\Pi\left(L_{j}\right)$ be as in (ii) above. Then if $\left\langle\lambda, \tau_{j}\right\rangle=c_{j}$ for $1 \leq i<m$, then $\left\langle\lambda, \gamma_{j}\right\rangle=c_{j} q$, where q is the field twist on the embedding of L_{A} ' in L_{i}. And by (8.1) of [12], $\left\langle\lambda, \tau_{m}\right\rangle=0$ or $\left\langle\lambda, \tau_{m+1}\right\rangle=0$. So $\left\langle\lambda, \gamma_{m}\right\rangle=d q$, where $d=\left\langle\lambda, \tau_{m}\right\rangle+\left\langle\lambda, \tau_{m+1}\right\rangle$. By (2.5), $M_{j} L_{j}$ is restricted so $c_{j}, d<p$ and $q_{j}=q$. \square

Definition: For $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$, suppose Q_{Y} / K_{γ} is an irreducible L_{γ} ' module. Then, for $1 \leq i \leq r$ with $\left(\gamma, \Sigma L_{j}\right) \neq 0$, let $V_{L_{i}}{ }^{(-\gamma)}$ denote the irreducible L_{i} module with high weight $-\gamma$. Suppose $V_{L_{i}}(-\gamma) L_{A^{\prime}} \cong D_{1} r_{1} \otimes \cdots \otimes D_{d} r_{d_{i}}$, for D_{1}, \ldots, D_{d} nontrivial, restricted irreducible L_{A} modules and $r_{1}, \ldots, r_{d_{j}}$ distinct p-powers. Let $S_{j}\left(\gamma, L_{A}\right)=$ $\left\{r_{1}, \ldots, r_{d}\right\}$.
(2.7). Assume $Z_{A} \leq Z_{Y}$. Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $Q_{A} \not \ddagger K_{\gamma}$. Suppose one of the following holds:
(i) There exists a unique pair $1 \leq i, j \leq r$ such that $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq$ ($\Sigma L_{j}, \gamma$) and $V_{L_{m}}(-\gamma) L_{A^{\prime}}$ is irreducible for $m=i, j$.
(ii) There exist distinct $1 \leq i, j, \ell \leq r$ such that $\left(\Sigma L_{m}, \gamma\right) \neq 0$ for $m=$ i, j, ℓ and $V_{L_{m}}(-\gamma) L_{A^{\prime}}$ is irreducible for $m=i, j, \ell$.

If (i) holds, either $(A, p)=\left(G_{2}, 2\right)$ with a long and $\operatorname{rank}\left(L_{j}\right)=1=$ $\operatorname{rank}\left(L_{j}\right)$ or $S_{j}\left(\gamma, L_{A}\right) \cap S_{j}\left(\gamma, L_{A}\right) \neq \varnothing$. If (ii) holds, $S_{j}\left(\gamma, L_{A}\right) \cap$ $\left(S_{j}\left(\gamma, L_{A}\right) \cup S_{\ell}\left(\gamma, L_{A}\right)\right) \neq \varnothing$.

Proof: Since $Q_{A} \not \ddagger K_{\gamma}$, (2.4) implies that there exists an L_{A}. composition factor of Q_{Y} / K_{γ} isomorphic to a twist of I_{α}. Now, as L_{A}.
modules $Q_{Y} / K_{\gamma} \cong V_{L_{i}}{ }^{(-\gamma)} L_{A^{\prime}} \otimes V_{L_{j}}(-\gamma) \mid L_{A^{\prime}}$, if (i) holds, and $V_{L_{i}}(-\gamma) L_{A^{\prime}} \otimes V_{L_{j}}(-\gamma) L_{A^{\prime}} \otimes V_{L_{k}}(-\gamma) L_{A^{\prime}}$, if (ii) holds. If A has type G_{2}, $p=2$, and α is long, $I_{\alpha} \cong W \otimes W^{2}$, where W is the restricted 2-dimensional $L_{A}{ }^{\prime}$ irreducible. In every other case, I_{α} is a tensor indecomposable L_{A} ' module. The result then follows from the Steinberg tensor product theorem. (See [15].)

Hypothesis. For the remainder of Chapter 2 , assume $Z_{A} \leq Z_{Y}$.
(2.8). Assume (Y, p) is not special and let $\gamma, \delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$.
(i) Suppose there exist $r, s \in \Sigma^{+}(Y)-\Sigma^{+}\left(L_{Y}\right)$ such that $r+s \in \Sigma^{+}(Y)$, $U_{-r} \not \ddagger K_{\gamma}, U_{-s} \ddagger K_{\delta}$ and $x_{-\alpha}(t)=x_{-r}\left(c_{1} t q\right) x_{-s}\left(c_{2} t q_{0}\right) w$, for $c_{j} \in k^{*}, q$ and q_{0} positive integral powers of p and $w \in\left\langle U_{-\beta} \mid \beta \in \Sigma^{+}(Y)-\Sigma^{+}\left(L_{Y}\right)-\{r, s\}\right\rangle$. If $q \neq q_{0}$, there exists a pair of roots $\left\{r_{0}, s_{0}\right\} \subset \Sigma^{+}(Y)-\Sigma^{+}\left(L_{Y}\right)-\{r, s\}$ such that $r_{0}+s_{0}=r+s$ and a nonidentity element from each of $U_{-r_{0}}$ and $U_{-s_{0}}$ occurs in the factorization of $x_{-\alpha}(t)$.
(ii) Let $1 \leq i, j \leq r$ such that $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \delta\right)$ and $(\gamma, \delta)<0$. If $Q_{A} \ddagger K_{\gamma}$ and $Q_{A} \ddagger K_{\delta}$, there exists a p-power q such that $\gamma \mid Z_{A}=q \alpha=$ $\delta I Z_{A}$.

Proof: Let r, s, q and q_{0} be as in (i). If there does not exist a pair $\left\{r_{0}, s_{0}\right\}$ as described, then in the expression for $1=\left[x_{-\alpha}(t), x_{-\alpha}(u)\right]$, the contribution to the root group U_{-r-S} is $c_{1} c_{2}\left(\right.$ at $\left.q_{U} q_{0}-b u q_{t} q_{0}\right)$, for some $a, b \in k^{*}$. (Here we have used the fact that (Y, p) is not a special pair.) Since $c_{j} \neq 0, a=-b$ and $q=q_{0}$. Thus (i) holds.

For (ii), let $r, s \in \Sigma^{+}(Y)-\Sigma^{+}\left(L_{Y}\right)$ such that $U_{-r} \not \ddagger K_{\gamma}$ and $U_{-s} \not \ddagger K_{\delta}$, and $x_{-\alpha}(t)=x_{-r}\left(c_{1} t q_{1}\right) x_{-s}\left(c_{2} t q_{2}\right) w$, for $c_{j} \in k^{*}, w \in Q_{Y}, q_{j}$ a positive integral power of p. Also, we may choose w so that no nonidentity element from the set $U_{-r} U_{-s}$ occurs in its factorization. Note that $\{r, s\}$ is the unique pair of roots in $\Sigma^{+}(Y)-\Sigma^{+}\left(L_{Y}\right)$ whose sum is $r+s$. Thus, by part (i), $q_{1}=q_{2}$ and (ii) then follows from (2.4).口
(2.9). Assume (Y, p) is not special, and let $\gamma, \delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$, as in (2.8)(ii). Suppose $Q_{A}{ }^{\prime}=\{1\}$. Then, $Q_{A} \leq K_{\gamma}$ or $Q_{A} \leq K_{\delta}$.

Proof: Suppose false; i.e., suppose $Q_{A} \not \ddagger K_{\gamma}$ and $Q_{A} \ddagger K_{\delta}$. Then, by (2.8), $\delta\left|Z_{A}=q \alpha=\gamma\right| Z_{A}$, for some p-power q. Let $r \in \Sigma^{+}(Y)-\Sigma^{+}\left(L_{Y}\right)$ and $c_{r} \in K^{*}$ be such that $U_{-r} \ddagger K_{\gamma}$ and $x_{-r}\left(c_{r} t q\right)$ occurs in the factorization of $x_{-\alpha}(t)$. Let $\beta \in \Sigma^{+}\left(L_{A}\right)$ such that $U_{-\alpha-\beta} \neq M_{\alpha}$. (See 2.2(iii).) Let $s \in \Sigma^{+}(Y)-\Sigma^{+}\left(L_{Y}\right)$ and $c_{S} \in K^{*}$ be such that $U_{-S} \not \ddagger K_{\delta}$ and $x_{-s}\left(c_{S} t 9\right)$ occurs in the factorization of $x_{-\beta-\alpha}$ (t). (We have used (2.4) here.)

Consider the commutator $\left[x_{-\alpha}(t), x_{-\beta-\alpha}(t)\right]$. There is a nontrivial contribution to the root group U_{-r-s} from $\left[x_{-r}\left(c_{r} t q\right), x_{-s}\left(c_{s} t q\right)\right]$. Thus, as the commutator is 1 , there must be another contribution to this root group. Now, $\{r, s\}$ is the unique pair of roots in $\Sigma^{+}(Y)-\Sigma^{+}\left(L_{Y}\right)$ whose sum is $r+s$. Thus, a nonidentity element from the root group U_{-r} must occur in the factorization of $x_{-\beta-\alpha}(t)$, and a nonidentity element from the root group U_{-s} must occur in the factorization of $x_{-\alpha}(t)$. But this contradicts (2.4). Thus, the result holds.

For the following general lemmas we will need additional notation. Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and suppose that one of the following holds:
(a) There exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $(\delta, \gamma)<0$.
(b) There exist $1 \leq j \leq r$ and $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\gamma \neq \delta$ and $\left(\Sigma L_{j}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \delta\right)$.

Let $K \leq K_{\delta}$ be defined as follows: $K=\left\langle U_{-r}\right| r=\sum n_{\beta} \beta, \beta \in \Pi(Y)$, $n_{\gamma}>1$ or $n_{\delta}>1$ or $n_{\tau}>0$ for some $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left.\tau \neq \gamma, \delta\right\rangle$. Then, $K \unlhd P_{Y}$ and K_{δ} / K is an abelian group with an L_{Y} module structure, where L_{Y} acts by conjugation and the scalar action is defined as follows: for $c, d \in K$ and $s \in \Sigma^{+}\left(L_{Y}\right)$ such that $U_{-s} \neq K, c x_{-s}(d) K=x_{-s}(c d) K$. Then T_{Y} preserves this scalar action and the image of U_{-S} in K_{δ} / K is a T_{Y} weight space of weight $-s$. As L_{Y} modules, $K_{\delta} / K \cong K_{1} / K \times K_{2} / K$, where K_{1} / K is
the irreducible L_{y} module with high weight $-\gamma$. If (a) holds, K_{2} / K is the irreducible L_{Y} module with high weight $-\gamma-\delta$. If (b) holds, let $r \in \Sigma^{+}\left(L_{j}\right)$ such that $\delta+r+\gamma \in \Sigma^{+}(Y)$ and if $s \in \Sigma^{+}\left(L_{j}\right)$ with $\delta+s+\gamma \in \Sigma^{+}(Y)$, then ht $(r)<$ $h t(s)$. Then K_{2} / K is the irreducible L_{Y} module with high weight $-\gamma-r-\delta$. Let $Q_{Y}(\gamma, \delta)$ denote the L_{Y} composition factor, K_{2} / K, of Q_{Y}.

We wish to study the action of L_{A} on K_{δ} / K. We note that the commutator relations imply that K_{2} / K is an L_{A} invariant subspace of K_{δ} / K. However, K_{1} / K is not necessarily L_{A} invariant; in particular, under the conditions of the following

Definition: Let $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$. We say $-\delta$ is involved in $L_{A}{ }^{\prime}$ if there exists $r \in \Sigma\left(L_{A}\right)$ and $s \in \Sigma^{+}(Y)-\Sigma\left(L_{Y}\right)$ such that $U_{-s} \nsubseteq K_{\delta}$ and a nonidentity element from the root group U_{-S} occurs in the factorization of $x_{r}(t)$.

Consider the following example to see how we may insure, in a particular case, that $-\delta$ is not involved in $L_{A^{\prime}}$, when $Q_{A} \leq K_{\delta}$. Suppose $\left(\delta, \Sigma L_{j}\right) \neq 0$ for a unique component L_{j} and L_{j} has type A_{k} for some k. Suppose, in addition, that $V_{L_{j}}(-\delta) \cong W_{j}$, the natural module for L_{j}, and hence is an irreducible $\rho_{j}\left(L_{A}\right)$ module. Say, $W_{j} \mid \rho_{j}\left(L_{A}\right)$ has high weight v_{j}. Let $P_{Y}{ }^{\wedge} \geq B_{Y}{ }^{-}$be the parabolic subgroup with Levi factor $L_{Y}{ }^{\wedge}=\left\langle L_{Y}, U_{ \pm} \delta\right\rangle$; so $P_{A} \leq P_{Y} \wedge$ and $Q_{A} \leq Q_{Y}{ }^{\wedge}=R_{U}\left(P_{Y} \wedge\right)=K_{\delta}$. Let $\rho^{\wedge}: L_{A} \rightarrow L_{Y} \wedge$ be the natural homomorphism and $\rho_{j}{ }^{\wedge}$ be $\rho^{\wedge} \mathbb{L}_{A^{\prime}}$ followed by the projection of $L_{Y^{\wedge}}$ onto the component $L_{j} \hat{}=\left\langle L_{j}, U_{ \pm} \delta\right\rangle$. Then $\rho_{j} \hat{i}$ is a rational morphism of L_{A} ' into a group of type A_{k+1}. Moreover, $W_{j} \hat{}$, the natural module for $L_{j} \hat{}$, has two $\rho_{j}\left(L_{A}\right)$ composition factors - a factor isomorphic to $W_{j}\left(\right.$ or $W_{j}{ }^{*}$) and a one-dimensional factor. Hence, if v_{j} is not linked to the 0 weight, in the sense of (1.33), then $\rho_{j}\left(L_{A^{\prime}}\right)$ acts completely reducibly on W_{j} and we may assume, up to conjugacy by $L_{j} \hat{}$, that $-\delta$ is not involved in L_{A}.

We give one additional criterion for $-\delta$ to be involved in L_{A}.
(2.10). If $-\delta$ is involved in $L_{A}{ }^{\prime}$, then $\delta \mid Z_{A}=0$. Moreover, if r and s are as in the above definition, $-s\left(h_{r}(c)\right)=c^{k}$ for some $k \in 2 \mathbb{Z}^{+}-\{0\}$.

Proof: Let r and s be as given. Then there exists $0 \neq f(t) \in k[t]$ such that $x_{r}(t)=\ell x_{-s}(f(t)) u$, for some $\ell \in L_{Y}$ and some $u \in Q_{Y}$ such that u has no nonidentity element from U_{-s} in its factorization. Conjugating by $z \in Z_{A}$ and using uniqueness of factorization in U_{Y}, we have $-s(z)=0$. But, if $\beta \in \Pi\left(L_{y}\right), \beta(z)=0$, so the first statement holds. Also, conjugating by $h_{r}(c)$, we have $f\left(c^{2} t\right)=-s\left(h_{r}(c)\right) f(t)$. Let $t=1$ and the result follows. \square
(2.11). Let $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $V_{\gamma}\left(Q_{y}\right) \neq 0$. Suppose one of the following holds:
(a) There exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $(\gamma, \delta)<0$ and $Q_{A} \leq K_{\delta}$. If $p=2$, assume $(\gamma, \gamma)=(\delta, \delta)$ or δ is long.
(b) There exist $1 \leq j \leq r$ and $\delta \in \Pi(Y)-\Pi\left(L_{y}\right)$ with $\gamma \neq \delta$, $\left(\Sigma L_{j}, \gamma\right) \neq 0 \neq\left(\delta, \Sigma L_{j}\right)$ and $Q_{A} \leq K_{\delta}$. If $p=2$, assume δ is long. Then,
(i) if - δ is not involved in $L_{A}{ }^{\prime}, Q_{Y}(\gamma, \delta)$ has an $L_{A^{\prime}}$ composition factor isomorphic to $\left(I_{\alpha}\right)^{r}$, for some p-power r, and $(\gamma+\delta) Z_{A}=r \alpha$. Moreover, if $V I A=v_{1} q_{1} \otimes \cdots v_{k} q_{k}$, where each v_{j} is basic, then $r=q_{i}$, for some $1 \leq i \leq k$.
(ii) Suppose in addition that if (b) holds with Y of type E_{n} and $\delta=\beta_{4}$, then $\left\{\beta_{2}, \beta_{3}, \beta_{5}\right\} \not \equiv \Pi\left(L_{Y}\right)$. Then there exists a parabolic subgroup $P_{Y}{ }^{\wedge} \geq B_{Y}{ }^{-}$, the opposite Borel subgroup of Y, with Levi factor $L Y^{\wedge}=$ $\left\langle L_{Y}, U_{ \pm}\right\rangle$and such that $P_{A} \leq P_{Y}{ }^{\wedge}, Q_{A} \leq R_{U}\left(P_{Y}{ }^{\wedge}\right)=Q_{Y}{ }^{\wedge}$.
(iii) Let $P_{Y}{ }^{\wedge}$ be as in (ii). If $-\delta$ is involved in L_{A}, or if $\gamma \mid Z_{A}=r \alpha$, where r is as in (i), then $Z_{A} \leq Z\left(L_{Y^{\wedge}}\right)^{\circ}$.

Proof: Let $K \leq K_{\delta}, K_{1}$ and K_{2} be as defined prior to (2.10). Note that if $-\delta$ is not involved in L_{A}, the commutator relations imply that K_{1} / K is an L_{A} invariant subgroup of K_{δ} / K. Moreover, since $Z_{A} \leq Z_{Y}, L_{A}$ preserves the given scalar action on K_{δ} / K. So K_{j} / K has an L_{A} module structure for each i. Consider the image of Q_{A} in K_{δ} / K. Now, $Q_{A} K / K \nsubseteq K_{1} / K$, else $\left[V, K_{1}\right]=\left[V, Q_{Y}\right]$. But there exists $b \in \Sigma^{+}\left(L_{Y}\right) \cup\{0\}$, with $V_{T_{Y}}(\lambda-b-\gamma-\delta) \neq 0$.

And $V_{T_{Y}}(\lambda-b-\gamma-\delta) \leq\left[V, Q_{Y}\right]-\left[V, K_{1}\right]$. Thus, $Q_{A} K / K$ projects nontrivially into the L_{A} submodule $K_{2} / K=Q_{Y}(\gamma, \delta)$. Moreover, Z_{A} either acts trivially on $Q_{Y}(\gamma, \delta)$ or induces a full set of scalars on $Q_{Y}(\gamma, \delta)$; so in fact, $Q_{A} K / K$ is an L_{A} submodule of $Q_{Y}(\gamma, \delta)$. One may now argue as in our proof of (2.4) and the proof of (3.4) of [12] that $U_{-\alpha} K / K \nsubseteq K_{1} / K$. So the image of $x_{-\alpha}(1) K / K$ in $Q_{Y}(\gamma, \delta)$ affords the high weight space of an $L_{A^{\prime}}$ composition factor.

Let $s \in \Sigma^{+}\left(L_{Y}\right) \cup\{0\}$ and $0 \neq f(x) \in k[x]$ such that $x_{-s-\gamma-\delta}(f(t))$ occurs in the factorization of $x_{-\alpha}(t)$ and such that s is of minimal height with this property. (Say $h t(0)=0$.) Conjugating $x_{-\alpha}(t)$ by an element of T_{A} which does not centralize $x_{-\alpha}(t)$, we obtain $f\left(c^{k} t\right)=c^{\ell} f(t)$, for some integers k and l, and for all $c \in k^{*}, t \in k$. Letting $t=1$, we have $f(x)=$ $a_{1} x^{\ell / k}$, for some $a_{1} \in k$. Moreover, having chosen s of minimal height, $x_{-\alpha}(\mathrm{t}) x_{-\alpha}(\mathrm{u})=x_{-\alpha}(\mathrm{t}+\mathrm{u})$ implies that ℓ / k is a positive integral power of p. Let $\ell / k=r$. Then, by (2.4), $(s+\gamma+\delta) \mid T_{A}=r \alpha$. Thus, $(\gamma+\delta) \mid Z_{A}=r \alpha$ and the L_{A} ' composition factor of $Q_{Y}(\gamma, \delta)$ afforded by the image of $U_{-\alpha} K / K$ is isomorphic to $\left(I_{\alpha}\right)^{r}$.

We must now show that if VIA is a tensor product of basic modules, then $r=q_{i}$, for some i. Let $b \in \Sigma^{+}\left(L_{Y}\right) \cup\{0\}$ be as in the first paragraph. So $V_{0}=V_{T_{Y}}(\lambda-b-\gamma-\delta) \neq 0$. Moreover, $V_{0} \nsubseteq\left[V, Q_{A}{ }^{2}\right]$, since $Q_{A} \leq K_{\delta}$ implies that $\left[V, Q_{A}{ }^{2}\right] \leq\left[V, K \delta^{2}\right]$. Since $V_{0} \not \ddagger\left[V, Q_{A}{ }^{2}\right]$, $\left(V_{0}+\left[V, Q_{A}^{2}\right]\right) /\left[V, Q_{A}{ }^{2}\right] \leq V^{2}\left(Q_{A}\right) \lambda-q_{i} \alpha$, a Z_{A} weight space, for some $1 \leq i \leq k$. See (1.22) for the description of Z_{A} weight spaces of $V^{2}\left(Q_{A}\right)$. Thus, $(\gamma+\delta) \mid Z_{A}=q_{i} \alpha$ and $r=q_{i}$ as desired. The statement of (ii) is clear and (iii) follows from (2.10).
(2.12). Suppose there exist distinct $\tau_{0}, \ldots, \tau_{m} \in \Pi(Y)-\Pi\left(L_{Y}\right)$, with $\left(\tau_{\ell}, \tau_{\ell+1}\right)<0$ for $0 \leq \ell<m,\left(\tau_{\ell}, \Sigma L_{Y}\right)=0$ for $0<\ell \leq m,\left(\tau_{0}, \Sigma L_{Y}\right) \neq 0$, and $v_{\tau_{0}}\left(Q_{Y}\right) \neq 0$. If $m=1$ and $p=2$, assume $\left(\tau_{0}, \tau_{0}\right)=\left(\tau_{1}, \tau_{1}\right)$; if $m>1$ and Y has type F_{4}, assume $p>2$. Suppose there exists a unique p-power q such
that $\left(I_{\alpha}\right)$ is an L_{A} ' composition factor of $Q_{\gamma} / K_{\tau_{0}}$.
Then $\tau_{j} \mid Z_{A}=0$ for $i>0$. Also, if $P_{Y}{ }^{\wedge} \geq B_{Y}{ }^{-}$is the parabolic subgroup of Y with Levi factor $L_{Y}{ }^{\wedge}=\left\langle L_{Y}, U_{ \pm \tau_{1}}, \ldots, U_{ \pm \tau_{m}}\right\rangle$, then $P_{A} \leq P_{Y}{ }^{\wedge}$, $Q_{A} \leq R_{U}\left(P_{Y^{\wedge}}\right)=Q_{Y^{\wedge}}$ and $Z_{A} \leq Z\left(L_{Y^{\wedge}}\right)^{\circ}$.

If, in addition, there exists a unique $L_{A}{ }^{\prime}$ composition factor of $Q_{Y} / K_{\tau_{0}}$ isomorphic to $\left(I_{\alpha}\right) q$, then $\tau_{j} \mid T_{A}=0$ for $i>0$.

Proof: We use induction on m. Let $m=1$ and note that since $\left(\tau_{1}, \Sigma L_{Y}\right)=0, \tau_{1} \mid T\left(L_{A}{ }^{\prime}\right)=0$ and (2.10) implies that $-\tau_{1}$ is not involved in L_{A}. $B y(2.4), \tau_{0} I_{A}=q \alpha$ and since $Q_{A} \leq K_{\tau_{1}}$, (2.11) implies that there is a nontrivial image of I_{α} in $Q_{Y}\left(\tau_{0}, \tau_{1}\right)$. But $Q_{Y}\left(\tau_{0}, \tau_{1}\right) \cong Q_{Y} / K_{\tau_{0}}$, as L_{Y}. modules, so all $L_{A}{ }^{\prime}$ composition factors of $Q_{Y}\left(\tau_{0}, \tau_{1}\right)$ isomorphic to a twist of I_{α} are isomorphic to $\left(I_{\alpha}\right) q$. Thus, $\left(\tau_{0}+\tau_{1}\right) \mid Z_{A}=q \alpha$. Hence, $\tau_{1} \mid Z_{A}=0$. The statements about the parabolic $P_{Y}{ }^{\wedge}$ are clear.

Now, suppose there exists a unique $L_{A^{\prime}}$ composition factor of $Q_{Y} / K_{\tau_{0}}$ isomorphic to $\left(I_{\alpha}\right)$ q. Let $r_{1}, \ldots, r_{j} \in \Sigma^{+}(Y)$ be such that $x_{-r_{1}}\left(c_{1}\right) \cdots x_{-r_{j}}\left(c_{j}\right) K_{\tau_{0}}$ spans the high weight space of this composition factor. So $r_{\ell}{ }^{\prime T} A=q \alpha$, for $1 \leq \ell \leq j$. Then, there exists an L_{A} ' composition series of $Q_{Y}\left(\tau_{0}, \tau_{1}\right)$ such that $x_{-r_{1}}-\delta\left(c_{1}\right) \cdots x_{-r_{j}-\delta}\left(c_{j}\right)$ affords the high weight space of the unique composition factor of $Q_{Y}\left(\tau_{0}, \tau_{1}\right)$ isomorphic to $\left(I_{\alpha}\right) q$. Thus, $\left(r_{\ell}+\tau_{1}\right) \mid T_{A}=q \alpha$, for $1 \leq \ell \leq j$. Hence, $\tau_{1} \mid T_{A}=0$.

Now suppose $m>1$. By induction, $\tau_{1}\left|T_{A}=0=\cdots=0=\tau_{m-1}\right| T_{A}$. Also, the parabolic subgroup $D_{Y} \geq B_{Y}{ }^{-}$with Levi factor $M_{Y}=\left\langle L_{Y}, U_{ \pm \tau_{1}}, \ldots, U_{ \pm \tau_{m-1}}\right\rangle$ has the properties: $P_{A} \leq D_{Y}, Q_{A} \leq R_{U}\left(D_{Y}\right)$, and $Z_{A} \leq Z\left(M_{Y}\right)^{\circ}$. Let $K_{\tau_{m}} \leq R_{U}\left(D_{Y}\right)$ be as usual. Then $Q_{A} \leq K_{\tau_{m}}$, as all L_{A}. composition factors of $R_{U}\left(D_{Y}\right) / K_{\tau_{m}}$ are trivial. Also, since $\left(\tau_{m}, \Sigma L_{Y}\right)=0$, $\tau_{m} I T\left(L_{A}{ }^{\prime}\right)=0$ and (2.10) implies that $-\tau_{m}$ is not involved in $L_{A}{ }^{\prime}$. Note that the given hypotheses on $Q_{Y} / K_{\tau_{0}}$ carry over to $R_{U}\left(D_{Y}\right) / K_{\tau_{m}}$; i.e., if $Q_{Y} / K_{\tau_{0}}$ has a unique L_{A} composition factor isomorphic to a twist of I_{α}, then so does $R_{U}\left(D_{Y}\right) / K_{\tau_{m}}$. So we may argue as in the case $m=1$ to obtain the result

In (2.11) and (2.12), the purpose of constructing the parabolic $\mathrm{P}_{\mathrm{Y}}{ }^{\wedge}$ is to point out that since $Q_{A} \leq Q_{Y}{ }^{\wedge},\left[V, Q_{A}{ }^{2}\right] \leq\left[V,\left(Q_{Y}{ }^{\wedge}\right)^{2}\right]$, and so there are many T_{Y} weight vectors of Q_{Y} level greater than 1 , which are not contained in $\left[V, Q_{A}{ }^{2}\right]$. Often, this construction will produce a $V_{\gamma}\left(Q_{Y}{ }^{\wedge}\right)$ which exceeds the bound in (1.25).

Hypothesis (G): (i) There exists $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $Q_{A} K_{\gamma} / K_{\gamma}=$ Q_{γ} / K_{γ} and $\operatorname{dim}\left(Q_{A} K_{\gamma} / K_{\gamma}\right)=\operatorname{dim}\left(I_{\alpha}\right)$.
(ii) There exists $\delta \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $(\gamma, \delta)<0,\left(\delta, \Sigma L_{Y}\right)=0$, and $(\gamma, \gamma)=(\delta, \delta)$ when $p=2$.
(iii) $\vee_{\gamma}\left(Q_{Y}\right) \neq 0$.
(iv) There exists a unique $1 \leq j \leq r$ with $\left(\gamma, \Sigma L_{j}\right) \neq 0$.
(v) $L_{A^{\prime}} \cong L_{j}$, and q is the field twist on the embedding of L_{A} ' in L_{j}.
(vi) $V \mid A=V_{1} q_{1} \otimes \cdots \otimes v_{k} q_{k}$, where each v_{m} is basic.
(2.13). (a) If Hypothesis (G) (i) holds, there exists a p-power r with $\gamma \mid T_{A}=r \alpha$. If (i), (iii) and (vi) hold, $r=q_{i}$ for some $1 \leq i \leq k$. If (i), (iv), and (v) hold, $q=r$.
(b) If Hypothesis (G) (i) - (iii) hold, $\delta I T_{A}=0$ and $\langle\lambda, \gamma\rangle=0$.

Proof: Condition (i), together with (2.4), implies $Q_{Y} / K_{\gamma} \cong\left(I_{\alpha}\right)^{r}$ as L_{A} ' modules, for some p-power r. Comparing high weight vectors in the two modules, we have $\gamma / T_{A}=r \alpha$. If (iii) and (vi) hold as well, then (2.4) implies that $r=q_{j}$ for some i. If $L_{A^{\prime}} \cong L_{j}$, let q be as in Hypothesis (G) (V). So if $\Pi\left(L_{A}\right)=\left\{\eta_{1}, \ldots \eta_{m}\right\}$ we may take $\Pi\left(L_{j}\right)=\left\{\tau_{1}, \ldots \tau_{m}\right\}$, such that $\rho_{j}\left(h_{\eta_{\ell}}(c)\right)=h_{\tau_{\ell}}(c q)$, for $1 \leq \ell \leq m$ and for all $c \in k^{*}$. Moreover, $\left(\alpha, \eta_{\ell}\right)=$ $\left(\gamma, \tau_{\ell}\right)$ for all ℓ, else $Q_{A} K_{\gamma} / K_{\gamma}$ and Q_{Y} / K_{γ} are non-isomorphic $\rho\left(L_{A}\right)$ modules. Thus, the high weight space, $U_{-\gamma} K_{\gamma} / K_{\gamma}$, of Q_{γ} / K_{γ} affords $T\left(L_{A}{ }^{\prime}\right)$ weight $-q \alpha$, and $Q_{Y} / K_{\gamma} \cong\left(I_{\alpha}\right) q$, as L_{A} ' modules. Thus, $q=r$. Hence, (a) holds.

Let δ be as in Hypothesis (G) (ii) and r as in (a). Then (2.12) implies
$\delta \mid T_{A}=0$. Thus $\langle\lambda, \gamma\rangle=0$, else $f \gamma v^{+}$and $f \gamma+\delta v^{+}$are two linearly independent vectors in $V_{T_{A}}(\lambda-r \alpha)$, contradicting (1.31). Thus, (b) holds.
(2.14). Assume Hypothesis (G). In the p-adic expansion of $\langle\lambda, \alpha\rangle$, $q=q_{j}$ has nonzero coefficient. Moreover, if $p>2$ when Y has type $F_{4}, L_{Y}{ }^{\prime}$ is not a simple algebraic group.

Proof: Note that M_{j} is nontrivial since $V_{\gamma}\left(Q_{Y}\right) \neq 0,\left(\gamma, \Sigma L_{\ell}\right)=0$, for all $\ell \neq j$, and $\langle\lambda, \gamma\rangle=0$, by (2.13). Choose $\beta_{0} \in \Pi L_{j}$ of minimal distance from γ (on the Dynkin diagram) such that $\left\langle\lambda, \beta_{0}\right\rangle \neq 0$. Then there exist distinct $\beta_{1}, \ldots, \beta_{t} \in \Pi L_{j}$ with $\left(\beta_{\ell}, \beta_{\ell+1}\right) \neq 0$ for $0 \leq \ell<t$ and $\left(\beta_{t}, \gamma\right) \neq 0$. Also, there exist distinct $\alpha_{1}, \ldots, \alpha_{t} \in \Pi\left(L_{A}\right)$ with $\beta_{\ell}{ }^{I T} A=q_{i} \alpha_{\ell}$, for $0 \leq \ell \leq t$, $\left(\alpha_{\ell,}, \alpha_{\ell+1}\right) \neq 0$ for $0 \leq \ell<t,\left(\alpha_{t}, \alpha\right) \neq 0,\left\langle\lambda, \alpha_{0}\right\rangle \neq 0$, and $\left\langle\lambda, \alpha_{\ell}\right\rangle=0$ for $0<l \leq t$. Let $s=\beta_{0}+\cdots+\beta_{t}$ and $r=\alpha_{0}+\cdots+\alpha_{t}$. Then $f_{s+\gamma} v^{+}$and $f_{S}+\gamma+\delta V^{+}$are two linearly independent vectors in $\left(V_{T_{A}}\left(\lambda-q_{i} r-q_{j} \alpha\right)+\right.$ $\left.\left[V, Q_{A}{ }^{2}\right]\right) /\left[V, Q_{A}{ }^{2}\right]$. But if q_{i} has zero coefficient in the p-adic expansion of $\langle\lambda, \alpha\rangle$, the indicated T_{A} weight space in $V^{2}\left(Q_{A}\right)$ has dimension at most 1. (Here we use (1.22) and (1.29).) Thus, the first statement of the result holds.

Now, suppose $L Y^{\prime}$ is a simple algebraic group; then $L_{Y}{ }^{\prime}=L_{j}$. Also, assume $p>2$ when Y has type F_{4}. If $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\tau, \Sigma L_{Y}\right) \neq 0$, then $V_{\tau}\left(Q_{Y}\right) \neq 0$ and $Q_{A} \ddagger K_{\tau}$. Also, Q_{Y} / K_{τ} is an irreducible L_{Y} module and so an irreducible L_{A} ' module. Thus, $Q_{Y} / K_{\tau}=Q_{A} K_{\tau} / K_{\tau}$. Comparing high weights, we have $\left(\tau, \beta_{t}\right) \neq 0$ and $\tau T_{A}=q_{i} \alpha$. Now, if $\tau \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $\left(\tau, \Sigma L_{Y}\right)=0$, (2.12) implies $\tau \mid T_{A}=0$. Thus, we have completely determined the action of $\Pi(Y)$ on T_{A}.

The work of the first paragraph implies $V_{T_{A}}\left(\lambda-q_{i} \alpha\right) \neq 0$. Thus, there exists $\tau_{0} \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\tau_{0}, \Sigma L_{y}\right) \neq 0$ and $\left\langle\lambda, \tau_{0}\right\rangle \neq 0$. Moreover, there exists a unique τ_{0} with these properties, else $\operatorname{dim} V_{T_{A}}\left(\lambda-q_{j} \alpha\right)>1$, contradicting (1.31). Note that there does not exist
a nonzero vector with T_{A} weight $\lambda-q_{0} \alpha$ for $q_{0} \neq q_{j}$. Thus, VIA is a conjugate of a basic module, and so by (1.10), $\mathrm{q}_{\mathrm{j}}=1$. Also, note that if Y has type F_{4}, the above work implies $L_{Y^{\prime}}=\left\langle U_{ \pm \beta_{2}}\right\rangle$.

We now claim that $\langle\lambda, \alpha\rangle=\left\langle\lambda, \tau_{0}\right\rangle$. Certainly, $x=\left\langle\lambda, \tau_{0}\right\rangle \leq$ $\langle\lambda, \alpha\rangle=y$, as $0 \neq\left(\left(f_{\tau_{0}}\right) x\right) v^{+} \in V_{T_{A}}(\lambda-x \alpha)$. But, in fact, $x \geq y$, else there does not exist a vector in VIY with T_{A} weight $\lambda-y \alpha$. By (1.29), $\operatorname{dim} V_{T_{A}}(\lambda-r-\alpha) \leq t+2$. $B y(1.34), \operatorname{dim} V_{T_{Y}}\left(\lambda-s-\tau_{0}\right) \geq t+1$. So $\operatorname{dim}\left(V_{T_{Y}}\left(\lambda-s-\tau_{0}\right) \oplus V_{T_{Y}}(\lambda-s-\gamma) \oplus V_{T_{Y}}(\lambda-s-\gamma-\delta)\right) \geq t+3$. But each of these T_{Y} weight spaces lies in $V_{T_{A}}(\lambda-r-\alpha)$, contradicting the given bound.

This completes the proof of (2.14).
(2.15). Assume Hypothesis (G) and let rank $A=2$, with $L_{A^{\prime}}=\left\langle U_{ \pm \beta}\right\rangle$. Assume also that (A, p) is not special and not of type $\left(G_{2}, 2\right)$.
(i) There does not exist $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$, with $\tau \neq \gamma$, such that $\left(\tau, \Sigma L_{j}\right) \neq 0,\left(\tau, \Sigma L_{\ell}\right)=0$ for $\ell \neq j$.
(ii) If Y has type F_{4}, assume $p>2$. Then, there does not exist $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $(\tau, \delta)<0,\left(\tau, \Sigma L_{Y^{\prime}}\right)=0$.

Proof: Let $L_{j}=\left\langle U_{ \pm \beta_{j}}\right\rangle$, for some $\beta_{j} \in \Pi\left(L_{\gamma}\right)$. Then $\left\langle\lambda, \beta_{j}\right\rangle \neq 0$, as $V_{\gamma}\left(Q_{Y}\right) \neq 0,\langle\lambda, \gamma\rangle=0$ and $\left(\Sigma L_{\ell}, \gamma\right)=0$ for all $\ell \neq j$. Suppose there exists τ as in (i). Then, Hypothesis (G) implies that $V_{\tau}\left(Q_{Y}\right) \neq 0$. So by (2.13), $\tau \mid T_{A}=q_{i} \alpha$, for some i. However, $f_{\beta_{j}+\gamma} v^{+}, f_{\beta_{j}+\gamma+\delta v^{+}}$and $f_{\beta_{j}}+\tau v^{+}$are three linearly independent vectors in $\left(V_{T_{A}}\left(\lambda-q_{i} \beta-q_{j} \alpha\right)+\right.$ $\left.\left[V, Q_{A}^{2}\right]\right) /\left[V, Q_{A}{ }^{2}\right]$, contradicting (1.37). Thus, (i) holds. If there exists τ as in (ii), (2.12) implies $\tau / T_{A}=0$. But then $f_{\beta_{j}+} \gamma^{V^{+}}, f_{\beta_{j}+\gamma+\delta V^{+}}$and $f_{\beta_{j}+\gamma+\delta+\tau \nu^{+}}$are again three linearly independent vectors in $\left(V_{T_{A}}\left(\lambda-q_{i} \beta-q_{i} \alpha\right)+\left[V, Q_{A}^{2}\right]\right) /\left[V, Q_{A}{ }^{2}\right]$. Again, this produces a contradiction. Thus, (ii) holds.

We close this chapter with three technical results which apply only when rank $A=2$. Hypothesis (G) is no longer necessary.

For (2.16) - (2.18), our only assumptions are that $\Pi(A)=\{\alpha, \beta\}$, so $L_{A^{\prime}}=\left\langle U_{ \pm \beta}\right\rangle$ and μ_{β} is the fundamental dominant weight corresponding to β.
(2.16). Suppose $\operatorname{dim}\left(Q_{A} /\left[Q_{A}, Q_{A}\right]\right)=2$. Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $Q_{A} \not \ddagger K_{\gamma}$ and L_{i} has type $A_{k_{i}}$, for some $k_{i} \geq 1$, for all i such that $\left(\Sigma L_{i}, \gamma\right) \neq 0$. Let W_{i} denote the natural module for L_{i}, and suppose $W_{i} L_{A^{\prime}}$ is tensor indecomposable, for all such i. If $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right)>2$ and $-\gamma$ affords $T\left(L_{A}{ }^{\prime}\right)$ weight $q_{0} \mu_{\beta}$, then $\gamma \mid Z_{A} \neq q_{0} \alpha$.

Proof: Suppose false. Let r_{j} be the field twist on the embedding of $L_{A^{\prime}}$ in L_{i}. Since, for each i with $\left(\Sigma L_{j}, \gamma\right) \neq 0, W_{i} L_{A^{\prime}}$ is tensor indecomposable, (1.10) implies $W_{j} \mid \rho_{j}\left(L_{A}\right)$ is restricted. Then one checks, using (1.12) for $S L_{2}$, that for each $s \in \Pi\left(L_{j}\right)$, a nonidentity element from the group U_{S} occurs in the factorization of $\rho_{i}\left(x_{\beta}(t)\right)$. So, sIT $A=r_{i} \beta$, for each such s. (We use (2.5) to see that the p-power is r_{i}.) Thus $U_{-\gamma}$ affords the unique 1-space of Q_{γ} / K_{γ} with $T\left(L_{A}{ }^{\prime}\right)$ weight $q_{0} \mu_{\beta}$, and all other $T\left(L_{A}{ }^{\prime}\right)$ weights in Q_{Y} / K_{γ} are strictly less than $q_{0} \mu_{\beta}$. Also, let $a_{j} \in \Sigma^{+}\left(L_{j}\right)$ with $-\Sigma a_{j}-\gamma \in \Sigma^{-}(Y)$, and such that $\Sigma a_{j}+\gamma$ has maximum height with these properties. Set $r_{0}=\Sigma a_{i}+\gamma$. Then, $U_{-r_{0}}$ affords the unique 1-space of Q_{Y} / K_{γ} with $T\left(L_{A}{ }^{\prime}\right)$ weight $-q_{0} \mu_{\beta}$. Thus, $x_{-\alpha}(t)=$ $x_{-\gamma}\left(c_{1} t q_{0}\right) u_{1}$ and $x_{-\alpha-\beta}(t)=x_{-r_{0}}\left(c_{2} t q_{0}\right) u_{2}$, for $c_{i} \in k^{*}$ and $u_{i} \in K_{\gamma}$. Now since Q_{Y} / K_{γ} is an irreducible L_{γ} ' module with high weight space $U_{-\gamma} K_{\gamma} / K_{\gamma}$, there exists $\delta \in \Pi\left(L_{\gamma}\right)$ with $\left[U_{\delta}, U_{-r_{0}}\right] \neq 1$. Clearly, $\delta \in \Pi\left(L_{i}\right)$ for some i with $\left(\Sigma L_{i}, \gamma\right) \neq 0$. The remarks about the factorization of $x_{\beta}(t)$ imply that a nonidentity element from the group $U_{-r_{0}}+\delta$ occurs in the expression for $\left[x_{\beta}(t), x_{-\alpha-\beta}(t)\right]$. Since $Q_{A^{\prime}} \leq K_{\gamma}$ and $\operatorname{dim}\left(Q_{A} / Q_{A} A^{\prime}\right)=2$, a nonidentity element from the group $U_{-r_{0}}+\delta$ occurs in the factorization of $x_{-\alpha}(t)$. Thus, $-r_{0}+\delta=-\gamma$ and $\Sigma r_{j}=\delta$. But then, $Q_{\gamma} / K_{\gamma} \cong U_{-\gamma} \times U_{-\gamma-\delta}$,
contradicting $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right)>2 . \square$
(2.17) Assume (A,p) is not special and $(A, p) \neq\left(G_{2}, 2\right)$. Suppose there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that the following hold:
(i) There exists a unique pair $1 \leq i, j \leq r$, with $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$.
(ii) L_{i} is of type A_{1}, L_{j} is of type A_{k}, for some k.
(iii) $V_{L_{m}}(-\gamma) \cong W_{m}$ or W_{m}^{*}, for $m=i, j$, where W_{m} is the natural module for L_{m}.
(iv) W_{j} / L_{A} ' is tensor indecomposable.
(v) $Q_{A} \not \ddagger K_{\gamma}$.

Then there exists q, a power of p, such that q is the field twist on the embedding of $L_{A^{\prime}}$ in L_{i} and in L_{j} and $\gamma \mid Z_{A}=q \alpha$.

Proof: Note that $p>k$. By (2.7), the field twists on the embeddings of $L_{A}{ }^{\prime}$ in L_{i} and in L_{j} are equal. Let q be the associated power of p. Let μ_{β} be the fundamental dominant weight corresponding to the root β. Then the $L_{A}{ }^{\prime}$ composition factors of Q_{γ} / K_{γ} have high weights $\left\{q(k+1) \mu_{\beta}\right.$, $\left.q(k-1) \mu_{\beta}\right\}$. If $k+1<p$, there exists a unique $L_{A^{\prime}}$ composition factor isomorphic to a twist of $Q_{A}{ }^{\alpha}$; moreover, this twist is q and the result follows from (2.4). If $k+1=p$, the $L_{A}{ }^{\prime}$ composition factors of Q_{Y} / K_{γ} have high weights $\left\{p q \mu_{\beta}, q(k-1) \mu_{\beta}\right\}$. If A has type B_{2} or G_{2} and β is short the prime restrictions and the above argument imply the result. If β is long, the result holds unless $\gamma \mid Z_{A}=p q \alpha$. But since $-\gamma$ affords $T\left(L_{A}\right)$ weight $p q \mu_{\beta}$, (2.16) implies that this cannot occur. Again the result holds.
(2.18). Assume (A, p) is not special and $(A, p) \neq\left(G_{2}, 2\right)$. Let $\gamma, \delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ be such that δ is long when $p=2$ and the following hold:
(i) $(\gamma, \delta)<0, V_{\gamma}\left(Q_{\gamma}\right) \neq 0$ and $Q_{A} \leq K_{\delta}$.
(ii) There exists a unique i (respectively, j) such that $\left(\Sigma L_{i}, \gamma\right) \neq 0$ $\left(\left(\Sigma L_{j}, \delta\right) \neq 0\right)$.
(iii) L_{i}, L_{j} and W_{m} are as in (2.17) (ii) and (iii).
(iv) $V_{L_{i}}(-\gamma) \cong W_{j}$ or W_{i}^{*} and $V_{L_{j}}(-\delta) \cong W_{j}$ or $W_{j}{ }^{*}$.
(v) $W_{j} L_{A}$ ' is tensor indecomposable.

Then, there exists q, a power of p, such that q is the field twist on the embedding of $L_{A^{\prime}}$ in L_{i} and in L_{j} and $(\gamma+\delta) \mid Z_{A}=q \alpha$.

Proof: Note that Q_{Y} / K_{γ} is a 2-dimensional irreducible L_{A}. module containing a nontrivial image of $Q_{A}{ }^{\alpha}$, so the prime restrictions imply that β is long. If $-\delta$ is involved in $L_{A^{\prime}}$, then (2.10) implies k is even and $\delta \mid Z_{A}=0$. Let $P_{Y}{ }^{\wedge} \geq B_{Y}{ }^{-}$be the parabolic of Y with Levi factor $L_{Y}{ }^{\wedge}=$ $\left\langle L_{Y}, U_{ \pm} \delta\right\rangle$. Then $P_{A} \leq P_{Y}{ }^{\wedge}, Q_{A} \leq R_{U}\left(P_{Y}{ }^{\wedge}\right)=Q_{Y}{ }^{\wedge}$ and $Z_{A} \leq Z\left(L_{Y}{ }^{\wedge}\right)$. The bound on $\operatorname{dim} v_{\gamma}\left(Q_{Y}{ }^{\wedge}\right)$ implies that $p>k=2$. But since $p>2,2 \mu_{\beta} I T\left(L_{A}\right)$ is not linked to the zero weight in the sense of (1.33); so we may assume $-\delta$ is not involved in L_{A}. Then (2.11) implies that there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}(\gamma, \delta)$. The field twists on the embeddings of L_{A} in L_{i} and in L_{j} are equal, else $Q_{Y}(\gamma, \delta)$ is a tensor decomposable irreducible $L_{A^{\prime}}$ module of dimension greater than 2. Call this twist q. Then, $\gamma \mid T_{A}=q \alpha$. As in the previous result, we are done unless $k+1=p$ and $(\gamma+\delta) \mid Z_{A}=p q \alpha$.

So suppose $k+1=p$ and $(\gamma+\delta) \mid Z_{A}=p q \alpha$. Let $L_{i}=\left\langle U_{ \pm \beta_{i}}\right\rangle$ and $r \in \Sigma^{+}\left(L_{j}\right)$ the root of maximal height. Examining the $\left.T\left(L_{A}\right)^{\prime}\right)$ weight vectors in $Q_{Y}(\gamma, \delta)$, we have $x_{-\alpha}(t)=x_{-\gamma}\left(c_{1} t q\right) x_{-\gamma-\delta}\left(c_{2} t p q\right) w_{1}$ and $x_{-\alpha-\beta}(t)=$ $x_{-\gamma-\beta_{i}}\left(c_{3}{ }^{t q}\right) x_{-\beta_{i}-\gamma-\delta-r}\left(c_{4} t \mathrm{pq}\right) w_{2}$, where $c_{i} \in K^{*}$ and $w_{i} \in K=\left\langle U_{-t}\right|$ $t=\sum n_{\tau} \tau, \tau \in \Pi(Y), n_{\gamma}>1$ or $n_{\delta}>1$ or $n_{\varepsilon}>0$ for some $\varepsilon \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$, $\varepsilon \neq \gamma, \delta\rangle$. We have used here the fact that there is a unique L_{A} ' composition factor of $Q_{Y}(\gamma, \delta)$ isomorphic to $\left(Q_{A}{ }^{\alpha}\right) P q$.

Now $x_{\beta_{i}}(t q)$ occurs in the factorization of $x_{\beta}(t)$. This observation, together with the earlier assumption about the factorization of $x_{\beta}(t)$, implies that there is a nontrivial contribution to the root group $U_{-\gamma-\delta-r}$ in the expression for $\left[x_{-\alpha-\beta}(t), x_{\beta}(t)\right]$, which must occur in the factorization of $x_{-\alpha}(t)$ due to the restrictions on the characteristic. But this contradicts the given factorization of $x_{-\alpha}(t) . \square$

CHAPTER 3: $Y=F_{4}$ or G_{2}

In this chapter, we consider the main problem where $A \leq Y$ are simple algebraic groups, with Y simply connected, having root system of type G_{2} or F_{4}. Let $V=V(\lambda)$ be an irreducible $k Y$ module and let T_{A}, T_{Y}, λ_{i}, μ_{j} be as in (2.0). We first note that the following results were obtained in [12]:

Theorem (7.1) (in [12]): If rankA < rank Y in Y of type G_{2} and $V I A$ is irreducible then $A=P S L_{2}, \lambda I T_{Y}=\lambda_{1}, \lambda I T_{A}=6 \mu_{1}$ and $p \neq 2,3,5$.

Theorem (4.1) (in [12]): If rankA = rank Y, then VIA is irreducible if and only if the following conditions hold:
(i) $p=2$ when $Y=F_{4}$ or $p=3$ when $Y=G_{2}$, and
(ii) $\Sigma(A)$ is a subsystem of $\Sigma(Y)$ containing all long roots (respectively, all short roots) of $\Sigma(Y)$, and $\langle\lambda, \alpha\rangle=0$ for all $\alpha \in \Pi(Y)$ with a short (respectively, long).

The remaining cases are handled in the following

Theorem (3.0). (a) If Y has type G_{2} and $p \neq 2,3,5$, there exists a subgroup $A \leq Y, A \cong P S L_{2}$, such that $V\left(\lambda_{1}\right) \mid A$ is a restricted 7-dimensional irreducible.
(b) If Y has type F_{4}, rank A < rank Y, and $V \mid A$ is irreducible, then A has type $G_{2}, p=7$ and $\lambda I T_{A}=2 \mu_{1}, \lambda I T_{Y}=\lambda_{4}$.
(c) Let Y have type F_{4} with $p=7$. Then there exists a closed, connected subgroup $B<Y, B$ of type G_{2}, with $V\left(\lambda_{4}\right) \mid B$ irreducible.

Proof of (3.0)(a) and (c): The proof of (c) is contained in [16]. For
(a), let Y be a simple algebraic group of type G_{2} with $\Pi(Y)=\left\{\alpha_{1}, \alpha_{2}\right\}$, labelled as throughout, with irreducible module $V=V\left(\lambda_{1}\right)$. Assume $p \neq 2,3,5$ and consider the subgroup $A=\left\langle x_{\alpha}(t), x_{-\alpha}(t) \mid t \in k\right\rangle$, where $x_{\alpha}(t)=x_{\alpha_{1}}(6 t) x_{\alpha_{2}}(10 t) x_{\alpha_{1}+\alpha_{2}}\left(30 t^{2}\right) x_{2 \alpha_{1}+\alpha_{2}}\left(120 t^{3}\right) x_{3 \alpha_{1}+\alpha_{2}}\left(-540 t^{4}\right)$. $x_{3 \alpha_{1}+2 \alpha_{2}}\left(-2160 t^{5}\right)$ and $x_{-\alpha}(t)=x_{-\alpha_{1}}(t) x_{-\alpha_{2}}(t) x_{-\alpha_{1}-\alpha_{2}}\left(-\frac{1}{2} t^{2}\right)$.
 first the action of $L(Y)$ on V, we obtain the following description of the root groups of G_{2} (in SL_{7}), where we use E_{ij} to mean the matrix whose $k \ell$ entry is $\delta_{i k} \delta_{j \ell}$ and write I for the identity matrix:

$$
\begin{aligned}
& x_{\alpha_{1}}(t)=I+t\left(E_{12}+2 E_{34}-E_{45}+E_{67}\right)-t^{2} E_{35} ; \\
& x_{-\alpha_{1}}(t)=I+t\left(E_{21}+E_{43}-2 E_{54}+E_{76}\right)-t^{2} E_{53} ; \\
& \left.x_{\alpha_{2}}(t)=I-t\left(E_{23}+E_{56}\right) ; x_{-\alpha_{2}}(t)=\left(x_{\alpha_{2}}(t)\right)^{t}\right) ; \\
& x_{\alpha_{1}+\alpha_{2}}(t)=I+t\left(E_{13}-2 E_{24}-E_{46}-E_{57}\right)+t^{2} E_{26} ; \\
& x_{-\alpha_{1}-\alpha_{2}}(t)=I+t\left(E_{31}-E_{42}-2 E_{64}-E_{75}\right)+t^{2} E_{62} ; \\
& x_{2 \alpha_{1}+\alpha_{2}}(t)=I+t\left(2 E_{14}+E_{25}+E_{36}-E_{47}\right)-t^{2} E_{17} ; \\
& x_{-2 \alpha_{1}-\alpha_{2}}(t)=I+t\left(E_{41}+E_{52}+E_{63}-2 E_{74}\right)-t^{2} E_{71} ; \\
& x_{3 \alpha_{1}+\alpha_{2}}(t)=I+t\left(E_{15}-E_{37}\right) ; x_{-3 \alpha_{1}-\alpha_{2}}(t)=\left(x_{3 \alpha_{1}+\alpha_{2}}(t)\right)^{\top} ; \\
& x_{3 \alpha_{1}+2 \alpha_{2}}(t)=I+t\left(E_{16}+E_{27}\right) ; x_{-3 \alpha_{1}-2 \alpha_{2}}(t)=\left(x_{3 \alpha_{1}+2 \alpha_{2}}(t)\right)^{\top} .
\end{aligned}
$$

Let P be the diagonal matrix $\operatorname{diag}(360,60,-12,-3,2,-12,-1)$. Then one checks that $P^{-1} x_{\alpha}(t) P$ (respectively, $\left.P^{-1} x_{-\alpha}(t) P\right)$ is the 7×7 matrix obtained by considering the action of $\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ (respectively, $\left.\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]\right)$ on the irreducible 7 -dimensional module with ordered basis $\left\{x^{6}, x^{5} y, x^{4} y^{2}, x^{3} y^{3}\right.$, $\left.x^{2} y^{4}, x y^{5}, y^{6}\right\}$ and action $\left(\begin{array}{l}a b \\ c \\ d\end{array}\right)\left(x^{i} y^{j}\right)=(a x+c y)^{i}(b x+d y) j$. Hence, $A \cong P S L_{2}$, VIA is irreducible with the correct high weight and (3.0)(a) holds.

For the remainder of this chapter, let $Y=F_{4}$. The proof of (3.0)(b) involves a straightforward reduction to the case where rankA $=2$ and then a detailed study of the possible embeddings of a maximal parabolic subgroup of A. We adopt Notation and Hypothesis (2.0), and note that since all components of L_{Y} ' are necessarily of classical type, (1.5) implies
$Z_{A} \leq Z_{Y}$.
Suppose $p=2$. Then there is a sur jection (isomorphism of abstract groups) $\varphi: Y \rightarrow Y$. (See Section 10 of [14].) We may consider V as a module for $\varphi^{-1}(Y)$.
(3.1). Assume V is p-basic. Then $V / \varphi^{-1}(Y)$ is an algebraic conjugate of a basic module. (See (1.8) for the definition of basic and p-basic.)

Proof: This follows from (2.2) of [12].ם

Hypothesis: If $p=2$, we will assume $\lambda \mid T_{Y}$ has short support; i.e., VIY is basic. For if λ has both long and short support, VIY is tensor decomposable, by (1.7). If λ has long support, the above remarks and (3.1) give rise to a configuration $\left(\varphi^{-1}(A), \varphi^{-1}(Y), V\right)$, where V is a conjugate of a basic module. But then, we reduce to $\left(\varphi^{-1}(A), \varphi^{-1}(Y), W\right)$, where W is basic.
(3.2). If rank $A=3$ and $L_{A} A^{\prime}$ is of type $B_{2}\left(=C_{2}\right)$, then $\operatorname{dimV}^{1}\left(Q_{A}\right)=1$.

Proof: Since P_{Y} is minimal, $L_{Y}{ }^{\prime}=\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{3}}\right\rangle$. Also, if $p>2$, $Q_{Y} / K_{\beta_{1}}$ and $Q_{Y} / K_{\beta_{4}}$ are nonisomorphic irreducible L_{A} ' modules. Thus, $Q_{A} \leq K_{\beta_{1}}$ or $Q_{A} \leq K_{\beta_{4}}$ and (2.3) implies $\operatorname{dimV}{ }^{1}\left(Q_{Y}\right)=\operatorname{dimV}^{1}\left(Q_{A}\right)=1$. Thus, if $\operatorname{dim} V^{1}\left(Q_{A}\right)>1, p=2$ and $\lambda I T_{Y}=\lambda_{3}$ or $\lambda_{3}+\lambda_{4}$. Using induction to determine the possible labellings of VIA, we see that either $\lambda \mid T_{Y}=\lambda_{4}$, with $\lambda I T_{A}=q \mu_{2}, q \mu_{3}$ or $q_{1} \mu_{1}+q \mu_{3}$, or $\lambda I T_{Y}=\lambda_{3}+\lambda_{4}$, with $\lambda I T_{A}=q \mu_{1}+q \mu_{2}$ or $q \mu_{3}$. (Here q and q_{1} are distinct p-powers.) But Table 1 of [5] implies that dimVIA < dimVIY in each case. Hence, $\operatorname{dim}^{1}\left(Q_{A}\right)=1$.
(3.3). If rank $A=3$ and L_{A} is of type A_{2}, then $\operatorname{dimV}{ }^{1}\left(Q_{A}\right)=1$.

Proof: Suppose false; i.e. suppose $\operatorname{dimV}^{1}\left(Q_{A}\right)>1$. We first note that size restrictions imply that $L_{\gamma}{ }^{\prime}$ is a simple algebraic group. If $p>2$, (2.14) implies L_{Y} ' is not of type A_{2}. Thus, the Main Theorem of [12] and
the above remarks imply $p=3$ and $L_{Y}{ }^{\prime}$ is of type B_{3}. However, the $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{4}}$ have dimensions 1 and 7 , while $\operatorname{dim}\left(Q_{A}{ }^{\alpha}\right)=$ 3 or 6 . Thus, $Q_{A} \leq K_{\beta_{4}}$. But $V_{\beta_{4}}\left(Q_{Y}\right) \neq 0$, contradicting (2.3). Now if $p=2$, induction and the labelling of $V \mid Y$ imply $L_{Y}{ }^{\prime}=\left\langle U_{ \pm \beta_{3}}, U_{ \pm \beta_{4}}\right\rangle$. Using (3.2), (1.23) and Table 1 of [5], we find that dimVIA < dimVIY in every case. Hence, $\operatorname{dimV}^{1}\left(Q_{A}\right)=1$.

The above results imply rank $A=2$. For the remainder of this chapter we use the following

Notation: Let $\Pi(A)=\{\alpha, \beta\}$ and $\Pi\left(L_{A}\right)=\{\beta\}$. Let μ_{α} (respectively, μ_{β}) denote the fundamental dominant weight corresponding to α (respectively, β). We will also use μ_{β} to mean $\mu_{\beta} I T\left(L_{A^{\prime}}\right)$.
(3.4). There are no examples (A, Y, V) in the main theorem with $p=2, A$ simple, Y of type F_{4} and rank $A<$ rank Y.

Proof: Suppose false. Then (3.2) and (3.3) imply rank $A=2$. By [8], $\operatorname{dimVIY}=26,246$ or 4096 and $\operatorname{dimVIA}=8^{\mathrm{k}} \cdot 3^{\ell}, 4^{\mathrm{m}}, 6^{r} \cdot 14^{\mathrm{s}} \cdot 64^{\mathrm{t}}$, where A has type A_{2}, B_{2}, G_{2} respectively and $k, \ell, m, r, s, t \in \mathbb{Z}^{+}$. So $\lambda I T_{Y}=\lambda_{3}+\lambda_{4}$. If A has type $A_{2}, \lambda I T_{A}=\left(q_{1}+q_{2}+q_{3}+q_{4}\right)\left(\mu_{1}+\mu_{2}\right)$ for distinct p-powers q_{1}, q_{2}, q_{3} and q_{4}. Thus, for a fixed maximal parabolic P_{A}, $\operatorname{dimV}{ }^{1}\left(Q_{A}\right)=16$. But there is no parabolic P_{Y} of Y with $\operatorname{dimV}^{1}\left(Q_{Y}\right)=16$, contradicting [13]. Thus, A must have type B_{2} or G_{2}.

Suppose A has type B_{2}. Let P_{A} be a maximal parabolic of A with $\operatorname{dimV}{ }^{1}\left(Q_{A}\right)>1$. By the main theorem of [12], $\operatorname{dimV}^{1}\left(Q_{A}\right)=2,4$ or 8 . In fact since $\operatorname{dimV} \mid A=4096$, we must have $\operatorname{dimV}{ }^{1}\left(Q_{A}\right)=8$, else $\operatorname{dimV} \mid A<$ dimVIY. So P_{Y} (as in Hypothesis and Notation (2.0)) has type B_{3}. However, $Q_{Y} / K_{\beta_{4}}$ is then an 8-dimensional irreducible L_{A} ' module and hence cannot contain a nontrivial image of $Q_{A}{ }^{\alpha}$, contradicting (2.3).

Finally, we must consider the case where A has type G_{2}. The above remarks imply $\lambda I T_{A}=\left(q_{1}+q_{2}\right)\left(\mu_{1}+\mu_{2}\right)$ for q_{1} and q_{2} distinct p-powers.

Now let P_{A} be the maximal parabolic of A with Levi factor $L_{A}=\left\langle U_{ \pm \beta}\right\rangle T_{A}$ where β is long. By induction, P_{Y} has Levi factor of type B_{2}. However, $Q_{Y} / K_{\beta_{4}}$ is then a 4-dimensional irreducible L_{A} ' module which cannot contain a nontrivial image of $Q_{A}{ }^{\alpha}$. But this contradicts (2.3). \square
(3.5). (i) If $\langle\lambda, \beta\rangle \neq 0$ and $L_{\gamma}{ }^{\prime}$ is quasisimple, then $(A, p)=\left(G_{2}, 3\right), L_{\gamma}$. has type A_{1} and $\Pi\left(L_{Y}\right) \neq\left\{\beta_{3}\right\}$ or A has type $B_{2}, L_{Y}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{2}}\right\rangle$ and β is short.
(ii) Assume β is long, unless $(A, p)=\left(G_{2}, 3\right)$, in which case β is arbitrary. If $L_{Y}=L_{1} \times L_{2}$, for L_{i} a simple algebraic group with $V^{1}\left(Q_{Y}\right)=$ $M_{1} \otimes M_{2}$ where M_{i} is an irreducible $k L_{i}$ module, then at most one of M_{1} and M_{2} is nontrivial.

Proof: Suppose $\langle\lambda, \beta\rangle \neq 0$ and $L_{\gamma}{ }^{\prime}$ is a simple algebraic group. Since $p>2$, if rank $L_{Y^{\prime}}=1$, there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $V_{\gamma}\left(Q_{Y}\right) \neq 0$ and $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right)=2$. So if $(A, p) \neq\left(G_{2}, 3\right), \beta$ must be long. Also, (3.4) and (2.14) imply that either (A,p) $=\left(G_{2}, 3\right)$ or $L_{Y}{ }^{\prime}=\left\langle U_{ \pm \beta_{3}}\right\rangle$. If $L_{Y}{ }^{\prime}=\left\langle U_{ \pm \beta_{3}}\right\rangle$, then $V_{\beta_{2}}\left(Q_{Y}\right) \neq 0$ so $Q_{A} \nsubseteq K_{\beta_{2}}$. But $Q_{Y} / K_{\beta_{2}}$ is a 3-dimensional irreducible L_{A} module, while $\operatorname{dim}\left(Q_{A} K_{\beta_{2}} / K_{\beta_{2}}\right)=2$. Thus, if $\operatorname{rank}\left(L_{\gamma^{\prime}}\right)=1,(A, p)=\left(G_{2}, 3\right)$ and $L_{y^{\prime}} \neq\left\langle U_{ \pm \beta_{3}}\right\rangle$. If $\operatorname{rank}\left(L_{\gamma^{\prime}}\right)=2$, we use the condition that each Q_{Y} / K_{γ} have an $L_{A}{ }^{\prime}$ composition factor of dimension $\operatorname{dim}\left(Q_{A}{ }^{\alpha}\right)$, for $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $V_{\gamma}\left(Q_{Y}\right) \neq 0$. This results in the second configuration of (i).

If L_{Y} ' has type B_{3}, the $L_{A^{\prime}}$ composition factors of $Q_{Y} / K_{\beta_{4}}$ are of dimensions 1 and 7. Hence, $L_{Y}{ }^{\prime}$ is not of type B_{3}. Thus, L_{Y} ' has type C_{3}. Since $Q_{A} \ddagger K_{\beta_{1}}, Q_{Y} / K_{\beta_{1}}$ must be a reducible L_{A} ' module. Hence, by (7.1) of [12], $V^{1}\left(Q_{Y}\right)$ is isomorphic to the natural module for L_{Y}. Moreover, $\left\langle\lambda, \beta_{1}\right\rangle=0$ else the bound on $\operatorname{dim}_{\beta_{1}}\left(Q_{Y}\right)$ is exceeded. Thus, $\lambda \mid T_{Y}=\lambda_{4}$ and dimVIY ≤ 26. However, $\langle\lambda, \beta\rangle=5 \cdot q_{1}$ or $q_{1}+2 q_{2}$, for q_{1} and q_{2} distinct p-powers. Applying (1.23) when A has type A_{2}, we see that $\operatorname{dimV} \mid A>\operatorname{dimVIY}$. Contradiction. This completes the proof of (i).

Let L_{j} and M_{j} be as in (ii), and suppose M_{1} and M_{2} are both nontrivial. Let q_{j} be the field twist on the embedding of $L_{A^{\prime}}$ in L_{i} for $i=1,2$. (This is well-defined as L_{i} has type A_{1} or A_{2}.) Then $q_{1} \neq q_{2}$ by (2.5) and (2.6). Suppose there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{j}\right) \neq 0$ for $i=1,2$. Examining the $L_{A}{ }^{\prime}$ composition factors of Q_{Y} / K_{γ} and recalling that $p>2$, we reduce to $\Pi\left(L_{y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}$. Temporarily assume $(A, p) \neq\left(G_{2}, 3\right)$. The L_{A} ' composition factors of $Q_{Y} / K_{\beta_{2}}$ have high weights $\left(q_{1}+4 q_{2}\right) \mu_{\beta}$ and $q_{1} \mu_{\beta}$; if $p=3$ and $q_{1}=3 q_{2}$, the composition factors have high weights $\left(2 q_{1}+q_{2}\right) \mu_{\beta}, q_{2} \mu_{\beta}$ and $q_{1} \mu_{\beta}$. Thus, if $p \neq 3, \beta_{2} Z_{A}=q_{1} \alpha$. If $p=3$ and $q_{1}=3 q_{2}, \quad \beta_{2} \mid Z_{A}=q_{1} \alpha$ or $q_{2} \alpha$. We notice that a nonidentity element from the set $U_{-} \beta_{2} \cdot U_{-} \beta_{1}-\beta_{2}$ must occur in the factorization of some element in $Q_{A}-Q_{A}{ }^{\prime}$, since $\left\langle\lambda, \beta_{1}\right\rangle \neq 0$. Since $-\beta_{2}$ (respectively, $-\beta_{1}-\beta_{2}$) affords $T\left(L_{A}\right)$ weight $\left(q_{1}+4 q_{2}\right) \mu_{\beta}$ (respectively, $\left.\left(-q_{1}+4 q_{2}\right) \mu_{\beta}\right)$, (2.4) implies $p=3, q_{1}=3 q_{2}$ and $\beta_{2} \mid Z_{A}=q_{2} \alpha$. We also note that a nonidentity element from the set $U_{-} \beta_{2} \cdot U_{-} \beta_{2}-\beta_{3} \cdot U_{-} \beta_{2}-\beta_{3}-\beta_{4}$ must occur in the factorization of some element in $Q_{A}-Q_{A}$, since M_{2} is nontrivial. However, $-\beta_{2}-\beta_{3}$ (respectively, $-\beta_{2}-\beta_{3}-\beta_{4}$) affords $T\left(L_{A}\right.$) weight $\left(q_{1}+2 q_{2}\right) \mu_{\beta}=5 q_{2} \mu_{\beta}$ $\left(q_{1} \mu_{\beta}=3 q_{2} \mu_{\beta}\right)$, contradicting $\beta_{2} \mid Z_{A}=q_{2} \alpha$.

Now suppose $(A, p)=\left(G_{2}, 3\right)$ with $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}$ and q_{1}, q_{2} as above. Consider the action of L_{A} ' on the 25-dimensional restricted irreducible $K Y$ module, $V\left(\lambda_{4}\right)$. There is a 6-dimensional $L_{A^{\prime}}$ composition factor with high weight $\left(\lambda-\beta_{2}-\beta_{3}-\beta_{4}\right) \mid T\left(L_{A}\right)$. However, there is no L_{A}. module of dimension 25 affording such an $L_{A^{\prime}}$ composition factor.

Now suppose $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{4}\right\}$ and assume $(A, p) \neq\left(G_{2}, 3\right)$. Then $Q_{A} \not \ddagger$ $K_{\beta_{k}}$, for $k=1,4$, and we find that $\beta_{2} \mid Z_{A}=q_{1} \alpha$ and $\beta_{4} \mid Z_{A}=q_{2} \alpha$ (or vice versa). But this contradicts (2.8). If $(A, p)=\left(G_{2}, 3\right)$, again consider the action of L_{A} ' on $V\left(\lambda_{4}\right)$. There is a 4-dimensional $L_{A}{ }^{\prime}$ composition factor with high weight ($\left.\lambda-\beta_{2}-2 \beta_{3}-\beta_{4}\right) I T\left(L_{A} \cdot\right.$). Now argue as before to produce a contradiction.
(3.6). Assume β is long unless $(A, p)=\left(G_{2}, 3\right)$, in which case β is arbitrary. If $\langle\lambda, \beta\rangle \neq 0$, one of the following holds:
(a) $(A, p) \neq\left(G_{2}, 3\right), \Pi(L \gamma)=\left\{\beta_{1}, \beta_{3}\right\},\left\langle\lambda, \beta_{1}\right\rangle \leq 2,\left\langle\lambda, \beta_{2}+\beta_{3}\right\rangle=0$.
(b) $(A, p) \neq\left(G_{2}, 3\right), \Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}\right\},\left\langle\lambda, \beta_{1}\right\rangle=0=\left\langle\lambda, \beta_{2}\right\rangle$.
(c) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{4}\right\},\left\langle\lambda, \beta_{1}\right\rangle \cdot\left\langle\lambda, \beta_{4}\right\rangle=0$ and $Q_{A} \ddagger K_{\beta_{2}}$ and $Q_{A} \ddagger K_{\beta_{3}}$.
(d) $(A, p)=\left(G_{2}, 3\right), \Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}\right\}$ and $\left\langle\lambda, \beta_{1}\right\rangle \cdot\left\langle\lambda, \beta_{3}\right\rangle=0$.
(e) $\pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}, \lambda \mid T_{Y}=\lambda_{4},(A, p) \neq\left(G_{2}, 3\right)$.
(f) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}\right\}, \lambda \mid T_{Y}=c \lambda_{4}, c \leq 2,(A, p) \neq\left(G_{2}, 3\right)$.
(g) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}\right\}, \lambda \mid T_{Y}=\lambda_{2},(A, p) \neq\left(G_{2}, 3\right)$.
(h) $(A, p)=\left(G_{2}, 3\right), L_{Y}$ has type A_{1} and $\Pi\left(L_{Y}\right) \neq\left\{\beta_{3}\right\}$.

Proof: By (3.5), either (h) holds or $L^{\prime}{ }^{\prime}$ has type $A_{1} \times A_{1}$ or $A_{1} \times A_{2}$ with only one component acting nontrivially on $V^{1}\left(Q_{Y}\right)$.

Case 1: Suppose L_{γ} ' is of type $A_{1} \times A_{1}$.
Applying (1.15), we see that $\Pi\left(L_{\gamma}\right) \neq\left\{\beta_{2}, \beta_{4}\right\}$. Consider the case $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}\right\}$ and $(A, p) \neq\left(G_{2}, 3\right)$. We claim that $\left\langle\lambda, \beta_{2}\right\rangle=0$. Otherwise, a nonidentity element from the root group $U_{-\beta_{2}}$ occurs in the factorization of some element of $Q_{A}-Q_{A}$. But then $\beta_{2} I Z_{A}=q \alpha$, where $-\beta_{2}$ affords $T\left(L_{A}\right)$ weight $q \mu_{\beta}$, for some p-power q. This contradicts (2.16). Finally, the condition $\left\langle\lambda, \beta_{1}\right\rangle \leq 2$ in (a) follows by considering the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ given in (1.25) and the $L_{Y}{ }^{\prime}$ composition factor in $V_{\beta_{2}}\left(Q_{Y}\right)$ afforded by $f_{\beta_{1}+\beta_{2}} v^{+}$. Now, if $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{4}\right\}, p>2$, (2.10) and (2.11) imply that $Q_{A} \nleftarrow K_{\beta_{k}}$ for $K=2,3$. This completes the consideration of Case 1.

Case 2: Suppose $L{ }_{y}$ ' is of type $A_{1} \times A_{2}$.
Assume for now that if $A=G_{2}$, then $p \neq 3$. If $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}$, (1.35), (1.36) and the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ given in (1.25) imply that $\lambda \mid T_{Y}=\lambda_{4}$. If $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}\right\},(1.36)$ and the bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}\right)$ imply that $\lambda \mid T_{Y}=\lambda_{1}, \lambda_{2}$ or $c \lambda_{4}$, for $c \leq 2$. Recall that $\lambda \mid T_{Y} \neq \lambda_{1}$.

It remains to consider the case where $A=G_{2}, p=3$ and L_{Y} ' has type $A_{1} \times A_{2}$. Note that when $p=3, G_{2}$ irreducibles have dimensions $7^{k} \cdot 27^{\ell}$ for
$k, \ell \in \mathbb{Z}^{+}$. Suppose $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}$. If $\left\langle\lambda, \beta_{1}\right\rangle \neq 0$, (1.36) and the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ of (1.25) imply $\left\langle\lambda, \beta_{2}\right\rangle=0$. Since $\lambda \mid T_{Y} \neq \lambda_{1}$, we have $\lambda \mid T_{Y}=2 \lambda_{1}$. However, by [8], dimVIA $\neq \operatorname{dimV} \mid Y$. Hence, $\left\langle\lambda, \beta_{1}\right\rangle=0$. Again the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ and (1.35) imply $\left\langle\lambda, \beta_{2}\right\rangle=0$. So $\lambda I T_{Y}=\lambda_{3}$ or λ_{4} and by $[8] \operatorname{dimV}|A \neq \operatorname{dimV}| Y$. So $\Pi\left(L_{Y}\right) \neq\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}$.

Finally, we note that if $(A, p)=\left(G_{2}, 3\right)$, with $\Pi\left(L_{y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}\right\}$, then in the action of L_{A} ' on the 25 -dimensional irreducible $k Y$ module, $V\left(\lambda_{4}\right)$, there are no 1-dimensional $L_{A}{ }^{\prime}$ composition factors. But every 25-dimensional KA module has 1-dimensional LA' composition factors.

This completes the proof of (3.6).

(3.7). A is not of type A_{2}.

Proof: Suppose false; choose β such that $\langle\lambda, \beta\rangle \neq 0$. Then (2.9) rules out the configuration described in (c) of (3.6). Apply (1.23) in the remaining cases to obtain a precise description of λ / T_{A}. Then (1.26) and the methods of (1.30) and (1.32) imply dim VIA $<\operatorname{dim}$ VIY in the configurations of (a), (f) and (g). If $\lambda I T_{Y}=\lambda_{4}$ and $\lambda I T_{A}=q\left(2 \mu_{\alpha}+2 \mu_{\beta}\right)$ as in (e), we must use (1.33) and Table 1 of [5] to see that the $\operatorname{dimV} \mid A \neq$ dimVIY. Thus, we have reduced to $\lambda I T_{Y}=c \lambda_{3}+x \lambda_{4}$, for $0<c<p, 0 \leq x<p$ and $\lambda \mid T_{A}=q\left(c \mu_{\alpha}+c \mu_{\beta}\right)$, the configuration implied by (b) of (3.6). However, $\operatorname{dim} V^{2}\left(Q_{Y}\right)>\operatorname{dim}^{2}\left(Q_{A}\right)$. Contradiction. \square
(3.8). If A is of type B_{2} and β is short, then $\langle\lambda, \beta\rangle=0$.

Proof: Suppose false; i.e., suppose $\langle\lambda, \beta\rangle \neq 0$. Then (3.4), (3.5) and (7.1) of [12] imply that each component, L_{i}, of L_{γ}. has type $A_{k_{i}}$ for some k_{i} and if $k_{j}>1, M_{j}$ is isomorphic to the natural module (or dual) for L_{j}.

However, we also have $h_{\beta}(-1) \in Z(A) \leq Z(Y)=1$; so in fact, $L_{Y}{ }^{\prime}$ is quasisimple and by (3.5), $L_{y^{\prime}}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{2}}\right\rangle$. In this case, $Q_{A} K_{\beta_{3}} / K_{\beta_{3}}=Q_{Y} / K_{\beta_{3}}$ and (2.3) and (2.13) imply $\left\langle\lambda, \beta_{3}+\beta_{4}\right\rangle=0$. Thus, $\lambda I T_{Y}=\lambda_{2}$. Also, (3.6) implies $\lambda I T_{A}=2 q \mu_{\beta}+c q_{0} \mu_{\alpha}$, for some p-powers
q and q_{0} and $c=0$ or 2 . By (1.26) and [8], dimV|A $\leq 140<\operatorname{dimV} \mid Y$.
Contradiction.

(3.9). A is not of type B_{2}.

Proof: Suppose false. Then (3.8) implies that if $\langle\lambda, \beta\rangle \neq 0$, then β is long. So (3.6) gives the possible Levi factors, L_{Y}, of P_{Y}. Using (1.26) to obtain an upper bound for dimVIA, we see that (3.6)(b) or (c) holds. If (3.6)(b) holds, so $\lambda I T_{Y}=c \lambda_{3}+x \lambda_{4}$, for $p>c>0, p>x \geq 0$ and $\lambda I T_{A}=c q \mu_{\beta}$ for q a p-power, then $\operatorname{dimV}^{2}\left(Q_{Y}\right)>\operatorname{dimV}^{2}\left(Q_{A}\right)$. Thus, (3.6)(c) holds.

Suppose $\lambda I T_{Y}=c \lambda_{1}+x \lambda_{2}+y \lambda_{3}$, for $c>0, x, y \geq 0$ and $\lambda I T_{A}=c q \mu_{\beta}$, for q a p-power. We first claim that $x=0=y$. For otherwise, applying (2.3) and (2.13), we find that $\beta_{2} \mid T_{A}=q_{0} \alpha$ or $\beta_{3} \mid T_{A}=q_{0} \alpha$, for q_{0} some p-power. Thus, $f_{\beta_{2}} v^{+}$or $f_{\beta_{3}} v^{+}$is a nonzero vector in $v_{T_{A}}\left(\lambda-q_{0} \alpha\right)$. But $\langle\lambda, \alpha\rangle=0$. So we now have $\lambda I T_{Y}=c \lambda_{1}$. It requires an easy check to see that $\operatorname{dim}^{2}\left(Q_{Y}\right)=\operatorname{dimV}^{2}\left(Q_{A}\right)$ in this case. Thus $\left[V, Q_{A}{ }^{2}\right]=\left[V, Q_{Y}{ }^{2}\right]$. Also, $\operatorname{dim} V^{3}\left(Q_{A}\right) \leq 2 c$. But if $c>1, f_{2} \beta_{1}+2 \beta_{2} v^{+}$and $f_{1}+\beta_{2}+\beta_{3} v^{+}$afford $L Y^{-}$ composition factors in $V^{3}\left(Q_{Y}\right)$ of dimensions $c-1$ and $2 c$, respectively. Thus, $c=1$. But then $\operatorname{dimV}|A<\operatorname{dimVI}|$.

Thus, it remains to consider $L_{Y}{ }^{\prime}=\left\langle U_{ \pm \beta_{1}}\right\rangle \times\left\langle U_{ \pm \beta_{4}}\right\rangle, \lambda I T_{Y}=x \lambda_{2}+$ $y \lambda_{3}+c \lambda_{4}$, $\lambda I T_{A}$ as above. But the same argument as above implies $x=0=y$ and $c=1$. So dimV|A $<\operatorname{dimVIY}$. Contradiction.
(3.10). Let A be of type G_{2}. Then $p \neq 3$.

Proof: Suppose false; choose $\beta \in \Pi(A)$ such that $\langle\lambda, \beta\rangle \neq 0$. Then (3.6) implies $L_{Y^{\prime}}=\left\langle U_{ \pm \beta_{k}}\right\rangle$ for $k=1,2$ or 4 or $L_{Y^{\prime}}=\left\langle U_{ \pm \beta_{i}}\right\rangle \times\left\langle U_{ \pm \beta_{j}}\right\rangle$ for $\{i, j\}=\{1,3\}$ or $\{1,4\}$. In the latter case, $\left\langle\lambda, \beta_{j}\right\rangle=0$ or $\left\langle\lambda, \beta_{j}\right\rangle=0$. In particular, if $\left\langle\lambda, \beta_{\ell}\right\rangle \leq 1$ for all ℓ, then $\operatorname{dimV} \mid A=7$ or 49 and $\operatorname{dimV} \mid A \leq$ 27^{2} in any case. Now [8] implies $\lambda I T_{Y} \neq \lambda_{k}$ for any k. Also, $\lambda I T_{Y} \neq 2 \lambda_{k}$ for any k. For otherwise, [8] and (3.5) imply $\lambda I T_{Y}=2 \lambda_{2}$. But then (1.38) implies $\operatorname{dimV} \mid A<\operatorname{dimVIY}$. Using (1.32) we see that dimVIY >49. So there
exists $1 \leq j \leq 4$ with $\left\langle\lambda, \beta_{j}\right\rangle=2$. Let W_{0} be the stabilizer in W of λ. If rank $W_{0}=1$, counting only the conjugates of $V_{T_{Y}}(\lambda)$ and $V_{T_{Y}}\left(\lambda-\beta_{j}\right)$ (where $\left\langle\lambda, \beta_{j}\right\rangle=2$) we see that $\operatorname{dimVIY}>27^{2}$. Thus, $\operatorname{rank}\left(W_{0}\right)=2$. It is now a check to see that $\operatorname{dimVIY}>27^{2}$ in every case, completing the proof of (3.10). \square
(3.11). Let A be of type G_{2} with short ror β. If $\langle\lambda, \beta\rangle \neq 0$, then $L_{Y^{\prime}}=\left\langle U_{ \pm \beta_{1}}\right\rangle \times\left\langle U_{ \pm \beta_{3}}, U_{ \pm \beta_{4}}\right\rangle, p=7$ and $\lambda \mid T_{Y}=\lambda$, or $\lambda \mid T_{Y}=2 \lambda_{1}$.

Proof: By (3.5) and (3.10), LY' is not a sir lle algebraic group. Consider first the case where L_{γ} has type $A_{1}: A_{2}$. If $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$, Q_{Y} / K_{γ} contains an $L_{A}{ }^{\prime}$ composition factor iso orphic to a twist of $Q_{A}{ }^{\alpha}$ only if the field twists on the embeddings of L_{A} ' in the two components are equal. Also $p>2$ implies $V_{\gamma}\left(Q_{y}\right) \neq 0$ for $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$. Thus, (2.3), (2.5) and (2.6) imply that only one component acts nontrivially on $V^{1}\left(Q_{Y}\right)$.

Suppose $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}$. In the action of $L_{A}{ }^{\prime}$ on the 26-dimensional kY -module with high weight λ_{4}, there will be a 5-dimensional composition factor. The only 26-dimensional kA module affording this is a conjugate of the irreducible kA module with high weight $2 \mu_{\beta}$ when $p=7$; hence, the prime restriction of the result. Continuing with L_{γ} ' as above, using (1.36) and the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{\gamma}\right)$ given in (1.25), we reduce to the configurations of the result.

Consider now the case where $\Pi\left(L_{\gamma}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}\right\}$. Since $Q_{A} \not \ddagger K_{\beta_{3}}$ the field twists on the embeddings of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{4}}\right\rangle$ and in $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{2}}\right\rangle$ are equal. Consider the action of $L_{A}{ }^{\prime}$ on the 26 -dimensional irreducible $k y$ module, $V\left(\lambda_{4}\right)$. One checks that there are two 4-dimensional, three 3-dimensional, four 2-dimensional and one 1-dimensional L_{A} ' composition factors. But there is no 26-dimensional kA module affording such an $L_{A}{ }^{\prime}$ composition series. Hence $\Pi\left(L_{y}\right) \neq\left\{\beta_{1}, \beta_{2}, \beta_{4}\right\}$.

It remains to show that L_{Y} ' does not have type $A_{1} \times A_{1}$. Since
$\operatorname{dim}\left(Q_{A}{ }^{\alpha}\right)=4, \Pi\left(L_{Y}\right) \neq\left\{\beta_{1}, \beta_{4}\right\}$. If $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{4}\right\}$ (respectively, $\left.\left\{\beta_{1}, \beta_{3}\right\}\right), Q_{A} \leq K_{\beta_{1}}$ (respectively, $K_{\beta_{4}}$). But then $p>2$, (2.10) and (2.11) produce a contradiction. This completes the proof of (3.11).
(3.12). Let A be of type G_{2} with β long and α short. Then $\langle\lambda, \alpha\rangle \neq 0$.

Proof: Suppose $\langle\lambda, \alpha\rangle=0$. Then $\langle\lambda, \beta\rangle \neq 0$ for β the long root. Recall, by (3.4) and (3.10), $p>3$. Thus, (3.6) and (1.10) imply that VIA is basic. Consider the configuration of (3.6)(c); the above remarks imply that $\beta_{2} I^{T} A=\alpha=\beta_{3} I^{I T} A$, while $\beta_{1} I^{I T} A=\beta=\beta_{4} I^{T} A$. So $\left\langle\lambda, \beta_{2}+\beta_{3}\right\rangle=0$ since $\langle\lambda, \alpha\rangle=0$. Now, $V_{T_{A}}\left(\lambda-2 \beta_{1}-2 \beta_{2}\right) \oplus V_{T_{A}}\left(\lambda-\beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}\right) \oplus$ $V_{T_{A}}\left(\lambda-\beta_{2}-\beta_{3}-2 \beta_{4}\right) \oplus V_{T_{A}}\left(\lambda-2 \beta_{3}-2 \beta_{4}\right) \oplus V_{T_{A}}\left(\lambda-2 \beta_{1}-\beta_{2}-\beta_{3}\right) \leq$ $V_{T_{A}}(\lambda-2 \alpha-2 \beta)$. If $\langle\lambda, \beta\rangle>1$ (so $\left\langle\lambda, \beta_{1}\right\rangle>1$ or $\left\langle\lambda, \beta_{4}\right\rangle>1$), the last weight space has dimension 2 while the sum of weight spaces in VIY has dimension 3. So $\langle\lambda, \beta\rangle=1$ and $\operatorname{dimV}|A<\operatorname{dimV}| Y$. Thus, (3.6)(c) does not hold.

Using (1.30), (1.26) and [8], we may argue that dimVIA $\neq \operatorname{dimVIY}$ in ther configurations of (3.6)(a), (e), (f) and (g). Thus, the only possible configuration is as described in (3.6) (b); $L Y^{\prime}=\left\langle U_{ \pm \beta_{1}}\right\rangle \times\left(U_{ \pm \beta_{3}}\right\rangle, \lambda \mid T_{Y}=$ $c \lambda_{3}+x \lambda_{4}, c>0, x \geq 0$ and $\lambda I T_{A}=c \mu_{\beta}$. However, $\operatorname{dimv}_{\beta_{2}}\left(Q_{Y}\right)+$ $\operatorname{dim}_{\beta_{4}}\left(Q_{Y}\right)$ exceeds the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)$. Contradiction.

Proof of (3.0)(b): Under the hypotheses of (3.0)(b), results (3.2) (3.12) imply that $A=G_{2}$ and $p>3$. Let $\beta \in \Pi(A)$ be short, so by (3.12), $\langle\lambda, \beta\rangle \neq 0$. As well, by (3.11), $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}, p=7$ and $\lambda \mid T_{Y}=\lambda_{4}$ or $\lambda \mid T_{Y}=2 \lambda_{1}$. In each case, $\langle\lambda, \beta\rangle=2 q$, for q a p-power. If $\lambda \mid T_{Y}=\lambda_{4}$, $\operatorname{dimV} \mid Y=26$, so $\langle\lambda, \alpha\rangle=0$, else the methods of (1.30), (1.32) and (1.35) imply $\operatorname{dimVIA}>\operatorname{dim} V I Y$. Then (1.10) implies the result of (3.0)(b). If $\lambda \mid T_{Y}$ $=2 \lambda_{1}$, then $\langle\lambda, \alpha\rangle \neq 0$, else by (1.26) and [8] dimV|A $\langle\operatorname{dimV}| Y$. Thus (3.6) implies that $\langle\lambda, \alpha\rangle=2 q_{0}$, for a p-power q_{0}. But then $\operatorname{dimV}|A \neq \operatorname{dim} V| Y$, by [8]. This completes the proof of (3.0)(b).

Let $A<Y$ be simple algebraic groups, with Y simply connected, having root system of type E_{n} and with rank $Y>\operatorname{rank} A>2$. In this chapter, we prove a result which is a useful tool in finding the configurations of the Main Theorem when rank $A>2$. Throughout this chapter, we adopt Hypothesis and Notation (2.0), with the following additional restrictions: If A has type B_{m}, C_{m} or F_{4}, then $p>2$. The result we prove is the following:

Theorem 4.0. If, in addition to the above hypotheses, $L Y^{\prime}$ is a simple algebraic group of type A_{k} or D_{k}, for some k, and if $\operatorname{dim} V^{1}\left(Q_{Y}\right)>1$, then the pair ($A, L_{A^{\prime}}$), $\left(Y, L Y^{\prime}\right)$ is one of the following:
(i) $\left(C_{4}, C_{3}\right),\left(E_{n}, A_{5}\right)$;
(ii) $\left(C_{4}, A_{3}\right),\left(E_{6}, A_{5}\right)$;
(iii) $\left(F_{4}, C_{3}\right),\left(E_{6}, A_{5}\right)$;
(iv) $\left(F_{4}, B_{3}\right),\left(E_{6}, D_{4}\right)$;
(v) $\left(C_{5}, C_{4}\right),\left(E_{8}, A_{7}\right)$; or
(vi) $\quad\left(C_{3}, C_{2}\right),\left(E_{8}, D_{5}\right), p=5, L_{Y}=\left\langle U_{ \pm}, \mid 1 \leq i \leq 5\right\rangle$, and $\lambda \mid T_{Y}=\lambda_{1}$. Moreover, in each case, if $\rho: L_{A} \rightarrow L_{Y}$ is the natural homomorphism, the pairs $\rho\left(L_{A}{ }^{\prime}\right) \leq L_{Y}$ occur as natural embeddings of classical groups.

Remarks. 1. Under the hypotheses of Theorem (4.0), we see that $V_{\gamma}\left(Q_{Y}\right) \neq 0$ for all $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{Y}\right) \neq 0$. (See (1.24).)
2. The hypotheses of Theorem (4.0) and (1.5) imply that $Z_{A} \leq Z_{Y}$.
(4.1). Under the hypotheses of Theorem (4.0), $L_{A}^{\prime} \not \equiv L_{Y}$.

Proof: Suppose false. Let q be the field twist on the embedding of $L_{A}{ }^{\prime}$ in $L_{Y}{ }^{\prime}$. Then, since distinct $L_{Y^{\prime}}$-irreducibles restrict to distinct $L_{A}{ }^{\prime}$ irreducibles, $Q_{Y} / K_{\gamma} \cong\left(Q_{A}{ }^{\alpha}\right)$ as L_{A} '-modules, for all $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{Y}\right) \neq 0$. In particular, if γ_{1}, γ_{2} are two such roots, $-\gamma_{1}\left|\left(T_{Y} \cap L_{Y}\right)=-\gamma_{2}\right|\left(T_{Y} \cap L_{Y}{ }^{\prime}\right)$. Also, (2.14) implies that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{Y}\right) \neq 0$. Thus, L_{Y} must be a maximal parabolic of Y. So rank $A=$ rank Y. Contradiction. \square
(4.2). Assume L_{Y} ' has type A_{k} for some k, W is the natural module for L_{Y}, and $W L_{A^{\prime}} \cong\left(Q_{A}{ }^{\alpha}\right)$ q or $W^{*} L_{A^{\prime}} \cong\left(Q_{A}{ }^{\alpha}\right)$ q for some p-power q. If $\operatorname{dim} V^{1}\left(Q_{Y}\right)>1$, then (4.0) (i) or (V) holds.

Proof: By (4.1), A does not have type A_{m}, for any m and if A is of type B_{m}, L_{A} does not have type A_{m-1}.
(4.2.1) (A, L_{A}) is not of type (B_{3}, B_{2}).

Proof: Suppose false. By assumption, $p>2$ and $L_{Y}{ }^{\prime}=A_{4}$. Theorem (8.1) of [12] implies that there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{\gamma}\right) \neq 0$ such that $Q_{Y} / K_{\gamma} \cong W \wedge W$ or $W^{*} \wedge W^{*}$. Hence $Y=E_{7}$ or E_{8} and $Q_{Y} / K_{\gamma} \cong W$ or W^{*} for all $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$. So in particular, $Q_{A} K_{\gamma} / K_{\gamma}=Q_{Y} / K_{\gamma}$ for such γ. Thus, if q is the field twist on the embedding of L_{A} ' in $L_{Y}{ }^{\prime}$, (2.13) implies $\gamma / T_{A}=q \alpha$ for all $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{Y}\right) \neq 0$. In addition, (2.12) implies $\tau \mid T_{A}=0$ for all $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\tau, \Sigma L_{Y}\right)=0$. Finally, note that for all $\beta \in \Pi\left(L_{Y}\right), \beta I T_{A}=q \eta$ for some $\eta \in \Pi\left(L_{A}\right)$.
$B y$ Theorem (8.1) of [12], $V^{1}\left(Q_{Y}\right) \cong W\left(\operatorname{or} W^{*}\right)$ or $V^{1}\left(Q_{\gamma}\right) \cong W \wedge W$ (or $\left.W^{*} \wedge W^{*}\right)$. Thus, $\langle\lambda, \alpha\rangle \neq 0$, else by (1.26) and (1.32), dim $V|A<\operatorname{dim} V| Y$. So there exists $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ such that $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $\langle\lambda, \gamma\rangle \neq 0$, else there is no vector in VIY with T_{A} weight $\lambda-q_{0} \alpha$. (See the preceeding work describing the restriction of β_{j} to T_{A} for $1 \leq i \leq n$.) These remarks, together with (2.13), imply that $\Pi\left(L_{\gamma}\right)=\left\{\beta_{4}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$ with $\left\langle\lambda, \beta_{2}\right\rangle \neq 0$ if
$Y=E_{7}$ or $\left\langle\lambda, \beta_{2}+\beta_{8}\right\rangle \neq 0$ if $Y=E_{8}$. We now argue that $V^{1}\left(Q_{Y}\right) \cong W$ or W^{*} For if $V^{1}\left(Q_{Y}\right) \cong W \wedge W$ or $W^{*} \wedge W^{*}$, we first pass to the parabolic $P_{Y} \wedge$ of (2.12), where $P_{Y}{ }^{\wedge}$ has Levi factor $L_{Y}{ }^{\wedge}=\left\langle L_{Y}, U_{ \pm \beta_{1}}\right\rangle$. If $\left\langle\lambda, \beta_{2}\right\rangle \neq 0$, then $\left\langle\lambda, \beta_{5}\right\rangle=1$, else $f_{\beta_{2}} v^{+}$and $f_{3456} \nu^{+}$afford $\left(L_{Y}{ }^{\wedge}\right)^{\prime}$ composition factors of $V^{2}\left(Q_{A}\right) \lambda$-q α, exceeding the bound of (1.22). With $\left\langle\lambda, \beta_{5}\right\rangle=1, f_{\beta_{2}} V^{+}$ affords an $\left.\left(L_{Y}\right)^{\wedge}\right)^{\prime}$ composition factor of $V^{2}\left(Q_{A}\right) \lambda-q \alpha$ of dimension 40 unless $p=3$, in which case the composition factor has dimension 30. (See (1.34).) As well, $\mathrm{f}_{345} \mathrm{v}^{+}$affords an ($\left.L \gamma^{\prime}\right)^{\wedge}$ composition factor of dimension 20. Hence, $p=3$. But then (1.34) implies that $\operatorname{dim} V_{T_{Y}}\left(\lambda-\beta_{2}-\beta_{4}-\beta_{5}\right)=3$, while the multiplicity of this weight in the first composition factor mentioned is only 1. So the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha$ is exceeded. We may argue similarly if $Y=E_{8}$ with $\left\langle\lambda, \beta_{8}\right\rangle \neq 0$. Hence, $V^{1}\left(Q_{Y}\right) \cong W$ or W^{*}.

Using (1.34) carefully, as above, we find that the bound on $\operatorname{dimV}{ }^{2}\left(Q_{A}\right)_{\lambda-q \alpha}$ is again exceeded unless $Y=E_{8}$ with $\lambda_{I} T_{Y}=\lambda_{7}+y \lambda_{8}$, for some $y>0$. Now there does not exist a vector in VIY with weight $\lambda-q_{0} \alpha$, for $q_{0} \neq q$, so VIA is a conjugate of a restricted module and hence by (1.10), $\lambda I T_{A}=a \mu_{1}+\mu_{2}$ for some $0<a<p$. Since $\left(\left(f_{\beta_{8}}\right) y\right) v^{+} \in v_{T_{A}}\left(\lambda-y \alpha_{1}\right), y \leq a$. But if $y<a$, there is no vector in VIY with T_{A} weight $\lambda-a \alpha_{1}$. So $y=a$. Now, let $L_{0}=\left\langle U_{ \pm \beta_{k}} \mid 3 \leq k \leq 8\right\rangle$, a group of type A_{6} with natural subgroup, B, of type B_{3}. We note that v^{+}affords an L_{0} composition factor of V which restricts to B to produce a composition factor with the same high weight as B_{3} module as VIA. But L_{0} lies in a proper parabolic of Y and hence acts reducibly on V. Thus, dimVIA $<\operatorname{dim} V I Y$. Contradiction.
(4.2.2). (A, L_{A}) is not of type (D_{4}, A_{3}).

Proof: Suppose false; then $L_{Y}{ }^{\prime}=A_{5}$. Let $\Pi\left(L_{A}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, so $\Pi(A)-\Pi\left(L_{A}\right)=\left\{\alpha_{4}\right\}$. Then there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0, Q_{Y} / K_{\gamma} \cong W \wedge W$ (or $\left.W^{*} \wedge W^{*}\right)$. This follows from Theorem (8.1) of [12] if $p>2$. If $p=2$, though ($W \wedge W) L_{A}{ }^{\prime}$ is reducible, one checks that there is no L_{A} composition factor of $W \wedge W$ isomorphic to a twist of $Q_{A}{ }^{\alpha}$. Let q be the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{Y}. Consider
first the case where $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right\}$. Then, $Q_{Y} / K_{\beta_{2}} \cong W \wedge W \wedge W$ as $L_{Y}{ }^{\prime}$-modules. One checks that the $L_{A^{\prime}}$ composition factors of $W \wedge W \wedge W$ have high weights $2 q \mu_{1}$ and $2 q \mu_{3}$. Thus, $p=2$, as $Q_{A} \not \ddagger K_{\beta_{2}}$. So by the Main Theorem of [12], $V^{1}\left(Q_{Y}\right) \cong W$ or W^{*}. By (1.25), $\operatorname{dim} v_{\beta_{2}}\left(Q_{Y}\right) \leq 36$, so $\left\langle\lambda, \beta_{2}\right\rangle=0$. Moreover, (2.13) implies that $\left\langle\lambda, \beta_{7}\right\rangle=0=\left\langle\lambda, \beta_{8}\right\rangle$ if $Y=E_{8}$; and recall that $\lambda I T_{Y} \neq \lambda_{1}$ if $Y=E_{7}$. Thus, one of the following holds:
(a) $Y=E_{\sigma}, \lambda \mid T_{Y}=\lambda_{1}\left(\operatorname{or} \lambda_{6}\right)$.
(b) $Y=E_{7}, \lambda I T_{Y}=\lambda_{1}+\lambda_{7}$ or $\lambda I T_{Y}=\lambda_{6}+x \lambda_{7}$. (c) $Y=E_{8}$ and $\lambda I T_{Y}=\lambda_{1}$ or λ_{σ}.

Referring to Table 1 of [5], we see that dimVIA $=8^{k} \cdot 26^{l} \cdot 160^{m}$, for $k, \ell, m \in \mathbb{Z}^{+}$. So [8] implies that (a) does not hold, if (b) holds $\lambda \mid T_{Y}=\lambda_{6}+\lambda_{7}$, and if (c) holds $\lambda \mid T_{Y}=\lambda_{6}$. By induction and Theorem (7.1) of $[12],\left\langle\lambda, \alpha_{4}\right\rangle=0, q_{1}$, or $q_{1}+q_{2}$, for q_{1} and q_{2} distinct p-powers. But then $\operatorname{dimV} \mid A<\operatorname{dimVIY}$, by (1.32) and (1.38). Thus, $L_{Y} \neq\left\langle U_{ \pm \beta_{j}}\right| i=$ $1,3,4,5,6$).

It remains to consider the case where $L_{y^{\prime}}=\left\langle U_{ \pm \beta_{j}} \mid 4 \leq i \leq 8\right\rangle$. Let q be as above. Then (2.12) and (2.4) imply $\beta_{1} I T_{A}=0$ and $\beta_{3} I T_{A}=q \alpha_{4}=\beta_{2} I T_{A}$. One checks that $\beta_{4} I^{T} A=q \alpha_{2}=\beta_{8} I_{A}, \beta_{5} I T_{A}=q \alpha_{i}=\beta_{7} I_{A}$, for $i=1$ or 3 , respectively, and $\beta_{6} I T_{A}=q\left(\alpha_{3}-\alpha_{1}\right)$ or $q\left(\alpha_{1}-\alpha_{3}\right)$, respectively. Also, by (2.13), $\left\langle\lambda, \beta_{3}\right\rangle=0$.

Now, Theorem (8.1) of [12] implies $\vee^{1}\left(Q_{Y}\right) \cong W, W^{*}, W \wedge W$, or $W^{*} \wedge W^{*}$ (the latter two only if $p \neq 2$). Thus, $\left\langle\lambda, \alpha_{4}\right\rangle \neq 0$, else (1.26) and (1.32) imply that dim VIA $<\operatorname{dim}$ VIY. So, in particular, $\lambda-q_{0} \alpha_{4}$ is a T_{A} weight in VIA, for some p-power q_{0}. The above remarks imply that $\left\langle\lambda, \beta_{2}\right\rangle \neq 0$, else there is no vector in VIY with T_{A} weight $\lambda-q_{0} \alpha_{4}$.

We now argue carefully, using (1.34) and the parabolic $\mathrm{P}_{\mathrm{Y}}{ }^{\wedge}$ of (2.12) (as in the proof of (4.3)), to see that the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha_{4}$ is exceeded in every configuration. This completes the proof of (4.2.2).
(4.2.3). (A, L_{A}) is not of type $\left(C_{3}, C_{2}\right)$.

Proof: Suppose false; then $L_{y^{\prime}}=A_{3}$. Examining $L_{y^{\prime}}$ composition
factors of $W \wedge W$, we see that there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $Q_{Y} / K_{\gamma} \cong W \wedge W$. Thus, $Q_{Y} / K_{\gamma} \cong W$ or W^{*} for all $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$. So $Q_{Y} / K_{\gamma}=Q_{A} K_{\gamma} / K_{\gamma}$ for all such γ. Let $\Pi(A)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. Thus, if q is the field twist on the embedding of $L_{A}{ }^{\prime}$ in $L_{Y}{ }^{\prime}$, (2.13) implies $\gamma \| T_{A}=q \alpha_{1}$ for all $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{Y}\right) \neq 0$. In addition, (2.12) implies $\tau / T_{A}=0$ for all $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\tau, \Sigma L_{\gamma}\right)=0$. If $\Pi\left(L_{Y}\right)=\left\{r_{1}, r_{2}, r_{3}\right\}$ with $\left(r_{i}, r_{i+1}\right)<0$, for $i=1,2$, then $r_{1} I T_{A}=q \alpha_{2}=r_{3} I T_{A}$ and $r_{2} I T_{A}=q \alpha_{3}$. Now, there exists at most one $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $\langle\lambda, \gamma\rangle \neq 0$, else $\operatorname{dim} V_{T_{A}}\left(\lambda-q \alpha_{1}\right)>1$, contradicting (1.31). So, in fact, $\left\langle\lambda, \alpha_{1}\right\rangle=c q$ for some $0 \leq c<p$, as there does not exist a T_{Y} weight restricting to $\lambda-q_{0} \alpha_{1}$ for $q_{0} \neq q$. So by (1.10), $q=1$.

The restriction $Q_{Y} / K_{\gamma} \not \equiv W \wedge W$ implies $\Pi\left(L_{Y}\right)$ is (a) $\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}$, (b) $\left\{\beta_{4}, \beta_{5}, \beta_{6}\right\}$, (c) $\left\{\beta_{5}, \beta_{6}, \beta_{7}\right\}$, or (d) $\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\}$. In (a), (b), (c), (d), respectively, $\left\langle\lambda, \beta_{4}\right\rangle=0,\left\langle\lambda, \beta_{4}\right\rangle=0,\left\langle\lambda, \beta_{5}\right\rangle=0,\left\langle\lambda, \beta_{6}\right\rangle=0$, respectively. Otherwise, $\operatorname{dim} V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}\right)>2$, contradicting (1.29).

If $\left\langle\lambda, \alpha_{1}\right\rangle=0$, then Theorem (8.1) of [12] implies $\lambda \mid T_{A}=k \mu_{2}$, for $0<k<p$ or $\lambda I T_{A}=a \mu_{2}+b \mu_{3}$, where $a \neq 0 \neq b$ and $a+b=p-1$. In the first case, $\operatorname{dim} V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}-\alpha_{3}\right) \leq 3$, and in the second case, $\operatorname{dim} V_{T_{A}}\left(\lambda-\alpha_{1}-\right.$ $\left.\alpha_{2}-\alpha_{3}\right) \leq 2$. (See (1.29).) Thus, the information in the above 2 paragraphs implies that $Y=E_{6}, L_{Y}$ is as in (a) or (b) and $\lambda I T_{Y}=k \lambda_{1}$ or $k \lambda_{6}$, respectively. However, this configuration is ruled out by a direct application of (1.23). Thus, $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$.

Now, $V_{T_{A}}\left(\lambda-\alpha_{1}\right) \neq 0$ implies there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$, with $\left(\gamma, \Sigma L_{\gamma}\right) \neq 0$, and $\langle\lambda, \gamma\rangle \neq 0$. Recall that there exists only one such γ. Applying these remarks, (2.13) and symmetry, we restrict still further to:
(A) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\},\left\langle\lambda, \beta_{2}\right\rangle \neq 0,\left\langle\lambda, \beta_{j}\right\rangle=0, i \geq 4$.
(B) $\Pi\left(L_{Y}\right)=\left\{\beta_{4}, \beta_{5}, \beta_{6}\right\}, Y=E_{7},\left\langle\lambda, \beta_{2}+\beta_{7}\right\rangle \neq 0,\left\langle\lambda, \beta_{1}+\beta_{3}+\beta_{4}\right\rangle=0$.
(C) $\Pi\left(L_{Y}\right)=\left\{\beta_{5}, \beta_{6}, \beta_{7}\right\}, Y=E_{8},\left\langle\lambda, \beta_{8}\right\rangle \neq 0,\left\langle\lambda, \beta_{j}\right\rangle=0,1 \leq i \leq 4$.
(D) $\Pi\left(L_{Y}\right)=\left\{\beta_{4}, \beta_{5}, \beta_{6}\right\}, Y=E_{8},\left\langle\lambda, \beta_{2}\right\rangle \neq 0$,
$\left\langle\lambda, \beta_{1}+\beta_{3}+\beta_{4}+\beta_{7}+\beta_{8}\right\rangle=0$.
Note, (1.23) rules out Y of type E_{6}, entirely.
By Theorem (8.1) of [12], and the above work, $\lambda I T_{A}=y \mu_{1}+k \mu_{2}$, for $0<y, k<p$, or $\lambda I T_{A}=y \mu_{1}+a \mu_{2}+b \mu_{3}$, for $0<y, a, b<p, a+b=p-1$. We use (1.29) to check that $\operatorname{dim}_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}\right) \leq 2, \operatorname{dim} V_{T_{A}}\left(\lambda-2 \alpha_{1}-\alpha_{2}\right) \leq 2$, and $\operatorname{dim} V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}-\alpha_{3}\right) \leq 4$. Also, $\operatorname{dimV}_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}-\alpha_{3}\right) \leq 5$, if $\lambda I T_{A}=y \mu_{1}+k \mu_{2}$.

Consider the configuration of (B) when $\lambda I T_{Y}=b \lambda_{5}+a \lambda_{6}+x \lambda_{7}$, $0<a, b, x<p, a+b=p-1$. Then $f_{245} v^{+}, f_{345} v^{+}, f_{1345} v^{+}, f_{\beta} f_{45} v^{+}$and $f_{567} v^{+}$ are five linearly independent vectors in $V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}-\alpha_{3}\right)$, contradicting the given bound. Using (1.34) to argue in this manner for each case, we reduce to Y of type $E_{7}, \lambda I T_{Y}=k \lambda_{6}+x \lambda_{7}, \lambda I T_{A}=y \mu_{1}+k \mu_{2}$, for $0<k, y, x<p$.

We now argue that $x=y$. Since $0 \neq\left(f_{\beta_{7}}\right)^{x} V^{+} \in V_{T_{A}}\left(\lambda-x \alpha_{1}\right), x \leq y$. Moreover, there does not exist a vector in VIY with T_{A} weight $\lambda-z \alpha_{1}$ where $z>x$. For if $0 \neq w$ is a T_{Y} weight vector with weight $\lambda-\Sigma c_{j} \beta_{j}$ and $c_{7}>x$, then $c_{6}>0$. So $y \leq x$.

Let $X=\left\langle U_{ \pm \beta_{3}}, U \pm \beta_{4}, U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle$. Then X contains a natural subgroup, $C \leq X$, of type C_{3}. The X composition factor of V afforded by v^{+} has dimension strictly less than dimVIY, since X is contained in the Levi factor of a proper parabolic of Y. But the C composition factor of V afforded by v^{+}has the same high weight as VIA, as C_{3} module. Thus, $\operatorname{dimVIA}<\operatorname{dimVIV}$. Contradiction. This completes the proof of (4.2.3).
(4.2.4). (A, L_{A}) is not of type $\left(C_{3}, A_{2}\right)$.

Proof: Suppose false. By assumption, $p>2$ and $L_{\gamma^{\prime}}=A_{5}$. By the Main Theorem of [12], L_{A} ' acts irreducibly on $W \wedge W$ and on $W^{*} \wedge W^{*}$. One checks that $W \wedge W \wedge W$ has no 6 -dimensional $L_{A^{\prime}}$ composition factor. Thus, $Y=E_{8}$ and $L_{y^{\prime}}=\left\langle U_{ \pm \beta_{i}} \mid 4 \leq i \leq 8\right\rangle$. Let q be the field twist on the embedding of $L_{A^{\prime}}$ in L_{Y}.

Now, one checks that $Q_{A} K_{\beta_{2}} / K_{\beta_{2}}=Q_{Y} / K_{\beta_{2}}$ forces an embedding of $L_{A}{ }^{\prime}$ in $L_{Y}{ }^{\prime}$ which gives the following: $\beta_{4} I^{T} T_{A}=q \alpha_{2}=\beta_{5} I_{A}=\beta_{7} I_{A}$, $\beta_{6} I T_{A}=q\left(\alpha_{1}-\alpha_{2}\right)$ and $\beta_{8} I T_{A}=q \alpha_{1}$. Also, by (2.13), $\beta_{2} I T_{A}=q \alpha_{3}=$ $\beta_{3} I T_{A}$ and $\beta_{1} I T_{A}=0$. Moreover, (2.13) also implies that $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$. Thus, either $\left\langle\lambda, \alpha_{3}\right\rangle=0$ or $\left\langle\lambda, \beta_{2}\right\rangle \neq 0$. If $\left\langle\lambda, \beta_{2}\right\rangle \neq 0$, we argue carefully using (1.34) (as in the proof of (4.2.1)) that the bound on $\operatorname{dimv}^{2}\left(Q_{A}\right) \lambda-q \alpha_{3}$ is exceeded in every configuration. Thus, $\left\langle\lambda, \alpha_{3}\right\rangle=0$. But it is a straightforward check, using induction, (1.26) and (1.32), to see that $\left\langle\lambda_{,}, \alpha_{3}\right\rangle=0$ implies $\operatorname{dimV}|A<\operatorname{dimV}| Y$. This completes the proof of (4.2.4).

It remains to consider the case where $L_{Y^{\prime}}=A_{7}$ and ($A, L_{A^{\prime}}$) has type $\left(D_{5}, D_{4}\right)$ or $\left(F_{4}, B_{3}\right)$. In the first case, consideration of the quotient $Q_{Y} / K_{\beta_{2}}$, in view of Theorem (8.1) of [12], implies that $p=2$ and $V^{1}\left(Q_{Y}\right) \cong W$ or W^{*}. But now in each case, the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ implies $\lambda I T_{Y}=\lambda_{8}$, a contradiction. \square
(4.7). Suppose L_{Y} ' is of type A_{k}, with natural module W, and $\left(Q_{A}{ }^{\alpha}\right) q \not \equiv W$ or W^{*}, as L_{A} modules, for any p-power q. If $\operatorname{dimv}{ }^{1}\left(Q_{Y}\right)>1$, then Theorem (4.0) (ii) or (iii) holds.

Proof: Since $L_{A}{ }^{\prime}$ acts irreducibly on $W \not \equiv\left(Q_{A}{ }^{\alpha}\right)$, (2.3) implies that there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$, with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$, such that $Q_{Y} / K_{\gamma} \cong W$ or W^{*}. In particular, we have $k \geq 4$. In fact, $k>4$. For otherwise, since rankA $>2, L_{A}$ ' must be of type $B_{2}\left(=C_{2}\right)$ in order to have a 5-dimensional irreducible representation. Moreover, since $W \neq\left(Q_{A}{ }^{\alpha}\right) q$, $A=C_{3}$. However, there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$, with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$, such that $Q_{Y} / K_{\gamma} \cong W \wedge W$ or $W^{*} \wedge W^{*}$, a 10 -dimensional irreducible $L_{A^{\prime}}$ module . (Recall $p \neq 2$ when $A=C_{3}$.) Thus $Q_{A} \leq K_{\gamma}$, contradicting (2.3).

Consider the case where $L_{Y}{ }^{\prime}=A_{5}$. The existence of a 6-dimensional irreducible $L_{A}{ }^{\prime}$-module not isomorphic to a twist of $Q_{A}{ }^{\alpha}$ implies $\left(A, L_{A}\right)$ is of type $\left(A_{3}, A_{2}\right),\left(B_{3}, A_{2}\right),\left(A_{4}, A_{3}\right),\left(B_{4}, A_{3}\right),\left(C_{4}, A_{3}\right)$, or $\left(F_{4}, C_{3}\right)$. If $L_{A} A^{\prime}=A_{2}$, then $p>2$. For the pairs $\left(A_{3}, A_{2}\right),\left(A_{4}, A_{3}\right)$, and $\left(B_{3}, A_{2}\right)$,
$\operatorname{dim}_{A}{ }^{\alpha}<\operatorname{dimW}$. But the Main Theorem of [12] implies that $L_{A^{\prime}}$ acts irreducibly on $W \wedge W$ and on $W^{*} \wedge W^{*}$, unless $p=2$ and $L_{A^{\prime}}=A_{3}$. Even in the latter case, the $L_{A}{ }^{\prime}$ composition factors of $W \wedge W$ have dimensions 14 and 1. Hence, there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $Q_{Y} / K_{\gamma} \cong W \wedge W$ or $W^{*} \wedge W^{*}$. Also, by the Main Theorem of [12], $V^{1}\left(Q_{Y}\right) \cong W, W^{*}, W \wedge W$ or $W^{*} \wedge W^{*}$. But now a direct application of (1.23) rules out all possible configurations.

For (A, L_{A}) of type (B_{4}, A_{3}), the preceeding remarks imply $L_{\gamma^{\prime}}=$ $\left\langle U_{ \pm \beta_{i}} \mid i=1,3,4,5,6\right\rangle$. Then, $Q_{Y} / K_{\beta_{2}} \cong W \wedge W \wedge W$, as L_{Y} '-modules. The $L_{A}{ }^{\prime}$ composition factors of $W \wedge W \wedge W$ have high weights $2 \mu_{1}$ and $2 \mu_{3}$. But since $p>2$, this implies $Q_{A} \leq K_{\beta_{2}}$, contradicting (2.3). In the (F_{4}, C_{3}) and $\left(C_{4}, A_{3}\right)$ cases, there does not exist an $L_{A}{ }^{\prime}$ composition factor of $W \wedge W$ isomorphic to a twist of $Q_{A}{ }^{\alpha}$. Thus, there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $Q_{Y} / K_{\gamma} \cong W \wedge W$ or $W^{*} \wedge W^{*}$. So $Y=E_{6}$ and $w e$ have the result.

Consider now the case where $L_{Y}{ }^{\prime}=A_{6}$. Since W is a 7-dimensional irreducible $L_{A}{ }^{\prime}$-module ($\neq\left(Q_{A}{ }^{\alpha}\right) q$), either $L_{A^{\prime}}=A_{2}$ and $p=3$, or $\left(A, L_{A}\right)$ is of type (F_{4}, B_{3}). In the latter case, Theorem (8.1) of [12] produces a contradiction to (2.3). So we consider the case where $L_{A}^{\prime}=A_{2}$ and $p=3$. Let $\Pi\left(L_{A}\right)=\left\{\alpha_{1}, \alpha_{2}\right\}$. $B y(1.25)$, for $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right), \operatorname{dim} V_{\gamma}\left(Q_{Y}\right) \leq 21$, if $A=A_{3}$ or B_{3}, and $\operatorname{dim}_{\gamma}\left(Q_{Y}\right) \leq 42$, if $A=C_{3}$. This restriction implies that either (a) $Y=E_{7}$ with $\lambda I T_{Y}=\lambda_{7}$ or $(b) Y=E_{8}$ with $\lambda I T_{Y}=\lambda_{2}$ and A $=C_{3}$. (Note that we used the methods of (1.30), (1.32), and (1.35) to find a lower bound for $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$.) In each case, $\lambda I T_{A}=q\left(\mu_{1}+\mu_{2}\right)+x \mu_{3}$, for some $x \geq 0$ and some p-power q. If $A=A_{3}$, (1.23) implies that $x=q \cdot 1$. In the configuration of (a), dimVIY $=56$. However, referring to Table 1 of [5], and using the methods of (1.32) and (1.30), we see that $\operatorname{dimV} \mid A \neq 56$. In the configuration of $(b), Q_{Y} / K_{\beta_{3}} \cong W \wedge W$. But $W \wedge W$ has L_{A} ' composition factors with high weights $3 q \mu_{1}, 3 q \mu_{2}, q\left(\mu_{1}+\mu_{2}\right)$ and 0 . (We have used (2.6) to identify q with the field twist on the embedding of $L_{A}{ }^{\prime}$ in $L_{Y^{\prime}}{ }^{\prime}$.)

Thus, there is no $L_{A}{ }^{\prime}$ composition factor of $Q_{Y} / K_{\beta_{3}}$ isomorphic to a twist of $Q_{A}{ }^{\alpha_{3}}$. But this contradicts (2.3) and (2.4). Thus, L_{Y} does not have type A_{6}.

It remains to consider the case where $L_{y^{\prime}}=A_{7}$. Since W is an 8 -dimensional irreducible L_{A} - module ($\left.\not \approx\left(Q_{A}{ }^{\alpha}\right) q\right), L_{A}{ }^{\prime}=A_{2}$ or D_{4}, or $\left(A, L_{A}\right)$ has type $\left(B_{4}, B_{3}\right)$. Note that $V^{1}\left(Q_{Y}\right) \not \equiv W$ or W^{*}. For otherwise the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ of (1.25) implies that $\lambda \mid T_{Y}=\lambda_{8}$. Thus, the Main Theorem of [12] implies that $A=D_{5}, L_{A^{\prime}}=D_{4}$, and $p>2$. However, then $L_{A^{\prime}}$ acts irreducibly on the 56 -dimensional L_{γ} ' module $Q_{Y} / K_{\beta_{2}}$. But this implies $Q_{A} \leq K_{\beta_{2}}$, contradicting (2.3). Thus, $L_{Y}{ }^{\prime}$ does not have type A_{7}.

This completes the proof of (4.7).ם
(4.8). If L_{Y} is of type D_{k}, for some $k \geq 4$ and $\operatorname{dim} V^{1}\left(Q_{Y}\right)>1$, then Theorem (4.0) (iv) or (vi) holds.

Proof: Let μ_{1}, \ldots, μ_{k} be the fundamental dominant weights for D_{k}. Then we will call $W=V\left(\mu_{1}\right)$ the natural module for $L Y^{\prime}$.

Suppose $L_{A}{ }^{\prime}$ acts irreducibly on some $L_{Y}{ }^{\prime}$ module other than W. Then the Main Theorem of [12] implies that L_{A} acts irreducibly on the Ly'-modules with high weights μ_{k-1} and μ_{k}. In every case, there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ such that the irreducible L_{Y} - module Q_{Y} / K_{γ} has high weight μ_{K-1} or μ_{K}. Thus, $Q_{A}{ }^{\alpha}$ is isomorphic to the $L_{A}{ }^{\prime}$ irreducible afforded by μ_{k-1} or μ_{k}. The Main Theorem of [12] then implies that $A=F_{4}, L_{A} A^{\prime}=B_{3}$, and $L_{Y^{\prime}}=D_{4}$.

With ($A, L_{A} A^{\prime}, L_{Y}$) of type (F_{4}, B_{3}, D_{4}), suppose $Y=E_{7}$ or E_{8}. Let q be the field twist on the embedding of $L_{A}{ }^{\prime}$ in $L_{Y}{ }^{\prime}$. Then, by (2.13) and (2.6), $\beta_{1} I T_{A}=q \alpha_{4}=\beta_{6} I T_{A}, \beta_{k} \mid T_{A}=0$, and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k>6$. Also, since the embedding of $L_{A}{ }^{\prime}$ in $L_{\gamma}{ }^{\prime}$ is the natural embedding of classical groups, $\beta_{2} I T_{A}=q \alpha_{1}, \beta_{4} I T_{A}=q \alpha_{2}$ and $\beta_{3} I T_{A}=q \alpha_{3}=\beta_{5} I T_{A}$. We claim that $\left\langle\lambda, \alpha_{4}\right\rangle=\left\langle\lambda, \beta_{1}\right\rangle$. Certainly, $x=\left\langle\lambda, \beta_{1}\right\rangle \leq\left\langle\lambda, \alpha_{4}\right\rangle$, as $0 \neq\left(f_{\beta_{1}}\right)^{x_{V}} \in V_{T_{Y}}\left(\lambda-x q \alpha_{4}\right)$. Also, $\left\langle\lambda, \beta_{1}\right\rangle \geq\left\langle\lambda, \alpha_{4}\right\rangle=y$. For otherwise,
there is no vector in VIY with T_{A} weight $\lambda-y \alpha_{\alpha_{4}}$. Now, let $X=\left\langle U_{ \pm \beta_{j}}\right|$ $1 \leq i \leq 6\rangle$. Then, X contains a natural subgroup of type F_{4}, say $A_{0} \leq X$. Moreover, the X composition factor of V afforded by V^{+}is not all of V. But the A_{0} composition factor of V afforded by v^{+}has the same dimension as VIA. Thus, dimVIA < dimVIY. Hence, if $\left(A, L_{A^{\prime}}, L_{Y}\right)$ has type $\left(F_{4}, B_{3}, D_{4}\right)$, $Y=E_{6}$ and the result holds.

Now consider the case where $V^{1}\left(Q_{Y}\right) \cong W$ and L_{A} acts reducibly on every nontrivial, restricted $L_{Y}{ }^{\prime}$ module other than W. The Main Theorem
 $\left(B_{2}, D_{5}, 5\right),\left(B_{2}, D_{7}, 3\right),\left(C_{3}, D_{7}, 3\right)$ or $\left(C_{3}, D_{7}, 7\right)$. We first note that L_{Y} does not have type D_{7}. For otherwise, the bound on $\operatorname{dim} V_{\beta_{1}}\left(Q_{Y}\right)$ implies $\lambda I T_{Y}=\lambda_{8}$. As well, $\left(L_{A^{\prime}, L_{Y}}\right)$ does not have type (A_{2}, D_{4}); for one checks that L_{A} acts irreducibly on each of the 8-dimensional irreducible $L_{Y}{ }^{\prime}$-modules. So $Q_{A} \leq K_{\beta_{1}}$, contradicting (2.3). Thus, $L_{A}{ }^{\prime}=B_{2}$ and $L_{Y^{\prime}}=D_{5}$, with $p=5$. For $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that Q_{Y} / K_{γ} is one of the restricted irreducible spin modules for $L_{Y}, Q_{Y} / K_{\gamma}$ has $L_{A}{ }^{\prime}$ composition factors of dimensions 12 and 4. Hence, (2.3) implies that $A=C_{3}$. Also, by (1.25), $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right) \leq 40$, so $\langle\lambda, \gamma\rangle=0$. An application of (1.23) then rules out Y of type E_{6}. Moreover, $L_{Y}{ }^{\prime}=\left\langle U_{ \pm \beta_{i}} \mid 1 \leq i \leq 5\right\rangle$, else $Q_{Y} / K_{\beta_{7}}$ is a 10 -dimensional irreducible $L_{A}{ }^{\prime}$ module containing a nontrivial image of $Q_{A}{ }^{\alpha}$. The above remarks and (2.3) imply $\lambda I T_{Y}=\lambda_{1}$. Thus, $Y=E_{8}$ and the result holds.

This completes the proof of (4.8).ם

The proof of Theorem (4.0) is now complete.

In this chapter we establish the Main Theorem under the following conditions: Y has type E_{n} and rank $A>2$. We adopt Notation and Hypothesis (2.0) throughout the chapter. Note that Theorem (4.1) of [12] implies rank $A<r a n k Y$. Our result is the following.

Theorem (5.0). If VIA is irreducible, then $Y=E_{6}$ and one of the following holds:
(i) A is the fixed point subgroup of the graph automorphism of Y, so A has type F_{4}, and $\lambda I T_{Y}=(p-3) \lambda_{1}$ or $(p-3) \lambda_{6}$, for $p>3$, or $\lambda I T_{Y}=\lambda_{1}+(p-2) \lambda_{3}$ or $\lambda_{6}+(p-2) \lambda_{5}$, for $p>2$. Moreover, with A and V as described, VIA is irreducible.
(ii) $p>2, A$ has type $C_{4}, \lambda I T_{A}=\mu_{2}$ and $\lambda I T_{Y}=\lambda_{1}$ or λ_{6}.

Moreover, if $p>2, Y=E_{6}$ and B is the fixed point subgroup of the automorphism τi_{x}, where i_{x} is the inner automorphism associated with
 $V\left(\lambda_{6}\right) \mid B$ are irreducible with high weight μ_{2}.

Proof of existence statement in (ii): (due to G. Seitz) It is a check to see that the fixed point subgroup of the automorphism τi_{x} is
$B=\left\langle x_{ \pm \beta_{1}}(t) x_{ \pm \beta_{6}}(t), x_{ \pm \beta_{3}}(t) x_{ \pm \beta_{5}}(t), x_{ \pm \beta_{4}}(t)\right.$, $\left.x_{ \pm}\left(\beta_{2}+\beta_{3}+\beta_{4}\right)(t) x_{ \pm\left(\beta_{2}+\beta_{4}+\beta_{5}\right)}(-t) \mid t \in k\right)$, that this group has type C_{4} and that $V\left(\lambda_{1}\right)$ and $V\left(\lambda_{6}\right)$ have a B composition factor with high weight μ_{2}. But then, $p>2$ and Table 1 of [5] imply that this composition factor has dimension 27 and so $V\left(\lambda_{1}\right) \mid B$ and $V\left(\lambda_{6}\right) \mid B$ are irreducible. \square
(5.1) Assume there are no examples (B, Y, W) satisfying the hypotheses of the Main Theorem with $\operatorname{Rank}(B)=3$. Also, assume (A, p) is not special. If L_{A} ' is of type A_{3} and $\operatorname{dimV} V^{1}\left(Q_{A}\right)>1$, then L_{γ} ' is a simple algebraic group.

Proof. Suppose false; i.e., suppose L_{Y} ' has more than one component. Let $\Pi\left(L_{A}\right)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, so $\alpha=\alpha_{4}$. Then by rank restrictions $L_{Y}{ }^{\prime}$ has 2 components. In fact L_{Y}, has type $A_{3} \times A_{3}$, since P_{Y} is minimal and A_{3} has no 5-dimensional irreducible representation. Thus, (1.5) implies $Z_{A} \leq Z_{Y}$. By (2.7), we may assume the field twist on the embedding of L_{A} ' in each component of $L_{\gamma}{ }^{\prime}$ is q, for some p-power q.

Consider the case where $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$. The L_{A}. composition factors of $Q_{Y} / K_{\beta_{5}}$ have high weights among $\left\{q\left(n_{1}+n_{3}\right), 0,2 q n_{1}, 2 q n_{3}, q n_{2}\right\}$, where n_{1}, n_{2}, n_{3} represent the fundamental dominant weights of A_{3}, labelled as throughout. Since there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y} / K_{\beta_{5}}, A=D_{4}$ or C_{4}, or $p=2$ and $A=A_{4}$. Then (1.23) forces $\operatorname{dimV} \mid A<\operatorname{dimVIY}$ if $p=2$ and A has type A_{4}. Thus, $A=D_{4}$ or C_{4}. Now, $\operatorname{dim}\left(Q_{Y} / K_{\beta_{2}}\right)<\operatorname{dim} Q_{A}{ }^{\alpha}$, so $Q_{A} \leq K_{\beta_{2}}$. But (1.33) implies that $q \eta_{j}$ and 0 cannot be high weights of an indecomposable L_{A}. module, for $i=1$ or 3 . Hence, we may assume that $-\beta_{2}$ is not involved in $L_{A}{ }^{\prime}$. So (2.11) implies that there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}\left(\beta_{5}, \beta_{2}\right)$. However, the $L_{A}{ }^{\prime}$ composition factors of this $L_{Y}{ }^{\prime}$ irreducible have high weights among $\left\{q\left(\eta_{1}+\eta_{2}\right), q\left(\eta_{2}+\eta_{3}\right), q \eta_{1}, q \eta_{3}\right\}$. Thus, $\Pi(L y) \neq$ $\left\{\beta_{1}, \beta_{3}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$.

We now have $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$. The $L_{A^{\prime}}$ composition factors of $Q_{Y} / K_{\beta_{5}}$ have high weights among $\left\{q\left(\eta_{1}+\eta_{2}\right), \eta_{1}, q\left(\eta_{2}+\eta_{3}\right)\right.$, $\left.q \eta_{3}\right\}$. Since (2.3) implies that there is a nontrivial image of Q_{A} in $Q_{Y} / K_{\beta_{5}}, A=A_{4}$ or B_{4}. As above, if $Q_{A} \leq K_{\beta_{1}}$ then $-\beta_{1}$ is not involved in $L_{A^{\prime}}$. But there is no 4-dimensional $L_{A^{\prime}}$ composition factor of $Q_{Y}\left(\beta_{5}, \beta_{1}\right)$. Hence (2.11) implies $Q_{A} \not \ddagger K_{\beta_{1}}$. Since each of the irreducible L_{Y} ' modules $Q_{Y} / K_{\beta_{5}}$ and $Q_{Y} / K_{\beta_{1}}$ must have an $L_{A}{ }^{\prime}$ composition factor isomorphic to a
twist of $Q_{A}{ }^{\alpha_{4}}$, the embedding of $T\left(L_{A^{\prime}}\right)$ in $T\left(L_{Y^{\prime}}\right)$ is as follows: $h_{\alpha_{1}}(c)=$ $h_{\beta_{2}}(c q) \cdot h_{\beta_{6}}(c q), h_{\alpha_{2}}(c)=h_{\beta_{4}}(c q) \cdot h_{\beta_{7}}(c q)$ and $h_{\alpha_{3}}(c)=h_{\beta_{3}}(c q) \cdot h_{\beta_{8}}(c q)$. Considering the $T\left(L_{A}{ }^{\prime}\right)$ weight vectors in $Q_{Y} / K_{\beta_{5}}$, we see that $x_{-\alpha_{4}}(t)=x_{-245}\left(c_{1} t q\right) x_{-567}\left(c_{2}{ }^{t q}\right) x_{-456}\left(c_{3} t q\right) w$, where $c_{i} \in k$, some c_{i} nonzero, and $w \in K_{\beta_{5}}$. So $\beta_{5} I_{A}=q\left(\alpha_{4}-\alpha_{1}-\alpha_{2}\right)$. This implies $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $3 \leq k \leq 6$, else $\left(V_{T_{Y}}\left(\lambda-q \alpha_{4}+q \alpha_{1}+q \alpha_{2}\right) \oplus V_{T_{Y}}\left(\lambda-q \alpha_{4}+q \alpha_{1}\right) \oplus\right.$ $\left.V_{T_{A}}\left(\lambda-q \alpha_{4}+q \alpha_{1}\right) \oplus V_{T_{A}}\left(\lambda-q \alpha_{4}-q \alpha_{3}+q \alpha_{1}\right)\right) \neq 0$. Also, (2.13) implies $\left.\beta_{1}\right|^{T} A=q \alpha_{4}$.

Suppose A is of type B_{4}, so $p>2$. Then $\left\langle\lambda, \alpha_{j}\right\rangle=0$ for $i=2,3,4$, else rank restrictions imply there is a parabolic subgroup of Y, P_{0}, containing the B_{3} parabolic of A with containment of unipotent radicals and such that the Levi factor of P_{0} is a simple algebraic group. However, Theorem (4.0) and the induction hypothesis imply that no such configuration occurs. Thus $\lambda I T_{A}=q\left(a \mu_{1}\right)$ for some $0<a<p$. Comparing this with the information in the preceeding paragraph, we have $\lambda I T_{y}=x \lambda_{1}+a \lambda_{2}$, for some $x \geq 0$. However, $0 \neq f \beta_{2}+\beta_{4}+\beta_{5} v^{+} \in V_{T_{A}}\left(\lambda-q \alpha_{4}\right)$. Contradiction.

So we have reduced to the case where $A=A_{4}$. Applying (1.23) and (1.10) and the above remarks we find that either $\lambda I T_{A}=a \mu_{1}+a \mu_{4}$ and $\lambda I T_{Y}=x \lambda_{1}+a \lambda_{2}$, for some $a>0, x \geq 0$ or $\lambda I T_{A}=b \mu_{2}+b \mu_{3}$ and $\lambda \mid T_{Y}=y \lambda_{1}+b \lambda_{7}+b \lambda_{8}$, for some $b>0, y \geq 0$. In the first case, $a>1$, else $\operatorname{dimVIA}<\operatorname{dimVIY}$. But then $\mathrm{f}_{245} \mathrm{f}_{2} \mathrm{~V}^{+}$and $\mathrm{f}_{2456} \mathrm{~V}^{+}$are linearly independent vectors in $V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{4}\right)$, which is a 1-dimensional weight space. In the second case, $0 \neq f_{567} V^{+} \in V_{T_{A}}\left(\lambda-\alpha_{4}\right)$, contradicting $\left\langle\lambda, \alpha_{4}\right\rangle=0$.

This completes the proof of (5.1).口
(5.2). Let (A, Y, V) be as in the Main Theorem with Y of type E_{n} and rank $A>3$. Assume there are no examples (B, Y, W) satisfying the hypotheses of the Main Theorem with $\operatorname{rank}(B)=3$. Also assume (A, p) is not special. Then Y has type E_{6} and one of the following holds:
(i) A is of type C_{4}, so $p>2$, $\lambda I T_{A}=\mu_{2}$, and $\lambda \mid T_{Y}=\lambda_{1}$ (or λ_{6}).
(ii) A is of type F_{4}.

Proof: Choose P_{A} such that $\operatorname{dimV}^{1}\left(Q_{A}\right)>1$. Consider first the case where rank $A=4 . \mathrm{By}(5.1)$ and size restrictions, L_{Y} ' has one component. Then, the induction hypothesis implies that Theorem (4.0) applies. In particular, (1.5) implies $Z_{A} \leq Z_{Y}$.

Consider the case where $A=C_{4}$ and $L_{A} A^{\prime}=A_{3}$, as in (4.0) (ii). Then $Y=E_{6}$ and $L_{Y}{ }^{\prime}=A_{5}$. The embedding of $L_{A}{ }^{\prime}$ in $L_{Y}{ }^{\prime}$ is the natural embedding of A_{3} in A_{5}. The Main Theorem of [12] implies that one of the following holds:
(a) $\lambda \mid T_{Y}=\lambda_{1}+x \lambda_{2}$ or $\lambda_{6}+x \lambda_{2}$, for $0 \leq x<p$ and $\lambda I T_{A}=q \mu_{2}+y \mu_{4}$, where q is some p-power and $y \geq 0$.
(b) $\lambda \mid T_{Y}=x \lambda_{2}+\lambda_{3}$ or $x \lambda_{2}+\lambda_{5}$ and $\lambda I T_{A}=q \mu_{1}+q \mu_{3}+y \mu_{4}$, where x, q and y are as in (a).

In either case, the C_{3} parabolic of A acts nontrivially on $\left\langle v^{+}\right\rangle$. Thus, Theorem (4.0) and the induction hypothesis imply that the C_{3} parabolic of A is contained in a conjugate of P_{Y}, with containment of unipotent radicals. Theorem (8.1) in [12] rules out the configuration of (b) and forces $y=0$ in the configuration of (a). Thus VIA is a conjugate of a basic module (recall that $p>2$ when $A=C_{4}$), and so by (1.10), VIA has high weight μ_{2}. Moreover $x=0$, else (1.26) and (1.32) imply that $\operatorname{dimVIA}<\operatorname{dimVIY}$. Thus $\lambda I T_{Y}=\lambda_{1}$ and we have the configuration of (i) in the statement of the result.

Consider now the case where $A=C_{4}, L_{A}{ }^{\prime}=C_{3}, Y=E_{n}$ and $L_{Y}{ }^{\prime}=A_{5}$, as in (4.0) (i). The embedding of $L_{A^{\prime}}$ in $L_{Y}{ }^{\prime}$ is the natural embedding of C_{3} in A_{5}. Theorem (8.1) of [12] implies that the A_{3} parabolic of A acts nontrivially on $\left\langle v^{+}\right\rangle$, so we may reduce to the first case. Thus, if $\operatorname{rank} A=4$, (i) or (ii) holds.

Suppose rankA $=5$ and consider the case where $L_{\gamma^{\prime}}$ is a simple algebraic group of classical type; so by (4.0), $A=C_{5}, L_{A}=C_{4}$, and
$L_{y^{\prime}}=A_{7}$, as in (4.0) (v). The embedding of $L_{A^{\prime}}$ in $L_{y^{\prime}}$ is the natural embedding of classical groups. By (8.1) of [12], the A_{4} parabolic of A acts nontrivially on $\left\langle v^{+}\right\rangle$. Thus, size restrictions and the preceeding two paragraphs imply that Theorem (4.0) applies. But there are no examples $\left(C_{4}, A_{4}\right),\left(Y, L_{y^{\prime}}\right)$ in Theorem (4.0). Thus, if rank $A=5, L_{Y}=E_{6}$ or E_{7}. The only possible configuration, given inductively by the preceeding two paragraphs would be: $A=C_{5}, L_{A}^{\prime}=C_{4}$, and $L_{Y}{ }^{\prime}=E_{6}$. However, $Q_{Y} / K_{\beta_{7}}$ is a 27-dimensional irreducible $L_{A^{\prime}}$ module on which Z_{A} induces scalars. But then, $Q_{A} K_{\beta} / K_{\beta_{7}}$ is an 8-dimensional L_{A} ' submodule of $Q_{Y} / K_{\beta_{7}}$, by (2.4). Thus rank $A \neq 5$. Also, by induction and Theorem (4.0), rank $A \neq 6,7$.

This completes the proof of (5.2).ם
(5.3). Suppose (A, Y, V) are as in the Main Theorem and the pair (A, Y) has type (F_{4}, E_{6}), with $p>2$. Then V is a basic module for A. Moreover, A is the fixed point subgroup under the graph automorphism of Y.

Proof: Let P_{1} (respectively, P_{2}) be the maximal parabolic of A, containing $B_{A^{-}}$, corresponding to the simple root α_{4} (respectively, α_{1}). If $P_{i}=L_{i} Q_{j}$ is the Levi decomposition for P_{i}, then $L_{1}{ }^{\prime}=B_{3}$ and $L_{2}{ }^{\prime}=C_{3}$. Rank restrictions imply that Theorem (4.0) applies whenever $\operatorname{dimV}{ }^{1}\left(Q_{j}\right)>1$. In particular, Theorem (8.1) in [12] implies that $V^{1}\left(Q_{\mathfrak{j}}\right)$ is a tensor indecomposable L_{i} ' module. Thus, if VIA is tensor decomposable, the above remarks and (1.7) imply that $\lambda I T T_{A}=q_{1} a \mu_{1}+q_{2} b \mu_{4}$, where $p>a, b>0$ and q_{1} and q_{2} are distinct p-powers. However, Theorem (8.1) of [12] implies that $V^{1}\left(Q_{1}\right)$ cannot have high weight $\left(q_{1} a \mu_{1}\right) \mid T\left(L_{1}{ }^{\prime}\right)$. Thus, $V \mid A$ is a tensor indecomposable module. Then $p>2$ and (1.10) imply that VIA is basic. Hence Proposition (2.8) of [12] holds.

Let $P_{Y}{ }^{1}$ and $P_{Y}{ }^{2}$ be as in Proposition (2.8) of [12]. That is, if $P_{Y}{ }^{i}=$ $L_{Y}{ }^{i} Q_{Y}{ }^{i}$ is the Levi decomposition of $P_{Y}{ }^{i}$, then $P_{j} \leq P_{Y}{ }^{i}, Q_{j} \leq Q_{Y}{ }^{i}, L_{j} \leq L_{Y}{ }^{i}$ and $Z_{i}=Z\left(L_{j}\right)^{\circ} \leq Z_{Y}{ }^{i}=Z\left(L_{Y}\right)^{\circ}$ for $i=1,2$. Moreover, the fixed maximal torus T_{Y} is contained in $L_{Y}{ }^{i}$. Now VIY nontrivial implies that
$\operatorname{dimV}^{1}\left(Q_{j}\right)>1$ for $i=1$ or 2 . Induction and the Main Theorem of [12] imply $\operatorname{dimV}{ }^{1}\left(Q_{2}\right)>1$ in every possible configuration, and that $\left(L Y^{2}\right)$ has type A_{5}.

Choose a base $\Pi(Y)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right\}$ of $\Sigma(Y)$, labelled as throughout, such that $\Pi\left(\left(L_{Y}{ }^{2}\right)\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right\}$ and $Q_{Y}{ }^{2}=\left\langle U_{r}\right|$ $\left.r \in \Sigma^{-}(Y)-\Sigma\left(\left(L_{Y}\right)^{\prime}\right)\right\rangle$. Then, $x_{\alpha_{2}}(t)=x_{\beta_{4}}(t), x_{\alpha_{3}}(t)=x_{\beta_{3}}(t) x_{\beta_{5}}(t)$ and $x_{\alpha_{4}}(t)=x_{\beta_{1}}(t) x_{\beta_{6}}(t)$. Also, examining the $T\left(L_{2}\right)$ weights in $Q_{Y}{ }^{2} / K_{\beta_{2}}$, we see that $x_{-\alpha_{1}}(t)=x_{-\beta_{2}}($ at $) u$, where $a \in k^{*}, u \in K_{\beta_{2}}$.

We claim that $\left(L_{Y}\right)^{1}$. has type D_{4}. This follows from the Main Theorem and induction, if $\operatorname{dimV}^{1}\left(Q_{1}\right)>1$. So suppose $\operatorname{dimV}^{1}\left(Q_{1}\right)=1$. Then, $\lambda I T_{Y}=a \lambda_{1}+x \lambda_{2}$ and $\lambda I T_{A}=a \mu_{4}$. In fact, $x=0$ as there is no nontrivial embedding of B_{3} in A_{4}. If $\left(L_{Y}{ }^{1}\right)$ ' is not of type $D_{4},\left(L_{Y}{ }^{1}\right)$ ' is a conjugate of $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{3}}, U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$, and $\operatorname{dimV}{ }^{2}\left(Q_{Y}{ }^{1}\right) \geq 16$. However, (1.25) implies $\operatorname{dimV}^{2}\left(Q_{1}\right) \leq 8$. Thus, $\left.\left(L_{Y}\right)^{1}\right)^{\text {h has type } D_{4} \text {, as }}$ claimed. Also, $L_{1}{ }^{\prime} \leq\left(L_{Y}{ }^{1}\right)^{\prime}$ must be the natural embedding of classical groups.

So there exists $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\} \subseteq \Sigma(Y)$ such that $\left(L_{Y}\right)^{\prime}=\left\langle U_{ \pm \gamma_{1}}, U_{ \pm \gamma_{2}}, U_{ \pm \gamma_{3}}, U_{ \pm \gamma_{4}}\right\rangle$ is of type D_{4} and such that $x_{-\alpha_{1}}(t)=x_{-\gamma_{1}}\left(b_{1} t\right), x_{\alpha_{2}}\left(b_{2} t\right)=x_{\gamma_{2}}(t)$ and $x_{\alpha_{3}}(t)=x_{\gamma_{3}}\left(b_{4} t\right) x_{\gamma_{4}}\left(b_{5} t\right)$, for some $b_{j} \in k^{*}$. Comparing this with the known information about the factorization of these elements, we see that $\gamma_{1}=\beta_{2}, \gamma_{2}=\beta_{4},\left\{\gamma_{3}, \gamma_{4}\right\}$ $=\left\{\beta_{3}, \beta_{5}\right\}$ and $b_{4}=b_{5}$. Then, A is in fact the fixed point subgroup under the graph automorphism of Y.ロ

In the following few results, we will determine on which modules V, the fixed point subgroup of the graph automorphism of $Y=E_{6}$ acts irreducibly. We are forced to do tedious calculations within the universal enveloping algebra of $L(Y)$. Thus, it is necessary to know the structure constants of $L(Y)$; i.e., we need a set of consistent signs for the commutator relations among elements of a Chevalley basis of $L(Y)$. (Since all root strings in $\Sigma(Y)$ have length 1, the constants involved are either 1
or -1 .) In Section 4.2 of [6], a method for constructing a set of structure constants is described. It involves choosing a set of "extraspecial" pairs (r, s) of roots. The structure constants, $N_{r, s}$, where $\left[e_{r}, e_{s}\right]=N_{r, s} e_{r}+s$, may be chosen arbitrarly for these pairs. Then, using Theorem 4.1.2 of [6], one generates the remaining structure constants.

The set of extraspecial pairs is chosen by first fixing a total ordering on the space V containing the roots. We do this as follows. Let $v_{1}=\beta_{1}, v_{2}=\beta_{3}, v_{3}=\beta_{4}, v_{4}=\beta_{2}, v_{5}=\beta_{5}, v_{6}=\beta_{6}$. Then, we say $0 \prec \Sigma c_{j} v_{j}$ if and only if the first nonzero coefficient c_{j} is positive. An ordered pair (r, s) is said to be special if $r+s \in \Sigma(Y)$ and $0<r<s$. An ordered pair (r, s) is said to be extraspecial if (r, s) is special and if for all special pairs $\left(r_{1}, s_{1}\right)$ with $r+s=r_{1}+s_{1}$, we have $r \underline{r_{1}}$. Then, every root in $\Sigma^{+}(Y)$ which is the sum of two roots in $\Sigma^{+}(Y)$ can be uniquely expressed as a sum of an extraspecial pair. We choose $N_{r, s}=1$ for all extraspecial pairs.
(5.4). Let (A, Y, V) be as in (5.3), so $p>2$. Then one of the following holds: (i) $\lambda \mid T_{Y}=(p-3) \lambda_{1}$ or $(p-3) \lambda_{6}$, for $p>3$.
(ii) $\lambda I T_{Y}=\lambda_{1}+(p-2) \lambda_{3}$ or $\lambda_{6}+(p-2) \lambda_{5}$, for $p>2$.

Proof: In view of (5.3) and (1.1), it will suffice to work with the Lie algebras $L(A) \leq L(Y)$. Actually, we do all computations inside of the universal enveloping algebra of $L(Y)$, where we view $L(Y)$ as a subalgebra of its universal enveloping algebra. (See Section 17 of [9].) Let $\Pi(A)=$ $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ and $\Pi(Y)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right\}$ be labelled as throughout. Let $\left\{e_{\beta_{i}}, f_{j} \mid 1 \leq i \leq 6\right\}$ be the corresponding elements of $L(Y)$. Let $\left\langle v^{+}\right\rangle$be the unique $1-$ space of V such that $e_{\beta_{j}} v^{+}=0$ for $1 \leq i \leq 6$. Then we have the elements $e_{\alpha_{j}}$ of $L(A)$ as follows:
(5.4.1). $e_{\alpha_{1}}=e_{\beta_{2}} \quad e_{\alpha_{2}}=e_{\beta_{4}}$,

$$
e_{\alpha_{3}}=e_{\beta_{3}}+e_{\beta_{5}}, \quad e_{\alpha_{4}}=e_{\beta_{1}}+e_{\beta_{6}}
$$

In the following, we will consider the possible modules VIY given
inductively by repeated applications of Theorem (8.1) of [12]. In all cases except the two in the statement of the result, we will produce a vector $w \in V-\left\langle v^{+}\right\rangle$, which is a maximal vector for $L^{+}(A)$, the Lie subalgebra of $L(A)$ generated by $e_{\alpha_{1}}$, for $1 \leq i \leq 4$. Thus, $L(A)$ acts reducibly on V / Y except in these two configurations. (Note that (1.34) is frequently used in the check that w is a maximal vector.)

By Theorem (8.1) of [12], the C_{3} parabolic of A will act nontrivially on $\left\langle v^{+}\right\rangle$in every possible configuration. (For convenience, we will refer to (8.1) of [12] simply as (8.1) for the next few results.) Suppose $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=3,4,5,6$, as in the first configuration of (8.1) (c). Then, (8.1)(d) implies that $\lambda I T_{Y}=a \lambda_{1}$, for some $a>0$. Consider the vector $w=\left(-f_{(1,1,2,2,1,0)} f_{1}-f_{12345} f_{134}+f_{(1,1,1,2,1,0)^{f}}{ }_{13}+f_{1234} f_{1345}\right.$ $\left.-(a+3) f_{(1,1,2,2,1,1)}+(a+3) f_{(1,1,1,2,2,1)}\right) v^{+}$. Then w is a maximal vector for $L^{+}(A)$. Moreover, if a $\neq p-3$, then $w \neq 0$, as $e_{(1,1,1,2,2,1)} w=$ $(a+3) h_{(1,1,1,2,2,1)} v^{+}=a(a+3) v^{+}$. Thus, if $\lambda I T_{Y}=a \lambda_{1}$, (i) holds.

In the configuration where $\lambda I T_{Y}=b \lambda_{3}+x \lambda_{2}$, for $1 \neq b=p-1$ and $p>x \geq 0,(8.1)(d)$ implies that $x=0$ or $x \neq 0$ and $x+b+2 \equiv 0(\bmod p)$. Suppose $x=0$. Consider the vector $w=\left(f_{(1,1,2,2,1,0)}+f_{(1,1,1,2,1,0)} f_{3}+\right.$ $f_{12345} f_{34}+f_{1345} f_{234}-2 f_{2345} f_{134}+f_{(0,1,1,2,1,1)} f_{3}-f_{23456} f_{34}+$ $\left.f_{3456} f_{234}+f_{(0,1,1,2,2,1)}\right) v^{+}$. (Recall, $p>2$.) Using the fact that $b=p-1$, we can show that $f_{13} f_{34} v^{+}=f_{134} f_{3} v^{+}$. Then, applying other elements of $L(Y)$ to this equation and using commutator relations, we obtain other such dependence relations. These are necessary to show that, in fact, $L^{+}(A) w=0$. Moreover, $w \neq 0$ since $e_{(0,1,1,2,2,1)} w=h_{(0,1,1,2,2,1)} v^{+}=b v^{+}$. Thus, $L(A)$ does not act irreducibly on V. Suppose now that $\lambda \mid T_{Y}=b \lambda_{3}+$ $x \lambda_{2}$ and $x \neq 0$. Then, since $x+b+2 \equiv 0(\bmod p)$, and $b=p-1$, we have $x=b=p-1$. Let $w=\left(f_{1234} f_{3}-f_{234} f_{13}-f_{12345}+f_{1345} f_{2}-f_{23456}+\right.$ $\left.f_{3456} f{ }_{2}\right) v^{+}$. Then $L^{+}(A) w=0$ and $w \neq 0$ as $e_{12345} w=-b v^{+}$. Thus, $L(A)$ does not act irreducibly on V.

Consider next the configuration where $\lambda I T_{Y}=c \lambda_{1}+b \lambda_{3}+x \lambda_{2}$,
for $c \neq 0 \neq b, c+b=p-1$ and $p>x \geq 0$. If $x=0$, let $w=\left((b+2) f_{(0,1,1,2,2,1)}+\right.$
$f_{(0,1,1,2,1,1)} f_{3}+f_{3456} f_{234}-f_{23456} f_{34}+f_{(0,1,1,2,1,0)} f_{13}+$
$\left.(b+2) f_{(1,1,2,2,1,0)}+f_{1234} f_{345}-f_{2345} f_{134}\right) v^{+}$. Then $L^{+}(A) w=0$ and $e_{(0,1,1,2,2,1)} w=(b+2) h_{(0,1,1,2,2,1)} v^{+}=(b+2) b v^{+}$; so if $b \neq p-2$, then $w \neq 0$ and (ii) holds. Suppose λ is as above with $x>0$. Then (8.1)(d) implies that $b+x+2 \equiv 0(\bmod p)$. Let $w=\left(f_{234} f_{1}+(b+1) f_{1234}+f_{245} f_{1}+c f_{2456}\right) v^{+}$.
Then $L^{+}(A) w=0$ and $w \neq 0$, as $e_{34} w=f_{2} f_{1} v^{+} \neq 0$.
Finally, we must consider the case where $\lambda I T_{Y}=b \lambda_{3}+a \lambda_{4}+x \lambda_{2}$, for $a \neq 0 \neq b, a+b=p-1$ and $p>x \geq 0$. Theorem (8.1) implies that $x=0$. Let $w=\left(f_{2456} f_{45}-f_{456} f_{245}+a f_{(1,1,1,2,1,0)}-(a+1) f_{1234} f_{45}+a f_{1345} f_{24}+\right.$ $\left.f_{134} f_{245}+(a+1) f_{23456} f^{-}-f_{3456} f_{24}-a f_{2456} f_{34}+f_{1234} f_{34}-f_{134} f_{234}\right) v^{+}$. Then $L^{+}(A) w=0$ and $w \neq 0$, as $e_{(0,1,1,2,1,1)} w=a(a+1) v^{+}$.

This completes the proof of (5.4).

Definition: If $\mu=\lambda-\Sigma c_{j} \beta_{j}$ is a T_{Y} weight in V, then the level of μ is $\Sigma \mathrm{c}_{j}$. We define the level of a T_{A} weight $v=\lambda-\Sigma d_{j} \alpha_{j}$ similarly. For each $1 \leq i \leq 6, \beta_{i} \mid T_{A}=\alpha_{j}$ for some $1 \leq j \leq 4$, so level is preserved under restriction.
(5.5). Let Y have type E_{6} and let $A<Y$ be the fixed point subgroup of the graph automorphism of Y and assume $p>2$. Suppose V is a restricted irreducible, rational $k Y$-module with high weight λ. Let $\left\langle v^{+}\right\rangle$be the unique 1-space of VIY invariant under B_{Y}. If VIA is reducible, there exists a maximal vector for $B_{A}, w \in V-\left\langle v^{+}\right\rangle$, such that one of the following holds:
(i) $\lambda \mid T_{Y}=(p-3) \lambda_{1}$, for $p>3$, and $e_{(1,1,2,2,1,1)} w \in\left\langle v^{+}\right\rangle$.
(ii) $\lambda I T_{Y}=\lambda_{1}+(p-2) \lambda_{3}$, for $\left.p\right\rangle 2$, and $e_{(1,1,2,2,1,0)} w \in\left\langle v^{+}\right\rangle$or

$$
e_{(1,1,2,2,1,1)} w \in\left\langle v^{+}\right\rangle
$$

Proof: We first prove the following
Claim: There exists a maximal vector for $B_{A}, w \in V-\left\langle v^{+}\right\rangle$.

Note that the long word for the weyl group of E_{6}, w_{0}, lies in A. That is, there exists a coset representative, n_{0}, such that $w_{0}=n_{0} N_{Y}\left(T_{Y}\right)$ and $n_{0} \in A$. Indeed, one checks that $w_{0}=\left(s_{\beta_{1}}+2 \beta_{2}+2 \beta_{3}+3 \beta_{4}+2 \beta_{5}+\beta_{6}\right.$. $\left.s_{\beta_{4}} \cdot s_{\beta_{3}+\beta_{4}+\beta_{5}} \cdot s_{\beta_{1}}+\beta_{3}+\beta_{4}+\beta_{5}+\beta_{6}\right) N_{Y}(T \gamma)$, where s_{r} is the reflection corresponding to the root r. Now, since VIA is reducible, there exists $0<W<V$, an irreducible $A-s u b m o d u l e ~ o f ~ V$. If $V^{+} \notin W$, the result follows. So suppose $v^{+} \in W$. Since $n_{0} \in A, n_{0} v^{+} \in W$. Also, $n_{0} v^{+}$is a maximal vector for $B Y^{-}=\left\langle U_{-r} \mid r \in \Sigma^{-}(Y)\right\rangle T_{Y}$.

Consider now the $k Y$-module V^{*}, with high weight $-w_{0} \lambda$, by (1.11). Write $V=\left\langle n_{0} V^{+}\right\rangle \oplus V_{0}$ and define a vector $f^{+} \in V^{*}$ as follows: $f^{+}\left(n_{0} v^{+}\right)=1$ and $f^{+}\left(v_{0}\right)=0$ for $v_{0} \in V_{0}$. One checks that f^{+}is a maximal vector for $\mathrm{B}_{Y^{+}}$and has weight $-w_{0} \lambda$. Thus, $\left\langle f^{+}\right\rangle$is the unique 1-space of V^{*} with these properties. Moreover, $f^{+} \notin A n n(W)$ as $n_{0} V^{+} \in W$. Hence, in $V^{*} \mid A, A n n(W)$ is an invariant submodule, not containing the maximal vector f^{+}. So there exists a vector $g^{+} \in V^{*}-\left\langle f^{+}\right\rangle$, such that g^{+}is a maximal vector for B_{A}. So the claim holds for V^{*}. But $V^{*}|A \cong V| A$, and so the claim holds in general.

We now pass to the level of Lie algebras. Thus, there exists a vector $w \in V-\left\langle v^{+}\right\rangle$such that $L^{+}(A) w=0$, where $L^{+}(A)$ is the Lie algebra span of the elements $e_{\alpha_{i}}$ for $1 \leq i \leq 4$. And we may assume, $w \in V_{T_{A}}(v)$, for some dominant weight v. However, $w \notin V_{T_{Y}}(\mu)$, for any weight $\mu=\lambda-$ $\sum d_{i} \beta_{j}$. For otherwise, (5.4.1) and the linear independence of weight vectors with distinct weights would imply $w \in\left\langle v^{+}\right\rangle$. Choose w to have minimal level. Since $w \notin\left\langle v^{+}\right\rangle, w$ is not a maximal vector for $L^{+}(Y)$, the Lie algebra span of the elements $e_{\beta_{j}}$, for $1 \leq i \leq 6$. Thus, (5.4.1) implies that $e_{\beta_{1}} w \neq 0$ or $e_{\beta_{3}} w \neq 0$.

Case I: $e_{\beta_{1}} w \neq 0$.
Note that $e_{\beta_{1}} w \notin\left\langle v^{+}\right\rangle$, else $w \in V_{T_{A}}\left(\lambda-\alpha_{4}\right)=V_{T_{Y}}\left(\lambda-\beta_{1}\right)$, contradicting the opening remarks of the proof. Thus, by minimality, $e_{\beta_{1}} w$ is not a maximal vector for $L^{+}(A)$. Since $e_{\alpha_{i}} e_{1} W=0$ for $i=1,2$ and 4 ,
$e_{\alpha_{3}} e_{1} w=\left(e_{3}+e_{5}\right) e_{1} w=e_{13} w \neq 0$. Here also $e_{13} w \notin\left\langle v^{+}\right\rangle$, else $w \in V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{3}\right)$. So by minimality, $e_{13} W$ is not a maximal vector for $L^{+}(A)$. Now, $e_{\alpha_{i}} e_{13} w=0$ for $i=1,3$ and 4 , so $e_{\alpha_{2}} e_{13} w=e_{134} w \neq 0$. As above, $e_{134} w \notin\left\langle v^{+}\right\rangle$, and so is not a maximal vector for $L^{+}(A)$. But, $e_{\alpha_{j}} e_{134} w=0$ for $i=2$ and 4. Thus, $e_{\alpha_{1}} e_{134} w \neq 0$ or $e_{\alpha_{3}} e_{134} w \neq 0$.

Suppose $e_{\alpha_{1}} e_{134} W=e_{1234} W \neq 0$. Since the only T_{Y} weight restricting to $\lambda-\alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}$ is $\lambda-\beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}, e_{1234} w \notin\left\langle v^{+}\right\rangle$and so is not a maximal vector for $L^{+}(A)$. Since $e_{\alpha_{j}} e_{1234} W=0$ for $i=1,2$ and 4, $e_{\alpha_{3}} e_{1234} W=e_{12345} W \neq 0$. Suppose now that $e_{\alpha_{3}} e_{134} W=e_{1345} W \neq 0$. Note that $e_{1345} w \notin\left\langle v^{+}\right\rangle$, else the opening remarks of the proof imply that $\lambda I T_{Y}=\lambda_{1}+(p-2) \lambda_{3}$ and $w \in V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{3}-\beta_{4}-\beta_{5}\right) \oplus$ $V_{T_{Y}}\left(\lambda-\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}\right) \oplus V_{T_{Y}}\left(\lambda-\beta_{1}-2 \beta_{3}-\beta_{4}\right)$. So $w=a f_{1345} V^{+}+$ $b f_{3456} v^{+}+c f_{134} f_{3} v^{+}$, for some $a, b, c \in k$. But $e_{\alpha_{4}} w=0$ implies that $b=0$, $e_{\alpha_{2}} w=0$ implies that $c=0$ and $e_{\alpha_{3}} w=0$ implies that $a=0$, contradicting the original choice of w. So by minimality $e_{1345} w$ is not a maximal vector for $L^{+}(A)$. Now $e_{\alpha_{i}} e_{1345} W=0$ for $i=2$, 3. In fact $e_{\alpha_{4}} e_{1345} W=$ $e_{13456} w=0$, as $e_{13456} \in L^{+}(A)$. (We use here the fact that $p>2$.) Thus, $e_{\alpha_{1}} e_{1345} W=e_{12345} W \neq 0$, in this case also.

Now, if $e_{12345} w \in\left\langle v^{+}\right\rangle, w \in V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}-2 \alpha_{3}-\alpha_{4}\right)$. But, $\lambda-\alpha_{1}-\alpha_{2}-2 \alpha_{3}-\alpha_{4}$ is not a dominant weight, with λ as given. Thus, $e_{12345} w \notin\left\langle v^{+}\right\rangle$, and so is not a maximal vector for $L^{+}(A)$. Now, $e_{\alpha_{j}} e_{12345} w=0$ for $i=1$ and 3 . In fact, $e_{\alpha_{4}} e_{12345} w=e_{123456} w=0$, as $e_{123456} \in L^{+}(A)$. Hence $e_{\alpha_{2}} e_{12345} W=e_{(1,1,1,2,1,0)} w \neq 0$. Note that $e_{(1,1,1,2,1,0)} w \notin\left\langle v^{+}\right\rangle$, else $w \in V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}-2 \alpha_{3}-\alpha_{4}\right)$. But $\lambda-\alpha_{1}-2 \alpha_{2}-2 \alpha_{3}-\alpha_{4}$ is not a dominant weight. Thus, by minimality, $e_{(1,1,1,2,1,0)} W$ is not a maximal vector for $L^{+}(A)$. Now,
$e_{\alpha_{i}} e_{(1,1,1,2,1,0)} w=0$ for $i=1$ and 2. In fact $e_{\alpha_{4}} e_{(1,1,1,2,1,0)} w=0$, as $e_{(1,1,1,2,1,1)} \in L^{+}(A)$. Hence $e_{\alpha_{3}} e_{(1,1,1,2,1,0)} w=e_{(1,1,2,2,1,0)} w \neq 0$. Suppose $e_{(1,1,2,2,1,0)} w \in\left\langle v^{+}\right\rangle$. Then $w \in V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}-3 \alpha_{3}-\alpha_{4}\right)$. Since $\lambda-\alpha_{1}-2 \alpha_{2}-3 \alpha_{3}-\alpha_{4}$ is dominant only if $\lambda I T_{Y}=\lambda_{1}+(p-2) \lambda_{3}$, we have
one of the configurations of the result.
Suppose now that $e_{(1,1,2,2,1,0)} w \notin\left\langle v^{+}\right\rangle$and so is not a maximal vector for $L^{+}(A)$. Since $e_{\alpha_{i}} e_{(1,1,2,2,1,0)} W=0$ for $i=1,2$ and 3 , we have $e_{\alpha_{4}} e_{(1,1,2,2,1,0)} w=e_{(1,1,2,2,1,1)} W \neq 0$. Note that $e_{\alpha_{j}} e_{(1,1,2,2,1,1)} w=0$ for $1 \leq i \leq 4$, as $e_{(1,1,2,2,2,1)} \in L^{+}(A)$. So by minimality, $e_{(1,1,2,2,1,1)} w \in\left\langle v^{+}\right\rangle$.

This completes the consideration of Case I.
Case II: $e_{\beta_{3}} w \neq 0$.
Note that $e_{\beta_{3}} w \notin\left\langle v^{+}\right\rangle$, else $w \in V_{T_{A}}\left(\lambda-\alpha_{3}\right)=V_{T_{Y}}\left(\lambda-\beta_{3}\right)$, contradicting the opening remarks of the proof. Thus, by minimality, $e_{\beta_{3}} w$ is not a maximal vector for $L^{+}(A)$. Since, $e_{\alpha_{i}} e_{\beta_{3}} w=0$ for $i=1,3$, we have $e_{\alpha_{2}} e_{\beta_{3}} w=e_{34} w \neq 0$ or $e_{\alpha_{4}} e_{\beta_{3}} w=-e_{13} w \neq 0$. If $e_{13} w \neq 0$, we may refer to Case I. So suppose $e_{34} w \neq 0$. Note that $e_{34} w \notin\left\langle v^{+}\right\rangle$, else $w \in V_{T_{Y}}\left(\lambda-\beta_{3}-\beta_{4}\right)$, contradicting the opening remarks of the proof. Hence, by minimality, $e_{34} w$ is not a maximal vector for $L^{+}(A)$.

Now $e_{\alpha_{2}} e_{34} w=0$, and in fact, $e_{\alpha_{3}} e_{34} w=0$, as $e_{345} \in L^{+}(A)$. Thus, $e_{\alpha_{1}} e_{34} w=e_{234} w \neq 0$ or $e_{\alpha_{4}} e_{34} w=-e_{134} w \neq 0$. If $e_{134} w \neq 0$ we may refer to Case I. So suppose $e_{234} w \neq 0$. Then $e_{234} w \notin\left\langle v^{+}\right\rangle$, as above, and so is not a maximal vector for $L^{+}(A)$. But $e_{\alpha_{i}} e_{234} w=0$ for $i=1,2$. In fact, $e_{\alpha_{3}} e_{234} W=0$, as $e_{2345} \in L^{+}(A)$. Hence, $e_{\alpha_{4}} e_{234} W=-e_{1234} W \neq 0$. But now we may refer to Case I.

This completes the proof of (5.5).
(5.5). Let (A, Y) be as in (5.5), so $p>2$. If $\lambda \mid T_{Y}=(p-3) \lambda_{1}$, for $p>3$, VIA is irreducible.

Proof: Suppose false; i.e., suppose VIA is reducible. Then (5.5) implies that there exists $w \in V-\left\langle v^{+}\right\rangle$, a maximal vector for B_{A}, such that $e_{(1,1,2,2,1,1)} w \in\left\langle v^{+}\right\rangle$. Hence, $e_{\alpha_{j}} w=0$ for $1 \leq i \leq 4$, where we now view v as a module for $L(A)$. Now, $w \in V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}-3 \alpha_{3}-2 \alpha_{4}\right)$. The nontrivial T_{Y} weights restricting to $\lambda-\alpha_{1}-2 \alpha_{2}-3 \alpha_{3}-2 \alpha_{4}$ are
$\lambda-2 \beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}, \lambda-\beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}-\beta_{6}$, and $\lambda-\beta_{1}-\beta_{2}-\beta_{3}-2 \beta_{4}-2 \beta_{5}-\beta_{6}$. The last two weights are conjugate to $\lambda-\beta_{1}$ and so have multiplicity 1. A spanning set for the weight space $V_{T_{Y}}\left(\lambda-2 \beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}\right)$ is $w_{1}=f_{(1,1,2,2,1,0)} f_{\beta_{1}} V^{+}, w_{2}=$ $f_{12345}{ }^{f} 134{ } v^{+}, w_{3}=f_{(1,1,1,2,1,0)} f_{13} v^{+}$and $w_{4}=f_{1234}{ }^{f} 1345 v^{+}$. Hence $w=\Sigma c_{j} w_{j}, 1 \leq i \leq 6$, for some $c_{j} \in k$ and $w_{5}=f_{(1,1,2,2,1,1)} v^{+}$and $w_{6}=$ $f_{(1,1,1,2,2,1)} v^{+}$.

Applying $e_{\alpha_{1}}, 1 \leq i \leq 4$, and e_{2345} (an element of $L^{+}(A)$) to w, we find that $L^{+}(A) w=0$ only if $c_{5}=0=c_{6}$. So $w \in V_{T_{Y}}\left(\lambda-2 \beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}\right)$. But, the linear independence of weight vectors with distinct weights and (5.4.1) imply that $e_{\beta_{i}} w=0$, for $1 \leq i \leq 6$. Since $w \notin\left\langle v^{+}\right\rangle$, this is a contradiction.

This completes the proof of (5.6).ם
(5.7). Let (A, Y) be as in (5.5), so $p>2$. If $\lambda \mid T_{Y}=\lambda_{1}+(p-2) \lambda_{3}$, for $p>2$, then VIA is irreducible.

Proof: Suppose false. Then (5.5) implies that there exists $w \in V-\left\langle v^{+}\right\rangle$a maximal vector for B_{A} such that $e_{(1,1,2,2,1,0)} w \in\left\langle v^{+}\right\rangle$or $e_{(1,1,2,2,1,1)} w \in\left\langle v^{+}\right\rangle$. In particular, $L^{+}(A) w=0$.

Case I: $e_{(1,1,2,2,1,0)} w \in\left\langle v^{+}\right\rangle$.
Then $w \in V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}-3 \alpha_{3}-\alpha_{4}\right)$. The nontrivial T_{Y} weights restricting to $\lambda-\alpha_{1}-2 \alpha_{2}-3 \alpha_{3}-\alpha_{4}$ are $\mu_{1}=\lambda-\beta_{2}-\beta_{3}-2 \beta_{4}-2 \beta_{5}-\beta_{6}$, $\mu_{2}=\lambda-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}-\beta_{6}, \mu_{3}=\lambda-\beta_{1}-\beta_{2}-3 \beta_{3}-2 \beta_{4}$, and $\mu_{4}=\lambda-\beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}$. Let $w_{1}=f_{(0,1,1,2,2,1)} v^{+}$, $w_{2}=f_{(0,1,1,2,1,1)} f_{3} v^{+}, w_{3}=f_{3456} f_{234} v^{+}, w_{4}=f_{23456} f_{34} v^{+}$, $w_{5}=f_{1234} f_{34} f_{3} v^{+}, w_{6}=f_{(1,1,1,2,1,0)} f_{3} v^{+}, w_{7}=f_{(1,1,2,2,1,0)} v^{+}$, $w_{8}=f_{1234}{ }^{f} 345 V^{+}$, and $w_{9}=f_{2345}{ }^{f} 134 V^{+}$. Then $V_{T_{Y}}\left(\mu_{1}\right)=\left\langle w_{1}\right\rangle$, $V_{T_{Y}}\left(\mu_{2}\right)=\left\langle w_{2}, w_{3}, w_{4}\right\rangle, V_{T_{Y}}\left(\mu_{3}\right)=\left\langle w_{5}\right\rangle$ and $V_{T_{Y}}\left(\mu_{4}\right)=\left\langle w_{i} \mid 6 \leq i \leq 9\right\rangle$. Thus, $w=\Sigma c_{j} w_{j}$, for some $c_{j} \in k, 1 \leq i \leq 9$.

Applying $e_{2345}, e_{345}, e_{\beta_{2}}, e_{34}-e_{45}$ and $e_{134}+e_{456}$ (all elements of
$\left.L^{+}(A)\right)$ to w, we find that $L^{+}(A) w=0$ only if $c_{6}=-c_{7}=c_{8}=-c_{9}$, $c_{1}=0=c_{5}$ and $c_{2}=c_{3}=-c_{4}$.

We now claim that $w \in\left\langle v^{+}\right\rangle$, which will contradict the choice of w. It suffices to show that $e_{\beta_{j}} w=0$ for $1 \leq i \leq 6$. By hypothesis, $e_{\beta_{2}} w=0=e_{\beta_{4}} w$. Consider now $e_{\beta_{1}} w=c_{6}\left(f_{(0,1,1,2,1,0)} f_{\beta_{3}}+f_{234} f_{345}-\right.$ $\left.f_{2345}{ }^{f} 34\right) V^{+}$. It is a straightforward check that $e_{\beta_{i}}\left(e_{\beta_{1}} w\right)=0$ for $1 \leq i \leq 6$. Thus $e_{\beta_{1}} w=0$; so e $e_{\beta_{6}} w=0$.

Now $e_{\alpha_{3}} w=e_{\beta_{3}} w+e_{\beta_{5}} w=0$ and since $e_{\beta_{3}} w \in V_{T_{Y}}\left(\lambda-\beta_{2}-\beta_{3}-2 \beta_{4}\right.$ $\left.-\beta_{5}-\beta_{6}\right) \oplus V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{2}-\beta_{3}-2 \beta_{4}-\beta_{5}\right)$ and $e_{\beta_{5}} w \in V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{2}-2 \beta_{3}\right.$ $-2 \beta_{4}$), we must have $e_{\beta_{3}} w=0=e_{\beta_{5}} w$. Hence, $e_{\beta_{j}} w=0$ for $1 \leq i \leq 6$, and $w \in\left\langle v^{+}\right\rangle$as claimed. This completes the consideration of Case I.

Case II: $e_{(1,1,2,2,1,1)} w \in\left\langle v^{+}\right\rangle$.
Then, $w \in V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}-3 \alpha_{3}-2 \alpha_{4}\right)$. The nontrivial T_{Y} weights restricting to $\lambda-\alpha_{1}-2 \alpha_{2}-3 \alpha_{3}-2 \alpha_{4}$ are $\mu_{1}=\lambda-2 \beta_{1}-\beta_{2}-3 \beta_{3}-2 \beta_{4}$, $\mu_{2}=\lambda-\beta_{1}-\beta_{2}-\beta_{3}-2 \beta_{4}-2 \beta_{5}-\beta_{6}, \mu_{3}=\lambda-\beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}-\beta_{6}$ and $\mu_{4}=\lambda-2 \beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}$. Also, $V_{T_{Y}}\left(\mu_{1}\right)=\left\langle w_{1}\right\rangle, V_{T_{Y}}\left(\mu_{2}\right)=\left\langle w_{2}\right\rangle$, $V_{T_{Y}}\left(\mu_{3}\right)=\left\langle w_{i} \mid 3 \leq i \leq 7\right\rangle$ and $V_{T_{Y}}\left(\mu_{4}\right)=\left\langle w_{k} \mid 8 \leq k \leq 10\right\rangle$, where $w_{1}=f_{1234} f_{13} f_{34} v^{+}, w_{2}=f_{(1,1,1,2,2,1)} v^{+}, w_{3}=f_{(1,1,2,2,1,1)} v^{+}$, $w_{4}=f_{13456} f_{234} v^{+}, w_{5}=f_{23456} f_{134} v^{+}, w_{6}=f_{123456} f_{34} v^{+}$, $w_{7}=f_{(0,1,1,2,1,1)} f_{13} v^{+}, w_{8}=f_{(1,1,2,2,1,0)} f_{1} v^{+}, w_{9}=f_{12345} f_{134} v^{+}$, $w_{10}=f_{(1,1,1,2,1,0)} f_{13} v^{+}$.

Applying $e_{\alpha_{4}}, e_{24}, e_{2345}, e_{1234}+e_{2456}$ and $e_{134}+e_{456}$ (all elements of $L^{+}(A)$, we see that $L^{+}(A) w=0$ only if $c_{j}=0$ for $i=1,2,8,9,10$. So $w \in V_{T_{Y}}\left(\mu_{3}\right)$. But (5.4.1) and the linear independence of weight vectors with distinct weights implies $\mathrm{e}_{\beta_{j}} w=0$ for $1 \leq i \leq 6$. But this implies $w \in\left\langle v^{+}\right\rangle$. Contradiction.

This completes the proof of (5.7). \square

The remainder of this chapter is devoted to proving that there are no examples (A, Y, V) in the main theorem with A simple, of rank 3 and Y of
type E_{n}, nor with (A, p) special and rankA >2. This will complete the proof of Theorem (5.0).
(5.8). Suppose rank $A=3$ with (A, p) not special, $L_{A^{\prime}}$ is of type A_{2} with $\operatorname{dimV}{ }^{1}\left(Q_{A}\right)>1$. Then $L_{y}{ }^{\prime}=L_{1} \times L_{2}$, with L_{i} of type A_{2} or D_{4}. Moreover, if L_{i} has type D_{4}, then $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $1 \leq j \leq 5$.

Proof: If $L_{Y}{ }^{\prime}$ is quasisimple, Theorem (4.0) implies that $L_{Y}{ }^{\prime}$ is of exceptional type. Then (6.0) implies that $L_{Y}{ }^{\prime}=E_{6}$ and $Q_{Y} / K_{\beta_{7}}$ is a 27-dimensional irreducible $L_{A}{ }^{\prime}$ module. Thus, Z_{A} induces scalars on $Q_{Y} / K_{\beta_{7}}$, forcing $Q_{A} K_{\beta_{7}} / K_{\beta_{7}}$ to be an L_{A}. submodule of $Q_{Y} / K_{\beta_{7}}$. Since $\operatorname{dim}_{A}<27, Q_{A} \leq K_{\beta_{7}}$, contradicting (2.3). Thus, $L_{Y}{ }^{\cdot}$ is not a quasisimple.

By size retrictions, $L_{\gamma^{\prime}}=L_{1} \times L_{2}$, where L_{i} is a simple algebraic group of classical type. Hence, (1.5) implies $Z_{A} \leq Z_{Y}$. Notice, if A_{2} is embedded in D_{5}, acting reducibly on the natural module for D_{5}, A_{2} lies in a proper parabolic of D_{5}. Thus, the minimality of P_{Y} and the Main Theorem of [12] imply that L_{i} has type A_{2} or D_{4}. Suppose $L_{i}=D_{4}$. Since P_{Y} is minimal, $\rho_{i}\left(L_{A^{\prime}}\right)$ is either irreducible on $Q_{Y} / K_{\beta_{1}}$, or $p=3$ and $L_{A^{\prime}}$ acts on $Q_{Y} / K_{\beta_{1}}$ with composition factors of dimensions 1 and 7. Thus, $Q_{A} \leq K_{\beta_{1}}$ and by (2.3), $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $1 \leq j \leq 5 . \square$
(5.9). If (A, L_{A}) is of type $\left(B_{3}, B_{2}\right)$ and $p>2$, then $\operatorname{dimV}^{1}\left(Q_{A}\right)=1$.

Proof: Suppose $\operatorname{dimV}^{1}\left(Q_{A}\right)>1$. Then $L_{Y^{\prime}}$ is not a simple algebraic group. For otherwise, Theorem (4.0) implies $L_{Y}{ }^{\prime}$ is of exceptional type. But the result of Chapter 7 indicates that there is no such embedding. Thus $Y=E_{8}$ and $L_{Y}{ }^{\prime}$ is of type $A_{3} \times A_{3}$ or $A_{3} \times A_{4}$. Also, the projection of L_{A} ' into each component of $L_{Y}{ }^{\prime}$ must act irreducibly on the natural module for that component, as P_{Y} is minimal. Note that $h_{\alpha_{3}}(-1) \in Z(A) \leq$ $Z(Y)=\{1\}$. Since Y is simply connected, $h_{\alpha_{3}}(-1)$ must be in the kernel of the 4-dimensional representation of L_{A}. But it is easy to check that this is not the case. Contradiction. \square
(5.10). If A is of type A_{3} or B_{3}, with (A, p) not special, and L_{A} is of type A_{2}, then $\operatorname{dimV}{ }^{1}\left(Q_{A}\right)=1$.

Proof: Suppose false. Let $\Pi\left(L_{A}\right)=\left\{\alpha_{1}, \alpha_{2}\right\}$, so $\Pi(A)-\Pi\left(L_{A}\right)=\left\{\alpha_{3}\right\}$. $B y$ (5.8), $L_{y}{ }^{\prime}=L_{1} \times L_{2}$, with L_{j} of type A_{2} or D_{4}. Let q_{j} be the field twist on the embedding of L_{A} ' in L_{j} for $\mathfrak{i}=1$,2. Thus, (1.5) implies $Z_{A} \leq Z_{Y}$. Suppose $L_{1}=D_{4}$. Then $Y=E_{8}, \Pi\left(L_{1}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right\}, \Pi\left(L_{2}\right)=\left\{\beta_{7}, \beta_{8}\right\}$, and $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $1 \leq j \leq 5$. By (1.23) and (5.9), $\lambda \mid T_{A}=q\left(c \mu_{1}+d \mu_{2}+c \mu_{3}\right)$ if $A=A_{3}$ or $\lambda I T_{A}=q c \mu_{1}$ if $A=B_{3}$, with $\lambda I T_{Y}=x \lambda_{6}+c \lambda_{j}+d \lambda_{k}$ where $\{j, k\}=7,8$ and q is some p-power. If $p=3,0 \leq c, d \leq 2$ and (1.26) and (1.32) imply $\operatorname{dim} V|A<\operatorname{dim} V| Y$. Hence, $p \neq 3$.

Since $p \neq 3, \rho_{1}\left(L_{A}\right)$ acts irreducibly on $V_{L_{1}}\left(-\beta_{6}\right)$ and (2.7) implies that $q_{1}=q_{2}$. One checks that if $\rho_{2}\left(h_{\alpha_{1}}(c)\right)=h_{\beta_{8}}\left(c q_{2}\right)$ and $\rho_{2}\left(h_{\alpha_{2}}(c)\right)=$ $h_{\beta_{7}}\left({ }^{(} q_{2}\right)$, the L_{A} composition factors of $Q_{Y} / K_{\beta_{6}}$ have high weights $q_{2}\left(\mu_{1}+2 \mu_{2}\right), q_{2}\left(2 \mu_{1}\right)$ and $q_{2} \mu_{2}$. By symmetry, if $\rho_{2}\left(h_{\alpha_{1}}(c)\right)=h_{\beta_{7}}\left(c q_{2}\right)$ and $\rho_{2}\left(h_{\alpha_{2}}(c)\right)=h_{\beta_{8}}\left(c Q_{2}\right)$, there is no L_{A} composition factor of $Q_{Y} / K_{\beta_{6}}$ isomorphic to a twist of $Q_{A} \alpha_{3}$. Thus, L_{A}. must project into L_{2} in the first way described.

We claim $\left\langle\lambda, \beta_{\sigma}+\beta_{7}\right\rangle=0$. For otherwise, since $V_{T_{Y}}\left(\lambda-\beta_{6}\right) \oplus$ $V_{T_{Y}}\left(\lambda-\beta_{\sigma}-\beta_{7}\right) \neq 0$, some nonidentity element from the set $U_{-\beta_{6}} \cdot U_{-} \beta_{6}-\beta_{7}$ must occur in the factorization of an element in $Q_{A}-Q_{A}$. However, $-\beta_{6}$ (respectively, $\left.-\beta_{6}-\beta_{7}\right)$ affords $T\left(L_{A}\right)$ weight $q_{2}\left(\mu_{1}+2 \mu_{2}\right)$ (respectively, $2 q_{2} \mu_{1}$). But no such weight vectors occur in $Q_{A} K_{\beta_{6}} / K_{\beta_{6}}$. Thus, if $L Y^{\prime}$ has type $D_{4} \times A_{2}$, $\lambda I T_{Y}=c \lambda_{8}$, for some $1<c<p$. Then (1.23) implies $\lambda I T_{A}=q_{2}\left(c \mu_{1}+c \mu_{3}\right)$ if $A=A_{3}$, and (5.9) implies $\lambda I T_{A}=q_{2} c \mu_{1}$, if $A=B_{3}$. In any case, $\operatorname{dimV}_{\beta_{6}}\left(Q_{Y}\right) \leq 3 / 2(c+1)(c+2)$, by (1.25) and (1.12).
 dimension $4 c(c+1)$. Contradiction.

Now consider the case where L_{i} has type A_{2} for $i=1,2$, and L_{1} and L_{2} are separated by exactly two nodes of the Dynkin diagram. For convenience, temporarily label as follows:
$L_{Y^{\prime}}=\left\langle U_{ \pm \gamma_{1}}, U_{ \pm \gamma_{2}}\right\rangle \times\left\langle U_{ \pm \gamma_{5}}, U_{ \pm \gamma_{6}}\right\rangle=L_{1} \times L_{2}, \gamma_{3}, \gamma_{4} \in \Pi(Y)-\Pi\left(L_{Y}\right)$, with $\left(\gamma_{i}, \gamma_{i+1}\right)<0$ for $1 \leq i \leq 5$. Then (2.8), (2.5) and (2.6) imply that only one of L_{1} and L_{2} act nontrivially on $v^{1}\left(Q_{Y}\right)$. Say $L_{1} v^{+} \neq v^{+}, L_{2} v^{+}=v^{+}$. Since $Q_{A} \ddagger K_{\gamma_{3}}$, we compare high weights of the L_{A} modules $Q_{A} K_{\gamma_{3}} / K_{\gamma_{3}}$ and $Q_{Y} / K_{\gamma_{3}}$ to see that $\rho_{1}\left(h_{\alpha_{1}}(c)\right)=h_{\gamma_{1}}\left(c q_{1}\right)$ and $\rho_{1}\left(h_{\alpha_{2}}(c)\right)=h_{\gamma_{2}}\left(c q_{1}\right)$. It is a check to see that the L_{Y} composition factor of Q_{Y} afforded by $U_{-\gamma_{3}}-\gamma_{4}$ has no 3-dimensional L_{A} ' submodule isomorphic to a twist of $Q_{A}{ }^{\alpha_{3}}$. But by (1.33), we may assume that if $Q_{A} \leq K_{\gamma_{4}},-\gamma_{4}$ is not involved in L_{A}. Hence, (2.11) implies that $Q_{A} \ddagger K_{\gamma_{4}}$.

Now, $Q_{A} \ddagger K_{\gamma_{3}}$ and $Q_{A} \ddagger K_{\gamma_{4}}$ and (2.9) imply that $A=B_{3}$. Moreover, (2.13) and (2.8) imply $\gamma_{3} I_{A}=q_{1} \alpha_{3}=\gamma_{4} I T_{A}$. By (5.9), $\left\langle\lambda, \gamma_{j}\right\rangle=0$ for $2 \leq i \leq 6$. Also, by (1.10), $q_{1}=1$ and so, if $\left\langle\lambda, \gamma_{1}\right\rangle=c$, for $0<c<p$, then $\left\langle\lambda, \alpha_{1}\right\rangle=c$. Now, the subgroup $x=\left\langle U_{ \pm \gamma_{1}}, U_{ \pm \gamma_{2}}, U_{ \pm \gamma_{3}}, U_{ \pm \gamma_{4}}, U_{ \pm \gamma_{5}}, U_{ \pm \gamma_{6}}\right\rangle$ of type A_{6} has a natural subgroup, B, of type B_{3}. Moreover, the X composition factor of VIY afforded by $\left\langle V^{+}\right\rangle$is not all of VIY as X is contained in the Levi factor of a proper parabolic of Y. But the B composition factor of VIY afforded by $\left\langle v^{+}\right\rangle$has the same high weight, as B_{3} module, as does VIA. Thus, dimVIA $<\operatorname{dimVIY}$. Hence, this configuration does not occur.

Consider now the case where L_{1} and L_{2} are separated by more than two nodes of the Dynkin diagram. Thus $Y=E_{8}, \Pi\left(L_{1}\right)=\left\{\beta_{1}, \beta_{3}\right\}$ and $\Pi\left(L_{2}\right)=\left\{\beta_{7}, \beta_{8}\right\}$. Then (2.13) and (2.3) imply that $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=$ $2,4,5,6$. We first note that only one of L_{1} and L_{2} acts nontrivially on $V^{1}\left(Q_{Y}\right)$. For otherwise (2.13) implies $\beta_{4} I_{A}=q_{1} \alpha_{3}, \beta_{6} I T_{A}=q_{2} \alpha_{3}$, and $\beta_{2} I_{A}=0=\beta_{5} I_{A}$. As well, we have $\beta_{1} I T_{A}=q_{1} \alpha_{1}, \beta_{3} I T_{A}=q_{1} \alpha_{2}$, $\beta_{8} I T_{A}=q_{2} \alpha_{1}, \beta_{7} I T_{A}=q_{2} \alpha_{2}$. Thus, there is no vector in VIY with T_{A} weight $\lambda-q \alpha_{3}$, for any p-power q, contradicting (2.14).

Note that A does not have type B_{3}. For otherwise, $\lambda I T_{A}=c q_{i} \mu_{1}$, for $\mathfrak{i}=1$ or 2 , and $\lambda I T_{Y}=c \lambda_{1}$ or $c \lambda_{8}$. And as above, considering the usual embedding of B_{3} in A_{6} we have dimVIA < dimVIY. Also, (1.23) and (1.10)
imply VIA is restricted; say $\lambda \mid T_{A}=c \mu_{1}+d \mu_{2}+c \mu_{3}$ Let $P_{Y}{ }^{\wedge}>B_{Y}{ }^{-}$be the parabolic subgroup of Y with Levi factor $L_{Y}{ }^{\wedge}=\left\langle L_{Y}, U_{ \pm \beta_{5}}\right\rangle$. Then $Q_{A} \leq Q_{Y}{ }^{\wedge}$ $=R_{U}\left(P_{Y}{ }^{\wedge}\right)$ and $Z_{A} \leq Z\left(L_{Y}\right)^{\circ}$ by (2.12). For the argument which follows, we may assume $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$ and $\left\langle\lambda, \beta_{7}+\beta_{8}\right\rangle \neq 0$. So $\lambda \mid T_{Y}=d \lambda 7+c \lambda_{8}$, β_{5} IT $A=0, \beta_{6}$ IT $A=\alpha_{3}, \beta_{7} I T_{A}=\alpha_{2}$ and $\beta_{8} I T_{A}=\alpha_{1}$. If $Q_{A} \leq K_{\beta_{4}}$, by (1.33) we may assume that $-\beta_{4}$ is not involved in $L_{A^{\prime}}$. Hence, by (2.11), there is a nontrivial image of $Q_{A} \alpha_{3}$ in $Q_{Y}{ }^{\wedge}\left(\beta_{6}, \beta_{4}\right)$. But $Q_{Y}{ }^{\wedge}\left(\beta_{6}, \beta_{4}\right)$ has no L_{A}. composition factor isomorphic to a twist of $Q_{A}{ }^{\alpha_{3}}$. Thus, $Q_{A} \not \ddagger K_{\beta_{4}}$ and $\beta_{4} I^{T} A=q_{1} \alpha_{3}$. Now, if $V_{T_{A}}\left(\lambda-\alpha_{2}-x \alpha_{3}\right) \neq 0$, then conjugating by $s_{\alpha_{3}}$, we see that $V_{T_{A}}\left(\lambda-\alpha_{2}-(c+1-x) \alpha_{3}\right) \neq 0$. So $x \leq c+1$. In particular, $q_{1}=1$, else $0 \neq f_{4567} v^{+} \in V_{T_{A}}\left(\lambda-\alpha_{2}-(q+1) \alpha_{3}\right)$. So $\beta_{1}\left|T_{A}=\alpha_{1}, \beta_{3}\right| T_{A}=\alpha_{2}$, and $\beta_{4} I^{T} A=\alpha_{3}$. Now, if $\left\langle\lambda, \beta_{7}\right\rangle \geq 2,\left(f_{67}\right)^{2} v^{+},\left(f_{567}\right)^{2} v^{+}, f_{4567} f_{7} v^{+}$and $f_{34567} v^{+}$are 4 linearly independent vectors in $V_{T_{A}}\left(\lambda-2 \alpha_{2}-2 \alpha_{3}\right)$. But (1.28) implies $\operatorname{dim} V_{T_{A}}\left(\lambda-2 \alpha_{2}-2 \alpha_{3}\right) \leq 3$. Thus, $\left\langle\lambda, \beta_{7}\right\rangle=1$. Also, $\left\langle\lambda, \beta_{8}\right\rangle>1$, else (1.23) implies dimVIA <dimVIY. If $\left\langle\lambda, \beta_{8}\right\rangle=c=\left\langle\lambda, \alpha_{1}\right\rangle=$ $\left\langle\lambda, \alpha_{3}\right\rangle$, we may assume $c \neq p-2$, else by (1.35), dimV $T_{A}\left(\lambda-\alpha_{2}-\alpha_{3}\right)=1$, but $f_{67} V^{+}$and $f_{567} V^{+}$are 2 linearly independent vectors in this weight space. Now by Theorem 3 of [3] and (1.28), if $c+1<p-1$, $\operatorname{dim} V_{T_{Y}}\left(\lambda-\beta_{7}-\beta_{8}\right)=\operatorname{dim} V_{T_{Y}}\left(\lambda-2 \beta_{7}-2 \beta_{8}\right)=\operatorname{dim} V_{T_{Y}}\left(\lambda-\beta_{7}-2 \beta_{8}\right)=2$. Thus, $\operatorname{dim}\left(V_{T_{Y}}\left(\lambda-2 \beta_{6}-2 \beta_{7}-2 \beta_{8}\right)+V_{T_{Y}}\left(\lambda-2 \beta_{5}-2 \beta_{6}-2 \beta_{7}-2 \beta_{8}\right)+\right.$ $V_{T_{Y}}\left(\lambda-\beta_{5}-2 \beta_{6}-2 \beta_{7}-2 \beta_{8}\right)+V_{T_{Y}}\left(\lambda-\beta_{4}-\beta_{5}-\beta_{6}-2 \beta_{7}-2 \beta_{8}\right)+$ $\left.V_{T_{Y}}\left(\lambda-\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}-2 \beta_{8}\right)+V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}-\beta_{8}\right)\right]>9$. But each of these weight spaces lies in $V_{T_{A}}\left(\lambda-2 \alpha_{1}-2 \alpha_{2}-2 \alpha_{3}\right)$, which has dimension at most 9 , by (1.28). Hence, we may assume $c+1>p-1$, so $c=p-1$. Now, (1.33) implies $\operatorname{dim} V_{T_{Y}}\left(\lambda-\beta_{7}-2 \beta_{8}\right)=2$ and since $\lambda-2 \beta_{7}-2 \beta_{8}$ is conjugate to $\lambda-\beta_{7}-2 \beta_{8}, \operatorname{dimV}_{T_{Y}}\left(\lambda-2 \beta_{7}-2 \beta_{8}\right)=2$. And again the dimension of the given sum of T_{Y} weight spaces exceeds 9 .
Thus, $\Pi\left(L_{Y}\right) \neq\left\{\beta_{1}, \beta_{3}, \beta_{7}, \beta_{8}\right\}$.
It remains to consider the case where L_{i} is of type A_{2} for $i=1,2$ and L_{1} and L_{2} are separated by exactly one node of the Dynkin diagram. For
convenience, temporarily label as follows: $\Pi\left(L_{1}\right)=\left\{\gamma_{1}, \gamma_{2}\right\}, \Pi\left(L_{2}\right)=$ $\left\{\gamma_{4}, \gamma_{5}\right\}, \quad \gamma_{3} \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $\left(\gamma_{i}, \gamma_{i+1}\right)<0$ for $1 \leq i \leq 4$. Then (2.7) implies that the field twists on the embeddings of L_{A} in L_{1} and in L_{2} are equal. Call this twist q. Thus, by (2.5) and (2.6), only one of L_{1} and L_{2} acts nontrivially on $v^{1}\left(Q_{Y}\right)$. Say, $L_{1} v^{+} \neq v^{+}$and $L_{2} v^{+}=v^{+}$.

Now we may assume $p>2$. For otherwise, $A=A_{3}$ and (1.23), (1.26) and (1.32) imply dimVIA < dimVIY. Then, we find that $Q_{Y} / K_{\gamma_{3}}$ has an L_{A}. composition isomorphic to a twist of $Q_{A} \alpha_{3}$ if and only if $h_{\alpha_{1}}(c)=h_{\gamma_{2}}(c q)$. $h_{\gamma_{4}}(c q)$ and $h_{\alpha_{2}}(c)=h_{\gamma_{1}}\left({ }^{(c q)} h_{\gamma_{5}}\left({ }^{(} q\right)\right.$. Then, considering the $T\left(L_{A}\right)$ weight vectors in the module $Q_{Y} / K_{\gamma_{3}}$, we see that $x_{-\alpha_{3}}(t)=x_{-\gamma_{2}-\gamma_{3}}\left(c_{1} t q\right)$. $x_{-\gamma_{3}-\gamma_{4}}\left(c_{2} t q\right) w$, where $c_{i} \in k$, with c_{1} and c_{2} not both zero, and $w \in K_{\gamma_{3}}$ Thus, $\gamma_{3} \mid T_{A}=q\left(\alpha_{3}-\alpha_{1}\right)$. In particular, $\left\langle\lambda, \gamma_{3}\right\rangle=0$. So if $\left\langle\lambda, \gamma_{1}\right\rangle=d$, $\left\langle\lambda, \gamma_{2}\right\rangle=c$, for some $0 \leq c, d<p$, then $\left\langle\lambda, \alpha_{1}\right\rangle=c q$ and $\left\langle\lambda, \alpha_{2}\right\rangle=d q$. If $A=B_{3}, d=0$ by (5.9). In fact, $c=0$ also, else $f_{\gamma_{2}}+\gamma_{3} V^{+}$is a nonzero vector in $V_{T_{A}}\left(\lambda-q \alpha_{3}\right)$. Thus, $A=A_{3}$ and (1.23) implies that $\left\langle\lambda, \alpha_{3}\right\rangle=c q$. Let $P \geq B_{Y}{ }^{-}$be the proper parabolic subgroup of Y with Levi factor $\left\langle U_{ \pm \gamma}\right|$ $1 \leq i \leq 5\rangle T_{Y}$. Then, considering the usual embedding of A_{3} in A_{5}, we see that $\operatorname{dim} V\left|A \leq \operatorname{dim} V^{1}\left(R_{U}(P)\right)<\operatorname{dim} V\right| Y$. This completes the proof of (5.10).ם
(5.11). If A has type C_{3}, with $p>2$, and L_{A} ' has type A_{2} with $\operatorname{dim} V^{1}\left(Q_{A}\right)>1$, then Y has type E_{8}, L_{Y} has type $A_{2} \times D_{4}$ and $\lambda \mid T_{Y}=c \lambda_{7}+d \lambda_{8}, d \neq 0,\left\langle\lambda, \alpha_{1}\right\rangle=c q,\left\langle\lambda, \alpha_{2}\right\rangle=d q$, for some p-power q.

Proof: By (5.8), $L_{y}{ }^{\prime}=L_{1} \times L_{2}$, where L_{i} has type A_{2} or D_{4}. Thus, (1.5) implies $Z_{A} \leq Z_{Y}$. Consider first the case where $L_{1}=D_{4}$. Then $Y=E_{8}, L_{Y}$ has type $D_{4} \times A_{2}$ and $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $1 \leq i \leq 5$.

Let q_{j} be the field twist on the embedding of L_{A} ' in L_{i}, for $i=1,2$. If $q_{1} \neq q_{2}, L_{A^{\prime}}$ acts irreducibly on $Q_{Y} / K_{\beta_{6}}$ or $p=3$ and $Q_{Y} / K_{\beta_{6}}$ has $L_{A^{\prime}}$ composition factors of dimensions 21 and 3 . Thus, since $Q_{A} \ddagger K_{\beta_{6}}, q_{1}=q_{2}$. If $\rho_{2}\left(h_{\alpha_{1}}(c)\right)=h_{\beta_{7}}\left(c q_{1}\right)$ and $\rho_{2}\left(h_{\alpha_{2}}(c)\right)=h_{\beta_{8}}\left(c q_{1}\right)$, the L_{A} composition factors of $Q_{Y} / K_{\beta_{6}}$ have high weights $\left\{q_{1}\left(2 \mu_{1}+\mu_{2}\right), q_{1} \mu_{1}, q_{1} 2 \mu_{2}\right\}$. By
symmetry, if $\rho_{2}\left(h_{\alpha_{1}}(c)\right)=h_{\beta_{8}}\left(c q_{1}\right)$ and $\rho_{2}\left(h_{\alpha_{2}}(c)\right)=h_{\beta_{7}}\left(c q_{1}\right)$, there is no L_{A} ' composition factor of $Q_{Y} / K_{\beta_{6}}$ isomorphic to a twist of $Q_{A}{ }^{\alpha_{3}}$. Thus, we see that $L_{A^{\prime}}$ must project onto L_{2} in the first way described and $\beta_{6} \mid Z_{A}=q_{1} \alpha_{3}$. Note that $\left\langle\lambda, \beta_{6}\right\rangle=0$ else a nonidentity element from $U_{-} \beta_{6}$ must occur in the factorization of some element of $Q_{A}{ }^{\alpha_{3}}$; but $-\beta_{6}$ does not afford a $T\left(L_{A}\right)$ weight in $\left(Q_{A}{ }^{\alpha_{3}}\right) q_{1 .}$. (See (2.4).) Also, if $\lambda \mid T_{Y}=$ $c \lambda_{7}+d \lambda_{8}$, then $\left\langle\lambda, \alpha_{1}\right\rangle=c q_{1}$ and $\left\langle\lambda, \alpha_{2}\right\rangle=d q_{1}$. Suppose $d=0 \neq c$. Then
 an $L_{Y}{ }^{\prime}$ composition factor of $V_{\beta_{6}}\left(Q_{Y}\right)$ of dimension $8 \cdot \operatorname{dim} V_{0}$, where V_{0} is the A_{2} module with high weight $(c-1) \eta_{1}+\eta_{2}$ and η_{1}, η_{2} are the fundamental dominant weights for A_{2}. The corollary to Theorems 3 and 4 in [3] implies $\operatorname{dim} V_{0}=c(c+2)$ if $c<p-1$ or $\frac{1}{2}(c+1)(c+2)+(c-1)$ if $c=p-1$. But $8 \cdot \operatorname{dim} V_{0}>3(c+1)(c+2)$ in each case, contradicting the bound on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$. Thus $d \neq 0$.

Now consider the case where L_{i} is of type A_{2} for $i=1,2$. Say $L_{1} v^{+} \neq v^{+}$. Since $p>2, Q_{A} \alpha_{3}$ is a 6-dimensional irreducible L_{A} module. So there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{1}\right) \neq 0$ and such that Q_{Y} / K_{γ} is isomorphic to a 3-dimensional irreducible L_{1} module. Thus, there exists $\gamma_{0} \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma_{0}, \Sigma L_{\mathfrak{j}}\right) \neq 0$ for $i=1,2$. For convenience, temporarily label as follows: $\Pi\left(L_{1}\right)=\left\{\gamma_{1}, \gamma_{2}\right\},\left(\gamma_{2}, \gamma_{0}\right) \neq 0$, $\Pi\left(L_{2}\right)=\left\{\gamma_{3}, \gamma_{4}\right\},\left(\gamma_{3}, \gamma_{0}\right) \neq 0$. Then (2.7) implies that the field twists on the embeddings of L_{A} in L_{1} and in L_{2} are equal. Call this twist q. Considering the L_{A} composition factors of $Q_{Y} / K_{\gamma_{0}}$, we have $h_{\alpha_{1}}(c)=$ $h_{\gamma_{1}}(c q) h_{\gamma_{4}}(c q)$ and $h_{\alpha_{2}}(c)=h_{\gamma_{2}}(c q) h_{\gamma_{3}}(c q)$.

We first claim that there does not exist $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\tau, \gamma_{4}\right) \neq 0$. For if there exists such a $\tau, Q_{Y} / K_{\tau}$ is a 3-dimensional irreducible L_{A} module and so $Q_{A} \leq K_{\tau}$. $B y(2.10),-\tau$ is not involved in $L_{A^{\prime}}$, so (2.11) implies that there is a nontrivial image of $Q_{A} \alpha_{3}$ in $Q_{Y}\left(\gamma_{0}, \tau\right)$, which is also a 3 -dimensional irreducible L_{A} ' module. Contradiction. As well, there does not exist $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\tau, \gamma_{3}\right) \neq 0$. For if there
exists such a τ, as above, $Q_{A} \leq K_{\tau}$, $-\tau$ is not involved in L_{A} and (2.11) applies. But $Q_{Y}\left(\gamma_{0}, \tau\right)$ has L_{A} composition factors of dimensions 8 and 1 (7 and 1 , if $\mathrm{p}=3$).

The above work implies $Y=E_{6}$ and $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{6}\right\}$. We may assume, by symmetry, that $\left\langle\lambda, \beta_{5}+\beta_{6}\right\rangle=0$, and by (2.3), $\left\langle\lambda, \beta_{2}\right\rangle=0$. Also, one checks that $x_{-\alpha_{3}}(t)=x_{-\beta_{4}}\left(c_{1} t q\right) w$, where $c_{1} \in K^{*}$ and $w \in K_{\beta_{4}}$. Thus, by (2.4), $\beta_{4} I^{I T} A=q \alpha_{3}$; and (2.12) implies $\beta_{2} I T_{A}=0$. Thus, $\left\langle\lambda, \beta_{4}\right\rangle=0$, else $f_{4} v^{+}$and $f_{24} v^{+}$are two linearly independent vectors in $v_{T_{A}}\left(\lambda-q \alpha_{3}\right)$.

We claim that $\left\langle\lambda, \alpha_{3}\right\rangle=0$. For since $\beta_{1} \mid T_{A}=q \alpha_{1}=\beta_{6} I T_{A}$, $\beta_{3} I T_{A}=q \alpha_{2}=\beta_{5} I T_{A}, \beta_{4} I T_{A}=q \alpha_{3}$, and $\left\langle\lambda, \beta_{4}\right\rangle=0$, there does not exist a vector in VIY with T_{A} weight $\lambda-q_{0} \alpha_{3}$ for any p-power q_{0}. So we have $\lambda \mid T_{A}=q\left(c \mu_{1}+d \mu_{2}\right)$ and $\lambda I T_{Y}=c \lambda_{1}+d \lambda_{3}$ for some $0 \leq c, d<p$.

Now let $X=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}, U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$. Then X has a natural subgroup, C, of type C_{3}. Moreover, v^{+}affords an X composition factor of VIY with dimension strictly less than dimVIY, as X is contained in the Levi factor of a proper parabolic of Y. But v^{+}affords a C composition factor of VIY with the same high weight as VIA, as C_{3} module. Thus, dimVIA < dimVIY. Contradiction.
(5.12). If (A, L_{A}) is of type $\left(C_{3}, C_{2}\right)$ with $p>2$, then $\operatorname{dimV}^{1}\left(Q_{A}\right)=1$.

Proof: Suppose false; i.e., suppose $\operatorname{dimV}^{1}\left(Q_{A}\right)>1$. We first claim that $L_{Y}{ }^{\prime}$ is not simple. The work of Chapter 7 indicates that $L_{Y}{ }^{\prime}$ is not a simple algebraic group of exceptional type. Hence, if $L_{Y}{ }^{\prime}$ is simple, Theorem (4.0) implies $Y=E_{8}$, $\lambda I T_{Y}=\lambda_{1}$ and $\left\langle\lambda, \alpha_{2}\right\rangle=2 q$, for some p-power q. However, this contradicts (5.11). Thus, $Y=E_{8}$ and $L_{Y}{ }^{\prime}$ is of type $A_{3} \times A_{3}$ or $A_{3} \times A_{4}$.

We first claim that $\left\langle\lambda, \alpha_{2}\right\rangle \neq 0$. For otherwise, (5.11) and the Main Theorem of [12] imply $\lambda \mid T_{A}=q \mu_{3}$ and dimVIA $<\operatorname{dimVIY}$. Hence, (5.11) implies $\lambda \mid T_{Y}=c \lambda_{7}+d \lambda_{8}$ with $d \neq 0$. Now $\left\langle U_{ \pm \beta_{j}} \mid j=6,7,8\right\rangle$ is a component of $L_{Y}{ }^{\prime}$ with the embedding of $L_{A}{ }^{\prime}$ in $L_{\gamma}{ }^{\prime}$ the natural embedding of classical groups, up to some twist. Thus, $\left\langle\lambda, \alpha_{2}\right\rangle=d q_{0}$ and
$\left\langle\lambda, \alpha_{3}\right\rangle=c q_{0}$ for some p-power q_{0}. In fact, since $d \neq 0$, (5.11) implies $\left\langle\lambda, \alpha_{1}\right\rangle=c q_{0}, \operatorname{soby}(1.10), q_{0}=1$. Now, let $x=\left\langle U_{ \pm \beta_{j}} \mid 2 \leq j \leq 8\right\rangle$. Then x has a natural subgroup of type C_{3}, call it C. (See IV_{8} on Table 1 of [12].) Moreover, v^{+}affords an X composition factor of VIY of dimension strictly less than dimVIY. But v^{+}affords a C composition factor of VIY with the same high weight as VIA, as C_{3} modules. Thus, dimVIA $<\operatorname{dimVIY}$.
Contradiction.
(5.13). If (A, Y, V) is an example in the main theorem, with Y of type E_{n} and rankA >2, then (A, p) is not special.

Proof: Suppose false
Case I: Suppose $p=2$ and A has type B_{k} or C_{k}.
We first claim that $\left\langle\lambda, \alpha_{j}\right\rangle>0$ for some $j>1$. For otherwise, applying induction to a maximal parabolic of A corresponding to α_{k}, rank restrictions, (5.1) - (5.11), (9.4) and the Main Theorem of [12] imply that $\lambda I T_{A}=q \mu_{1}$ or $\left(q+q_{0}\right) \mu_{1}$ and $\operatorname{dimVIA}=2 k$ or $(2 k)^{2}$, respectively. Also, $k<\operatorname{rank} Y$, by Theorem (4.1) of [12]. But then (1.32) and [8] imply dimVIY $\neq \operatorname{dimV} \mid A$. So $\left\langle\lambda, \alpha_{j}\right\rangle>0$ for some $j>1$, as claimed.

For the remainder of Case I considerations, let $\alpha=\alpha_{1}$; so L_{A} ' has type B_{k-1} or C_{k-1}, and $\operatorname{dimV}^{1}\left(Q_{A}\right)>1$. Suppose L_{γ}, has type D_{ℓ}, for some $\ell \geq$ 4. Then by (1.5), $Z_{A} \leq Z_{Y}$ and by (4.1) of [12], rank $L_{A}^{\prime}=k-1<$ rank L_{Y}. If L_{A} ' acts irreducibly on some module other than W, the natural module for $L^{\prime} \gamma^{\prime}$, the Main Theorem of [12] implies that either $L_{A}{ }^{\prime}$ acts irreducibly on the 2 fundamental spin modules for $L_{Y}{ }^{\prime}$, or $L_{A}{ }^{\prime}=B_{3}$, $L_{Y}{ }^{\prime}=D_{4}$ and L_{A} acts irreducibly on 2 of the 3 restricted 8-dimensional irreducible $L_{Y}{ }^{\prime}$ modules. But there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $v_{\gamma}\left(Q_{Y}\right) \neq 0$ and Q_{Y} / K_{γ} isomorphic to one of these two spin modules; while I_{α} is never isomorphic to one of these modules. Thus, W is the only $L_{Y}{ }^{\prime}$ module on which $L_{A^{\prime}}$ acts irreducibly. So $V^{1}\left(Q_{Y}\right) \cong W$. If $L_{Y}{ }^{\prime}=D_{7}$, then $\operatorname{dimV}^{1}\left(Q_{Y}\right)=14$, so $k=4$. However, the bound on $\operatorname{dim}_{\beta_{1}}\left(Q_{Y}\right)$ implies $\lambda I T_{Y}=\lambda_{8} . B y(4.1)$ of [12], the only remaining possibility is that
$L y^{\prime}=D_{4}, k=4$ and $\lambda I T_{A}=x \mu_{1}+q \mu_{4}$, for some p-power q. Induction, applied to the maximal parabolic of A corresponding to α_{k}, implies that x $=0, q_{1}$ or $q_{1}+q_{2}$, for q_{1} and q_{2} distinct p-powers. So $\operatorname{dimVIA}=16,128$, or 1024. As well, $\left\langle\lambda, \beta_{2}+\beta_{3}+\beta_{5}\right\rangle=1$ and $\left\langle\lambda, \beta_{4}\right\rangle=0$. Finally, using (2.3) to obtain more information about $\lambda \mid T_{Y}$, and (1.32) and [8], we see that $\operatorname{dimVIA} \neq \operatorname{dimVIY}$. Thus, no component of L_{Y} has type D_{ℓ}.

Suppose $A=B_{3}$ or C_{3}. The above work and (9.4) imply that L_{i} has type A_{3} for all i. Note that $\lambda_{I} T_{Y} \neq \lambda_{\ell}$ for any ℓ. For otherwise, $\lambda I T_{A}=q_{2} \times \mu_{1}+q_{2} \mu_{2}$ or $q_{1} \times \mu_{1}+q_{2} \mu_{3}$ for $x=0$ or 1 and for some p-powers q_{1} and q_{2}. Then Table 1 of [5] implies $\operatorname{dimV} \mid A=8,14,48$ or 64 ; so $\operatorname{dimV}|A \neq \operatorname{dimV}| Y$ by [8]. Now, in general, induction and rank restrictions imply dimVIA $\leq 6^{2} .8$ if $Y=E_{6}$ or E_{7} and $\operatorname{dimVIA} \leq 6.8^{3}$ if $Y=E_{8}$. But then the above remarks, (1.32) and [8] imply dimV|A $<\operatorname{dimV} \mid Y$. Hence, $A \neq B_{3}$ or C_{3}.

Now, suppose $A=C_{4}$ or B_{4}. A straightforward argument shows that $L_{Y}{ }^{\prime}=A_{5}$ and $\lambda I T_{A}=x \mu_{1}+q \mu_{2}$ for some p-power q. If $Y=E_{6}$ or E_{7}, induction (applied to the A_{3} maximal parabolic of A) implies that $x=0$ or q. So $\operatorname{dimVIA}=26$ or 112. But then (1.32) and [8] imply dimVIA $\neq \operatorname{dimVIY}$. So $Y=E_{8}$. By induction, $x=0, q_{1}, q$, or $q_{1}+q$, for some p-power $q_{1} \neq q$. Then, $\operatorname{dimV} \mid A=26,112,208$, or 896. But [8] and (1.32) imply dimVIA $<$ dimVIY. So $Y \neq B_{4}$ or C_{4}.

Suppose $A=B_{5}$ or C_{5}. The previous work of this result and the Main Theorem of [12] imply that $L_{Y}{ }^{\prime}=A_{7}$. The bound on $\operatorname{dimV}_{\beta_{2}}\left(Q_{Y}\right)$ implies that $\lambda \mid T_{Y}=\lambda_{1}$. Also, $\lambda I T_{A}=x \mu_{1}+q \mu_{2}$. However, induction (applied to the A_{4} maximal parabolic of A) provides a contradiction. Thus, A does not have type B_{5} or C_{5}. But this fact, together with rank restrictions implies that A does not have type B_{6} or C_{6}, and consequently neither can A have type B_{7} or C_{7}.

Case II: A has type F_{4} and $p=2$.
First note that $\left\langle\lambda, \alpha_{j}\right\rangle>0$ for some $1 \leq j \leq 3$, else by induction, the

Main Theorem of [12] and the previous work of this result, $\lambda I T_{A}=q \mu_{4}$, for some p-power q, and dimVIA $=26<\operatorname{dimVIY}$. Let $\alpha=\alpha_{4}$, so $L_{A^{\prime}}=B_{3}$ and $\operatorname{dim} V^{1}\left(Q_{A}\right)>1$. If $L_{Y}{ }^{\prime}=D_{7}, V^{1}\left(Q_{Y}\right) \cong W$, the natural module for L_{Y}. For otherwise, by the Main Theorem of [12], $Q_{Y} / K_{\beta_{1}}$ is a tensor decomposable, irreducible L_{A} ' module containing a nontrivial image of $Q_{A}{ }^{\alpha}$. But now, the bound on $\operatorname{dim} V_{\beta_{1}}\left(Q_{Y}\right)$ implies $\lambda \mid T_{Y}=\lambda_{8}$. If $L_{Y}{ }^{\prime}=A_{7}$, the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ implies $\lambda I T_{Y}=\lambda_{1}$, while $\lambda I T_{A}=q \mu_{3}+x \mu_{4}$. Hence, $\operatorname{dimVIA}=246 \cdot 26^{k}$ or $4096 \cdot 26^{k}$ for some $k \geq 0$. (See [8].) But then $\operatorname{dimVIA} \neq \operatorname{dimVIY}$ by [8].

Suppose $L_{Y}{ }^{\prime}=A_{5}$. Since $L_{A}{ }^{\prime}$ acts irreducibly on W, the natural module for $L_{Y}{ }^{\prime}$, (2.3) implies that there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $Q_{\gamma} / K_{\gamma} \cong W$ or W^{*}. Also, by induction $V^{1}\left(Q_{\gamma}\right) \cong W$ or W^{*}. Hence, if $Y=E_{6}$, the bound on $\operatorname{dim}_{\beta_{2}}\left(Q_{Y}\right)$ implies $\lambda \mid T_{Y}=\lambda_{1}$ or λ_{6}. But then [8] implies dimVIA $\neq \operatorname{dimVIY}$. So $Y=E_{7}, \Pi\left(L_{Y}\right)=\left\{\beta_{j} \mid j=2,4,5,6,7\right\}$, and $\lambda I T_{Y}=x \lambda_{3}+\lambda_{\ell}$ where $\ell=2$ or 7 . Also, $\lambda I T_{A}=q \mu_{1}+y \mu_{4}$ and by [8], $\operatorname{dimVIA}=26^{k}$; so $x \neq 0$. By induction, $\left\langle\lambda, \alpha_{4}\right\rangle=0$ or q_{1}; so $\operatorname{dimV} \mid A \leq 26^{2}<$ dimVIY, by (1.32). So $L_{Y^{\prime}} \neq A_{5}$.

It remains to consider the case where L_{Y} ' has type D_{4} and by induction $\lambda I T_{A}=x q \mu_{1}+q \mu_{3}+y \mu_{4}$ for some p-power q and $x=0$ or 1 . Also, since $Q_{Y} / K_{\beta_{i}}$ must contain a nontrivial image of $Q_{A}{ }^{\alpha}$, for $i=1$ and 5 , $\left\langle\lambda, \beta_{3}+\beta_{5}\right\rangle=1,\left\langle\lambda, \beta_{4}\right\rangle=0$ and $\left\langle\lambda, \beta_{2}\right\rangle=x$. As well, (2.3) implies $\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $\ell \geq 7$. Applying induction to the C_{3} maximal parabolic of A, we find that $Y=E_{8}, \lambda I T_{Y}=a \lambda_{1}+\lambda_{3}$, and $\lambda I T_{A}=q \mu_{3}+q \mu_{4}$. However, [8] and (1.32) imply dimV|A < dimV|Y. This completes the proof of (5.13).

CHAPTER 6: INITIAL RANK TWO RESULTS

In this chapter, we will prove the Main Theorem in case $A=A_{2}, p>2$ and $Y=E_{n}$. The method of proof depends almost entirely on restricting our attention to the embedding of one of the twaximal parabolics of A. In fact, we will actually be studying the embedding of the maximal parabolic of any rank 2 group whose Levi factor is $\left\langle U_{ \pm \beta}\right\rangle$, for β long. (Though we must assume $p>3$, if $A=G_{2}$.) We establish a reasonably short list of possible such embeddings. (See (6.9).) For $A=A_{2}$, repeated applications of (1.23) usually enable us to determine the structure of VIA, by knowing this one embedding. The A_{2} result is the following.

Theorem 6.0. (a) Let A be a simple algebraic group of type A_{2}, Y a simply connected, simple algebraic group of type E_{n}. Suppose $p>2, A<Y$ and $V I A$ is irreducible, for $V=V(\lambda)$ a nontrivial, restricted irreducible $k Y$-module. Then, $p=5, Y=E_{6}$ and $\lambda \mid T_{Y}=\lambda_{1}$ (or λ_{6}). Moreover, $\lambda I T_{A}=2 \mu_{1}+2 \mu_{2}$, where μ_{1} and μ_{2} are the fundamental dominant weights corresponding to a fixed set of simple roots for $\Sigma(A)$.
(b) If $p \neq 2,5$ and $Y=E_{6}$, there exists a closed subgroup $B<Y$, $B \cong P S L_{3}(k)$ such that $V\left(\lambda_{1}\right) \mid B$ is irreducible.

Remark: The proof of (6.0)(b) is given in [16].

Hypothesis: For the remainder of this chapter we adopt Notation and Hypothesis (2.0) with rank $A=2, \Sigma(Y)$ of type $E_{n}, p>2$ and $p \neq 3$ when $A=G_{2}$. So (A, p) is not special. However, we will write $\Pi(A)=\{\alpha, \beta\}$, so $L_{A}=\left\langle U_{ \pm \beta}\right\rangle T_{A}$ and write μ_{α} and μ_{β} for the corresponding fundamental
dominant weights. We take β to be the long root. Finally, assume VIA is irreducible and $\langle\lambda, \beta\rangle \neq 0$.
(6.1). $L_{Y}{ }^{\prime}$ is not a simple algebraic group.

Proof: Suppose false. First note that Theorem (7.1) of [12] implies $L_{Y}{ }^{\prime}$ is not of type E_{k}. Thus, by (1.5), $Z_{A} \leq Z_{Y}$. Consider first the case $L_{Y^{\prime}}=A_{k}$ for some k. $B y(2.14), k>1$. Let W be the natural module for $L_{Y^{\prime}}$. Then by (7.1) of [12], $V^{1}\left(Q_{Y}\right) \cong W$ or W^{*}. Thus, there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $Q_{Y} / K_{\gamma} \cong W$ or W^{*}. Moreover, since $W \wedge W$ (or $\left.W^{*} \wedge W^{*}\right)$ has all even weights as an L_{A} ' module and $p>2$, there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $Q_{\gamma} / K_{\gamma} \cong$ $W \wedge W$ or $W^{*} \wedge W^{*}$. These remarks imply that $L_{Y}{ }^{\prime}=A_{n-1}$, where $Y=E_{n}$, $n=6,7,8$. Moreover, by (1.25), $\operatorname{dim}_{\gamma}\left(Q_{Y}\right) \leq 2 n$ in each case. However, it is an easy check to see that $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right) \geq \frac{1}{2} n(n-1)$ in each case. Contradiction.

Suppose $L_{Y^{\prime}}=D_{5}$ and $V^{1}\left(Q_{A}\right)$ has high weight $\left(3 q_{1}+3 q_{2}\right) \mu_{\beta}$, as described in Theorem (7.1)(c) of [12]. Then there exists $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ such that $\left(\gamma, \Sigma L_{\gamma}\right) \neq 0$ and Q_{Y} / K_{γ} is a 16 -dimensional irreducible $L_{A}{ }^{\prime}-\operatorname{module}$. Thus $Q_{A} \leq K_{\gamma}$, contradicting $\langle\lambda, \beta\rangle \neq 0$.

Since $p>2$, it remains to consider the case where $L_{Y^{\prime}}=D_{k}$ for some k and $V^{1}\left(Q_{Y}\right) \cong W$, the natural module for $L_{Y}{ }^{\prime}$. Note that by (1.14), W is a tensor decomposable $L_{A} \prime^{\prime}$ module and $L_{Y}{ }^{\prime}=D_{4}$ or D_{6}. If $L_{Y}{ }^{\prime}=D_{6}, f_{134567} V^{+}$ affords an L_{Y} composition factor of $V_{\beta_{1}}\left(Q_{Y}\right)$ of dimension 32. However this exceeds the bound of (1.25). Hence, $L_{Y}{ }^{\prime}=D_{4}$ and $V^{1}\left(Q_{A}\right)$ has high weight $\left(q_{1}+3 q_{2}\right) \mu_{\beta}$, for q_{1} and q_{2} distinct p-powers. One checks that $L_{A}{ }^{\prime}$ acts irreducibly on two of the three fundamental 8-dimensional irreducible L_{Y}-modules. Hence, L_{A} acts irreducibly on $Q_{Y} / K_{\beta_{1}}$ or on $Q_{Y} / K_{\beta_{6}}$, forcing $Q_{A} \leq K_{\beta_{1}}$ or $K_{\beta_{6}}$. But this contradicts (2.3).

This completes the proof of (6.1).

Remark (6.2). (1) If there exists $1 \leq i \leq r$ with L_{i} of exceptional type, then $\operatorname{dimV}{ }^{1}\left(Q_{Y}\right)>1$, induction and Theorem (7.1) of [12] imply that $Y=E_{8}$, $L_{Y}{ }^{\prime}=L_{1} \times L_{2}$, where $L_{1}=E_{6}$ and $L_{2}=\left\langle U_{ \pm \beta_{8}}\right\rangle$ and $\lambda I T_{Y}=x \lambda_{7}+c \lambda_{8}$, for some $p>x \geq 0$ and $p>c>0$. Now, $\operatorname{dimV}^{2}\left(Q_{Y}\right) \geq 27 c$. Thus, the bound on $\operatorname{dimV} V^{2}\left(Q_{A}\right) \lambda-q \alpha$ and the description of $V^{2}\left(Q_{A}\right)$ in (1.22) imply that $k \geq 7$, where $V \mid A=V_{1} q_{1} \otimes \cdots \otimes V_{k} q_{k}$, as in (2.0). In particular, if VIA is tensor indecomposable and $V^{1}\left(Q_{A}\right)$ is nontrivial, all components of L_{Y} have classical type.
(2) We will often use without reference the fact that $U_{-2 \alpha-\beta} \cdot U_{-} \alpha-\beta \cdot U_{-} \alpha-2 \beta \leq Q_{A}$. This follows from the stated prime restrictions.
6.3). If L_{i} has type $D_{k_{i}}$ for some i and k_{i}, then Y has type E_{8}, $\lambda \mid T_{Y}=x \lambda_{7}+c \lambda_{8}$, for $c>0$ and $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{8}\right\}$ or $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{8}\right\}$.

Proof: Since all components of $L^{\prime}{ }^{\prime}$ are necessarily of classical type, (1.5) implies $Z_{A} \leq Z_{Y}$. Moreover, by (6.1), L_{Y} ' is not simple, so size restrictions imply $L_{i}=D_{4}$ or D_{5} and Y has type E_{7} or E_{8}.

Case I: Suppose M_{j} is nontrivial.
Consider first the case where $L_{i}=D_{5}$. Then, (7.1) of [12] and (1.14) imply $\rho_{\mathfrak{j}}\left(L_{A}{ }^{\prime}\right)$ acts irreducibly on the two fundamental spin representations of L_{i}. Hence, $\left\langle U_{ \pm \beta_{1}}\right\rangle \leq L_{i}$, else $Q_{Y} / K_{\beta_{1}}$ is a 16-dimensional irreducible L_{A} ' module containing a nontrivial image of Q_{A}. The same argument applied to $Q_{Y} / K_{\beta_{6}}$ implies $\left\langle U_{ \pm \beta_{7}}\right\rangle \leq L_{\gamma^{\prime}}$. Thus, $L_{\gamma^{\prime}}=L_{i} \times L_{j}$ where $L_{j}=\left\langle U_{ \pm \beta_{7}}\right\rangle$ or $\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$. Also, (2.7) implies M_{j} is trivial. Now, using (1.30) and (1.32), and recalling that $p>3$ in this configuration, we see that the bound on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ of (1.25) is exceeded. Thus, $L_{i}=D_{4}$.

Since $p \neq 2$, (7.1) of [12] and (1.14) imply $M_{j} L_{A}$, has high weight $\left(q_{1}+3 q_{2}\right) \mu_{\beta}$, for q_{1} and q_{2} distinct p-powers. By considering $\rho_{j}\left(h_{\beta}(c)\right)$, one checks that $\rho_{j}\left(L_{A}\right)$ acts irreducibly on two of the three restricted

8-dimensional irreducible L_{i} modules. On the third $\rho_{\mathfrak{j}}\left(L_{A}\right)$ acts with composition factors of dimensions 3 and 5 . Thus, $Q_{A} \leq K_{\beta_{1}}$, contradicting (2.3). This completes the consideration of Case I.

Case II: Suppose M_{j} is trivial.
Note that there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $1 \leq j \leq r, j \neq i$ such that $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$. For otherwise, by size restrictions, M_{j} is nontrivial and (1.32) and (1.36) imply that the bound on $\operatorname{dim} V_{\gamma}\left(Q_{\gamma}\right)$ of (1.25) is exceeded in every possible such configuration. Thus, $Y=E_{8}$ and $L_{\gamma}{ }^{\prime}=L_{i} \times\left\langle U_{ \pm \beta_{8}}\right\rangle$, where $L_{i}=\left\langle U_{ \pm \beta_{j}} \mid 2 \leq j \leq 5\right\rangle$ or $\left\langle U_{ \pm \beta_{j}} \mid 1 \leq j \leq 5\right\rangle$. Also, $\langle\lambda, \gamma\rangle=0$ for all $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ such that $\left(\gamma, \Sigma L_{j}\right) \neq 0$, else the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ is exceeded. Thus, (6.3) holds.
(6.4). Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $1 \leq i \neq j \leq r$ such that $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$. Then M_{j} or M_{j} is trivial.

Proof: Suppose false; i.e., suppose M_{j} and M_{j} are both nontrivial. By Theorem (7.1) of [12] and (6.3), L_{i} and L_{j} have type $A_{k_{j}}, A_{k_{j}}$, respectively, for some $k_{i}, k_{j} \geq 1$. Thus, by (1.5), $Z_{A} \leq Z_{Y}$. Let W_{k} denote the natural module for $L_{k}, k=i, j$. By (7.1) of [12], if rank $L_{k}>1, M_{k} \cong W_{k}$ or W_{k}^{*} for $k=i, j$.

Case I: $V_{L_{\ell}}(-\gamma) \cong W_{\ell}$ or $W_{\ell}{ }^{*}$ for $\ell=i$ and j.
By (2.5) and (2.7) and the preceeding remarks, $\gamma=\beta_{4}$ and there exists $k \neq i, j$, such that M_{k} is trivial and $\left(\Sigma L_{k}, \beta_{4}\right) \neq 0$. Then, (1.15) implies that $L_{j} \times L_{j} \times L_{k}$ has type $A_{1} \times A_{1} \times A_{m}, m=1$ or 3 , or $A_{1} \times A_{2} \times A_{m}$, $m=2,3$ or 4 (with a possible reordering of the triples). Then (1.36) implies that the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ of (1.25) is exceeded unless the triples are $\left\{A_{1}, A_{1}, A_{m}\right\}, m=1$ or 3 , or $\left\{A_{1}, A_{2}, A_{2}\right\}$ with the A_{1} component acting trivially on $V^{1}\left(Q_{\gamma}\right)$.

Suppose rank $L_{m}=1$ for $m=i, j, k$. Let $\gamma_{m} \in \Pi(Y)$ such that $L_{m}=\left\langle U_{ \pm \gamma_{m}}\right\rangle$ for $m=i, j, k$. Let q_{j} (respectively, q_{j}) be the field twist on the embedding of L_{A} in $\left\langle U_{ \pm \gamma_{i}}\right\rangle$ (respectively, $\left\langle U_{ \pm \gamma_{j}}\right\rangle$), where $q_{i} \neq q_{j}$.

Then, by (2.7), we may assume that the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \gamma_{k}}\right\rangle$ is also q_{j}. Then the $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{4}}$ have high weights $\left(2 q_{j}+q_{j}\right) \mu_{\beta}$ and $q_{i} \mu_{\beta}$. Since $V_{T_{Y}}\left(\lambda-\gamma_{i}-\beta_{4}\right) \neq 0$, some element from the group $U_{-\beta_{4}} \cdot U_{-} \gamma_{i}-\beta_{4}$ must appear in the factorization of an element in $Q_{A}-Q_{A}{ }^{\prime}$. But $-\beta_{4}$ (respectively, $-\gamma_{i}-\beta_{4}$) affords $T\left(L_{A}\right)$ weight $\left(2 q_{j}+q_{j}\right) \mu_{\beta}$ (respectively, $\left.\left(2 q_{j}-q_{j}\right) \mu_{\beta}\right)$. Neither of these weights occurs in $\left(Q_{A}{ }^{\alpha}\right) q_{i}$. Thus, rank $L_{m}>1$ for $m=i$, j, or k.

We consider now the case where $L_{i} \times L_{j} \times L_{k}$, in some reordering, has type $A_{1} \times A_{1} \times A_{3}$, so $\Pi\left(L_{\gamma}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$. Let $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle=L_{0}$. Let q_{1} (respectively, q_{2}) be the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ (respectively, $\left\langle U_{ \pm \beta_{3}}\right\rangle$). Since $p>2$, (1.15) implies $V_{L_{0}}\left(-\beta_{4}\right) \|_{A} A^{\prime}$ is tensor indecomposable; in particular, $p>3$. Let the field twist on the embedding of L_{A} ' in L_{0} be q_{3}. By (2.5), (2.6) and (2.7), $\left\{q_{1}, q_{2}, q_{3}\right\}$ consists of two distinct powers of p. It is then an easy check to see that there is no 2-dimensional L_{A} ' composition factor of $Q_{Y} / K_{\beta_{4}}$. Thus $Q_{A} \leq K_{\beta_{4}}$, contradicting (2.3).

We have, therefore, $\Pi\left(L_{i} \times L_{j} \times L_{k}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{5}, \beta_{6}\right\}$ with $\left\langle\lambda, \beta_{2}\right\rangle=0$. The bound on $\operatorname{dim}_{\beta_{4}}\left(Q_{Y}\right)$ of (1.25) implies that $\left\langle\lambda, \beta_{1}\right\rangle=1=$ $\left\langle\lambda, \beta_{6}\right\rangle$ and $\left\langle\lambda, \beta_{m}\right\rangle=0$ for $2 \leq m \leq 5$. Now, $f_{134} V^{+}$affords an $L_{Y}{ }^{\text {. }}$ composition factor in $V_{\beta_{4}}\left(Q_{Y}\right)$ of dimension 14 , if $p=3$, or 16 otherwise. Also, $\operatorname{dim} V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}\right) \geq 4$, by (1.34) and if $p=3$, a 1-space from this weight space occurs in the above mentioned composition factor, and otherwise, a 2-space from this weight space occurs. Hence, 3 (respectively, 2) distinct composition factors of $V_{\beta_{4}}\left(Q_{Y}\right)$ of dimension 2 are afforded by vectors in $V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}\right)$, if $p \neq 3$ (respectively, $p=3$). In either case, the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ is exceeded. Thus, $L_{\mathfrak{j}} \times L_{j} \times L_{k}$ does not have type $A_{2} \times A_{2} \times A_{1}$ and this completes the consideration of Case I.

Case II: For $\ell=i$ or $j, V_{L_{\ell}}(-\gamma) \not \equiv W_{\ell}$ or $W_{l}{ }^{*}$.
Since W_{ℓ} is an irreducible L_{A} module for $\ell=i, j$, if rank $L_{\ell}>1$,
there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $Q_{Y} / K_{\delta} \cong W_{\ell}$ or $W_{\ell}{ }^{*}$, else $Q_{A} \leq K_{\delta}$. Applying (1.36) and the various techniques for obtaining lower bounds on dimensions of modules (e.g., (1.30), (1.32) and (1.35)), the bound on $\operatorname{dim} V_{\gamma}\left(Q_{\gamma}\right)$ of (1.25) restricts the situation still further. We find that $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{5}\right\}$ and $p=3$. In particular, $W_{j} L_{A^{\prime}}$ is tensor decomposable. Let q_{1} be the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$. Suppose $W_{j} \mid L_{A}$ ' has high weight $\left(q_{2}+q_{3}\right) \mu_{\beta}$, for q_{2} and q_{3} distinct p-powers, with $q_{2} \neq q_{1} \neq q_{3}$. Then, $Q_{Y} / K_{\beta_{3}}$ has $L_{A}{ }^{\prime}$ composition factors with high weights $\left(q_{1}+2 q_{2}\right) \mu_{\beta}$ and $\left(q_{1}+2 q_{3}\right) \mu_{\beta}$. In particular, there is no 2-dimensional L_{A} ' composition factor of $Q_{Y} / K_{\beta_{3}}$, contradicting (2.3).

This completes the consideration of Case II and the proof of (6.4).
(6.5). Suppose there exist distinct $1 \leq i, j, k \leq r$ such that
$\left(\Sigma L_{m}, \beta_{4}\right) \neq 0$ for $m=i, j, k$ and suppose M_{m} is nontrivial for $m=i, j$ or k. Then one of the following holds:
(i) $A \neq G_{2}, Y=E_{6}, \lambda \mid T_{Y}=\lambda_{1}$ or λ_{6} and $\Pi\left(L_{Y}\right)=\left\{\beta_{i} \mid i \neq 4\right\}$.
(ii) $A \neq A_{2}, Y=E_{8}, \lambda \mid T_{Y}=\lambda_{1}$ and $\pi\left(L_{i} \times L_{j} \times L_{k}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{5}, \beta_{6}\right\}$.
(iii) $Y=E_{7}, p \neq 3, L_{i} \times L_{j} \times L_{k}$ has type $A_{1} \times A_{1} \times A_{3}$ and $\lambda \mid T_{Y}=x \lambda_{1}+\lambda_{7+} p>x \geq 0$.
(iv) $A \neq A_{2}$, rank $L_{m}=1$ for $m=i, j, k$, and $\operatorname{dim}\left(M_{j} \otimes M_{j} \otimes M_{k}\right)=2=\operatorname{dimV}^{1}\left(Q_{Y}\right)$ and $\left\langle\lambda, \beta_{4}\right\rangle=0$.

Proof: Since all components of $L^{\prime}{ }^{\prime}$ are necessarily of classical type, (1.5) implies $Z_{A} \leq Z_{Y}$. Let W_{m} denote the natural module for L_{m}, $m=i, j, k$. Then Theorem (7.1) of [12] implies that if rank $L_{m}>1$ and M_{m} is nontrivial, $M_{m} \cong W_{m}$ or W_{m}^{*}, and (6.4) implies that only one of M_{j}, M_{j} and M_{K} is nontrivial. As well, (1.15) restricts the situation somewhat. We then use the bound on $\operatorname{dimV} \beta_{4}\left(Q_{Y}\right)$ of (1.25) in conjunction with (1.36) to see that $\left\langle\lambda, \beta_{4}\right\rangle=0$ and one of the following holds:
(a) $\operatorname{rank} L_{m}=1$ for $m=i, j, k$ and $\operatorname{dim}\left(M_{j} \otimes M_{j} \otimes M_{k}\right)=2$.
(b) $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{7}\right\},\left\langle\lambda, \beta_{m}\right\rangle=0$ for $2 \leq m \leq 6$ and $\langle\lambda, \beta\rangle\rangle=1$.
(c) $L_{i} \times L_{j} \times L_{k}$ has type $A_{2} \times A_{1} \times A_{2}$, the A_{1} component acts trivially on $V^{1}\left(Q_{Y}\right)$ and if M_{ℓ} is nontrivial for $\ell \in\{i, j, k\}, M_{\ell} \cong\left(V_{L_{\ell}}(-\gamma)\right)^{*}$.
(d) $L_{i} \times L_{j} \times L_{k}$ has type $A_{2} \times A_{1} \times A_{3},\left\langle\lambda, \beta_{m}\right\rangle=0$ for $1 \leq m \leq 6$, $\left\langle\lambda, \beta_{7}\right\rangle=1$ and $V^{1}\left(Q_{A}\right)$ is a tensor decomposable L_{A}. module.
(Recall, $\lambda / T_{Y} \neq \lambda_{8}$ if $Y=E_{8}$.) In the configuration of (d), $Y=E_{7}$, else $Q_{Y} / K_{\beta_{8}}$ is a 4-dimensional irreducible L_{A} - module containing a nontrivial image of $Q_{A}{ }^{\alpha}$. But now, using (1.23), (1.32) and (1.35), we find that $\operatorname{dimV}|A \neq \operatorname{dimV}| Y$. Thus the configuration of (d) does not occur.

Consider now the configuration of (c). If $Y=E_{6}$, dimVIY $=27$. Using the methods of (1.30), (1.32), (1.33) and (1.35) we see that if A has type G_{2}, dimVIA >27. Thus, (i) holds. If $Y=E_{7}, Q_{A} \leq K_{\beta_{7}}$ since Q_{Y} / K_{β} is a 3-dimensional irreducible $L_{A}{ }^{\prime}$-module. But then, $\lambda I T_{Y}=\lambda_{1}$. Consider the case where $Y=E_{8}$. We must study the image of Q_{A} in $Q_{Y} / K_{\beta_{4}}$. For the purposes of this argument we may assume $\left\langle\lambda, \beta_{1}\right\rangle=1,\left\langle\lambda, \beta_{m}\right\rangle=0$ for $2 \leq m \leq 6$. Let q_{1}, q_{2} and q_{3} be the field twists on the embeddings of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle,\left\langle U_{ \pm \beta_{2}}\right\rangle$ and $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$, respectively. By (2.7), q_{1}, q_{2} and q_{3} are not all distinct. We will show that, in fact, $q_{1}=q_{3}$.

Suppose $q_{1}=q_{2} \neq q_{3}$. Then the $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{4}}$ have high weights $\left(3 q_{2}+2 q_{3}\right) \mu_{\beta}$ and $\left(q_{1}+2 q_{3}\right) \mu_{\beta}$. (If $p=3$ and $3 q_{1}=q_{3}$, the weights are $3 q_{3} \mu_{\beta}, q_{3} \mu_{\beta}$ and $\left(q_{1}+2 q_{3}\right) \mu_{\beta}$.) Thus, (2.4) implies that $p=3$, $3 q_{1}=q_{3}$ and $\beta_{4} I_{A}=9 q_{1} \alpha$ or $3 q_{1} \alpha$. Since $V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}\right) \neq 0$, a nonidentity element from the set $U_{-24} \cdot U_{-234} \cdot U_{-1234}$ must appear in the factorization of some element in $Q_{A}-Q_{A}$. Also, $-\beta_{2}-\beta_{4}$ (respectively, $\left.-\beta_{2}-\beta_{3}-\beta_{4},-\beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}\right)$ affords $T\left(L_{A}\right)$ weight $7 q_{1} \mu_{\beta}$ (respectively, $5 q_{1}, 3 q_{1}$). So (2.4) implies $\beta_{4} \mid Z_{A}=3 q_{1} \alpha=q_{3} \alpha$. Then, examining the $T\left(L_{A}\right)$ weights of root group elements in $Q_{Y} / K_{\beta_{4}}$, we see that $x_{-\alpha}(t)=x_{-1234}\left(c_{1} t q_{3}\right) u_{1}$ and $x_{-\alpha-\beta}(t)=x_{-12345}\left(c_{2} t q_{3}\right) u_{2}$, where $c_{j} \in k^{*}, u_{j} \in K_{\beta_{4}}$. However, there is then a nontrivial contribution to the
root group U_{-1345} in the expression for $\left[x_{\beta}(t), x_{-\alpha-\beta}(t)\right]$, contradicting (6.2)(2) and the given factorization of $x_{\alpha}(t)$. Thus, we do not have $q_{1}=q_{2} \neq q_{3}$. A similar argument shows that the configuration $q_{1} \neq q_{2}=$ q_{3} cannot occur. In fact, $q_{1}=q_{3}$, regardless of the labelling of $\lambda I T Y$.

If $Q_{A} \leq K_{\beta_{7}}$, $\lambda \mid T_{Y}=\lambda_{1}$. Suppose $Q_{A} \ddagger K_{\beta_{7}}$. Then $\left\langle U_{ \pm \beta_{8}}\right\rangle \leq L Y^{\prime}$, else $Q_{Y} / K_{\beta_{7}}$ is a 3-dimensional irreducible $L_{A}{ }^{\prime}$ module containing a nontrivial image of $Q_{A}{ }^{\alpha}$. Then (2.7) implies that the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is $q_{1}=q_{3}$. Thus, (2.5) implies $\left\langle\lambda, \beta_{8}\right\rangle=0$. Moreover, $\left\langle\lambda, \beta_{7}\right\rangle=0$ else the bound on $\operatorname{dim} V_{\beta_{7}}\left(Q_{Y}\right)$ of (1.25) is exceeded. Thus, $\lambda \mid T_{Y}=\lambda_{1}$ or λ_{6}. In either case, $A \neq A_{2}$, as (1.23) implies $\operatorname{dimV} \mid A<$ dimVIY. If $\lambda \mid T_{Y}=\lambda_{6},(7.1)$ of [12] implies $\langle\lambda, \alpha\rangle=0, q, 2 q, 3 q, 4 q, 5 q$, $q+q_{0}$ or $q+2 q_{0}$, for q and q_{0} distinct p-powers. Then (1.27) implies $\operatorname{dimVIA} \leq 2 \cdot 3^{3} \cdot 7^{2} \cdot 11$. But by (1.38) dimVIY $>\operatorname{dimVIA}$. Hence, $\lambda \mid T_{Y} \neq \lambda_{6}$ and (ii) holds.

For L_{y} as in (b), $p \neq 3$, else $V^{1}\left(Q_{Y}\right)$ is tensor decomposable and (1.15) is contradicted. Also $Y=E_{7}$, else Q_{A} / K_{β} is a 4-dimensional irreducible L_{A} '-module containing a nontrivial image of Q_{A}. Thus, (iii) holds.

Finally, we must consider the case where $\operatorname{rank}\left(L_{m}\right)=1$ for $m=i, j, k$. Suppose q_{0} is the field twist on the embedding of $L_{A}{ }^{\prime}$ in two of the components L_{i}, L_{j}, L_{k} and q_{1} is the twist on the embedding in the third. If $q_{0} \neq q_{1}$, the L_{A} composition factors of $Q_{A} / K_{\beta_{4}}$ have high weights $\left(2 q_{0}+q_{1}\right) \mu_{\beta}$ and $q_{1} \mu_{\beta}$. Since $p>2$, (2.4) implies $\beta_{4} \mid Z_{A}=q_{1} \alpha$.

Temporarily label as follows: $\Pi\left(L_{m}\right)=\left\{\gamma_{m}\right\}$ for $m=i, j, k$, and let $\left\langle\lambda, \gamma_{j}\right\rangle \neq 0$. So $\left\langle\lambda, \gamma_{j}+\gamma_{k}\right\rangle=0$. Let q_{m} be the field twist on the embedding of $L_{A^{\prime}}$ in L_{m} for $m=i, j, k$. Suppose $q_{j}=q_{k} \neq q_{i}$. From above, $\beta_{4} \mid Z_{A}=q_{i} \alpha$. However, $V_{T_{Y}}\left(\lambda-\gamma_{i}-\beta_{4}\right) \neq 0$ implies that a nonidentity element from the set $U_{-\beta_{4}} \cdot U_{-} \gamma_{i}-\beta_{4}$ must appear in the factorization of some element in $Q_{A}-Q_{A}{ }^{\prime}$. But $-\beta_{4}$ (respectively, $-\gamma_{i}-\beta_{4}$) affords $T\left(L_{A}{ }^{\prime}\right)$ weight $\left(2 q_{j}+q_{j}\right) \mu_{\beta}$ (respectively, $\left.\left(2 q_{j}-q_{j}\right) \mu_{\beta}\right)$ which is not a weight in $\left(Q_{A}{ }^{\alpha}\right) q_{i}$ if $q_{i} \neq q_{j}$. Thus, $q_{i}=q_{j}$ or $q_{j}=q_{k}$.

We are now able to show that there does not exist $1 \leq \ell \leq r, \ell \notin\{i, j, k\}$ such that M_{ℓ} is nontrivial. For, suppose there exists such an ℓ. Then, $L_{\ell}=\left\langle U_{ \pm \beta_{7}}\right\rangle,\left\langle U_{ \pm \beta_{8}}\right\rangle$ or $\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$. If $L_{\ell}=\left\langle U_{ \pm \beta_{7}}\right\rangle$, (2.17) and (2.4) imply $Q_{A} \leq K_{\beta_{6}}$, contradicting (2.3). If $L_{\ell}=\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$, (2.17) implies that the field twists on the embeddings of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{5}}\right\rangle$ and in L_{ℓ} are equal. Also, if this twist is $q, \beta_{6} \mid Z_{A}=q \alpha$. The above work on field twists and (2.5) imply $\beta_{4} \mid Z_{A}=q \alpha$. However, $\operatorname{dim}_{\beta_{4}}\left(Q_{Y}\right)=4 \operatorname{dim}_{l}=\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha, b y$ (1.22). But there is a nontrivial contribution to $V^{2}\left(Q_{A}\right) \lambda-q \alpha$ from $V_{\beta_{6}}\left(Q_{Y}\right)$. Contradiction. Thus, $L_{\ell}=\left\langle U_{ \pm \beta_{8}}\right\rangle$. If $Q_{A} \neq K_{\beta_{6}}$, (2.8) implies that the field twists on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{5}}\right\rangle$ and in L_{ℓ} are equal. If $Q_{A} \leq K_{\beta_{6}}$, we consider the $L_{A}{ }^{\prime}$ composition factors of $Q_{Y}\left(\beta_{7}, \beta_{6}\right)$. Since $p>2$, (2.10) and (2.11) give the same result Now proceed as before to produce a contradiction. We have, therefore, $\operatorname{dim}^{1}\left(Q_{Y}\right)=2$. Moreover, (1.23) implies $\operatorname{dimVIA}<\operatorname{dimVIY}$ if $A=A_{2}$. Thus, (iv) holds and the proof of (6.5) is complete.
(6.6). Let $\gamma \in \Pi(\gamma)-\Pi\left(L_{\gamma}\right)$. Suppose there exists a unique pair $1 \leq i, j \leq r$ such that $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right), L_{i}, L_{j}$ are of type $A_{k_{i}}, A_{k_{j}}$ for some $k_{j}, k_{j} \geq 1$ and $\operatorname{dim}\left(M_{j} \otimes M_{j}\right)>1$. Then, one of the following holds:
(i) $A=G_{2}($ so $p>3), Y=E_{8}, \Pi\left(L_{j} \times L_{j}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}\right\}, \lambda \mid T Y=\lambda_{1}$, $\langle\lambda, \beta\rangle=4 q_{1}$ and $\langle\lambda, \alpha\rangle=q+q_{1}, 2 q_{1}+q$ or $3 q_{1}+q$, for q and q_{1} distinct p-powers
(ii) $A \neq A_{2}, Y=E_{7}$ or $E_{8},\left\langle U_{ \pm \beta_{1}}\right\rangle$ and $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}\right\rangle$ are
components of $L_{Y^{\prime}}$, and $\left\langle U_{ \pm \beta_{7}}\right\rangle \leq L_{Y^{\prime}}$. Also, $\left\langle\lambda, \beta_{2}\right\rangle=1,\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for ℓ $=1,3,4,5,6,7$ and $_{\operatorname{dimV}}{ }^{1}\left(Q_{Y}\right)=4$.
(iii) $L_{i} \times L_{j}$ has type $A_{1} \times A_{2}$ and $\langle\lambda, \gamma\rangle=0$.
(iv) $A=A_{2}$ or $B_{2}, p>3, Y=E_{7}, \lambda \mid T_{Y}=\lambda_{7}, \Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$ and $V^{1}\left(Q_{A}\right)$ is a tensor indecomposable L_{A} ' module.
(v) $A=B_{2}$ or $G_{2}, Y=E_{8}, \lambda I T_{Y}=\lambda_{2}$ and $\Pi\left(L_{Y}\right)=\cdot$
$\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$. Moreover, $\beta_{3}\left|Z_{A}=q \alpha=\beta_{5}\right| Z_{A}$, where q is the field
twist on the embedding of $L_{A}{ }^{\prime}$ in each component of L_{Y}.
(vi) $A=B_{2}$ or $G_{2}, Y=E_{7}$ or E_{8}, L_{i} (respectively, L_{j}) has type A_{1} (respectively, A_{3}), and $\langle\lambda, \gamma\rangle=0 . V_{L_{m}}(-\gamma) \cong W_{m}$ or $W_{m}{ }^{*}$, where W_{m} is the natural module for L_{m}, for $m=i, j$. If $L_{i} v^{+} \neq v^{+}$, then $L_{j} v^{+}=v^{+}$and $M_{j} \cong W_{i}$. If $L_{j} v^{+} \neq v^{+}$, then $L_{i} v^{+}=v^{+}$and $M_{j} \cong\left(v_{L_{j}}(-\gamma)\right)^{*}$. Moreover, in each case, $V_{L_{j}}(-\gamma) L_{A^{\prime}}$ is tensor decomposable and $\operatorname{dimV} V^{1}\left(Q_{Y}\right)=$ $\operatorname{dim}\left(M_{j} \otimes M_{j}\right)$.

In addition, if there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{j}\right) \neq 0$, $\left(\delta, \Sigma L_{k}\right)=0$ for $k \neq i$ and $Q_{Y} / K_{\delta} \cong M_{j}$ or $M_{i}{ }^{*}$, then either $k_{i}=1$ or $V_{\delta}\left(Q_{Y}\right)=0$.

Proof: Since all components of $L^{\prime}{ }^{\prime}$ are necessarily of classical type, (1.5) implies $Z_{A} \leq Z_{Y}$. Let W_{k} denote the natural module for L_{k}, $k=i, j$. Theorem (7.1) of [12] implies that if rank $L_{k}>1$ and M_{k} is nontrivial, then $M_{k} \cong W_{k}$ or $W_{k}{ }^{*}$ for $k=i, j$. Also (6.4) implies that only one of M_{j} and M_{j} is nontrivial.

Case I: $V_{L_{k}}(-\gamma) \cong W_{k} \wedge W_{k}\left(\right.$ or $\left.W_{k}{ }^{*} \wedge W_{k}{ }^{*}\right)$ for $k=i$ or j.
The bound on $\operatorname{dim} V_{\gamma}\left(Q_{\gamma}\right)$ of (1.25) and (1.15) restrict the situation considerably. We are left with the following possibilities for the type of $L_{i} \times L_{j}: A_{1} \times A_{k}, k=3,4,5$ with the A_{1} component acting trivially on $V^{1}\left(Q_{Y}\right)$, or $A_{3} \times A_{3}$. The cases $L_{i} \times L_{j}$ of type $A_{3} \times A_{3}$ or $A_{1} \times A_{5}$ are easily ruled out by standard arguments.

Consider now the case $L_{i} \times L_{j}$ of type $A_{1} \times A_{4}$. The bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ of (1.25) implies $\left\langle\lambda, \beta_{2}\right\rangle=0=\langle\lambda, \gamma\rangle$. Thus, if $Y=E_{6}$, $\lambda \mid T_{Y}=\lambda_{1}$ or λ_{6} and $\operatorname{dim} V \mid Y=27$. However, if we recall that $p \geq 5$ and apply (1.29), (1.32) and (1.23), it is not difficult to see that dimVIA >27 in every case. Thus, $Y=E_{7}$ or E_{8}. Moreover, standard arguments imply $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}\right\}$ and $\left\langle\lambda, \beta_{1}\right\rangle=1,\left\langle\lambda, \beta_{j}\right\rangle=0$ for $2 \leq i \leq 6$. We consider the image of Q_{A} in $Q_{Y} / K_{\beta_{5}}$. Let q_{1} be the field twist on the embedding of L_{A} ' in the A_{4} component and let q_{2} be the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{6}}\right\rangle$. Examining the $L_{A}{ }^{\prime}$ composition factors of
$Q_{Y} / K_{\beta_{5}}$ we see that if $q_{1} \neq q_{2}$ we must have $p=5$ and $5 q_{1}=q_{2}$. Moreover, the only composition factor isomorphic to a twist of $Q_{A}{ }^{\alpha}$ has twist q_{1}, so $\beta_{5} \mid Z_{A}=q_{1} \alpha$. Since $V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{3}-\beta_{4}-\beta_{5}\right) \neq 0$, a nonidentity element from the set $U_{-5} \cdot U_{-45} \cdot U_{-345} \cdot U_{-1345}$ must appear in the factorization of some element in $Q_{A}-Q_{A}$. However, $-\beta_{5}$ (respectively, $-\beta_{4}-\beta_{5},-\beta_{3}-\beta_{4}-\beta_{5},-\beta_{1}-\beta_{3}-\beta_{4}-\beta_{5}$) affords $T\left(L_{A}\right.$) weight $11 q_{1} \mu_{\beta}$ (respectively, $9 q_{1} \mu_{\beta}, 7 q_{1} \mu_{\beta}, 5 q_{1} \mu_{\beta}$), none of which occur in $\left(Q_{A}{ }^{\alpha}\right) q_{1}$. Thus, (2.4) implies $q_{1}=q_{2}$.

We now claim that $\beta_{5} I Z_{A}=q_{1} \alpha$. Examining the $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{5}}$ we see that this is clear if $p>7$. If $p=5$, possibly $\beta_{5} I Z_{A}=5 q_{1} \alpha$. But, in this case, examining the $T\left(L_{A}\right)$ weight vectors in $Q_{Y} / K_{\beta_{5}}$, we have $x_{-\alpha}(t)=x_{-45}\left(c_{1} t^{5} q_{1}\right) x_{-56}\left(c_{2} t^{5} q_{1}\right) w_{1}$ and $x_{-\alpha-\beta}(t)=$ $x_{-(1,1,1,2,1,1)}\left(d_{1}{ }^{5} 5 q_{1}\right) \cdot x_{-(1,1,2,2,1,0)}\left(d_{2} t 5 q_{1}\right) w_{2}$, where $c_{i}, d_{i} \in k, c_{1}$ or c_{2} nonzero, d_{1} or d_{2} nonzero, and $w_{j} \in K_{\beta_{5}}$. However, since a nonidentity element from the group $U_{\beta_{4}}$ appears in the factorization of $x_{\beta}(t)$, there is a nontrivial contribution to the root group $U_{-123456}$ in the expression for $\left[x_{-\alpha-\beta}(t), x_{\beta}(t)\right]$. This contradicts the given factorization of $x_{-\alpha}(t)$. Thus, $\beta_{5} I Z_{A} \neq 5 q_{1} \alpha$. If $p=7$, the L_{A} composition factors of $Q_{Y} / K_{\beta_{5}}$ have high weights $7 q_{1} \mu_{\beta}, 5 q_{1} \mu_{\beta}, 3 q_{1} \mu_{\beta}$, and $q_{1} \mu_{\beta}$ and $-\beta_{5}$ affords $T\left(L_{A}\right)$ weight $7 q_{1} \mu_{\beta}$. By (2.16) $\beta_{5} I Z_{A} \neq 7 q_{1} \mu_{\beta}$. So $\beta_{5} I Z_{A}=q_{1} \alpha$, as claimed.

Suppose $Y=E_{7}$; so $\lambda \mid T_{Y}=\lambda_{1}+x \lambda_{7}$ where $p>x>0$. Thus, $Q_{A} \nsubseteq K_{\beta_{7}}$ and since $Q_{Y} / K_{\beta_{7}}$ is isomorphic to $\left(Q_{A}{ }^{\alpha}\right) q_{1}, \beta_{7} I_{A}=q_{1} \alpha$. However, $f_{\beta} v^{v^{+}}$ and $f_{1345} V^{+}$afford 2 distinct $L_{Y}{ }^{\prime}$ composition factors in the Z_{A} weight space $V^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha$, exceeding the dimension bound of (1.22). So $Y \neq E_{7}$.

We now have $Y=E_{8}$. If $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is a component of $L Y^{\prime}$, (2.17) implies $Q_{A} \leq K_{\beta_{7}}$, so $\lambda I T_{Y}=\lambda_{1}$. If $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is not a component of $L_{Y}{ }^{\prime},\left\langle\lambda, \beta_{8}\right\rangle=0$ by (2.3) and $\left\langle\lambda, \beta_{7}\right\rangle=0$ by (2.13). Again $\lambda \mid T_{Y}=\lambda_{1}$. Also, $f_{1345} v^{+}$affords an L_{Y} composition factor in $V^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha$ of dimension 10 , which is the upper bound on this dimension, by (1.22). So $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha=10$. This can occur only if q_{1} has nonzero coefficient in the p-adic expansion of
$\langle\lambda, \alpha\rangle$. (See (1.22) for a description of $V^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha$.) Suppose now that VIA is tensor indecomposable. We first claim that $Q_{A} \not \ddagger K_{\beta_{7}}$. Otherwise, we have $P_{A} \leq P_{Y}{ }^{\wedge} \geq B_{Y}{ }^{-}$, a parabolic subgroup with Levi factor $L_{Y}{ }^{\wedge}=$ $\left\langle L_{Y}, U_{ \pm \beta_{7}}\right\rangle$ and $Q_{A} \leq R_{U}\left(P_{Y}{ }^{\wedge}\right)=Q_{Y}{ }^{\wedge}$. But $\operatorname{dimV}^{2}\left(Q_{Y}{ }^{\wedge}\right)$ exceeds the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)$. So $Q_{A} \nsubseteq K_{\beta_{7}}$, as claimed. This implies that $L_{Y}{ }^{\prime}=L_{i} \times L_{j}$. Moreover, $\beta_{7} \mid Z_{A}=q_{1} \alpha$ as in E_{7}. Also, $Q_{A} \leq K_{\beta_{8}}$, so if $P_{2} \geq B_{Y}{ }^{-}$is the parabolic subgroup of Y with Levi factor $L_{2}=\left\langle L_{Y}, U_{ \pm \beta_{8}}\right\rangle$, then $P_{A} \leq P_{2}$ and $Q_{A} \leq R_{U}\left(P_{2}\right)=Q_{2}$. Now $\left[V, Q_{A}{ }^{2}\right]=\left[V, Q_{2}{ }^{2}\right]$, since $V_{\beta_{5}}\left(Q_{2}\right)=V_{\beta_{5}}\left(Q_{Y}\right)=$ $V^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha=V^{2}\left(Q_{A}\right)$. By (1.20) $\operatorname{dim} V^{3}\left(Q_{A}\right) \leq 20$. But $f_{(1,1,1,2,2,1,0,0)} V^{+}$ and $f_{134567} V^{+}$afford distinct L_{2} composition factors in $V^{3}\left(Q_{2}\right)$ of dimensions 15 and 10 , respectively. Contradiction. Hence, VIA is tensor decomposable.

By induction and the above remarks, $\langle\lambda, \alpha\rangle=q_{1}+q, q_{1}+2 q, 2 q_{1}+q$, $q+q_{1}+q_{0}, q_{1}+3 q$ or $3 q_{1}+q$, for q and q_{0} distinct p-powers, each distinct from q_{1}. So (1.23) implies that A does not have type A_{2}. By [8], $\operatorname{dimVIY}=$ 3875. Now, (1.27) implies $\operatorname{dimV}|A<\operatorname{dimV}| Y$ if $A=B_{2}$. If $A=G_{2}$, [8] and the methods of (1.30) and (1.32) imply dimV|A >3875 if $\langle\lambda, \alpha\rangle=q+q_{0}+q_{1}, q_{1}+3 q$ or $q_{1}+2 q$. Thus, (6.6)(i) holds.

Consider now $L_{i} \times L_{j}$ of type $A_{1} \times A_{3}$. Since the A_{3} component acts nontrivially on $V^{1}\left(Q_{Y}\right), \Pi\left(L_{j} \times L_{j}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{5}\right\}$. Otherwise, $Q_{Y} / K_{\beta_{1}}$ is a 4-dimensional irreducible $L_{A}{ }^{\prime}$-module with proper submodule $Q_{A} K_{\beta_{1}} / K_{\beta_{1}}$. A similar argument and (6.4) imply $Y=E_{7}$ or E_{8} and $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is contained in a component of L_{Y}, which acts trivially on $V^{1}\left(Q_{Y}\right)$. The bound of (1.25) on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}\right)$ and $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{2}\right\rangle=1$ and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=1$, $3,4,5,6$. Moreover, A does not have type A_{2}, else (1.23), (1.26) and (1.32) imply $\operatorname{dimVIA}<\operatorname{dim} V I Y$. Thus, if $L_{i} \times L_{j}$ has type $A_{1} \times A_{3}$, (6.6)(ii) holds.

This completes the consideration of Case I.
Case II: $V_{L_{k}}(-\gamma) \cong W_{k}$ or W_{k}^{*} for $k=i, j$.
We first note that since $p>2,(1.15)$ allows us to reduce to the following pairs $L_{i} \times L_{j}: A_{1} \times A_{i}, i=2,3,4, A_{2} \times A_{3}$ and $A_{3} \times A_{3}$. Moreover,
the bound on $\operatorname{dimv} \gamma_{\gamma}\left(Q_{\gamma}\right)$ and (1.36) imply $\langle\lambda, \gamma\rangle=0$ in every case. Again, standard arguments show that $L_{i} \times L_{j}$ does not have type $A_{3} \times A_{3}$.

Consider the configuration where $\left(L_{i}, L_{j}\right)$ has type $\left(A_{2}, A_{3}\right)$. Then $p>2$ and (1.15) imply that $W_{j} L_{A}{ }^{\prime}$ is tensor indecomposable and so $p>3$. Let q be the field twist on the embedding of L_{A} in L_{i} and in L_{j}. (There is only one twist by (2.7).) Temporarily label as follows: $\Pi\left(L_{j}\right)=\left\{\gamma_{1}, \gamma_{2}\right\}, \Pi\left(L_{j}\right)=$ $\left\{\gamma_{3}, \gamma_{4}, \gamma_{5}\right\}$ with $\left(\gamma_{2}, \gamma\right) \neq 0 \neq\left(\gamma_{3}, \gamma\right)$ and $\left(\gamma_{3}, \gamma_{4}\right) \neq 0 \neq\left(\gamma_{4}, \gamma_{5}\right)$. Then there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\delta, \gamma_{5}\right) \neq 0$. For otherwise, $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq i$ so $Q_{Y} / K_{\delta} \cong W_{i}$ or $W_{i}{ }^{*}$. Thus, $Q_{A} \leq K_{\delta}$ and M_{j} is trivial. But since $p>2,(2.10)$ and (2.11) imply that there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}(\gamma, \delta)$, a 3-dimensional irreducible L_{A} ' module.
Contradiction. Similarly, there does not exist $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right), \tau \neq \gamma$ such that $\left(\tau, \gamma_{3}\right) \neq 0$. Otherwise, as above, $Q_{A} \leq K_{\tau}$ and (2.11) applies. However, $Q_{Y}(\gamma, \tau)$ has all even $T\left(L_{A}\right)$ weights and there can be no nontrivial image of $Q_{A}{ }^{\alpha}$ in this module. (See (1.15).)

The considerations of the preceeding paragraph imply that either $Y=E_{7}$ with $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$ or $Y=E_{8}$ with $\Pi\left(L_{i} \times L_{j}\right)=$ $\left\{\beta_{2}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\},\left\{\beta_{2}, \beta_{4}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$ or $\left\{\beta_{3}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$. If $\Pi\left(L_{i} \times L_{j}\right)=$ $\left\{\beta_{3}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}, Q_{y} / K_{\beta_{k}}$ is a 3-dimensional irreducible L_{A} ' module, for $k=1$ and 2 , so $Q_{A} \leq K_{\beta_{k}}$. Hence $\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $1 \leq \ell \leq 4$. But then the bound on $\operatorname{dimV}_{\beta_{5}}\left(Q_{Y}\right)$ implies $\lambda \mid T_{Y}=\lambda_{8}$. If $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$, standard arguments allow us to reduce to a special case of (6.6)(ii). If $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$, the bound on $\operatorname{dimV}_{\beta_{4}}\left(Q_{Y}\right)$ and (2.3) imply $\lambda \mid T_{Y}=\lambda_{1}$ or λ_{7}. Thus, $\lambda \mid T_{Y}=\lambda_{7}$ and $\operatorname{dim} V \mid Y=56$. Using (1.30) and (1.32), it is not difficult to see that dim VIA >56 if $A=G_{2}$. Thus, (6.6)(iv) holds.

Finally, suppose $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$. Consider $Q_{A} K_{\beta_{5}} / K_{\beta_{5}} \leq Q_{Y} / K_{\beta_{5}}$. If we examine the L_{A} ' composition factors of $Q_{Y} / K_{\beta_{5}}$ and recall that $p>3$, we see that $\beta_{5} \mid Z_{A}=q \alpha$, if $p>5$. If $p=5,-\beta_{5}$ affords $T\left(L_{A}\right)$ weight $5 q \mu_{\beta}$ so $\beta_{5} I Z_{A} \neq 5 q \alpha$, by (2.16). So again
$\beta_{5} I Z_{A}=q \alpha$. Note that $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is a component of L_{γ}. Otherwise, $\left\langle\lambda, \beta_{1}\right\rangle=0$ by (2.3) and $\left\langle\lambda, \beta_{i}\right\rangle=0$ for $i=2,3,4$ as $Q_{A} \leq K_{\beta_{3}}$; but then the bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ implies $\lambda \mid T_{Y}=\lambda \delta_{8}$. Notice that if $Q_{A} \ddagger K_{\beta_{3}}$ (2.17) implies that the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is also q, and that $\beta_{3} \mid Z_{A}=q \alpha$. Thus, $\left\langle\lambda, \beta_{1}\right\rangle=0$, by (2.5). As well, the bound on $\operatorname{dimV}{ }^{2}\left(Q_{A}\right) \lambda-q \alpha$ of (1.22) implies $\lambda I T_{Y}=\lambda_{2}$. Also, if we apply (1.23) when $A=A_{2}$, we see that dim VIA $<\operatorname{dim}$ VIY. Thus $(6.6)(v)$ holds.

Now, consider $L_{i} \times L_{j}$ of type $A_{1} \times A_{4}$. Temporarily label as follows: $\Pi\left(L_{i} \times L_{j}\right)=\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ with $\left(\gamma_{0}, \gamma\right) \neq 0 \neq\left(\gamma, \gamma_{1}\right)$ and $\left(\gamma_{i}, \gamma_{i+1}\right) \neq 0$ for $i=1,2,3$. We have already $\langle\lambda, \gamma\rangle=0$. Actually, the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \gamma_{k}\right\rangle=0$ for $k=0,1,2,3$ and $\left\langle\lambda, \gamma_{4}\right\rangle=1$. Let W be the natural module for the A_{4} component. Then L_{A} acts irreducibly on W and W^{*}. Moreover, $L_{A^{*}}$ acting on $W \wedge W$ (or $W^{*} \wedge W^{*}$) has all even weights. Thus, since $p>2$, there does not exist $\tau \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ such that $\left(\tau, \gamma_{j}\right) \neq 0$ for some $1 \leq i \leq 4$ and $\left(\tau, \Sigma L_{k}\right)=0$ for all $k \neq i, j$. These considerations imply that $Y=E_{8}$ and either (a) $\Pi\left(L_{Y}\right)=\left\{\beta_{i} \mid i=3,5 \leq i \leq 8\right\}$, with $\langle\lambda, \beta 8\rangle=1$ or $(b) \Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{i} \mid i=2,5 \leq i \leq 8\right\}$, with $\left\langle\lambda, \beta_{8}\right\rangle=1$ or (c) $\Pi\left(L_{j} \times L_{j}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{8}\right\}$, with $\left\langle\lambda, \beta_{2}\right\rangle=1$. As well, (2.17) implies that there exists a p-power, q, such that q is the field twist on the embedding of $L_{A^{\prime}}$ in L_{i} and in L_{j} and such that $\gamma \mid Z_{A}=q \alpha$.

In the configuration of (a), suppose that $Q_{A} \ddagger K_{\beta_{1}}$. Then $Q_{Y} / K_{\beta_{1}}$ is isomorphic to $\left(Q_{A}{ }^{\alpha}\right) q$ as L_{A}--module,so (2.4) implies $\beta_{1} \mid Z_{A}=q \alpha$. But $\beta_{4} \mid Z_{A}=q \alpha$; so the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha$ of (1.22) implies $\left\langle\lambda, \beta_{1}\right\rangle=0$. Also, if $Q_{A} \leq K_{\beta_{1}},\left\langle\lambda, \beta_{1}\right\rangle=0$. But then in either case $\lambda I T_{Y}=\lambda_{8}$.

If $L_{i} \times L_{j}$ is as in (b), $\left\langle U_{ \pm \beta_{1}}\right\rangle \leq L_{\gamma}$, else (2.3) and the preceeding remarks imply $\lambda I T_{Y}=\lambda_{8}$. If $Q_{A} \ddagger K_{\beta_{3}}$, (2.8) implies $\beta_{3} I Z_{A}=q \alpha$. Since $Q_{Y} / K_{\beta_{3}}$ is a 2-dimensional L_{A} 'irreducible, the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is q and therefore $\left\langle\lambda, \beta_{1}\right\rangle=0$, by (2.5). Moreover, $\left\langle\lambda, \beta_{3}\right\rangle=0$, else the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha$ is exceeded. Also, if $Q_{A} \leq K_{\beta_{3}}\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$. But in either case $\lambda I T_{Y}=\lambda_{8}$.

If $L_{i} \times L_{j}$ is as in (c), previous remarks imply $\left\langle U_{ \pm \beta_{1}}\right\rangle \leq L_{\gamma}$. However, now we have a configuration of Case I which was ruled out. This completes the consideration of $L_{i} \times L_{j}$ of type $A_{1} \times A_{4}$.

We now consider $\left(L_{i}, L_{j}\right)$ of type $\left(A_{1}, A_{3}\right)$. We have $\langle\lambda, \gamma\rangle=0$. Moreover, the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ of (1.25) implies that if M_{j} is nontrivial, $M_{j} \cong W_{j}$ and if M_{j} is nontrivial $M_{j} \cong\left(V_{L_{j}}(-\gamma)\right)^{*}\left(\cong W_{j}\right.$ or W_{j}^{*} by the first paragraph of the proof). As well, (1.15) implies $W_{j} L_{A} A^{\prime}$ is tensor decomposable. Temporarily label as follows: $\Pi\left(L_{j}\right)=\left\{\gamma_{0}\right\}, \Pi\left(L_{j}\right)=$ $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\},\left(\gamma_{1}, \gamma\right) \neq 0,\left(\gamma_{j}, \gamma_{i+1}\right) \neq 0, i=1$, 2 . Let q be the field twist on the embedding of $L_{A} \cdot$ in L_{i}. Say $V_{L_{j}}(-\gamma) L_{A^{\prime}}$ has high weight $\left(q+q_{0}\right) \mu_{\beta}$. (The power q appears by (2.7).) Then the $L_{A} A^{\prime}$ composition factors of Q_{Y} / K_{γ} have high weights $\left(2 q+q_{0}\right) \mu_{\beta}$ and $q_{0} \mu_{\beta}$. Since $p>2, \gamma I Z_{A}=q_{0} \alpha$, by (2.4).

Claim: If dimM $_{k}>1$ for some k, then $k=i$ or j.
Reason: Suppose false; i.e., suppose there exists $k \neq i, j$ such that $\operatorname{dim}_{k}>1$. If L_{k} is separated from L_{j} or L_{j} by exactly one node of the Dynkin diagram, size restrictions, (6.4) and the work of this result thus far imply $Y=E_{8}$ and $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{8}\right\}$. Also, $\left\langle\lambda, \beta_{1}\right\rangle=1=\left\langle\lambda, \beta_{8}\right\rangle$ and $\left\langle\lambda, \beta_{j}\right\rangle=0,3 \leq i \leq 7$. Let q_{1}, q_{2} be the distinct field twists on the embeddings of L_{A} in $\left\langle U_{ \pm \beta_{1}}\right\rangle,\left\langle U_{ \pm \beta_{8}}\right\rangle$, respectively. (They must be distinct by (2.5).) Then, by the preceeding paragraph, $Q_{Y} / K_{\beta_{2}}$ is an irreducible L_{A} - module with high weight $\left(q_{1}+q_{2}\right) \mu_{\beta}$ and $\beta_{3} I Z_{A}=q_{2} \alpha$ and $\beta \nmid Z_{A}=q_{1} \alpha$. For the purposes of this argument, we may assume $h_{\beta}(c)=$ $h_{\beta_{1}}\left(c q_{1}\right) h_{\beta_{4}}\left(c q_{1}+q_{2}\right) h_{\beta_{5}}\left(c^{2} q_{2}\right) h_{\beta_{6}}\left(c q_{1}+q_{2}\right) h_{\beta_{8}}\left(c q_{2}\right)$. Examining the $T\left(L_{A}{ }^{\prime}\right)$ weight vectors in $Q_{Y} / K_{\beta_{3}}$ and $Q_{Y} / K_{\beta_{7}}$, we find that $x_{-\alpha}(t)=x_{-13}\left(c_{1} t q_{2}\right)$. $x_{-34}\left(c_{2} t q_{2}\right) x_{-78}\left(d_{1} t q_{1}\right) x_{-567}\left(d_{2} t q_{1}\right) w$, where $c_{j}, d_{j} \in k, c_{1}$ or c_{2} nonzero, d_{1} or d_{2} nonzero, and $w \in K_{\beta_{3}} \cap K_{\beta_{7}}$. Suppose $c_{2}=0$. Since $V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{3}-\beta_{4}\right) \neq 0$, a nonidentity element from the group U_{-134} must occur in the factorization of some element from $Q_{A}-Q_{A}{ }^{\prime}$. However, $-\beta_{1}-\beta_{3}-\beta_{4}$ affords $T\left(L_{A}\right)$ weight $\left(q_{2}-2 q_{1}\right) \mu_{\beta}$, which does not occur in
$\left(Q_{A}{ }^{\alpha}\right) Q_{2 \text {, contradicting (2.4). Thus, }} c_{2} \neq 0$. A similar argument shows that $d_{2} \neq 0$. But $c_{2} d_{2} \neq 0$ contradicts (2.8).

Thus, L_{k} is separated from L_{i} and L_{j} by more than one node of the Dynkin diagram. Size restrictions imply $Y=E_{7}$ or E_{8} and $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$. Since $Q_{A} \ddagger K_{\beta_{3}}$ and $Q_{Y} / K_{\beta_{3}}$ is a 2 -dimensional irreducible L_{A}-module, $\beta_{3} I T_{A}=q_{0} \alpha$ where q_{0} is the field twist on the embedding of $L_{A} \cdot$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$. Then (2.8) implies $\beta_{4} \mid Z_{A}=q_{0} \alpha$. Thus, if $L_{j}=\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle, V_{L_{j}}\left(-\beta_{4}\right) L_{A}$ ' has high weight $\left(q+q_{0}\right) \mu_{\beta}$ and the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is q. (See the previous general work on $Q_{A} K_{\gamma} / K_{\gamma} \leq Q_{Y} / K_{\gamma}$, in this configuration.) Thus, (2.5) implies that M_{j} is trivial and so $\left\langle\lambda, \beta_{2}\right\rangle=1,\left\langle\lambda, \beta_{j}\right\rangle=0$ for $4 \leq i \leq 7$. Now, using (1.36) if $\left\langle\lambda, \beta_{3}\right\rangle \neq 0$, we see that the bound on $\operatorname{dimv}^{2}\left(Q_{A}\right) \lambda-q_{0} \alpha$ of (1.22) is exceeded. This completes the proof of the Claim.

Now apply (1.23) when $A=A_{2}$ to find that dim VIA $<\operatorname{dim}$ VIY, unless $Y=E_{7}$ and $\lambda I T_{Y}=\lambda_{7}$. But then $\operatorname{dim} V I Y=56$ and $\operatorname{dim} V I A=8$ or 64 (7 or 49 if $p=3$). (See (1.36).) Thus, A does not have type A_{2}. Moreover, (1.23) also implies Y does not have type E_{6}. Thus, (6.6)(vi) holds. This completes the consideration of Case II.

The final statement of (6.6) follows from (2.3).ם
(6.7). Suppose there exists $1 \leq i \leq r$ such that L_{i} is separated from all other components of L^{\prime} ' by more than one node of the Dynkin diagram and such that M_{j} is nontrivial. Then $\operatorname{rank} L_{i}=1$ and $\operatorname{dimV}{ }^{1}\left(Q_{Y}\right)=\operatorname{dim} M_{j}$.

Proof: Since all components of $L_{Y}{ }^{\prime}$ are necessarily of classical type, (1.5) implies $Z_{A} \leq Z_{Y}$. Moreover, by (6.3), L_{j} has type A_{k} for some k. Let W denote the natural module for L_{i}. Theorem (7.1) of [12] implies $M_{j} \cong W$ or W^{*} if $\operatorname{rank} L_{i}>1$. Thus, if rank $L_{i}>1$, there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{j}\right) \neq 0$ and $V_{L_{i}}(-\gamma) \cong W$ or W^{*}, as Q_{Y} / K_{γ} would be a $\left(\operatorname{rank}\left(L_{j}\right)+1\right)$-dimensional irreducible L_{A}^{\prime}-module containing a nontrivial image of Q_{A}. Thus, if rank $L_{i}>1, \Pi\left(L_{i}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$.

However, (1.15) implies that $Q_{A} \leq K_{\beta_{5}}$, contradicting (2.3). So rank $L_{i}=1$. Let q be the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{j}. We will suppose $\operatorname{dim} V^{1}\left(Q_{Y}\right)>\operatorname{dim} M_{i}$. In particular, there exists $1 \leq m \leq r, m \neq i$, such that M_{m} is nontrivial. Thus, by (6.3) each component of L_{Y}, has type $A_{m_{k}}$, for some $m_{k} \geq 1$.

Now, (6.5), (6.6) and the above remarks imply that either
(a) there exists $k \neq i, m$ such that $L_{m} \times L_{k}$ has type $A_{1} \times A_{2}$ (or $A_{2} \times A_{1}$), ΠL_{m} and ΠL_{k} are separated by exactly one node of the Dynkin diagram, corresponding to a simple root γ, and $\left(\Sigma L_{j}, \gamma\right)=0$ for $j \neq k, m$, or
(b) rankL $L_{m}=1$ and $\Pi\left(L_{m}\right)$ is separated by more than one node of the Dynkin diagram from all other components of $L_{\gamma}{ }^{\prime}$.

Claim. There does not exist $\delta, \tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $(\delta, \tau)<0$, $\left(\delta, \Sigma L_{j}\right) \neq 0$ and $\left(\tau, \Sigma L_{\gamma}\right)=0$.

Reason: Suppose false. Then by (2.13) and (2.3), $\langle\lambda, \delta\rangle=0=\langle\lambda, \tau\rangle$, $\delta \mid T_{A}=q \alpha$ and $\tau \mid T_{A}=0$. Also, by (2.15), ΠL_{j} corresponds to an end node of the Dynkin diagram and $\Pi L_{i} \neq\left\{\beta_{1}\right\}$. If $\Pi L_{i}=\left\{\beta_{2}\right\}$, (2.15) implies $\tau=\beta_{5}$ and $\Pi\left(L_{\gamma}\right)=\left\{\beta_{2}, \beta_{1}, \beta_{7}\right\}$. If $\Pi L_{i}=\left\{\beta_{7}\right\}$, we argue similarly that $\Pi\left(L_{\gamma}\right)=$ $\left\{\beta_{7}, \beta_{1}, \beta_{2}\right\}$ or $\left\{\beta_{7}, \beta_{1}, \beta_{3}, \beta_{2}\right\}$. Finally, if $\Pi L_{i}=\left\{\beta_{8}\right\}, \Pi\left(L_{\gamma}\right)=\left\{\beta_{8}, \beta_{1}, \beta_{2}, \beta_{4}\right\}$.

Consider the case where $\Pi\left(L_{\gamma}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{7}\right\}$. Then $Q_{A} \not \ddagger K_{\beta_{3}}$ and $Q_{A} \ddagger K_{\beta_{4}}$; otherwise, $p>2$, (2.10) and (2.11) imply that there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}\left(\beta_{3}, \beta_{4}\right)$, contradicting (1.15). Now (2.8) implies that the field twists on the embeddings of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ and in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ are equal; call this twist q. (In particular, only one of $\left\langle\lambda, \beta_{1}\right\rangle$ and $\left\langle\lambda, \beta_{2}\right\rangle$ is nonzero.) Let $q_{0} \neq q$ be the field twist on the embedding of L_{A}. in $\left\langle U_{ \pm \beta_{7}}\right\rangle$. Then $\beta_{3} I T_{A}=q \alpha=\beta_{4} I T_{A}, \beta_{5} I T_{A}=0$ and $\beta_{6} I T_{A}=q_{0} \alpha$. Moreover, $\left\langle\lambda, \beta_{4^{+}} \beta_{5}+\beta_{6}\right\rangle=0$. If $\left\langle\lambda, \beta_{2}\right\rangle \neq 0,\left\langle\lambda, \beta_{3}\right\rangle=0$, else $\left(V_{\beta_{3}}\left(Q_{\gamma}\right)\right.$ $\left.\oplus V_{\beta_{4}}\left(Q_{Y}\right)\right) \leq V^{2}\left(Q_{A}\right) \lambda-q \alpha$ and the bound on $\operatorname{dim} V^{2}\left(Q_{A}\right) \lambda-q \alpha$ is exceeded. But now we see that there is no vector in VIY of weight $\lambda-q_{0} \alpha$, contradicting (2.14). Hence, $\left\langle\lambda, \beta_{1}\right\rangle \neq 0$ and $\left\langle\lambda, \beta_{2}\right\rangle=0$. If $\left\langle\lambda, \beta_{3}\right\rangle \neq 0$, $f_{34} v^{+}$and $f_{345} v^{+}$are 2 linearly independent vectors in $V_{T_{A}}(\lambda-2 q \alpha)$,
contradicting (1.31). So $\left\langle\lambda, \beta_{3}\right\rangle=0$ and again (2.14) is contradicted. Hence, $\Pi\left(L_{Y}\right) \neq\left\{\beta_{1}, \beta_{2}, \beta_{7}\right\}$.

If $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{7}\right\}$, let $P_{Y}{ }^{\wedge}$ be the parabolic of (2.12), so $P_{Y}{ }^{\wedge}$ has Levi factor $L_{Y}{ }^{\wedge}=\left\langle L_{Y}, U_{ \pm \beta_{5}}\right\rangle$. Then the bound on $\operatorname{dim} V_{\beta_{4}}\left(R_{U}\left(P_{Y}{ }^{\wedge}\right)\right)$ implies that $\left\langle\lambda, \beta_{2}+\beta_{3}+\beta_{4}\right\rangle=0$ and $\left\langle\lambda, \beta_{1}\right\rangle=1$. By (2.17), there is a p-power q_{0} which is the field twist on the embedding of L_{A} ' in $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and $\left\langle U_{ \pm \beta_{2}}\right\rangle$ and such that $\beta_{4} \mid Z_{A}=q_{0} \alpha$. Examining the $T\left(L_{A}\right)$ weight vectors in $Q_{Y} / K_{\beta_{4}}$, we have $x_{-\alpha}(t)=x_{-\beta_{3}-\beta_{4}}\left(c_{1} t q_{0}\right)$. $x_{-\beta_{2}-\beta_{4}}\left(c_{2} t q_{0}\right) u_{0}$, for $c_{i} \in k, c_{1}$ or c_{2} nonzero and $u_{0} \in K_{\beta_{4}}$. Hence $\left(\beta_{3}+\beta_{4}\right) I_{A}=q_{0} \alpha$ and $\beta_{4} I_{A}=q_{0}(\alpha-\beta)$. But now one can check that there is no vector in VIY with weight $\lambda-q \alpha$, where q is the field twist on the embedding of L_{A} ' in L_{i}, contradicting (2.14).

Finally, consider the case where $\Pi\left(L_{y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{8}\right\}$. Let q_{0} be the field twist on the embedding of $L_{A} \cdot$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ and $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{4}}\right\rangle$. Then $Q_{A} \leq K_{\beta_{5}}$, so $\left\langle\lambda, \beta_{2}+\beta_{4}+\beta_{5}+\beta_{6}+\beta_{7}\right\rangle=0$. Also, $-\beta_{5}$ is not involved in L_{A}, else $\beta_{5} I Z_{A}=0$ and the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q_{0} \alpha$ is exceeded. Let $P_{Y}{ }^{\wedge}$ be the parabolic of (2.12); so $P_{Y} \wedge$ has Levi factor $L_{Y} \wedge=\left\langle L_{Y}, U_{ \pm \beta_{6}}\right\rangle$. Then, $Q_{A} \leq K_{\beta_{5}} \leq R_{U}\left(P_{Y^{\wedge}}\right)=Q_{Y^{\wedge}}$ and (2.11) implies that there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}{ }^{\wedge}\left(\beta_{7}, \beta_{5}\right)$. But this implies that the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is also q_{0}, contradicting (2.5).

This completes the proof of the claim.
Now consider the configuration of (a). Note that by size retrictions and the above claim $\Pi\left(L_{i}\right)$ is separated by exactly two nodes of the Dynkin diagram from $\Pi\left(L_{k} \times L_{m}\right)$. In fact, $\Pi\left(L_{k} \times L_{m}\right)=\left\{\beta_{5}, \beta_{7}, \beta_{8}\right\}$ or $\left\{\beta_{5}, \beta_{6}, \beta_{8}\right\}, \Pi\left(L_{j}\right)=\left\{\beta_{1}\right\}$ and in each case $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is a component of L_{y}. For in the other possible configurations (2.8), (2.17), and (2.18) would force the field twist on the embedding of $L_{A^{\prime}}$ in L_{m} to be q, contradicting (2.5) and (2.6). In fact, $\Pi\left(L_{k} \times L_{m}\right) \neq\left\{\beta_{5}, \beta_{6}, \beta_{8}\right\}$. For otherwise, $Q_{A} \not \ddagger K_{\beta_{4}}$ and we argue that $L_{m}=\left\langle U_{ \pm \beta_{8}}\right\rangle$ and the field twist on the embedding of L_{A}. in L_{m} is q. This again produces a contradiction.

Consider now $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$, with $\left\langle\lambda, \beta_{1}\right\rangle \neq 0$. Since $p>2$, (1.15) implies $Q_{A} \leq K_{\beta_{4}}$. However, $-\beta_{4}$ is not involved in $L_{A}{ }^{\prime}$; for otherwise, $\beta_{4} \mid Z_{A}=0$ and using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that the bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded. If q is the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$, then $q \neq q_{0}$, where q_{0} is the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{5}}\right\rangle$ and $\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$. By (2.11), there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}\left(\beta_{6}, \beta_{4}\right)$; so the field twist on the embedding of L_{A} ' in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is also q_{0}. Now there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in the L_{Y} ' module $Q_{Y}\left(\beta_{3}, \beta_{4}\right)$, which has L_{A} ' composition factors of high weights $\left(2 q_{0}+q\right) \mu_{\beta}$ and $q \mu_{\beta}$. Hence, $\left(\beta_{3}+\beta_{4}\right) \mid Z_{A}=q \alpha$ and $\beta_{4} \mid Z_{A}=0$. But as above, the bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}{ }^{\wedge}\right)$ of (1.25) is exceeded. Thus, the configuration of (a) cannot occur.

It remains to consider the case where $\operatorname{rank}\left(L_{m}\right)=1$ and L_{m} is separated from all other components of the Dynkin diagram by more than one node of the Dynkin diagram. Note that the above claim implies that if ΠL_{i} or $\Pi L_{m}=\left\{\beta_{\ell}\right\}$, then $\ell \notin\{3,4,5\}$ and if $Y=E_{8}, \ell \neq 6$. Also, (2.8) implies that $\Pi\left(L_{j}\right)$ and $\Pi\left(L_{m}\right)$ are not separated by exactly two nodes of the Dynkin diagram. Finally, there does not exist $\tau \in \Pi\left(L_{Y}\right)$ such that $L_{Y^{\prime}}=L_{i} \times L_{m} \times\left\langle U_{ \pm \tau}\right\rangle$ and $\Pi\left(L_{j}\right)$ and $\Pi\left(L_{m}\right)$ are separated from τ by exactly two nodes of the Dynkin diagram. For otherwise, $p>2,(2.18)$ and (2.8) imply that the field twists on the embeddings of $L_{A}{ }^{\prime}$ in $L_{i},\left\langle U_{ \pm \tau}\right\rangle$ and L_{m} are all equal. These remarks and the above claim allow us to reduce to $\Pi\left(L_{\gamma}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{8}\right\}$. Then since $p>2, Q_{A} \leq K_{\beta_{4}}$, so $\Pi\left(L_{i} \times L_{m}\right)=\left\{\beta_{1}, \beta_{8}\right\}$. Let q (respectively, q_{0}) be the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ (respectively, $\left.\left\langle U_{ \pm \beta_{8}}\right\rangle\right)$. Then (2.18) and (2.8) imply that q_{0} is also the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{5}}\right\rangle$. As in the previous case, (2.11) implies that there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}\left(\beta_{3}, \beta_{4}\right)$. Thus, the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is either q or q_{0}.

Since $p>2$, examining the $L_{A^{\prime}}$ composition factors of $Q_{Y}\left(\beta_{3}, \beta_{4}\right)$ gives that $\left(\beta_{3}+\beta_{4}\right) \mid Z_{A}=q \alpha$ or $q_{0} \alpha$ (depending on the field twist on the
embedding of L_{A} in $\left\langle U_{ \pm \beta_{2}}\right\rangle$). But if $\left(\beta_{3}+\beta_{4}\right) \mid Z_{A}=q \alpha$, then $\beta_{4} \mid Z_{A}=0$, as $\beta_{3} \mid Z_{A}=q \alpha$. Using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that the bound on $\operatorname{dim}_{\beta_{3}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded. Thus, $\left(\beta_{3}+\beta_{4}\right) \mid Z_{A}=q_{0} \alpha$. However, using (1.36) if $\left\langle\lambda, \beta_{1}\right\rangle$ or $\left\langle\lambda, \beta_{8}\right\rangle=p-1$, we see that the contribution of $V_{\beta_{7}}\left(Q_{Y}\right)$ and the L_{Y} composition factor(s) afforded by $f_{\beta_{3}+\beta_{4}}{ }^{v^{+}}$and/or $f_{\beta_{1}}+\beta_{3}+\beta_{4}{ }^{v^{+}}$ exceed the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q_{0} \alpha$.

This completes the proof of (6.7).
(6.8). Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that there exists a unique pair $1 \leq i, j \leq r$ with $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$ and L_{i} has type A_{1}, L_{j} has type A_{2} and $\operatorname{dim}\left(M_{j} \otimes M_{j}\right)>1$. Then $\operatorname{dim} V^{1}\left(Q_{Y}\right) \leq 3$ and if $A=A_{2}$, then $Y=E_{6}$.

Proof: Suppose there exists $k \neq i, j$ such that M_{k} is nontrivial. By size restrictions, L_{m} is necessarily of classical type for all $1 \leq m \leq r$, so by (1.5), $Z_{A} \leq Z_{Y}$. Also, by size restrictions, L_{k} has type $A_{n_{k}}$ for some n_{k}. So (6.5), (6.6) and (6.7) imply L_{k} has type A_{1} or A_{2} and is separated by exactly one node of the Dynkin diagram, corresponding to a root $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$, from a component of L_{Y} of type A_{2} or A_{1}, respectively. Moreover, there are exactly two components of $L_{Y}{ }^{\prime}$ whose root systems are not orthogonal to δ. By size restrictions, $\left(\delta, \Sigma\left(L_{i} \times L_{j}\right)\right) \neq 0$. However, (2.17) implies that the field twists on the embeddings of L_{A} in L_{i}, L_{j} and L_{K} are equal, contradicting (2.5) and (2.6). Hence, M_{ℓ} is trivial for all $\ell \neq i, j$.

Now (6.6) implies $\langle\lambda, \gamma\rangle=0$. Moreover, if $L_{i}=\left\langle U_{ \pm \gamma_{i}}\right\rangle$ for $\gamma_{j} \in \Pi\left(L_{Y}\right)$, and if $\left\langle\lambda, \gamma_{j}\right\rangle \neq 0$, the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \gamma_{j}\right\rangle \leq 2$. Thus, $\operatorname{dim}^{1}\left(Q_{Y}\right)=\max \left\{\operatorname{dim} M_{i}, \operatorname{dim} M_{j}\right\} \leq 3$. Then, if $Y=E_{7}$ or E_{8}, A does not have type A_{2}, as (1.23) shows $\operatorname{dim} V|A \leq 27<\operatorname{dim} V| Y$. This completes the proof of (6.8).口

Proof of (6.0): Let $\alpha_{1}, \alpha_{2}, \mu_{1}$ and μ_{2} be as in the statement of (6.0). Without loss of generality, we may assume $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$. Let
$L_{A}=\left\langle U_{ \pm \alpha_{1}}\right\rangle T_{A}$ and fix notation as before. By (6.1), $L_{Y}{ }^{\prime}$ is not a simple algebraic group.

Suppose there exists $1 \leq i \leq r$ such that L_{i} has type D_{k} for some k. Then by (6.3), (1.23) and (1.10), $Y=E_{8}, \lambda I T_{Y}=x \lambda_{7}+c \lambda_{8}, \lambda \mid T_{A}=c \mu_{1}+c \mu_{2}$ and $\Pi\left(L_{y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{8}\right\}$ or $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{8}\right\}$. Also, (2.9) implies that $Q_{A} \leq K_{\beta_{6}}$. Then using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11) and applying (1.36), we see that the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)$ implied by (1.22) is exceeded. Thus, there does not exist i such that L_{i} has type D_{k}.

Suppose there exist distinct $1 \leq i, j, k \leq r$ such that $\left(\Sigma L_{m}, \beta_{4}\right) \neq 0$ for $m=i, j, k$ and such that M_{m} is nontrivial for $m=i, j$ or k. Then (6.5)(i) or (iii) holds. If (6.5)(i) holds, it is established in the proof that the field twists on the embeddings of L_{A} in $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and in $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$ are equal. Call this twist q. Then by (1.23) and (1.10), $\lambda \mid T_{A}=2 \mu_{1}+2 \mu_{2}$. Now, dim $V I Y=27$; but (1.36) implies $\operatorname{dim} V \mid A<27$ if $p=5$. Hence, (6.0)(a) holds.

Now, consider the configuration described in (6.5)(iii). Then, by (1.23), $\lambda I T_{A}=\left(q_{1}+q_{2}\right)\left(\mu_{1}+\mu_{2}\right)$ for q_{1} and q_{2} distinct p-powers, or $\lambda I T_{A}=q\left(3 \mu_{1}+3 \mu_{2}\right)$, for some p-power $q, p>3$. If $x \neq 0,(1.32)$ and (1.26) imply $\operatorname{dim} V|A<\operatorname{dim} V| Y$. Thus, $x=0$ and $\operatorname{dim} V \mid Y=56$. If $\lambda \mid T_{A}=$ $\left(q_{1}+q_{2}\right)\left(\mu_{1}+\mu_{2}\right), \operatorname{dim} V I A=64$ or $p=3$ and $\operatorname{dim} V I A=49$. (Use (1.35).) Hence, $\lambda I T_{A}=q\left(3 \mu_{1}+3 \mu_{2}\right)$ and $p>3$. So, by (1.10), $q=1$. The Weyl module for A with high weight $3 \mu_{1}+3 \mu_{2}$ has dimension 64 by (1.27). Using (1.33) and the fact that $p>3$, we see that $\operatorname{dim} V \mid A<64$ if and only if $p=7$ and $\operatorname{dim} V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}\right)=1$ or $p=5$ and $\operatorname{dim} V_{T_{A}}\left(\lambda-3 \alpha_{1}-3 \alpha_{2}\right)<4$. However, if $p=7$ and $\operatorname{dim} V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}\right)=1$, (1.33) implies dim VIA \leq $64-\operatorname{dimV}\left(2 \mu_{1}+2 \mu_{2}\right)<56$. And if $p=5, \operatorname{dim} V \mid A \geq 64-4=60$. Hence dim $V I A \neq 56$. Thus, the configuration of (6.5)(iii) does not occur.

Suppose there exists $\gamma \in \Pi(Y)-\Pi\left(L_{y}\right)$ such that there exists a unique pair $1 \leq i, j \leq r$ with $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$ and M_{j} or M_{j} is nontrivial. Then L_{i} and L_{j} have type $A_{k_{i}}$, respectively $A_{k_{j}}$ for some $k_{i}, k_{j} \geq 1$ and
(6.6)(iii) or (iv) holds. If (6.6)(iv) holds, p>3, (1.23) and (1.10) imply $\lambda I T_{A}=3 \mu_{1}+3 \mu_{2}$. Then the argument of the preceeding paragraph shows $\operatorname{dim} V|A \neq \operatorname{dim} V| Y$.

Suppose (6.6)(iii) holds. Then by (6.8), $Y=E_{6}$ and $\operatorname{dimV}^{1}\left(Q_{Y}\right) \leq 3$. If $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{1}, \beta_{4}, \beta_{5}\right\}$, (6.6) and (6.8) imply $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $2 \leq k \leq 6$ and $\left\langle\lambda, \beta_{1}\right\rangle=c \leq 2$. By (1.23), $\lambda \mid T_{A}=q\left(c \mu_{1}\right)$. But then $\operatorname{dim} V|A<\operatorname{dim} V| Y$. Suppose $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{3}, \beta_{5}, \beta_{6}\right\}$. Recall that the field twists on the embeddings of L_{A} in L_{i} and in L_{j} are equal. Call this twist q. Then, (2.17) implies $\beta_{4} I_{A}=q \alpha$. Moreover, $Q_{A} \ddagger K_{\beta_{1}}$, else $p>2$, (2.10) and (2.11) imply that there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}\left(\beta_{4}, \beta_{1}\right)$, a 3 -dimensional irreducible L_{A} '-module. Hence, by (2.4), $\beta_{1} \mid Z_{A}=q \alpha$, also. This implies $\left\langle\lambda, \beta_{1}\right\rangle=0$ and $\left\langle\lambda, \beta_{3}\right\rangle \leq 1$, else the bound on $\operatorname{dim}^{2}\left(Q_{A}\right) \lambda-q \alpha$ of (1.22) is exceeded. Hence by (1.23) and (2.3), $\lambda \mid T_{Y}=\lambda_{3}$ or λ_{5} and $\lambda \mid T_{A}=q\left(2 \mu_{1}+\mu_{2}\right)$ or $\lambda I T_{Y}=\lambda_{6}$ and $\lambda I T_{A}=q\left(2 \mu_{1}\right)$. However, in each case, $\operatorname{dim} V I A<\operatorname{dim} V I Y$. Consider next the configuration $\Pi\left(L_{i} \times L_{j}\right)=$ $\left\{\beta_{1}, \beta_{2}, \beta_{4}\right\}$. If $L_{Y}{ }^{\prime}=L_{i} \times L_{j}, Q_{A} \leq K_{\beta_{5}}, \lambda \mid T_{Y}=c \lambda_{1}$ and by (1.23) $\lambda I T_{A}=q\left(c \mu_{1}\right)$, for $c=1$ or 2. However, $\operatorname{dim} V \mid A<\operatorname{dim} V I Y$. Thus, $\left\langle U_{ \pm \beta_{6}}\right\rangle \leq L_{Y}$. If $\left\langle\lambda, \beta_{2}+\beta_{4}\right\rangle \neq 0, Q_{A} \nsubseteq K_{\beta_{5}}$, so (2.17) implies that the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is also q and that $\beta_{5} \mid Z_{A}=q \alpha$. Thus, we see that $\lambda I T_{Y}=\lambda_{2}$, else the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)_{\lambda-q \alpha}$, of (1.22), is exceeded. But this is a contradiction. Hence, $\left\langle\lambda, \beta_{1}\right\rangle \neq 0$. Applying (6.8) and (1.23), we see that dim VIA $<\operatorname{dim}$ VIY.

So if (6.6)(iii) holds, we may assume by symmetry that $\Pi\left(L_{i} \times L_{j}\right)=$ $\left\{\beta_{1}, \beta_{3}, \beta_{2}\right\}$. If $L_{Y}{ }^{\prime}=L_{j} \times L_{j},\left\langle\lambda, \beta_{5}+\beta_{6}\right\rangle=0$. But (1.23) then implies $\operatorname{dimV} \mid A$ < dimVIY. Thus, $L_{Y^{\prime}}=L_{i} \times L_{j} \times\left\langle U_{ \pm \beta_{6}}\right\rangle$ and by (6.8), $\left\langle\lambda, \beta_{6}\right\rangle=0$. In fact, $\left\langle\lambda, \beta_{5}\right\rangle=0$, for otherwise, $Q_{A} \nsubseteq K_{\beta_{5}}$, and (2.8) implies $\beta_{5} \mid Z_{A}=q \alpha$ which means the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)_{\lambda}-q \alpha$, of (1.22), is exceeded. But now (1.23) implies dim VIA < dim VIY. Hence, the hypothesis of (6.6) cannot be satisfied.

Consider now the possibility that there exists $1 \leq i \leq r$ such that L_{i} is
separated from all other components of $L \gamma^{\prime}$ by more than one node of the Dynkin diagram. Then all components of L_{Y} are necessarily of classical type, so by (1.5), $Z_{A} \leq Z_{Y}$. By (6.7), rank $L_{i}=1$ and $\operatorname{dimV}{ }^{1}\left(Q_{Y}\right)=\operatorname{dim} M_{j}=$ $c+1$, for some $p>c>0$. Let q be the field twist on the embedding of $L_{A} A^{\prime}$ in L_{i}. Consider first the case where $Y=E_{7}$ or E_{8}. Then (1.23) and (1.10) imply $\lambda I T_{A}=c \mu_{1}+c \mu_{2}$. Let $\gamma, \delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\Sigma L_{j}, \gamma\right) \neq 0$, $(\gamma, \delta)<0$. Then, by (2.4), $\gamma \mid Z_{A}=\alpha$ and by (2.3) and (2.9), $Q_{A} \leq K_{\delta}$. If $-\delta$ is not involved in $L_{A^{\prime}}$, (2.11) implies $(\gamma+\delta) \mid Z_{A}=\alpha$. Thus, $\delta I Z_{A}=0$. If $-\delta$ is involved in $L_{A}{ }^{\prime},(2.10)$ implies $\delta \mid Z_{A}=0$. Hence, we may use the parabolic $P_{Y} \wedge$ of (2.11) to see that the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ and (1.36) imply $\langle\lambda, \gamma\rangle=0$. Moreover, $\left(\Sigma L_{Y}, \delta\right)=0$, else $c \leq 2$ and $\operatorname{dimV}|A \leq 27<\operatorname{dimV}| Y$. Now (2.15) implies $L_{i}=\left\langle U_{ \pm \beta_{2}}\right\rangle, \gamma=\beta_{4}$ and $\delta=\beta_{5}$ or $L_{i}=\left\langle U_{ \pm \beta_{n}}\right\rangle$ if $Y=E_{n}$. Now, if $\left\langle\lambda, \beta_{j}\right\rangle \neq 0$ for some $\beta_{j} \in \Pi(Y)-\Pi\left(L_{i}\right)$, then $\beta_{j} \in \Pi(Y)-\Pi\left(L_{y}\right)$ and the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)$ is exceeded. So, $\left\langle\lambda, \beta_{j}\right\rangle=0$ for all $\beta_{j} \notin \Pi\left(L_{j}\right)$. In each case, there is a parabolic of Y with Levi factor, L, of type A_{5} such that v^{+}affords an L composition factor with dimension $(c+1)(c+2)(c+3)$. $(c+4)(c+5) / 5!$ by (1.12). Since $\operatorname{dim} V \mid A \leq(c+1)^{3}$, by (1.27), $c \leq 3$. Using the methods of (1.30) and (1.32), it is easy to check that dim VIA $<\operatorname{dim}$ VIY. Hence, $Y=E_{6}$.

Since L_{Y} is not simple, we may take $L_{i}=\left\langle U_{ \pm \beta_{j}}\right\rangle$ for $j=1,2,3$. In fact, by (2.15), we may exclude $j=3$. If $L_{i}=\left\langle U_{ \pm \beta_{2}}\right\rangle$, (2.15) implies $\left\langle U_{ \pm \beta_{1}}\right\rangle \leq L_{\gamma^{\prime}}$. By (2.9), $Q_{A} \leq K_{\beta_{3}}$. However, since $p>2$, this contradicts (2.18). Hence, $L_{i}=\left\langle U_{ \pm \beta_{1}}\right\rangle$. Then (2.15) implies $\left(\Sigma L_{\gamma}, \beta_{4}\right) \neq 0$, so by (2.9), $Q_{A} \leq K_{\beta_{4}}$ and $V_{\beta_{4}}\left(Q_{Y}\right)=0$. The considerations of the case where $L_{i}=$ $\left\langle U_{ \pm \beta_{2}}\right\rangle$ and previous general remarks imply that $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{5}\right\}$ or $\left\{\beta_{1}, \beta_{5}, \beta_{6}\right\}$ or $\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{6}\right\}$. In the second and third cases, (1.23) and Theorem (7.1) of [12] imply $\lambda I T_{Y}=\lambda_{1}$ and $\lambda I T_{A}=q \mu_{1}+2 q_{0} \mu_{2}$ for some p-power q_{0}. However, dim VIA $\leq 18<\operatorname{dim}$ VIY. In the first case, by considering the action of A on V^{*}, we see that $\left\langle\lambda, \beta_{3}\right\rangle=0$. Then (1.23) and (1.10) imply $\lambda I T_{A}=c \mu_{1}+y \mu_{2}$ and $\lambda I T_{Y}=c \lambda_{1}+y \lambda_{6}$. Hence, if $y \neq 0$,
(2.4) implies $\beta_{6} \mid Z_{A}=\alpha$ and the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)$ is exceeded. So $y=0$. But then clearly dim VIA < dim VIY. Therefore, the conditions of (6.7) cannot be satisfied.

It remains to consider the possibility that there exists $1 \leq i \leq r$ such that L_{j} has exceptional type. Then $Y=E_{8}, \Pi\left(L_{\gamma}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{8}\right\}$ and by (7.1) of [12], $\lambda I T_{Y}=x \lambda_{7}+c \lambda_{8}$ for $p>c>0$. Then (1.23) and (1.10) imply $\lambda I T_{A}=c \mu_{1}+c \mu_{2}$. However, this contradicts Remark (6.2).

This completes the proof of (6.0).口
(6.9): Summary of Results in Chapter 6

Description of VIY	$\frac{\langle\lambda, \beta\rangle}{}$	Reference
000000	$3 \mathrm{q}, \mathrm{q}+\mathrm{q}_{1}$	(6.6)(ii)
$000000 a \quad a \geq 0$	$3 q, q+q_{1}$	(6.6)(ii)
$\begin{gathered} 00000 b c \quad c>0, b \geq 0 \\ 0 \end{gathered}$	$c q$	(6.2) or (6.3)
$\begin{gathered} 10000 \\ 0 \end{gathered}$	$2 q$	(6.5)(i)
1000000	2q,4q	(6.5)(ii) or (6.6)(i)
$\begin{gathered} a 00001 \\ 0 \end{gathered}$	$3 q, q+q_{1}$	(6.5)(iii)
$\begin{gathered} 000001 \\ 0 \end{gathered}$	3 q	(6.6)(iv)
0000000	$2 q$	(6.6)(v)
Partial description of VIY		
$000 \text { or } 100 \text { or } 001$	q	(6.5)(iv)
$\cdots 1000 \cdots$ or $\cdots 0100 \cdots$	2q	(6.8)
$\cdots \cdots 000 \cdots \mathrm{c}$ ¢	cq	(6.8)
$\cdots 10000 \cdots$	$q, q+q_{1}$	(6.6)(vi)
$\cdots \mathrm{c} \cdot \cdots \mathrm{c} \geq 0$	cq	(6.7)

CHAPTER 7: $A=B_{2}$

In this chapter, we will prove that there are no examples in the solution of the main problem with A of type B_{2}, Y of type E_{n} and $p \neq 2$. We adopt Notation and Hypothesis (2.0), with the following additions and/or modifications. With $\Pi(A)=\left\{\alpha_{1}, \alpha_{2}\right\}$, with α_{1} long, we will take $L_{A}=\left\langle U_{ \pm \alpha_{2}}\right\rangle T_{A}$. Note that since $p \neq 2, Q_{A} \alpha_{1}$ is a 3-dimensional irreducible L_{A} ' module.

Remark (7.1). Note that $h_{\alpha_{2}}(-1) \in Z(A) \leq Z(Y)$. Since $Z(Y) \cong \mathbb{Z}_{3}$ (respectively, $\mathbb{Z}_{2}, 1$) if $Y=E_{6}$ (respectively, E_{7}, E_{8}), $h_{\alpha_{2}}(-1) \neq 1$ will imply Y has type E_{7}. In particular, if L_{i} has type A_{1} for some $1 \leq i \leq r$, then $Y=E_{7}$.
(7.2). Let q be a p-power.
(1) If $p>3$ and $\left\langle\lambda, \alpha_{2}\right\rangle=3 q$, then $\operatorname{dimV} \mid A \neq 56$.
(2) If $p \geq 3$ and $\left\langle\lambda, \alpha_{2}\right\rangle=q$, then $\operatorname{dimV} \mid A=56$ if and only if $\left\langle\lambda, \alpha_{1}\right\rangle=2 q_{0}$ for some p-power $q_{0} \neq q$.
(3) If $\lambda \mid T_{Y}=\lambda_{j}$ for some j, then $\left\langle\lambda, \alpha_{2}\right\rangle \neq 2 q$.

Proof: Suppose $p>3,\left\langle\lambda, \alpha_{2}\right\rangle=3 q$ and $\operatorname{dimVIA}=56$. Then (1.27) implies that $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$. The methods of (1.30) and (1.32) imply that VIA is tensor indecomposable, else dimVIA >56. So $\lambda I T_{A}=x q \mu_{1}+3 q \mu_{2}$, for some $x<p$. If $x>1$, the methods of (1.30), (1.32) and (1.35) imply that $\operatorname{dimVIA}>56$. So we may assume $\lambda \mid T_{A}=\mu_{1}+3 \mu_{2}$. Now, $p \neq 7$, else (1.27) and (1.35) imply that $\operatorname{dimVIA} \leq 64-\operatorname{dimV}\left(3 \mu_{2}\right)<56$. Also, $p \neq 5$, else the last proposition of [4] implies $\operatorname{dimV} \mid A \leq 64-\operatorname{dimV}\left(\mu_{1}+\mu_{2}\right)<56$. But now, $p>7$ and (1.33) imply $\operatorname{dimVIA}=64$. This completes the proof of (1).

Now suppose $p>2,\left\langle\lambda, \alpha_{2}\right\rangle=q$ and $\operatorname{dimV} \mid A=56$. We first claim that VIA is tensor decomposable. For if $\lambda I T A=x q \mu_{1}+q \mu_{2}$ for some $0 \leq x<p$, (1.27) implies $x \geq 3$. In fact $x=3$, else the methods of (1.30) and (1.32) imply dimV|A >56. By (1.33), $\operatorname{dimV}\left(3 \mu_{1}+\mu_{2}\right)<80$ only if $p=13$ or $p=7$. If $p=7, \operatorname{dimV} \mid A \geq 80-4\left(\operatorname{dim} V_{T_{A}}\left(\lambda-3 \alpha_{1}-3 \alpha_{2}\right)\right) \geq 80-16$. (Use (1.29) to find a spanning set for the indicated weight space.) If $p=13$, $\operatorname{dimVIA}<80$ only if $\operatorname{dim} V_{T_{A}}\left(\lambda-2 \alpha_{1}-\alpha_{2}\right)<2$. However, $\operatorname{dim} V_{T_{A}}\left(\lambda-2 \alpha_{1}-\alpha_{2}\right) \geq 1$, so $\operatorname{dimV} \mid A \geq 80-\operatorname{dimV}\left(3 \mu_{2}\right) \geq 60$. $\left(\lambda-2 \alpha_{1}-2 \alpha_{2}=3 \mu_{2}\right.$.) Thus, VIA is tensor decomposable as claimed. It is now easy to see that $\left\langle\lambda, \alpha_{1}\right\rangle=2 q_{0}$ for some p-power $q_{o} \neq q$. This completes the proof of (2).

Suppose $\left\langle\lambda, \alpha_{2}\right\rangle=2 q$ and $\lambda \mid T_{Y}=\lambda_{j}$ for some $1 \leq j \leq r a n k Y$. Then $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$ else $\operatorname{dimV} \mid A\left\langle\operatorname{dimVIY}\right.$. If $\left\langle\lambda, \alpha_{1}\right\rangle=1 \cdot q_{0}$ for some p-power q_{0}, $\operatorname{dimVIA} \leq 50$; so (1.32) implies that $Y=E_{6}$ and dimVIA $=27$. So $q=q_{0}$. But now applying the last proposition of [4], we see that $\operatorname{dimV}\left(\mu+2 \mu_{2}\right) \neq 27$. Consider now the possibility that $\left\langle\lambda, \alpha_{1}\right\rangle=2 q_{0}$, for some p-power q_{0}. If $q \neq q_{0}$, using (1.27), (1.30) and (1.32), we find that $117 \leq \operatorname{dimV} \mid A \leq 140$. However, using (1.32) and [8], we see that dimVIY >140 or $\operatorname{dimVIA}<117$. Thus, $q=q_{0}$, and by (1.27), (1.30) and (1.32), $36 \leq \operatorname{dimV} \mid A \leq 81$. Thus, [8] implies that $Y=E_{7}, \lambda \mid T_{Y}=\lambda_{7}$ and $\operatorname{dimV} \mid A=56$. Now, $\operatorname{dimV} \mid A<81$ and (1.33) imply $p=5$ or $p=7$ (recall $p \neq 2$). If $p=7$, (1.33) and the last proposition of [4] imply dimVIA $=81-t$, where t is the dimension of the irreducible kA-module with high weight $2 \mu_{2}$. Using (1.33) again for this module when $p=7$, we see that $t=10$ and $\operatorname{dimVIA}=71 \neq 56$. So $p=5$. Then (1.33) and [4] imply that $\operatorname{dimVIA} \geq(81-14)-x$, where x is the multiplicity of the weight $\lambda-3 \alpha_{1}-4 \alpha_{2}$ in the Weyl module $W(\lambda)$. But by (1.29), a spanning set for this weight space has size 8 . Thus $x \leq 8$ and dimVIA >56. So, $\operatorname{dimV} \mid A \neq 56$, as claimed. Hence, $\left\langle\lambda, \alpha_{1}\right\rangle \neq 2 q_{0}$, for q_{0} a p-power.

For the remaining possibilities, we refer to (6.9) and the configurations in which $\lambda I T_{Y}$ is more explicitly described. In each case, the methods of (1.30), (1.32) and (1.35), (1.27), [8] and the work of the
preceeding paragraphs show that $\operatorname{dimVIA} \neq \operatorname{dimVIY}$. This completes the proof of (3) and of (7.2).
(7.3). If $\operatorname{dimV}^{1}\left(Q_{Y}\right)>1, L_{Y}{ }^{\prime}$ is not a simple algebraic group.

Proof: Suppose false. Then Theorem (7.1) of [12] implies $L_{Y}{ }^{\prime}$ is of classical type, so by (1.5), $Z_{A} \leq Z_{Y}$. Consider first the case where L_{Y}. has type D_{k} for some $k \geq 4$. Arguing as in the proof of (6.1), we reduce to L_{Y}. of type D_{6}, with $V^{1}\left(Q_{Y}\right)$ isomorphic to the natural module for L_{Y}. Moreover, $Y=E_{7}$, else $Q_{Y} / K_{\beta_{8}}$ is a 12-dimensional irreducible L_{A} ' module containing a nontrivial image of $Q_{A} \alpha_{1}$. The bound on $\operatorname{dim} V_{\beta_{1}}\left(Q_{Y}\right),(1.32)$ and (1.34) imply $\left\langle\lambda, \beta_{1}\right\rangle=0$. Therefore, dimVIY $=56$ and $\left\langle\lambda, \alpha_{2}\right\rangle=q_{1}+5 q_{2}$ or $q_{1}+q_{2}+2 q_{3}$, for q_{1}, q_{2} and q_{3} distinct p-powers. Using the methods of (1.30) and (1.3.2), we see that $\operatorname{dimVIA}>56$ in either case. Hence, $L^{\prime}{ }^{\prime}$ has type A_{k}, for some k.

Assume for now that rank $L_{Y^{\prime}}>2$. Then (7.1) of [12] implies $V^{1}\left(Q_{Y}\right) \cong W$ or W^{*}, where W is the natural module for $L_{\gamma^{\prime}}$. Since $L_{\gamma^{\prime}}$ acts irreducibly on W (and W^{*}), there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $V_{L_{Y}}(-\gamma) \cong W$ or W^{*}. If $L_{Y}{ }^{\prime}$ has type A_{n-1} when Y has type E_{n}, the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ of (1.25) implies $\lambda \mid T_{Y}=\lambda_{n}$. In particular, $Y \neq E_{8}$. But now induction, (1.30) and (1.32) imply that dimV|A > dimVIY in each case.

Now, consider $L_{Y}{ }^{\prime}=\left\langle U_{ \pm \beta_{j}} \mid 1 \leq j \leq 4\right\rangle$. The bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ and (2.3) imply $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $j \geq 5$. Also, $\left\langle\lambda, \alpha_{2}\right\rangle=4 q$, for some p-power q. If $Y=E_{6}$ (respectively, E_{7}), $\lambda \mid T_{Y}=\lambda_{1}$ (respectively, λ_{2}). Thus, $Y \neq E_{6}$ as $\operatorname{dim} V I A>27=\operatorname{dim} V I Y$. So $Y=E_{7}$ and $\lambda I T_{Y}=\lambda_{2}$, or $Y=E_{8}$ and $\lambda I T_{Y}=\lambda_{1}$ or λ_{2}. The L_{A} ' composition factors of $Q_{Y} / K_{\beta_{5}}$ have high weights $6 q \mu_{2}$ and $2 q \mu_{2}$; if $p=5$, the high weights are $(q+5 q) \mu_{2}$ and $2 q \mu_{2}$. Thus, (2.12) applies to give $\beta_{j} \mid Z_{A}=0$ for $j \geq 6$. Then, using the parabolic $P_{Y}{ }^{\wedge}$ of (2.12), we see that the bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}{ }^{\wedge}\right)$, of (1.25), is exceeded. So, $L_{Y}{ }^{\prime} \neq\left\langle U_{ \pm \beta_{j}} \mid 1 \leq j \leq 4\right\rangle$. But if $L_{Y^{\prime}}=\left\langle U_{ \pm \beta_{j}} \mid j \neq 1,3\right\rangle$ in Y of type E_{8}, the bound on $\operatorname{dimV}_{\beta_{3}}\left(Q_{Y}\right)$, of (1.25), implies $\lambda \mid T_{Y}=\lambda_{8}$. Also,
$L_{y^{\prime}} \neq\left\langle U_{ \pm \beta_{j}} \mid j=2,4,5,6,7\right\rangle$ as there is no 3-dimensional composition factor of $Q_{Y} / K_{\beta_{3}}$, contradicting (2.3). Thus, we have shown that $\operatorname{rank}\left(L_{\gamma^{\prime}}\right) \leq 2$.

Note that rank $L_{Y}{ }^{\prime} \neq 1$, else $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right) \leq 2$ for all $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $Q_{A} \leq K_{\gamma}$ for all such γ, contradicting (2.3). Hence, L_{γ} ' has type A_{2}. Let q be the field twist on the embedding of $L_{A}{ }^{\prime}$ in $L_{y^{\prime}}$. Then $\beta / T_{A}=q \alpha_{2}$ for $\beta \in \Pi\left(L_{\gamma}\right)$. Since $Q_{A} K_{\gamma} / K_{\gamma}=Q_{\gamma} / K_{\gamma}$ for all $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ such that $\left(\gamma, \Sigma L_{\gamma}\right) \neq 0, \gamma \| T_{A}=q \alpha_{1}$, for all such γ. By (2.12), $\delta I T_{A}=0$ for all $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\delta, \Sigma L_{Y}\right)=0$. Also, $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$, else dimV|A $<\operatorname{dimVIY}$. So there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $\langle\lambda, \gamma\rangle \neq 0$, else $V_{T_{A}}\left(\lambda-q \alpha_{1}\right)=0$. Moreover, there exists a unique such γ, else $\operatorname{dim} V_{T_{A}}\left(\lambda-q \alpha_{1}\right) \geq 2$, contradicting (1.31). Also, (2.13) implies γ corresponds to an end node of the Dynkin diagram. Finally, we need to note that VIA is a conjugate of a restricted module as there are no nontrivial T_{Y} weights in VIY restricting to $\lambda-q_{0} \alpha_{1}$, for $q_{0} \neq q$. So by (1.10), $\lambda I T_{A}=x \mu_{1}+2 \mu_{2}$ for $p>x>0$. Then by (1.29), $\operatorname{dim} V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}\right) \leq 3$. However, it is easy to check that if the above conditions are satisfied, there exist 4 linearly independent vectors in VIY which lie in $V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}\right)$. This completes the proof of (7.3).
(7.4). If $\operatorname{dim} V^{1}\left(Q_{Y}\right)>1$, each L_{i} has type $A_{k_{i}}$, for some $k_{i} \geq 1$.

Proof: Suppose false. Then L_{i} has type D_{k} for some i and k. Otherwise, by (7.1) of [12], $Y=E_{8}$ and L_{Y} ' has type $E_{6} \times A_{1}$. But this contradicts Remark (7.1). Since $p>2$, (7.1) of [12], (7.3) and size restrictions imply L_{i} has type D_{4} or D_{5} and $Y=E_{7}$ or E_{8}. Since all components of L_{Y} ' are necessarily of classical type, (1.5) implies $Z_{A} \leq Z_{Y}$.

Arguing as in the proof of (6.3) and applying (7.1) and (7.3), we reduce to L_{Y} of type D_{4}. Note that M_{j} is nontrivial. For otherwise, (7.1), (7.3) and the bound on $\operatorname{dimV}_{\beta_{6}}\left(Q_{Y}\right)$ and on $\operatorname{dimV} \beta_{1}\left(Q_{Y}\right)$ imply $Y=E_{8}$ and
$\lambda I T_{Y}=\lambda_{8}$. Then, M_{j} nontrivial, $p>2$, (7.1) of [12], and (1.14) imply L_{A}. acts on $M_{j}\left(\cong\right.$ the "natural" module for $\left.L_{j}\right)$ with high weight $\left(q_{1}+3 q_{2}\right) \mu_{2}$, for q_{1} and q_{2} distinct p-powers. Since $Q_{Y} / K_{\beta_{1}}$ and $Q_{Y} / K_{\beta_{6}}$ must each have a 3-dimensional $L_{A}{ }^{\prime}$ composition factor, the remarks in the proof of (6.3) imply that $\left\langle\lambda, \beta_{3}\right\rangle=0, V_{L_{i}}\left(-\beta_{6}\right) L_{A^{\prime}} \cong M_{i} L_{A^{\prime}}$ and $\left\langle U_{ \pm \beta_{7}}\right\rangle \leq L_{Y^{\prime}}$. Moreover, (1.15) implies $Y=E_{8}$ and $\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle \leq L \gamma^{\prime}$. Then by (2.7), $\left\langle\lambda, \beta_{7}\right\rangle=0=\left\langle\lambda, \beta_{8}\right\rangle$ and the bound on $\operatorname{dim} V_{\beta_{1}}\left(Q_{Y}\right)$ and on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ implies $\lambda I T_{Y}=\lambda_{2}$. $B y(6.9),\left\langle\lambda, \alpha_{1}\right\rangle=0,3 q, q_{0}+q, 2 q$, or q, for q and q_{0} distinct p-powers. But (1.27) and (1.38) imply that, in every case, $\operatorname{dimVIA}<\operatorname{dimVIY}$. Contradiction.

This completes the proof of (7.4).口
(7.5). If $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{5}, \beta_{7}\right\}$, then $\operatorname{dim} V^{1}\left(Q_{\gamma}\right)=1$.

Proof: Suppose false. By (1.5), $Z_{A} \leq Z_{Y}$. Let q_{1}, q_{2}, q_{3} and q_{4} be the field twists on the embeddings of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle,\left\langle U_{ \pm \beta_{2}}\right\rangle,\left\langle U_{ \pm \beta_{5}}\right\rangle$, $\left\langle U_{ \pm \beta_{7}}\right\rangle$, respectively. Note that (7.1) implies that $Y=E_{7}$.

Claim 1. If $\left\langle\lambda, \beta_{1}+\beta_{2}+\beta_{3}+\beta_{5}\right)>0$, exactly one of $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle$, $\left\langle\lambda, \beta_{2}\right\rangle$ and $\left\langle\lambda, \beta_{5}\right\rangle$ is nonzero.

Reason: Suppose false. Then (2.7), (2.5) and (2.6) imply that $\left\{q_{1}, q_{2}, q_{3}\right\}$ consists of exactly two distinct p-powers. If $q_{2}=q_{3}$, the $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{4}}$ have high weights $\left(2 q_{1}+2 q_{2}\right) \mu_{2}$ and $2 q_{1} \mu_{2}$. Hence, $\beta_{4} I_{A}=q_{1} \alpha_{1}$. Since $\left\langle\lambda, \beta_{1}\right\rangle$ or $\left\langle\lambda, \beta_{3}\right\rangle$ is nonzero, a nonidentity element from the set $U_{-4} \cdot U_{-34} \cdot U_{-134}$ must occur in the factorization of some element in $Q_{A}-Q_{A}$. However, $-\beta_{4}$ (respectively, $\left.-\beta_{3}-\beta_{4},-\beta_{1}-\beta_{3}-\beta_{4}\right)$ affords $T\left(L_{A}\right)$ weight $\left(2 q_{1}+2 q_{2}\right) \mu_{2}$ (respectively, $\left.2 q_{2} \mu_{2},\left(-2 q_{1}+2 q_{2}\right) \mu_{2}\right)$. And since $p>2$ and $q_{1} \neq q_{2}$, none of these weights occurs in $\left(Q_{A}{ }^{\alpha_{1}}\right) q_{1}$. Hence, we may assume $q_{1}=q_{2}$. Then, the L_{A}. composition factors of $Q_{Y} / K_{\beta_{4}}$ have high weights $\left(3 q_{1}+q_{3}\right) \mu_{2}$ and $\left(q_{1}+q_{3}\right) \mu_{2}$. If $p=3$ and $3 q_{1}=q_{3}$, the weights are $2 q_{3} \mu_{2},\left(q_{1}+q_{3}\right) \mu_{2}$ and 0 . Thus, $p=3,3 q_{1}=q_{3}$ and $\beta_{4} \mid Z_{A}=q_{3} \alpha_{1}$. Then, we find that
$x_{-\alpha_{1}}(t)=x_{-\beta_{4}}\left(c_{1} t q_{3}\right) u_{1}, x_{-\alpha_{1}-\alpha_{2}}(t)=x_{-1234}\left(c_{2} t q_{3}\right) x_{-45}\left(c_{3} t q_{3}\right) u_{2}$, and $x_{-\alpha_{1}-2 \alpha_{2}}(t)=x_{-12345}\left(c_{4} t q_{3}\right) u_{3}$, where $c_{1}, c_{4} \in k^{*}, c_{2}, c_{3} \in k, c_{2}$ or c_{3} nonzero, and $u_{j} \in K_{\beta_{4}}$. Then, there is a nontrivial contribution to the root group U_{-1345} in the expression for $\left[x_{\alpha_{2}}(t), x_{-\alpha_{1}-2 \alpha_{2}}(t)\right]$, contradicting the given factorizations of $x_{-\alpha_{1}}(t)$ and $x_{-\alpha_{1}-\alpha_{2}}(t)$. This completes the proof of Claim 1.

Claim 2. $\left\langle\lambda, \beta_{1}+\beta_{2}+\beta_{3}+\beta_{5}\right\rangle=0$.
Reason: Suppose false; then Claim 1 implies that exactly one of $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle,\left\langle\lambda, \beta_{2}\right\rangle,\left\langle\lambda, \beta_{5}\right\rangle$ is nonzero. By (2.7), $\left\{q_{1}, q_{2}, q_{3}\right\}$ consists of at most two distinct p-powers. Arguing as in the proof of Claim 1, we find that $q_{2}=q_{3}$ and $\beta_{4} I Z_{A}=q_{1} \alpha_{1}$.

Suppose $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle \neq 0$. Then, the proof of Claim 1 shows that $q_{1}=q_{2}$. Also, the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{4}+\beta_{3}\right\rangle=0$. Now, if $Q_{A} \not \ddagger K_{\beta_{6}}$ (2.17) implies that the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is also q_{1}. Thus, by (2.5) and (2.6), $\left\langle\lambda, \beta_{7}\right\rangle=0$. Also, $\left\langle\lambda, \beta_{6}\right\rangle=0$, else the bound on $\operatorname{dimv}_{\beta_{6}}\left(Q_{Y}\right)$ is exceeded. But now we have $\lambda I T_{Y}=\lambda_{1}$. So $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0 \neq\left\langle\lambda, \beta_{2}+\beta_{5}\right\rangle$.

Suppose $\left\langle\lambda, \beta_{2}\right\rangle \neq 0$, so $\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $\ell=1,3,5$. If $Q_{A} \not \ddagger K_{\beta_{6}}$, (2.17) implies that the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is $q_{3}=q_{2}$. Then (2.5) and (2.6) imply $\left\langle\lambda, \beta_{7}\right\rangle=0$. Moreover, $\left\langle\lambda, \beta_{6}\right\rangle=0$, else the bound on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ is exceeded. Finally, using (1.36) and the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$, we see that $\lambda \mid T_{Y}=\lambda_{2}$, and $\left\langle\lambda, \alpha_{2}\right\rangle=1 \cdot q_{2}$. $B y$ (6.9), $\left\langle\lambda, \alpha_{1}\right\rangle=0, q, q+q_{0}, 3 q$ or $2 q$, for q and q_{0} distinct p-powers. In every case, (1.27) and [8] imply dimV|A $\langle\operatorname{dimV}| Y$. Thus, $\left\langle\lambda, \beta_{1}+\beta_{2}+\beta_{3}\right\rangle=0$ and $\left\langle\lambda, \beta_{5}\right\rangle \neq 0$.

The arguments of the preceeding paragraph imply $\lambda \mid T_{Y}=\lambda_{5}+x \lambda_{6}$, for $x \geq 0$ and by (2.17), $\beta_{6} I^{I T} A=q_{2} \alpha_{1}$. Moreover, $q_{1} \neq q_{2}$, else the bound on $\operatorname{dim} V^{2}\left(Q_{A}\right) \lambda-q_{2} \alpha_{1}$, of (1.22), is exceeded. So $V^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha_{1} \neq 0 \neq$ $V^{2}\left(Q_{A}\right) \lambda-q_{2} \alpha_{1}$ and $V \mid A$ is tensor decomposable. In particular, $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$. By (6.9), $\left\langle\lambda, \alpha_{1}\right\rangle=q, 2 q$ or $x q$, for some p-power $q \neq q_{2}$. Then by (1.27)
and (1.32), dimV|A $\left\langle\operatorname{dimVIY}\right.$ unless $\left\langle\lambda, \alpha_{1}\right\rangle=x q$ with $x \neq 0$. However, then $\operatorname{dim} V^{2}\left(Q_{A}\right) \lambda-q_{2} \alpha_{1}=2$ while $f_{\beta_{6}} V^{+}$affords an L^{\prime} composition factor in $V^{2}\left(Q_{A}\right)_{\lambda-q_{2} \alpha_{1}}$ of dimension 6 . Contradiction. This completes the proof of Claim 2.

Claim 2 implies that $\left\langle\lambda, \beta_{7}\right\rangle \neq 0$; so by (2.7), $q_{3}=q_{4}$.
Claim 3. $Q_{A} \leq K_{\beta_{4}}$.
Reason: Suppose $Q_{A} \not \ddagger K_{\beta_{4}}$. We examine the image of $Q_{A}{ }^{\alpha_{1}}$ in $Q_{Y} / K_{\beta_{4}}$. Arguing as in the proof of Claim 1, we see that $q_{2}=Q_{3}$ and $\beta_{4} \mid Z_{A}=q_{1} \alpha_{1}$. Suppose $q_{1} \neq q_{3}$. Examining the $T\left(L_{A}\right)$ weights of $Q_{Y} / K_{\beta_{4}}$, we see that $x_{-\alpha_{1}}(t)=x_{-45}\left(c_{1} t q_{1}\right) x_{-24}\left(c_{2} t q_{1}\right) x_{-\beta_{6}}\left(c_{3} t q_{3}\right) u_{0}$, where $c_{j} \in k$, c_{1} or c_{2} nonzero, $c_{3} \neq 0$, and $u_{0} \in K_{\beta_{4}} \cap K_{\beta_{6}}$. In fact, $c_{1} c_{2} \neq 0$, else there is a nontrivial contribution to the root group $U_{-\beta_{4}}$ in the expression for $\left[x_{\alpha_{2}}(t), x_{-\alpha_{1}}(t)\right]$. We also find that $x_{-\alpha_{1}-2 \alpha_{2}}(t)=x_{-1345}\left(d_{1} t q_{1}\right)$. $x_{-1234}\left(d_{2} t q_{1}\right) x_{-567}\left(d_{3} t q_{3}\right) u_{1}$, where $d_{i} \in k, d_{3} \neq 0, d_{1}$ or d_{2} nonzero and $u_{1} \in K_{\beta_{4}} \cap K_{\beta_{6}}$. Thus, in the expression for $\left[x_{-\alpha_{1}}(t), x_{-\alpha_{1}-2 \alpha_{2}}(t)\right]$, there is a nontrivial contribution to the root group U_{-24567}. Contradiction.

So $q_{1}=q_{3}$ and again examining the $T\left(L_{A}\right)$ weight vectors in $Q_{Y} / K_{\beta_{4}}$, we find that $x_{-\alpha_{1}}(t)=x_{-34}\left(a_{1} t q_{3}\right) x_{-24}\left(a_{2} t q_{3}\right) x_{-45}\left(a_{3} t q_{3}\right) x_{-\beta_{6}}\left(a_{4} t q_{3}\right) w_{0}$ and $x_{-\alpha_{1}-2 \alpha_{2}}(t)=x_{-1345}\left(b_{1} t q_{3}\right) x_{-1234}\left(b_{2} t q_{3}\right) x_{-2345}\left(b_{3} t q_{3}\right) x_{-567}\left(b_{4} t q_{3}\right) w_{1}$, where $a_{j}, b_{i} \in k, a_{4} b_{4} \neq 0, w_{0}, w_{1} \in K_{\beta_{4}} \cap K_{\beta_{6}}$ and $a_{j} b_{j} \neq 0$ for some $1 \leq i, j \leq 3$. In fact, at least two of a_{1}, a_{2}, a_{3} are nonzero, else there is a nontrivial contribution to the root group $U_{-\beta_{4}}$ in the expression for $\left[x_{-\alpha_{1}}(t), x_{\alpha_{2}}(t)\right]$. So a_{1} or a_{2} is nonzero. But then there is a nontrivial contribution to the group $U_{-24567} \cdot U_{-34567}$ in the expression for $\left[x_{-\alpha_{1}}(t), x_{-\alpha_{1}-2 \alpha_{2}}(t)\right]$. Contradiction. This completes the proof of Claim 3.

Now, $Q_{A} \leq K_{\beta_{4}}$ implies that $\lambda I T_{Y}=x \lambda_{6}+c \lambda_{7}$, for $x \geq 0, c>0$ and $\left\langle\lambda, \alpha_{2}\right\rangle=c q_{4}$. Referring to (6.9), we see that if $x \neq 0$ or if $c>1$, $\left\langle\lambda, \alpha_{1}\right\rangle=0, q, 2 q, x q$ or $c q$. So $\operatorname{dimv}^{2}\left(Q_{A}\right) \leq 5 c+3$, by (1.22). Let $w=$ $f_{456} v^{+}$if $\left\langle\lambda, \beta_{6}\right\rangle \neq 0$, or $w=f_{4567} v^{+}$if $\left\langle\lambda, \beta_{6}\right\rangle=0$. Then $w \notin\left[v, K_{\beta_{4}}{ }^{2}\right]$, so $w \notin\left[V, Q_{A}{ }^{2}\right]$; hence, w affords an $L^{\prime}{ }^{\prime}$ composition factor in $V^{2}\left(Q_{A}\right)$.

Adding the dimension of the $L_{\gamma}{ }^{\prime}$ composition factor afforded by $f_{\beta_{6}} v^{+}$(or $f_{67} v^{+}$), we find that if $x \neq 0$ or $c>1, \operatorname{dim}^{2}\left(Q_{A}\right)>5 c+3$. (Use (1.36).) Hence, $\lambda \mid T_{Y}=\lambda_{7}$ and (7.2) implies that $\left\langle\lambda, \alpha_{1}\right\rangle=2 q$, for some p-power $q \neq q_{4}$.

One checks that in the action of L_{A} ' on the KA module $V\left(2 q \mu_{1}+q_{4} \mu_{2}\right)$, if $q_{4} \neq 3 q$, there is an 8 - or 10 -dimensional L_{A}. composition factor. However, the given embedding of L_{A} ' in P_{Y} affords no such $L_{A^{\prime}}$ composition factor on $V\left(\lambda_{7}\right)$. So $p=3$ and $q_{4}=3 q$. Then, there are exactly six 6-dimensional $L_{A^{\prime}}$ composition factors of $V\left(2 q \mu_{1}+q_{4} \mu_{2}\right)$, two of which have distinct high weights. However, one checks that the given embedding of $L_{A^{\prime}}$ in P_{Y} does not afford such an $L_{A^{\prime}}$ composition series of $V\left(\lambda_{7}\right)$.

This completes the proof of (7.5).ם
(7.6). Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $1 \leq i, j \leq r$ such that $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$.
(i) Then M_{j} or M_{j} is trivial.
(ii) If in addition there exists $k \neq i, j$ such that $\left(\Sigma L_{k}, \gamma\right) \neq 0$, then $\operatorname{dim}\left(M_{\ell}\right)=1$ for $\ell=i, j, k$.

Proof: By (7.4), all components of L_{Y} ' have classical type, so by (1.5), $Z_{A} \leq Z_{Y}$. Let W_{m} denoted the natural module for L_{m}. By (7.1) of [12], if $\operatorname{dim}_{m}>1$ and $\operatorname{rank} L_{m}>1, M_{m} \cong W_{m}$ or $W_{m}{ }^{*}$. Consider first the case where there exists k as in (ii), so $\gamma=\beta_{4}$. Then (2.5) and (2.7) imply that at most two of M_{i}, M_{j}, and M_{k} are nontrivial. Since $\operatorname{rank}\left(L_{m}\right)=1$ for $m=i$, jor k, (7.1) implies that $Y=E_{7}$ and $\left\langle U_{ \pm \beta_{3}}\right\rangle$ is not a component of $L_{\gamma}{ }^{\prime}$. This observation, together with (1.15), implies that $L_{j} \times L_{j} \times L_{k}$ has type $A_{1} \times A_{2} \times A_{3}$ or $\Pi\left(L_{i} \times L_{j} \times L_{k}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{5}\right\}$. In the second case, $L_{\gamma}{ }^{\prime}=L_{i} \times L_{j} \times L_{k} \times\left\langle U_{ \pm \beta_{7}}\right\rangle$, else $h_{\alpha_{2}}(-1)$ does not centralize $U_{\beta_{6}}$. But this configuration does not occur, by (7.5). If $L_{i} \times L_{j} \times L_{k}$ has type $A_{1} \times A_{2} \times A_{3}$, $p>2$, the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ and (1.36), imply $\lambda I T_{Y}=\lambda_{1}$ or λ_{7}. But
$\lambda \mid T_{Y} \neq \lambda_{1}$, so $\lambda \mid T_{Y}=\lambda_{7}$. Also, considering $Q_{Y} / K_{\beta_{4}}$ in view of (1.15), we see that $V^{1}\left(Q_{A}\right)$ is tensor indecomposable; so $\left\langle\lambda, \alpha_{2}\right\rangle=3 q$, for some p-power, q, and $p>3$. But this contradicts (7.2). Hence, (ii) holds.

Now suppose M_{j} and M_{j} are both nontrivial. We may assume $V_{L_{i}}(-\gamma) \not \equiv W_{i}$ or W_{i}^{*}. For otherwise, (2.5), (2.6) and (2.7) imply that there exists $k \neq i, j$ with $\left(\Sigma L_{k}, \gamma\right) \neq 0$. But then (ii) implies $\operatorname{dim}\left(M_{j}\right)=1=$ $\operatorname{dim}\left(M_{j}\right)$. Hence, $\operatorname{rank}\left(L_{i}\right)>2$ and $V_{L_{i}}(-\gamma) \cong W_{i} \wedge W_{i}$ or $W_{i}{ }^{*} \wedge W_{j}{ }^{*}$. Moreover, since $L_{A}{ }^{\prime}$ acts irreducibly on W_{i}, there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $Q_{Y} / K_{\delta} \cong W_{i}$ or $W_{i}{ }^{*}$, else $Q_{A} \leq K_{\delta}$, contradicting (2.3). Since $\left(W_{j} \wedge W_{j}\right) L_{A^{\prime}}$ has all even $T\left(L_{A}{ }^{\prime}\right)$ weights, (1.15) implies that L_{j} has type A_{2} or L_{j} has type A_{3} and $M_{j} L_{A}{ }^{\prime}$ is tensor decomposable. Thus L_{i} has type A_{4} and $p>3$. Let q_{1} be the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{i}. Then $\left(W_{j} \wedge W_{j}\right) L_{A}$ has composition factors with high weights $6 q_{1} \mu_{2}$ and $2 q_{1} \mu_{2}$ (or $\left(5 q_{1}+q_{1}\right) \mu_{2}$ and $2 q_{1} \mu_{2}$, if $p=5$). Using (2.5) and (2.6), and the above remarks, it is a check to see that there is no composition factor of Q_{Y} / K_{γ} isomorphic to a twist of $Q_{A} \alpha_{1}$. Thus, $Q_{A} \leq K_{\gamma}$, contradicting (2.3). Hence, (i) holds.

This completes the proof of (7.6).
(7.7). Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $1 \leq i, j \leq r$, such that $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq$ $\left(\Sigma L_{j}, \gamma\right)$. Then $\operatorname{dim}\left(M_{j} \otimes M_{j}\right)=1$.

Proof. Suppose $\operatorname{dim}\left(M_{j} \otimes M_{j}\right)>1$. By (7.4), each component of $L_{\gamma}{ }^{\prime}$ has type $A_{k_{j}}$ for some $k_{j} \geq 1$; so (1.5) implies $Z_{A} \leq Z_{Y}$. Let W_{m} denote the natural module for $L_{m}, m=i, j$. By (7.1) of [12], if M_{m} is nontrivial and $\operatorname{rank}\left(L_{m}\right)>1, M_{m} \cong W_{m}$ or $W_{m}{ }^{*}$. Also, (7.6) implies that only one of M_{j} and M_{j} is nontrivial.

Case I: Suppose $V_{L_{i}}(-\gamma) \neq W_{i}$ or $W_{i}{ }^{*}$.
Then $\operatorname{rank}\left(L_{i}\right)>2$ and $V_{L_{i}}(-\gamma) \cong W_{i} \wedge W_{i}$ or $W_{i}{ }^{*} \wedge W_{j}{ }^{*}$. Since $\left(W_{j} \wedge W_{j}\right) L_{A}{ }^{\prime}$ has all even weights, $p>2$ and (1.15) implies L_{j} has type A_{2} or A_{3}, so $Y=E_{7}$ or E_{8}. Note that if M_{m} is nontrivial and $\operatorname{rank}\left(L_{m}\right)>2$, there
does not exist $\delta \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ such that $Q_{A} \not \ddagger K_{\delta},\left(\delta, \Sigma L_{m}\right) \neq 0$ and $Q_{Y} / K_{\delta} \cong W_{m}$ or $W_{m}{ }^{*}$. These remarks and the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ imply that $\gamma=\beta_{5}$ and either $Y=E_{8}$, with $\Pi\left(L_{Y}\right)=\left\{\beta_{i} \mid i \neq 5,8\right\}$ and $\lambda \mid T_{Y}=\lambda_{1}+x \lambda_{8}$, or $Y=E_{7}$ (respectively, E_{8}), with $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}, \beta_{7}\right\}$ and $\lambda I T_{Y}=\lambda_{7}$ (respectively, $\lambda_{7}+x \lambda_{8}$, for $x \geq 0$).

In the first case, the argument in the second paragraph of the proof of (7.6) implies that the field twists on the embeddings of $L_{A}{ }^{\prime}$ in the two components of $L_{Y}{ }^{\prime}$ are equal. Call this twist q. Then, as $p>3$, the only $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{5}}$ isomorphic to a twist of $Q_{A}{ }^{\alpha_{1}}$ have high weight $2 q \mu_{2}$. Thus, $\beta_{5} I Z_{A}=q \alpha_{1}$. If $x \neq 0, Q_{A} \not \ddagger K_{\beta_{8}}$ and $Q_{Y} / K_{\beta_{8}}$ is the irreducible L_{A} ' module with high weight $2 q \mu_{2}$, so $\beta_{8} \mid Z_{A}=q \alpha_{1}$ also. However, the bound on $\operatorname{dimV}{ }^{2}\left(Q_{A}\right) \lambda-q \alpha_{1}$, of (1.22), is exceeded. Thus, $x=0$. By (6.9), $\left\langle\lambda, \alpha_{1}\right\rangle=0,2 q_{0}$ or q_{0}, for some p-power q_{0}. But (1.27) and [8] imply dimV|A < dimV|Y. Thus, the first configuration does not occur.

In the second case, (7.2) implies that $Y \neq E_{7}$. If $x \neq 0$, one checks that $V_{T_{Y}}\left(\lambda-\beta_{8}\right) \leq V_{T_{A}}\left(\lambda-q \alpha_{1}\right)$, where $\left\langle\lambda, \alpha_{2}\right\rangle=2 q$, for some p-power q. $\operatorname{By}(6.9),\left\langle\lambda, \alpha_{1}\right\rangle=0, q, 2 q$ or $x q$. But then $9 \geq \operatorname{dimV}^{2}\left(Q_{A}\right) \geq V^{2}\left(Q_{Y}\right) \geq$ $\operatorname{dim}\left(V_{\beta_{8}}\left(Q_{Y}\right)+V_{\beta_{5}}\left(Q_{Y}\right)\right) \geq 12$. Hence $x=0$, contradicting (7.2).

This completes the consideration of Case I.
Case II: Suppose $V_{L_{m}}(-\gamma) \cong W_{m}$ or $W_{m}{ }^{*}$ for $m=i, j$.
By (7.6), we have $\left(\Sigma L_{k}, \gamma\right)=0$ for $k \neq i, j$. Also, (1.15) and (7.1)
imply $L_{i} \times L_{j}$ has type $A_{1} \times A_{\ell}, \ell=1$ or 3 and $Y=E_{7}$, or $L_{i} \times L_{j}$ has type $A_{2} \times A_{l}, \ell=2,3$ or 4 , or $A_{3} \times A_{3}$. Actually, $L_{i} \times L_{j}$ cannot have type $A_{3} \times A_{3}$, else $Y=E_{8}$ and $Q_{A} \leq K_{\beta_{2}}$; so $\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $1 \leq \ell \leq 4$. But then the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ of (1.25) implies $\lambda I T_{Y}=\lambda_{8}$.

Now consider $L_{i} \times L_{j}$ of type $A_{2} \times A_{4}$. Using (2.3) and the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ of (1.25), we restrict the possibilities for λ. We are left with $Y=E_{8}, \lambda I T_{Y}=\lambda_{1}$ and $\left\langle\lambda, \alpha_{2}\right\rangle=2 q$ or $4 q$, for some p-power q. But (7.2) and a dimension argument from Case I imply that $\operatorname{dimV}|A \neq \operatorname{dimV}| Y$.

Suppose $L_{i} \times L_{j}$ has type $A_{2} \times A_{3}$. Temporarily label as follows:
$L_{i}=\left\langle U_{ \pm \gamma_{1}}, U_{ \pm \gamma_{2}}\right\rangle, L_{j}=\left\langle U_{ \pm \gamma_{k}} \mid k=3,4,5\right\rangle,\left(\gamma_{2}, \gamma\right) \neq 0 \neq\left(\gamma, \gamma_{3}\right)$, $\left(\gamma_{k}, \gamma_{k+1}\right)<0, k=3$, 4. Note that (1.15) implies $V_{L_{j}}(-\gamma) \mathrm{L}_{A^{\prime}}$ is tensor decomposable. Let $V_{L_{j}}(-\gamma)$ have high weight $\left(q_{1}+q_{2}\right) \mu_{2}$ as L_{A} ' module, where q_{1} and q_{2} are distinct p-powers. Then, by (2.7) and (2.6) we may assume that the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{j} is q_{1}. Then Q_{Y} / K_{γ} has $L_{A} \cdot$ composition factors with high weights $\left(3 q_{1}+q_{2}\right) \mu_{2}$ and $\left(q_{1}+q_{2}\right) \mu_{2}$. Thus, $p=3$ and $3 q_{1}=q_{2}$, else there is no 3-dimensional composition factor. In this case, $\gamma \mid Z_{A}=q_{2} \alpha_{1}$, and we find that

$$
\begin{aligned}
& x_{-\alpha_{1}}(t) \in U_{-\gamma} K_{\gamma}, \\
& x_{-\alpha_{1}-\alpha_{2}}(t) \in\left(U_{-\gamma-\gamma} \cdot U_{-\gamma-\gamma}^{3}-\gamma_{4} \cdot U_{-\gamma}-\gamma_{2}-\gamma-\gamma_{3} \cdot\right. \\
& \left.\quad U_{-\gamma}-\gamma_{2}-\gamma-\gamma_{3}-\gamma_{4}\right) K_{\gamma}, \text { and } \\
& x_{-\alpha_{1}-2 \alpha_{2}}(t)=x_{-\gamma_{1}-\gamma_{2}-\gamma-\gamma_{3}-\gamma_{4}-\gamma_{5}\left(c t q_{2}\right) u_{0},}
\end{aligned}
$$

where $c \in k^{*}, u_{0} \in K_{\gamma}$. Then, there is a nontrivial contribution to the root group $U_{-\gamma_{2}}-\gamma-\gamma_{3}-\gamma_{4}-\gamma_{5}$ in the expression for $\left[x_{\alpha_{2}}(t), x_{-\alpha_{1}-2 \alpha_{2}}(t)\right]$, contradicting the given information about $x_{-\alpha_{1}}(t)$ and $x_{-\alpha_{1}-\alpha_{2}}(t)$. Thus, $L_{i} \times L_{j}$ does not have type $A_{2} \times A_{3}$.

Consider now the pair $A_{1} \times A_{3}$ in Y of type E_{7}. Temporarily label as follows: $L_{i}=\left\langle U_{ \pm \gamma_{0}}\right\rangle, L_{j}=\left\langle U_{ \pm} \gamma_{k} \mid 1 \leq k \leq 3\right\rangle,\left(\gamma, \gamma_{1}\right) \neq 0$ and $\left(\gamma_{k}, \gamma_{k+1}\right)<0$ for $k=1,2$. $B y(1.15), W_{j} \|_{A}{ }^{\prime}$ is tensor indecomposable, so $p>3$. Note that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$, with $\left(\delta, \gamma_{0}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for $k \neq i$. For otherwise, since Q_{Y} / K_{δ} is a 2-dimensional irreducible L_{A}. module and $Q_{Y}(\gamma, \delta)$ is a 4-dimensional irreducible L_{A} ' module, (2.11) implies $-\delta$ is involved in L_{A}. But this cannot occur as $p \neq 2$. (See (2.10).) Arguing similarly, one shows that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \gamma_{3}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq j$. These remarks, and the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$, together with (1.36), imply that $\langle\lambda, \gamma\rangle=0$ and either (a) $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{2}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$ or (b) $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{5}, \beta_{7}\right\}$. By (2.17), there exists a p-power q, which is the field twist on the embeddings of $L_{A^{\prime}}$ in L_{i} and in L_{j} and such that $\gamma \mid Z_{A}=q \alpha_{1}$.

In each case, $L_{Y^{\prime}}=L_{i} \times L_{j}$, else $h_{\alpha_{2}}(-1) \notin Z(Y)$. In case (a), the bound
on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ and (2.3) imply $\lambda \mid T_{Y}=c \lambda_{2}$ for $1 \leq c \leq 3$ or $\lambda \mid T_{Y}=\lambda_{5}$ or λ_{7}. If $\lambda \mid T_{Y}=c \lambda_{2}$ for $c=2$ or 3 , then $\left\langle\lambda, \alpha_{1}\right\rangle=0$ or $c q_{1}$ for some p-power q_{1}. But (1.27) and (1.32) imply dimV|A < dimVIY. In the remaining cases, (6.9) implies $\left\langle\lambda, \alpha_{1}\right\rangle=0, q_{1}, 2 q_{1}, 3 q_{1}$ or $q_{1}+q_{2}$, for q_{1} and q_{2} distinct p-powers. Now (1.27) and [8] imply dimVIA $\neq \operatorname{dimVIY}$ unless $\lambda I T_{Y}=\lambda_{7}$. In this case dimVIY $\neq \operatorname{dimVIA}$ by (7.2). Thus the configuration of (a) does not occur. If $L_{y}{ }^{\prime}=L_{i} \times L_{j}$ as in (b), $Q_{A} \leq K_{\beta_{3}}$ as $Q_{Y} / K_{\beta_{3}}$ has L_{A}. composition factors of dimensions 5 and 1. Hence $\lambda I T_{Y}=c \lambda_{7}$, for $1 \leq c \leq 3$. If $\lambda \mid T_{Y} \neq \lambda_{7}$, we may argue as above to see that $\operatorname{dimVIA} \neq \operatorname{dimVIY}$. If $\lambda I T_{Y}=\lambda_{7}$, (7.2) implies $\lambda I T_{A}=2 q_{0} \mu_{1}+q \mu_{2}$, for q and q_{0} distinct p-powers. However, the Z_{A} weight space $V^{2}\left(Q_{A}\right) \lambda-q \alpha_{1}$ has dimension 2, while $0 \neq W \in V_{T_{Y}}\left(\lambda-\beta_{7}-\beta_{6}\right)$ affords an L_{Y} ' composition factor of $V^{2}\left(Q_{A}\right) \lambda-q \alpha_{1}$ of dimension 4. Thus, $L_{i} \times L_{j}$ does not have type $A_{1} \times A_{3}$.

Consider now the case where $L_{i} \times L_{j}$ has type $A_{1} \times A_{1}$ in Y of type E_{7}. Temporarily label as follows: let $\gamma_{i}, \gamma_{j} \in \Pi\left(L_{y}\right)$, with $L_{k}=\left\langle U_{ \pm} \gamma_{k}\right\rangle, k=i, j$ and let q be the field twist on the embeddings of $L_{A^{\prime}}$ in L_{i} and in L_{j}. (See (2.17).) Then, it is easy to check that $\gamma T_{A}=q \alpha_{1}$. As in the previous case, there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $\left(\delta, \gamma_{i}\right) \neq 0$, $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq i$. Similarly, there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ such that $\left(\delta, \gamma_{j}\right) \neq 0,\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq j$. These remarks imply that $\left\{\gamma_{j}, \gamma_{j}\right\}=\left\{\beta_{2}, \beta_{5}\right\}$ or $\left\{\beta_{5}, \beta_{7}\right\}$.

Consider the case where $\left\{\gamma_{j}, \gamma_{j}\right\}=\left\{\beta_{2}, \beta_{5}\right\}$. Then $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is not a component of $L_{A^{\prime}}$, else $h_{\alpha_{2}}(-1) \notin Z(Y)$, contradicting (7.1). Thus, (2.12) implies $\beta_{1} I_{A}=0=\beta_{3} I^{T} A$. This forces $\left\langle\lambda, \beta_{4}\right\rangle=0$, else $f_{34} v^{+}$and $f_{\beta_{4}} v^{+}$ are linearly independent vectors in $V_{T_{Y}}\left(\lambda-q \alpha_{1}\right)$, contradicting (1.31). Suppose $\left\langle\lambda, \beta_{2}\right\rangle \neq 0$. Then $f_{24} v^{+}, f_{234} V^{+}$and $f_{1234} v^{+}$are 3 linearly independent vectors in $V_{T_{Y}}\left(\lambda-q \alpha_{1}-q \alpha_{2}\right)$, contradicting (1.37). Thus, $\left\langle\lambda, \beta_{2}\right\rangle=0$. A similar argument shows that $\left\langle\lambda, \beta_{5}\right\rangle=0$. So $\left\{\gamma_{i}, \gamma_{j}\right\} \neq$ $\left\{\beta_{2}, \beta_{5}\right\}$.

Consider now the case where $\left\{\gamma_{j}, \gamma_{j}\right\}=\left\{\beta_{5}, \beta_{7}\right\}$. The previous
remarks imply that there exists another component of $L_{\gamma}{ }^{\prime}$, say L_{k}, with $\left(\Sigma L_{k}, \beta_{4}\right) \neq 0$. Note that $\left\langle U_{ \pm \beta_{3}}\right\rangle$ is not a component of $L_{\gamma}{ }^{\prime}$, else $h_{\alpha_{2}}(-1)$ does not centralize $U_{\beta_{1}}$. So if $U_{ \pm \beta_{3}} \leq L_{\gamma},\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ is a component of L_{Y}. In fact, if $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ is a component of $L_{\gamma^{\prime}}$ then $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is also, else $h_{\alpha_{2}}(-1)$ does not centralize $U_{\beta_{4}}$. Thus, (7.5) implies $L_{\gamma}{ }^{\prime}=L_{i} \times L_{j} \times\left\langle U_{ \pm \beta_{2}}\right\rangle$.

By the previous case, $\left\langle\lambda, \beta_{2}+\beta_{5}\right\rangle=0$ and $\left\langle\lambda, \beta_{7}\right\rangle \neq 0$. We claim that $Q_{A} \leq K_{\beta_{4}}$. Otherwise, (2.17) implies that the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is also q and we find that $x_{-\alpha_{1}}(t)=x_{-\beta_{4}}\left(c_{1} t q\right)$. $\left.x_{-\beta_{6}}\left(c_{2}{ }^{t q}\right) u_{1}, x_{-\alpha_{1}-2 \alpha_{2}}(t)=x_{-245}\left(c_{3} t q\right) x_{-567}\left(c_{4}{ }^{t}\right)\right) u_{2}$, where $c_{j} \in k^{*}$, $u_{i} \in K_{\beta_{4}} \cap K_{\beta_{6}}$. But then there is a nontrivial contribution to the group $U_{-2456} \cdot U_{-4567}$ in the expression for $\left[x_{-\alpha_{1}}(t), x_{-\alpha_{1}-2 \alpha_{2}}(t)\right]$. So $Q_{A} \leq K_{\beta_{4}}$ and (2.3) implies $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $1 \leq k \leq 5$.

If $-\beta_{4}$ is involved in $L_{A}^{\prime}, \beta_{4} \mid Z_{A}=0$ by (2.10). Otherwise, (2.11) implies that there is a nontrivial image of $Q_{A}{ }^{\alpha_{1}}$ in $Q_{Y}\left(\beta_{6}, \beta_{4}\right)$. So the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is $q,\left(\beta_{4^{+}} \beta_{6}\right) \mid Z_{A}=q \alpha_{1}$ and again $\beta_{4} I Z_{A}=0$. Using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that the bound on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded unless $\left\langle\lambda, \beta_{6}\right\rangle=0$ and $\left\langle\lambda, \beta_{7}\right\rangle \leq 3$. (Refer to (1.36) in case $\langle\lambda, \beta 7\rangle=p-1$.) So $\lambda \mid T_{Y}=c \lambda_{7}, c \leq 3$ and $\left\langle\lambda, \alpha_{2}\right\rangle=c q$. By (6.9), $\left\langle\lambda, \alpha_{1}\right\rangle=0$ or $c q_{0}$ if $c>1$, or $\left\langle\lambda, \alpha_{1}\right\rangle=0,3 q_{0}, q_{1}+q_{0}, q_{0}$ or $2 q_{0}$, for q_{0} and q_{1} distinct p-powers, if $c=1$. But (1.27) and (1.38) imply $\operatorname{dimV} \mid A<\operatorname{dimVIY}$ if $c>1$. Thus, $c=1, \operatorname{dimVIY}=56$, and by $(7.2), \lambda \mid T_{A}=$ $2 q_{0} \mu_{1}+q \mu_{2}$ where $q_{0} \neq q$. Note that the Z_{A} weight space $V^{2}\left(Q_{A}\right) \lambda-q \alpha_{1}$ has dimension 2. But $V_{T_{Y}}\left(\lambda-\beta_{7}-\beta_{6}\right), V_{T_{Y}}\left(\lambda-\beta_{7}-\beta_{6}-\beta_{5}\right)$ and $V_{T_{Y}}\left(\lambda-\beta_{7}-\beta_{6}-\beta_{5}-\beta_{4}\right)$ are 3 nonzero weight spaces lying in $V^{2}\left(Q_{A}\right) \lambda-q \alpha_{1}$. Contradiction.

It remains to consider the case where $L_{i} \times L_{k}$ has type $A_{2} \times A_{2}$. We first claim that there does not exist a third component of L^{\prime}. For if L_{y} ' has 3 components, size restrictions and the fact that $\left(\gamma, \Sigma L_{k}\right)=0$ for $k \neq \mathrm{i}, \mathrm{j}, \mathrm{imply}$ that the third component has type A_{1}. Then by (7.1), $Y=E_{7}$ and $\Pi\left(L_{\gamma}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{6}, \beta_{7}\right\}$. Now, (1.15) implies $Q_{A} \leq K_{\beta_{3}}$, so
$\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $1 \leq \ell \leq 4$ and $\left\langle\lambda, \beta_{6}\right\rangle$ or $\left\langle\lambda, \beta_{7}\right\rangle$ is nonzero. Since $p>2$ and all $T\left(L_{A}\right.$) weights in $Q_{Y} / K_{\beta_{3}}$ are odd, (2.10) implies that $-\beta_{3}$ is not involved in L_{A}. Thus (2.11) implies that there is a nontrivial image of $Q_{A} \alpha_{1}$ in $Q_{Y}\left(\beta_{5}, \beta_{3}\right)$, an $L_{A}{ }^{\prime}$ module with no 3-dimensional composition factor. Thus, $L_{Y}{ }^{\prime}=L_{i} \times L_{j}$, as claimed.

Now, the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$, of (1.25), implies that $\langle\lambda, \gamma\rangle=0$. Hence, there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\langle\lambda, \delta\rangle \neq 0$. For otherwise, $\lambda \mid T_{Y}=\lambda_{\ell}$ for some ℓ and $\left\langle\lambda, \alpha_{2}\right\rangle=2 q$, contradicting (7.2). Then $\delta \neq \gamma$ and by (2.3), $\left(\delta, \Sigma L_{Y}\right) \neq 0$. Say $\left(\delta, \Sigma L_{j}\right) \neq 0$. Let q be the field twist on the embedding of L_{A} in L_{i} and in L_{j}. (Use (2.7) to get equal twists.) Then the L_{A} composition factors of Q_{γ} / K_{γ} have high weights $4 q \mu_{2}, 2 q \mu_{2}$ and 0 . Thus, $\gamma \mid Z_{A}=q \alpha_{1}$. Moreover, $Q_{A} K_{\delta} / K_{\delta}=Q_{Y} / K_{\delta}$ and by (2.13), $\delta I T_{A}=q \alpha_{1}$. Then, the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)_{\lambda-q \alpha_{1}}$, of (1.22), implies that M_{j} is nontrivial. Also, by (2.13), there does not exist $\delta_{1} \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta_{1}, \delta\right)<0$. So δ corresponds to an end node of the Dynkin diagram. We now claim that there does not exist $\gamma_{1} \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma_{,} \gamma_{1}\right)<0$. For if there exists such a $\gamma_{1}, Q_{A} \leq K_{\gamma_{1}}$ and (2.12) and the above remarks imply that $\gamma_{1} Z_{A}=0$. Then using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we find that $\operatorname{dim} V_{\gamma}\left(Q_{Y}{ }^{\wedge}\right)+\operatorname{dim} V_{\delta}\left(Q_{Y}{ }^{\wedge}\right)$ exceeds the bound on $\operatorname{dim} V^{2}\left(Q_{A}\right) \lambda-q \alpha_{1}$, of (1.22). Finally, we note that there does not exist $\delta_{1} \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\gamma \neq \delta_{1} \neq \delta$ and $\left(\delta_{1}, \Sigma L_{j}\right) \neq 0$. For, as with $\delta, \delta_{1} \mid T_{A}=q \alpha_{1}$ and the bound on $\operatorname{dimv}^{2}\left(Q_{A}\right) \lambda-q \alpha_{1}$ is exceeded. These remarks imply that $Y=E_{8}$ and $\delta=\beta 8$. The bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha_{1}$ implies, even more explicitly, that $\lambda I T_{Y}=\lambda_{7}+x \lambda_{8}$ for $p>x>0$.

By (6.9), $\left\langle\lambda, \alpha_{1}\right\rangle=0, x q_{0}, q_{0}$ or $2 q_{0}$, for some p-power q_{0}. Then (1.27) and (1.32) imply $\left\langle\lambda, \alpha_{1}\right\rangle=x q_{0}$, else $\operatorname{dimV} \mid A<\operatorname{dimVIY}$. In fact, since $\beta_{8} I^{T T_{A}}=q \alpha_{1}, f \beta_{8} v^{+}$is a nonzero vector in $V_{T_{A}}\left(\lambda-q \alpha_{1}\right)$; so $q_{0}=q$ and by (1.10), $\lambda I T_{A}=x \mu_{1}+2 \mu_{2}$. Now, let $P_{0} \geq B_{Y}{ }^{-}$be the parabolic subgroup of Y with Levi factor $L_{0}=\left\langle U_{ \pm \beta_{\ell}} \mid 5 \leq \ell \leq 8\right\rangle T_{Y}$. Then, L_{0} has a natural subgroup, B, of type B_{2}. Moreover, $V^{1}\left(R_{U}\left(P_{0}\right)\right) \mid B$ has a composition factor
with the same high weight, as a B_{2}-module, as that of VIA. Thus, dimVIA $<$ dimVIY. Contradiction.

This completes the proof of (7.7).
(7.8). Suppose there exists $1 \leq i \leq r$ such that L_{i} is separated from all other components of $L \gamma^{\prime}$ by more than one node of the Dynkin diagram. Then M_{j} is trivial.

Proof: Suppose false; i.e., suppose L_{i} is as described and M_{j} is nontrivial. By (7.4), each component of $L^{\prime}{ }^{\prime}$ is of classical type, so (1.5) implies $Z_{A} \leq Z_{Y}$. Let W be the natural module for L_{j} (of type A_{k}). Then by (7.1) of [12], if $\operatorname{rank}\left(L_{j}\right)>1, M_{j} \cong W$ or W^{*}.

Case I: Suppose $\operatorname{rank}\left(L_{j}\right)>2$.
Arguing as in the proof of (6.7) and applying (7.1) and (7.3), we see that $L_{i}=\left\langle U_{ \pm \beta_{j}} \mid 1 \leq j \leq 4\right\rangle$ and $L_{\gamma}{ }^{\prime}=L_{j} \times\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$. Let q_{1} (respectively, q_{2}) be the field twist on the embedding of L_{A} in L_{i} (respectively, $\left.\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle\right)$. Then the L_{A} composition factors of $Q_{Y} / K_{\beta_{5}}$ have high weights $6 q_{1} \mu_{2}$ and $2 q_{1} \mu_{2}$. So $\beta_{5} \mid Z_{A}=q_{1} \alpha_{1}$. Since $Q_{Y} / K_{\beta_{6}} \cong\left(Q_{A} \alpha_{1}\right) q_{2}$ as L_{A} ' modules, if $Q_{A} \not \$ K_{\beta_{6}}, \beta_{6} I Z_{A}=q_{2} \alpha_{1}$. Then (2.8) implies that $q_{1}=q_{2}$. Thus, either $Q_{A} \leq K_{\beta_{6}}$ and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=6,7,8$, or $q_{1}=q_{2}$ and (2.5) and (2.6) imply $\left\langle\lambda, \beta_{7}+\beta_{8}\right\rangle=0$. In fact, even in the second case, $\left\langle\lambda, \beta_{\sigma}\right\rangle=0$, else the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha_{1}$ of (1.22) is exceeded. Also, $\left\langle\lambda, \beta_{5}\right\rangle=0$, else the bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ of (1.25) is exceeded. So $\lambda I T_{Y}=\lambda_{1}$ or λ_{2} and $\left\langle\lambda, \alpha_{2}\right\rangle=4 q_{1}$. Referring to (6.9), we find that if $\lambda \mid T_{Y}=\lambda_{1}$, then $\left\langle\lambda, \alpha_{1}\right\rangle=0,2 q, q$, or $q+q_{0}$, for q and q_{0} distinct p-powers. However in each case, by (1.27) and [8], dim VIA < dim VIY. Thus, $\lambda \mid T_{Y}=\lambda_{2}$. Now, by (6.9), $\left\langle\lambda, \alpha_{1}\right\rangle=0,3 q, 2 q, q$, or $q+q_{0}$. However,
 consideration of Case I.

Case II: Suppose $\operatorname{rank}\left(L_{j}\right) \leq 2$.
Then, in fact, $\operatorname{rank}\left(L_{j}\right)=2$, else there exists a 2 -dimensional $L_{A}{ }^{\prime}$
irreducible, Q_{Y} / K_{δ}, containing a nontrivial image of $Q_{A}{ }^{\alpha_{1}}$. Suppose there exists $1 \leq k \leq r, k \neq i$ with M_{k} nontrivial. Then (7.7) implies that L_{k} is separated from all other components of L_{Y} ' by more than one node of the Dynkin diagram. Then previous remarks of this result imply that L_{k} is of type A_{2}. Let q_{j} (respectively, q_{k}) be the field twist on the embedding of $L_{A^{\prime}}$ in $L_{j}\left(L_{k}\right)$. So $q_{j} \neq q_{k}$. If $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{j}\right) \neq 0$, for $j=i$ or $j=k$, then $Q_{Y} / K_{\delta} \cong\left(Q_{A} \alpha_{1}\right) q_{j}$ and $\delta \mid T_{A}=q_{j} \alpha_{1}$. (See (2.4).) By (2.8), L_{j} and L_{k} are separated by more than two nodes of the Dynkin diagram. So $Y=E_{8}$ and $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{7}, \beta_{8}\right\}$. Moreover, by (2.13) and (2.3), $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $j=2,4,5,6$. If we take $L_{i}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and $L_{k}=\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$, the above remarks imply $\beta_{4} I_{A}=q_{i} \alpha_{1}$ and $\beta_{6} I_{A}=q_{k} \alpha_{1}$. Also, (2.13) implies $\beta_{2} I T_{A}=0=\beta_{5} I T_{A}$. We also have $\beta_{1} I T_{A}=q_{i} \alpha_{2}=\beta_{3} I T_{A}$ and $\beta_{7} I T_{A}=q_{k} \alpha_{2}$ $=\beta_{8}{ }^{I T} A$. In particular, $V_{T_{A}}\left(\lambda-q \alpha_{1}\right)=0$ for all p-powers q. Thus, $\left\langle\lambda, \alpha_{1}\right\rangle=0$ and $\lambda \mid T_{A}=\left(2 q_{i}+2 q_{k}\right) \mu_{2}$; so $\operatorname{dim} V|A \leq 100<\operatorname{dimV}| Y$ by (1.27) and (1.32). Hence, there does not exist $1 \leq k \leq r, k \neq i$ with M_{k} nontrivial.

Now (7.2) implies that there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\langle\lambda, \delta\rangle \neq 0$. By (2.3), $\left(\delta, \Sigma L_{y}\right) \neq 0$. We claim that $\left(\delta, \Sigma L_{j}\right) \neq 0$. Otherwise, the bound on $\operatorname{dim} V_{\delta}\left(Q_{Y}\right)$ implies that there exists a unique $1 \leq k \leq r, k \neq i$ with $\operatorname{rank}\left(L_{K}\right) \leq 2$ and with $\left(\Sigma L_{k}, \delta\right) \neq 0$. Actually, L_{k} has type A_{2}, else Q_{Y} / K_{δ} is a 2-dimensional irreducible L_{A} ' module containing a nontrivial image of $Q_{A}{ }^{\alpha_{1}}$. If L_{j} and L_{k} are separated by more than two nodes of the Dynkin diagram, $L_{i} \times L_{k}$ is as in the above paragraph. Then $\langle\lambda, \delta\rangle \neq 0$ contradicts (2.13). Thus, L_{i} and L_{k} are separated by exactly two nodes of the Dynkin diagram. Let $\gamma_{i}, \gamma_{k} \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma_{i}, \gamma_{k}\right)<0,\left(\gamma_{j}, \Sigma L_{j}\right) \neq 0$ for $j=i, k$. Let q be the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{j}. Note that if $\gamma_{k} \mid Z_{A}=0$, (so $\gamma_{k} \neq \delta$) then $0 \neq W \in V_{T_{Y}}\left(\lambda-\delta\right.$) affords an $L_{Y}{ }^{\wedge}$ composition factor of $V_{\delta}\left(R_{U}\left(P_{Y}{ }^{\wedge}\right)\right)$ which exceeds the bound of (1.25), where $P_{Y} \wedge \geq B_{Y}{ }^{-}$ is the parabolic of Y with Levi factor $L_{\gamma}{ }^{\wedge}=\left\langle L_{\gamma}, U_{ \pm \gamma_{k}}\right\rangle$. Hence, if $Q_{A} \leq K_{\gamma_{k}}$ so $\delta \neq \gamma_{k}$, (2.10) implies that $-\gamma_{k}$ is not involved in L_{A} ' and by (2.11), there is a nontrivial image of $Q_{A} \alpha_{1}$ in $Q_{Y}\left(\gamma_{j}, \gamma_{k}\right)$. Hence, the field twist on
the embedding of L_{A} in L_{k} is q. If $Q_{A} \ddagger K_{\gamma_{k}}$ (2.8) implies that $\gamma_{K} \mid Z_{A}=q \alpha_{1}$, which in turn implies, by (2.6) that the field twist on the embedding of L_{A} in L_{K} is again q. Thus, $Q_{Y} / K_{\delta} \cong\left(Q_{A} \alpha_{1}\right) q$ and $\delta / T A=q \alpha_{1}$. (See (2.4).) But then the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)_{\lambda-q \alpha_{1}}$ of (1.22) is exceeded. Thus, if $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\langle\lambda, \delta\rangle \neq 0$, then $\left(\delta, \Sigma L_{j}\right) \neq 0$ as claimed.

Now, there exists a unique such δ. For otherwise, $\operatorname{dim} V_{T_{A}}\left(\lambda-q \alpha_{1}\right)>1$, contradicting (1.31). Hence, $\lambda I T_{Y}=\lambda_{\ell}+x \lambda_{m}$ for some ℓ, m. Moreover, the nodes of the Dynkin diagram corresponding to β_{ℓ} and β_{m} are separated by at most one node. By (6.9), $\left\langle\lambda, \alpha_{1}\right\rangle=0, q_{0}, 2 q_{0}$, $3 q_{0}, q_{0}+q_{1}$ or $x q_{0}$ for distinct p-powers q_{0} and q_{1}. Using (1.32) and (1.27), we see that $\operatorname{dimV}|A<\operatorname{dimV}| Y$ unless $\left\langle\lambda, \alpha_{1}\right\rangle=x q_{0}$. Moreover, since $f_{\delta} v^{+} \in V_{T_{A}}\left(\lambda-q \alpha_{1}\right), q_{0}=q$ and by (1.10), VIA is restricted.

Temporarily label as follows: $\Pi L_{i}=\left\{\gamma_{1}, \gamma_{2}\right\}$ and $\left(\delta, \gamma_{1}\right)<0$. We claim that γ_{2} must correspond to an end node of the Dynkin diagram. For otherwise, if $\delta_{0} \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta_{0}, \gamma_{2}\right)<0$, arguing as above, $\delta_{0} I T_{A}=\alpha_{1}$. The bound on $\operatorname{dimV}{ }^{2}\left(Q_{A}\right)$ implies $\left\langle\lambda, \gamma_{1}\right\rangle=1$ and $\left\langle\lambda, \gamma_{2}\right\rangle=0$. Consider the subgroup $L_{0}=\left\langle U_{ \pm \delta}, U_{ \pm \gamma_{1}}, U_{ \pm \gamma_{2}}, U_{ \pm} \delta_{0}\right\rangle$. Then L_{0} has a natural subgroup, B, of type B_{2}. Moreover, v^{+}affords an L_{0} composition factor of V which restricted to B produces a B composition factor with the same high weight as VIA, as B_{2} module. But L_{0} lies in a proper parabolic of Y and so acts reducibly on V. Hence, $\operatorname{dimVIA}<\operatorname{dimVIY}$. Thus, γ_{2} corresponds to an end node, as claimed. Also, (2.13) implies that $L_{j} \neq$ $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and if $L_{i}=\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{4}}\right\rangle, \delta=\beta_{5}$ and $Y=E_{7}$ or E_{8}. In fact, $L_{i} \neq\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{4}}\right\rangle$. For otherwise, (2.12) implies that $\left.\beta_{1}\right|_{A}=0$ and using the parabolic $P_{Y}{ }^{\wedge}$ of (2.12), we see that the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)$ is exceeded. Hence, either $Y=E_{7}$ with $\lambda I T_{Y}=x \lambda_{5}+\lambda_{6}$ or $x \lambda_{5}+\lambda_{7}$ or $Y=E_{8}$, with $\lambda_{I} T_{Y}=x \lambda_{6}+\lambda_{7}$ or $x \lambda_{6}+\lambda_{8}$.

In Y of type E_{7}, let $L_{1}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}, U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}\right\rangle$, a group of type A_{4}, which has a natural subgroup, B, of type B_{2}. Then $f_{245} f_{6} v^{+}$affords an L_{1} composition factor of V which restricts to B to produce a composition
factor having the same high weight, as B_{2} module, as VIA. Similarly, in Y of type E_{8}, let $L_{2}=\left\langle U_{ \pm \beta_{3}}, U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$. Here, the vector $f_{123456}{ }_{7} \nu^{+}$ serves the same purpose as above. In each case, $L_{\mathfrak{j}}$ lies in a proper parabolic of Y, so acts reducibly on V. Hence, $\operatorname{dimVIA}<\operatorname{dimVIY}$ and the result of (7.8) holds.
(7.9). There are no examples in the Main Theorem with Y of type E_{n} and A of type B_{2}, when $p>2$

Proof: Suppose false; i.e., suppose VIY is a nontrivial KY-module. Then, (7.3), (7.7), and (7.8) imply $\left\langle\lambda, \alpha_{2}\right\rangle=0$. So $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$. Let $P \geq B_{A^{-}}$ be the parabolic subgroup of A with Levi factor $L=\left\langle U_{ \pm \alpha_{1}}\right\rangle^{T} A$. Let R be a parabolic subgroup of Y with $P \leq R$ and $Q=R_{U}(P) \leq Q_{O}=R_{U}(R)$. Let R be minimal with these properties. Let L_{0} be a Levi complement of Q_{0} in R such that $T_{0} \leq L_{0}$, for some maximal torus of R, with $T_{A} \leq T_{0}$. Fix a base $\Pi_{0}(Y)$ of the root system, $\Sigma_{0}{ }^{+}(Y)$, of Y such that $L \cap U_{A} \leq Q_{0}\left(L_{0} \cap U_{0}\right)$, where U_{0} is the product of T_{0} root subgroups corresponding to roots in $\Sigma_{0}{ }^{+}(Y)$ and Q_{0} is the product of T_{0} root subgroups corresponding to roots in $\Sigma_{0}{ }^{-}(Y)-\Sigma\left(L_{0}\right)$. Let $\Pi_{0}(Y)=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$, with Dynkin diagrams labelled as throughout. Let $\left\langle W^{+}\right\rangle$be the unique 1-space fixed by U_{0}; let λ be the T_{0} weight of w^{+}. Then by (6.9), dimV|A < dimVIY unless $L_{0}{ }^{\prime}=L_{1} \times L_{2}$, with L_{1} a simple algebraic group of type A_{1} and L_{2} a semisimple algebraic group acting trivially on $V^{1}\left(Q_{0}\right)$. So if $L_{1}=\left\langle U_{ \pm \beta}\right\rangle$ for some $\beta \in \Pi_{0}(Y)$, then $\langle\lambda, \beta\rangle=c=\left\langle\lambda, \alpha_{1}\right\rangle$, for some $p>c>0$. (Use (1.10).) It is easy to check that $\operatorname{dimV}^{2}(Q)=c$, in this case. Thus, if $\gamma \in \Pi_{0}(Y)-\Pi\left(L_{Y}\right),\langle\lambda, \gamma\rangle=0$.
 ${ }^{\mathrm{f}} \gamma_{5}+\gamma_{4} \mathrm{~W}^{+}$afford distinct $L_{0}{ }^{\prime}$ composition factors of $\mathrm{V}^{2}\left(Q_{0}\right)$, exceeding $\operatorname{dimV}{ }^{2}(Q)$. Hence we may choose $\gamma_{j}, \gamma_{k}, \gamma_{\ell} \in \Pi_{0}(Y)$ with $\left(\beta, \gamma_{j}\right)<0$, $\left(\gamma_{j}, \gamma_{k}\right)<0$ and $\left(\gamma_{k}, \gamma_{\ell}\right)<0$. The subgroup $N=\left\langle U_{ \pm \gamma_{j}}, U_{ \pm \gamma_{k}}, U_{ \pm \gamma_{\ell}}, U_{ \pm \beta}\right\rangle \leq Y$ has type A_{4}, and therefore has a natural subgroup of type B_{2}, say A_{0}. Also, the N-composition factor of V afforded by v^{+}is not all of $V I Y$, as N
is contained in the Levi factor of a proper parabolic of Y. But the A_{0} composition factor of VIY has the same high weight, as B_{2} module, as does VIA. Thus, $\operatorname{dimVIA}<\operatorname{dimVIY}$. Contradiction. \square

CHAPTER 8: $A=G_{2}$

Let $A<Y$ be simple algebraic groups, with Y simply connected, having a root system of type E_{n}. Let $V=V(\lambda)$ be a restricted irreducible kY-module. In this chapter, we consider the main problem in case A has type G_{2}. Let T_{A} (respectively, T) be a fixed maximal torus of A (respectively, Y) with $T_{A} \leq T$. Let $\Pi(A)=\left\{\alpha_{1}, \alpha_{2}\right\}$ be a base of the root system $\Sigma(A)$ and $\Pi(Y)$ a base of $\Sigma(Y)$. Label the Dynkin diagrams of $\Sigma(A)$ and $\Sigma(Y)$ as throughout. Let $\left\{\mu_{1}, \mu_{2}\right\}$ (respectively, $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$) denote the fundamental dominant weights corresponding to the given ordered bases. The result is the following:

Theorem (8.0). (a) If VIA is irreducible, then $p \neq 2,7, Y=E_{6}$, $\lambda \mid T=\lambda_{1}\left(\right.$ or $\left.\lambda_{6}\right), \lambda \mid T_{A}=2 \mu_{1}$.
(b) If $p \neq 2,7$ and $Y=E_{6}$, then there exists a closed subgroup $B<Y$, B of type G_{2}, such that $V\left(\lambda_{1}\right) \mid B$ is irreducible.

Remark: The proof of (8.0)(b) is given in [16]. We prove (8.0)(a) in this chapter in case $p>3$. The case where $p=2$ or 3 is handled in Chapter 9.

We adopt Notation and Hypothesis (2.0) throughout this chapter, with the additional conditions: Assume $p>3$ and $L_{A}=\left\langle U_{ \pm \alpha_{1}}\right\rangle T_{A}$, so $Q_{A}{ }^{\alpha}=Q_{A}{ }^{\alpha}$ is a 4-dimensional, tensor indecomposable L_{A} ' module.

The following technical lemma which will be used in many of the successive results.
(8.1). (i) For $p \geq 5, \operatorname{dimV}\left(4 \mu_{2}\right)>156$.
(ii) $\operatorname{dim} V=27$ if and only if $\lambda \mid T_{A}=2 q \mu_{1}$, for some p-power q, and $p \neq 7$.
(iii) There does not exist an irreducible kA-module of dimension 56; so if Y has type $E_{7}, \lambda I T_{Y} \neq \lambda_{7}$.

Proof: By applying the methods of (1.30) and (1.33), repeatedly, and recalling that the Weyl group of A has order 12, we obtain (i).

Now, suppose $\operatorname{dim} V=27$. Then (1.32) implies V is tensor indecomposable, so we may assume V is restricted. Suppose $\left\langle\lambda, \alpha_{1}\right\rangle=a \neq 0 \neq b=\left\langle\lambda, \alpha_{2}\right\rangle$. Then, by [8], $a>1$ or $b>1$. Breaking the argument up into separate cases for $a=2$ or $a>2$, and $b=2$ or $b>2$, the methods of (1.30), (1.32) and (1.35) show that $\operatorname{dim} V>27$. Thus, $a=0$ or $b=0$. Moreover, $b y(1.27)$, if $a \neq 0, a>1$ and if $b \neq 0, b>1$. Since $p>3,[8]$ implies $b \neq 2$. Then, the methods of (1.30) and (1.32) imply that $\operatorname{dim} V>27$ if $b \neq 0$. So $a \neq 0$ and $b=0$. If $a=2$, [8] implies the result. By [8], $a \neq 3$. But if $a>3$, the methods of (1.30) and (1.32) imply dim $V>27$. Thus, (ii) holds. Arguing similarly, we obtain (iii).
(8.2). If $\operatorname{dim} V^{1}\left(Q_{Y}\right)>1, L_{\gamma^{\prime}}$ is not a simple algebraic group.

Proof: Suppose false. Then Theorem (7.1) of [12] implies that $L_{\gamma}{ }^{\text {' }}$ is of classical type, so by (1.5), $Z_{A} \leq Z_{Y}$. Consider first the case where L_{Y} ' has type D_{K} for some $k \geq 4$. We may argue as in the proof of (6.1), to obtain: $L_{Y}{ }^{\prime}=D_{6}, Y=E_{7}$ and $V^{1}\left(Q_{Y}\right) \cong W$, the natural module for L_{Y}. Also, $\left\langle\lambda, \beta_{1}\right\rangle=0$, else the bound on $\operatorname{dim} V_{\beta_{1}}\left(Q_{Y}\right)$, of (1.25), is exceeded. But now $\lambda_{I} T_{Y}=\lambda_{7}$, contradicting (8.1). Thus, L_{Y} does not have type D_{k} for $k \geq 4$.

If L_{Y} ' has type A_{k} for $k>3$, we may argue as in the proof of (6.1) to reduce to L_{Y} of type A_{n-1} in Y of type E_{n}, with $\lambda I T_{Y}=\lambda_{n}$, contradicting (8.1) and previous general remarks.

We have, therefore, L_{γ} of type A_{k} for $k \leq 3$. Actually, $k=3$, else there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$, with Q_{Y} / K_{γ} an irreducible L_{A} - -module of
dimension 2 or 3 , containing a nontrivial image of $Q_{A}{ }^{\alpha_{2}}$. Note also that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $V_{L_{Y}} \cdot(-\gamma) \cong W \wedge W$. For $(W \wedge W) L_{A^{\prime}}$ has composition factors of dimensions 5 and 1 or two factors of dimension 3. Thus, for each $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$, $Q_{Y} / K_{\gamma} \cong W$ or W^{*}. Since $p>2, Q_{A} \alpha_{2}$ is tensor indecomposable, so $W I L_{A}$. is tensor indecomposable. Suppose WILA' has high weight $3 q^{\prime} \mu_{2}$ for some p-power q. Then comparing high weight vectors in Q_{Y} / K_{γ} and $Q_{A} \alpha_{2}$, we see that $\gamma \mid T_{A}=q \alpha_{2}$ for all $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$. Also, (2.12) implies $\tau \| T_{A}=0$ for all $\tau \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\tau, \Sigma L_{Y}\right)=0$. As in the proof of (2.16), $\beta \mid T_{A}=q \alpha_{1}$, for each $\beta \in \Pi\left(L_{\gamma}\right)$.

Now $\left\langle\lambda, \alpha_{2}\right\rangle \neq 0$, else $\operatorname{dim} V|A \neq \operatorname{dim} V| Y$. (Use [8], (1.30) and (1.32).) Hence, there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $\langle\lambda, \gamma\rangle \neq 0$. For otherwise, there is no vector in V|Y with T_{A} weight $\lambda-q_{0} \alpha_{2}$, for any p-power q_{0}. By (2.13), γ must correspond to an end node of the Dynkin diagram. Applying this restriction and the bound on $\operatorname{dim}\left(V^{2}\left(Q_{A}\right)_{\lambda-q \alpha_{2}}\right)$, we reduce to the following:
(a) $Y=E_{6}, L_{Y}{ }^{\prime}=\left\langle U_{ \pm \beta_{i}} \mid i=1,3,4\right\rangle, \lambda \mid T_{Y}=\lambda_{1}+x \lambda_{2} \quad x>0$.
(b) $Y=E_{6}, L_{Y}=\left\langle U_{ \pm \beta_{i}} \mid 4 \leq i \leq 6\right\rangle, \lambda I T_{Y}=\lambda_{6}+x \lambda_{2}, x>0$.
(c) $Y E_{7}, L_{Y}=\left\langle U_{ \pm \beta_{i}} \mid 4 \leq i \leq 6\right\rangle, \lambda \mid T_{Y}=\lambda_{6}+x \lambda_{7}, x>0$.
(d) $Y=E_{8}, L_{Y}=\left\langle U_{ \pm \beta_{i}} \mid 5 \leq i \leq 7\right\rangle, \lambda \mid T_{Y}=\lambda_{7}+x \lambda_{8}, x>0$.

Actually, the configurations of (a) and (b) can be ruled out by (1.23).
Now, VIA is a conjugate of a basic module since there is no vector in VIY with T_{A} weight $\lambda-q_{0} \alpha_{2}$ for $q_{0} \neq q$. So by (1.10), $q=1$ and $\left\langle\lambda, \alpha_{1}\right\rangle=3$. $B y(1.29), \operatorname{dim} V_{T_{A}}\left(\lambda-3 \alpha_{1}-\alpha_{2}\right) \leq 4$. Thus, $Y=E_{7}$; for otherwise, $f_{4567} \nu^{+}$, $f_{34567} v^{+}, f_{134567} v^{+}, f_{24567} v^{+}$and $f_{5678} v^{+}$are five linearly independent vectors in $V_{T_{A}}\left(\lambda-3 \alpha_{1}-\alpha_{2}\right)$. Now, one checks that in the action of L_{A} ' on the 56-dimensional irreducible $k Y$-module $V\left(\lambda_{7}\right)$, there are no 2 - or 3-dimensional composition factors, and all composition factors are tensor indecomposable. But there is no 56-dimensional kA-module which affords such an $L_{A}{ }^{\prime}$ composition series. Hence, L_{y} does not have type A_{3}.

This completes the proof of (8.2).
(8.3). If $\operatorname{dim} V^{1}\left(Q_{Y}\right)>1$, each L_{i} has type $A_{k_{j}}$ for some $k_{i} \geq 1$.

Proof: We first claim that each L_{i} has classical type. For otherwise, $Y=E_{8}$ and L_{Y} has type $E_{6} \times A_{1}$. By Theorem (7.1) of [12], $\lambda \mid T_{Y}=x \lambda_{7}+c \lambda_{8}$ and $\left\langle\lambda_{, \alpha_{1}}\right\rangle=c \cdot q$, for $c>0$ and some p-power q. By (6.9) and (1.22), $\operatorname{dimv}^{2}\left(Q_{A}\right) \leq 11 c+8$. But $f_{\beta_{7}} v^{+}$and/or $f_{\beta_{7}+\beta_{8}} v^{+} \operatorname{afford}(s) L_{Y}{ }^{\prime}$ composition factors in $V^{2}\left(Q_{A}\right)$, forcing $\operatorname{dim} V^{2}\left(Q_{A}\right) \geq 27 c$. (Use (1.36) if $x \neq 0$ and $c=p-1$.) Thus, each component of L_{Y} ' has classical type, so (1.5) implies $Z_{A} \leq Z_{Y}$.

Suppose L_{j} has type D_{k} for some k. Arguing as in the proof of (6.3), we see that M_{j} is trivial. Now $\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ is not a component of L_{Y}, else the bounds on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ and $\operatorname{dim} V_{\beta_{1}}\left(Q_{Y}\right)$ imply $\lambda \mid T_{Y}=\lambda_{8}$. Hence, $L_{Y^{\prime}}=L_{i} \times L_{j}$ with L_{j} of type A_{1} and M_{j} nontrivial. Moreover, $\left(\Pi L_{j}, \Pi L_{j}\right) \neq 0$, else there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{j}\right) \neq 0$ and Q_{Y} / K_{δ} a 2-dimensional irreducible L_{A} - module containing a nontrivial image of $Q_{A} \alpha_{2}$. Let $\gamma \in \Pi(\gamma)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{i}\right) \neq 0 \neq\left(\gamma, \Sigma L_{j}\right)$. Now (1.36) and the bound on $\operatorname{dimV}_{\gamma}\left(Q_{Y}\right)$ of (1.25) imply $L_{i}=D_{4}$. So $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{7}, \beta_{m} \mid 2 \leq m \leq 5\right\}$, with $\left\langle\lambda, \beta_{m}\right\rangle=0$ for $2 \leq m \leq 5$ and $\left\langle\lambda, \beta_{7}\right\rangle>0$. The previous remarks imply that $Y=E_{7}$. But the bound on $\operatorname{dim} V_{\beta_{1}}\left(Q_{Y}\right)$ and on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ (in conjunction with (1.36)) implies that $\lambda I T_{Y}=\lambda_{7}$, contradicting (8.1). This completes the proof of (8.3).ם
(8.4). Suppose there exists $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ and $1 \leq i, j \leq r$ such that $\left(\gamma, \Sigma L_{j}\right) \neq 0 \neq\left(\gamma, \Sigma L_{j}\right)$. Then M_{j} or M_{j} is trivial.

Proof: Suppose false; i.e., suppose M_{j} and M_{j} are both nontrivial. By (8.3), each component, L_{k}, of L_{Y} ' has type $A_{m_{k}}$ for some $m_{k} \geq 1$; so (1.5) implies $Z_{A} \leq Z_{Y}$. Let W_{m} denote the natural module for $L_{m}, m=i, j$. By (7.1) of [12], if $\operatorname{rank}\left(L_{m}\right)>1, M_{m} \cong W_{m}$ or $W_{m}{ }^{*}$.

Case I: Suppose $V_{L_{i}}(-\gamma) \neq W_{i}$ or $W_{i}{ }^{*}$.
Then $\operatorname{rank}\left(L_{i}\right) \geq 3$ and $V_{L_{i}}(-\gamma) \cong W_{i} \wedge W_{i}$ or $W_{i}{ }^{*} \wedge W_{i}{ }^{*}$. Now (1.15) implies that L_{j} cannot have type A_{2}. Also, since L_{A} acts irreducibly on W_{m}, for $m=i, j$, if rankL $m \neq 3$, there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{m}\right) \neq 0$ and $Q_{Y} / K_{\delta} \cong W_{m}$ or W_{m}^{*} for $m=i$ or j. Finally, the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$, restricts the situation still further. (Use (1.34), (1.36) and $p>3$.) These remarks imply that $L_{i} \times L_{j}$ has type $A_{3} \times A_{1}, A_{3} \times A_{3}$ or $A_{4} \times A_{1}$.

If $L_{i} \times L_{j}$ has type $A_{4} \times A_{1}$ with $q_{1} \neq q_{2}$ the field twists on the embeddings of $L_{A^{\prime}}$ in L_{i} and L_{j} respectively, then one checks that there is no 4-dimensional L_{A} ' composition factor of Q_{Y} / K_{γ}. But this contradicts (2.3); so $L_{i} \times L_{j}$ does not have type $A_{4} \times A_{1}$. If $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{k} \mid k \neq 1,5\right\}$ in E_{8}, the bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ implies $\lambda \mid T_{Y}=x \lambda_{1}+\lambda_{\ell}+\lambda_{8}$ where $\ell=2$ or
 composition factors of $V_{\beta_{5}}\left(Q_{Y}\right)$ of dimensions 60 and 20 , respectively, exceeding the bound of (1.25). Hence, $L_{i} \times L_{j}$ does not have type $A_{3} \times A_{3}$.

Finally, consider the case where $L_{i} \times L_{j}$ has type $A_{3} \times A_{1}$. We first note that $W_{j} \|_{A}$ ' is tensor indecomposable. For otherwise, if $W_{j} L_{A}$ ' has high weight $\left(q_{1}+q_{2}\right) \mu_{1}$ and if q_{3} is the field twist on the embedding of $L_{A^{\prime}}$ in L_{j}, for q_{1}, q_{2}, q_{3} distinct powers of p, the $L_{A^{\prime}}$ composition factors of Q_{Y} / K_{γ} are 6 dimensional. But this implies $Q_{A} \leq K_{\gamma}$, contradicting (2.3). So $W_{i} \mid L_{A}$ ' has high weight $3 q \mu_{1}$ for some $q \neq q_{3}$. However, now the $L_{A}{ }^{\prime}$ composition factors of Q_{Y} / K_{γ} have dimensions 10 and 2 so again $Q_{A} \leq K_{\gamma}$, contradicting (2.3). This completes the consideration of Case I.

Case II: $V_{L_{m}}(-\gamma) \cong W_{m}$ or $W_{m}{ }^{*}$ for $m=i, j$.
Then (2.7) implies that there exists $k \neq i$, j with $\left(\Sigma L_{k}, \gamma\right) \neq 0$ and $\operatorname{dim} M_{k}=1$. Thus, $\gamma=\beta_{4}$. We first claim that $\left\langle U_{ \pm \beta_{3}}\right\rangle$ is not a component of $L_{Y}{ }^{\prime}$. For otherwise, $Q_{A} \leq K_{\beta_{1}}$ since $Q_{Y} / K_{\beta_{1}}$ is a 2-dimensional irreducible L_{A} '-module. Also $p>2$ and (2.10) imply that $-\beta_{1}$ is not involved in L_{A}. Hence, by (2.11), there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}\left(\beta_{4}, \beta_{1}\right)$. But $Q_{Y}\left(\beta_{4}, \beta_{1}\right)$ is an irreducible, tensor decomposable
L_{A} '-module. Thus, $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and $\left\langle U_{ \pm \beta_{2}}\right\rangle$ are components of L_{γ}. Then (1.15) and $p>3$ imply that the third component adjacent to β_{4}, say L_{0}, has type $A_{k_{0}}$ for $k_{0}=2$, 3 or 4. If L_{0} has type A_{3}, again by (1.15), $V_{L_{0}}\left(-\beta_{4}\right) L_{A}$. is tensor decomposable. The bound on $\operatorname{dimV} \beta_{\beta_{4}}\left(Q_{Y}\right)$ of (1.25), together with (1.36), implies $\left\langle\lambda, \beta_{2}\right\rangle=0$ in case L_{0} has type A_{3} or A_{4}. Previous remarks then imply that if L_{0} has type A_{2} or $A_{3}, Q_{Y} / K_{\gamma}$ has no L_{A} ' composition factor isomorphic to a twist of $Q_{A} \alpha_{2}$. Hence, $\Pi\left(L_{Y}\right)=\left\{\beta_{m} \mid m \neq 4\right\}$ in E_{8} and $\lambda I T_{Y}=\lambda_{1}+\lambda_{8}$. (The labelling of λ is given by the bound on $\left.\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right).\right)$ But now, $f_{134} V^{+}$and $f_{45678} V^{+}$afford distinct $L_{Y}{ }^{\cdot}$ composition factors of $V_{\beta_{4}}\left(Q_{Y}\right)$ of dimensions at least 46 and 16 , respectively, exceeding the bound of (1.25).

This completes the proof of (8.4).
(8.5). Suppose there exist distinct $1 \leq i, j, k \leq r$ such that $\left(\Sigma L_{\ell}, \beta_{4}\right) \neq 0$ for $\ell=i, j, k$ and $\operatorname{dim}\left(M_{j} \otimes M_{j} \otimes M_{k}\right)>1$. Then $Y=E_{6}$, $\lambda \mid T_{Y}=\lambda_{1}\left(\right.$ or $\left.\lambda_{6}\right)$ and $\lambda \mid T_{A}=2 \mu_{1}$. Moreover, $p \neq 7$.

Proof: Since each component of $L^{\prime}{ }^{\prime}$ is necessarily of classical type, (1.5) implies $Z_{A} \leq Z_{Y}$. Let W_{m} denote the natural module for $L_{m}, m=i, j, k$. $\operatorname{By}(7.1)$ of [12], if $\operatorname{rank}\left(L_{m}\right)>1$ and M_{m} is nontrivial, $M_{m} \cong W_{m}$ or $W_{m}{ }^{*}$, for $m=i, j, k$. By (8.4), only one of M_{i}, M_{j} and M_{k} is nontrivial.

Since $p>2$, (1.15) implies $L_{j} \times L_{j} \times L_{k}$ has type $A_{1} \times A_{1} \times A_{\ell}, \ell=1$ or 3 , or $A_{2} \times A_{1} \times A_{\ell}, \ell=2,3$, or 4. If $L_{j} \times L_{j} \times L_{k}$ has type $A_{1} \times A_{1} \times A_{\ell}$, $Q_{A} \leq K_{\beta_{1}}$, as $Q_{Y} / K_{\beta_{1}}$ is a 2-dimensional irreducible $L_{A}{ }^{\prime}$-module. Moreover, (2.10) implies that $-\beta_{1}$ is not involved in L_{A}. Hence, by (2.11) and (1.15), applied to $Q_{Y}\left(\beta_{4}, \beta_{1}\right), \ell \neq 1$. And in the case where $L_{i} \times L_{j} \times L_{k}$ has type $A_{1} \times A_{1} \times A_{3}$, (1.15) applied to $Q_{Y} / K_{\beta_{4}}$ implies $V_{L_{k}}\left(-\beta_{4}\right) L_{A} A^{\prime}$ is tensor indecomposable. But (2.11) and (1.15) (applied to $Q_{Y}\left(\beta_{4}, \beta_{1}\right)$) produce a contradiction. Thus, $L_{i} \times L_{j} \times L_{k}$ has type $A_{2} \times A_{1} \times A_{\ell}, \ell=2,3,4$.

Consider the case where $L_{i} \times L_{j} \times L_{k}$ has type $A_{2} \times A_{1} \times A_{4}$. The bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ implies $\lambda I T_{Y}=\lambda_{1}$, and $\left\langle\lambda, \alpha_{1}\right\rangle=2 q$ for some p-power q.

By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0,2 q_{0}$, or q_{0}, for some p-power q_{0}. But then [8] and (1.27) imply dimVIA < dimVIY. Thus, L_{Y} does not have type $A_{2} \times A_{1} \times A_{4}$. Consider now the case where $L_{i} \times L_{j} \times L_{k}$ has type $A_{2} \times A_{1} \times A_{3}$. Then (1.15) implies that if L_{k} has type $A_{3}, V_{L_{k}}\left(-\beta_{4}\right) L_{A^{\prime}}$ is tensor decomposable. So if $Y=E_{8}, Q_{Y} / K_{\beta_{8}}$ has no $L_{A^{\prime}}$ composition factor isomorphic to a twist of $Q_{A} \alpha_{2}$; so $\left\langle\lambda, \beta_{5}+\beta_{6}+\beta_{7}+\beta_{8}\right\rangle=0$. Moreover, the bound on $\operatorname{dim}_{\beta_{4}}\left(Q_{Y}\right)$ implies that either $\left\langle\lambda, \beta_{1}\right\rangle=1$ and $\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $7 \geq \ell>1$ or $\left\langle\lambda, \beta_{7}\right\rangle=1$ and $\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $\ell<7$. In the first case, $Y=E_{8}$. But we may argue as in the previous case to see that dimVIA < dimVIY. In the second case, previous remarks imply that $Y=E_{7}$, contradicting (8.1).

Finally, we must consider $L_{j} \times L_{j} \times L_{k}$ of type $A_{2} \times A_{1} \times A_{2}$. The bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ and (1.36) imply that $\left\langle\lambda, \beta_{1}\right\rangle=1$ and $\left\langle\lambda, \beta_{m}\right\rangle=0$ for $2 \leq m \leq 6$ or $\left\langle\lambda, \beta_{6}\right\rangle=1$ and $\left\langle\lambda, \beta_{m}\right\rangle=0$ for $1 \leq m \leq 5$. So if $Y=E_{6}, \operatorname{dimV} \mid Y=27$ and the result follows from (8.1) and (1.10). If $Y=E_{7}$, then $Q_{A} \leq K_{\beta}$, as $Q_{Y} / K_{\beta_{7}}$ is a 3-dimensional irreducible L_{A}-module. But then $\left\langle\lambda, \beta_{K}\right\rangle=0$ for $k=5,6,7$ and $\lambda I T_{Y}=\lambda_{1}$.

Suppose $Y=E_{8}$. Let q_{1} (respectively, q_{2}, q_{3}) be the field twist on the embedding of L_{A} in $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ (respectively, $\left\langle U_{ \pm \beta_{2}}\right\rangle,\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$). Then, (2.7) implies that q_{1}, q_{2}, q_{3} are not all distinct. If $q_{1}=q_{2} \neq q_{3}$ or if $q_{1} \neq q_{2}=q_{3}$, the L_{A} ' composition factors of $Q_{Y} / K_{\beta_{4}}$ have dimensions 12 and 6 . If $q_{1}=q_{3} \neq q_{2}$, the L_{A} ' compositions factors of $Q_{Y} / K_{\beta_{4}}$ have dimensions 10,6 , and 2. Thus, $q_{1}=q_{2}=q_{3}$. The $L_{A^{\prime}}$ composition factors of $Q_{Y} / K_{\beta_{4}}$ have high weights $5 q_{1} \mu_{1}, 3 q_{1} \mu_{1}$ and $q_{1} \mu_{1}$. Thus, $\beta_{4} \mid Z_{A}=q_{1} \alpha_{2}$. Examining the $T\left(L_{A}\right)$ weights in $Q_{Y} / K_{\beta_{4}}$ we see that
 c_{3} not all zero, and $u_{0} \in K_{\beta_{4}}$. Since $\beta_{\ell} \mid T_{A}=q_{1} \alpha_{1}$ for $\ell=1,2,3,5,6$, $\beta_{4} I_{A}=q_{1}\left(\alpha_{2}-\alpha_{1}\right)$.

Let $L_{i}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and $L_{j}=\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$. Note that if $Q_{A} \nsubseteq K_{\beta_{7}}$, $\operatorname{dim}\left(Q_{Y} / K_{\beta_{7}}\right) \geq 4$; so $\left\langle U_{ \pm \beta_{8}}\right\rangle \leq L_{Y}$. We first claim that M_{j} is trivial. For suppose M_{j} is nontrivial; in particular, $Q_{A} \not \ddagger K_{\beta_{7}}$. Then (2.17) implies that
the field twist on the embedding of L_{A} ' in $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is also q_{1} and that $\beta_{7} \mid Z_{A}=q_{1} \alpha_{2}$. Thus, (2.5) and (2.6) imply $\left\langle\lambda, \beta_{8}\right\rangle=0$. Now, the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha_{2}$, of (1.22), implies $\lambda I T_{Y}=\lambda_{6}$. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0,2 q$, q, or $q+q_{0}$, for q and q_{0} distinct p-powers. However, (1.27) and (1.32) imply $\operatorname{dimV}|A<\operatorname{dimV}| Y$. Thus M_{j} is trivial; so M_{j} is nontrivial and $\left\langle\lambda, \beta_{1}\right\rangle=1,\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $2 \leq \ell \leq 6$. If $\lambda \mid T_{Y}=\lambda_{1}$, we may argue as in the $A_{1} \times A_{2} \times A_{4}$ case to produce a contradiction. Thus, $\left\langle\lambda, \beta_{7}+\beta_{8}\right\rangle \neq 0$. Argue as in the previous paragraph to get $\left\langle\lambda, \beta_{8}\right\rangle=0$. But then the bound on $\operatorname{dim} V_{\beta_{7}}\left(Q_{Y}\right)$ is exceeded.

This completes the proof of (8.5).ם
(8.6). Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$. Suppose there exists a unique pair $1 \leq i, j \leq r$ with $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$ and $\operatorname{dim}\left(M_{j} \otimes M_{j}\right)>1$. Then $L_{i} \times L_{j}$ has type $A_{1} \times A_{2}$ and only one of M_{j} and M_{j} is nontrivial. Moreover, if $\Pi\left(L_{j}\right)=\left\{\gamma_{0}\right\}, \Pi\left(L_{j}\right)=\left\{\gamma_{1}, \gamma_{2}\right\}$, with $\left(\gamma_{1}, \gamma\right)<0$, then there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \gamma_{0}\right) \neq 0$ (respectively, $\left(\delta, \gamma_{2}\right) \neq 0$) and $\left(\delta, \Sigma L_{m}\right)=0$ for all $m \neq i$ (respectively, $m \neq j$).

Proof: By (8.3), each component, L_{k}, of L_{Y} ' has type $A_{m_{k}}$ for some $m_{k} \geq 1$, so (1.5) implies $Z_{A} \leq Z_{Y}$. Let W_{m} denote the natural module for L_{m}, for $m=i, j$. $B y(7.1)$ of [12], if M_{m} is nontrivial and $\operatorname{rank}\left(L_{m}\right)>1$, $M_{m} \cong W_{m}$ or $W_{m}{ }^{*}$, for $m=i$ or j. By (8.4), only one of M_{j} and M_{j} is nontrivial.

Case I: Suppose $V_{L_{i}}(-\gamma) \not \equiv W_{i}$ or $W_{i}{ }^{*}$.
Then (1.15) and size restrictions imply that $L_{j} \times L_{j}$ has type $A_{3} \times A_{\ell}$, for $\ell=1$ or $3, A_{4} \times A_{\ell}$, for $\ell=1$ or $3, A_{5} \times A_{1}$ or $A_{6} \times A_{1}$. If $L_{i} \times L_{j}$ has type $A_{m} \times A_{1}$ for $m=4,5$ or 6 , the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$, together with (1.36), implies that the A_{1} component acts trivially on $V^{1}\left(Q_{Y}\right)$. But if $L_{i} \times L_{j}$ has type $A_{6} \times A_{1}$, the bound implies $\lambda I T_{Y}=\lambda_{8}$. Also, if $L_{i} \times L_{j}$ has type $A_{5} \times A_{1}$, then $Y=E_{7}$, else $Q_{Y} / K_{\beta_{8}}$ is a 6-dimensional irreducible L_{A} '-module containing a nontrivial image of $Q_{A} \alpha_{2}$. The bound on
$\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}\right)$ implies that $\lambda I T_{Y}=\lambda_{7}$, contradicting (8.1). Thus, $L_{i} \times L_{j}$ does not have type $A_{6} \times A_{1}$ or $A_{5} \times A_{1}$.

Consider now the case where $L_{i} \times L_{j}$ has type $A_{4} \times A_{1}$ (so the A_{1} component acts trivially on $V^{1}\left(Q_{Y}\right)$). The bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ and (1.23) imply that if $Y=E_{6}, \lambda I T_{Y}=\lambda_{2}$; thus, $Y=E_{7}$ or E_{8}. If $Y=E_{7}, Q_{Y} / K_{\beta}$ is an irreducible L_{A}-module of dimension 2 or 5 ; so $Q_{A} \leq K_{\beta_{7}}$. Thus, $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}\right\}$. By (2.10), $-\beta_{7}$ is not involved in L_{A}. However, then (2.11) implies that there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}\left(\beta_{5}, \beta_{7}\right)$, an L_{A} '-module with no 4-dimensional, tensor indecomposable compositon factor. Hence, $Y=E_{8}$. Let q_{1} (respectively, q_{2}) be the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{i} (respectively, L_{j}). The $L_{A}{ }^{\prime}$ composition factors of Q_{Y} / K_{γ} have high weights $\left(6 q_{1}+q_{2}\right) \mu_{1}$ anad $\left(2 q_{1}+q_{2}\right) \mu_{1}$; if $p=5$ and $5 q_{1}=q_{2}$, the high weights are $\left(2 q_{2}+q_{1}\right) \mu_{1}, q_{1} \mu_{1}$, and $\left(2 q_{1}+q_{2}\right) \mu_{1}$; if $q_{1}=q_{2}$ the high weights are $7 q_{1} \mu_{1}, 5 q_{1} \mu_{1}, 3 q_{1} \mu_{1}$ and $q_{1} \mu_{1}$. Thus, $q_{1}=q_{2}$ and $\gamma \mid Z_{A}=q_{1} \alpha_{2}$.

Now standard arguments (using (2.5), (2.6), (2.17) and (1.22)) imply that $\Pi\left(L_{i} \times L_{j}\right) \neq\left\{\beta_{k} \mid k=1,2,4,5,6\right\}$. We have, therefore, $\Pi\left(L_{i} \times L_{j}\right)=$ $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}\right\}$. As well, $\left\langle U_{ \pm} \beta_{8}\right\rangle$ is a component of $L{ }_{y}$, else we can argue as in E_{7} to produce a contradiction. Also, (1.15) implies $Q_{A} \leq K_{\beta}$. If $-\beta_{7}$ is involved in $L_{A^{\prime}}, \beta_{7} \mid Z_{A}=0$. Otherwise, (2.11) implies $Q_{Y}\left(\beta_{5}, \beta_{7}\right)$ contains a nontrivial image of $Q_{A}{ }^{\alpha_{2}}$. Arguing as with $Q_{Y} / K_{\beta_{5}}$ (in the previous paragraph), we see that the field twist on the embedding of L_{A} ' in $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is q_{1} and $\left(\beta_{5}+\beta_{7}\right) \mid Z_{A}=q_{1} \alpha_{2}$. So again $\beta_{7} \mid Z_{A}=0$. Using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that $\lambda I T_{Y}=\lambda_{1}$, else the bound on $\operatorname{dimv}_{\beta_{5}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0,2 q$ or q, for some p-power q. But [8] and (1.27) imply that $\operatorname{dim} V \mid A \neq \operatorname{dim} V I Y$. Thus, $L_{i} \times L_{j}$ does not have type $A_{4} \times A_{1}$.

If $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{k} \mid k \neq 5\right\}$ in E_{8}, the bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ implies that $\lambda \mid T_{Y}=\lambda_{1}$ and $\left\langle\lambda, \alpha_{1}\right\rangle=4 q$ for some p-power q. Arguing as in the previous paragraph, we have $\operatorname{dimV} \mid A \neq \operatorname{dimVIY}$. Thus, $L_{i} \times L_{j}$ does not have
type $A_{4} \times A_{3}$.
Consider the case where $\Pi\left(L_{j}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{4}\right\}$ and $\Pi\left(L_{j}\right)=\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\}$ in E_{8}. Note that $Q_{A} \ddagger K_{\beta_{1}}$. For otherwise, $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $1 \leq K \leq 4$ and the bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ implies that $\lambda I T_{Y}=\lambda_{8}$. Since $Q_{A} \ddagger K_{\beta_{1}}, W_{i} L_{A^{\prime}}$ is tensor indecomposable. Then (1.15) (applied to $Q_{Y} / K_{\beta_{5}}$) implies that $W_{j} L_{A}{ }^{\prime}$ is also tensor indecomposable. Let q_{1} (respectively, q_{2}) be the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{j} (respectively, L_{j}). Then the $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{5}}$ have high weights $\left(4 q_{1}+3 q_{2}\right) \mu_{1}$ and $3 q_{2} \mu_{1}$, if $q_{1} \neq q_{2}$; if $q_{1}=q_{2}$, the high weights are $7 q_{1} \mu_{1}, 5 q_{1} \mu_{1}, 3 q_{1} \mu_{1}$ and $q_{1} \mu_{1}$. Thus, $\beta_{5} \mid Z_{A}=q_{2} \alpha_{2}$. Also, since $Q_{Y} / K_{\beta_{1}} \cong\left(Q_{A} \alpha_{2}\right) q_{1}$, $\beta_{1} I T_{A}=q_{1} \alpha_{2}$. If $q_{1}=q_{2}$, the bound on $\operatorname{dimv}^{2}\left(Q_{A}\right) \lambda-q_{1} \alpha_{2}$, of (1.22), implies that $\lambda \mid T_{Y}=\lambda$. Thus $q_{1} \neq q_{2}$. Examining $T\left(L_{A}{ }^{\prime}\right)$ weight vectors in $Q_{Y} / K_{\beta_{1}}$ and in $Q_{Y} / K_{\beta_{5}}$, we have $x_{-\alpha_{2}}(t)=x_{-\beta_{1}}\left(a t q_{1}\right) x_{-245}\left(b_{1} t Q_{2}\right)$. $x_{-345}\left(b_{2} t q_{2}\right) u$, where $a \in k^{*}, b_{i} \in k, u \in K_{\beta_{1}} \cap K_{\beta_{5}}$. In fact $b_{2} \neq 0$, else there is a nontrivial contribution to the root group $U_{-\beta_{4}-\beta_{5}}$ in the expression for $\left[x_{\alpha_{1}}(t), x_{-\alpha_{2}}(t)\right]$. However, $b_{2} \neq 0$ and $q_{1} \neq q_{2}$ contradicts (2.8). Thus, $L_{i} \times L_{j}$ does not have type $A_{3} \times A_{3}$.

We must now consider $L_{i} \times L_{j}$ of type $A_{3} \times A_{1}$. Suppose $\Pi\left(L_{i} \times L_{j}\right)=$ $\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}\right\}$. If $Q_{A} \leq K_{\beta_{1}},-\beta_{1}$ is not involved in $L_{A} ;$ else $\beta_{1} \mid Z_{A}=0$, and using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that the bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded. Thus, (2.11) implies $Q_{A} \ddagger K_{\beta_{1}}$, as $Q_{Y}\left(\beta_{5}, \beta_{1}\right)$ has no 4-dimensional $L_{A} \cdot$ composition factor. So if $\Pi\left(L_{i}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{4}\right\}, V_{L_{i}}\left(-\beta_{1}\right)$ is tensor indecomposable. We also note that the field twists on the embeddings of $L_{A}{ }^{\prime}$ in L_{j} and L_{j} are equal, else there is no 4-dimensional $L_{A^{\prime}}$ composition factor of $Q_{Y} / K_{\beta_{5}}$. Call this twist q. Then the $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{5}}$ have high weights $5 q \mu_{1}, 3 q \mu_{1}$ and $q \mu_{1}$. So $\beta_{5} \mid Z_{A}=q \alpha$. Then, examining the $T\left(L_{A}\right)$ weight vectors in $Q_{Y} / K_{\beta_{1}}$ and in $Q_{Y} / K_{\beta_{5}}$, we have
(1) $x_{-\alpha_{2}}(t)=x_{-\beta_{1}}(a t q) x_{-45}\left(a_{1} t q\right) x_{-56}\left(a_{2} t q\right) w$,
(2) $x_{-\alpha_{1}-\alpha_{2}}(t)=x_{-13}(b t q) x_{-345}\left(b_{1} t q\right) x_{-245}\left(b_{2} t q\right) x_{-456}\left(b_{3} t q\right) v$,
(3) $x_{-3 \alpha_{1}-\alpha_{2}}(t)=x_{-1234}(c t q) x_{-23456}\left(c_{1} t q\right) x_{-\beta_{2}-\beta_{3}-2 \beta_{4}-\beta_{5}\left(c_{2} t q\right) u, ~}^{\text {q }}$ where $a, b, c \in k^{*}, a_{j}, b_{j}, c_{j} \in k, a_{1}$ or a_{2}, c_{1} or c_{2} and some b_{j} nonzero, u, v, $w \in K_{\beta_{1}} \cap K_{\beta_{5}}$,

Note that $a_{2} \neq 0$ else there is a nontrivial contribution to the root group $U_{-\beta_{5}}$ in the expression for $\left[x_{-\alpha_{2}}(t), x_{\alpha_{1}}(u)\right]$. Then, this implies $b_{3} \neq 0$, else no nonidentity element from $U_{-\beta_{5}}-\beta_{6}$ occurs in the factorization of $\left[x_{-\alpha_{1}-\alpha_{2}}(t), x_{\alpha_{1}}(u)\right]$. But if $b_{3} \neq 0$, there is a nontrivial contribution to the root group $U_{-\beta_{1}}-\beta_{2}-\beta_{3}-2 \beta_{4}-\beta_{5}-\beta_{6}$ in the factorization of $\left[x_{-\alpha_{1}-\alpha_{2}}(t), x_{-3 \alpha_{1}-\alpha_{2}}(u)\right]$. Contradiction. Hence, $\Pi\left(L_{i} \times L_{j}\right) \neq\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}\right\}$.

It remains to consider the case where $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{5}, \beta_{1}\right\}$. The above argument implies that $Y=E_{7}$ or E_{8} and $\left\langle U_{ \pm \beta_{7}}\right\rangle \leq L_{Y}$. Suppose $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is a component of $L_{Y}{ }^{\prime}$. Then $Q_{Y} / K_{\beta_{6}}$ has no 4-dimensional $L_{A}{ }^{\prime}$ composition factor, so $Q_{A} \leq K_{\beta_{5}}$. Also, if $Y=E_{8}, \operatorname{dim}\left(Q_{Y} / K_{\beta_{8}}\right)=2$ implies $Q_{A} \leq K_{\beta_{8}}$. So $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $j=2, j \geq 4$. In fact, the bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}\right)$ implies $\lambda \mid T_{Y}=c \lambda_{1}$, where $c=1$ or 2. If $c=1, Y=E_{8}$ and by [8], dimVIY $=3875$. However, referring to (6.9), we have $\left\langle\lambda, \alpha_{2}\right\rangle=0, q_{0}$ or $2 q_{0}$, for some p-power q_{0}. In each case, $\operatorname{dimVIA}<\operatorname{dimVIY}$. Hence, $c=2$. Then by (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0$ or $2 q_{0}$. But (1.38) and (1.27) imply dimVIA $<$ dimVIY. Hence $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is not a component of L_{Y}.

So $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$. If $Q_{A} \leq K_{\beta_{6}}$, argue as in the preceding paragraph to produce a contradiction. Hence, $Q_{A} \not \ddagger K_{\beta_{6}}$. Then (1.15) implies that $V_{L_{j}}\left(-\beta_{6}\right) L_{A}{ }^{\prime}$ is tensor indecomposable, where $\Pi\left(L_{j}\right)=$ $\left\{\beta_{2}, \beta_{4}, \beta_{5}\right\}$. Then previous remarks and (2.7) imply that the field twists on the embeddings of L_{A} ' in L_{i}, L_{j} and $\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ are equal, say q. So, $\left\langle\lambda, \beta_{7}+\beta_{8}\right\rangle=0$. The $L_{A}{ }^{\prime}$ composition factors of $Q_{Y} / K_{\beta_{6}}$ have high weights $5 q \mu_{1}, 3 q \mu_{1}$ and $q \mu_{1}$. Thus, $\beta_{\sigma} \mid Z_{A}=q \alpha_{2}$. The bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha_{2}$ implies that $\lambda I T_{Y}=\lambda_{2}$ or $c \lambda_{1}$, for $c=1$ or 2 . If $\lambda I T_{Y}=c \lambda_{1}$, argue as above to produce a contradiction. If $\lambda I T_{Y}=\lambda_{2}$, refer to (6.9) to see that $\left\langle\lambda, \alpha_{2}\right\rangle=0, q_{1}+q_{2}, 3 q_{1}, 2 q_{1}$ or q_{1}, for q_{1} and q_{2} distinct p-powers. But
by (1.27) and (1.38), dim VIA < dim VIY. Thus, this configuration cannot occur.

This completes the consideration of Case I.
Case II: Suppose $V_{L_{k}}(-\gamma) \cong W_{k}$ or W_{k}^{*} for $k=i$ and j.
Then Q_{Y} / K_{γ} has a 4-dimensional, tensor indecomposable L_{A}. composition factor only if $L_{i} \times L_{j}$ has type $A_{1} \times A_{k}$, for $k=2$ or 4 or $A_{2} \times A_{3}$. Suppose that $L_{i} \times L_{j}$ has type $A_{1} \times A_{2}$. Let γ_{0}, γ_{1}, and γ_{2} be as in the statement of the result. If there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \gamma_{0}\right)<0$ and $\left(\delta, \Sigma L_{m}\right)=0$ for all $m \neq i$, then Q_{Y} / K_{δ} is a 2-dimensional irreducible L_{A} ' module, so $Q_{A} \leq K \delta$. $B y(2.10)$, $-\delta$ is not involved in $L_{A^{\prime}}$, so (2.11) implies that there is a nontrivial image of $Q_{A}{ }^{\alpha_{2}}$ in $Q_{Y}(\gamma, \delta)$. But $Q_{Y}(\gamma, \delta)$ is a 3-dimensional irreducible L_{A} ' module. Thus, no such δ exists. Arguing similarly, we show that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \gamma_{2}\right) \neq 0$ and $\left(\delta, \Sigma L_{m}\right)=0$ for all $m \neq j$. In this case, we use $p>2$ and (1.33) to see that if such a δ exists, we may assume - δ is not involved in $L_{A^{\prime}}$. Thus, if $L_{i} \times L_{j}$ has type $A_{1} \times A_{2}$, the result holds.

We now consider the case where L_{i} (respectively, L_{j}) has type A_{1} (respectively, A_{4}). Then (2.17) implies that there exists a p-power, q, which is the field twist on the embeddings of $L_{A}{ }^{\prime}$ in both L_{j} and L_{j} and such that $\gamma \mid Z_{A}=q \alpha_{2}$. Temporarily label as follows: $L_{i}=\left\langle U_{ \pm \gamma_{0}}\right\rangle, L_{j}=$ $\left\langle U_{ \pm \gamma_{k}} \mid 1 \leq k \leq 4\right\rangle$, with $\left(\gamma_{,} \gamma_{1}\right)<0,\left(\gamma_{k}, \gamma_{k+1}\right)<0$ for $k=1,2$, 3 . We first note that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \gamma_{0}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq i$. For if there exists such a $\delta, Q_{Y} / K_{\delta}$ is a 2-dimensional irreducible $L_{A}{ }^{\prime}$-module, so $Q_{A} \leq K_{\delta}$. By (2.10), $-\delta$ is not involved in L_{A}, so (2.10) implies that there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}(\gamma, \delta)$, which is a 5-dimensional irreducible L_{A}-module. Arguing similarly, we show that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \gamma_{4}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq i$. In this case, we must use $p>3$ and (1.33) to see that we may assume $-\delta$ is not involved in L_{A}. Also, if there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{j}\right) \neq 0$ and $\left(\delta, \Sigma L_{\ell}\right)=0$ for all $\ell \neq j$, then
$Q_{A} \leq K_{\delta}$. For neither $W_{j} \| L_{A}$ nor $\left(W_{j} \wedge W_{j}\right) L_{A}$ ' has a 4-dimensional tensor indecomposable composition factor. In particular, if such a δ exists, M_{j} is trivial.

If $Y=E_{7}$, consider the action of $L_{A}{ }^{\prime}$ on the 56-dimensional irreducible $k Y$-module, $V\left(\lambda_{7}\right)$. One checks that there is an L_{A}. composition factor with high weight $6 q \mu_{1}$ and one with high weight $4 q \mu_{1}$. But there is no 56-dimensional $k A$-module which affords such an L_{A}. composition series. Hence $Y=E_{8}$. Moreover, previous remarks imply that either $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{2}, \beta_{k} \mid 5 \leq k \leq 8\right\}$ or $\Pi\left(L_{i} \times L_{j}\right)=\left\{\beta_{k} \mid k=2,4,5,6,8\right\}$. In the first configuration, we note that $L_{\gamma^{\prime}}=L_{i} \times L_{j}$. For if $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is a component of $L_{Y}{ }^{\prime}, Q_{Y} / K_{\beta_{3}}$ is a 2-dimensional irreducible $L_{A}{ }^{\prime}$-module; so $Q_{A} \leq K_{\beta_{3}}$. By (2.10), $-\beta_{3}$ is not involved in $L_{A^{\prime}}$, so (2.11) implies that there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}\left(\beta_{4}, \beta_{3}\right)$, contradicting (1.15). Thus, $L_{Y^{\prime}}=L_{j} \times L_{j}$ and (2.11) implies that $\beta_{3} \mid Z_{A}=0$. Using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), the bound on $\operatorname{dimv}_{\beta_{4}}\left(Q_{Y}{ }^{\wedge}\right)$, together with (1.36), implies that $\lambda I T_{Y}=\lambda_{8}$. Thus, the first configuration cannot occur.

Consider now the second configuration. If $Q_{A} \ddagger K_{\beta_{3}},\left\langle U_{ \pm \beta_{1}}\right\rangle$ is a component of L_{γ}. The work of Case I then implies that $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $j=1,2,4,5,6$ and the bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}\right)$ implies that $\left\langle\lambda, \beta_{3}\right\rangle=0$. If $Q_{A} \leq K_{\beta_{3}}$, (2.3) implies $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $j \leq 6$. As well, (1.36) and the bound on $\operatorname{dim} V_{\beta_{7}}\left(Q_{Y}\right)$ imply that $\lambda \mid T_{Y}=c \lambda_{8}$, for $1<c \leq 4$, and $\left\langle\lambda, \alpha_{1}\right\rangle=c \cdot q$. $B y$ (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0$ or $c \cdot q_{0}$, for some p-power q_{0}. However, (1.38) and (1.27) imply dim VIA $<\operatorname{dim}$ VIY in each case.

We must now consider $L_{i} \times L_{j}$ of type $A_{2} \times A_{3}$. Temporarily label as follows: $L_{i}=\left\langle U_{ \pm \gamma_{1}}, U_{ \pm \gamma_{2}}\right\rangle, L_{j}=\left\langle U_{ \pm \gamma_{3}}, U_{ \pm \gamma_{4}}, U_{ \pm \gamma_{5}}\right\rangle$, with $\left(\gamma_{2}, \gamma\right) \neq 0 \neq\left(\gamma, \gamma_{3}\right)$ and $\left(\gamma_{k}, \gamma_{k+1}\right)<0$ for $k=3,4$. By (1.15), $V_{L_{j}}(-\gamma) \|_{A}$ ' is tensor indecomposable. Let q be the field twist on the embeddings of $L_{A^{\prime}}$ in L_{i} and in L_{j}. (The twists are equal by (2.7).) Then the $L_{A^{\prime}}$ composition factors of Q_{Y} / K_{γ} have high weights $5 q \mu_{1}, 3 q \mu_{1}$ and $q \mu_{1}$. Thus, $\gamma \mid Z_{A}=q \alpha_{2}$. Moreover, examining the $T\left(L_{A}{ }^{\prime}\right)$ weight vectors in
Q_{γ} / K_{γ}, we see that $x_{-\alpha}(t)=x_{-\gamma_{2}-\gamma}\left(c_{1} t q\right) x_{-\gamma-\gamma}^{3}\left(c_{2} t q\right) \mu_{1}$, for $c_{j} \in k, c_{1}$ or c_{2} nonzero, and $u_{1} \in K_{\gamma}$. Since $\gamma_{k} \mid T_{A}=q \alpha_{1}$, for $1 \leq k \leq 5, \gamma \mid T_{A}=$ $q\left(\alpha_{2}-\alpha_{1}\right)$. In particular, $\langle\lambda, \gamma\rangle=0$.

We now point out various restrictions on the possible configurations which may arise with $L_{i} \times L_{j}$ as above. First, note that if there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{j}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq i$, then $Q_{A} \leq K_{\delta}$. For Q_{Y} / K_{δ} is a 3-dimensional irreducible L_{A} '-module. In particular, if such a δ exists, M_{j} is trivial and $\langle\lambda, \delta\rangle=0$. Also, if there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \gamma_{4}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq j$, then $Q_{A} \leq K_{\delta}$. For Q_{Y} / K_{γ} has L_{A} composition factors of dimensions 5 and 1. In particular, if such a δ exists, M_{j} is trivial and $\langle\lambda, \delta\rangle=0$. Now, the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$ implies that $\langle\lambda, \gamma\rangle=0$ and if M_{j} is nontrivial, $\left\langle\lambda, \gamma_{3}+\gamma_{4}\right\rangle=0$ and $\left\langle\lambda, \gamma_{5}\right\rangle=1$. Also, note that if there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \gamma_{3}\right) \neq 0$ or $\left(\delta, \gamma_{5}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq j$, then $Q_{A} \not \ddagger K_{\delta}$. For otherwise, (2.10) implies that $-\delta$ is not involved in $L_{A}{ }^{\prime}$, and so by (2.11), there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}(\gamma, \delta)$, contradicting (1.15). Then since $Q_{Y} / K_{\delta} \cong\left(Q_{A} \alpha_{2}\right) q$ as L_{A} '-modules and $Q_{A} \ddagger K_{\delta}$, comparing high weight vectors we have $\delta I T_{A}=q \alpha_{2}$. Thus, if $\langle\lambda, \delta\rangle \neq 0$, the bound on $\operatorname{dimv}^{2}\left(Q_{A}\right) \lambda-q \alpha_{2}$ implies M_{j} is nontrivial and $\left(\delta, \gamma_{5}\right) \neq 0$.

Suppose $Y=E_{7}$. The above remarks and (8.1) imply $\lambda I T_{Y}=\lambda_{3}$ or λ_{6} and $\left\langle\lambda, \alpha_{1}\right\rangle=2 q$. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0, q_{0}$ or $2 q_{0}$ for some p-power q_{0}. But in each case, [8] implies dimV|A $\neq \operatorname{dimVIY}$. Thus, $Y=E_{8}$.

Suppose $\Pi\left(L_{j}\right)=\left\{\beta_{1}, \beta_{3}\right\}$ and $\Pi\left(L_{j}\right)=\left\{\beta_{5}, \beta_{6}, \beta_{7}\right\}$. We have $\beta_{2} \mid Z_{A}=0$, by (2.11). Using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that if M_{j} is nontrivial $\left\langle\lambda, \beta_{1}\right\rangle=1$ and $\left\langle\lambda, \beta_{3}\right\rangle=0$, else the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded. Previous remarks imply $\lambda \mid T_{Y}=\lambda_{1}$ and by (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0, q_{0}$ or $2 q_{0}$ for some p-power q_{0}. But [8] and (1.27) imply dimVIA $<\operatorname{dimVIY}$ in each case. Thus, M_{j} is nontrivial and $\lambda \mid T_{Y}=\lambda_{7}+x \lambda_{8}$, for $x \geq 0$, and $\left\langle\lambda, \alpha_{1}\right\rangle=3 q$. Moreover, if $x \neq 0,0 \neq f_{\beta_{8}} v^{+} \in V_{T_{A}}\left(\lambda-q \alpha_{2}\right)$, so in the p-adic expansion
for $\left\langle\lambda, \alpha_{2}\right\rangle, q$ has nonzero coefficient. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0, x \cdot q, q_{0}$ or $2 q_{0}$, for q_{0} some power of p. Then (1.27) and (1.32) imply $\operatorname{dimVIA}<\operatorname{dimVIY}$, unless $x \neq 0$ and $\left\langle\lambda, \alpha_{2}\right\rangle=x \cdot q$. By the above remarks and (1.10), $\lambda \mid T_{A}=3 \mu_{1}+x \mu_{2}$. Now, consider the subgroup $D \leq Y, D=\left\langle U_{ \pm \beta_{k}} \mid 2 \leq k \leq 8\right\rangle$, of type D_{7}. The D composition factor of V afforded by v^{+}has dimension strictly less than dim VIY. Also, D has a natural subgroup of type G_{2}, say A_{0} (found by letting G_{2} act on its Lie algebra). Moreover, v^{+}affords an A_{0} composition factor of V with the same high weight as $V I A$, as G_{2}-module. Thus $\operatorname{dim} V|A<\operatorname{dim} V| Y$. Hence, $\Pi\left(L_{i} \times L_{j}\right) \neq\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$.

Suppose $\Pi\left(L_{j}\right)=\left\{\beta_{7}, \beta_{8}\right\}$, so $\Pi\left(L_{j}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{5}\right\}$ or $\left\{\beta_{3}, \beta_{4}, \beta_{5}\right\}$. The work of Case I, the general remarks of the $A_{2} \times A_{3}$ work and the bound on $\operatorname{dim} V_{\delta}\left(Q_{Y}\right)$ for $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ imply $\lambda I T_{Y}=\lambda_{7}$. So $\left\langle\lambda_{, ~}, \alpha_{1}\right\rangle=2 q$ and (6.9) implies $\left\langle\lambda, \alpha_{2}\right\rangle=0, q_{0}$ or $2 q_{0}$ for some p-power q_{0}. But [8] and (1.32) imply dimVIA < dimVIY. Similar arguments rule out $\Pi\left(L_{i} \times L_{j}\right)=$ $\left\{\beta_{6}, \beta_{7}, \beta_{1}, \beta_{3}, \beta_{4}\right\}$.

The general remarks about $L_{j} \times L_{j}$ of type $A_{2} \times A_{3}$ imply that it remains to consider $\Pi\left(L_{j}\right)=\left\{\beta_{2}, \beta_{4}\right\}$ and $\Pi\left(L_{j}\right)=\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\}$. Now $Q_{A} \not \ddagger K_{\beta_{3^{\prime}}}$ else $\lambda \mid T_{Y}=\lambda$. Thus, $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is a component of L_{Y} ' and (2.17) implies that the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is also q . Thus, by (2.5) and (2.6), $\left\langle\lambda, \beta_{1}\right\rangle=0$. Also, by (2.17), $\beta_{3} \mid Z_{A}=q \alpha_{2}$. Thus, the bound on $\operatorname{dimV}{ }^{2}\left(Q_{A}\right) \lambda-q \alpha_{2}$ implies $\lambda \mid T_{Y}=\lambda_{2}$, and $\left\langle\lambda, \alpha_{1}\right\rangle=2 q$. $B y$ (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0,3 q_{0}, q_{0}+q_{1}, 2 q_{0}$ or q_{0}, for q_{0} and q_{1} distinct p-powers. But in each case, (1.27) and (1.38) imply dim VIA $<\operatorname{dim}$ VIY. Thus, $L_{j} \times L_{j}$ does not have type $A_{2} \times A_{3}$.

This completes the proof of (8.6).ם
(8.7). Suppose there exists $1 \leq i \leq r$ such that L_{i} is separated from all other components of $L_{Y}{ }^{\prime}$ by more than one node of the Dynkin diagram. Then M_{j} is trivial.

Proof: Suppose false; i.e., with i as given, suppose $\operatorname{dim}\left(M_{j}\right)>1$. By
(8.3) and (1.5), $Z_{A} \leq Z_{Y}$ and L_{i} has type $A_{k_{j}}$ for some k_{j}. Let W_{j} denote the natural module for L_{i}. Arguing as in the proof of (6.7), we may reduce to L_{j} of rank 3. Also, (8.2) and the working hypotheses imply $Y=E_{7}$ or E_{8}. Moreover, there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $Q_{y} / K_{\delta} \cong W_{i} \wedge W_{j}$. For $\left(W_{j} \wedge W_{j}\right) \| L_{A}^{\prime}$ has no 4-dimensional composition factor. Finally, note that M_{j} is tensor indecomposable, as there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $Q_{\gamma} / K_{\delta} \cong M_{j}$ or M_{j}^{*} and $Q_{A} \ddagger K_{\delta}$.

Consider now the possibility that $L_{\gamma^{\prime}}=L_{i} \times L_{j}$, where L_{j} has type A_{1} and is separated by exactly 2 nodes of the Dynkin diagram from L_{i}.
Temporarily label as follows: $L_{i}=\left\langle U_{ \pm \gamma_{1}}, U_{ \pm \gamma_{2}}, U_{ \pm \gamma_{3}}\right\rangle, L_{j}=\left\langle U_{ \pm \gamma_{0}}\right\rangle$, where $\left(\gamma_{k}, \gamma_{k+1}\right)<0$ for $k=1,2$. Let $\delta_{0}, \delta_{1} \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $\left(\delta_{0}, \delta_{1}\right)<0$, $\left(\delta_{0}, \gamma_{0}\right) \neq 0 \neq\left(\delta_{1}, \gamma_{1}\right)$. Then $Q_{A} \leq K_{\delta_{0}}$, as $Q_{Y} / K_{\delta_{0}}$ is a 2-dimensional irreducible L_{A}-module. Moreover, by (2.10), $-\delta_{0}$ is not involved in $L_{A_{A}}$. Thus, (2.11) implies that there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}\left(\delta_{1}, \delta_{0}\right)$. However, this contradicts (1.15). Hence, $L_{\gamma}{ }^{\prime} \neq L_{i} \times L_{j}$ as described. In particular, $Y=E_{8}$.

Suppose $\Pi\left(L_{j}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{4}\right\}$. Then (8.50, (8.6) and previous remarks imply $\vee^{1}\left(Q_{Y}\right) \cong M_{j}$. As well, since $\operatorname{dim}\left(Q_{Y} / K_{\beta_{k}}\right)<4$ for $k=6,7,8$, $\left\langle\lambda, \beta_{6}+\beta_{7}+\beta_{8}\right\rangle=0$. So $\lambda I T_{Y}=\lambda_{j}+x \lambda_{2}+y \lambda_{5}$, where $j=1$ or 4 . In fact, either $x=0$ or $y=0$, else $f_{\beta_{2}} v^{+}$and $f_{\beta_{5}} v^{+}$are 2 linearly independent vectors in $V_{T_{A}}\left(\lambda-q \alpha_{2}\right)$, contradicting (1.31). Let $z=\left\langle\lambda, \beta_{2}+\beta_{5}\right\rangle$. If $z \neq 0, q$ has a nonzero coefficient in the p-adic expansion of $\left\langle\lambda, \alpha_{2}\right\rangle$. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0, z q, q_{0}$ or $2 q_{0}$ for some p-power q_{0}. Now (1.32) and [8] imply $\operatorname{dimVIA} \neq \operatorname{dimVIY}$ unless $z \neq 0$ and $\left\langle\lambda, \alpha_{2}\right\rangle=z q$; so by (1.10), $\lambda \mid T_{A}=3 \mu_{1}+z \mu_{2}$. If $\lambda \mid T_{Y}=\lambda_{4}+z \lambda_{k}, k=2$ or 5 , then $V_{T_{Y}}\left(\lambda-\beta_{4}-\beta_{2}\right) \oplus$ $V_{T_{Y}}\left(\lambda-\beta_{4}-\beta_{5}\right) \leq V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}\right)$. So (1.35) implies $z=p-2$. But then $\operatorname{dim} V_{T_{A}}\left(\lambda-\alpha_{1}-\alpha_{2}\right)=1$, also by (1.35), contradicting the above containment. So $\lambda I T_{A}=\lambda_{1}+z \lambda_{k}$ for $k=2$ or 5. In this case, $z=1$ else $V_{T_{Y}}\left(\lambda-2 \beta_{K}-\beta_{1}\right) \oplus V_{T_{Y}}\left(\lambda-\beta_{2}-\beta_{4}-\beta_{5}\right) \oplus V_{T_{Y}}\left(\lambda-2 \beta_{K}-\beta_{4}\right)$ is a 3 -dimensional subspace of $V_{T_{A}}\left(\lambda-\alpha_{1}-2 \alpha_{2}\right)$, contradicting (1.29). But
now $\operatorname{dimV} \mid A<\operatorname{dimVIY}$.
It remains to consider the case where $\Pi\left(L_{j}\right)=\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\}$. We first claim that $\lambda I T_{y}=x \lambda_{5}+\lambda_{k}$, where $k=6$ or 8 . For if $\left\langle\lambda, \beta_{j}\right\rangle \neq 0$ for some $1 \leq j \leq 4$, either $\beta_{j} \in \Pi\left(L_{Y}\right)$ or $Q_{Y} / K_{\beta_{j}}$ has an $L_{A^{\prime}}$ composition factor isomorphic to a twist of $Q_{A}{ }^{\alpha_{2}}$. Then the work of this proof, (8.7) and (1.15) imply $\Pi\left(L_{Y}\right)=\left\{\beta_{i} \mid i \neq 4,5\right\}$ and $Q_{A} \ddagger K_{\beta_{4}}$ So (2.17) implies that there is a power of p, say q_{0}, such that q_{0} is the field twist on the embedding of L_{A} in $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and in $\left\langle U_{ \pm \beta_{2}}\right\rangle$, and such that $\beta_{4} \mid Z_{A}=q_{0} \alpha_{2}$. Then (2.8) implies that $q_{0}=q$. Thus, by (2.5) and (2.6), $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=1,2,3$, so $\left\langle\lambda, \beta_{4}\right\rangle \neq 0$. But then the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{y}\right)$ is exceeded. So $\lambda \mid T_{Y}=x \lambda_{5}+\lambda_{k}$, for $k=6$ or 8 , as claimed. As well, if $x \neq 0$, $f_{\beta_{5}} v^{+} \in V_{T_{A}}\left(\lambda-q \alpha_{2}\right)$, so q has a nonzero coefficient in the p-adic expansion of $\left\langle\lambda, \alpha_{2}\right\rangle$. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0, q_{0}, 2 q_{0}, q_{0}+q_{1}$ or $\times q$, for distinct p-powers q_{0} and q_{1}. Then by (1.27) and (1.32), dimV|A <dimv|Y unless $x>1$ and $\left\langle\lambda, \alpha_{2}\right\rangle=x q$; so by (1.10) $q=1$. Now (2.13) implies $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{3}}\right\rangle \cap L_{Y} \neq\{1\}$ and previous work of this proof implies $\operatorname{dim}\left(Q_{Y} / K_{\beta_{4}}\right)>2$. If $\lambda I T_{Y}=x \lambda_{5}+\lambda_{6}, \operatorname{dim}\left(\left[V, Q_{Y}\right] /\left[V, Q_{Y}{ }^{3}\right]\right) \geq 84$ if $x \neq p-2$, or ≥ 60 if $x=p-2$. If $\lambda \mid T_{Y}=x \lambda_{5}+\lambda_{8}, \operatorname{dim}\left(\left[V, Q_{Y}\right] /\left[V, Q_{Y}{ }^{3}\right]\right) \geq 92$. (See Table 1 of [5].) But (1.20) and (1.35) imply $\operatorname{dim}\left(\left[V, Q_{A}\right] /\left[V, Q_{A}{ }^{3}\right]\right) \leq 80$ if $x \neq p-2$, and ≤ 55 if $x=p-2$. Contradiction.

This completes the proof of (8.7).ם
(8.8). Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$. Suppose there exists a unique pair $1 \leq i, j \leq r$ with $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$. Assume L_{j} is of type A_{2} and L_{j} is of type A_{1}. Then M_{j} and M_{j} are trivial.

Proof: Note that (1.5) implies $Z_{A} \leq Z_{Y}$. Also, if $Q_{A} \ddagger K_{\gamma}$, (2.17) implies that there is a p-power q_{0} which is the field twist on the embedding of $L_{A^{\prime}}$ in L_{i} and in L_{j} and $\gamma \mid Z_{A}=q_{0} \alpha_{2}$.

Claim 1: If L_{Y} ' has components $L_{k}=\left\langle U_{ \pm \beta_{1}}\right\rangle$ and $L_{m}=\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{4}}\right\rangle$, then $\operatorname{dim} V^{1}\left(Q_{Y}\right)=1$.

Proof: Suppose $\operatorname{dim} V^{1}\left(Q_{Y}\right)>1$. Let q be the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{k} and L_{m}. If $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=1,2,4$, then (8.6) and (8.7) imply $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is a component of L_{γ} and $\left\langle\lambda, \beta_{6}\right\rangle \neq 0$. Then $\gamma=E_{6}$, else $Q_{Y} / K_{\beta_{7}}$ has no L_{A} composition factor isomorphic to a twist $Q_{A}{ }^{\alpha_{2}}$. Thus, by symmetry and (8.6), we may assume $\left\langle\lambda, \beta_{k}\right\rangle \neq 0$ for a unique $k \in\{1,2,4\}$.

Suppose $\left\langle U_{ \pm \beta_{6}}\right\rangle \nsubseteq L_{Y}$. Then $Q_{Y} / K_{\beta_{5}}$ is a 3 -dimensional irreducible $L_{A^{\prime}}$ module, so $Q_{A} \leq K_{\beta_{5}}$ and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=2,4,5$. Hence, (1.23) implies $Y \neq E_{6}$. In fact, $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k>5$ also, as (8.6) and (8.7) imply $V^{1}\left(Q_{Y}\right) \cong M_{k} \otimes M_{m}$ and $\operatorname{dim}\left(Q_{Y} / K_{\beta_{j}}\right)<4$ for $j>5$. If $-\beta_{5}$ is involved in L_{A}. then $\beta_{5} \mid Z_{A}=0$. Otherwise, by (2.11) there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}\left(\beta_{3}, \beta_{5}\right)$. Since $Q_{Y}\left(\beta_{3}, \beta_{5}\right)$ has $L_{A^{\prime}}$ composition factors with high weights $3 q \mu_{1}$ and $q \mu_{1},\left(\beta_{3}+\beta_{5}\right) \mid Z_{A}=q \alpha_{2}$ and again $\beta_{5} \mid Z_{A}=0$. So we may use the parabolic $P Y^{\wedge}$ of (2.11). The bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha_{2}$ implies $\left\langle\lambda, \beta_{3}\right\rangle=0$ and $\left\langle\lambda, \beta_{1}\right\rangle \leq 2$. If $\left\langle\lambda, \beta_{1}\right\rangle=1$, (6.9) implies that $\left\langle\lambda, \alpha_{2}\right\rangle=0, q_{0}$, or $2 q_{0}$ for some p-power q_{0}. In each case, $\operatorname{dimVIA} \neq$ $\operatorname{dimV|Y}$, by (1.27) and [8]. So $\left\langle\lambda, \beta_{1}\right\rangle=2$. Then $\left\langle\lambda, \alpha_{2}\right\rangle=0$ or $2 q_{0}$ and $\operatorname{dimV}|A<\operatorname{dimV}| Y$. Thus the assumption that $\left\langle U_{ \pm \beta_{6}}\right\rangle \$ L_{Y}$ was incorrect.

Suppose $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is a component of L_{Y}. Then $Q_{A} \nsubseteq K_{\beta_{5}}$. For otherwise, (2.10) implies that $-\beta_{5}$ is not involved in L_{A} ', so by (2.11), there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}\left(\beta_{3}, \beta_{5}\right)$, contradicting (1.15). Now (2.17) implies that the field twist on the embedding of $L_{A} \cdot$ in $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is also q. Moreover, $\beta_{3} I Z_{A}=q \alpha_{2}=\beta_{5} I Z_{A}$. Examining the $T\left(L_{A}\right.$) weight vectors in $Q_{Y} / K_{\beta_{3}}$ and in $Q_{y} / K_{\beta_{5}}$, we have $x_{-\alpha_{2}}(t)=x_{-\beta_{3}}(a t q) x_{-\beta_{5}}(b t q) u_{1}$, $x_{-\alpha_{1}-\alpha_{2}}(t)=x_{-13}\left(a_{1} t q\right) x_{-34}\left(a_{2} t q\right) x_{-45}\left(b_{1} t q\right) x_{-56}\left(b_{2} t q\right) u_{2}$ and $x_{-3 \alpha_{1}-\alpha_{2}}(t)$ $=x_{-1234}\left(\operatorname{ct}^{q}\right) x_{-2456}(d t q) u_{3}$, where $a, b, c, d \in k^{*}, u_{i} \in K_{\beta_{3}} \cap K_{\beta_{5}}, a_{i}, b_{i} \in k, a_{1}$ or a_{2} nonzero, b_{1} or b_{2} nonzero. In fact, $a_{2} \neq 0$ as a nonidentity element from the root group U_{-34} occurs in the factorization of $\left[x_{-\alpha_{2}}(t), x_{-\alpha_{1}}(u)\right]$ and $\left(-\beta_{3}-\beta_{4}\right) \mid T\left(L_{A}{ }^{\prime}\right)=q \mu_{1}$. By examining $\left[x_{-\alpha_{2}}(t), x_{-3 \alpha_{1}-\alpha_{2}}(t)\right]$, we see that $x_{-3 \alpha_{1}-2 \alpha_{2}}(t)=x_{-12345}\left(f_{1}(t)\right) x_{-23456}\left(f_{2}(t)\right)$ w where $0 \neq f_{j}(t) \in k[t]$ and $w \in\left\langle U_{-r}\right| r=\Sigma c_{\gamma} \gamma, \gamma \in \Pi(\gamma), c_{\gamma} \in \mathbb{Z}^{+}, c_{\beta_{3}}+c_{\beta_{5}}>2$ or $\left.c_{\beta_{7}}+c_{\beta_{8}}>0\right\rangle$.

But this gives a nontrivial contribution to the root group
$U_{-\beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}}$ in the expression for $\left[x-3 \alpha_{1}-2 \alpha_{2}(t), x_{-\alpha_{1}-\alpha_{2}}(u)\right]$. Contradiction. Hence $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is not a component of $L Y^{\prime}$. (So $Y=E_{7}$ or E_{8}.) If $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle$ is a component of L_{Y}, then (1.15) implies $Q_{A} \leq K_{\beta_{5}}$ and $Q_{A} \leq K_{\beta_{8}}$. So $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=2$ and $k \geq 4$. If $-\beta_{5}$ is invoived in $L_{A^{\prime}}$, $\beta_{5} I Z_{A}=0$. If $-\beta_{5}$ is not involved in $L_{A^{\prime}}$, (2.11) implies that there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}\left(\beta_{3}, \beta_{5}\right)$, so the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle$ is also q. Moreover, the $L_{A^{\prime}}$ composition factors of $Q_{Y}\left(\beta_{3}, \beta_{5}\right)$ have high weights $5 q \mu_{1}, 3 q \mu_{1}$ and $q \mu_{1}$, so $\left(\beta_{3}+\beta_{5}\right) \mid Z_{A}=q \alpha_{2}$. Hence, again $\beta_{5} \mid Z_{A}=0$. But using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that the bound an $\operatorname{dim}_{\beta_{3}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded.

Thus, $Y=E_{8}$ and $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$. Now $-\beta_{5}$ is not involved in L_{A}; else $\beta_{5} I Z_{A}=0$ and we may again produce a contradiction. If the natural module for $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ is a tensor decomposable L_{A}. module, neither $Q_{Y} / K_{\beta_{5}}$ nor $Q_{Y}\left(\beta_{3}, \beta_{5}\right)$ has an L_{A} composition factor isomorphic to a twist of $Q_{A}{ }^{\alpha_{2}}$, contradicting (2.11). So the natural module for $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ is a tensor indecomposable L_{A} ' module; so (1.15) and (2.11) imply $Q_{A} \ddagger K_{\beta_{5}}$. By (2.17), the field twist on the embedding of L_{A} in $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ is also q and one checks that $\beta_{5} I Z_{A}=q \alpha_{2}$. Examining the $T\left(L_{A}{ }^{\prime}\right)$ weight vectors in $Q_{Y} / K_{\beta_{3}}$ and $Q_{Y} / K_{\beta_{5}}$, we find that $x_{-\alpha_{2}}(t)=x_{-\beta_{3}}(a t q) x_{-45}\left(a_{1} t q\right) x_{-56}\left(a_{2} t q\right) u_{1}$ and $x_{-\alpha_{1}-\alpha_{2}}(t)=$ $x_{-13}\left(b_{1} t^{q}\right) x_{-34}\left(b_{2} t^{q} x_{-245}\left(c_{1} t q\right) x_{-456}\left(c_{2} t^{q}\right) x_{-567}\left(c_{3} t^{q}\right) u_{2}\right.$, where $a \in k^{*}$, $a_{i}, b_{i}, c_{j} \in K, u_{i} \in K_{\beta_{3}} \cap K_{\beta_{5}}$. Also, a_{1} or a_{2}, b_{1} or b_{2} and some c_{i} is nonzero. In fact, $a_{1} \neq 0 \neq a_{2}$, else there is a nontrivial contribution to the root group $U_{-\beta_{5}}$ in the expression for $\left[x_{-\alpha_{2}}(t), x_{\alpha_{1}}(t)\right]$. Also $b_{1} \neq 0$, as a nonidentity element from the root group U_{-13} occurs in the factorization of $\left[x_{-\alpha_{2}}(t), x_{-\alpha_{1}}(t)\right]$ and $\left(-\beta_{1}-\beta_{3}\right) \mid T\left(L_{A^{\prime}}\right)=q \mu_{1}$. However, we now see that there is a nontrivial contribution to the root group U_{-1345} in the expression for $\left[x_{-\alpha_{2}}(t), x_{-\alpha_{1}-\alpha_{2}}(t)\right]$. Contradiction. This completes the proof of Claim 1.

Claim 2: If $L_{\ell}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and $L_{m}=\left\langle U_{ \pm \beta_{2}}\right\rangle$ are components of L_{γ}. with $\left\langle U_{ \pm \beta_{5}}\right\rangle \nsubseteq L_{Y}$, then $\operatorname{dim}^{1}\left(Q_{Y}\right)=1$.

Proof: Suppose false. Then (8.6) and (8.7) imply $\left\langle\lambda, \beta_{k}\right\rangle \neq 0$ for a unique $k \in\{1,2,3\}$ and $V^{1}\left(Q_{Y}\right) \cong M_{l} \otimes M_{m}$. Let q be the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{ℓ} and L_{m}, so $\beta_{4} I Z_{A}=q \alpha_{2}$. Suppose there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right), \delta \neq \beta_{4}$, with $\langle\lambda, \delta\rangle \neq 0$. Since $Q_{A} \ddagger K_{\delta}, \operatorname{dim}\left(Q_{Y} / K_{\delta}\right) \geq 4$. By size restrictions and (1.15), $\delta=\beta_{5}$ and $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ is a component of $L y^{\prime}$ in Y of type E_{8}. But (2.8) implies $\beta_{5} I Z_{A}=q \alpha_{2}$, so the bound on $\operatorname{dimv}^{2}\left(Q_{A}\right)_{\lambda-q \alpha_{2}}$ is exceeded. Thus, no such δ exists and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k \geq 5$.

If $\left\langle U_{ \pm \beta_{6}}\right\rangle \nsubseteq L_{Y},(2.12)$ implies $\beta_{5} \mid Z_{A}=0$. Using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), and the bound on $\operatorname{dim}_{\beta_{4}}\left(Q_{Y}{ }^{\wedge}\right)$, we have $\lambda I T_{Y}=\lambda_{1}, \lambda_{3}$ or $c \lambda_{2}$ for $c=1$ or 2 . Use (1.23), (6.9), (1.27), (1.32) and [8] to see that in every possible configuration, dimVIA $\neq \operatorname{dimVIY}$. Thus $\left\langle U_{ \pm \beta_{6}}\right\rangle \leq L_{Y}$. If $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is a component of L_{Y}, then $Q_{A} \leq K_{\beta_{5}}$ and (2.10) and (2.11) produce a contradiction. So $Y=E_{7}$ or E_{8} and $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle \leq L_{Y}$. If $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle$ is a component of $L_{Y}, Q_{A} \leq K_{\beta_{5}}$ and $Q_{A} \leq K_{\beta_{8}}$. So $\left(\lambda, \beta_{k}\right)=0$ for $k \geq 5$. If $-\beta_{5}$ is involved in $L_{A^{\prime}}, \beta_{5} I Z_{A}=0$. Otherwise, an application of (2.11) implies $\beta_{5} \mid Z_{A}=0$. So in either case we may use the parabolic $P_{Y}{ }^{\wedge}$ of (2.11) to see that the bound on $\operatorname{dimV}_{\beta_{4}}\left(Q_{Y}{ }^{\wedge}\right)$ implies $\lambda I T_{Y}=\lambda_{1}$. Again, use (6.9), (1.27) and [8] to see that dimVIA $\neq \operatorname{dimVIY}$.

Therefore, under the hypotheses of Claim 2, if $\operatorname{dimV}{ }^{1}\left(Q_{Y}\right)>1$, $Y=E_{8}$ and $L_{Y^{\prime}}=L_{\ell} \times L_{m} \times\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$. We claim that $Q_{A} \ddagger K_{\beta_{5}}$ For otherwise, since there is no $L_{A}{ }^{\prime}$ composition factor of $Q_{Y}\left(\beta_{4}, \beta_{5}\right)$ isomorphic to a twist of $Q_{A} \alpha_{2}$, (2.11) would imply that $-\beta_{5}$ is involved in L_{A}. So $\beta_{5} I Z_{A}=0$. But using the parabolic $P_{Y} \wedge$ of (2.11), the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}{ }^{\wedge}\right)$ implies $\lambda \mid T_{Y}=\lambda_{1}$. Now we can argue as before to produce a contradiction. Since $Q_{A} \ddagger K_{\beta_{5}}$, (2.4) and (2.8) imply $Q_{Y} / K_{\beta_{5}}$ is a tensor indecomposable L_{A} module isomorphic to $\left(Q_{A} \alpha_{2}\right)$. Examining the $T\left(L_{A}{ }^{\prime}\right)$ weight vectors in $Q_{Y} / K_{\beta_{4}}$ and $Q_{Y} / K_{\beta_{5}}$, we have $x_{-\alpha_{2}}(t)=x_{-\beta_{4}}$ (at 9).
$x_{-\beta_{5}}(b t q) u_{1}$ and $x_{-\alpha_{1}-\alpha_{2}}(t)=x_{-\beta_{3}-\beta_{4}}\left(a_{1} t q\right) x_{-\beta_{2}-\beta_{4}}\left(a_{2} t q\right)$.
$x_{-\beta_{5}-\beta_{6}}\left(b_{1} t q\right) u_{2}$, where $a, b, b_{1} \in k^{*}, u_{i} \in K_{\beta_{4}} \cap K_{\beta_{5}}$ and $a_{i} \in k$ with some a_{i} nonzero. However, there is a nontrivial contribution to the root group $U_{-\beta_{4}-\beta_{5}-\beta_{6}}$ in the expression for $\left[x_{-\alpha_{2}}(t), x_{-\alpha_{1}-\alpha_{2}}(t)\right]$. Contradiction. This completes the proof of Claim 2.

Now suppose L_{i} has type A_{2} and L_{j} has type A_{1} with $\operatorname{dim}\left(M_{j} \otimes M_{j}\right)>1$.
Case I: Suppose M_{i} is nontrivial, so by (8.6) M_{j} is trivial.
Temporarily label as follows: $\Pi\left(L_{j}\right)=\left\{\gamma_{1}, \gamma_{2}\right\}, \Pi\left(L_{j}\right)=\left\{\gamma_{0}\right\},\left(\gamma_{1}, \gamma\right)<0$. We first note that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $\left(\delta, \Sigma L_{i}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq i$. For otherwise, Q_{Y} / K_{δ} is a 3 -dimensional irreducible L_{A} - module containing a nontrivial image of $Q_{A}{ }^{\alpha_{2}}$. These remarks, together with Claim 1, imply $L_{i} \neq\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{4}}\right\rangle$. Also, (8.6) implies that there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{j}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq j$. Let q be the field twist on the embeddings of L_{A}. in L_{j} and in L_{j}, so $\gamma \mid Z_{A}=q \alpha_{2}$. Examining the $T\left(L_{A}\right)$ weight vectors in Q_{γ} / K_{γ}, we see that $x_{-\alpha_{2}}(t)=x_{-\gamma}(a t q) u$, where $a \in K^{*}, u \in K_{\gamma}$. Thus, $\gamma \| T_{A}=q \alpha_{2}$.

Consider the possibility that $L_{i}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$. Then Claim 2 implies $L_{j}=\left\langle U_{ \pm \beta_{5}}\right\rangle$ and previous remarks imply $Y=E_{7}$ or E_{8} and $\left\langle U_{ \pm \beta_{7}}\right\rangle \leq L_{\gamma^{\prime}}$. Also, (2.12) implies that $\beta_{2} T_{A}=0$. Using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that $\left\langle\lambda, \beta_{4}\right\rangle=0$, else the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded. Also, $\left\langle\lambda, \beta_{2}\right\rangle=0$, by (2.3). Suppose $L_{\psi}{ }^{\prime}=L_{i} \times L_{j} \times\left\langle U_{ \pm} \beta_{7}\right\rangle$. Then (1.15) implies $Q_{A} \leq K_{\beta_{6}}$. Thus, $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=5,6,7$. If $Y=E_{8}$, $Q_{A} \leq K_{\beta_{8}}$ as $\operatorname{dim}\left(Q_{Y} / K_{\beta_{8}}\right)=2$. So $\left\langle\lambda, \beta_{8}\right\rangle=0$, also. Thus, $\lambda \mid T_{Y}=\lambda_{1}$ (with Y of type E_{8}) or λ_{3}. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0, q_{0}$ or $2 q_{0}$, for some p-power q_{0}. However, (1.27), [8] and (1.32) imply dim VIA $\neq \operatorname{dim} V \mid Y$.

Thus, if $L_{i}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and $L_{j}=\left\langle U_{ \pm \beta_{5}}\right\rangle$, then $Y=E_{8}$ and $L_{Y}=L_{i} X$ $L_{j} \times\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$. Using standard arguments, we reduce to $\lambda \mid T_{Y}=\lambda_{1}$ or λ_{3}. But then we proceed as before to produce a contradiction. Thus, $L_{i} \neq\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$.

Suppose now $L_{i}=\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$ in Y of type E_{8}. Then, (8.5), (8.6) and the general remarks at the beginning of Case I imply that $\left\langle U_{ \pm \beta_{2}}\right\rangle$ and $\left\langle U_{ \pm \beta_{8}}\right\rangle$ are components of L_{Y}; and $\left\langle U_{ \pm \beta_{3}}\right\rangle \nsubseteq L_{\gamma}$. Also, the field twists on the embeddings of L_{A} in $L_{i},\left\langle U_{ \pm \beta_{2}}\right\rangle$ and $\left\langle U_{ \pm \beta_{8}}\right\rangle$ are q and $\beta_{4} \mid Z_{A}=q \alpha_{2}=$ $\beta 7 \mid Z_{A}$. Thus, the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right) \lambda-q \alpha_{2}$ implies $\left\langle\lambda, \beta_{4}+\beta_{7}\right\rangle=0$. As usual, $\left\langle\lambda, \beta_{2}+\beta_{8}\right\rangle=0$ and $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$. Thus, $\lambda \mid T_{Y}=\lambda_{5}$ or λ_{6} and $\left\langle\lambda, \alpha_{1}\right\rangle=2 q$. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0,2 q_{0}$ or q_{0}, for some p-power q_{0}. However, (1.27) and (1.32) imply dim VIA $<\operatorname{dim}$ VIY. Thus, $L_{i} \neq$ $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$, in Y of type E_{8}.

Reviewing the general remarks and the cases considered so far, we see that in Case I it remains to consider $L_{i}=\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ in Y of type E_{8}; so $L_{j}=\left\langle U_{ \pm \beta_{5}}\right\rangle$. Using (8.5), (8.6), (8.7), (2.17), (2.5) and (2.6), it is easy to see that $V^{1}\left(Q_{Y}\right) \cong M_{j}$. Suppose there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right), \delta \neq \beta_{\sigma}$, with $\langle\lambda, \delta\rangle \neq 0$. Then $Q_{A} \not \ddagger K_{\delta}$ implies $\operatorname{dim}\left(Q_{Y} / K_{\delta}\right) \geq 4$. Thus, $\delta=\beta_{4}$ and $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{3}}\right\rangle \cap L_{\gamma^{\prime}} \neq 1$. The bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$, of (1.25), implies that $L_{Y}{ }^{\prime}=L_{i} \times L_{j} \times\left\langle U_{ \pm \beta_{k}}\right\rangle$ for $k=2$ or 3 . But then $Q_{Y} / K_{\beta_{4}}$ has no $L_{A^{\prime}}$ composition factor isomorphic to a twist of $Q_{A}{ }^{\alpha_{2}}$, contradicting (2.3). Thus, there exists no such δ, and $\lambda_{I} T_{A}=x \lambda_{6}+\lambda_{7}$ or $x \lambda_{6}+\lambda_{8}$, for $p>x \geq 0$. In fact, the bound on $\operatorname{dimV}_{\beta_{6}}\left(Q_{Y}\right)$ implies that $\lambda I T_{Y}=x \lambda_{6}+\lambda_{7}$, for $p>x \geq 0$. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0, x q_{0}, q_{0}$ or $2 q_{0}$, for q_{0} some p-power. Then, (1.27) and (1.32) imply $\operatorname{dim} V|A<\operatorname{dim} V| Y$ unless $\left\langle\lambda, \alpha_{2}\right\rangle=x q_{0}$ and $x \neq 0$. Since $\beta_{6} I T_{A}=q \alpha_{2}, 0 \neq f \beta_{6} v^{+} \in V_{T_{A}}\left(\lambda-q \alpha_{2}\right)$, so in fact, $q_{0}=q$. Then by (1.10), $\lambda \mid T_{A}=2 \mu_{1}+x \mu_{2}$.

Now, consider the subgroup $D \leq Y$ of type $D_{4} \times D_{4}$ defined by $D=\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{3}}, U_{ \pm}\left(\beta_{4}+\beta_{5}+\beta_{6}\right), U_{ \pm \beta_{7}}\right\rangle \circ\left\langle U_{ \pm} \beta_{5}, U_{ \pm}\left(\beta_{6}+\beta_{7}+\beta_{8}\right), U_{ \pm t_{1}}, U_{ \pm t_{2}}\right\rangle$ (commuting product), where $t_{1}=2 \beta_{1}+2 \beta_{2}+3 \beta_{3}+4 \beta_{4}+3 \beta_{5}+2 \beta_{6}+\beta_{7}$ and $t_{2}=\beta_{2}+\beta_{3}+2 \beta_{4}+\beta_{5}$. Then VID is not irreducible by Theorem (4.1) of [12], so $\left\langle v^{+}\right\rangle$affords a D-composition factor of VIY with dimension strictly less than dimVIY. Restrict this composition factor to the natural subgroup $G<D$ of type $G_{2} \times G_{2}$. (The fixed point subgroup of D_{4}, under the
graph automorphism of order three has type G_{2}.) Let $\Pi(G)=\Pi_{1} \perp \Pi_{2}$ with $\Pi_{1}=\left\{\gamma_{1}, \gamma_{2}\right\}, \Pi_{2}=\left\{\gamma_{3}, \gamma_{4}\right\}$ and $\left(\gamma_{1}, \gamma_{1}\right)<\left(\gamma_{2}, \gamma_{2}\right),\left(\gamma_{3}, \gamma_{3}\right)<$ $\left(\gamma_{4}, \gamma_{4}\right)$. Let η_{i} be the fundamental dominant weight corresponding to γ_{i}. Then, there is a G-composition factor of VIY afforded by $\left\langle v^{+}\right\rangle$with high weight $\left(x \eta_{2}+\eta_{1}\right)+\left((x+1) \eta_{4}+(2 x+1) \eta_{3}\right)$. This composition factor has dimension at least $12 \cdot \operatorname{dimV}\left(x \eta_{2}+\eta_{1}\right)$. But since VIA occurs as a compostion factor of the tensor product $V\left(\mu_{1}+x \mu_{2}\right) \otimes V\left(\mu_{1}\right)$, $\operatorname{dimV}\left|A \leq 7 \cdot \operatorname{dimV}\left(\mu_{1}+x \mu_{2}\right)<12 \cdot \operatorname{dimV}\left(x \eta_{2}+\eta_{1}\right)<\operatorname{dim} V\right| Y$.

Contradiction.
This completes the consideration of Case I.
Case II: Suppose M_{j} is nontrivial and M_{j} is trivial.
By (8.6), there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{j}\right) \neq 0$ and $\left(\delta, \Sigma L_{k}\right)=0$ for all $k \neq i$. Let q be as in Case I.

We now claim that $\Pi\left(L_{j}\right)$ corresponds to an end node of the Dynkin diagram. For, if not, the above remarks imply that there exists $k \neq i$ with $\Pi\left(L_{k}\right)$ separated from $\Pi\left(L_{j}\right)$ by exactly one node of the Dynkin diagram. By (8.5) and (8.6), L_{K} is unique and has type A_{2}. Thus, $Y=E_{8}$ and $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$. Also, by (8.6) and (2.3), $\left\langle\lambda, \beta_{\ell}\right\rangle=0$ for $\ell=1,2,3,7,8$. As in Case I, $\beta_{4} I T_{A}=q \alpha_{2}=\beta_{6} I T_{A}$. Moreover, by (2.12), $\beta_{2} I Z_{A}=0$. Now, using the parabolic $P_{Y}{ }^{\wedge}$ of (2.11), we see that the bound on $\operatorname{dimV}^{2}\left(Q_{A}\right)_{\lambda-q \alpha_{2}}$ is exceeded. Thus, $\Pi\left(L_{j}\right)$ must correspond to an end node of the Dynkin diagram, as claimed.

Suppose $L_{j}=\left\langle U_{ \pm \beta_{1}}\right\rangle$. Then Claim 1 implies $L_{i}=\left\langle U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}\right\rangle$ and by (8.6), $\left\langle U_{ \pm \beta_{7}}\right\rangle \leq L_{\gamma}$. Now $Q_{A} \leq K_{\beta_{2}}$ and if $-\beta_{2}$ is involved in $L_{A^{\prime}}, \beta_{2} \mid Z_{A}=0$. Otherwise, (2.11) implies that there is a nontrivial image of $Q_{A} \alpha_{2}$ in $Q_{Y}\left(\beta_{3}, \beta_{2}\right)$. But $Q_{Y}\left(\beta_{3}, \beta_{2}\right)$ has $L_{A^{\prime}}$ composition factors with high weights $3 q \mu_{1}$ and $q \mu_{1}$, so $\left(\beta_{3}+\beta_{2}\right) \mid Z_{A}=q \alpha_{2}$ and again $\beta_{2} \mid Z_{A}=0$. Using the parabolic $P_{Y} \wedge$ of (2.11), and (1.36), we see that the bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded unless $\left\langle\lambda, \beta_{3}\right\rangle=0$ and $\left\langle\lambda, \beta_{1}\right\rangle \leq 2$.

Suppose $Q_{A} \not \ddagger K_{\beta_{6}}$. Then (1.15) implies $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is a component of $L \gamma^{\prime}$,
and by (2.17) the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is also q. Thus, by (2.5) and (2.6), $\left\langle\lambda, \beta_{7}\right\rangle=0$. Also, the bound on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{6}\right\rangle=0$. Finally, if $Y=E_{8}, Q_{Y} / K_{\beta_{8}}$ a 2-dimensional irreducible L_{A} '-module implies $Q_{A} \leq K_{\beta_{8}}$, so $\left\langle\lambda, \beta_{8}\right\rangle=0$. Thus, $\lambda I T_{Y}=c \lambda_{1}$, for $c \leq 2$. Now, if $Q_{A} \leq K_{\beta_{6}}$, (2.3) implies $\left\langle\lambda, \beta_{6}+\beta_{7}\right\rangle=0$. If $Y=E_{8}$, either $\left\langle U_{ \pm \beta_{7}}\right\rangle$ or $\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ is a component and we argue as above or apply (2.4) to get $\left\langle\lambda, \beta_{8}\right\rangle=0$. Thus, if $Q_{A} \leq K_{\beta_{6}}$, $\lambda \mid T_{Y}=c \lambda_{1}$ for $c \leq 2$, as above. If $Y=E_{7}$, then $c \neq 1$. But now we argue as in Claim 1 to produce a contradiction. Thus, $L_{j} \neq\left\langle U_{ \pm \beta_{1}}\right\rangle$.

Consider next the configuration where $L_{j}=\left\langle U_{ \pm \beta_{2}}\right\rangle$. Then by Claim 2, the previous general remarks and symmetry, we may assume $L_{i}=$ $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$ and $Y=E_{8}$. A straight forward argument, using (2.10) and (2.11), implies that $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle \cap L_{Y}=1,\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$ and $\beta_{1}\left|Z_{A}=0=\beta_{3}\right| Z_{A}$, by (2.12). Using the parabolic $P_{Y} \wedge$ of (2.12) and (1.36), we see that the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}{ }^{\wedge}\right)$ is exceeded. Thus, $L_{j} \neq\left\langle U_{ \pm \beta_{2}}\right\rangle$.

The opening remarks of the proof and the cases considered thus far allow us to reduce, finally, to the case where $Y=E_{8}$ and $L_{i}=\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$, $L_{j}=\left\langle U_{ \pm \beta_{8}}\right\rangle$. We first claim that $V^{1}\left(Q_{Y}\right) \cong M_{j}$. For otherwise, (8.5), (8.6) and (8.7) imply that there exists a unique $1 \leq k \leq r, k \neq i, j$, with L_{k} of type $A_{1},\left(\Sigma L_{k}, \beta_{4}\right) \neq 0$, and M_{k} nontrivial. However, (2.17) implies that the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{k} is also q, contradicting (2.5) and (2.6). Thus, $\vee^{1}\left(Q_{Y}\right) \cong M_{j}$, as claimed. Suppose there exists $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right), \delta \neq \beta_{7}$ with $\langle\lambda, \delta\rangle \neq 0$. Then $Q_{A} \not \ddagger K_{\delta}$ implies $\operatorname{dim}\left(Q_{Y} / K_{\delta}\right) \geq 4$. Thus $\delta=\beta_{4}$ and $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{3}}\right\rangle \cap L_{Y} \neq 1$. However, the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$, of (1.25), is exceeded. Thus, if $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\langle\lambda, \delta\rangle \neq 0, \delta=\beta_{7}$. So $\lambda \mid T_{Y}=x \lambda_{7}+c \lambda_{8}$, for $p>x \geq 0$ and $p>c>0$, and $\left\langle\lambda, \alpha_{1}\right\rangle=c \cdot q$. Recall $\lambda \mid T_{Y} \neq \lambda_{8}$. By (6.9), $\left\langle\lambda, \alpha_{2}\right\rangle=0, c q_{0}$ or $x q_{0}$ for some p-power q_{0}. In fact, if $x \neq 0,0 \neq f_{\beta} \nu^{+} \in V_{T_{A}}\left(\lambda-q \alpha_{2}\right)$ implies that in the p-adic expansion for $\left\langle\lambda, \alpha_{2}\right\rangle$, q has nonzero coefficient, so by (1.10) $q=q_{0}=1$.

Let $D_{0} \leq Y$ be the subgroup of type D_{4} defined by
 point subgroup of the graph automorphism of D_{0} of order $3, G$ has type G_{2} Now, D_{0} is the Levi factor of a proper parabolic of Y, so the D_{0} composition factor of VIY afforded by V^{+}is not all of V / Y. Moreover, the G-composition factor afforded by v^{+}has high weight $c \mu_{1}+x \mu_{2}$, as G_{2}-module. Thus, if $\lambda I T_{A}=c \mu_{1}+x \mu_{2}, \operatorname{dim} V I A<\operatorname{dim} V I Y$. Hence, $\left\langle\lambda, \alpha_{2}\right\rangle=0$ or $c q_{0}$.

We now claim that if $x \neq 0, x=c$. Let $P \geq B_{A}$ - be the parabolic subgroup of A with Levi factor $L=\left\langle U_{ \pm \alpha_{2}}\right\rangle T$. Since VIA is basic, (1.9) implies that there is a parabolic subgroup P_{0} of Y with $P \leq P_{0}$, $Q=R_{U}(P) \leq Q_{0}=R_{U}\left(P_{0}\right)$ and $L \leq L_{0}$, a Levi factor of P_{0}. Moreover, since $T_{A} \leq T_{Y}$, we may take $T_{Y} \leq L_{0}$. Thus, there is a subsystem $\Sigma_{0} \subseteq \Sigma(Y)$ with $L_{0}=T_{Y}\left\langle U_{ \pm \gamma} \mid \gamma \in \Sigma_{0}^{+}\right\rangle$. Write $L_{0}=L_{O 1} \times \cdots \times L_{O d}$, a product of simple algebraic groups, with $L_{O 1} v^{+} \neq v^{+}$and $L_{O \ell} v^{+}=v^{+}$for $\ell \neq 1$. (This is possible since VIA is basic.) Then VIA basic and Theorem (7.1) of [12] imply that L_{01} has type A_{k} for some k and that if $k>1, V^{1}\left(Q_{O}\right)$ is isomorphic to W_{01}, the natural module for L_{01} (or to $W_{01}{ }^{*}$). Note that if $k>1$, there does not exist $K_{\gamma} \leq Q_{0}$ such that $Q_{0} / K_{\gamma} \cong W_{01}$ or $W_{01}{ }^{*}$, and $Q_{A} \not \ddagger K_{\gamma}$. For otherwise, Q_{Q} / K_{γ} is an irreducible L ' module on which $Z\left(L^{\prime}\right)^{\circ}$ induces scalars. So $Q_{A} K_{\gamma} / K_{\gamma}$ is an L^{\prime} submodule of Q_{0} / K_{γ}. But $\operatorname{dim}\left(Q_{A} K_{\gamma} / K_{\gamma}\right)<\operatorname{dim}\left(Q_{O} / K_{\gamma}\right)$. Hence, L_{01} has type A_{1}. So there exists $\tau \in \Sigma_{0}{ }^{+}$with $L_{01}=\left\langle U_{ \pm \tau}\right\rangle,\langle\lambda, \tau\rangle=c$ and $\langle\lambda, \eta\rangle=0$ for all $\eta \in \Sigma_{0}$ with $\eta \neq \pm \tau$. But, by the earlier work in this configuration, $x_{-\beta_{7}}($ at $q)$ occurs in the factorization of $x_{-\alpha_{2}}(t)$, and $\left\langle\lambda, \beta_{7}\right\rangle \neq 0$. Since $L \leq L_{0}, \beta 7=\tau$ and $x=\langle\lambda, \beta\rangle\rangle=\langle\lambda, \tau\rangle=c$, as claimed. But as in the preceeding paragraph, $\operatorname{dim} V \mid A<\operatorname{dim} V I Y$. Thus, in fact, $x=0$. Moreover, the preceding argument with D_{0} implies that $\left\langle\lambda, \alpha_{2}\right\rangle \neq 0$.

Suppose $q_{0}=q$, where $\left\langle\lambda, \alpha_{2}\right\rangle=c q_{0}$. Let $X \leq Y$ be the subgroup of type D_{7} defined by $x=\left\langle U_{ \pm t}, U_{\beta_{k}} \mid 3 \leq k \leq 8, t=\beta_{1}+2 \beta_{2}+2 \beta_{3}+3 \beta_{4}+2 \beta_{5}+\beta_{6}\right\rangle$.

Then x has a natural subgroup, $G \leq x$, of type G_{2}. Moreover, the G-composition factor of V / Y afforded by v^{+}has the same dimension, as G_{2} module, as does $V\left(q\left(c \mu_{1}+c \mu_{2}\right)\right)$. However, X is contained in a proper parabolic of Y and so the X-composition factor of V afforded by V^{+}is not all of V. Thus, $\operatorname{dim} V\left(q\left(c \mu_{1}+c \mu_{2}\right)\right)<\operatorname{dim} V \mid Y$.

Thus, we have $\lambda I T_{Y}=c \lambda_{8}, c>1$ and $\lambda I T_{A}=c q \mu_{1}+c q_{0} \mu_{2}$, with $q_{0} \neq q$. Note that $3 c=\operatorname{dimv}_{\beta_{7}}\left(Q_{Y}\right) \leq \operatorname{dimv}^{2}\left(Q_{A}\right) \lambda-q \alpha_{2} \leq 3 c$. Hence, $\beta_{4} I Z_{A} \neq 0$; in particular, $-\beta_{4}$ is not involved in $L_{A^{\prime}}$. Previous remarks imply that $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{3}}\right\rangle \cap L_{Y} \neq\{1\}$. If $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{8}\right\}$ or $\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{8}\right\},(1.15)$ implies $Q_{A} \leq K_{\beta_{4}}$ and (2.11) implies $\beta_{4} I_{A}=0$. If $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{8}\right\}$, (2.11) and (1.15) imply $Q_{A} \$ K_{\beta_{4}}$. Examining the $L_{A^{\prime}}$ composition factors and $T\left(L_{A^{\prime}}\right)$ weight vectors in $Q_{Y} / K_{\beta_{4}}$, we see that the field twist on the embedding of L_{A} in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ and in $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ is also q and $\beta_{4} I_{A}=q\left(\alpha_{2}-\alpha_{1}\right)$. But then $\left(V_{T_{Y}}\left(\lambda-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}-\beta_{8}\right) \oplus\right.$ $\left.V_{T_{Y}}\left(\lambda-2 \beta,-2 \beta_{8}\right)+\left[V, Q_{A}^{3}\right]\right) /\left[V, Q_{A}{ }^{3}\right]$ is a 2 -dimensional subspace of $\left(V_{T_{A}}\left(\lambda-q\left(2 \alpha_{1}+2 \alpha_{2}\right)\right)+\left[V, Q_{A}^{3}\right] /\left[V, Q_{A}{ }^{3}\right]\right.$. However, using (1.28) and the description of commutator subspaces given in (1.21), we see that the latter weight space has dimension 1. Hence, $L_{\gamma}{ }^{\prime} \geq\left\langle U_{ \pm \beta_{2}}\right\rangle$ but $\left\langle U_{ \pm \beta_{3}}\right\rangle \nsubseteq L_{Y}$, or $L_{Y}{ }^{\prime}=L_{i} \times L_{j} \times\left\langle U_{ \pm \beta_{3}}\right\rangle$. In either case, (2.11) implies $Q_{A} \nsubseteq K_{\beta_{4}}$ and arguing as usual, we find that $\beta_{4} I^{T}{ }_{A}=q \alpha_{2}$. Say $\left\langle U_{ \pm \beta_{2}}\right\rangle \leq L_{Y}$ and $\left\langle U_{ \pm \beta_{3}}\right\rangle \nsubseteq L_{Y}$. (The other case is handled similarly.) Using (1.21) and (1.29), we have $\operatorname{dim}\left(V_{T_{A}}\left(\lambda-q\left(4 \alpha_{1}+2 \alpha_{2}\right)\right)+\left[V, Q_{A}{ }^{3}\right]\right) /\left[V, Q_{A}{ }^{3}\right] \leq 5$. However, $\left(V_{T_{Y}}\left(\lambda-2 \beta_{7}-4 \beta_{8}\right) \oplus V_{T_{Y}}\left(\lambda-\beta_{6}-2 \beta_{7}-3 \beta_{8}\right) \oplus\right.$ $V_{T_{Y}}\left(\lambda-\beta_{5}-\beta_{6}-2 \beta_{7}-2 \beta_{8}\right) \oplus V_{T_{Y}}\left(\lambda-2 \beta_{6}-2 \beta_{7}-2 \beta_{8}\right) \oplus$ $V_{T_{Y}}\left(\lambda-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}-2 \beta_{8}\right) \oplus V_{T_{Y}}\left(\lambda-\beta_{2}-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}-\beta_{8}\right)+$ $\left.\left[V, Q_{A}{ }^{3}\right]\right] /\left[V, Q_{A}{ }^{3}\right]$ is a 6 -dimensional subspace lying in $\left(V_{T_{A}}\left(\lambda-q\left(4 \alpha_{1}+2 \alpha_{2}\right)\right)+\left[V, Q_{A}^{3}\right]\right) /\left[V, Q_{A}^{3}\right]$, unless $c=2$ or 3 . But if $c=2$ or $3,(1.38)$ and (1.27) imply dimV|A < dimV|Y. Contradiction. This completes the consideration of Case II and the proof of (8.8).
(8.9). $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$.

Proof: Suppose false; i.e., suppose $\left\langle\lambda, \alpha_{1}\right\rangle=0$. Then $\left\langle\lambda, \alpha_{2}\right\rangle \neq 0$. Let $P \geq B_{A}^{-}$be the parabolic subgroup of A with Levi factor $L=\left\langle U_{ \pm \alpha_{2}}\right\rangle T_{A}$. Let P_{0} be a parabolic subgroup of Y with $P \leq P_{0}, Q=R_{U}(P) \leq R_{U}\left(P_{0}\right)=Q_{0}$ and such that P_{0} is minimal with these properties. Let L_{0} be the Levi factor of P_{0}. Let T_{0} be a maximal torus of L_{0} with $T_{A} \leq T_{0}$. Fix a base $\Pi_{0}(Y)$ of the root system $\Sigma_{0}(Y)$, such that $U_{A} \cap L \leq Q_{0}\left(U_{0} \cap L_{0}\right)$, where U_{0} is the product of the T_{0} root subgroups corresponding to roots in $\Sigma_{0}{ }^{+}(Y)$ and Q_{0} is the product of the T_{0} root subgroups corresponding to the roots in $\Sigma_{0}^{-}(Y)-\Sigma_{0}\left(L_{0}\right)$. Let $\Pi_{0}(Y)=\left\{\gamma_{1} \ldots, \gamma_{n}\right\}$. Let v_{j} be the fundamental dominant weight corresponding to γ_{j} and $\left\langle W^{+}\right\rangle$be the unique 1-space of V invariant under $B_{0}=\left\langle U_{r} \mid r \in \Sigma_{0}{ }^{+}(Y)\right\rangle$. Let $L_{0}{ }^{\prime}=D_{1} \times \cdots \times D_{S}$, with D_{j} a simple algebraic group. Note that each D_{j} is of classical type by (7.1) of [12] and Remark (6.2), so (1.5) implies $Z=Z(L)^{\circ} \leq Z_{0}=Z\left(L_{0}\right)^{\circ}$.

Now, referring to (6.9) and using (1.27), (8.1), (1.38), (1.32), [8] and $p>3$, we see that $\operatorname{dim} V|A \neq \operatorname{dim} V| Y$ unless one of the following holds:
(i) $y=E_{8}, \lambda I T_{y}=x v_{7}+c v_{8}$, for $p>x \geq 0, p>c>0$ and $\left\langle\lambda, \alpha_{2}\right\rangle=c \cdot q$, for some p-power q.
(ii) The hypotheses of (6.7) hold.

The configurations of (i) and (ii) may be described as follows: $\left\langle\lambda, \alpha_{2}\right\rangle=c$, for $0<c<p(b y(1.10)), D_{1}$ has type $A_{1}, \operatorname{dim} M_{1}=c+1$ and M_{j} is trivial for $i \neq 1$. Now, one checks that $\operatorname{dimV}^{2}(Q)=c$ and $\operatorname{dim} V^{3}(Q) \leq 2 c$. Thus, D_{1} must be separated by more than one node of the Dynkin diagram from all other components of $L_{0}{ }^{\circ}$, else $\operatorname{dim} V^{2}\left(Q_{0}\right)>c$. However, there do not exist $\delta_{1}, \delta_{2} \in \Pi_{0}(Y)-\Pi\left(L_{0}\right)$ with $\left(\delta_{1}, \Sigma D_{1}\right) \neq 0,\left(\delta_{1}, \delta_{2}\right)<0$ and $\left(\delta_{2}, \Sigma L_{0}\right)=0$. For otherwise (2.14) implies $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0$. Thus, there exists $1<i \leq s$ with D_{i} separated from D_{1} by exactly 2 nodes of the Dynkin diagram. Let $\gamma, \delta \in \Pi_{0}(Y)-\Pi\left(L_{0}\right)$ with $\left(\gamma, \Sigma D_{1}\right) \neq 0 \neq\left(\delta, \Sigma D_{j}\right)$ and $(\gamma, \delta)<0$. If $-\delta$ is involved in $L_{0}{ }^{\prime}, \delta I Z=0$. Otherwise, if $Q_{A} \leq K_{\delta}$, (2.11) applies to give $(\gamma+\delta) \mid Z=\alpha_{1}$, so again $\delta \mid Z=0$. Using the parabolic $P_{0}{ }^{\wedge}$ of (2.11), we see
that the bound on $\operatorname{dim} V^{2}(Q)$ is exceeded. Thus, $Q_{A} \ddagger K_{\delta}$ and $-\delta$ is not involved in L_{0}. . Now $\langle\lambda, \gamma\rangle=0$, else $\operatorname{dim} V^{2}\left(Q_{0}\right)>c$; but if $\Pi\left(D_{1}\right)=\left\{\tau_{1}\right\}$, ${ }^{f} \tau_{1}+\gamma W^{+}$affords an $L_{0}{ }^{\prime}$ composition factor in $V^{2}\left(Q_{0}\right)$ of dimension c. Hence, $\left[V, Q_{0}{ }^{2}\right]=\left[V, Q^{2}\right]$. Now, $f_{\tau_{1}}+\gamma^{2} W^{+}$and $\tau_{\tau_{1}+\gamma+\delta} W^{+}$afford distinct L ' composition factors in $V^{3}\left(Q_{0}\right)$ of dimensions $c-1$ and $n c$, where $n=\operatorname{dim} V_{L_{0}}(-\delta) \geq 2$. But $\operatorname{dim} V^{3}(Q) \leq 2 c$ implies $c=1$ and $\operatorname{dimV} \mid A=14<$ dimVIY. Contradiction.

The results (8.2) - (8.9) form a complete proof of Theorem (8.0)(b) in case $p>3 . \square$

CHAPTER 9: SPECIAL CASES

In this chapter, we consider the remaining special cases which will complete the proof that the only possible triples (A, Y, V) are those described in the Main Theorem. In particular, we consider the cases where Y has type E_{n} and rank $A=2$ with $p=2$, or (A, p) has type $\left(G_{2}, 3\right)$ or where Y is exceptional and A is a non-simple, semisimple algebraic group. We find that the only possible configuration is that of (8.0)(a).

Section I: $\operatorname{Rank}(A)=2$ and $p=2$.

Before establishing the notation to be used throughout this section of Chapter 9, we prove a preliminary lemma.
(9.1). Let $p=2, X=\mathrm{SL}_{2}, Y=\mathrm{SO}_{8}$. If $X<Y$, acting irreducibly on a rational $k Y$-module, V, then X acts irreducibly on two of the three fundamental, restricted 8-dimensional irreducible ky-modules.

Proof: If $X<Y$ is as in Theorem (7.1) (d) of [12], then it is clear that X acts irreducibly on the two fundamental spin modules for Y, since $X<\mathrm{SO}_{7}<Y$ and each of these representations restrict to the same irreducible representation of SO_{7}.

Consider now the possibility that VIY is the "natural" module for Y. Let D be a group of type D_{4} and let $x<D$ be as in (7.1)(d) of [12]. In particular, if $\Pi(D)=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$ is labelled as throughout and if μ_{j} is the fundamental dominant weight corresponding to γ_{j}, x acts irreducibly on the KD-module, W, with high weight μ_{3}. Also, if $\Pi(X)=\{\alpha\}, h_{\alpha}(c)=$ $h_{\gamma_{3}}\left(c q_{1}\right) h_{\gamma_{4}}\left(c q_{1}\right) h_{\gamma_{2}}+\gamma_{3}\left(c q_{2}\right) h_{\gamma_{2}+\gamma_{4}}\left(c q_{2}\right) h_{\gamma_{1}+\gamma_{2}+\gamma_{3}\left(c q_{3}\right) h_{\gamma_{1}}+\gamma_{2}+\gamma_{4}\left(c q_{3}\right), ~}^{\text {, }}$
for $c \in k^{*}, q_{1}, q_{2}$, and q_{3} distinct p-powers and $U_{\alpha} \leq\left\langle U_{\gamma_{i}} \mid 1 \leq i \leq 4\right\rangle$. Now, by (1.11), D fixes a form on W. Since $p=2$, we may take the form on W to be symplectic. So if $\varphi: D \rightarrow S L(W)$ is the $k D$-representation corresponding to $W, \varphi(D) \leq S p(W)$. Then $\varphi(D)<S p(W)$ is a maximal rank configuration, so by Theorem 4.1 and Table 4.1 of [12], $\varphi(D)=\left\langle U_{r}\right| r \in \Sigma(S p(W))$, r short \rangle. Now, choose a base $\Pi(\varphi(D))=\left\{\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right\}$ such that the Dynkin diagram is labelled as throughout and such that $W \mid \varphi(D)$ has high weight v_{1} (where v_{i} is the fundamental dominant weight corresponding to η_{j}). Since $p=2$, $X \cong \varphi(X)$ and $D \cong \varphi(D)$ as abstract groups, and $\varphi(X)<\varphi(D)<S L(W)$ is the desired embedding; i.e. $W / \varphi(D)$ is the "natural" module for $\varphi(D)$.
Moreover, we may take $\varphi\left(h_{\alpha}(c)\right)=h_{\eta_{1}}\left(c q_{1}\right) h_{\eta_{3}}\left(c q_{1}\right) h_{\eta_{1}+\eta_{2}}\left(c q_{2}\right) h_{\eta_{2}+\eta_{3}}\left(c q_{2}\right)$. $h_{\eta_{1}+\eta_{2}+n_{4}}\left(c q_{3}\right) h_{\eta_{2}+\eta_{3}+\eta_{4}}\left(c q_{3}\right)$. Also $\varphi\left(U_{\alpha}\right) \leq\left\langle U_{\eta_{1}} \mid 1 \leq i \leq 4\right\rangle$. Hence, $\varphi(x)$ acts irreducibly on the $\varphi(\mathrm{D})$ modules with high weights v_{1} and v_{3}.

By Theorem (7.1) of [12] the above considerations are sufficient and the proof of (9.1) is complete.ロ

For the remainder of this section, we suppose (A, Y, V) is an example in the Main Theorem, with A a rank two simple algebraic group, Y of type E_{n} and $p=2$. Adopt Notation and Hypothesis (2.0); in addition, choose $P_{A}=Q_{A} L_{A}$ with $L_{A}=\left\langle U_{ \pm \beta}\right\rangle T_{A}$ such that $\langle\lambda, \beta\rangle \neq 0$. (Then $\Pi(A)-\Pi\left(L_{A}\right)=\{\alpha\}$ as usual.) Note that (7.1) of [12], the minimality of P_{Y} and induction imply that if L_{j}, a component of L^{\prime}, has type $A_{k_{j}}$ for some k_{j}, then $k_{j}=1,3$ or 7 . Finally, one checks, using [8] and (1.35) that $\operatorname{dimV} \mid A=$ $4^{k}, 3^{k} 8^{l}$, or $6^{k} 14^{\ell} 64^{m}$, for $k, \ell, m \in \mathbb{Z}^{+}$.
(9.2). Suppose $\operatorname{dim}\left(M_{i}\right)>1$ for some i.
(i) If L_{i} has type A_{3} and $\operatorname{dim}\left(M_{j}\right)>1$ for some $j \neq i$, then $\operatorname{rank}\left(L_{j}\right)=1$.
(ii) L_{i} has type A_{1} or A_{3}.

Proof: By induction and (7.1) of [12], L_{i} has type D_{K} for
$k=4,5,6$ or 7 or L_{i} has type A_{1}, A_{3}, or A_{7}. Consider first the case where L_{i} has type A_{3} and suppose there exists $j \neq i$ with M_{j} nontrivial and $\operatorname{rank}\left(L_{j}\right)>1$. Rank restrictions imply L_{j} has type A_{3} and by (1.5), $Z_{A} \leq Z_{Y}$. Also, (2.5) and (2.7) imply that $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}, \beta_{7}, \beta_{8}\right\}$. The bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $j=5,6,7$. However, $0 \neq w_{1} \in V_{T_{Y}}\left(\lambda-\beta_{5}-\beta_{6}-\beta_{7}-\beta_{8}\right)$ and $0 \neq w_{2} \in V_{T_{Y}}\left(\lambda-\beta_{2}-\beta_{4}-\beta_{5}\right) \oplus$ $V_{T_{Y}}\left(\lambda-\beta_{3}-\beta_{4}-\beta_{5}\right)$ afford L_{Y} ' composition factors of $V_{\beta_{5}}\left(Q_{Y}\right)$ of dimensions 20 and 56 , respectively. Hence, the bound is still exceeded and the first statement of the result holds.

Suppose (9.2)(ii) is false. Previous remarks and (1.5) imply that $Z_{A} \leq Z_{Y}$. If L_{i} has type A_{7}, the bound on $\operatorname{dim}_{\beta_{2}}\left(Q_{Y}\right)$ implies that $\lambda \mid T_{Y}=$ λ_{8}; thus, L_{j} has type D_{k} for some k. If $k>4, M_{j}$ is one of the two irreducible, restricted spin modules for L_{i}. Thus, $\left\langle U_{ \pm \beta_{1}}\right\rangle \leq L_{i}$ and L_{i} has type D_{5}; else $Q_{Y} / K_{\beta_{1}}$ is a 2^{k-1} - dimensional irreducible $L_{A} \cdot$ module containing a nontrivial image of $Q_{A}{ }^{\alpha}$. Now, the same argument forces Y to be of type E_{7} or E_{8} with $\left\langle U_{ \pm \beta_{7}}\right\rangle$ a component of $L_{Y}{ }^{\prime}$. By (2.5), (2.6) and (2.7), $\left\langle\lambda, \beta_{7}\right\rangle=0$. However, the bound on $\operatorname{dim} v_{\beta_{6}}\left(Q_{y}\right)$ is exceeded in every possible configuration. So we have reduced to L_{j} having type D_{4}.
$B y$ (9.1), L_{A} acts irreducibly on 2 of the three fundamental restricted 8-dimensional irreducible L_{i} modules. But $Q_{A} \ddagger K_{\beta_{1}}$, so $Q_{Y} / K_{\beta_{1}}$ is a reducible L_{A} module. Using (7.1) of [12] to obtain a precise description of the embedding of $L_{A^{\prime}}$ in L_{i}, we see that $L_{A^{\prime}}$ acts on $Q_{Y} / K_{\beta_{1}}$ with composition factors of dimensions 2 and 1 . Thus, if $A=G_{2}$, then β must be long. Also, since $V_{L_{i}}\left(-\beta_{6}\right)$ is an irreducible L_{A} module, $Y=E_{7}$ or E_{8} and $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is a component of L_{γ}. Moreover, by (2.5), (2.6) and (2.7), $\left\langle\lambda, \beta_{7}\right\rangle=0$. The above remarks about $Q_{Y} / K_{\beta_{1}}$ imply that $\left\langle\lambda, \beta_{3}\right\rangle=0$; and by (7.1) of [12], $\left\langle\lambda, \beta_{4}\right\rangle=0$. Moreover, the bound on $\operatorname{dim} V_{\beta_{j}}\left(Q_{Y}\right)$, for $j=1$ or 6 , implies that $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $k=1,5,6$. (We have used Table 1 of [5] and (1.35).) Then, [8] implies that $Y=E_{8}$, else dimVIA $\neq \operatorname{dimVIY}$. Suppose $\lambda \mid T_{Y}=\lambda_{2}$. The remarks of the previous paragraph imply
$\langle\lambda, \alpha\rangle=0, q, q+q_{0}$ or $q+q_{0}+q_{1}$ for q, q_{0} and q_{1} distinct p-powers, unless $A=G_{2}$, in which case $\langle\lambda, \alpha\rangle \neq q+q_{0}+q_{1}$. Hence, $\operatorname{dimV}\left|A \leq 14^{3}, \sigma^{2}<\operatorname{dimV}\right| Y$. A variation of the method described in [8] was run on the VAX at the University of Oregon to determine the multiplicity of the subdominant weight $\lambda-\beta_{1}-3 \beta_{2}-3 \beta_{3}-5 \beta_{4}-4 \beta_{5}-3 \beta_{6}-2 \beta_{7}-\beta_{8}$. This computation, together with [8], implies dimV|Y>143.62. If $\lambda \mid T_{Y}=\lambda_{2}+\lambda_{8}$, previous remarks and part (i) imply $\langle\lambda, \alpha\rangle=0, q, q+q_{0}$ or $q+q_{0}+q_{1}$, for q, q_{0} and q_{1} distinct p-powers. Then $\operatorname{dimVIA} \leq 14^{3} \cdot \sigma^{3}<\operatorname{dimV} \mid Y$, by (1.38). Contradiction.

This completes the proof of (9.2). \square
(9.3). Assume β is long if $A=G_{2}$. If $\operatorname{dim}\left(M_{j}\right)>1$ then $\operatorname{rank}\left(L_{j}\right)=1$.

Proof: Suppose false. Then by (9.2), L_{i} has type A_{3}, so by (1.5),
$Z_{A} \leq Z_{Y}$. Since $L_{A^{\prime}}$ acts irreducibly on W, the natural module for L_{i}, (2.3) implies that there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{j}\right) \neq 0$ and $Q_{Y} / K_{\gamma} \cong W$ or W^{*}. Consider the case where $\Pi\left(L_{\mathfrak{j}}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{5}\right\}$, so $Y=E_{7}$ or E_{8} and $\left\langle U_{ \pm \beta_{7}}\right\rangle$ is a component of L_{γ}. Now, $\left\langle\lambda, \beta_{7}\right\rangle=0$, by (2.5), (2.6) and (2.7), and $\left\langle\lambda, \beta_{6}\right\rangle=0$, else the bound on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ is exceeded. Also, the bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{3}\right\rangle=0$. If $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is a component of $L_{\gamma}{ }^{\prime}$, $\left\langle\lambda, \beta_{1}\right\rangle=0$, else $0 \neq w_{1} \in V_{T_{Y}}\left(\lambda-\beta_{1}-\beta_{3}\right)$ and $0 \neq w_{2} \in V_{T_{Y}}\left(\lambda-\beta_{2}-\beta_{3}-\beta_{4}\right)$ $\oplus V_{T_{Y}}\left(\lambda-\beta_{3}-\beta_{4}-\beta_{5}\right)$ afford distinct L_{Y} ' composition factors of $V_{\beta_{3}}\left(Q_{Y}\right)$, exceeding the given bound. Now, [8] implies that $\lambda \mid T_{Y} \neq \lambda_{2}$ or λ_{5} if $Y=E_{7}$. Hence, $Y=E_{8}$. If $\lambda \mid T_{Y}=\lambda_{2}$ or λ_{5}, (9.2) implies $\langle\lambda, \alpha\rangle=0, q$ or $q+q_{0}$, for q and q_{0} distinct p-powers. So dimVIA $\leq 14^{2} \cdot \sigma^{2}<\operatorname{dimVIA}$ by (1.38). Thus, $\lambda I T_{Y}=\lambda_{2}+\lambda_{8}$ or $\lambda_{5}+\lambda_{8}$. Then (9.2) implies $\langle\lambda, \alpha\rangle=0$, $q_{1}, q_{1}+q_{2}$, or $q_{1}+q_{2}+q_{3}$, for q_{1}, q_{2}, q_{3} distinct p-powers. Hence, $\operatorname{dimV}\left|A \leq 14^{2} .6^{3}<\operatorname{dimV}\right| Y$, by (1.38). Thus, $\Pi\left(L_{j}\right) \neq\left\{\beta_{2}, \beta_{4}, \beta_{5}\right\}$.

Consider the case where $\Pi\left(L_{j}\right)=\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\}$. Then $\left\langle U_{ \pm \beta_{4}}\right\rangle \leq L_{Y}$. If L_{Y} ' has a second component of type A_{3}, (9.2) implies $V^{1}\left(Q_{Y}\right) \cong M_{j}$. But in this case the bound on $\operatorname{dim} V_{\gamma}\left(Q_{Y}\right)$, for $\gamma \in \Pi(\gamma)-\Pi\left(L_{Y}\right)$, implies
$\lambda \mid T_{Y}=\lambda_{8}$. Thus, $\left\langle U_{ \pm \beta_{4}}\right\rangle$ is a component of L_{Y}. By (2.5), (2.6) and (2.7), $\left\langle\lambda, \beta_{4}\right\rangle=0$ and the bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{5}\right\rangle=0$. Suppose $L_{A}{ }^{\prime}$ acts on the natural module for L_{i} with high weight $\left(q_{1}+q_{2}\right) \mu_{\beta}$. Then, by (2.6) and (2.7) we may assume that the field twist on the embedding of L_{A} in $\left\langle U_{ \pm \beta_{4}}\right\rangle$ is q_{1}. If $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is a component of $L_{\gamma}{ }^{\prime}$ with $\left\langle\lambda, \beta_{1}\right\rangle \neq 0$, then $Q_{A} \not \ddagger K_{\beta_{3}}$ implies that the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is also q_{1}. But this contradicts (2.5). If $\left\langle U_{ \pm \beta_{1}}\right\rangle \nsubseteq L_{\gamma^{\prime}}$, then $\left\langle\lambda, \beta_{1}\right\rangle=0$ by (2.3). So $\lambda \mid T_{Y}=x \lambda_{2}+y \lambda_{3}+\lambda_{6}$ or $x \lambda_{2}+y \lambda_{3}+\lambda_{8}$, where $x, y \in\{0,1\}$. By (9.2), dimVIA $\leq 14^{2} \cdot 6^{2}$ if $x=0=y$ and $\operatorname{dimV} \mid A \leq 14^{2} \cdot 6^{4}$ if $x+y \neq 0$. Then (1.38) and (1.32) imply dimV|A <dimV|Y. Hence, $\Pi\left(L_{j}\right) \neq\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\}$.

We have reduced to the configuration where $Y=E_{7}$ and $\Pi\left(L_{j}\right)=$ $\left\{\beta_{5}, \beta_{6}, \beta_{7}\right\}$. If $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$, (2.5), (2.7) and the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ imply that $\left\langle\lambda, \beta_{j}\right\rangle=0$ for $2 \leq j \leq 6$. So $\lambda_{1} T_{Y}=\lambda_{7}$ or $\lambda_{1}+\lambda_{7}$. But then [8] implies that $\operatorname{dimV}|A \neq \operatorname{dimV}| Y$. The above remarks imply that $\Pi\left(L_{Y}\right)=\Pi\left(L_{i}\right) \cup\left\{\beta_{2}\right\}, \Pi\left(L_{i}\right) \cup\left\{\beta_{3}\right\}$, or $\Pi\left(L_{i}\right) \cup\left\{\beta_{1}, \beta_{2}\right\}, V_{1}\left(Q_{Y}\right) \cong M_{j}$ in the first two cases, and in each case, $\left\langle\lambda, \beta_{2}+\beta_{4}\right\rangle=0$. Now, $\lambda \mid T_{Y} \neq \lambda_{5}$ or λ_{7}, by [8], so $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle>0$; in particular, $\Pi\left(L_{Y}\right) \neq\left\{\beta_{2}, \beta_{5}, \beta_{6}, \beta 7\right\}$. If $A=A_{2}$ or B_{2}, dimVIA $\leq 2^{12}<\operatorname{dimVIV}$, by (1.32) and [8]. So $A=G_{2}$. If $L_{Y}=L_{i} \times$ $\left\langle U_{ \pm \beta_{3}}\right\rangle$, then previous remarks imply that $\lambda \mid T_{Y}=\lambda_{1}+\lambda_{5}$ and dimVIA $\leq 6^{3} \cdot 14^{2}<\operatorname{dimVIY}$, by (1.38). In the remaining case, we consider the action of L_{A} ' on the 56 -dimensional irreducible $k Y$-module $V\left(\lambda_{7}\right)$. One checks that there are at least five 4-dimensional $L_{A}{ }^{\prime}$ composition factors of $V(\lambda 7)$. However, there is no 56 -dimensional kA-module affording such an L_{A} ' composition series. This completes the proof of (9.3).口
(9.4). A does not have type A_{2} or B_{2}.

Proof: Suppose false. If $\langle\lambda, \alpha\rangle=0$ or q and $\langle\lambda, \beta\rangle=0$ or q_{0} for some p-powers q and q_{0}, $\operatorname{dimVIA}=3,8,9,4$ or $16<\operatorname{dimVIY}$. So we may choose a parabolic P_{A} with Levi factor $L_{A}=\left\langle U_{ \pm \beta}\right\rangle T_{A}$ such that $\langle\lambda, \beta\rangle$ has more than one p-power in its p-adic expansion. Moreover, choose β such
that the number of distinct p-powers in the p-adic expansion of $\langle\lambda, \beta\rangle$ is greater than or equal to the number of p-powers in the p-adic expansion of $\langle\lambda, \alpha\rangle$. Let P_{Y} be as before. Then (9.3) implies that L_{Y} ' has at least two components of type A_{1}, so (1.5) implies $Z_{A} \leq Z_{Y}$. Also, $\left\langle\lambda, \beta_{j}\right\rangle=1=$ $\left\langle\lambda, \beta_{j}\right\rangle$ for some $1 \leq i, j \leq \operatorname{rank}(Y)$, with $\left(\beta_{j}, \beta_{j}\right)=0$. Recall, $\operatorname{dimV} \mid A=4^{k}$ or $3^{k} 8^{\ell}$. Suppose $\langle\lambda, \beta\rangle=q_{1}+q_{2}$, for q_{1} and q_{2} distinct p-powers. Then, $\operatorname{dimVIA} \leq 2^{8}$. But counting only the conjugates of $V_{T_{Y}}(\lambda)$ in $V I Y$, we have $\operatorname{dim} V|Y>\operatorname{dimV}| A$. Hence, $\langle\lambda, \beta\rangle \neq q_{1}+q_{2}$. Suppose $\langle\lambda, \beta\rangle=q_{1}+q_{2}+q_{3}$, for q_{1}, q_{2}, and q_{3} distinct p-powers. Then $\left\langle\lambda, \beta_{j}\right\rangle=1=\left\langle\lambda, \beta_{j}\right\rangle=\left\langle\lambda, \beta_{k}\right\rangle$ for some $i \neq j \neq k$ with $\left(\beta_{j}, \beta_{j}\right)=0=\left(\beta_{j}, \beta_{k}\right)=0=\left(\beta_{j}, \beta_{k}\right)$. Also, $\operatorname{dimV} \mid A \leq 2^{12}$. Once again, counting only the conjugates of $V_{T_{Y}}(\lambda)$ in $V \mid Y$, we have $\operatorname{dimVIY}>\operatorname{dimVIA}$, unless $Y=E_{6}$ and $\lambda I T_{Y}=\lambda_{1}+\lambda_{2}+\lambda_{6}$. However, by (1.38), dimVIA < dimVIY here also. By rank restrictions, it remains to consider the case where $\langle\lambda, \beta\rangle=q_{1}+q_{2}+q_{3}+q_{4}$. Arguing exactly as above, we find that $\operatorname{dimVIA}<\operatorname{dimVIY}$. This completes the proof of (9.4).
(9.5). Let A have type G_{2}, with β long. Suppose M_{j} and M_{j} are nontrivial for some $\mathfrak{i} \neq \mathrm{j}$.
(1) If $\left(\Sigma L_{i}, \gamma\right) \neq 0 \neq\left(\gamma, \Sigma L_{j}\right)$ for some $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$, then $\Pi\left(L_{i} \times L_{j}\right) \subset\left\{\beta_{2}, \beta_{3}, \beta_{5}\right\} \subset \Pi\left(L_{y}\right)$. Moreover, $\left\langle\lambda, \beta_{2}+\beta_{3}+\beta_{5}\right\rangle=2$.
(2) If $\left(\Pi\left(L_{j}\right), \gamma_{j}\right) \neq 0 \neq\left(\gamma_{i}, \gamma_{j}\right) \neq 0 \neq\left(\gamma_{j}, \Pi\left(L_{j}\right)\right)$ for some $\gamma_{j} \neq \gamma_{j} \in \Pi(\gamma)-\Pi\left(L_{Y}\right)$, then $\beta_{4} \in\left\{\gamma_{j}, \gamma_{j}\right\}$ and $\left|\left\{\beta_{2}, \beta_{3}, \beta_{5}\right\} \cap \Pi\left(L_{y}\right)\right|=2$.
(3) $\langle\lambda, \beta\rangle=0, q, q+q_{0}$ or $q+q_{0}+q^{\wedge}$, for q, q_{0} and q^{\wedge} distinct p-powers. If $Y=E_{6},\langle\lambda, \beta\rangle \neq q+q_{0}+q^{\wedge}$.

Proof: (1) follows from (2.5) and (2.7). For (2), let $\Pi\left(L_{j}\right)=\left\{\beta_{j}\right\}$ and $\Pi\left(L_{j}\right)=\left\{\beta_{j}\right\}$ and take $\ell \in\{i, j\}$. Note that if $\gamma \in \Pi(\gamma)-\Pi\left(L_{\gamma}\right)$ with $\left(\gamma, \beta_{\ell}\right) \neq 0$ and $\left(\gamma, \Sigma L_{k}\right)=0$ for all $k \neq \ell$, then $Q_{Y} / K_{\gamma} \cong\left(Q_{A}{ }^{\alpha}\right) q$, where q is the field twist on the embedding of $L_{A^{\prime}}$ in L_{ℓ}. Hence, $x_{-\alpha}(t)=x_{-\gamma}(a t q) u$, for some $a \in K^{*}, u \in K_{\gamma}$ and $\gamma \mid T_{A}=q \alpha$. The result of (2) then follows from (2.5), (2.6) and (2.8). Then (9.3), (9.5)(1) and (9.5)(2) imply (3).口
(9.6). There are no examples in the Main Theorem with A a rank two simple algebraic group, Y of type E_{n} and $p=2$.

Proof: Suppose false. Then (9.4) implies that $A=G_{2}$. Let $\Pi(A)=\left\{\alpha_{1}, \alpha_{2}\right\}$, with α_{1} short. If P_{A} is as before with $\operatorname{dimV} V^{1}\left(Q_{A}\right)>1$, then all components of L_{Y} ' have classical type. For otherwise, $Y=E_{8}$, $\Pi\left(L_{Y}\right)=\left\{\beta_{j} \mid j \neq 7\right\}$ and by induction, $\lambda_{1} T_{Y}=\lambda_{7}+\lambda_{8}$. But (9.2), (9.3) and (1.32) imply dimV|A $\leq 6^{2} .14<\operatorname{dimV} \mid Y$. So all components of L_{Y} ' have classical type and by $(1.5), Z_{A} \leq Z_{Y}$.

We first make a few notes about the case where $L_{A^{\prime}}=\left\langle U_{ \pm \alpha_{1}}\right\rangle$ and $\operatorname{dim}\left(M_{j}\right)>1$ with L_{i} of type A_{3}. (1) If $\operatorname{dim}\left(M_{j}\right)>1$ for some $j \neq i$, (9.2) implies L_{j} has type A_{1}. (2) There does not exist $\gamma \in \Pi(\gamma)-\Pi\left(L_{\gamma}\right)$ with $\left(\gamma, \Sigma L_{j}\right) \neq 0,\left(\gamma, \Sigma L_{m}\right)=0$ for all $m \neq i$ and $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right)=6$. For otherwise, the L_{A} composition factors of Q_{γ} / K_{γ} would have dimensions 1 and 2 , contradicting (2.3). (3) By (9.2), (2.5) and (2.7), there does not exist $\gamma \in \Pi\left(L_{\gamma}\right)-\Pi\left(L_{j}\right), \delta \in \Pi(\gamma)-\Pi\left(L_{\gamma}\right)$ with $\langle\lambda, \gamma\rangle \neq 0,(\gamma, \delta) \neq 0 \neq\left(\delta, \Sigma L_{j}\right)$ and $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right)=8$. (4) If $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ such that $V_{\gamma}\left(Q_{Y}\right) \neq 0$, then (2.3) implies $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right) \geq 4$.

Note that $\left\langle\lambda, \alpha_{1}\right\rangle \neq q_{1}+q_{2}+q_{3}+q_{4}$, for q_{1}, q_{2}, q_{3}, and q_{4} distinct p-powers. For otherwise, previous remarks imply $Y=E_{8}$ and $\left\langle\lambda, \beta_{6}\right\rangle=1=$ $\left\langle\lambda, \beta_{8}\right\rangle=1=\left\langle\lambda, \beta_{2}+\beta_{3}\right\rangle$. But then (9.5) implies dimV|A $\leq 6^{4} \cdot 14^{3}<$ dimVIY, by (1.32). Now, (9.2) implies that if there are r distinct p-powers in the p-adic expansion of $\left\langle\lambda, \alpha_{1}\right\rangle$, there exist $\left\{\beta_{\left.j_{1}, \ldots, \beta_{j_{r-1}}\right\} \subset \Pi(Y) \text { with }}\right.$ $\left\langle\lambda, \beta_{j_{k}}\right\rangle=1$ and $\left(\beta_{j_{k}}, \beta_{j_{\ell}}\right)=0$ for $k \neq \ell$. Previous work implies that $\left\langle\lambda, \alpha_{1}\right\rangle=0, q_{1}, q_{1}+q_{2}$, or $q_{1}+q_{2}+q_{3}$, for distinct p-powers q_{1}, q_{2}, and q_{3}. We next claim that if $\left\langle\lambda, \alpha_{1}\right\rangle=q_{1}+q_{2}+q_{3}, Y=E_{7}$ or E_{8}. For otherwise, taking P_{A} as before, with $L_{A}=\left\langle U_{ \pm \alpha_{1}}\right\rangle$, we may assume $\Pi\left(L_{\gamma}\right)=$ $\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}\right\}$. Also, L_{A} acts on the natural module for $\left\langle U_{ \pm} \beta_{2}, U_{ \pm} \beta_{3}, U_{ \pm} \beta_{4}\right\}$ with high weight $\left(q_{1}+q_{2}\right) \mu_{\beta}$ and the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is $q_{3} \neq q_{i}$ for $i=1,2$. Consider the action of L_{A} ' on the 27-dimensional irreducible $L_{A^{\prime}}$ module $V\left(\lambda_{6}\right)$. There is an $L_{A^{\prime}}$ ' composition
factor with high weight $\left(\lambda-\beta_{1}-\beta_{2}-\beta_{3}-2 \beta_{4}-2 \beta_{5}-\beta_{6}\right) \mid T\left(L_{A}\right)=$ $\left(q_{1}+q_{2}+q_{3}\right) \mu_{1}$. But there is no 27-dimensional $K A$-module affording such an L_{A} composition factor.

Previous remarks, [8] and (1.32) imply that $\lambda T_{Y} \neq \lambda_{\ell}$ for any ℓ, else dimVIA $\neq \operatorname{dimVIV}$. Note that (9.3) and (9.5) imply that for each distinct p-power q_{j} in the p-adic expansion of $\left\langle\lambda, \alpha_{2}\right\rangle$, there exists $\beta_{j} \in \Pi(Y)$ with $\left\langle\lambda, \beta_{j}\right\rangle=1$ and $\left(\beta_{j}, \beta_{k}\right)=0$ for any β_{k} corresponding to a different p-power q_{k}. As well, previous remarks, [8], (1.26), (1.32) and (9.5) imply that $\left\langle\lambda, \alpha_{1}\right\rangle \neq 0 \neq\left\langle\lambda, \alpha_{2}\right\rangle$, else dimVIA $\langle\operatorname{dimVIY}$.

Using the above remarks and the usual dimension arguments, it is straightfor ward to show that $\left\langle\lambda, \alpha_{2}\right\rangle \neq q$ and if $\left\langle\lambda, \alpha_{2}\right\rangle=q+q_{0}$, then $y \neq E_{8}$. (Here q and q_{0} are distinct p-powers.)

Suppose $\left\langle\lambda, \alpha_{2}\right\rangle=q+q_{0}$ and $\gamma=E_{6}$. Then $\operatorname{dimV} \mid A \leq 6^{2} \cdot 14^{2}$. Also there exist $\beta, \eta \in \Pi(Y)$ with $(\beta, \eta)=0$ and $\langle\lambda, \beta\rangle=1=\langle\lambda, \eta\rangle$. Then [8] and (1.32) imply $\left\langle\lambda, \alpha_{1}\right\rangle=q_{1}+q_{2}$, else dimVIA $\left\langle\operatorname{dimVIY}\right.$. Let P_{A} be as before, with $L_{A}{ }^{\prime}=\left\langle U_{ \pm \alpha_{1}}\right\rangle$. By previous remarks, symmetry and (1.23), we may assume that either $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{4}, \beta_{6}\right\}$ with $\lambda I T_{Y}=\lambda_{3}+\lambda_{5}$ or $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{1}, \beta_{4}, \beta_{6}\right\}$ with $\left\langle\lambda, \beta_{1}\right\rangle=1=\left\langle\lambda, \beta_{6}\right\rangle$ and $\left\langle\lambda, \beta_{4}+\beta_{2}\right\rangle=0$. In the first case, the bound on $\operatorname{dimV} \beta_{5}\left(Q_{y}\right)$ is exceeded. In the second case, [8] implies that $\lambda I T_{Y} \neq \lambda_{1}+\lambda_{6}$, and (1.38) implies that dimVIA $<\operatorname{dimVIY}$ in the remaining cases.

$$
\text { So if }\left\langle\lambda, \alpha_{2}\right\rangle=q+q_{0}, \gamma=E_{7} \text {. Also, }\left\langle\lambda, \alpha_{1}\right\rangle=q_{1}+q_{2}+q_{3} \text {, else }
$$

$\operatorname{dimVIA} \leq 6^{2} \cdot 14^{2}$ and using (1.32), [8] and (1.38), we see that $\operatorname{dimVIA}<\operatorname{dimVIY}$. Let P_{A} be as before with $L_{A^{\prime}}=\left\langle U_{ \pm \alpha_{1}}\right\rangle$. Then either (a) $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$, with $\left\langle\lambda, \beta_{1}+\beta_{3}+\beta_{6}\right\rangle=0$ and $\left\langle\lambda, \beta_{2}\right\rangle=1=$ $\left\langle\lambda, \beta_{5}+\beta_{7}\right\rangle$ or (b) L_{γ} ' has components $\left\langle U_{ \pm \beta_{1}}\right\rangle$ and $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}\right\rangle$, with $\left\langle\lambda, \beta_{1}\right\rangle=1=\left\langle\lambda, \beta_{2}+\beta_{5}\right\rangle$ and $\left\langle\lambda, \beta_{4}+\beta_{7}\right\rangle=0$ or (c) L_{γ} ' has components $\left\langle U_{ \pm \beta_{2}}\right\rangle,\left\langle U_{ \pm \beta_{5}}\right\rangle$, and $\left\langle U_{ \pm \beta_{7}}\right\rangle$, with $\left\langle\lambda, \beta_{j}\right\rangle=1$, for $j=2,5,7$ and $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$. In the last case, we need only count the conjugates in VIV of $V_{T_{Y}}(\lambda)$ to see that dimVIA $<\operatorname{dimViY}$. In case (a), the bound on
$\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ implies that $\left\langle\lambda, \beta_{4}+\beta_{7}\right\rangle=0$. So $\lambda I T_{Y}=\lambda_{2}+\lambda_{5}$ and (1.38) implies that $\operatorname{dimV}|A<\operatorname{dimV}| Y$. Finally, to see that the configurations described in (b) do not occur, we consider the action of $L_{A}{ }^{\prime}$ on the 56 -dimensional irreducible $k y$ module, $V\left(\lambda_{7}\right)$. There is an L_{A}. composition factor with high weight $\lambda-\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7} I T\left(L_{A}{ }^{\prime}\right)=$ $\left(q_{1}+q_{2}+q_{3}\right) \mu_{\beta}$. But there is no 56-dimensional $k A$ module which affords such an $L_{A^{\prime}}$ composition factor. Thus, in fact, $\left\langle\lambda, \alpha_{2}\right\rangle \neq q+q_{0}$.

By (9.5), it remains to consider the case where $\left\langle\lambda, \alpha_{2}\right\rangle=q+q_{0}+q^{\wedge}$ and $Y=E_{7}$ or E_{8}. So there exist $\beta, \eta, \varepsilon \in \Pi(Y)$ such that $\langle\lambda, \beta\rangle=1=\langle\lambda, \eta\rangle=\langle\lambda, \varepsilon\rangle$ and $0=(\beta, \eta)=(\beta, \varepsilon)=(\eta, \varepsilon)$. Also, $\operatorname{dimV} \mid A \leq 6^{4} \cdot 14^{3}$. If $Y=E_{8}$, (1.32) and (1.38) imply dimV|A<dimVIY. So $Y=E_{7}$. Let P_{A} be as in the previous notation with $L_{A}=\left\langle U_{ \pm \alpha_{2}}\right\rangle$. Then (9.3) and (9.5) imply that either $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{7}\right\}$, with $\left\langle\lambda, \beta_{1}\right\rangle=1$ or $\Pi\left(L_{\gamma}\right)=\left\{\beta_{2}, \beta_{3}, \beta_{5}, \beta_{7}\right\}$, with $\left\langle\lambda, \beta_{k}\right\rangle=1$, for $k=2,3,7$ and $\left\langle\lambda, \beta_{5}\right\rangle=0$. But in the first case (2.7) implies that the field twists on the embeddings of $L_{A} \cdot$ in $\left\langle U_{ \pm \beta_{2}}\right\rangle,\left\langle U_{ \pm \beta_{5}}\right\rangle$ and $\left\langle U_{ \pm \beta_{7}}\right\rangle$ are all equal, contradicting (2.5). In the second case, the field twists on the embeddings of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{5}}\right\rangle$ and in $\left\langle U_{ \pm \beta_{7}}\right\rangle$ are equal, while the field twists on the embeddings of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{2}}\right\rangle,\left\langle U_{ \pm \beta_{3}}\right\rangle$ and $\left\langle U_{ \pm \beta_{7}}\right\rangle$ are distinct, contradicting (2.7) (with $\gamma=\beta_{4}$).

This completes the proof of (9.6).ם

Section II: $A=G_{2}$ and $p=3$.

Let $(A, p)=\left(G_{2}, 3\right)$ and $\Pi(A)=\{\alpha, \beta\}$. Choose P_{A} such that $L_{A}=\left\langle U_{ \pm \beta}\right\rangle T_{A}$ and $\langle\lambda, \beta\rangle \neq 0$. Note that I_{α} is a 2-dimensional irreducible $L_{A^{\prime}}^{\prime}$ module. (See (2.2) for the definition of I_{α}.) Adopt the remaining notation of (2.0). Note that $\operatorname{dimVIA}=7^{k} \cdot 27^{\ell}$, for $k, \ell \in \mathbb{Z}^{+}$.
(9.7). If M_{j} is nontrivial, L_{i} has type A_{1} or A_{2}.

Proof: Suppose false. Then (7.1) of [12] and rank restrictions imply
that all components of L_{Y} ' have classical type. Hence, by (1.5), $Z_{A} \leq Z_{Y}$. We first note that L_{i} has type $A_{k_{i}}$ for some k_{j}. For otherwise, (7.1) of [12] implies that L_{i} has type D_{6} and M_{j} is isomorphic to the natural module for L_{j}. As well, the bound on $\operatorname{dim} V_{\beta_{1}}\left(Q_{Y}\right)$ and $\operatorname{dim} V_{\beta_{8}}\left(Q_{Y}\right)$ implies $Y=E_{7}$ and $\lambda \mid T_{Y}=\lambda_{7}$. But then $\operatorname{dimV} \mid A>\operatorname{dimVIY}$. Thus, L_{i} has type $A_{K_{j}}$ as claimed. Also note that L_{i} does not have type A_{7}. For otherwise the bound on $\operatorname{dim} V_{\beta_{2}}\left(Q_{Y}\right)$ implies $\lambda I T_{Y}=\lambda_{8}$.

Suppose L_{i} has type A_{5}. If $Y=E_{6}$, the bound on dimV $\beta_{2}\left(Q_{Y}\right)$ implies $\lambda I T_{Y}=\lambda_{1}$ or λ_{6} and $\operatorname{dimVIY}=27$. But $\operatorname{dimV} \mid A>27$. Hence, $Y=E_{7}$ or E_{8}. Note that L_{A} ' acts irreducibly on W, the natural module for L_{i}, so there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{j}\right) \neq 0$ and $Q_{y} / K_{\gamma} \cong W$ or W^{*}. Hence, if $Y=E_{7}, \Pi\left(L_{j}\right)=\left\{\beta_{k} \mid k \neq 1,3\right\}$. The bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}\right)$ implies $\lambda_{I} T_{Y}=\lambda_{2}$ or λ_{7}. However, then [8] implies $\operatorname{dimV} \mid A \neq \operatorname{dimVIY}$. Thus, $Y=E_{8}$ and $\Pi\left(L_{Y}\right)=\left\{\beta_{k} \mid k \neq 2,7\right\}$. But (1.15) implies $Q_{A} \leq K_{\beta_{7}}$, contradicting (2.3).

The above remarks imply L_{i} has type A_{3}. If W is the natural module for $L_{i}, W \mid L_{A}{ }^{\prime}$ is a 4-dimensional tensor decomposable irreducible and $M_{i} \cong W$ or W^{*}. If $M_{i} L_{A}$ ' has high weight $\left(q_{1}+q_{2}\right) \mu_{\beta}$, the L_{A} ' composition factors of $W A W$ have high weights $2 q_{1} \mu_{\beta}$ and $2 q_{2} \mu_{\beta}$. Hence, there does not exist $\delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\delta, \Sigma L_{\mathfrak{j}}\right) \neq 0$ and $Q_{Y} / K_{\delta} \cong W, W^{*}$, or $W \wedge W$. So if $\Pi\left(L_{i}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{5}\right\}$, then $Y=E_{7}$ or E_{8} and $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{7}}\right\rangle \leq L_{Y}$. The above remarks about $W \wedge W$, (2.5) and (2.7) imply $\left\langle\lambda, \beta_{1}+\beta_{7}\right\rangle=0$. Also, if $\left\langle U_{ \pm \beta_{8}}\right\rangle \leq L_{Y},\left\langle\lambda, \beta_{8}\right\rangle=0$. The bound on $\operatorname{dim} V_{\beta_{3}}\left(Q_{Y}\right)$ and $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ implies $\lambda \mid T_{Y}=\lambda_{2}+x \lambda_{8}$ or $\lambda_{5}{ }^{+x} \lambda_{8}$, where $x \in\{0,1,2\}$. Now, [8] implies $\operatorname{dimVIA} \neq \operatorname{dimVIY}$ if $Y=E_{7}$. If $X=0$, the work of this result and (1.38) imply $\operatorname{dimV} \mid A \leq 7^{4}<\operatorname{dimVIY}$. Hence $x \neq 0$. But then previous work and (1.32) imply dimV|A $\leq 7^{6}<\operatorname{dimV} \mid Y$. So, $\Pi\left(L_{i}\right) \neq\left\{\beta_{2}, \beta_{4}, \beta_{5}\right\}$.

Consider now the case where $Y=E_{8}$ and $\Pi\left(L_{i}\right)=\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\}$. Then (1.15) and previous remarks imply $\left\langle U_{ \pm \beta_{4}}\right\rangle$ is a component of L_{γ}. By (2.5) and (2.7), $\left\langle\lambda, \beta_{4}\right\rangle=0$. The bound on $\operatorname{dim} V_{\beta_{5}}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{5}\right\rangle=0$.

If $\left\langle U_{ \pm \beta_{1}}\right\rangle \not \ddagger L_{Y}$, then $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$, by (2.3) and (2.13). If $\left\langle U_{ \pm \beta_{1}}\right\rangle \leq L_{Y}$, (1.15) implies $Q_{A} \leq K_{\beta_{3}}$ and again $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$. Hence, $\lambda I T_{Y}=x \lambda_{2}+\lambda_{j}$, where $x \in\{0,1,2\}$ and $j=6$ or 8 . If $\lambda I T_{Y}=\lambda_{2}+\lambda_{6}, \lambda_{2}+\lambda_{8}, 2 \lambda_{2}+\lambda_{6}$ or $2 \lambda_{2}+\lambda_{8}$, dimVIA $\leq 7^{6}<\operatorname{dimVIY}$, by (1.38). If $\lambda \mid T_{Y}=\lambda_{6}$, $\operatorname{dimV}\left|A \leq 7^{4}<\operatorname{dimV}\right| Y$ by (1.38). Hence $\Pi\left(L_{i}\right) \neq\left\{\beta_{6}, \beta_{7}, \beta_{8}\right\}$.

Finally, consider the case where $Y=E_{7}$ and $\Pi\left(L_{j}\right)=\left\{\beta_{5}, \beta_{6}, \beta_{7}\right\}$. Applying (1.15), we see that $\Pi\left(L_{Y}\right)=\Pi\left(L_{\mathfrak{j}}\right) \cup S$, where δ is (a) $\left\{\beta_{\mathcal{J}}\right\},(b)$ $\left\{\beta_{2}\right\},(c)\left\{\beta_{2}, \beta_{1}\right\}$, or (d) $\left\{\beta_{2}, \beta_{1}, \beta_{3}\right\}$. In (d), (2.5), (2.7) and the bound on $\operatorname{dim}_{\beta_{4}}\left(Q_{Y}\right)$ imply $\lambda \mid T_{Y}=\lambda_{7}$ or $\lambda_{1}+\lambda_{7}$. But then [8] implies dimv|A \neq dimVIY. In each of the remaining cases, we consider the action of L_{A} ' on the 56-dimensional irreducible ky module, $V\left(\lambda_{7}\right)$. With q_{1} and q_{2} as above, we may assume that the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{k}}\right\rangle$ is q_{1}, where $k=3$ in (a) and $k=2$ in (b) and (c). In case (c), we find that the field twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is either q_{1} or q_{2}, else there is an 8-dimensional $L_{A^{\prime}}$ composition factor of $V\left(\lambda_{7}\right)$ with high weight $\lambda-\beta_{2}-\beta_{3}-2 \beta_{4}-\beta_{5}-\beta_{6}-\beta_{7} \mid T\left(L_{A}\right)$. But there is no 56-dimensional $k A$ module affording such an $L_{A}{ }^{\prime}$ compositon factor. Now, in cases (a) (c), there is a 6-dimensional L_{A} ' composition factor of $V\left(\lambda_{7}\right)$. This implies that there is a 49-dimensional A composition factor of $V\left(\lambda_{7}\right)$. Also, there are less than seven 1-dimensional $L_{A}{ }^{\prime}$ composition factors, so there must also be a 7 -dimensional A composition factor of $V\left(\lambda_{7}\right)$. But this contradicts the following information about $V\left(\lambda_{7}\right)$: If (a) holds, there are four trivial L_{A} ' composition factors of $V\left(\lambda_{7}\right)$; if (b) holds, there are eight 4-dimensional L_{A} ' composition factors; if (c) holds, there are either exactly 2 trivial $L_{A^{\prime}}^{\prime}$ composition factors or exactly six 4-dimensional $L_{A}{ }^{\prime}$ composition factors.

This completes the proof of (9.7). \square

Remarks (9.8). Assume $Z_{A} \leq Z_{Y}$. (1) If $i \neq j$ with M_{j} and M_{j} nontrivial and $\left(\Sigma L_{j}, \gamma\right) \neq 0 \neq\left(\Sigma L_{j}, \gamma\right)$ for some $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$, then (9.7)
and (2.5) - (2.7) imply $\gamma=\beta_{4}$ and $\left\{\beta_{2}, \beta_{3}, \beta_{5}\right\} \subset \Pi\left(L_{Y}\right)$.
(2) Suppose $\left\langle U_{ \pm \beta_{Q}}\right\rangle$ and $\left\langle U_{ \pm \beta_{m}}\right\rangle$ are components of $L \gamma^{\prime}$ and $\gamma, \delta \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\beta_{\ell}, \gamma\right) \neq 0 \neq(\gamma, \delta) \neq 0 \neq\left(\delta, \beta_{m}\right)$ and $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right)=2=\operatorname{dim}\left(Q_{Y} / K_{\delta}\right)$. If $Q_{A} \ddagger K_{\gamma}$ and $Q_{A} \ddagger K_{\delta}$, then the field twists on the embeddings of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{Q}}\right\rangle$ and $\left\langle U_{ \pm \beta_{m}}\right\rangle$ are equal. For one may check that there is a nontrivial contribution to some root group of $Q_{Y}(\gamma, \delta)$ in the factorization of nonidentity elements of $Q_{A}{ }^{\prime}$. Since $Z_{A} \leq Z_{Y}$ and $Q_{A^{\prime}} \leq K_{\gamma} \cap K_{\delta}$, the image of $Q_{A}{ }^{\prime}$ in $Q_{Y}(\gamma, \delta)$ is a 1-dimensional L_{A} ' submodule of $Q_{Y}(\gamma, \delta)$. Such a submodule can exist only if the twists are equal.
(3) If L_{ℓ} and L_{m} have type A_{1} with $\left(\Sigma L_{\ell}, \gamma\right) \neq 0 \neq\left(\Sigma L_{m}, \gamma\right)$ for some $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $\operatorname{dim}\left(Q_{Y} / K_{\gamma}\right)=4$, then (1.15) implies that $Q_{A} \leq K_{\gamma}$.
(9.9). Suppose M_{j} is nontrivial and L_{i} has type A_{2}. Then Y has type $E_{6}, \lambda I T_{Y}=\lambda_{1}$ or λ_{6} and $\lambda \mid T_{A}=2 \mu_{1}$.

Proof: Since all components of $L^{\prime}{ }^{\prime}$ are necessarily of classical type, $Z_{A} \leq Z_{Y}$. Also, there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{j}\right) \neq 0$ and $\left(\gamma, \Sigma L_{k}\right)=0$ for $k \neq i$. For otherwise, Q_{Y} / K_{γ} is a 3 -dimensional irreducible $L_{A}{ }^{\prime}$ module, contradicting (2.4).

Consider first the case where $\Pi(L)_{j}=\left\{\beta_{2}, \beta_{4}\right\}$. The above remarks imply $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is a component of L_{Y} and $\left\langle U_{ \pm \beta_{6}}\right\rangle \leq L_{Y}$. In fact, $p=3$ and (1.15) imply $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is a component of L_{Y}. . By (2.6) and (2.7), the field twists on the embeddings of $L_{A^{*}}$ in $L_{i},\left\langle U_{ \pm \beta_{1}}\right\rangle$ and $\left\langle U_{ \pm \beta_{6}}\right\rangle$ are all equal. Hence, (2.5) implies $\left\langle\lambda, \beta_{1}+\beta_{6}\right\rangle=0$. If $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is a component of $L_{\gamma}{ }^{\prime}$, (9.8) (3) implies that $\left\langle\lambda, \beta_{7}+\beta_{8}\right\rangle=0$. Otherwise, (2.3) and (2.13) imply the same conclusion. Note that $\left\langle\lambda, \beta_{3}+\beta_{5}\right\rangle \neq 0$. For otherwise, (9.7), the work of this result so far, [8] and (1.38) imply $\operatorname{dimV}|A \neq \operatorname{dimV}| Y$. Since $\left\langle\lambda, \beta_{3}\right\rangle \neq 0$ or $\left\langle\lambda, \beta_{5}\right\rangle \neq 0$, the bound on $\operatorname{dim} V_{\beta_{k}}\left(Q_{Y}\right)$, for $k=3$ or 5 , implies $\left\langle\lambda, \beta_{4}\right\rangle=1$ and $\left\langle\lambda, \beta_{2}\right\rangle=0$. Moreover, (1.35) implies $\left\langle\lambda, \beta_{k}\right\rangle=1$ when $\left\langle\lambda, \beta_{k}\right\rangle \neq 0$, for $k=3$ or 5 . If $\lambda \mid T_{Y}=\lambda_{3}+\lambda_{4}$ or $\lambda_{4}+\lambda_{5}$,
$\operatorname{dimV} \mid A \leq 27^{2}$. Counting only the conjugates of $V_{T_{Y}}(\lambda)$ in $V \mid Y$, we have $\operatorname{dimVIA}<\operatorname{dimVIY}$. A similar argument rules out $\lambda \mid T_{Y}=\lambda_{3}+\lambda_{4}+x \lambda_{7}$, $\lambda_{4}+\lambda_{5}+x \lambda_{7}$ and $\lambda_{3}+\lambda_{4}+\lambda_{5}+x \lambda_{7}$ when $x \neq 0$ and $\lambda \mid T_{y}=\lambda_{3}+\lambda_{4}+\lambda_{5}$ when $Y=E_{7}$ or E_{8}. Finally, if $Y=E_{6}$ and $\lambda\left|T_{Y}=\lambda_{3}+\lambda_{4}+\lambda_{5}, \operatorname{dimV}\right| A \leq$ $27^{3}<$ dimVIY, by (1.38). Hence, $\Pi\left(L_{i}\right) \neq\left\{\beta_{2}, \beta_{4}\right\}$. Similar arguments show that $\Pi\left(L_{i}\right) \neq\left\{\beta_{6}, \beta_{7}\right\}$.

Claim: If $\left\langle U_{ \pm \beta_{2}}\right\rangle,\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$ and $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$ are components of L^{\prime}, then the statement of (9.9) holds.

Reason: First note that $Y \neq E_{7}$, else previous remarks and the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ imply $\lambda I T_{Y}=\lambda_{1}$. Now $\Pi\left(L_{i}\right)=\left\{\beta_{1}, \beta_{3}\right\}$ or $\left\{\beta_{5}, \beta_{6}\right\}$. Suppose M_{j} is nontrivial for some $j \neq i$ with $\left(\Sigma L_{j}, \beta_{4}\right) \neq 0$. Then (2.5), (2.7) and the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ imply $\left\langle\lambda, \beta_{1}\right\rangle=1=\left\langle\lambda, \beta_{6}\right\rangle$ and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $2 \leq k \leq 5$. If $Y=E_{6}, \operatorname{dimV} \mid A \neq \operatorname{dimVI} Y$, by [8]. Previous remarks then imply $Y=E_{8}$ and $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is a component of $L_{\gamma^{\prime}}$. By (2.7), $\left\langle\lambda, \beta_{8}\right\rangle=0$. The bound on $\operatorname{dim}_{\beta_{7}}\left(Q_{Y}\right)$ and (1.35) imply that if $\left\langle\lambda, \beta_{7}\right\rangle \neq 0$, then $\left\langle\lambda, \beta_{7}\right\rangle=1$. In any case, dimV|A $\leq 27^{4}<\operatorname{dimV} \mid Y$, by (1.32). Thus, $\left\langle\lambda, \beta_{1}+\beta_{2}+\beta_{3}+\beta_{5}+\beta_{6}\right\rangle=1$. The bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ implies that $\left\langle\lambda, \beta_{4}\right\rangle=0$ and $V_{L_{i}}\left(-\beta_{4}\right) \cong M_{i}{ }^{*}$.

Suppose $Y=E_{8}$. If $\left\langle\lambda, \beta_{6}\right\rangle=1,\left\langle U_{ \pm \beta_{8}}\right\rangle$ is a component of L_{Y}, and by (2.7), $\left\langle\lambda, \beta_{8}\right\rangle=0$. So dim $V\left|A \leq 27^{2}<\operatorname{dimV}\right| Y$ by (1.32). Thus, $\left\langle\lambda, \beta_{1}\right\rangle=1$. If $\left\langle\lambda, \beta_{7}+\beta_{8}\right\rangle \neq 0$, previous remarks, the bound on $\operatorname{dim} v_{\beta_{7}}\left(Q_{Y}\right)$ and (1.35) imply $\left\langle U_{ \pm \beta_{8}}\right\rangle$ is a component of $L_{\gamma^{\prime}}$ and $\left\langle\lambda, \beta_{8}\right\rangle \neq 0$. If $\left\langle\lambda, \beta_{8}\right\rangle=2$, $\operatorname{dimV}\left|A \leq 27^{4}<\operatorname{dimV}\right| Y$ by (1.38). If $\left\langle\lambda, \beta_{8}\right\rangle=1$, the bound on dimV $\beta_{7}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{7}\right\rangle=0$, and then $\operatorname{dimV} \mid A \leq 7 \cdot 27^{3}<\operatorname{dimVIY}$, by (1.38).

Thus, $Y=E_{6}$, dimV|Y $=27$; so $\langle\lambda, \alpha\rangle=0$. Hence by (1.10), $\lambda \mid T_{A}=$ $2 \mu_{1}$ or $2 q \mu_{2}$. If $\lambda \mid T_{A}=2 q \mu_{2}$, (4.1) of [12] implies that there is a closed subgroup $B<A$ of type A_{2} such that $V \mid B$ is irreducible. Moreover, (1.10) and knowledge of the embedding of B in A implies that $q=1$. Thus, v is a restricted $K A$ module and hence irreducible for $L(A)$, by (1.1) But now, the proof of (11.1) in [15] shows that the span of the e_{r} and f_{r}, for short roots $r \in \Sigma(A)$, is a noncommutative ideal which lies in the kernel of the action of
$L(A)$ on V. But the action of $L(Y)$ on V has no such ideal in its kernel. Hence, $\lambda I T_{A}=2 \mu_{1}$, and the Claim holds.

Consider now the case where $\Pi\left(L_{j}\right)=\left\{\beta_{1}, \beta_{3}\right\}$. By the preceding Claim, previous remarks and (1.15), we may assume that either L_{Y} ' has component $\left\langle U_{ \pm \beta_{j}}\right\rangle$ and $\left\langle U_{ \pm \beta_{k}}\right\rangle \nsubseteq L^{\prime}$ for $\{j, k\}=\{2,5\}$ or $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$. In either case, $\left\langle\lambda, \beta_{2}\right\rangle=0$; as well, in the first case $\left\langle\lambda, \beta_{j}\right\rangle=0$ and in the second case $\left\langle\lambda, \beta_{5}+\beta_{6}+\beta_{7}\right\rangle=0$. (We have used (9.7) and the bound on $\operatorname{dim}_{\beta_{4}}\left(Q_{Y}\right)$.) Now $Y \neq E_{6}$; else (1.23) and previous remarks imply that $\lambda I T_{Y}=\lambda_{1}+\lambda_{6}, \lambda_{3}+\lambda_{5}$, or $\lambda_{3}+\lambda_{4}+\lambda_{5}$. But by [8], $\operatorname{dimVIA} \neq \operatorname{dimVIY}$ in the first case and in the latter cases, $\operatorname{dimV}\left|A \leq 27 \cdot 7^{2}<\operatorname{dim} V\right| Y$, by (1.38).

Suppose $\Pi\left(L_{j}\right)=\left\{\beta_{1}, \beta_{3}\right\}$ and $Y=E_{7}$. We first note that $\left\langle\lambda, \beta_{5}+\beta_{6}+\beta_{7}\right\rangle \neq 0$. For otherwise, the previous work of this result implies $\lambda \mid T_{Y}=\lambda_{1}, \lambda_{3}$ or $\lambda_{3}+\lambda_{4}$. But [8] rules out the first two possibilities and in the last case, dimVIA $\leq 27^{2}<\operatorname{dimV} \mid Y$ by (1.38). Now examining all possible configurations, using previous work, (2.3), (9.8) and (2.13), we see that either (a) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{6}\right\}$, or (b) $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{7}\right\}$ and $\left\langle\lambda, \beta_{7}\right\rangle \neq 0$. Consider the action of L_{A} ' on the 56 -dimensional irreducible kY module, $V\left(\lambda_{7}\right)$. In case (a), if the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{6}}\right\rangle$ is not equal to the twist on the embedding in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ (and L_{j}), there are exactly two 6-dimensional and two 4-dimensional $L_{A}{ }^{\prime}$ composition factors of $V\left(\lambda_{7}\right)$. In case (b), the L_{A}. composition series of $V\left(\lambda_{7}\right)$ has the same properties. But there is no 56-dimensional kA module affording such an $L_{A}{ }^{\prime}$ composition series. Hence, (2.5), (2.6), and (2.7) imply that $L_{\gamma}{ }^{\prime}$ is as in (a) with $\left\langle\lambda, \beta_{6}\right\rangle=0$. So $\left\langle\lambda, \beta_{5}+\beta_{7}\right\rangle \neq 0$ and $\operatorname{dimV} \mid A \leq 7 \cdot 27^{2}$. (We have used (9.8).) But [8], (1.32) and (1.38) then imply $\operatorname{dimV}|A \neq \operatorname{dimV}| Y$.

Now suppose $\Pi\left(L_{j}\right)=\left\{\beta_{1}, \beta_{3}\right\}$ and $Y=E_{8}$. Note that if L_{Y} ' has component $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle$ (respectively, $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$, $\left\langle U_{ \pm \beta_{6}}, U_{ \pm \beta_{7}}\right\rangle$), then $\left\langle\lambda, \beta_{5}+\beta_{6}+\beta_{7}+\beta_{8}\right\rangle=0$, as $Q_{Y} / K_{\beta_{8}}$ (respectively,
$Q_{Y} / K_{\beta_{5}}, Q_{Y} / K_{\beta_{8}}$) is a 3-or 4-dimensional irreducible L_{A} ' module. If $\left\langle U_{ \pm \beta_{7}}, U_{ \pm \beta_{8}}\right\rangle$ is a component of $L_{Y},\left\langle\lambda, \beta_{5}+\beta_{6}+\beta_{7}+\beta_{8}\right\rangle=0$, also. For if $\left\langle U_{ \pm \beta_{5}}\right\rangle \nsubseteq L^{\prime}$, we may argue as above. Otherwise, use (2.5) - (2.7) and the bound on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$. But if $\left\langle\lambda, \beta_{5}+\beta_{6}+\beta_{7}+\beta_{8}\right\rangle=0, \operatorname{dimV} \mid A \leq 27^{2}<$ dimVIY, by [8] and (1.32).

Now, if $\lambda \mid T_{Y}=\lambda_{1}+\lambda_{8}$ or $\lambda_{3}+x \lambda_{4}+\lambda_{8}$, for $x \in\{0,1\}$, $\operatorname{dimVIA} \leq 27^{2} .7^{2}<\operatorname{dimVIY}$, by (1.38) and (1.32). If $\lambda \mid T_{Y}=\lambda_{1}+2 \lambda_{8}$ or $\lambda_{3}+x \lambda_{4}+2 \lambda_{8}, x$ as above, then dimVIA $\leq 27^{4}<\operatorname{dimVIY}$, by (1.38). Also, if $\lambda \mid T_{Y}=\lambda_{1}+z \lambda_{5}$ or $\lambda_{3}+x \lambda_{4}+z \lambda_{5}$ with $0<z \leq 2$ and x as above, $\operatorname{dimV}\left|A \leq 27^{2} .7<\operatorname{dimV}\right| Y$, by (1.32). Applying the restrictions imposed on $\lambda I T_{\gamma}$ by (2.3), (2.13), (9.8) and the above remarks, we find that one the following holds:
(a) $L_{y^{\prime}}=L_{i} \times\left\langle U_{ \pm \beta_{5}}\right\rangle \times\left\langle U_{ \pm \beta_{8}}\right\rangle$ and $\left\langle\lambda, \beta_{6}+\beta_{7}\right\rangle \neq 0$,
(b) $L_{Y}{ }^{\prime}=L_{i} \times\left\langle U_{ \pm \beta_{2}}\right\rangle \times\left\langle U_{ \pm \beta_{6}}\right\rangle$ and $\left\langle\lambda, \beta_{6}\right\rangle \neq 0=\left\langle\lambda, \beta_{7}+\beta_{8}\right\rangle$, or
(c) $L_{\gamma}{ }^{\prime}=L_{i} \times\left\langle U_{ \pm \beta_{2}}\right\rangle \times\left\langle U_{ \pm \beta_{7}}\right\rangle$ and $\left\langle\lambda, \beta_{7}\right\rangle \neq 0=\left\langle\lambda, \beta_{5}+\beta_{6}\right\rangle$.

In case (a), (9.8), (2.5) and (2.7) imply that at most one of $\left\langle\lambda, \beta_{6}\right\rangle$ and $\left\langle\lambda, \beta_{8}\right\rangle$ is nonzero. If $\left\langle\lambda, \beta_{8}\right\rangle \neq 0$, (so $\left.\left\langle\lambda, \beta_{7}\right\rangle \neq 0\right) \operatorname{dimV} \mid A \leq 27^{4}$. But counting only the conjugates of $V_{T_{Y}}(\lambda)$ and $V_{T_{Y}}\left(\lambda-\beta_{7}-\beta_{8}\right)$ in $V I Y$, we have $\operatorname{dimV} \mid Y>27^{4}$. So $\left\langle\lambda, \beta_{8}\right\rangle=0$ and $\operatorname{dimV}\left|A \leq 27^{3}<\operatorname{dimV}\right| Y$ by (1.32). In case (b), dimV|A $\leq 27^{4}<\operatorname{dimV} \mid Y$ by (1.32). In case (c), if $\left\langle\lambda, \beta_{7}\right\rangle=1$, $\operatorname{dimV} \mid A \leq 27^{3} .7$; if $\left\langle\lambda, \beta_{7}\right\rangle=2$, dimV|A $\leq 27^{4}$. But we need only count the conjugates of $V_{T_{Y}}(\lambda)$ when $\left\langle\lambda, \beta_{7}\right\rangle=1$, and in addition, the conjugates of $V_{T_{Y}}\left(\lambda-\beta_{7}\right)$ when $\left\langle\lambda, \beta_{7}\right\rangle=2$, to see that $\operatorname{dimV}|Y>\operatorname{dimV}| A$. Hence, we have shown that if $L_{i}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle$, then the result holds.

Consider the case where $\Pi\left(L_{j}\right)=\left\{\beta_{5}, \beta_{6}\right\}$. By symmetry and previous work of this result, we may assume $Y=E_{8}$ and $\left\langle U_{ \pm \beta_{j}}\right\rangle$ is a component of $L_{\gamma^{\prime}}$ with $\left\langle\lambda, \beta_{j}\right\rangle=0$, for $j=2$ or 3 , and $\left\langle U_{ \pm \beta_{2}}, U_{ \pm \beta_{3}}\right\rangle \nsubseteq L_{\gamma^{\prime}}$. Also, $\left\langle U_{ \pm \beta_{8}}\right\rangle \leq$ $L_{\gamma^{\prime}}$ and $\left\langle\lambda, \beta_{8}\right\rangle=0$. If $\left\langle U_{ \pm \beta_{3}}\right\rangle$ is a component of $L_{\gamma^{\prime}},\left\langle\lambda, \beta_{2}\right\rangle=0$. Moreover, earlier remarks which apply to the bound on $\operatorname{dim}_{\beta_{k}}\left(Q_{Y}\right)$ for $k=4$ or 7 , imply $\lambda \mid T_{Y}=y \lambda_{1}+x \lambda_{4}+\lambda_{5}$ or $y \lambda_{1}+\lambda_{6}+x \lambda_{7}$, where $x \in\{0,1\}$ and $0 \leq y \leq 2$.

If $y=0, \operatorname{dim} V \mid A \leq 27^{2}$ and if $y \neq 0$, $\operatorname{dimV} \mid A \leq 27^{3}$. But counting only the conjugates of $V_{T_{Y}}(\lambda)$ in $V \mid Y$, we have dimV|Y $>\operatorname{dimV} \mid A$. Thus, $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is a component of L_{Y}. Also, $\lambda I T_{Y}=y \lambda_{1}+z \lambda_{3}+x \lambda_{4}+\lambda_{5}$ or $y \lambda_{1}+z \lambda_{3}+\lambda_{6}+x \lambda_{7}$, where x and y are as above and $0 \leq z \leq 2$. If $y=0=z, \operatorname{dimV} \mid A \leq 27^{2}$, if $y=0 \neq z$, dimVIA $\leq 27^{3}$ and otherwise, $\operatorname{dimV} \mid A \leq 27^{4}$. But in each case (1.32) implies that dimVIA < dimVIY. Hence, $L_{i} \neq\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$.

Finally, consider the case where $\Pi\left(L_{i}\right)=\left\{\beta_{7}, \beta_{8}\right\}$. Previous remarks, the bound on $\operatorname{dim} V_{\beta_{6}}\left(Q_{Y}\right)$ and (1.15) imply $\left\langle U_{ \pm \beta_{5}}\right\rangle$ is a component of L_{Y}. with $\left\langle\lambda, \beta_{5}\right\rangle=0$. We first claim that there exists $j \neq i$ with M_{j} nontrivial. For suppose not. Then, (a) if $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $1 \leq k \leq 4$, $\operatorname{dimV} \mid A \leq 27^{2}$, (b) if $\left\langle\lambda, \beta_{1}+\beta_{3}+\beta_{4}\right\rangle>0$ and $\left\langle\lambda, \beta_{2}\right\rangle=0$ or if $\left\langle\lambda, \beta_{2}\right\rangle \neq 0$ and $\left\langle\lambda, \beta_{1}+\beta_{3}+\beta_{4}\right\rangle=0$, $\operatorname{dimV} \mid A \leq 27^{3}$, and (c) dimV|A $\leq 27^{4}$ otherwise. (We have used (9.8) and the previous work of this result.) Recall that $\lambda \mid T_{Y} \neq \lambda_{8}$. In (a) and (b), we need only count the conjugates of $V_{T_{Y}}(\lambda)$ in VIY to see that dimVIY $>\operatorname{dimVIA}$. For (c), we may assume $\left\langle\lambda, \beta_{1}+\beta_{3}+\beta_{4}\right\rangle>0$ and $\left\langle\lambda, \beta_{2}\right\rangle>0$. But again, as in (a) and (b) we show that $\operatorname{dimVIA}<\operatorname{dimVIY}$. Thus, there exists a $j \neq i$ with M_{j} nontrivial.

The previous work of this result and (9.8) imply that either (a) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$, (b) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$ or (c) $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{2}, \beta_{3}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$. If (a) or (b) holds, (2.3), (2.13) and (9.8) imply that $\left\langle\lambda, \beta_{2}+\beta_{4}\right\rangle=0$. So $\lambda \mid T_{Y}=c \lambda_{1}+x \lambda_{3}+\lambda_{8}$ or $c \lambda_{1}+x \lambda_{3}+y \lambda_{6}+\lambda_{7}$ for $c \in\{1,2\}, 0 \leq x \leq 2$ and $y \in\{0,1\}$. Moreover, $\operatorname{dimV} \mid A \leq 7 \cdot 27^{3}$ if $c=1$ and $\operatorname{dimVIA} \leq 27^{4}$ if $\mathrm{C}=2$. In each case, (1.38) and (1.32) imply $\operatorname{dimV} \mid \mathrm{A}<$ dimVIY. Suppose $L_{Y}{ }^{\prime}$ is as in (c). By (2.7), the set of field twists on the embeddings of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{k}}\right\rangle$ for $k=2,3,5$ consists of at most 2 distinct primes. Recall that the field twist on the embedding of L_{A} in $\left\langle U_{ \pm \beta_{5}}\right\rangle$ equals that on the embedding in L_{j}. And since $\left\langle\lambda, \beta_{2}+\beta_{3}\right\rangle \neq 0$, (2.5) implies that there are exactly two distinct field twists on the embeddings of L_{A} ' in the triple of $A_{1} ' s,\left\langle U_{ \pm \beta_{k}}\right\rangle, k=2,3,5$, and exactly one of $\left\langle\lambda, \beta_{2}\right\rangle$ and $\left\langle\lambda, \beta_{3}\right\rangle$ is nonzero. Moreover, the bound on $\operatorname{dim} V_{\beta_{4}}\left(Q_{Y}\right)$ implies $\left\langle\lambda, \beta_{4}\right\rangle=0$.

So in case (c), $\lambda_{1} \mid T_{Y}=x \lambda_{1}+c \lambda_{k}+\lambda_{8}$ or $x \lambda_{1}+c \lambda_{k}+y \lambda_{6}+\lambda_{7}$ for $k=2$ or 3 , $0 \leq x \leq 2, c \in\{1,2\}$ and $y \in\{0,1\}$. Referring to cases (a) and (b), (9.8) and the previous work of this result, we see that $\operatorname{dimVIA} \leq 7^{3} \cdot 27^{2}$ if $c=1$ and $\operatorname{dimV} \mid A \leq 274.7$ if $c=2$. Again (1.32) and (1.38) imply dimVIA $<\operatorname{dimV} \mid Y$. Hence, $L_{i} \neq\left\langle U_{ \pm} \beta_{7}, U_{ \pm \beta_{8}}\right\rangle$.

This completes the proof of (9.9).
(9.10). Let $\gamma \in \Pi(\gamma)-\Pi\left(L_{Y}\right)$ and $i \neq j$ such that $\left(\Sigma L_{j}, \gamma\right) \neq 0 \neq$ $\left(\gamma, \Sigma L_{j}\right)$. Then M_{j} or M_{j} is trivial.

Proof: Suppose false; i.e., suppose M_{j} and M_{j} are both nontrivial. Then (9.7) - (9.9) imply that L_{i} and L_{j} each have type A_{1} and there exists $k \neq i$, j with $\left(\Sigma L_{k}, \gamma\right) \neq 0$. Moreover, (1.15), $p=3$ and the minimality of P_{Y} imply that L_{k} has type A_{1} also. Let $\beta_{i}, \beta_{i}, \beta_{k}$ be such that $L_{\ell}=\left\langle U_{ \pm \beta_{\ell}}\right\rangle$ for $\ell=i, j, k$. So $\left\langle\lambda, \beta_{j}\right\rangle \neq 0 \neq\left\langle\lambda, \beta_{j}\right\rangle$. Let q_{ℓ} be the field twist on the embedding of L_{A} in L_{ℓ} for $\ell=i, j, k$. Then we may assume $q_{k}=q_{j} \neq q_{j}$. The L_{A} composition factors of Q_{Y} / K_{γ} have high weights $\left(2 q_{j}+q_{j}\right) \mu_{\beta}$ and $q_{j} \mu_{\beta}$. Hence, $\operatorname{dim}\left(Q_{A} K_{\gamma} / K_{\gamma}\right)=2$. Now since $V_{T_{Y}}\left(\lambda-\beta_{i}-\gamma\right) \neq 0$, a nonidentity element from the set $U_{-\gamma} \cdot U_{-\gamma-\beta_{i}}$ must occur in the factorization of some element of $Q_{A} K_{\gamma} / K_{\gamma}$. However, γ (respectively, $-\gamma-\beta_{j}$) affords $T\left(L_{A}\right.$) weight $\left(q_{i}+2 q_{j}\right) \mu_{\beta}$ (respectively, $\left.\left(2 q_{j}-q\right) \mu_{\beta}\right)$. While the weights in $Q_{A} K_{\gamma} / K_{\gamma}$ are $q_{i} \mu_{\beta}$ and $-q_{i} \mu_{\beta}$, contradicting (2.4). This completes the proof of (9.10).
(9.11). If (A, Y, V) is an example in the Main Theorem, with $(A, p)=$ $\left(G_{2}, 3\right)$ and Y of type E_{n}, then $\lambda I T_{Y}=\lambda_{1}$ or λ_{6} and $\lambda I T_{A}=2 \mu_{1}$.

Proof: Suppose $\langle\lambda, \gamma\rangle=0$ for some $\gamma \in \Pi(A)$. Then (4.1) of [12] implies that there exists $B<A$ of type A_{2} such that $V I B$ is irreducible. Then (6.0) implies that $Y=E_{6}, \lambda I T_{Y}=\lambda_{1}$ or λ_{6} and $\lambda I T_{A}=2 q \mu_{1}$ or $2 q \mu_{2}$ for some p-power q. Hence, the hypotheses of (9.9) hold (for some choice of $\beta \in \Pi(A)$), and we have the result of (9.11). Thus, we may assume
$\langle\lambda, \gamma\rangle \neq 0$ for all $\gamma \in \Pi(A)$ and that the hypotheses of (9.9) do not hold. Thus, for any choice of $\beta \in \Pi(A)$ with P_{A} and P_{Y} as before, if M_{j} is nontrivial then L_{i} has type A_{1}. So we will choose $\beta \in \Pi(A)$ such that the number of p-powers in the p-adic expansion of $\langle\lambda, \beta\rangle$ is as large as possible. And we note that there must be at least two such p-powers; i.e., $V^{1}\left(Q_{A}\right)$ is tensor decomposable. Otherwise, $\langle\lambda, \beta\rangle=q$ and $\operatorname{dim} V \mid A=49$ or 189 or $\langle\lambda, \beta\rangle=2 q,\left\langle\lambda, \beta_{\ell}\right\rangle=2$ for some $1 \leq \ell \leq r a n k Y$ and $\operatorname{dimV} \mid A=189$ or 729. But in each case, [8] and (1.32) imply dimVIA $\neq \operatorname{dimVIY}$. Thus, there exists $1 \leq k \neq \ell \leq \operatorname{rank} Y$ with $\left(\beta_{k}, \beta_{\ell}\right)=0$ and $\left\langle\lambda, \beta_{k}\right\rangle \neq 0 \neq\left\langle\lambda, \beta_{\ell}\right\rangle$.

Suppose $Y=E_{6}$. The opening remarks of the proof, (9.8), (9.10) and symmetry imply that either $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{6}\right\}$ with $\left\langle\lambda, \beta_{5}+\beta_{6}\right\rangle=0$ and $\left\langle\lambda, \beta_{1}\right\rangle \neq 0 \neq\left\langle\lambda, \beta_{2}\right\rangle$, or L_{γ} has components $\left\langle U_{ \pm \beta_{1}}\right\rangle$ and $\left\langle U_{ \pm \beta_{6}}\right\rangle$ with $\left\langle\lambda, \beta_{k}\right\rangle \neq 0$ for $k=1$ and 6 . The first configuration is ruled out by (1.23). So suppose L_{Y} ' has components $\left\langle U_{ \pm \beta_{k}}\right\rangle$ with $\left\langle\lambda, \beta_{k}\right\rangle \neq 0$ for $k=1$ and 6 . If $\left\langle U_{ \pm \beta_{2}}\right\rangle$ is also a component of $L_{Y^{\prime}}$, (9.8) implies that $Q_{A} \leq K_{\beta_{4}}$; else the field twists on the embeddings of L_{A} ' in $\left\langle U_{ \pm \beta_{1}}\right\rangle,\left\langle U_{ \pm \beta_{2}}\right\rangle$ and $\left\langle U_{ \pm \beta_{6}}\right\rangle$ are all equal, contradicting (2.5) and (2.6). But $-\beta_{4}$ is not involved in $L_{A}{ }^{\prime}$, by (2.10). So there is a nontrivial image of $Q_{A}{ }^{\alpha}$ in $Q_{Y}\left(\beta_{3}, \beta_{4}\right)$ and in $Q_{Y}\left(\beta_{5}, \beta_{4}\right)$ again implying that the field twists are equal. Hence, (2.7) implies $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{6}\right\}$. Let q_{k} be the field twist on the embedding of L_{A} ' in $\left\langle U_{ \pm \beta_{k}}\right\rangle$. Now, there are two 4-dimensional $L_{A^{\prime}}$ composition factors of the 27-dimensional $k Y$ - module $V\left(\lambda_{1}\right)$. However, there is no 27-dimensional kA module affording such an $L_{A}{ }^{\prime}$ composition series. Hence $Y \neq E_{6}$.

Suppose $Y=E_{8}$. Choose i and j such that M_{j} and M_{j} are nontrivial. So L_{j} and L_{j} each have type A_{1} and one of the following holds:
(a) ΠL_{i} and ΠL_{j} are separated by more than 2 nodes of the Dynkin diagram.
(b) $\left\{\Pi L_{i}, \Pi L_{j}\right\}=\left\{\beta_{1}, \beta_{2}\right\}$ and $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle \leq L_{\gamma}$.
(c) $\left\{\Pi L_{i}, \Pi L_{j}\right\}=\left\{\beta_{2}, \beta_{6}\right\}$ and $\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{3}}\right\rangle \leq L_{Y}$.

This follows from (9.8), (9.10) and (1.15). Rank restrictions, (9.8) and (9.10) imply that if there exists $k \neq i, j$ with M_{k} nontrivial, then (b) holds and $L_{Y}{ }^{\prime}=L_{i} \times L_{j} \times\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle \times\left\langle U_{ \pm \beta_{8}}\right\rangle$, with $\left\langle\lambda, \beta_{8}\right\rangle \neq 0$. But (2.7) implies that the field twists on the embeddings of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{2}}\right\rangle$, $\left\langle U_{ \pm \beta_{5}}, U_{ \pm \beta_{6}}\right\rangle$ and $\left\langle U_{ \pm \beta_{8}}\right\rangle$ must all be equal, contradicting (2.5). Hence, $V^{1}\left(Q_{Y}\right) \cong M_{i} \otimes M_{j}$, and by the choice of $\beta, \operatorname{dimV} \mid A \leq 2.7^{4}$.

Now we may assume $\lambda I T_{Y}=c \lambda_{r}+d \lambda_{t}$ for $0<c, d<3$. For if W_{0}, the stabilizer of λ in W has rank at most 5 , the number of distinct conjugates of $V_{T_{Y}}(\lambda)$ in $V I Y$ exceeds 27^{4}, unless W_{0} has type D_{5}. But if we count also the conjugates of a maximal subdominant weight we find that $\operatorname{dimVIY}>27^{4}$. So $\lambda I T_{Y}=c \lambda_{r}+d \lambda_{t}$ and by (9.10), $\left(\beta_{r}, \beta_{t}\right)=0$. Now, $\left|W: W_{0}\right|>27^{4}$ unless W_{0} has type $D_{5} \times A_{1}, D_{6}, A_{5} \times A_{1}$ or A_{6}. If $2 \in\{c, d\}$, we count the conjugates of $V_{T_{Y}}\left(\lambda-\beta_{r}\right)$ or $V_{T_{Y}}\left(\lambda-\beta_{t}\right)$, whichever is dominant, in addition to the conjugates of $V_{T_{Y}}(\lambda)$, in order to see that dimVIY $>$ dimVIA in most cases. For the remaining cases, refer to (1.38) for the same conclusion.

Finally, consider the case where $Y=E_{7}$. Applying (9.8), (9.10) and previous work of this result, we see that L_{Y} ' has exactly 2 nontrivially acting components, $\left\langle U_{ \pm \beta_{k}}\right\rangle,\left\langle U_{ \pm \beta_{\ell}}\right\rangle$ where $\{k, \ell\}=\{7, j\}, j=1,2$ or $3,\{1,2\}$, $\{1,6\}$ or $\{2,6\}$. If $\{k, \ell\}=\{3,7\},(9.8)$ implies (i) $\Pi\left(L_{Y}\right)=\left\{\beta_{3}, \beta_{7}\right\}$. If $\{k, \ell\}=$ $\{2,7\}$, (9.8) implies that either (ii) $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{7}\right\}$ or (iii) $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{1}, \beta_{2}, \beta_{7}\right\}$ or (iv) $\Pi\left(L_{\gamma}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{7}\right\}$. If $\{k, \ell\}=\{1,2\}$, (9.8) implies (v) $\Pi\left(L_{y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{6}\right\}$ or (vi) $\Pi\left(L_{y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{5}, \beta_{6}, \beta_{7}\right\}$. If $\{k, \ell\}=\{2,6\}$, (1.15) and (9.8) imply (vii) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{2}, \beta_{6}\right\}$. If $\{k, \ell\}=\{1,6\}$, previous remarks about Y of type E_{6} imply (viii) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{6}\right\}$. Finally, suppose $\{k, \ell\}=\{1,7\}$. Then (1.15) implies $\left\langle U_{ \pm \beta_{k}}\right\rangle$ is not a component of $L_{Y}{ }^{\prime}$, for $k=4$ or 5. Also, $\left\langle U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}\right\rangle$ is not a component of $L_{\gamma^{\prime}}$, else (2.7) implies that the field twists on the embeddings of L_{A} in $\left\langle U_{ \pm \beta_{1}}\right\rangle,\left\langle U_{ \pm \beta_{4}}, U_{ \pm \beta_{5}}\right\rangle$ and $\left\langle U_{ \pm \beta_{7}}\right\rangle$ are all equal, contradicting (2.5). So (ix) $\Pi\left(L_{\gamma}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{5}, \beta_{7}\right\}$ or $(x) \Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{4}, \beta_{7}\right\}$, or (xi) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{7}\right\}$, or $L_{Y}{ }^{\prime}$ is as in (iii).

Recall that the field twists on the embedding of $L_{A} \cdot$ in $\left\langle U_{ \pm \beta_{k}}\right\rangle$ and in $\left\langle U_{ \pm \beta_{Q}}\right\rangle$ are not equal. In case (iii), (9.8), (2.10) and (2.11) imply that the field twists on the embeddings of $L_{A} \cdot$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ and in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ must be equal. In cases (iv), (v), (vii) and (x), if L_{m} is the component of type A_{2}, (2.7) implies that the field twist on the embedding of $L_{A}{ }^{\prime}$ in L_{m} is equal to the twist on the embedding of $L_{A^{\prime}}$ in $\left\langle U_{ \pm \beta_{k}}\right\rangle$, where $\left(\beta_{k}, \gamma\right) \neq 0 \neq\left(\gamma, \Sigma L_{m}\right)$, for some $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$. In case ($v i$) (respectively, case (ix)), if L_{m} is the component of type A_{3} with natural module W, say $W L_{A}$ ' has high weight $\left(q_{1}+q_{2}\right) \mu_{\beta}$. By (2.7), we may assume that the field twist on the embedding of L_{A} in $\left\langle U_{ \pm \beta_{2}}\right\rangle$ (respectively, $\left.\left\langle U_{ \pm \beta_{7}}\right\rangle\right)$ is q_{1}. Moreover, in case (ix), the field twist on the embedding of $L_{A}{ }^{\prime}$ in $\left\langle U_{ \pm \beta_{1}}\right\rangle$ is q_{2}, else $Q_{Y} / K_{\beta_{3}}$ has no 2-dimensional $L_{A^{\prime}}$ composition factor.

We now consider the action of L_{A} ' on the 56-dimensional irreducible KY module, $V\left(\lambda_{7}\right)$. We note that there is no 56 -dimensional KA module affording an 8-dimensional L_{A} ' composition factor, nor exactly three 6-dimensional L_{A} ' composition factors. As well, any 56-dimensional kA module affording exactly two 4-dimensional $L_{A}{ }^{\prime}$ composition factors must also afford no 6-dimensional and six 3-dimensional L_{A} ' composition factors. One checks that these restrictions rule out all configurations except that of case (iii). In this case, $V\left(\lambda_{7}\right)$ has no 6-dimensional, exactly four 4-dimensional, and exactly two 3-dimensional $L_{A}{ }^{\prime}$ composition factors. However again, there is no 56-dimensional kA module affording such an L_{A} ' composition series. This completes the proof of (9.11). \square

Section III: $A<Y$, A non-simple

In this section, we consider the case where (A, Y, V) is an example in the main theorem with A a non-simple, semisimple algebraic group and Y a simple algebraic group of exceptional type. Theorem 4.1 of [12] implies that rank $A<$ rank Y. Let $A=H_{1} \circ H_{2} \circ \cdots \circ H_{m}$ be a commuting product of
simple algebraic groups H_{j}, with a fixed maximal torus T_{A}. Let $P_{A}=L_{A} Q_{A}$ be a parabolic subgroup of A with Levi factor $L_{A}=H_{1} \cdot T A$ and $R_{U}\left(P_{A}\right)=Q_{A}$. Adopt the remaining notation of (2.0). We first make a few general

Remarks (9.12): (1) If (A, Y, V) is as above, we may assume, after a suitable reordering that $\operatorname{rank}\left(H_{1}\right)>1$. For if $\operatorname{rank}\left(H_{j}\right)=1$ for all i, there exists $B \leq A, B$ a simple algebraic group of type A_{1} such that $V \mid B$ is irreducible. But this contradicts (7.1) of [12]. In particular, $\operatorname{rank}(Y)>$ $\operatorname{rank}(A)>2$. As well, since A is an actual subgroup of $Y, \operatorname{dimV}^{1}\left(Q_{A}\right)>1$.
(2) Since $Z\left(L_{A}{ }^{\prime}\right) \leq Z(A) \leq Z(Y)$, if $Z(Y)=1$, then $Z\left(L_{A}{ }^{\prime}\right)=1$.
(3) Note that all $L_{A^{\prime}}$ composition factors of V are isomorphic to $V^{1}\left(Q_{A}\right)$. So if μ is a weight in VIY which affords the high weight of an $L_{Y}{ }^{\text {. }}$ (and hence of an $L_{A^{\prime}}$) composition factor, then $\mu I T\left(L_{A^{\prime}}\right)=\lambda I T\left(L_{A^{\prime}}\right)$. In particular, for $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $\left(\gamma, \Sigma L_{Y}\right) \neq 0$ and $\gamma \mid T\left(L_{A} A^{\prime}\right) \neq 0$, $\langle\lambda, \gamma\rangle=0$. Otherwise, $\mu=\lambda-\gamma$ fails to satisfy the above condition.
(4) Given $\alpha \in \Pi(A)-\Pi\left(L_{A}\right), Q_{A} / K_{\alpha}$ is a 1-dimensional, irreducible L_{A} ' module. Assume $Z_{A} \leq Z_{Y}$ (as will be the case under the hypotheses of (1.5)). Let $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $V_{\gamma}\left(Q_{Y}\right) \neq 0$. Then the proof of (3.3)(ii) in [12] implies that there exists $\alpha_{0} \in \Pi(A)-\Pi\left(L_{A}\right)$ such that $U_{-\alpha_{0}} \neq K_{\gamma}$. Hence, Q_{Y} / K_{γ} has a 1-dimensional $L_{A}{ }^{\prime}$ composition factor. Also, if $U_{-\alpha_{0}} \not \ddagger K_{\gamma}, U_{-\alpha_{0}} \leq\left\langle U_{-r} \leq Q_{Y}\right| r\left|T\left(L_{A}{ }^{*}\right)=0\right\rangle K_{\gamma}$. See (2.4).
(9.13): Y has type E_{n} for some n.

Proof: Suppose false. Then (9.12) (1) implies that $Y=F_{4}$, $\operatorname{rank}(A)=3$ and $\operatorname{rank}\left(L_{A}{ }^{\prime}\right)=2$. As well, (1.5) implies $Z_{A} \leq Z_{Y}$. If L_{A} 'has type B_{2}, the Main Theorem of [12] implies that $L_{Y}{ }^{\prime}=\left\langle U_{ \pm} \beta_{2}, U_{ \pm} \beta_{3}\right\rangle$. Since $Q_{Y} / K_{\beta_{4}}$ is an irreducible L_{A} module, (9.12) (4) implies that $V_{\beta_{4}}\left(Q_{Y}\right)=0$. Hence, $p=2$. By (1.7) we may assume that VIY is either a basic or p-basic module. So [8] implies that dimVIA $=26,246$ or 4096 . As well, $\operatorname{dimV}{ }^{1}\left(Q_{A}\right) \mid \operatorname{dimVIA}$. So dimVIA $=4096, \lambda \mid T_{Y}=\lambda_{1}+\lambda_{2}$ or $\lambda_{3}+\lambda_{4}$ and
$\operatorname{dim} V^{1}\left(Q_{A}\right)=4$. But $A=B_{2} \times A_{1}$, so by induction, $\operatorname{dimV}|A \leq 32<\operatorname{dimV}| Y$. Thus, $L_{A}{ }^{\prime} \neq B_{2}$.

Suppose L_{A} ' has type A_{2}. The Main Theorem of [12] implies $\Pi\left(L_{Y}\right)=$ $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ and $p=3$, or $L_{\gamma}{ }^{\prime}$ has type A_{2}. If $L_{\gamma}{ }^{\prime}$ has type A_{2}, (9.12)(4) implies that $p=2$ and $L_{Y^{\prime}}=\left\langle U_{ \pm \beta_{1}}, U_{ \pm \beta_{2}}\right\rangle$. As well, we may assume that VIY is a p-basic module, so $\lambda \mid T_{A}=\lambda_{1}, \lambda_{2}$ or $\lambda_{1}+\lambda_{2}$, dimVIY $=26,246$ or 4096, respectively, and $\operatorname{dimV}^{1}\left(Q_{A}\right)=3,3$ or 8 , respectively. Since $\operatorname{dimV}{ }^{1}\left(Q_{A}\right)|\operatorname{dimVIA}, \lambda| T_{Y}=\lambda_{2}$ or $\lambda_{1}+\lambda_{2}$. But by induction, $\operatorname{dimVIA} \leq 64<$ dimVIY. So if L_{A} ' has type $A_{2}, \Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ and the Main Theorem of [12] implies $\lambda I T_{Y}=\lambda_{1}+x \lambda_{4}$ or $2 \lambda_{1}+x \lambda_{4}$. By (9.12) (3), $x=0$ in either case. (It is necessary to compute the embedding of $T\left(L_{A^{\prime}}\right)$ in $T\left(L_{Y^{\prime}}\right)$ to see this.) Since $\lambda I T_{Y} \neq \lambda_{1}$, we have $\lambda I T_{Y}=2 \lambda_{1}$. However, $\mu=$ $\lambda-\beta_{1}-\beta_{2}-\beta_{3}-\beta_{4}$ contradicts (9.12) (3). Thus, L_{A} does not have type A_{2}.

It remains to consider the case where $L_{A}{ }^{\prime}=G_{2}$. By the Main Theorem of [12], L_{Y} ' has type B_{3} or $p=2$ and L_{Y} ' has type C_{3}. If $p=2$, $\operatorname{dimVIA}=6^{k} \cdot 14^{\ell} \cdot 64^{m} \cdot 2^{n}$, for $k, \ell, m, n \in \mathbb{Z}^{+}$. Since we may assume $V \mid Y$ is tensor indecomposable, $V \mid Y$ is either basic or p-basic. (See (1.7).) Thus, [8] implies $\lambda I T_{Y}=\lambda_{1}+\lambda_{2}$ or $\lambda_{3}+\lambda_{4}$ and dimVIY $=2^{12}$. By induction, $\lambda I T_{Y}=\lambda_{3}+\lambda_{4}$ and $\operatorname{dimV}{ }^{1}\left(Q_{A}\right)=64$. If $P_{0} \geq B_{A}{ }^{-}$is the parabolic of A with Levi factor $H_{2} \cdot T_{A}, H_{2}$ of type A_{1}, then $\operatorname{dimV}{ }^{1}\left(R_{u}\left(P_{0}\right)=64\right.$. But this contradicts (1.19) and (7.1) of [12]. Thus, if $L_{A}{ }^{\prime}=G_{2}, L_{Y}$, has type B_{3} and $p \neq 2$. One checks that if $\pi\left(L_{A}\right)=\left\{\alpha_{1}, \alpha_{2}\right\}$, with α_{1} short, then $h_{\alpha_{1}}(c)=$ $h_{\beta_{1}}(c q) \cdot h_{\beta_{3}}(c q)$ and $h_{\alpha_{2}}(c)=h_{\beta_{2}}(c q)$, where q is the field twist on the embedding of $L_{A^{\prime}}$ in $L_{Y^{\prime}}$. So $\beta_{4} I^{T}\left(L_{A^{\prime}}\right) \neq 0$ and by (9.12) (3), $\left\langle\lambda, \beta_{4}\right\rangle=0$. For $\lambda I T_{Y}=k \lambda_{1}$, let $\mu=\lambda=\beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}$, for $\lambda \mid T_{Y}=x \lambda_{2}+y \lambda_{3}$, let $\mu=\lambda-\beta_{3}-\beta_{4}$ and for $\lambda \mid T_{Y}=y \lambda_{1}+x \lambda_{2}$, let $\mu=\lambda-\beta_{2}-\beta_{3}-\beta_{4}$. In each case, μ contradicts (9.12) (3). But by the Main Theorem of [12], these are the only possible configurations.

This completes the proof of (9.13).
(9.14). If Y has type E_{n}, then $L^{\prime}{ }^{\prime}$ is not a quasisimple algebraic group.

Proof: Suppose false. We first note that $L_{A^{\prime}} \neq L_{\gamma}{ }^{\prime}$, otherwise there exists some $\gamma \in \Pi(Y)-\Pi\left(L_{y}\right)$ which contradicts (9.12) (4). Suppose $L_{Y}{ }^{\text {. }}$ has type A_{k} for some k. Then by (1.5), $Z_{A} \leq Z_{Y}$. Since $L_{A^{\prime}}$ acts irreducibly on W, the natural module for $L_{\gamma^{\prime}}$, (9.12) (4) implies that there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $Q_{Y} / K_{\gamma} \cong W$ or W^{*}. Hence, $k \geq 4$. In fact, $k>4$, else $p>2, L_{A}^{\prime}=B_{2}$ and there exists $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $V_{\gamma}\left(Q_{Y}\right) \neq 0$ and Q_{Y} / K_{γ} a nontrivial irreducible L_{A} module ($\cong W \wedge W$ or $\left.W^{*} \wedge W^{*}\right)$, contradicting (9.12) (4).

Consider the case where $L_{y^{\prime}}=A_{5}$. By induction, $L_{A^{\prime}}$ has type A_{2}, A_{3}, C_{3}, or $p=2$ and L_{A}. has type G_{2} or B_{3}. Previous remarks imply that either $Y=E_{6}$ or $Y=E_{7}$ and $\Pi\left(L_{Y}\right)=\left\{\beta_{k} \mid k \neq 1,3\right\}$. If $Y=E_{6}, V_{\beta_{2}}\left(Q_{Y}\right) \neq 0$ and $Q_{Y} / K_{\beta_{2}} \cong W \wedge W \wedge W$. But there is no 1-dimensional $L_{A}{ }^{\prime}$ composition factor of $W \wedge W \wedge W$, contradicting (9.12)(4). Hence, the second configuration holds. Then $V_{\beta_{3}}\left(Q_{Y}\right) \neq 0$ and $Q_{Y} / K_{\beta_{3}} \cong W \wedge W$ or $W^{*} \wedge W^{*}$, which has a 1-dimensional $L_{A^{\prime}}$ composition factor only if L_{A}. has type C_{3} or $p=2$ and L_{A} ' has type G_{2}, A_{3} or B_{3}. Also, one checks that $\beta_{3} I T\left(L_{A}{ }^{\prime}\right) \neq 0$, so (9.12) (3) implies $\left\langle\lambda, \beta_{3}\right\rangle=0$. In fact, $\left\langle\lambda, \beta_{1}\right\rangle=0$, as well. (Consider the $L_{A} \cdot$ composition factor afforded by $\lambda-\beta_{1}-\beta_{3}$.) In the cases where $p=2$, $\lambda I T_{Y}=\lambda_{7}$, else $\mu=\lambda-\beta_{2}-\beta_{3}-\beta_{4}$ contradicts (9.12) (3). But $6=\operatorname{dim} V^{1}\left(Q_{A}\right) \nmid \operatorname{dim} V=56$. Contradiction. Hence, L_{A} has type C_{3}. Examining the $T\left(L_{A^{\prime}}\right)$ weight vector decomposition of $Q_{Y} / K_{\beta_{3^{\prime}}}$, we find that for $\alpha \in \Pi(A)-\Pi\left(L_{A}\right)$ such that $U_{-\alpha} \ddagger K_{\beta_{3}}$,
$U_{-\alpha} \leq\left(U_{-34567} \cdot U_{-23456} \cdot U_{(0,1,1,2,1,0,0)}\right) K_{\beta_{3}}$. This fact, together with the equality $\left[V, Q_{A}\right]=\left[V, Q_{Y}\right]$, restricts the possible weights in $\left[V, Q_{Y}\right]$, and hence the labellings of $V^{1}\left(Q_{Y}\right)$. In fact, referring to the Main Theorem of [12], we find that $\left\langle\lambda, \beta_{m}\right\rangle=0$ for $m=2,4,5,6$ and $\left\langle\lambda, \beta_{7}\right\rangle=c$. So $\lambda \mid T_{Y}=c \lambda_{7}$. But then $\mu=\lambda-\beta_{1}-\beta_{2}-2 \beta_{3}-2 \beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}$ contradicts (9.12) (3). So L_{Y} does not have type A_{5}.

Consider now the case where $L_{Y}{ }^{\prime}=A_{6}$; so $L_{A}{ }^{\prime}$ has type G_{2} or B_{3} or $p=3$ and L_{A}, has type A_{2}. If $\Pi\left(L_{Y}\right)=\left\{\beta_{j} \mid j=1,3 \leq j \leq 7\right\}$, so $Y=E_{7}$, then $\beta_{2} I T\left(L_{A}\right) \neq 0$. So $\left\langle\lambda, \beta_{2}\right\rangle=0$. Also, $Q_{Y} / K_{\beta_{2}}$ has a 1-dimensional L_{A}. composition factor only if L_{A}. has type G_{2} or A_{2}. In each of these cases $V^{1}\left(Q_{A}\right) \cong W$ or W^{*}. Now, $\lambda \mid T_{Y} \neq \lambda_{1}$, so $\lambda \mid T_{Y}=\lambda_{7}$. However, $\mu=$ $\lambda-\beta_{2}-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}$ contradicts (9.12) (3). Thus, if $L_{\gamma}{ }^{\prime}=A_{6}$, then $Y=E_{8}$ and $\Pi\left(L_{Y}\right)=\left\{\beta_{j} \mid j \neq 1,3\right\}$. One checks that $W \wedge W$ has a 1-dimensional $L_{A^{\prime}}$ composition factor only if $L_{A^{\prime}}=A_{3}$. So $V^{1}\left(Q_{A}\right) \cong W$ or W^{*}. Naw, $\left\langle\lambda, \beta_{1}+\beta_{3}\right\rangle=0$ as $\beta_{3} I T\left(L_{A}{ }^{\prime}\right) \neq 0$. So $\lambda I T_{Y}=\lambda_{2}$. But $\mu=$ $\lambda-\beta_{2}-\beta_{3}-\beta_{4}$ contradicts (9.12) (3).

Thus, for L_{γ} ' of type A_{k}, we have reduced to L_{γ} of type A_{7} in E_{8}. So L_{A} ' has type A_{2}, B_{3}, C_{4} or D_{4} or $p=2$ and L_{A}. has type C_{3} or B_{4}. If $L_{A}{ }^{\prime}$ has type C_{4}, B_{4} or $D_{4}, Q_{Y} / K_{\beta_{2}}$ has no 1-dimensional $L_{A^{\prime}}$ composition factor. In the remaining cases, $V^{1}\left(Q_{Y}\right) \cong W$ or W^{*}. Now, $\beta_{2} I T\left(L_{A^{\prime}}\right) \neq 0$, so by (9.12) (3), $\left\langle\lambda, \beta_{2}\right\rangle=0$ and $\lambda \mid T_{Y}=\lambda_{1}$. But $8=\operatorname{dimV}^{1}\left(Q_{A}\right)|\operatorname{dimV}| A$, contradicting [8]. Hence, $L_{Y}{ }^{\cdot}$ does not have type A_{k}.

Suppose L_{Y} ' has type D_{k}, for some $k \geq 4$. Again (1.5) implies $Z_{A} \leq Z_{Y}$. Now L_{A} must act reducibly on the 2 fundamental spin modules for $L_{Y}{ }^{\prime}$, as there exists $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $V_{\gamma}\left(Q_{Y}\right) \neq 0$ and Q_{γ} / K_{γ} isomorphic to one of these. (See (9.12)(4).) The Main Theorem of [12] then implies that $L_{A}{ }^{\prime}$ must act irreducibly on W, the natural module for $L_{\gamma}{ }^{\text {. }}$ Hence, there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ with $Q_{Y} / K_{\gamma} \cong W$. Thus, the
 $\left(C_{3}, D_{7}, 7\right)$. In the first case, $L_{A}{ }^{\prime}$ acts irreducibly on all three of the fundamental 8-dimensional irreducible L_{Y} ' modules, so there is no 1-dimensional $L_{A^{\prime}}$ composition factor of $Q_{Y} / K_{\beta_{1}}$. If $L_{Y^{\prime}}=D_{7}$, (9.12) (3) implies $\left\langle\lambda, \beta_{1}\right\rangle=0$, but then $\lambda I T_{Y}=\lambda_{8}$. Thus, $\left(L_{A^{\prime}}, L_{Y^{\prime}, p}\right)$ has type $\left(B_{2}, D_{5}, 5\right)$. Also, there does not exist $\gamma \in \Pi(Y)-\Pi\left(L_{\gamma}\right)$ with $Q_{y} / K_{\gamma} \cong W$, so we may assume $\Pi\left(L_{Y}\right)=\left\{\beta_{j} \mid 1 \leq j \leq 5\right\}$. However, there is no 1-dimensional composition factor of $Q_{Y} / K_{\beta_{6}}$.

Hence, if $L_{Y}{ }^{\prime}$ is quasisimple, L_{Y} ' has type E_{m} for some m. By induction and the previous work of this paper, the pair ($L_{A^{\prime}}, L_{Y}{ }^{\prime}$) is one of the following: $\left(A_{2}, E_{6}\right),\left(G_{2}, E_{6}\right),\left(C_{4}, E_{6}\right)$ or $\left(F_{4}, E_{6}\right)$. In the first three cases, L_{A} ' acts irreducibly on $Q_{Y} / K_{\beta_{7}}$; so Z_{A} induces scalars on $Q_{Y} / K_{\beta_{7}}$. But this forces $Q_{A} K_{\beta_{7}} / K_{\beta_{7}}$ to be an L_{A} ' submodule of $Q_{Y} / K_{\beta_{7}}$, contradicting (9.12) (4). In the last case, (9.12) (3) implies $\langle\lambda, \beta\rangle\rangle=0$. It is now a check to see that in every configuration afforded by induction, there exists a weight μ (of Q_{Y} level 1) which contradicts (9.12) (3).ם
(9.15). There are no examples (A, Y, V) in the main theorem with A non-simple and Y of type E_{n}.

Proof: Suppose false. Let P_{A}, P_{Y} be as before. Then (9.14) implies that L_{γ} ' has more than one component. In particular, $\operatorname{rank}\left(L_{A^{\prime}}\right) \leq 3$. Also rank $L_{A^{\prime}}>1$ and (1.5) imply $Z_{A} \leq Z_{Y}$. If rank $\left(L_{A^{\prime}}\right)=3$, rank restrictions imply $L_{A}^{\prime}=A_{3}$. Since A_{3} has no 5-dimensional irreducible representation, L_{Y} ' has type $A_{3} \times A_{3}$ in E_{8}. Now, $Q_{Y} / K_{\beta_{5}}$ has a trivial L_{A} ' composition factor only if $\Pi\left(L_{Y}\right)=\left\{\beta_{j} \mid j \neq 2,5\right\}$. Moreover, if $L_{A^{\prime}}=\left\langle U_{ \pm \alpha_{j}} \mid 1 \leq i \leq 3\right\rangle$, labelled as throughout, we may assume $h_{\alpha_{1}}(c)=h_{\beta_{1}}\left({ }^{(c q)} h_{\beta_{6}}(c q), h_{\alpha_{2}}(c)=\right.$ $h_{\beta_{3}}\left(c^{q}\right) h_{\beta_{7}}\left(c^{q}\right)$ and $h_{\alpha_{3}}(c)=h_{\beta_{4}}\left(c^{q}\right) h_{\beta_{8}}\left(c^{q}\right)$, for some p-power q. Also, since $Q_{Y} / K_{\beta_{2}}$ is a 4-dimensional irreducible L_{A} ' module, (9.12) (4) implies $\left\langle\lambda, \beta_{\mathfrak{j}}\right\rangle=0$ for $1 \leq i \leq 4$. The $T\left(L_{A}\right) 0$-weight space of $Q_{Y} / K_{\beta_{5}}$ is spanned by the root groups $U_{-1345}, U_{-5678}, U_{-4567}$ and U_{-3456}. Hence, if $\alpha \in \Pi(A)-\Pi\left(L_{A}\right)$ with $U_{-\alpha} \neq K_{\beta_{5}}$,
$U_{-\alpha} \leq\left\langle U_{-1345} \cdot U_{-5678} \cdot U_{-4567} \cdot U_{-3456}\right\rangle K_{\beta_{5}}$. This restricts the possible T_{Y} weights in $\left[V, Q_{Y}\right]=\left[V, Q_{A}\right]$. In particular, $\left\langle\lambda, \beta_{5}+\beta_{6}+\beta_{7}\right\rangle=0$, so $\lambda I T_{Y}=x \lambda_{8}$, for some $x>1$. But this contradicts (9.12) (2). Thus, $\operatorname{rank}\left(L_{A}{ }^{\prime}\right)<3$. Note that rank restrictions imply $L_{A} \neq G_{2}$.

Suppose $L_{A}{ }^{\prime}=B_{2}$. Then $L_{Y}{ }^{\prime}$ has a component of type A_{3} and (9.12) (2) implies $p=2$. Since L_{A} ' has no 5 -dimensional irreducible representation, L_{Y} ' has type $A_{3} \times A_{3}$. As in the previous case, we reduce to
$\Pi\left(L_{Y}\right)=\left\{\beta_{j} \mid j \neq 2,5\right\}$, and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $1 \leq k \leq 4$. Also, $\beta_{5} I T\left(L_{A}\right) \neq 0$, so $\left\langle\lambda, \beta_{5}\right\rangle=0$. The Main Theorem of [12] implies $\lambda \mid T_{Y}=\lambda_{6}$. But then $\mu=$ $\lambda-\beta_{5}-\beta_{6}$ contradicts (9.12) (3). Thus, $L_{A} \neq B_{2}$.

It remains to consider the case where $L_{A^{\prime}}=A_{2}$. The minimality of P_{Y}, the Main Theorem of [12] and rank restrictions imply that $L_{y}{ }^{\prime}=L_{1} \times L_{2}$, where L_{i} has type A_{2} or D_{4}. Suppose $L_{i}=A_{2}$ for $i=1$, 2. If there exists $\gamma \in \Pi(\gamma)-\Pi\left(L_{y}\right)$ with $\left(\gamma, \Sigma L_{j}\right) \neq 0$ and $\left(\gamma, \Sigma L_{m}\right)=0$ for $m \neq j$, then Q_{Y} / K_{γ} is a 3-dimensional irreducible $L_{A}{ }^{\prime}$ module. So (9.12) (4) implies $V_{\gamma}\left(Q_{\gamma}\right)=0$. Thus, one of the following holds:
(a) $\Pi\left(L_{Y}\right)=\left\{\beta_{1}, \beta_{3}, \beta_{5}, \beta_{6}\right\}$ and $\left\langle\lambda, \beta_{5}+\beta_{6}+\beta_{7}\right\rangle=0$ if $Y=E_{7}$ or E_{8}.
(b) $\Pi\left(L_{Y}\right)=\left\{\beta_{2}, \beta_{4}, \beta_{6}, \beta_{7}\right\}$ in Y of type E_{7} and $\left\langle\lambda, \beta_{K}\right\rangle=0$ for $k=2,3,4$.
(c) $\Pi\left(L_{Y}\right)=\left\{\beta_{3}, \beta_{4} \beta_{6}, \beta_{7}\right\}$ in Y of type E_{7} and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $1 \leq k \leq 4$.
(d) $\Pi\left(L_{\gamma}\right)=\left\{\beta_{4}, \beta_{5}, \beta_{7}, \beta_{8}\right\}$ and $\left\langle\lambda, \beta_{k}\right\rangle=0$ for $2 \leq k \leq 5$.

Now for $\gamma \in \Pi(\gamma)-\Pi\left(L_{Y}\right)$ such that $\left(\gamma, \Sigma L_{1}\right) \neq 0 \neq\left(\gamma, \Sigma L_{2}\right), \gamma \mid T\left(L_{A}\right) \neq 0$, so (9.12) (3) implies $\langle\lambda, \gamma\rangle=0$. In fact, (9.12) (3) implies $\left\langle\lambda, \beta_{2}+\beta_{8}\right\rangle=0$, in case (a) and $\left\langle\lambda, \beta_{1}\right\rangle=0$ in cases (b) and (d).

Temporarily label as follows: $\Pi\left(L_{Y}\right)=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right\}$, $\gamma \in \Pi(Y)-\Pi\left(L_{Y}\right)$ and $\Pi\left(L_{A}\right)=\left\{\alpha_{1}, \alpha_{2}\right\}$, where $\Pi\left(L_{1}\right)=\left\{\gamma_{1}, \gamma_{2}\right\}, \Pi\left(L_{2}\right)=$ $\left\{\gamma_{3}, \gamma_{4}\right\}$ and $\left(\gamma_{2}, \gamma\right) \neq 0 \neq\left(\gamma, \gamma_{3}\right)$. Since Q_{Y} / K_{γ} must have a 1-dimensional $L_{A^{\prime}}$ composition factor, the field twists on the embeddings of L_{A} ' in L_{1} and L_{2} must be equal, so $V^{1}\left(Q_{Y}\right)$ is tensor indecomposable. As well, we may assume that $h_{\alpha_{1}}(c)=h_{\gamma_{1}}(c q) h_{\gamma_{3}}(c q)$ and $h_{\alpha_{2}}(c)=$ $h_{\gamma_{2}}\left(c^{q}\right) h_{\gamma_{4}}\left(c^{q}\right)$, for some p-power q. Then, the $T\left(L_{A^{\prime}}\right) 0$ - weight space in Q_{Y} / K_{γ} is spanned by $U_{-\gamma_{1}}-\gamma_{2}-\gamma, U_{-\gamma_{2}}-\gamma-\gamma_{3}$ and $U_{-\gamma-\gamma_{3}-\gamma_{4} \text {. This }, ~}^{\text {. }}$ restricts the possible T_{Y} weights in $\left[V, Q_{Y}\right]=\left[V, Q_{A}\right]$. For instance, suppose $\left\langle\lambda, \gamma_{3}+\gamma_{4}\right\rangle=0$. Then, the factorization of elements in Q_{A} implies that $\left\langle\lambda, \gamma_{2}\right\rangle=0$, so $\left\langle\lambda, \gamma_{1}\right\rangle \neq 0$. Similarly, if $\left\langle\lambda, \gamma_{1}+\gamma_{2}\right\rangle=0$, then $\left\langle\lambda, \gamma_{3}\right\rangle=0$. In case (a) (respectively, (b), (c), (d)),
$\mu=\lambda-\beta_{1}-\beta_{2}-\beta_{3}-2 \beta_{4}-\beta_{5}$ (respectively, $\mu=\lambda-\beta_{3}-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}, \mu=$ $\left.\lambda-\beta_{2}-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}, \mu=\lambda-\beta_{2}-\beta_{4}-\beta_{5}-\beta_{6}-\beta_{7}-\beta_{8}\right)$ contradicts (9.12) (3).

Thus, it remains to consider the case where $L_{A}{ }^{\prime}=A_{2}$ and $L_{Y}{ }^{\prime}=L_{1} \times L_{2}$ with L_{1} of type D_{4} and L_{2} of type A_{2}; so $Y=E_{8}$. One checks that L_{A} ' acts on each of the three fundamental 8-dimensional representations of L_{1} with composition factors of dimensions 1 and 7 , when $p=3$, and otherwise $L_{A}{ }^{\prime}$ acts irreducibly. It is then easy to see that there is no 1-dimensional $L_{A}{ }^{\prime}$ composition factor of $Q_{Y} / K_{\beta_{6}}$, contradicting (9.12) (4). This completes the proof of (9.15).

TABLE 1

no.	$A<Y$	
I_{1}	$C_{n}<A_{2 n-1}, n \geq 2$	H_{1}
I_{1}	$C_{n}<A_{2 n-1}, n \geq 2$	

$\mathrm{II}_{9} \quad \mathrm{E}_{7}<\mathrm{C}_{28}$

III $_{1} \quad G_{2}<B_{3}$
III $_{1}^{\prime} G_{2}<B_{3}$
III $_{1}^{\prime \prime} G_{2}<B_{3}$
IV $_{1} \quad B_{n}<D_{n+1}, n \geq 3$
IV $_{1}^{\prime} \quad B_{n}<D_{n+1}, n \geq 3$

$$
\begin{gathered}
p \neq 2 \\
2 x+y+2 \equiv 0(p)
\end{gathered}
$$

$I V_{2} B_{n-k} \cdot B_{k}<D_{n+1}, n \geq 2$ usual $\quad 1 \otimes \cdots \cdots{ }_{0}^{1}$

$I V_{3} B_{n} \cdot A_{1}<D_{n+3}, n \geq 2 \quad \mu_{1,1} \oplus 4 \mu_{2,1} \quad \ldots \Leftrightarrow \otimes_{\bullet}^{3}$

$\mathrm{IV}_{4} \mathrm{~B}_{2}<\mathrm{D}_{5}$
$2 \mu_{2}$

$I V_{5} A_{1} \cdot A_{1}<D_{5}$
$\mathrm{IV}_{6} \mathrm{~B}_{2}<\mathrm{D}_{7}$
$I V_{7} G_{2}<D_{7}$

$\mathrm{IV}_{8} \quad \mathrm{C}_{3}<\mathrm{D}_{7}$
$\mathrm{IV}_{9} \mathrm{~B}_{4}<\mathrm{D}_{8}$
H_{4}

$I V_{10} F_{4}<D_{13}$
$V_{1} \quad A_{1}<G_{2}$
$V I_{1} \quad A_{2}<E_{6}$
$V I_{2} \quad G_{2}<E_{6}$

$V I_{2}^{\prime} G_{2}<F_{4}$
$V I_{3} \quad C_{4}<E_{6}$

μ_{2}

μ_{2}
$2 \mu_{1}$

$p \neq 3,7,13$

$$
\begin{aligned}
& p \neq 2,5 \\
& p \neq 2,7
\end{aligned}
$$

REFERENCES

1. A. Borel, R. Carter, C. W. Curtis, N. Iwahori, T. A. Springer, and R. Steinberg, "Seminar on Algebraic Groups and Related Finite Groups," Lecture Notes in Mathematics, No. 131, Springer-Verlag, Berlin/New York, 1970.
2. A. Borel and J. Tits, Elements unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math 12 (1971), 95-104.
3. B. Braden, Restricted Representations of Classical Lie Algebras of Type A_{2} and B_{2}, Bull. Amer. Math. Soc. 73 (1967), 482-486.
4. N. Burgoyne, Modular Represenations of Some Finite Groups, Proc. Symp. Pure Math, Amer. Math. Soc. 21 (1971).
5. N. Burgoyne and C. Williamson, Some computations involving simple Lie algebras, Proc. 2nd Symp. Symbolic and Alg. Manipulation, ed. S. R. Petrick, New York: Assn. Computing Machinery, 1971.
6. R. CARTER, "Simple Groups of Lie Type," John Wiley and Sons, London/New York/Sydney/Toronto, 1972.
7. E. B. Dynkin, Maximal Subgroups of the classical groups, Amer. Math Soc. Transl 6(2) (1957), 245-378.
8. P. Gilkey and G. Seitz, Some Representations of Exceptional Lie Algebras, Geom. Ded., to appear.
9. J. Humphreys, "Introduction to Lie Algebras and Representation Theory," G.T.M. No. 9, Springer-Verlag, Berlin/Heidelberg/New York, 1972.
10. J. Humphreys, "Linear Algebraic Groups," G.T.M. No. 21, Springer-Verlag, Berlin/Heidelberg/New York, 1981.
11. V. KaC and B. Weisfeiler, Coadjoint Action of a Semisimple Algebraic Group and the Center of the Universal Enveloping Algebra in Characteristic P , Indag. Math 38 (1976), 136-151
12. G. Seltz, The Maximal Subgroups of Classical Algebraic Groups, Memoirs Amer. Math. Soc., 365, 1987.
13. S. SMITH, Irreducible modules and parabolic subgroups, لAlgebra 75 (1982), 286-289.
14. R. Steinberg, "Lectures on Chevalley Groups," notes by J. Faulkner and R. Wilson, Yale University, 1968.
15. R. Steinberg, Representations of algebraic groups, Nagoya Math. 22 (1963), 33-56.
16. D. Testerman, A Construction of Certain Maximal Subgroups of the Algebraic Groups E_{6} and F_{4}, J. of Algebra, to appear.

The Ohio State University
Columbus, Ohio

MEMOIRS of the American Mathematical Society

SUBMISSION. This journal is designed particularly for long research papers (and groups of cognate papers) in pure and applied mathematics. The papers, in general, are longer than those in the TRANSACTIONS of the American Mathematical Society, with which it shares an editorial committee. Mathematical papers intended for publication in the Memoirs should be addressed to one of the editors:

Ordinary differential equations, partial differential equations, and applied mathematics to ROGER D. NUSSBAUM, Department of Mathematics, Rutgers University. New Brunswick, NJ 08903

Complex and harmonic analysis to ROBERT J. ZIMMER, Department of Mathematics, University of Chicago, Chicago, IL 60637

Abstract

MASAMICHI TAKESAKI, Department of Mathematics, UCLA, Los Angeles, CA 90024

Classical analysis to EUGENE FABES, Department of Mathematics, University of Minnesota, Minneapolis, MN 55455

Algebra, algebraic geometry, and number theory to DAVID J. SALTMAN, Department of Mathematics, University of Texas at Austin, Austin, TX 78713

Geometric topology and general topology to JAMES W. CANNON, Department of Mathematics, Brigham Young University, Provo, UT 84602

Algebraic topology and differential topology to RALPH COHEN, Department of Mathematics, Stanford University, Stanford, CA 94305

Global analysis and differential geometry to JERRY L. KAZDAN, Department of Mathematics, University of Pennsylvania, E1, Philadelphia, PA 19104-6395

Probability and statistics to RONALD K. GETOOR, Department of Mathematics, University of California at San Diego, LA Jolla, CA 92093

Combinatorics and number theory to CARL POMERANCE, Department of Mathematics, University of Georgia, Athens, GA 30602

Logic, set theory, and general topology to JAMES E. BAUMGARTNER, Department of Mathematics, Dartmouth College, Hanover, NH 03755

Automorphic and modular functions and forms, geometry of numbers, multiplicative theory of numbers, zeta and L functions of number fields and algebras to AUDREY TERRAS, Department of Mathematics, University of California at San Diego, La Jolla, CA 92093

All other communications to the editors should be addressed to the Managing Editor, RONALD GRAHAM, Mathematical Sciences Research Center, AT \& T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.

General instructions to authors for PREPARING REPRODUCTION COPY FOR MEMOIRS

For more detailed instructions send for AMS booklet, "A Guide for Authors of Memoirs."
 Write to Editorial Offices, American Mathematical Society, P. O. Box 6248,
 Providence, R. I. 02940.

MEMOIRS are printed by photo-offset from camera copy fully prepared by the author. This means that, except for a reduction in size of 20 to 30%, the finished book will look exactly like the copy submitted. Thus the author will want to use a good quality typewriter with a new, medium-inked black ribbon, and submit clean copy on the appropriate model paper.

Model Paper, provided at no cost by the AMS, is paper marked with blue lines that confine the copy to the appropriate size. Author should specify, when ordering, whether typewriter to be used has PICA-size (10 characters to the inch) or ELITEsize type (12 characters to the inch).

Line Spacing - For best appearance, and economy, a typewriter equipped with a half-space ratchet - 12 notches to the inch should be used. (This may be purchased and attached at small cost.) Three notches make the desired spacing, which is equivalent to $1-1 / 2$ ordinary single spaces. Where copy has a great many subscripts and superscripts, however, double spacing should be used.

Special Characters may be filled in carefully freehand, using dense black ink, or INSTANT ("rub-on") LETTERING may be used. AMS has a sheet of several hundred most-used symbols and letters which may be purchased for $\$ 5$.

Diagrams may be drawn in black ink either directly on the model sheet, or on a separate sheet and pasted with rubber cement into spaces left for them in the text. Ballpoint pen is not acceptable.

Page Headings (Running Heads) should be centered, in CAPITAL LETTERS (preferably), at the top of the page - just above the blue line and touching it.

LEFT-hand, EVEN-numbered pages should be headed with the AUTHOR'S NAME;
RIGHT-hand, ODD-numbered pages should be headed with the TITLE of the paper (in shortened form if necessary).
Exceptions: PAGE 1 and any other page that carries a display title require NO RUNNING HEADS.
Page Numbers should be at the top of the page, on the same line with the running heads.
LEFT-hand, EVEN numbers - flush with left margin;
RIGHT-hand, ODD numbers - flush with right margin.
Exceptions: PAGE 1 and any other page that carries a display title should have page number, centered below the text, on blue line provided.
FRONT MATTER PAGES should be numbered with Roman numerals (lower case), positioned below text in same manner as described above.

MEMOIRS FORMAT

It is suggested that the material be arranged in pages as indicated below.
Note: Starred items (*) are requirements of publication.

Front Matter (first pages in book, preceding main body of text).
Page i - ${ }^{*}$ Title, ${ }^{*}$ Author's name.
Page iii - Table of contents.
Page iv - *Abstract (at least 1 sentence and at most 300 words).
*1980 Mathematics Subject Classification (1985 Revision). This classification represents the primary and secondary subjects of the paper, and the scheme can be found in Annual Subject Indexes of MATHEMATICAL REVIEWS beginning in 1984.
Key words and phrases, if desired. (A list which covers the content of the paper adequately enough to be useful for an information retrieval system.)
Page v , etc. - Preface, introduction, or any other matter not belonging in body of text.
Page 1 - Chapter Title (dropped 1 inch from top line, and centered).
Beginning of Text.
Footnotes: *Received by the editor date.
Support information - grants, credits, etc.
Last Page (at bottom) - Author's affiliation.

