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de master et qui m’a mise en contact avec Jean-Philippe.
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Abstract

In the last decades, image production has grown significantly. From digital photographs
to the medical scans, including satellite images and video films, more and more data need
to be processed. Consequently the number of applications based on digital images has in-
creased, either for medicine, research for country planning or for entertainment business
such as animation or video games. All these areas, although very different one to another,
need the same image processing techniques.
Among all these techniques, segmentation is probably one of the most studied because of
its important role. Segmentation is the process of extracting meaningful objects from an
image. This task, although easily achieved by the human visual system, is actually complex
and still a true challenge for the image processing community despite several decades of
research.
The thesis work presented in this manuscript proposes solutions to the image segmentation
problem in a well established mathematical framework, i.e. variational models. The im-
age is defined in a continuous space and the segmentation problem is expressed through a
functional or energy optimization. Depending on the object to be segmented, this energy
definition can be difficult; in particular for objects with ambiguous borders or objects with
textures. For the latter, the difficulty lies already in the definition of the term texture. The
human eye can easily recognize a texture, but it is quite difficult to find words to define
it, even more in mathematical terms. There is a deliberate vagueness in the definition of
texture which explains the difficulty to conceptualize a model able to describe it. Often
these textures can neither be described by homogeneous regions nor by sharp contours.
This is why we are first interested in the extraction of texture features, that is to say,
finding one representation that can discriminate a textured region from another. The first
contribution of this thesis is the construction of a texture descriptor from the representation
of the image similar to a surface in a volume. This descriptor belongs to the framework
of non-supervised segmentation, since it will not require any user interaction. The second
contribution is a solution for the segmentation problem based on active contour models and
information theory tools. third contribution is a semi-supervised segmentation model, i.e.
where constraints provided by the user will be integrated in the segmentation framework.
This processus is actually derived from the graph of image patches. This graph gives the
connectivity measure between the different points of the image. The segmentation will be
expressed by a graph partition and a variational model.

This manuscript proposes to tackle the segmentation problem for textured images.

ix
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Version Abregée

La production d’images a été l’apanage de ces dernières décennies. De la photographie
numérique au scan medical, en passant par les images satellitaires et les films vidéo, la
quantité de données à traiter est toujours de plus en plus importante. Le nombre de
domaines qui en résultent a naturellement augmenté, que ce soit pour des applications
médicales, de recherche pour l’aménagement du territoire, ou simplement des applications
dans le domaine du divertissement, tels que les animations ou les jeux videos. Tous ces
domaines, bien que très différents, font souvent appel aux même techniques de traitement
de l’image.
Parmi ces techniques, la segmentation est sans doute l’une des plus étudiées, de par l’importance
de son rôle. La segmentation est le processus d’extraction des différents objets constituant
une image. Cette tâche bien que relevée avec facilité par le système visuel humain, est en
réalité complexe et reste un véritable défi pour la communauté du traitement de l’image
malgré plusieurs décennies de recherche.
Le travail de thèse présenté dans ce manuscrit propose des solutions aux problèmes de seg-
mentation d’images dans un cadre mathématique solide, à savoir les modèles variationnels.
L’image est alors définie dans un espace continu et le problème de segmentation est exprimé
à travers l’optimisation d’une fonctionnelle appelée énergie. Selon l’objet à segmenter, la
définition de cette énergie peut s’avèrer difficile; en particulier pour les objets qui présen-
tent des frontières ambigues avec l’objet voisin ou des objets présentant des textures. Pour
ces dernières, la difficulté commence déjà dans la définition même du terme texture. Une
texture est facile à reconnâıtre par l’œil humain mais assez difficile à définir avec des mots,
d’autant plus en termes mathématiques. En effet, il existe un flou artistique autour de ce
terme qui entraine une difficulté à conceptualiser un modèle qui puisse les décrire. Souvent
ces textures ne peuvent être décrites ni par des régions homogènes ni par des contours nets.
C’est la raison pour laquelle nous nous sommes d’abord intéressé à l’extraction de carac-
téristiques pour les textures, c’est-à-dire trouver une représentation qui puisse discriminer
une region texturée d’une autre. La première contribution de cette thèse est un descripteur
de texture, construit à partir d’une représentation de l’image comme une surface dans un
volume. Ce descripteur sera alors intégré dans le cadre d’une segmentation non-supervisée,
c’est-à-dire une segmentation libre de toute interaction avec un utilisateur. La deuxième
contribution proposée dans cette thèse, est donc une solution pour la segmentation basée
sur les modèles des contours actifs et sur des outils de la théorie de l’information.
La troisième contribution est un modèle de segmentation semi-supervisée, c’est-à-dire que
des contraintes fournies par l’utilisateur seront intégrées dans le processus de segmenta-

xi



xii Version Abregée

tion. Ce processus est en réalité dérivé d’une répresentation par un graphe de parcelles de
l’image. Le graphe donne une mesure de connectivité entre les différents points de l’image.
La segmentation sera traduite à travers la partition du graphe par un modèle variationnel.

Ce manuscrit propose donc de s’attaquer au problème de la segmentation d’images
présentant des zones texturées.

Mots Clefs: Méthodes Variationnelles, Segmentation, Texture, Contours Actifs, Min-
cut.
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Introduction 1
1.1 The Image Segmentation Problem

Dealing with information extracted from a natural image, a medical scan, satellite data or
a frame in a video sequence is the purpose of image analysis.
In the real world, the stimulus that is received by the retina is perceived as a hole and com-
plete information. Between the electromagnetic reception and the perception, physiological
and neurological processes construct the final perception and analysis of the image. In fact
vision is composed of many interacting components including analysis of color, texture and
shape, the whole conducted by prior knowledge of the human brain. Computer vision aims
at getting the same result as human perception. The computer interface receives the image
as a matrix of pixels/voxels and several levels of processes are involved to get, when it is
possible, the same result as human analysis. The collection of processes involved in the
visual perception are usually hierarchically classified as belonging to either low level vision
or high level vision. High level vision consists on the interpretation of the image following
some rule or prior knowledge. In low level vision, image processing is performed to extract
some visible physical properties in the image such as shape and boundaries or to improve
the quality of the image. In this thesis we will be dealing with image processing and more
precisely with the image segmentation task. The objective of segmentation methods is to
determine a partition of an image into a finite number of semantically important regions
such as anatomical or functional structures in medical images or objects in natural images.
The segmentation task has been studied for several decades, however it is still a challenging
task. This task is essential in many applications including face detection in video sequences,
changes detection in satellite images, anatomical or functional object extraction in medical
images or object extraction in natural images.

Example on the two last applications will be shown all along this thesis. Figure 1.1
shows the type of images which will be used to illustrate the efficiency of new algorithms
proposed in this thesis. In those examples we typically want to extract the zebra from

1



2 Chapter 1. Introduction

its background (Figure 1.1(a)), the liver from Computed Tomography (CT) scan of the
abdomen (Figure 1.1(b)) or the white and gray matter matter in the brain Magnetic Res-
onance Image (MRI) (Figure 1.1(c)).
We are in particular interested on images that present textured regions. At this stage of the
manuscript, we should set straight the signification of the word texture. In fact we can all
recognize a texture when we see one but a proper mathematical definition is still difficult to
give. However, it is consensually admitted that textures are fine scale-details, usually with
some periodicity and oscillatory nature [4]. All along this work, the term texture groups all
the images that are composed partially or totally of textured part. Example of textures are
given on Figure 1.2. Texture images can be encountered in different kind of domain and the
partition of the different objects in these images is an important issue in many applications.

(a) Natural Image (b) CT (c) MRI

Figure 1.1: Example of natural and medical images that will be handled in this thesis for

the segmentation task.

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Example of textures from natural and medical images. (a) and (b) Patterns

from animals. (c) Curly hairs. (d) Liver section (e) Flowers (f) Grass.



1.2. Segmentation Methods 3

1.2 Segmentation Methods

Many approaches have been proposed to solve the image segmentation problem. A review
of the huge number of segmentation methods is beyond the scope of this thesis. The book
of Sonka et al. [95] provides a nice overview of some of these segmentation methods. The
most intuitive and simple one is probably image thresholding. In fact, several objects can
be described by homogeneous intensity and it can be possible to extract the object from it
background by fixing a constant threshold value. Usually a study of the image histogram
helps to find the right threshold. Segmentation can also be performed by edge detection
[58, 83]. Defining sharp and closed contours is a way to detect objects and thus solving
the segmentation problem. Edges are detected by filters based on gradient of the image
and various techniques allows to have a continuous definition of the object contours [19].
However obtaining sharp and closed contours from a single edge detector is a difficult task,
especially for noisy or texture images. In fact the gradient operator is a local operator
and this is quiet restrictive for images that need to be analyzed in a higher scale. Region
based methods allows to develop techniques that are more based on the local homogeneity
of a region as region growing techniques [14, 29]. These techniques are based on binary
criterion of belonging to a region. This criterion will be used either to region merging,
region splitting or a combination of the two. Edge-based and region-based segmentation
can also be unified in the same framework. This goal can be achieved with energy based
methods. These methods can combine both edge-based and region-based method by an
elegant mathematical formulation. These energy based methods will be our main interest
in this manuscript.

1.3 Energy based Segmentation Methods

Energy based methods formulate the image segmentation problem into an optimization
problem such that the equilibrium state corresponds to the segmentation solution. The
problem can be expressed in various forms depending on the data nature. Solving image
segmentation problem with energy based methods implies to solve the following optimiza-
tion problem:

min
ζ

F (ζ), (1.1)

where F is some continuous and differentiable energy functional, ζ can be a closed contour
or/and a piece-wise constant approximation of the image or/and a region. Translating a
segmentation problem into an energy functional minimization one allows to incorporate
different constrains, i.e. different assumptions on the model are gathered together with a
weighted influence. In general the energy imposes to ζ some fidelity to the original image
and some regularization behavior.

Energy-based image segmentation resolution is carried on by two principal communi-
ties. The first one belongs to the variational methods family. In this community, the first
assumption is that the image is a continuous function in R

n, where n is the dimension of
the image. Calculus of variation (see Chapter 4 Section 4.1.1) or shape derivative tools (see
Annex A.1) are used to find the associated Euler-Lagrange evolution equation which lead
to the segmentation solution. Our work belongs to this community.
The second community treats the image in the discrete space i.e the image is digital and
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belongs to Z
n. These methods are combinatorial methods and relies often on graph theory

(Chapter 7).

Variational Methods Two main categories of variational methods for image segmenta-
tion exist: The Mumford-Shah functional and the active contour (AC) method. Mumford
and Shah proposed in 1989 [71] the minimization of a functional of (u,K) where u is a
piece-wise constant approximation of the original image I and K is the set of discontinu-
ities, i.e the border between the different regions. Solving the Mumford-Shah Functional
is equivalent to find a piece wise constant partition of the image while regularizing the
borders between the regions. This optimization problem is not trivial mainly because u
and K are not defined in the same space. Several authors proposed regularization solution
of this problem [41, 66, 68].
The second category of variational model for image segmentation are Active Contours (AC)
or snakes and have been introduced by Kass et al. in [55]. In this image segmentation
method, an initial contour is subjected to a speed term which drives toward the bound-
ary of the object to be segmented. The speed term is determined by the minimization of
a functional composed of a contour smoothing term (internal energy) and an attraction
term of the contour towards the object boundaries (external energy). Based on the method
proposed by Kass et al., Caselles et al. and Kichenassamy et al. in [20, 56] proposed the ge-
ometrically intrinsic model of geodesic/geometric active contours where the evolution curve
is handled by the level set method introduced by Osher and Sethian in [73]. Finally, we
notice that authors in [20] reformulated the snake problem as a minimal path in a Rieman-
nien space. The first generation of active contour segmentation methods has been based on
edge detection [20, 55, 56]. However, boundary-based segmentation are often too restrictive
in many applications such as in medical image segmentation where fuzzy contours can be
encountered or natural images with texture where edges usually do not represent the region
of interest. To deal with these problems, segmentation models based on region descriptors
such as mean, variance, probability density function (pdf) have been developed.
Chan and Vese have proposed in [22] a 2-phase segmentation method based on the mean
descriptor where the active contour evolves in such a way that the difference between the
inside (resp. outside) gray level value and the inside (resp. outside) mean value is mini-
mized. This model is a particular case of the Mumford and Shah model when the image
approximation is two regions piece-wise constant function.
Other statistical moments such as the variance descriptor can be used to carry out the
segmentation task (see e.g [53, 107]) but the probability density function is a more general
descriptor.
Zhu and Yuille in [110] and Paragios, Rousson and Deriche in [74, 84] approximated the
pdf of the given image by a mixture of Gaussians, each one representing a homogeneous
intensity region to be segmented. More recently and related to our work, Jehan-Besson,
Aubert, Barlaud, Faugeras and Herbulot in [3, 48, 53] used the pdf of evolving regions of
interest in given images as a general region descriptor. The regions of interest are given by
minimization of region-based functions using the ”shape derivative tool” defined by Delfour
and Zolesio in [30] (see Annex A.1). Aubert, Barlaud, Faugeras and Jehan-Besson proved
in [3] the equivalence of minimizing a region-based functional with the shape derivative tool
and minimizing boundary-based functional with the calculus of variations. They applied in
[3, 53] the shape derivation tool to the image segmentation problem. Along with the same
tradition, Herbulot et al. in [48] used the shape derivative tool and information theory
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concepts (entropy and mutual information) to perform image segmentation as well.
All these methods allows to find local minimizers of the segmentation problem. In 2004,
Bresson et al. [13] proposed a method where the active contour leads to a global solution.

Combinatorial Methods Combinatorial methods solve the optimization problem of a
functional F represented in the discrete space Z

n, where n is the dimension of the image.
Let G = (V,E) be a graph where the set V represents the graph nodes (points in the im-
age) and E the edges connection nodes also called arcs connection. Two particular nodes
are defined in this graph: node s represents the source of the graph and t the sink. In
computer vision, a graph is defined in order to express a cost function or an energy which
performs a given task as restoration, segmentation or stereo reconstruction. Minimizing
the cut in the graph, i.e finding the best partition of the graph at the least cost, is the
goal of the process. The resolution of the minimum cut in a graph can then be solved by
using algorithms for maximizing the flow, as for instance the max flow algorithm of Ford
and Fulkerson [37]. We will note also the fact that a constraint of the existence of s and t
clears the way naturally for semi-supervised segmentation. Greig et al. [46] were the first to
use the minimal cut/maximum flow algorithm for image restoration. Wu and Leahy [106]
proposed to use the minimal cut algorithm for data clustering. They opened the way to
several graph partitioning method. Then Boykov and Jolly [8] adapted the work in [46] for
image segmentation. A particulary efficient and fast optimization of the min cut algorithm
was proposed by Boykov and Kolmogorov in [9]. In summary the mincut algorithm solves
several computer vision problems via the minimization of energy represented by a graph,
including image restoration [51, 106], image segmentation [7, 8], stereo and motion [11],
texture synthesis [59]. Finally we will notice that graph cut has been linked to active con-
tour with the work in [10]. After defining the appropriate graph which describe the same
energy, the active contour optimization is solved by the min cut algorithm.

1.4 Motivations and Contributions of this Thesis

The goal of this thesis is to study the problem of object segmentation and to propose algo-
rithms to solve it. Among all the families of methods that achieve the image segmentation
task, energy based methods solved with variational models are the one that has been chosen
to introduce new algorithms. The principal reason is that such approaches offer a rigorous
mathematical framework. Moreover being in the continuous space, the pixel/voxel resolu-
tion is not a limit. The segmentation method that we will propose should be general enough
to handle any kind of images including images with textures.
When we tackle the texture image segmentation problem, the problem of extracting perti-
nent feature arise naturally. Our first motivation is to define a texture feature descriptor.
This feature descriptor will be integrated in the segmentation framework. This brings us to
the second motivation which is a segmentation framework for two-phase images completely
unsupervised, that means independent from the user. Thus, an unsupervised segmentation
method that can handle multiple phases. Unsupervised methods offer the comfort of a to-
tally user independent and automatic process will be proposed. However some applications
require a user interaction. This is the reason why a semi-supervised segmentation method is
also designed. We are motivated by the use of non-local information represented by graphs
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and user defined constraints on the object to segment.
Therefore, the main contributions presented in the thesis are fourfold:

• An intrinsic texture descriptor based on a Beltrami representation of the image which
allows the use of differential geometry tools like principal curvatures(Chapter 3).

• A global active contour unsupervised region-based segmentation method based on the
Kullback-Leibler distance(Chapter 5)

• A global active contour unsupervised region-based method for multi-phase segmenta-
tion(Chapter 6)

• A non-local semi-supervised segmentation based on continuous mincut method(Chapter 8)

1.5 Organization of this Thesis

This thesis is composed of three parts. Each part is preceded by a preview of the motiva-
tions and the contributions. Then, the reader will find a first introductory chapter where
the related state of the art is developed. Each part is self-contained and can be read inde-
pendently even if some results can be used from one part to another. The first part develops
a new descriptor for texture images. This descriptor will be used in the second part. In
this second part, a new unsupervised active contour segmentation method is proposed. Fi-
nally, the third part presents our original semi-supervised segmentation method based on
continuous min cut on the graph. More precisely:

• Part I: Chapter 2 presents the texture feature representation from the state of
the art segmentation literature, followed by region measures to treat these descrip-
tors. Chapter 3 develops our new texture descriptor followed by a discussion on the
position of our texture descriptor with respect to some state of the art descriptors.

• Part II: Chapter 4 presents the state of the art for active contour methods and
introduces tools of information theory and probability. Chapter 5 contains the
development of our proposed unsupervised region based segmentation method. In
Section 5.1 the core of our method is presented followed by a mathematical justifica-
tion in Section 5.2. Then in Section 5.3 a dual formulation which leads to a convex
functional and a fast numerical scheme is presented. In Section 5.4 the experimental
results on various data type are presented. Finally, Chapter 6 presents an unsu-
pervised multi-region segmentation method. The segmentation is based on a convex
energy functional and its minimization provides global solution.

• Part III: Chapter 7 is an introduction to the graph-based method for image pro-
cessing and particulary for the mincut method. An overview of the semi-supervised
segmentation in the literature is also given. In Chapter 8, the construction of our
semi-supervised method is presented. We start in Section 8.1 by proposing a continu-
ous form of the graph partitioning minimal cut. In Section 8.1.2, labels on some part
of the objects are added. Apart from the fact that the user have an extra control on
the segmentation, it allows to have a proper segmentation model. Section 8.2 studies
the mathematical properties of the model. Then in Chapter 9, the experimental
results on different kind of data are shown, followed by a discussion on the model.
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Motivation and Contribution

Motivation The general idea of this part is to define a feature descriptor in the goal
to fulfil the region-based image segmentation task. The first assumption in region-based
segmentation is that each region regroups the same feature. It seems thus essential to have
a pertinent feature on which the segmentation task can be based. Naturally the quality of
the segmentation is highly dependent on the quality of the features. In fact following the
nature and complexity of the data, a preprocessing to extract the feature which can allow
the segmentation has been proved to be necessary. For instance, the raw textured images
are often too weak to be incorporated directly in the segmentation process. Synthetic and
natural images containing textured regions are our main interest. This part aims at defining
an interesting feature for textured images and a descriptor measures which can be efficient
for the segmentation task.

Contribution The contribution of this part is a texture descriptor based on a Beltrami
representation of the image which allows the use of differential tools.
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Feature for Region-Based

Segmentation 2
In this chapter some state-of-the-art on feature descriptors is first described. Then, in
Section 2.2, global measures that can discriminate different regions are defined.

2.1 Texture Features

In image processing, a feature on a raw image is some relevant characteristic of the image;
relevant in the sense that it can be used in an automatic process for a given task. Features
can represent edges, corners or homogeneous regions. We are interested in the extraction
of homogeneous region features.

Feature extraction for the segmentation purpose is a subject of interest for several
decades [72]. This research area is wide and covers field as motion descriptor (for ex. op-
tical flow), boundary descriptors (for ex. edge detection operators) or texture descriptor.
Here, we are interested in this last field of research.
There is a deliberate vagueness in the definition of texture probably because texture is a
concept peculiar to human perception. This implies that there is neither a unique defini-
tion nor unique mathematical model of this concept. Thus defining a ”universal” texture
descriptor is a difficult task.
The first and most natural texture feature is the image itself. In an image I ⊂ R

2 each
pixel is characterized by its gray-value or intensity. If the image is composed of multiple
channels (as color images) then each pixel has a vector of intensity which characterizes it.
When the image is composed of textured region, the pixel intensities values do not give any
pertinent information. In fact textures can not be analyzed at the pixel scale but need to
be analyzed at higher level scale, scale where information on the neighborhood around the
pixel is taken into account. In fact, besides of the intensity information, texture descriptor
should consider the scale and the orientation (or lack of orientation) of the image. A natural
approach for texture segmentation is to first represent the texture image by feature descrip-
tors and then to apply a vector-valued segmentation scheme. It is clear that the quality of

11
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the segmentation will depend on the extraction of good features for region discrimination.
Among texture descriptors, there are the ones that are statistical based as the co-

occurrence matrix. A co-occurrence matrix describes how often gray-values between two
pixels, with a certain distance at a given direction, occurs. This way the gray-level configu-
ration is built. The configuration varies rapidly with distance in fine textures and slowly for
coarse textures [47]. Several tools offer a statistical study of the texture as for example edge
frequency, primitive length approaches (see [95] and references therein) or fractal methods
[78].

An other class of method for texture feature extraction are the transform-based ap-
proaches of the image. Filters as for instance the gradient filter or the wavelet bank filter [63]
have been used for texture feature extraction, in particular before the image segmentation
task [85, 87]. The structure tensor which is based on the gradient of the image and the
Gabor filters which belong to the wavelet filters family will be developed hereafter. In fact
these two descriptors are used in segmentation methods related to the one that we will
propose in the second part of this thesis.

Structure Tensor The structure tensor has been first introduced in [38] for corner de-
tection, then it has been used to deal with oriented textures in [81]. The classical structure
tensor is the result of the tensorial product between the smoothed gradient version of a
function u and it transpose:

uσ = Kσ ∗ u

ST (∇uσ) = ∇uσ∇uT
σ ,

where Kσ is the Gaussian Kernel with standard deviation σ.
For an image I ∈ L∞(Ω)

ST (∇Iσ) =Kσ ∗
(

I2
x IxIy

IxIy I2
y

)

, (2.1)

where Ix and Iy are the derivative of the image I in respectively the horizontal and vertical
direction. The structure tensor is an attractive tool because it allows orientation description
and image structure analysis [105]. However, the Gaussian smoothed gradient of an image
suffers of one principal problem: dislocation of the edges and the structures. To cope with
this problem, it is now popular to use non-linear version of the structure tensor by applying
an isotropic or anisotropic diffusion. In [17], Brox et al. demonstrate the efficiency of
the non-linear structure tensor in comparison to the classical one. Then in [16], Brox and
Weickert proposed a modified version of the structure tensor where locale scale estimation
based on the region size is integrated.
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Gabor Filter Bank Texture features generated by Gabor/Morlet wavelet transform [60]
are powerful tools to discriminate textures of different orientation and scale. The main
motivation is based on the fact that simple cells in the visual cortex can be modeled by
Gabor functions [64]. The Gabor functions are parameterized by a wavelet orientation
angle θ and a scale σ (Figure 2.1). Following [97], the Gabor function can be modeled by a
complex sinusoidal signal centered at the 2D frequency coordinates (ωx, ωy) and modulated
by a Gaussian envelope :

Ψ(x, y) = g′(x, y) exp(j(ωxx + ωyy)),

where

g′(x, y) =
1

λσ2
g(

x′

λσ
,
y′

σ
), g(x, y) =

1

2π
g(−x2 + y2

2
),

and

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ.

λ is the aspect ratio between x and y scales, σ is the scale parameter, and θ the orientation
parameter of the wavelet. g′(x, y) is a Gaussian function spatially scaled σ and rotated by
θ

For a dirac pulsation, we can see in Figure 2.1 the magnitude Gabor response for four dif-
ferent orientations (θ = {0, π

4 , π
2 , 3π

4 } ) and scales. Given a certain number of orientations
and scales, the original image can be reconstructed from Gabor filter responses obtained by
convolution of the given image and the set of (θ, σ)-parameterized Gabor functions. Ob-
viously, increasing the number of orientations and scales will improve the reconstruction
quality. However, a good reconstruction can also be achieved by selecting only the most
relevant filter responses [52].
The Gabor filter will be used to compare and evaluate the feature descriptor that will be

proposed in the Chapter 3.

In the next section region measures are defined. These measures will be used on the
feature of interest for the segmentation task.

2.2 Region Measures for Feature Analysis

Once the texture is represent by the appropriate feature vector, measurements characteriz-
ing the difference between regions need to be defined.

Since textures show certain consistent properties, one way to describe such textures
or its features is through their statistical properties. In order to extract statistical region
descriptor, the intensity value of the image I(x) or the vector intensity of the feature vector
F (I(x)) is considered as a random variable with a distribution fI . We are then able to
compute statistical information on a region Ω ⊂ R

n.
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Figure 2.1: Gabor response for a pulsation for 4 different orientation (θ = {0, , π
4

π
2 , 3π

4 }
) and scale
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2.2.1 First and Second Order Statistical Moment

The average µ of the region is the first natural descriptor:

µ =
∑

Ω

fII(x).

If fI is uniformly distributed, i.e the probability of having any I ∈ [0, p−1], p is the number
of bins, is equiprobable then we can express the average or mean as follows:

µ =
1

|Ω|
∑

Ω

I(x).

This descriptor is very efficient for piece-wise constant or piece-wise smooth image [22] if
computed on the gray-level image, or for texture images computed on a vector of Gabor
response [87].
The variance of the region can also be used as a descriptor and is defined as:

σ2 =
1

|Ω|
∑

Ω

(I(x) − µ).

This descriptor has been used for image segmentation purpose in [53, 107].

2.2.2 Probability Estimation

The distribution of a sample is probably one of the most efficient way to describe a region.
It provides a complete description of the variation in a sample which is in our case the
intensity image or features distribution. This distribution can be estimated in a parametric
or non-parametric way via a probability density function (pdf).

Parametric Estimation Parametric models make strong assumptions on the pdf of the
regions. In image processing, a gaussian distribution is often chosen. Modeling the intensity
I distribution over a region Ω as a Gaussian distribution can be expressed as follows:

pG(I) =
1√
2πσ

e(I−µ)/2σ2

,

where µ and σ are respectively the mean and variance parameters which must be estimated
from the samples.
Zhu and Yuille in [110] and Paragios, Rousson and Deriche in [74, 84] approximated the
pdf of the image by a mixture of Gaussians, each one representing a homogeneous intensity
region to be segmented. For medical image analysis this assumption is often used and had
proved it efficiency as for instance in the work of Bach et al. [28]. A review of parametric
based segmentation methods can be found in [27].

Non-Parametric Estimation Non-parametric estimation of the probability density func-
tion allows a more general description of the region distribution, since no assumption on
the pdf is done. The simplest way to have a non-parametric estimation of the gray value
distribution over a region is the histogram [31]. This method consists just on counting the
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number of time that a pixel belongs to a bin or gray-level value. This method is fast but can
give a sparse result if the number of sample is low. An alternative is to use kernel estimation
which performs a local smoothing of the histogram. Then the pdf p(I) associated with an
observation I for a fixed region Ω at a given moment can be defined by the Parzen model
[77] (case where the kernel is gaussian) as follows:

p(I) =
1

Z

∫

Ω
K(I − I(x))dx, (2.2)

where | .| is the area of the given region and K(:) is the 1- D Gaussian kernel with 0-
mean and variance σ2. This estimation has been used in the segmentation framework in
[49, 70, 85] and is the one that will be used in the second part of this thesis. In fact our
framework must stay general and adjustable to any image type.

2.3 Conclusion

In this chapter a short review on extraction relevant features from textures was presented.
Structure tensor and Gabor filters are probably the most used in the image segmentation
literature. Besides of the problem of extracting features, one must consider also the possible
measures to study these features.
The next chapter presents our new texture descriptor. We will compare it to the Gabor
filter responses and the structure tensor.
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Geometric Texture

Descriptor based on the

Principal Curvatures 3
In this chapter, we present a new texture descriptor based on the shape operator defined
in differential geometry.

3.1 Textures and Beltrami Framework

In a general way, textures are difficult to define and no precise mathematical definition
has been found so far. However, it is consensually admitted that textures are fine scale-
details, usually with some periodicity and oscillatory nature [4]. Besides, textures raises
the problem of non-existence of significants edges and the non-homogeneity of intensity
distributions lying in images. The difficulty of having a mathematical definition for textures
has induced different choice of texture representation. In this work, we are particularly
interested in the Beltrami representation introduced by Sochen, Kimmel and Malladi in
[94]. Sochen et al proposed a new efficient representation of images by considering images as
a Riemannian manifold embedded in a higher dimensional space. For instance, a standard
2 dimensional gray value image I : R2 → R+ can be viewed as a surface Σ with local
coordinates (x, y) embedded in R

3 by a smooth mapping X : (x, y) → (X1 = x,X2 =
y,X3 = I(x, y)) (Figure 3.1). This manifold-based representation of images offers two main
advantages. Firstly, it allows to use efficient tools borrowed from differential geometry to
perform different image processing tasks such as denoising or segmentation as we will do
in the next chapters. The second main advantage is the ability to work with arbitrary N
dimensional images. For example, a color image can also be represented in a 5 dimensional
space by the mapping X : (x, y) → (X1 = x,X2 = y,X3 = R(x, y),X4 = G(x, y),X5 =
B(x, y)), where R,G,B stands for red, green and blue. Sagiv, Sochen and Zeevi in [87]
used the Beltrami framework to represent the texture image as a 2-D dimensional manifold
embedded in a space of N +2 dimensions, where N is the number of Gabor responses. They
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Figure 3.1: Images represented by Riemannian manifold embedded in a higher dimensional

space. Reproduced from [94]

used the first fundamental form [57], also called metric tensor, of the texture manifold
to define an intrinsic edge detector like in [89]. The idea of using the metric tensor to
intrinsically define the edges between different texture regions is efficient in the context
of differential geometry. Indeed, the first fundamental form describes the distortion or
rate of change of the manifold and so can detect boundary between different parts of the
manifold corresponding to different homogeneous textures. More precisely Sagiv et al used
the geodesic active contour model [20] to drive the evolving contour toward the boundaries
between two different texture regions by considering the edge detector function or stopping
function as the inverse of the determinant of the metric tensor. This can be explained in
the following way. If we consider the definition of the first fundamental form:

gµν =
(

<
∂X

∂µ
,
∂X

∂ν
>

)

,

where µ, ν = x, y in the (x, y)-basis. We have in the case of gray scale images, X := (x, y, I)
and

gxx = 1 + I2
x,

gxy = IxIy,

gyy = 1 + I2
y ,

which implies that

1

det(gµν)
=

1

(1 + |∇I|2) . (3.1)

Function 3.1 corresponds exactly to the edge detector function used in the standard model
[20]. Thus, Sagiv et al used the metric tensor of texture images to define an efficient edge
detector for textural images. Nevertheless, as we said earlier, the edge detector function is
not robust enough to segment a wide range of images and a region-based term, coming from
the vectorial Chan-Vese model [23], was coupled with their intrinsic edge detector function
to perform the segmentation of complex textures. This coupling is necessary because edge-
based active contours are too sensitive to noise, bad contrast and initial position.
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3.2 New Texture Descriptor based on the Beltrami Frame-

work and the Shape Operator

Our goal is to define a region descriptor/feature, instead of a boundary descriptor, for
textural regions. Like [87], we also wish to develop an intrinsic descriptor based on the
geometrical shape of the manifold representing the texture region. We thus propose to use
the shape operator and more specifically the eigenvalues of the shape operator to describe the
geometry of the textures of interest. The shape operator is a linear operator which calculates
the bending of a surface in different directions [45]. The eigenvalues of the shape operator
correspond to the extremal of bending of the surface, they are called principal curvatures
and they are known to represent the geometry of the considered smooth manifold. Indeed,
in the simple case of a curve in the space, the curvature κ of this curve is the inverse of the
radius ρ of the best fitting circle to the curve, i.e κ = 1

ρ . It is then intuitive to say that the
curvature κ describes the local shape of the curve and by extension the principal curvatures
describe the manifold.

In this work, we choose to represent the texture manifold by the simplest Beltrami
representation, i.e. X = (x, y, I). Since texture images are seen as a 2-D manifold, two
principal curvatures can be computed in this representation, namely (κ1, κ2). The couple of
principal curvatures (κ1, κ2) defines an intrinsic and efficient descriptor to segment complex
textural regions. More precisely, we believe that for a given texture pattern, a distribu-
tion/pdf of couples (κ1, κ2) is repeated inside the texture region. This distribution will be
automatically estimated through the segmentation process.

Let us introduce the mathematical definition of the shape operator that we call S. The
shape operator measures the shape of the manifold in a given region by estimating how the
normal NΣ to the surface Σ changes from point to point.

Definition 1. [45] Let Σ be a regular surface, and let NΣ be a surface normal to Σ defined

in a neighborhood of a point p ∈ Σ. For a tangent vector vp to Σ at p, the shape operator

is defined as:

S(vp) = −Dvp
NΣ, (3.2)

where Dvp
NΣ is the derivative of the surface normal NΣ in direction vp.

Definition 2. [45] The eigenvalues of the shape operator S of a regular surface Σ at p ∈ Σ

are precisely the principal curvature of Σ at p. The corresponding unit eigenvectors are

unit principal vectors, and vice versa.

In our situation:

Lemma 1. [57] The principal curvatures κ1, κ2 of the 2-D manifold are the roots of the

following equation:

κ2 − bµνg
µνκ +

b

g
= 0, (3.3)

where gµν is the inverse metric of gµν , g, h are the determinant of gµν , bµν and bµν is the

second fundamental form defined by:

bµν =
(

<
∂2X

∂µ∂ν
,NΣ >

)

,
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where µ, ν = x, y in the (x, y)-basis, and the Einstein summation convention is used in
(3.3), which means that elements with identical subscripts and superscripts are summed
over.

Let I be the original gray level image. The mapping X is equal to (x, y) → (x, y, I(x, y))
and the first fundamental form is thus given by

gµν =

(
1 + I2

x IxIy

IxIy 1 + I2
y

)

,

where the suffixes stands for partial derivatives. The normal to the manifold is given by

NΣ =
1

Z
(−Ix,−Iy, 1),

with Z =
√

1 + I2
x + I2

y , which yields us to the calculus of the second fundamental form

bµν =
1

Z

(
Ixx Ixy

Ixy Iyy

)

.

Using Lemma 1, the values of the principal curvatures are given by

κ1,2 =
(−β ±

√

β2 − 4αγ)

2α
,

where






α = 1
−β = 1

Z3

[
Ixx(1 + I2

y ) + Iyy(1 + I2
x) − 2Ixy(IxIy)

]

γ =
[
IxxIyy − (Ixy)

2
]

.

The first principal curvature κ1(κ1 ≥ κ2) corresponds to the maximal change of the
normal to the surface and κ2 corresponds to the minimum change. For sake of simplicity,
and in order to use the information provided by the two principal curvatures, we consider
to work with the norm of k1 + k2, where vector k1 (resp. k2) has a norm κ1 (resp. κ2)
and is oriented by the associated unit principal vector (see Definition 2). Since k1 and k2

are orthogonal, this leads to:

κt :=
√

κ2
1 + κ2

2, (3.4)

where κt : Ω0 → R+ defines the texture descriptor that we will use to segment regions with
different texture patterns and Ω0 corresponds to the image domain.

3.3 Results

In this section we discuss the results of our texture descriptor algorithm compared with
Gabor filter response and structure tensor outputs.
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Natural Textured Image We propose to look at a natural picture (Figure 3.2(a)) com-
ing from the Berkeley data set. Figure 3.2(b) shows the result of our texture feature de-
scriptor, where the feline is more discernable from the background. In fact, almost all the
background has been set to a constant value. Figure 3.2(c) shows the Gabor filter response
to the picture. It is difficult to interpret the quality of the feature extraction. However one
can see that the information can be redundant or useless. Of course some channels seems
to be good descriptors. Segmentation results based on these features will be shown in the
next part.

Non-Oriented Texture The case where the textures that must be discriminated do
not have a particular orientation is now studied. From a binary image 3.3(a) and from
Brodatz Texture [15], a bi-textured image is constructed (Figure 3.3(b)). A plot of the
probability density function on the object and the background is shown on Figure 3.3(c).
The estimation has been done with Parzen window method (Equation 2.2). It is clear that
the two density are too close to be discriminated by the distribution over their intensity
value. The elements of the structure tensor (Eq. 2.1) are computed and shown on Fig-
ures 3.4(a) 3.4(b) 3.4(c) and the corresponding pdf Figures 3.4(d) 3.4(e) 3.4(f). As one can
see the difference between the inside and the outside is not expressed by the distribution
of structure tensor elements. Figure 3.5 shows the Gabor filter response for our bi-texture
non-oriented image. Visually, none of the Gabor response seems enough discriminative,
however we will see in Chapter 5 Section 5.4 that the combination of several of these chan-
nels gives interesting segmentation results. Finally we apply our texture descriptor in the
non-oriented bi-texture image (Figure 3.6(a)). The object is already more easily distin-
guished from its background. The plots on Figure 3.6(b) of the object and background
distribution upholds that our texture descriptor improves the discrimination between two
different textures.

Oriented Texture We will finish by showing the limitation of our texture descriptor.
Figure 3.7(a) presents the first test image composed of a vertical striped background with
an horizontal striped object. In fact, the object is a background cut rotated of 90◦. The
degree of the curvature will not be different for a same uniformly oriented texture with dif-
ferent direction. Conversely this is the case where the Gabor filter is particulary efficient.
Obviously, in this particular case, the selected Gabor responses corresponds to a orientation
parameter θ = 0 and θ = π

2 .

In summary, Gabor filters are powerful descriptors however they are computationally expen-
sive. Moreover the space spanned by these features is high dimensional which will lead to
a more complex segmentation framework. Structure tensor are interesting texture features
when non-linear regularization is performed.

3.4 Conclusion

In this part we use a new texture descriptor based on the intrinsic local geometry repre-
sentation of the image. We have been using the representation of the image as a surface in
the image space as proposed by [93]. This representation offers the possibility to use geo-
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metric descriptors. In fact, from differential geometry, a new geometric texture descriptor,
based on the shape operator, looks to be a promising texture feature to segment complex
textures with different orientations and scales. From a numerical point of view, this tex-
ture descriptor is very easy to implement and an image of size 256 × 256 is processed in
around 4 seconds. Our model is currently designed to work only with textures. Indeed, our
model needs at least one textural region. If we consider a piecewise constant image then
the value of our textural feature κt would be the same, equal to zero, on the whole image
domain. Natural images are often composed of textured and piece-wise smooth regions and
our feature descriptor is efficient to discriminate the textural part from the smooth part.
We will see in the next part the importance of the texture feature for the segmentation
task. In fact our texture descriptor based on the principal curvatures will be included in
the segmentation framework of Chapter 5.
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(a) (b)

(c)

Figure 3.2: Natural images are often composed of textured and piece-wise smooth re-

gions.(a)Natural Image. (b)Result of our texture feature based on the principal curvatures.

(c)Gabor filter responses.
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(a) (b) (c)

Figure 3.3: (a)Binary mask. (b)Original Texture Image constructed from Brodatz Texture

[15].(c) pdf on the object (red) and the background (blue).

(a) (b) (c)

(d) (e) (f)

Figure 3.4: First row: Structure tensor elements on the texture of Figure 3.3(b), (a)I2
x ,

(b)IxIy, (c)I2
y . Second row: Correspondent pdf on the object (red) and the background

(blue)
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Figure 3.5: Gabor filter responses of figure 3.3(b)

(a) (b)

Figure 3.6: (a)Feature extracted from Figure 3.3(b) with our intrinsic feature descriptor.

(b) Correspondent pdf on the object (red) and the background (blue)
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(a) (b)

(c)

Figure 3.7: Failure example:(a)Textured image to be segmented. The background consists

of vertical patterns and the object of horizontal patterns. (b)Feature extracted with our

intrinsic feature descriptor (c) Features extracted with Gabor Filter
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Motivation and Contribution

Motivation In the second part of this thesis an unsupervised segmentation algorithm is
developed. The method is based on active contours (AC) and information theory.

Furthermore, we will also develop a fast and easy to implement algorithm to drive the
active contour toward the minimum of the proposed energy functional. The first proposed
model will be based on the popular Kullback-Leibler (KL) divergence, which will measure
the difference between two probability density functions (pdf) of an image feature. We
will maximize the KL using the algorithm introduced by Bresson et al in [13] in order to
find distinct textured regions. A fast algorithm based on the dual formulation of the Total
Variation (TV) norm proposed by Chambolle in [21] will be used to compute the global
minimizer of the active contour model based on the KL distance. This model is constructed
for 2 region segmentation. The second model deals with multi-region segmentation.

Contribution The main contributions of this part are summarized as follows:

• Definition of a new region-based energy using Kullback- Leibler divergence between
inside and outside pdf of the evolving active contour. This technique can be viewed
as a ”probability density function competition”.

• Analysis of the existence of a minimizing solution for that variational segmentation
problem.

• A fast numerical scheme to determine the solution.

• A convex formulation of the multi-region active contours segmentation solved with a
fast numerical scheme.
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Background: Active

Contours and

Information Theory 4
4.1 Active contours

A lot of research has been going on in the field of image segmentation and many different
segmentation methods have been developed over the last twenty years. Among these various
models, the ones that are independent of any parametrization and that are based on a
variational approach are our main interest. The review given in this section will cover
the basics of variational models using boundary-based active contours [55], geodesic active
contours [20], level set functions [73] and region-based segmentation [82]. The book of
G.Aubert and P.Kornprobst [2] presents and explains most of variational methods for image
segmentation. Some of them are summarized in the next section.

4.1.1 Boundary-Based Active Contours

Geodesic Active Contours and Variational Equations Active contours or snakes
have been introduced by Kass et al. in 1987 [55]. The basic idea behind the active contour
model is the following: the segmentation of any object in a given image I ∈ L1(Ω) which
is well discernible and whose edges can be described by a closed curve is equivalent to the
location of sharp image intensity variations by iteratively deforming a curve C towards the
edges of the object. The curve C has to be initialized close to the object of interest. Such
a model is entirely dependent on the chosen parametrization of the initial curve C(p) =
(x(p), y(p)) ∈ Ω, p ∈ [0, 1]. The evolution equation of the curve C(p) can be obtained by
minimizing the following energy functional

F (C) = α

∫ 1

0

∣
∣
∣
∣

∂C(p)

∂p

∣
∣
∣
∣
2

dp + β

∫ 1

0

∣
∣
∣
∣

∂2C(p)

∂p

∣
∣
∣
∣
2

dp + λ

∫ 1

0
g2(I(C))dp, (4.1)

where |.|2 is L2-norm, α, β, λ are positive constants and g is an edge detecting function.
The first two terms in Equation (4.1) are called internal energy and set up constraints on
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the geometry of the active contour, i.e impose smoothness on the contour.
The third term is referred to as external energy and serves to attract the curve C(p) toward
the object’s boundaries. One possible expression of g is:

g(I) =
1

1 + γ |∇(I ∗ Gσ)|2
,

where γ is an arbitrary positive constant, Gσ is the Gaussian function with standard devi-
ation σ and (I ∗ Gσ) represents a smoothed version of the original image I.

Besides the already mentioned dependency of the final segmentation result on the cho-
sen parametrization, another disadvantage of the active contour model, such as initially
proposed by Kass et al. [55], is its inability to handle topological changes.

Based on the method proposed in [55], Caselles et al. and Kichenassamy et al. in [20, 56]
proposed the geometrically intrinsic model of geodesic/geometric active contours where the
evolution curve is handled by the level set method introduced by Osher and Sethian in [73].
The problem of parametrization dependency is then solved. The new energy functional,
which is independent of the initial curve parametrization, is given by:

F (C) =

∫ 1

0
g(|∇I0(C(p))|)

∣
∣C ′

p

∣
∣ dp =

∫ L(C)

0
g(|∇I0(C(s))|)ds, (4.2)

where ds is the Euclidean element of length and L(C) is the Euclidean length of the curve

C, which is defined by L(C) =
∫ 1
0

∣
∣C ′

p

∣
∣ dp =

∫ L(C)
0 ds. This energy functional can be seen

as a weighted length of the curve C. As proved by Caselles et al. in [20], the minimization
of the Energy Functional (4.2) results in a curve which is a geodesic in a Riemannian
space. Minimizing Functional (4.2) is equivalent to minimize Functional (4.1) under the
the assumption that β = 0. This property has been shown by Caselles et al using concepts
of Hamiltonian theory. Aubert and Blanc-Féraud [1] proved also this equivalence using
calculus of variation which is a more natural tool for image processing community.

The minimization problem of any energy functional of form F (c) =
∫ b
a f(c, cp)dp can be

solved by using the calculus of variations as

[
∂

∂c
− d

dp

∂

∂cp

]

f(c, cp) = 0. (4.3)

Equation (4.3) is the well known Euler-Lagrange differential equation and any function c
satisfying this equation corresponds to an extremum of F (c).
The next step is the use of Equation (4.3) to minimize the geodesic active contour Energy
Functional (4.2), where f(C,Cp) = g(I(C)) |Cp| and thus Equation (4.3) becomes:

[
∂

∂C
− d

dp

∂

∂Cp

]

(g(C) |Cp|) = 0. (4.4)

Finding the evolution equation for geodesic active contours leads to solve the Euler-
Lagrange Equation (4.4) by a gradient descent scheme. Let t be an artificial time step. The
gradient descent formula which yields the minimum of the Euler-Lagrange function F, i.e.
that can be used to find the C for which ∂F

∂C = 0, then becomes

dC

dt
= −∂F

∂C
, (4.5)
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where the sign inversion in the right hand side is required in order to find a minimum and
not a maximum. Using Equations (4.4) and (4.5), the final evolution equation for geodesic
active contours is:

∂C

∂t
= (gκ − 〈∇g,N〉)N . (4.6)

The first term of the right hand side of Equation (4.6) represents the mean curvature motion
weighted by the edge detecting function g. The curvature κ measures how fast the curve
bends at any point and it is responsible for the evolution of the geodesic active contour
in regions without edges and where the edge detecting function g approaches one, such as
it is the case inside the object of interest. But more importantly, the curvature κ makes
the geodesic active contour to become smoother by decreasing its total length. The second
term of the equation’s right hand side attracts the curve to the object’s boundaries.
In the general case, the active contour is driven by the following flow:

∂C

∂t
= V N .

Level Sets Level sets functions are a non-parametric representation of curves. As al-
ready mentioned, level sets were first introduced by Osher and Sethian in [73] and they
are a powerful way to handle topology changes of an evolving contour. The basic idea is
to take the original interface and to add an extra dimension to the problem. In a two
dimensional scenario, the original curve would lie in the xy plane at level zero (z = 0)
and the z direction would then be used to measure the height, just as a topographic map
indicating surface elevations. The interface lying at level zero is called ’zero level set’ and
represents the best segmentation result of the current iteration. Therefore, the goal is to
let the level set function evolve in time and within a fixed coordinate system such that at
each time instant t the outline of the curve’s cross-section at height zero corresponds to the
segmentation’s evolving contour. By convention, the level set function is negative (z < 0)
for all points whose x and y coordinates fall inside the zero level set and positive otherwise.
Since the level set function is able to divide at any arbitrary height z, thereby taking over
the shape of a mountain with two peaks, as illustrated in Figure 4.1, it becomes clear that
by moving the level set function downwards, the zero level set is shifted from the base of
the inverted mountain up to the two peaks and the initially single closed curve at level zero
splits in order to form two closed curves at the new location of the level zero. Starting with a
single evolving contour, level sets make it therefore possible to segment two separate objects.

Being familiar with the general idea behind the level set method, it is now interesting
to analyze how the level set function actually evolves. The general evolution equation for
a two-dimensional curve is given by the partial differential equation

{
dC
dt = V‖T + V⊥N ,

Ct=0 = C0,
(4.7)

where T and N are respectively the unit tangential and unit normal to the curve C and V‖
and V⊥ are the tangential and normal velocities of the evolving front. Epstein and Gage [35]
have shown that the tangential velocity component V‖ has no effect on the deformation of
the curve and can therefore be neglected. Equation (4.7) holds for any hyper-surface which
is represented either parametricaly or implicitly, as in the case of level sets. The first step



34 Chapter 4. Background: Active Contours and Information Theory

Figure 4.1: Evolution of a level set function illustrating its ability to handle topology

changes. Source: Wikipedia.

in the derivation of the evolution equation of level sets is to create an initial time dependent
level set function φ(x, t = 0) based on the signed distance d from each point x = (x, y) to
an initial closed front Γ(t = 0). The level set function is thus initialized in our case with
a distance map having negative values for points lying inside the front and positive values
for all points lying outside and it satisfies the following definitions:







φ(x, t) < 0 for x ∈ Ωin(t)
φ(x, t) > 0 for x ∈ Ωout(t)
φ(x, t) = 0 for x ∈ Γ(t),

where Ωin and Ωout are the region inside and outside the contour Γ(t). Given that the
evolving front corresponds to the zero level set, meaning to the front where φ(x(t), y(t), t) =
0, the following equality must be observed:

φ(x(t), y(t), t) = 0 ∀t.

Thus the evolution of the front Γ, moving in the normal direction to itself with the speed
V⊥, can be described by means of the so-called Hamilton-Jacobi equation applied to the
level set function:

∂φ

∂t
+ V⊥‖∇φ‖ = 0. (4.8)

In the last step, we are going to apply the level set evolution Equation (4.8) to geodesic
active contours. By comparing Equation (4.6) with Equation (4.7) we can immediately
identify the normal speed V⊥:

∂C

∂t
= (gκ − 〈∇g,N〉)

︸ ︷︷ ︸

V⊥

N . (4.9)
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By substituting the found velocity V⊥ into the level set evolution Equation (4.8) and by
knowing that the curvature κ and the unit normal to the evolving front N are respectively

given by κ = div
(

∇φ
|∇φ|

)

([90]) and N = ∇φ
|∇φ| , we finally get the wanted evolution equation

of the level set function φ

φt =
{
gκ − 〈∇g,N〉

}
|∇φ| (4.10)

Finally, we note that the active contour and the level set formulation are equivalent:

∂C

∂t
= V N ⇔ ∂Φ

∂t
= V |∇φ| .

4.1.2 Region-Based Segmentation

Originally, active contours, such as introduced by Kass et al. in [55], were boundary based
methods, meaning that the earliest evolution equations included only terms based on local
information on the boundaries of the object of interest. The same holds for the geodesic
active contours model, that have been proposed by Caselles et al. in [20] and Kichenassamy
in [56]. Later on, more sophisticated segmentation models emerged that integrated also
global information on the regions of interest additionally to the information based on object
boundaries. Pioneers in this respect were Cohen et al. [26] and Ronfard [82]. Cohen et
al. presented in [26] a surface reconstruction method using region based active contours.
Later, it was Ronfard who proposed in [82] that an evolution function of region based active
contours should be proportional to the difference of statistical features: E = k(in) − k(out),
where k(in) and k(out) represent statistical models of the regions inside and outside the object
of interest, respectively. Thereafter, a statistical framework for image segmentation has been
presented by Zhu and Yuille [110], which is known under the name of region competition. In
this model, the active contour evolution equation was obtained by minimizing a generalized
Bayes criterion based on the Mumford-Shah functional. The method of Zhu and Yuille has
been extended by Paragios and Deriche [74], who improved the contour descriptor in order
to incorporate the image gradient, such as in geodesic active contours, and the evolution
equation is handled by level set method.

Further, Chan and Vese proposed in [22] a 2-phase segmentation method based on the
mean descriptor where the active contour evolves in such a way that the difference between
the inside (resp. outside) gray level value and the inside (resp. outside) mean value cin

(resp. cout) is minimized. This can be expressed by the following energy functional:

F (cin, cout, C) =

∫

Ωin

(I0(x, y) − cin)2dxdy +

∫

Ωout

(I0(x, y) − cout)
2dxdy + ν|C|, (4.11)

where |C| is the contour length and ν a positive weight parameter. We can note that
Energy 4.11 is a particular case of the Mumford-Shah Functional [71].

Then, a general Eulerian framework for region based active contours has been proposed
by Jehan-Besson and Barlaud in [53]. They used region dependent descriptors that were
globally attached to the evolving regions and that allowed to simultaneously perform the
segmentation of the object of interest together with the estimation of these region descrip-
tors. The probability density function (pdf) looks so far to be one of the most efficient region
descriptor to solve the segmentation problem. More recently, Aubert, Barlaud, Faugeras,
Jehan-Besson and Herbulot in [3, 48, 53] proposed to update the pdf of the object and the



36 Chapter 4. Background: Active Contours and Information Theory

background during the segmentation object until the optimal partition is reached. This
idea makes a lot of sense because segmentation and estimation of features such as pdfs
of regions of interest are basically related to each other. Besides, this approach does not
need a pre-processing step to estimate the optimal features. We will apply this idea in
our proposed segmentation method, combined with tools coming from information theory
presented in Section 4.3.

4.2 Global Minimization of Active Contour Energy

The two principal drawbacks of active contours methods are the computational cost and the
existence of local minimizers. In most papers regarding active contours, the Euler-Lagrange
equation of the variational model is discritized using an explicit scheme, which produces
a slow segmentation process. Besides, most active contour evolutions are handled by the
level set method [73], which needs to use a signed distance function re-computed regularly
during the evolution process to avoid numerical instabilities. Moreover the problem of local
minimizers must be underlined. A segmentation problem based on variational model where
optimizers are local implies that the solution is highly dependent of the initial condition.
A recent method, introduced by Bresson et al. [13], proposes to redefine the active contour
model into a model which gives global minimizers. Furthermore a fast numerical scheme
can solve the segmentation problem. Thus the global minimization of the AC energy can
be derived in two different ways, either from the Euler-Lagrange equation or from the
variational model.

4.2.1 Model 1: Global Active Contours from Partial Differential Equa-

tion

The pioneer work of Chan, Esedoglu and Nikolova in [24] unifies image denoising and image
segmentation through the Chan-Vese model [22]. Global minimizers of the segmentation
and denoising model are then defined. Based on [24], Bresson et al. in [13], proposed
to compute a global minimum to the active contour energy including the case of geodesic
active contour [20] and segmentation based on the general Mumford-Shah energy, in order
to be independent of the initial contour position. Following [13], we explicit hereafter how
the active contour model can be turned into a convex model in a general case.

Let us consider the following variational model:

min
ΩC

{

F1(ΩC) =

∫

∂ΩC

g(s)ds + λ[

∫

ΩC

rin(x)dx +

∫

Ω\ΩC

rout(x)dx]

}

, (4.12)

where g is an edge detection function, ΩC is the evolving region and ΩC ∪ ΩC = Ω, rin

(resp. rout) is a model of the inside (resp. outside) region.
This model merges the boundary and the region information of the image. The associated
Euler-Lagrange Equation is given by:

φt = (∇ ∇φ

|∇φ| + λr)|∇φ|, (4.13)

where r = rin − rout. For instance the Chan-Vese mean descriptor gives

r = ((I(x) − cin)2 − (I(x) − cout)
2),
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where cin is the mean inside the object and cout the mean outside. Since |∇φ| > 0, the
steady state of (4.13) is the same as:

∂φ

∂τ
= −λr + ∇ ∇φ

|∇φ| . (4.14)

Then, φ in (4.14) is also solution of the variational model:

min
φ∈[0,1]

{

F (φ) =

∫

Ω
−λrφ + |∇φ|

}

. (4.15)

By restricting the minimization of φ in the convex set of element in [0, 1], a solution can be
found to the minimization problem.
To avoid any confusion with the level set function φ, the notation is changed and we are
seeking the minimum of the functional F (u) such that:

min
u∈[0,1]

{

F (u) =

∫

Ω
−λru +

∫

Ω
|∇u|

}

, (4.16)

where
∫

Ω |g(x)∇u| =: TVg(u) is the weighted total variation norm of the function u.

Let us define the characteristic function 1ΩC
of the set ΩC , defined as follows:

1ΩC
(x) =

{
1 if x ∈ ΩC

0 otherwise
.

Theorem 4.2.1. Suppose that r ∈ C1(Ω) and λ ∈ R+, if u⋆ is any minimizer of F (.), then

for almost every µ ∈ [0, 1] we have that the characteristic function

1ΩC(µ)={x:u(x)>µ} (x),

where C is the boundary of the set ΩC , is a global minimizer of F (., λ).

Proof. See [13, 24]. �

The variational model (4.16) can be quickly minimized using a dual approach of the TV
norm as in [4, 13, 21]. A convex regularization of the variational model (4.16) is used:

min
v∈[0,1], u

{

F (u, v) =

∫

Ω
|∇u| − λrv +

1

2θ
(u − v)2

}

, (4.17)

where θ > 0. Since the functional F is convex w.r.t. u, v, its minimizer can be computed
by minimizing F w.r.t. u, v separately, and iterating until convergence as described in the
references mentioned above. Thus, the following minimization problems are considered:

v being fixed, min
u

{

TV (u) +
1

2θ
‖ u − v ‖2

L2

}

, (4.18)

u being fixed, min
v∈[0,1]

{∫

Ω
−λrv +

1

2θ
(u − v)2

}

, (4.19)
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• The solution of (6.16) is given by [21]:

u = v − θ∇p, (4.20)

where p = (p1, p2) is given by

pn+1 =
pn + δt∇(divpn − v/θ)

1 + δt
g(x) |∇(divpn − v/θ)|

, n ∈ N

• and the solution of (6.17) is given by [13]:

v = min{max{u + θλr, 0}, 1}. (4.21)

4.2.2 Model 2: Global Active Contours from the Variational Model

Let us consider a slightly different version of Functional 4.23:

min
u∈[0,1]

{F2(u) =

∫

Ω
g(x)∇u(x)|dx + rin(x)u(x)dx + rout(x)(1 − u(x))dx} (4.22)

This functional has been introduced by Mory and Ardon [69] as a fuzzy region competi-
tion for convex two-phase segmentation. In fact this function is convex in u, u ∈ [0, 1] and
the following property can be deduced:

Proposition 4.2.1. If u = 1ΩC
Energy from Functional 4.15 and Energy from Func-

tional 4.22 are equivalent .

F2(u = 1ΩC
) = F1(ΩC).

We can also notice that the minimization of Energy 4.22 is equivalent to the minimiza-
tion of Energy 4.15. Then Theorem 4.2.1 remains valid for Energy 4.22 and the minimization
scheme for fixed region descriptor is the same as for Model 1. This algorithm has shown it
efficiency on medical image as in [69].

4.2.3 Model 1 vs Model 2

The two presented methods for global minimizers for active contour model are very similar.
Model 1 was the first model to offer an equivalent convex formulation of the active contour
model. Since the solution is given from the active contour general evolution equation, any
active contour formulation can be adapted. The difference between the two models lies
in the computation of the optimal region parameters. For instance let us consider the
Chan-Vese model [22]:

Model 1

min
u,cin,cout

{
F1(ΩC , cin, cout) =

∫

∂ΩC

g(s)ds +

∫

ΩC

((I(x) − cin)2 +

∫

Ω\ΩC

(I(x) − cout)
2)dx

}
,

cin =

∫

Ω 1{u>µ}(x)I(x)
∫

Ω 1{u>µ}u(x)dx
cout =

∫

Ω 1{u<µ}I(x)
∫

Ω 1{u<µ}dx

where µ is an arbitrary real value in [0, 1].
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Model 2

min
ΩC ,cin,cout

{
F1(ΩC , cin, cout) =

∫

∂Ω
g(s)|∇u|dx +

∫

Ω
(I(x) − cin)2u(x) +

∫

Ω
(I(x) − cout)

2(1 − u(x))dx
}
,

cin =

∫

Ω u(x)I(x)
∫

Ω u(x)dx
cout =

∫

Ω(1 − u(x))I(x)
∫

Ω (1 − u(x))dx

The estimation of the parameters by Model 2 is less rigid then by Model 1. Moreover
there is no dependency to the arbitrary parameter µ. However the model supposes that the
energy can be expressed as a difference between regions which is not always the case as we
will see in Chapter 5.

4.2.4 Numerical Scheme

The minimization of Energy 4.16 and Energy 4.22 is based on the two iteration schemes
4.20 and 4.21. The numerical scheme to compute the divergence and the gradient operator
for 3 dimensional images are given as follows: p = (p1, p2, p3)

(div(p))x,y =







p1
x,y,z − p1

x−1,y,z if 1 < x < Nx,

p1
x,y,z if x = Nx,

−p1
x−1,y,z if x = Nx,

+







p2
x,y,z − p2

x−1,y,z if 1 < y < Ny

p2
x,y,z, if y = Ny,

−p2
x,y−1,z if y = Ny

+







p2
x,y,z − p2

x,y,z−1 if 1 < z < Nz

p2
x,y,z, if z = Nz,

−p2
x,y,z−1 if z = Nz

The discrete gradient operator is as follows:

(∇u)1x,y,z =

{
ux+1,y,z − ux,y,z if x < Nx,
0 if x = Nx

(∇u)2x,y,z =

{
ux,y+1,z − ux,y,z if y < Ny,
0 if y = Ny

(∇u)3x,y,z =

{
ux,y,z+1 − ux,y,z if z < Nz,
0 if z = Nz

Deducing the divergence and the gradient operator for 2 dimensional images is straight-
forward. In [21], the authors shows that the algorithm converges if δt < 1

8 for 2D images
and we can easily see from his proof that for 3D images the convergence is guarantied for
δt < 1

16 . Thus for algorithms proposed in the next chapter δt is fixed to the value 1
8 for 2D

images and 1
16 for 3D images.

4.3 Information Theoretic and Probabilistic tools

Information theory has provided powerful tools which have been successfully applied to solve
various problems in science and technology. We recall hereafter some general definitions
on probability and information theory that will be useful to define an image segmentation
model.
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4.3.1 Shannon Entropy

Information entropy has been introduced by Claude Shannon in 1948 in [91]. Shannon’s
definition of entropy H(A) of any continuous random variable A is given by:

H(A) = −
∫

a∈ΩA

p(a) log p(a)da,

where ΩA is the set of possible outcomes of A and p(.) is the probability measure of A.

4.3.2 Relative Entropy

Let A be a continuous random variable defined on the set of possible outcomes ΩA and p(A)
and q(A) two probability measures of A. The relative entropy is a measure of the distance
between the probability density functions p and q defined as follow:

KL(p, q) =

∫

a∈ΩA

p(a) log
p(a)

q(a)
da.

Since the relative entropy is not a true metric (it does not satisfy the symmetric property
of distance function), an extension called the symmetric Kullback-Leibler distance has been
widely used. The definition of the Kullback-Leibler (KL) distance is thus as follows:

KL(p, q) =

∫

a∈ΩA

{

p(a) log
p(a)

q(a)
+ q(a) log

q(a)

p(a)

}

da. (4.23)

The well-known mutual information is in fact a particular case of the KL distance, where the
distance between the joint distribution and the product distribution is measured. Let p(A1)
and q(A2) be two probability measures associated respectively to the continuous random
variables A1 and A2. The mutual information is defined as:

MI(p, q) =

∫

a1∈ΩA

∫

a2∈ΩA

p(a1, a2) log
p(a1, a2)

p(a1)q(a2)
da1da2,

where p(a1, a2) is the joint distribution computed from the joint histogram. Mutual Infor-
mation is often defined as the mutual dependence of the two random variables A1 and A2.

Information theory has been widely used for image processing in different type of tasks.
For instance, mutual information is one of the most ”popular” similarity measures for mul-
timodal registration process (see [79] for a review). The entropy measurement is encountered
for probabilistic image classification model as well for image segmentation. In this work,
we propose to apply the KL’s approach to the image segmentation task in an unsupervised
way.

4.3.3 From Image Space to Probability Space

A given image is often modeled as a scalar function I : Ω → (R), where Ω is a regular
open bounded set of R

N corresponding to the image domain. The image is a deterministic
signal. The usual way to pass from the deterministic world to the probabilistic one is to use
a probability density estimation. In this work, the non-parametric estimation of pdf called
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the Parzen window density estimation is used. In the standard formulation from [77], the
Parzen window method estimates the pdf from N samples γ1...γN of a random variable Γ
from the following equation:

p(Γ = γ) =
1

N

N∑

i=1

K(γ − γi),

where K is the Gaussian kernel with 0-mean and variance σ2 such that K(.) = 1√
2πσ2

exp(−( (.)2

2σ2 )

and γ describes the feature of interest.
For variational models, the image is defined in the continuous space, then a continuous
version of the Parzen window estimation has to be considered. Hence, let Γ be a continuous
random variable, if Γ depends on the spacial variable x defined on the image domain Ω
then the estimated pdf is as follows:

p(Γ = γ) =
1

Z

∫

x∈Ω0

K(γ − γ(x))dx, (4.24)

where the partition function Z is chosen to satisfy the probability axiom where
∫

DΓ
p(γ)dγ =

1, DΓ being the set of possible outcomes.
Typically, like in [50, 101], the random variable Γ is the image intensity and the set DΓ = R

is the histogram domain. In this case, the constant Z that satisfies the probability measure
requirement

∫

R
p(γ)dγ = 1 is given by Z =

∫

R

∫

Ω K(I − I(x))dxdI = |Ω|, where |Ω| is the
area of Ω. The pdf is estimated by the parzen method:

p(I) =
1

|Ω0|

∫

Ω0

K(I − I(x))dx, (4.25)

and the KL divergence measure between p and q is expressed by:

KL(p(I), q(I)) =

∫

R

{

p(I) log
p(I)

q(I)
+ q(I) log

q(I)

p(I)

}

dI. (4.26)

4.4 Conclusion

In this chapter, we introduced the concept of image segmentation by active contours, as
well as some concepts in probability and information theory that will directly serve us. In
the next chapter, we will introduce our second contribution: an unsupervised active contour
segmentation based on the Kullback-Leiber distance.
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Unsupervised Region

Competition Based on

Active Contour and

Kullback-Leibler

Distance 5
In this chapter we introduce our unsupervised segmentation model. Our model is a region-
based active contour method. We will see that our energy holds good mathematical proper-
ties. First the existence of a minimizer is shown and second a fast minimization algorithm
is defined.

5.1 Proposed 2-Phase Segmentation Method

Based on information theory (Section 4.3), we develop our unsupervised image segmentation
model below.

We propose to carry the unsupervised image segmentation task for gray-scale images
which are assumed to be composed of an object and a background. An efficient way to
perform an unsupervised segmentation is to use the Region Competition approach as in-
troduced by Zhu and Yuille in [110]. Here, a pdf competition approach is proposed based
on the Kullback-Leibler (KL) divergence which measures a distance between two pdfs. We
propose to maximize the KL distance between the probability density function inside and
outside the active contour, which define two regions representing the object of interest and
the background.
Let qin be the inside probability density function, qout the outside one, Ω = Ωin be the
evolving region and Ω0 \ Ω = Ωout it complementary in the image domain Ω0. In this
approach, the image intensity I is considered as a random variable. The set of possible
outcomes is thus R and the pdfs qin and qout associated with an observation I for a given

43
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region Ω at a fixed moment are defined by:

{

qin(I,Ω) = 1
|Ω|

∫

Ω K(I − I(x̂))dx̂,

qout(I,Ω) = 1
|Ω0\Ω|

∫

Ω0\Ω K(I − I(x̂))dx̂

where |.| is the area of the given region. The new (KL) distance is thus as follows:

KL(qin(Ω), qout(Ω)) =

∫

R

(

qin(I,Ω) log
( qin(I,Ω)

qout(I,Ω)

)
+ qout(I,Ω) log

qout(I,Ω)

qin(I,Ω)

)

dI(5.1)

=

∫

R

(
qin(I,Ω) − qout(I,Ω)

)(
log qin(I,Ω) − log qout(I,Ω)

)
dI.

The Functional (5.1) gives a measure of difference between the pdfs defined inside and
outside a given active contour represented in the region Ω. We naturally want to maximize
Functional (5.1) in order to determine two regions with two pdfs as disjoint as possible,
which provides two semantically different objects, expected to be the object of interest and
the background. Maximizing Functional (5.1) involves the computation of its derivatives
w.r.t the evolving domain Ω, which can be done with the shape derivative tool [3, 53]
described in Annex A.1.
The Eulerian derivative in the direction V of the criterion (5.1) is as follows:

< KL′,V > =

∫

∂Ω

{ 1

|Ω|

∫

R

(
1 − qout(I,Ω)

qin(I,Ω)
+ log

qin(I,Ω)

qout(I,Ω)
).[−K(I − I(s)) + qin(I,Ω)]dI

−
∫

R

1

|Ω0 \ Ω|
(
1 − qin(I,Ω)

qout(I,Ω)
+ log

qout(I,Ω)

qin(I,Ω)

)
.
[
− K(I − I(s)) + qout(I,Ω)

]
dI

}

< V(s).N (s) > ds, (5.2)

where N is the unit inward normal to ∂Ω the boundary of the evolving region Ω, ds its
length/area element. According to the Cauchy-Schwartz inequality, the fastest way to
decrease energy KL(Ω(τ)) is obtained by choosing ∂C

∂τ = −F.N , where τ is an artificial
time and C = ∂Ω, which leads to the evolution equation:

∂C

∂τ
=

{
∫

R

1

|Ω|
(

1 − qout(I,Ω)

qin(I,Ω)
+ log

qin(I,Ω)

qout(I,Ω)

)

[K(I − I(s)) − qin(I,Ω)]dI (5.3)

+

∫

R

1

|Ω0 \ Ω|(1 − qin(I,Ω)

qout(I,Ω)
+ log

qout(I,Ω)

qin(I,Ω)
)[−K(I − I(s)) + qout(I,Ω)]dI} + λκ

}

N ,

where the last term λκ has been added in the evolution equation in order to regularize the
evolving curve. κ is the curvature of the contour C and it is derived from the minimization
of the curve length

∫

∂Ω ds, ds is the arc length element and λ is a positive constant.

5.2 Existence of Minimizers for the Proposed Model

In this section, we show the existence of minimizer of the variational problem proposed in
the previous section by the standard method of calculus of variations.
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5.2.1 Our Image Segmentation Model

Our energy Functional is composed of two terms: the first one is the Kullback-Leibler
functional, which measures the distance between two pdfs, and the second term is a regu-
larization term based on the curvature.

We assume that the given image I is a function I ∈ L∞(Ω0), where Ω0 is a regular open
bounded set of Rn corresponding to the image domain. We define the set U of all image
regions in Ω0, i.e. the set of regular open bounded sets of Ω0.

The image segmentation problem proposed in Equation (5.1) Section 5.1 consists in
finding a set Ω ∈ U which minimizes the following functional:

F (Ω) = −
∫

R

(

qin(I,Ω) log
qin(I,Ω)

qout(I,Ω)
+ qout(I,Ω) log

qout(I,Ω)

qin(I,Ω)

)

︸ ︷︷ ︸

KL(Ω)

+ λ

∫

∂Ω
ds

︸ ︷︷ ︸

L(Ω)

, (5.4)

where ds is the arc length element, ∂Ω is the boudary of Ω,
∫

∂Ω ds is the Euclidean length
of ∂Ω, λ > 0 is an arbitrary parameter to control the trade-off between the regularization
term and the data-based term. Finally the non-parametric pdfs qin and qout are defined as
follows:

{

qin(I,Ω) = 1
|Ω|

∫

Ω K(I − I(x̂))dx̂

qout(I,Ω) = 1
|Ω0\Ω|

∫

Ω0\Ω K(I − I(x̂))dx̂
,

where Ω0 \ Ω is the complement set of Ω in Ω0.

We look for a set Ω ∈ U which minimizes the region functional (5.4). As it is pointed out
in [3, 53], the optimization of the functional (5.4) is difficult to carry out since the set U of
regular domains does not have the structure of a vector space. The variation of the domain
is thus done through a family of homeomorphism transformations T (i.e. one-to-one with
T and T−1 continuous), which allows to differentiate F with respect to Ω and determine
a minimization flow in Section 5.1. Thus, one possible approach to prove the existence
of minimizers for (5.4) is to express (5.4) in term of the transformation T and look for a
minimizer T⋆. However, we decide to choose another approach to prove the existence of
a minimizer which looks easier. This approach consists, in a first step in re-writing the
functional F with the characteristic function χΩ of the set Ω, defined as follows:

χΩ(x) =

{
1 if x ∈ Ω ∈ U
0 otherwise

,

and then applying the standard method of the calculus of variations to prove the existence
of a minimizer. Functional (5.4) can be expressed w.r.t. χΩ:

F (χΩ) = −KL(χΩ) + λL(χΩ), (5.5)
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where

L(χΩ) =

∫

Ω0

|∇χΩ|dx, (5.6)

and






qin(I, χΩ) =

∫

Ω0
K(I−I(x̂))χΩ(x̂)dx̂

∫

Ω0
χΩdx̂

,

qout(I, χΩ) =

∫

Ω0
K(I−I(x̂))(1−χΩ(x̂))dx̂

∫

Ω0
(1−χΩ)dx̂

.
(5.7)

Equation 5.6 introduces the total variation (TV) norm, which will play an important role
in the theorem of existence. It is defined according to:

Definition 5.2.1. [36, 42] Let Ω ∈ U and u ∈ L1(Ω0). The TV norm of the function u is

defined as follows:

TV (u) =

∫

Ω0

|∇u|dx = sup
φ∈Φ

{∫

Ω0

udivφdx

}

,

where Φ = {φ ∈ C1
0 (Ω0, R

n)| |φ| ≤ 1, on Ω0} and C1
0 (Ω0, R

n) are the continuously differen-

tiable real functions on Ω0.

Moreover,

Definition 5.2.2. [36, 42] A function u ∈ L1(Ω0) is said to have bounded variation in Ω0

if its distributional derivative satisfies TV (u) < ∞. We define BV (Ω0) as the space of all

functions in L1(Ω0) with bounded variation. The space BV (Ω0) is a Banach space, endowed

with the norm:

‖u‖BV (Ω0) = ‖u‖L1(Ω0) + TV (u).

We introduce two important theorems that are used in Equation (5.6) and in our theorem
of existence.

Theorem 5.2.1. [36, 42] A set Ω ∈ U has finite perimeter if and only if the characteristic

function χΩ of Ω belongs to BV (Ω0). We have

Per(Ω) = TV (χΩ) =

∫

Ω0

|∇χΩ|dx < ∞,

and

Theorem 5.2.2. [36, 42] Let Ω ∈ U . If {uk}k≥1 is a bounded sequence in BV (Ω0), then

there exists a subsequence {ukj
} of {uk} and a function u⋆ ∈ BV (Ω0), such that ukj

→ u⋆

strongly in Lp(Ω0) for any 1 ≤ p < n/(n − 1) and

TV (u⋆) ≤ lim inf
kj→∞

TV (ukj
).

We can now state the theorem of the existence of (at least) one minimizer for (5.5):
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Theorem 5.2.3. Our minimization problem

min
χΩ∈BV (Ω0)

{

KL(χΩ) + λL(χΩ)
}

, λ > 0, (5.8)

has a solution in BV (Ω0).

Proof. The direct method of the calculus of variations ([2, 25, 99]) is used:

A) Let {χΩk
}k≥1 be a minimizing sequence of (5.8), i.e.

lim
k→∞

F (χΩk
) = inf

χΩ∈BV (Ω0)
F (χΩ).

B) Since χΩk
is a sequence of characteristic functions of the sets Ωk, then χΩk

(x) ∈
{0, 1} - a.e. in Ω0. A constant M > 0 exists such that ‖∇χΩk

‖L1(Ω0) ≤ M , ∀k ≥ 1. There-

fore, χΩk
is a uniformly bounded sequence on BV (Ω0). Following Theorem 5.2.2, a subse-

quence of χΩkj
that converges to a function χΩ⋆ strongly in L1(Ω0) exists.

C) Taking a minimizing sequence χΩkj
→ χΩ⋆ , it is easy to show that lim

kj→∞
KL(χΩkj

) =

KL(χΩ⋆) since qin(χΩ) and qout(χΩ) in Equation (5.7) are continuous w.r.t. the BV (Ω0)

topology. Thus, according to Theorem 5.2.2, we deduce that

F (χΩ⋆) ≤ lim inf
kj→∞

F (χΩkj
),

which implies that

F (χΩ⋆) = min
χΩ∈BV (Ω0)

F (χΩ),

which means that χΩ⋆ is a minimizer of F among characteristic functions χΩ of sets Ω ∈ U
of finite perimeter in Ω0. It also implies the existence of at least one set Ω⋆, given by

{x ∈ Ω0|χΩ⋆(x) = 1}, which minimizes (5.4).

5.2.2 Generalization of the Existence Theorem 5.2.3

The previous existence theorem can be extended to other variational models such as [49, 53]
which have the form:

min
Ω

{F (Ω) = Fd(qin, qout,Ω) + λL(Ω)}, λ > 0 (5.9)

where Fd is a data-based functional such as (5.1), where functions qin, qout have to be con-
tinuous w.r.t. the BV topology s.a. in Eq. 5.1 and L is the length of Ω. Image segmentation
models defined as (5.9), are guarantied to hold a minimizing solution.



48
Chapter 5. Unsupervised Region Competition Based on Active Contour

and Kullback-Leibler Distance

5.3 Dual Formulation and Fast Segmentation

New Convex Functional In the previous section, we have defined an energy functional
that we want to minimize as fast as possible. In this section, we propose to redefine the
energy functional F to develop a fast numerical minimization scheme, which does not need
to re-compute the signed distance function regularly. As it has been said in Section 4.2, this
numerical scheme is based on the work of Bresson et al. in [13], who proposed to compute
a global minimum to the active contour energy in order to be independent of the initial
contour position.

A convex variational model for our segmentation model (Section 5.1) can be developed.
Actually it is a particular case of Model 1 presented in Section 4.2. Equation 5.3 can be
written in the level set formulation as follows:

∂φ

∂τ
= (−λVKL + ∇ ∇φ

|∇φ|)|∇φ|, (5.10)

where VKL is the speed provided by Kullback-Leibler distance 5.1. Since |∇φ| > 0, the
steady state of (5.11) is the same as:

∂φ

∂τ
= −λVKL + ∇ ∇φ

|∇φ| . (5.11)

Then φ in (5.11) is solution of the variational model:

min
φ∈[0,1]

F (φ) =

∫

Ω0

−λVKLφ + |∇φ|. (5.12)

To avoid any confusion with the level set function φ, the notation is changed and we are
seeking the minimum of the functional F (u) such that:

min
u∈[0,1]

F (u) =

∫

Ω0

−λVKLu +

∫

Ω0

|∇u|, (5.13)

where
∫

Ω0
|∇u| =: TV (u) is the total variation norm of the function u. Based on The-

orem 4.2.1 and supposing VKL ∈ C1(Ω) fixed, the characteristic function 1ΩC(µ), for a.e
µ ∈ [0, 1] is a global solution of Functional.

We want to emphasize that VKL := VKL(x, pin(x), pout(x)) in Theorem 4.2.1 is fixed
since the pdfs pin, pout are also fixed. It means that the convexity of the functional F is
considered w.r.t. the function u but not w.r.t. pin, pout which will be updated during the
minimization process.

Fast Algorithm based on Dual Formulation The variational model (5.13) can be
quickly minimized using a dual approach of the TV norm as in [4, 13, 21]. We use a convex
regularization of the variational model (5.13) as follows:

min
v∈[0,1], u

F (u, v) =

∫

Ω0

|∇u| − λVKLv +
1

2θ
(u − v)2, (5.14)

where θ > 0. Since the functional F is convex w.r.t. u, v, its minimizer can be computed
by minimizing F w.r.t. u, v separately, and iterating until convergence as in the references
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mentioned above. Thus, the following minimization problems are considered:

v being fixed, min
u

{

TV (u) +
1

2θ
‖ u − v ‖2

L2

}

, (5.15)

u being fixed, min
v∈[0,1]

{∫

Ω0

−λVKLv +
1

2θ
(u − v)2

}

, (5.16)

• The solution of (5.15) is given by [21]: u = v − θ∇p, is given by

pn+1 =
pn + δt∇(divpn − v/θ)

1 + δt|∇(divpn − v/θ)| , n ∈ N,

• and the solution of (5.16) is given by [13]:

v = min{max{u + θλVKL, 0}, 1}. (5.17)

Details for the numerical scheme are in Section 4.2.
At each iteration pin, pout are updated using the Parzen method given in (5.1).

5.4 Experimental Results

In this chapter, results of our algorithm using different kind of features are presented.

5.4.1 Gray-Value Feature

We start by taking the original image pixel values as feature. Experimental results on
synthetic and natural images showed promising performances of our segmentation model.
Figure 1 presents four objects having the same intensity mean, the same variance as the
background but different higher statistical moments. Figures 5.1(a) and 5.1(c) show the
initial and the final active contour, and Figures 5.1(b) and 5.1(d) correspond to the proba-
bility densities inside and outside the contour C during the evolution process. Our model
has managed to distinguish the four regions from the background, despite equal 1st and
2nd statistical moments, because it is based on probability densities which are different for
both regions. As natural image, we have chosen the segmentation of a zebra and a leop-
ard picture which presents textured features. Figures (5.2(a)) and (5.2(c)) show the initial
active contour and Figures (5.2(b)) and (5.2(d)) the corresponded result. In the presented
results, the segmentation is totally based on the current intensity distribution of the gray
scale image partition (object and background).

5.4.2 Intrinsic Geometric Feature

We applied our segmentation algorithm to a set of challenging synthetic and real-world
textural images. The first step is the texture features extraction with the descriptor in-
troduced in Chapter 3. The pdfs are estimated on these texture features. The synthetic
textural image with the zebra shape, Figure 5.3(a), was generated with the Brodatz data set
[15]. The natural textural images, Figures 5.4(d), 5.4(g), 5.4(j), 5.5(a), 5.5(d), 5.5(g), 5.5(j)
were taken in the Berkeley segmentation data set [65]. As a comparison with the state-
of-the-art techniques, we decided to implement the efficient texture segmentation model
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(a) (b)

(c) (d)

Figure 5.1: Our proposed segmentation model based on KL distance measure. We have

considered here the image intensity as a random variable and the KL measure has been

defined on the domain of image intensity, i.e. R.The image represents four objects hav-

ing the same intensity mean, the same variance as the background but different higher

statistical moments. Figures (a-b) present the initialization of the active contour and the

associated pdfs inside (blue plot) and outside (red plot) the AC. Figures (c-d) present the

final segmentation and the associated pdfs inside (blue plot) and outside (red plot) the AC.

of Savig et al [87], which uses the vectorial Chan-Vese model [23] and an edge detector
function based on Gabor responses as explained in Section 2.1. We modified their original
model by implementing a dual formulation of their energy functional as done in Section 5.3.
Besides, the selected Gabor features are chosen with a simple selection criteria defined in
[52] in order to have the most relevant collection of Gabor features. Figure 5.4.2 presents
the results obtained with our method on the center column and the model of Sagiv et al. in
the right column. We notice that our segmentation model needs three parameters, θ, λ as
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(a) (b)

(c) (d)

Figure 5.2: Our proposed segmentation model based on KL divergence measure for natural

images.

explained in Section 5.3 and σ, the Parzen parameter in Section 5.1. The mean computing
time for the segmentation is around a minute. Finally, the method based on Gabor filtering
gives comparable results for ordered textures (Figure 5.4.2), but our method significantly
improved the results for disordered textures as in natural images. It is particularly clear on
the images of the herd of zebras and the sea star, Figures 5.5(g) and 5.5(j).

(a) (b) (c)

Figure 5.3: Segmentation of synthetic images. Left column: original images. Center

column: our segmentation result. Right column: results based on the method [87].
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(a) Original Image (b) Our Model (c) Model in [87]

(d) Original Image (e) Our Model (f) Model in [87]

(g) Original Image (h) Our Model (i) Model in [87]

(j) Original Image (k) Our Model (l) Model in [87]

Figure 5.4: Segmentation of real-world textural images. Left column: original images.

Center column: our segmentation result. Right column: results based on the method [87].
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(a) Original Image (b) Our Model (c) Model in [87]

(d) Original Image (e) Our Model (f) Model in [87]

(g) Original Image (h) Our Model (i) Model in [87]

(j) Original Image (k) Our Model (l) Model in [87]

Figure 5.5: Segmentation of real-world textural images. Left column: original images.

Center column: our segmentation result. Right column: results based on the method [87].

5.5 Discussion

In this chapter, we have studied the problem of unsupervised image segmentation. Several
aspects of the problem have been considered and yield us to use different kind of theoretical
tools. From information theory, the Kullback-Leibler (KL) distance has been extracted.
Despite of some numerical misbehavior (high computational cost for the pdf logarithm, and
case where the pdf is null thus division by zero can occur), this tool has been preferred
to many other existent distance measure because of it good theoretical statement and it
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invariance under parameter transformation. The Kullback-Leibler divergence has already
been used in computer vision field in various way. For instance, Freedman and Zhang
[39]used the KL divergence for object tracking. Based on a density probability model, the
KL flow allows the matching between the model and the distribution of the current region
in the image. Another application is given for Diffusion Tensor-MRI data, by Wang and
Vemuri [104] who redefined the KL divergence for a positive definite 2-tensor probability
density. The segmentation process is done by minimizing the KL divergence between an
inside average tensor and tensors inside the active contour and an outside average tensor
and the tensors outside de active contour.
In our case, we have used the KL distance to achieve a region competition between the
background and the object. Our segmentation is then unsupervised and based on variational
method and active contours. The active contour obtained from the minimization of the
energy functional defined in Equation 5.1 is able to capture highly noisy data (Example
Figure 5.4.1.
In contrast with other segmentation methods based on comparison of pdfs ([54, 75]), we
do not use any prior assumptions on the probability distribution of the object. Indeed,
Paragios and Deriche in [75] based their segmentation process on the Gaussian distribution
hypothesis of the regions to be segmented. Jehan-Besson et al. [54] use reference histograms
of the region of interest and the background to perform the segmentation.
To segment natural or textured images it is nearly unavoidable to have a feature extraction
pre-processing. Rousson et al. in [85] used a non-linear diffusion of the structure tensor
from which the statistical information was extracted. From the set of feature and the
original image, the maximum likelihood was taken as the segmentation criterion. For highly
disordered textures or complex natural images this method is quickly limited because of the
choice of feature extractor. It is important to note that the choice of the feature extraction
is determinant for the potential that can offer a segmentation method. In fact, Gabor filters
are appreciate for the quality of the extracted information, only of course if enough of these
responses are considered. As it has been said in the first part, our texture descriptor is
particularly appropriate for natural images. Our segmentation results for natural images
are explained by the quality of the texture descriptor. In fact the proposed segmentation
method is dependent on the feature quality. However this drawback is shared by all these
types of segmentation approach.

In the next chapter, we will present a multi-phase active contour segmentation model
which leads to global solutions.



Global Multi-Phase

Segmentation 6
So far we were limited to two phase segmentation problem, i.e. one object and the back-
ground. In this chapter, we propose an extension of the global active contour segmentation
model [13, 24] to multi-region active contour segmentation. Such generalization is well
justified since most of images are composed of several regions.

6.1 Multi-Region Segmentation with Level Set Function

The literature for multi-region segmentation based on level set representation proposes two
main approaches. These two approaches lead to a local solution of the segmentation problem
as AC methods classically allow. The first one consists of taking the same number of level
set function as the expected number of regions in the image, i.e. m level set functions will
evolve simultaneously to capture m regions. Each level set is coupled with all the others
by an energy term in order to avoid any vacuum (a pixel has not been attributed to none
of the regions) or overlapping problem (a pixel attributed to more than one region).
This concept has been introduced by Zhao, Chan, Merriman and Osher [67, 109] for the
motion of multiple junctions. Each level set φi is driven by it curvature flow and constrained
to:

N∑

i=1

H(φi(x, y)) − 1 = 0, (6.1)

where H(z) is the heaviside function defined as

H(z) =

{
1 if z > 0
0 otherwise

. (6.2)

Each pixel is constrained to be assigned to exactly one region. Overlapping and vacuum
problem are thereby avoided. This coupling formulation has been incorporated into the
level set segmentation model [76, 88] by mean of the Lagrange multiplier. Samson et
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al. [88] supposed N regions on the hole image have a Gaussian distribution. From these
assumptions a regularized partition with the same coupled term is searched.

The second approach for level set multi-region segmentation has been proposed by Vese
and Chan in [100]. Their approach relies on the fact that from m level set function, 2m

regions can be described. In fact with one level set, two regions can be defined, thus if one
considers all the possible overlapping combination between m level set, then 2m possibilities
of regions can be found. Figure 6.1 illustrates this concept for the case where m = 2 which
gives four possible regions. The number of regions into the image must be a power of
2. On the other hand, the vacuum and overlapping problem is naturally handled. We
chose to adapt this formulation of the multiregion AC segmentation in the dual formulation
presented in Section 5.3.
Let us now recall the formulation for multiphase segmentation method in [100] for the case
m = 2. To this end, some notation should be first introduced. A region Rij is labeled as
follows:

R11 = {z ∈ Ω φ1(z) > 0 and φ2(z) > 0}
R01 = {z ∈ Ω φ1(z) ≤ 0 and φ2(z) > 0}
R10 = {z ∈ Ω φ1(z) > 0 and φ2(z) ≤ 0}
R00 = {z ∈ Ω φ1(z) ≤ 0 and φ2(z) ≤ 0}

where cij refers to the intensity mean in region Rij and H is the heaviside function as
defined in Equation 6.2.
The four-phase segmentation in [100] relies on the minimization of the following energy:

FV C(c,Φ) =

∫

Ω
(u0 − c11)

2H(φ1)H(φ2)dxdy

+

∫

Ω
(u0 − c10)

2H(φ1)(1 − H(φ2))dxdy

+

∫

Ω
(u0 − c01)

2(1 − H(φ1))H(φ2)dxdy

+

∫

Ω
(u0 − c00)

2(1 − H(φ1))(1 − H(φ2))dxdy

+ ν

∫

Ω
|∇H(φ1)| + ν

∫

Ω
|∇H(φ2)|, (6.3)

where c = {c11, c10, c01, c00} and ν is constant positif weighting parameter. This energy
is a an extension of the two-phase case (Section 4.1.2) and seeks at having a partition
of the image into four homogenous regions in the sense of mean inside each region. The
corresponded Euler-Lagrange equations which drive the active contour represented by the
LS functions Φ = {φ1, φ2}, are given as follows:

∂φ1

∂t
= δ(φ1)

{
νdiv(

∇φ1

|∇φ1|
) − [((u0 − c11)

2 − (u0 − c01)
2)H(φ2)

+ ((u0 − c10)
2 − (u0 − c00)

2)(1 − H(φ2))]
}
,

∂φ2

∂t
= δ(φ2)

{
νdiv(

∇φ2

|∇φ2|
) − [((u0 − c11)

2 − (u0 − c10)
2)H(φ1),

+ ((u0 − c10)
2 − (u0 − c00)

2)(1 − H(φ1))]
}

(6.4)

where δ is the dirac function.
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Figure 6.1: The Vese-Chan approach in the case where m = 2

6.2 Our New Global Multi-Phase Method

In this section we develop the method to obtain a global minimizer of the multiphase
segmentation from the approach of Vese and Chan [100]. We will follow the same steps
as in Section 4.2 to construct a segmentation model which solutions are global. A fast
segmentation scheme will then solve the problem.

6.2.1 Four Regions Case

Chan and Vese Model: Mean Descriptor. The Euler-Lagrange Equation 6.4 has the
same steady state as the following partial differential equation:

∂φ1

∂t
= div(

∇φ1

|∇φ1|
) − λr1(x, c00, c01, c10, c11)φ1dx, (6.5)

∂φ2

∂t
= div(

∇φ2

|∇φ2|
) − λr2(x, c00, c01, c10, c11)φ2dx, (6.6)

where
{

r1(φ1, φ2, c) = ((I − c11)
2 − (I − c01)

2)H(φ2) + ((I − c10)
2 − (I − c00)

2)(1 − H(φ2)),
r2(φ1, φ2, c) = ((I − c11)

2 − (I − c10)
2)H(φ1) + ((I − c01)

2 − (I − c00)
2)(1 − H(φ1)),

c = (c00, c01, c10, c11). For sake of simplicity we will write ri for ri(φ1, φ2, c), i = (1, 2).
Then Φ is solution of the variational model:

{
F (φ1) =

∫

Ω0
−λr1φ1 + |∇φ1|,

F (φ2) =
∫

Ω0
−λr1φ2 + |∇φ2|. (6.7)

As in the previous chapter, we will once again change the symbol of φi by ui to avoid any
confusion with the level set function and constrain u1 and u2 to be in [0, 1], the minimization
problem can be written as follows:







min
u1∈[0,1]

{

F (u1) =
∫

Ω0
−λr1u1 + |∇u1|

}

min
u2∈[0,1]

{

F (u2) =
∫

Ω0
−λr2u2 + |∇u2|

} , (6.8)

By constraining the u1 and u2 to be in [0, 1], the minimization problem becomes convex
with respect to u1 and u2 for r1 and r2 fix.
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Region Competition based Probability Density Function. We propose now to use
the probability density function as region descriptor. The popular region competition as
proposed initially by Zhu and Yuille [110] is used. However we keep a non-parametrical
representation of the probability density function as in previous chapters. By keeping the
same notation as for the mean descriptor, the region competition between four regions can
be described as follows:

F (c,Φ) = −
{ ∫

Ω
log q11H(φ1)H(φ2)dxdy +

∫

Ω
log q10H(φ1)(1 − H(φ2))dxdy

+

∫

Ω
log q01(1 − H(φ1))H(φ2)dxdy +

∫

Ω
log q00(1 − H(φ1))(1 − H(φ2))dxdy

}

+ ν

∫

Ω
|∇H(φ1)| + ν

∫

Ω
|∇H(φ2)|, (6.9)

where qij denotes the probability density function in the region Rij.

∂φ1

∂t
= δ(φ1)

{
νdiv(

∇φ1

|∇φ1|
) − [(log q11 − log q01)H(φ2) + (log q10 − log q00)(1 − H(φ2))]

}
,

∂φ2

∂t
= δ(φ2)

{
νdiv(

∇φ2

|∇φ2|
) − [(log q11 − log q10)H(φ1) + (log q10 − log q00)(1 − H(φ1))]

}
.

Then Φ is solution of the variational model:
{

F (φ1) =
∫

Ω0
−λs1φ1 + |∇φ1|,

F (φ2) =
∫

Ω0
−λs1φ2 + |∇φ2|. (6.10)

where s1(φ1, φ2)) = (log q11 − log q01)H(φ2) + (log q10 − log q00)(1 − H(φ2)) and
s2(φ1, φ2) = (log q11 − log q10)H(φ1) + (log q10 − log q00)(1 − H(φ1)). By changing the sym-
bol of φi by ui and constraining u1 and u2 to be in [0, 1], the minimization problem can be
written as follows: 





min
u1∈[0,1]

{

F (u1) =
∫

Ω0
−λs1u1 + |∇u1|

}

,

min
u2∈[0,1]

{

F (u2) =
∫

Ω0
−λs2u2 + |∇u2|

}

.
(6.11)

As for the previous paragraph, each minimization problem becomes convex with respect to
u1 and u2 for s1 and s2 fixed.

6.2.2 Generalization for a Global Solution and Fast Algorithm based on

Dual Formulation

We propose now to generalize the models for four-regions segmentation to multiple-regions
segmentation. We will adopt the same notation as in [100]. In the general case Energy 6.3
can be written as follows:

FV Cn(µ,Φ) =
∑

1≤R≤N

∫

Ω
(I − µR)2χRdxdy +

∑

1≤i≤m

ν

∫

Ω
|∇χ(φi)|. (6.12)

where m is the number of level set and N = 2m is the number of regions, R = [1, N ] is a
label for each region, χ is the characteristic function of each label R and µR is the mean in
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the region R. In the same way we can deduce that the generalization for the multi-phase
case for Energy 6.9 can be expressed as follows:

Fpdfn
(p,Φ) =

∑

1≤I≤N

∫

Ω
− log qRχRdxdy +

∑

1≤i≤m

ν

∫

Ω
|∇χ(φi)|. (6.13)

where qI is the probability density function of region R and q = [q1..qN ].
In the same way than for the four-phase case we will be able to write a convex functional
of u = (u1, .., um):

Fi(ui) =

∫

Ω
−λξiui + |∇ui|, ui ∈ [0, 1] (6.14)

where ξ is a function of region descriptor (mean or pdf) and of the regions. In the four-
regions case, ξ = ri or ξ = si. The minimization of Energy 6.14 leads to the same steady-
state as Functional 6.13 (resp. 6.12) in the case where ξ is a function of the means (resp.
of the pdf). The variational models (6.7,6.10) and more generally the model 6.14 can be
quickly minimized using a dual approach of the TV norm as in [4, 13, 21]. A convex
regularization of these variational models can be expressed as follows:

min
vi∈[0,1], ui

Fi(ui, vi) =

∫

Ω
|∇ui| − λξivi +

1

2θ
(ui − vi)

2, (6.15)

where i = [1, 2N ] and θ > 0. Since the functional Fi is convex w.r.t. ui, vi, its minimizer can
be computed by minimizing Fi w.r.t. ui, vi separately, and iterating until convergence as in
the references mentioned above. Thus, the following minimization problems are considered:

v being fixed, min
ui

{

TV (ui) +
1

2θ
‖ ui − vi ‖2

L2

}

, (6.16)

u being fixed, min
vi∈[0,1]

{ ∫

Ω0

−λξivi +
1

2θ
(ui − vi)

2

}

, (6.17)

• The solution of (6.16) is given by [21]: ui = vi − θ∇ · p, with:

pn+1
i =

pn
i + δt∇(divpn

i − vi/θ)

1 + δt|∇(divpn
i − vi/θ|)

, n ∈ N

• and the solution of (6.17) is given by [13]:

vi = min{max{ui + θλξi, 0}, 1}. (6.18)

The two iteration schemes are straightforward to implement. Implementation details
can be found in Section 4.2.

6.2.3 Existence of a Global Solution

Theorem 4.2.1 can be extended to multiple functions:

Theorem 6.2.1. Suppose that uj,j 6=i fixed, ξi ∈ C1(Ω0) and λ ∈ R+, if ui⋆ is any minimizer

of Fi(.), then for almost every µ ∈ [0, 1] we have that the characteristic function

1ΩC(µ)={x:ui(x)>µ} (x),

where C is the boundary of the set ΩC , is a global minimizer of Fi(., λ).
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Proof. See [13, 24]. �

We want to emphasize that ξi in Theorem 6.2.1 is fixed since the pdfs qR or the means
cR are also fixed. It means that the convexity of the functional F is considered w.r.t. the
function u but not w.r.t. qR or cR which will be updated during the minimization process.

6.3 Results

Our method has been tested for both synthetic and real data in the 2D and 3D case.

Mean Measure The mean descriptor is first used on simple images. Our first test image
(Figure 6.2(a)) is a noisy synthetic image of size 156× 156. Figure 6.2(b) and 6.2(c) shows
the obtained results. Our model can handle noisy images. The result is obtained in less
then 2 seconds while for the multi-segmentation with level-sets the results are obtained in
110 seconds. Note that our algorithm is implemented in Matlab and thus could be widely
more efficient. Figure 6.2 shows that we can also obtain satisfactory results on a natural
image, considering the fact for this kind of image there is no ground truth .

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Four-phase Segmentation of synthetic and real-world image based on the

mean. Left column: original images. Center and right column: our segmentation result.

Pdf Measure Competition of region based on probability density function computed
with the Parzen Estimation (Eq. 5.1) is then applied to find four regions in synthetic and
real images. Figure 6.3 presents the results that we obtained. We can see that our model
can handled synthetic textures as well as natural images from Berkeley data set [65]. In
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fact Figure 6.3(a) is composed of four square of synthetic textures and the results of the
segmentation is satisfying. For natural images, the task is more difficult since the number
of region is difficult to determine. For instance in Figure 6.3(d), luminance variation create
an unexpected region. In Figure 6.3(g), the number of objects is higher than four, however
the more similar objects have been grouped.

Finally we apply our algorithm to a 3D volume, a Magnetic Resonance Image (MRI) of
the brain of size 161 × 187 × 161. The goal is to separate the white matter from the gray
matter. (See [28] for more details on the problem). The segmentation result is shown on a
axial coronal and sagital view on Figure 6.4. These are encouraging preliminary results.

6.4 Conclusion

In this chapter a solution for a global minimization of multi-phase active contour segmen-
tation has been proposed. To the best of our knowledge, it is the first time that a global
solution for each functional describing the multi-region variational segmentation model has
been proposed. We have been using the Chan-Vese model and the region competition be-
tween non-parametric pdf. Results on synthetics, real 2D and 3D images have shown the
efficiency of our method. Although each variational problem is convex, the joint problem
is not convex and this is one of the principal challenge in the future work.
The reason why we did not use the Kullback-Leibler distance as in the previous chapter is for
sake of simplicity. Indeed expressing the KL distance in term of the Vese-Chan multi-phase
model is not straightforward. Thus this will be a part of the future work.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.3: Four-phase Segmentation of synthetic and real-world textural images with

region competition based on pdf. Left column: original images. Center and right column:

our segmentation result.
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(a) (b) (c)

Figure 6.4: Segmentation of the brain (a)Axial view. (b)Coronal view. (c)Sagital view.
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Motivations and Contributions

In the third and last part of this thesis, a semi-supervised segmentation algorithm based
on a graph non-local image information is presented.

Motivations The proposed segmentation model is based on:

• the use of graph theory: In image segmentation, graph representation is an attractive
tool to combine local and non-local image information.
We will see how the segmentation task can be interpreted as a diffusion on graph.

• the use of labels (a hard constraint on the location) to detect objects of interest:
In the previous chapter the segmentation process was unsupervised, that means in-
dependent from the user. Unsupervised methods offer the comfort of a totally user
independent and automatic process. This point of view is attractive however one must
face the fact that the image segmentation must deal with different kinds of informa-
tion, non-information and disinformation. Segmentation methods should handle the
huge variety of texture, scale and shape. Moreover most of image segmentation tasks
are dependant of what the user calls object of interest (e.g. in medical images). Hence
it is sometimes helpful to take into account the user objective.

Contributions In this last part, a new semi-supervised segmentation algorithm has been
developed. The contribution is twofold. First, the graph partitioning method is expressed
as a variational method. Once we are in this environment, we will show that it is then
straightforward to include other variational tools such as for instance the TV-regularization.
Second, we introduce hard constrains in the model. The model becomes mathematically
well justified. The graph diffusion leads to a well defined segmentation method.
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Introduction to Mincut

and Semi-supervised

Segmentation 7
In this chapter an overview of graph theoretical methods used in image segmentation, in
particular for image segmentation, is first given. We will see then how hard constraints on
the segmentation results can naturally be incorporated in this framework.

7.1 Graph Diffusion

7.1.1 Image Modeled by a Weighted Graph

In the previous parts of this thesis, an image was defined by a mapping I : Rn → R
m,

where n generally equal to 2 or 3 is the image dimension and m is the feature dimension.
Variational methods usually suppose that I ∈ L1(Ω). However, in this part we want to
extract non-local information for each pixel, i.e the relationship one pixel and all the pixels
on the whole image. The reason is that non-local information has encountered a large
success in various domain of image processing, particularly in image denoising ([18],[40])
and it is particulary well adapted for textures. The non-local information requirement can
be achieved by graph representation and the graph theory provides various and powerful
methods for processing that kind of data. Historically, graph theory started in 1735 when
the Swiss mathematician Leonhard Euler solved a recreational mathematical problem, more
precisely the Konigsberg bridge problem. There were seven bridges on the Pregel river
(Figure 7.1) and the question was : is it possible to walk across all the bridges only once
and return to the starting points? The solution consisted of representing each landmass by
a node and each bridge as an edge between two landmasses. The graph for this problem
was then defined.

A new mathematical area came out and lead to various applications. In fact, many real
world situations can be described by graph as instance for social science, chemistry, trans-
portation or communication networks, and then be solved by combinatorial optimization.
Graph theory has showed that it could solve several problem in computer vision such as
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Figure 7.1: Bridges of Konisberg. Figure from [34]

image segmentation [8, 92, 106] and restoration [46], stereovision [102], image and video
synthesis [59]. In this domain, the image is modeled by a graph. A graph is a mathematical
structure which describes the relationship between elements of a dataset. Each element of
this dataset is represented by a node (or vertex) and two nodes are linked by an edge of a
certain weight. If the edge between node i and j is equal to the edge between j and i then
the graph is said to be undirected, which is the case in this work.
Let G = (V,E) be a weighted undirected graph, where the sets V are the graph nodes and
E the edges connection nodes. In the case of image processing, each node Vi represents a
pixel/voxel i of an image I ∈ Ω ⊂ R

n. The similarity between two pixels/nodes or nodes
i and j is measured by a weight wij . The graph is then a implicit representation of the
image.
The weight matrix W which contains the wij coefficients has to be carefully defined for the
given task.
In image segmentation, two pixels/voxel i and j belonging to the same class should have a
high similarity value and in the inverse case the similarity should be null. In practice, we
need wij = 0 if node i and node j are ”not connected”, or in image segmentation terms if
pixel i and pixel j do not belong to the same class, and wij = 1 if i and j belong to the
same class. A classical construction of weight matrix is based on Gaussian kernel of 0-mean
and variance σ. Let h(i, j) be some general distance measure between nodes i and j, then
the weight wij will be computed as follows:

wij = exp(−h(i, j)

σ2
),

where σ is a scaling parameter and h(i, j) is a distance between some local features of the
image. The feature can be of any type. Following the definition, the distance function can
be:

1. Local, for instance:
h(i, j) = ‖i − j‖2. (7.1)

The function h(i, j) expresses the spatial proximity of pixel i and pixel j.

2. Non-Local, for instance:
h(i, j) = ‖F (i) − F (j)‖2, (7.2)

where F is some vector of feature descriptor. The function h(i, j) expresses the
proximity between the local descriptors.

3. Combination of Local and Non-Local, for instance:

w(i, j) = exp
{
− ‖i − j‖2

σ2
1

+
‖F (i) − F (j)‖2

σ2
2

}
. (7.3)
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In this case the local and non-local function are combined.

The choice of features is once again critical to get an optimal segmentation result. For
piecewise smooth images, the gray-level value can be efficient (F (i) = I(i)) or for texture
images one can for instance consider a feature vector at each pixel coming from a filter bank
as suggested in [62] for instance.
An efficient way to represent texture without filter banks is to use the patch around the
pixel as feature vector. This idea was introduced first for texture synthesis [32, 61] then,
in image denoising, Buades et al. [18] proposed to use patch differences to compute a
weight matrix and then perform a non local averaging on a given noisy image. Gilboa et
al. [40] proposed a variational model for non-local regularization based on the same weight
function. Finally in [12], Bresson et al. proposed a variational unsupervised segmentation
method based on this non-local representation of the image.

Let us now introduce a classical and very important operation on the graph, the minimal
cut.

7.1.2 Mincut or the Diffusion on the Graph

As it has been said previously, the graph is then an implicit representation of the image
and several methods allow to perform image processing via the corresponding graph.
For graph-based image segmentation, the problem can be solved by performing a graph
partition. By definition a cut is a partition of a graph into two subsets. The general idea of
graph partition is to seek for the best subsets {U1..Uk} such that the similarity between Ul

and Uk is minimum. We will focus on the two-phase segmentation case, i.e the case where
there is one object and one background. The partition is highly dependent on the definition
of the weights but also on the definition of a cost function which describes the partition. In
graph theory, the optimal partition can be computed by finding the minimal cut (Mincut),
i.e. the minimization of the inter-similarity between two sets A and B of V . In other words,
given two particular nodes s ∈ A and t ∈ B in the graph, the minimum cut is the partition
of the graph which gives the minimal capacity defined as the total weight between the nodes
for each subset A and B. Most of combinatorial methods for computer vision relies on the
Max Flow Min Cut Theorem and a graph representation of the image. The origin of this
theorem is network transport. By network transport one should understand any (virtually
or really) mobile entity, from oil to human transport passing by network communication.
Based on the book of Ford and Fulkerson [37], let us now recall this important theorem.
First let G = (V,E) be a network or a graph where the sets V are the graph nodes (points in
the network) and E the edges connection nodes also called arcs connection. Two particular
nodes are defined in this graph: node s represents the source of the network and t the sink.

A cut C in (V,E) separating s and t is a set of arcs (or edges) (A,B) where s ∈ A,
t ∈ B.

Theorem 7.1.1 (Max Flow Min Cut Theorem [37]). For any network the maximal flow

value from s to t is equal to the minimal cut capacity of all cuts separating s and t.

Algorithmically, the max flow /min cut optimization is handled by combinatorial meth-
ods. Description of these methods is out of the scope of this thesis. We just want to specify
that these methods are fast and operate on integers numbers which implies a pixel/voxel
precision of the results. The interested reader can find more details in [9] and reference
therein.
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The mincut algorithm has solved different kind of computer vision problem. Greig et
al. [46] were the first to use the minimal cut/maximum flow algorithm for image restora-
tion. Wu and Leahy [106] proposed to use the minimal cut algorithm for data clustering.
They opened the way to several graph partitioning method. Then Boykov and Jolly [8]
adapted the work in [46] in an efficient way for image segmentation. Then Boykov and
Kolmogorov [9] proposed a highly efficient and competitive method to resolve the mincut
problem. Finally, an other point of view on mincut is taken with the normalized cut method
of Shi and Malik [92] where the partitioning problem becomes a spectral problem.
In the segmentation method that will be presented in the next chapter, the starting point
is the original mincut definition. We are seeking then for the optimal bi-partition of V into
two sets A and B such that A ∪ B = V and A ∩ B = ∅. In this case, the minimal cut
partition can be written as follows:

cut(A,B) = min
x

∑

xi>0,xj<0

−wijxixj (7.4)

where x is a N dimensional indicator vector, with N = card(V ), such that xi = 1 if node i
∈ A, and xi = −1 otherwise.

In the following, we want to outline the direct relationship between partitioning and
diffusion. Let W be the symmetric matrix for the weight function where W (i, j) = w(i, j).
We can the state that the mincut partition (Equation (7.4)) also corresponds to a diffusion
process.

Proposition 1. The graph partition energy defined in Equation 7.4 is equivalent to a Graph

Laplacian operator:

cut(A,B) =
1

4
xT (D − W )x =

1

8

∑

wij(xi − xj)
2, (7.5)

where D is a N ×N diagonal matrix with di =
∑

j w(i, j) on its diagonal, the matrix D−W

is called the Graph-Laplacian.

Based on [92]. Let x+1
2 (resp. x−1

2 ) be the indicator function for xi > 0 (resp. xi < 0).

Equation (7.4) can be written in the matrix form as follows:

cut(A,B) =
(1 + x)

2

T

W
(1 − x)

2
,

=
1

4
(xT W1 + 1T W1− xT Wx − 1T Wx),

=
1

4
(1T W1− xT Wx),

=
1

4
xT (D − W )x. (7.6)

We have used the fact that x = {−1, 1} to obtain the last expression.
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We have then the following equalities ([103]):

xT (D − W )x =
N∑

i

dix
2
i −

N∑

i,j

xixjwij

=
1

2

(
N∑

i

dix
2
i − 2

N∑

i,j

xixjwij +

N∑

j

djx
2
j

)

=
1

2

∑

i,j

wij(xi − xj)
2

Finally we have:

cut(A,B) =
1

8

∑

i,j

wij(xi − xj)
2 (7.7)

The weighted Graph Laplacian corresponds to a finite difference approximation of the
continuous lapacian operator. The graph Laplacian is a non-local operator of diffusion on
the graph.

The main disadvantage of minimizing cut (7.7) is to favor isolated clusters. This al-
gorithm is thus very sensitive to noise [92]. To overcome this drawback, normalized cuts
(NC) [92] have been proposed by Shi and Malik. It is defined as the fraction between the
minimal cut and the total edge connection. The problem is then solved with spectral tech-
niques. Besides, since it would not naturally perform smoothing, mincut can handle more
easily highly non-convex shapes and, as we will see further, has interesting mathematical
properties .
In this work, we will propose the minimal cut bi-partitioning algorithm in a constraint
variational framework. It will be then straightforward to handle the noise by adding the
the TV-norm which regularizes the geometry of the contour.
Before presenting our method in the next chapter, we will quickly review state of the art
in semi-supervised segmentation for both graph-based and continuous based methods.

7.2 Semi-Supervised Segmentation

In the same way than X.Zhu defined semi-supervised learning in [111], semi-supervised
segmentation can ”refer to the use of both labeled and unlabeled data”. The survey on
semi-supervised learning in [111] provides an interesting view of some semi-supervised tech-
niques. For semi-supervised or constrained segmentation the data corresponds to the pixels
in the image. Labeling some pixels means that hard constrains are put on these pixels to
belong to a certain class. Mincut algorithms naturally suggest semi-supervised techniques
for the segmentation with the existence of particular nodes, the source ”s” and the sink ”t”.
It becomes natural to designate some pixels as source and some other as sink either if the
pixel belongs to the object or to the background. The constraints are added by construction
of the graph. In graph-based partitioning, several methods ([6, 8, 108]) are based on these
hard constraints or bias. Semi-supervised segmentation of 3-D images, including medical
images has also been studied and solved as for instance in [7, 44].
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An other approach proposed by Szlam et al [96] consisted of diffusing a characteristic func-
tion of the labeled classes and to use spectral methods to obtain the classification.
Constrained segmentation process based on a variational method has also been proposed.
In [98], Unger, Pock and Bischof incorporated in the active contour framework seed points,
provided by the user, assigned either to the object or to the background. Gilboa et al.
[40] also proposed a semi-supervised segmentation framework based on initial object and
background labels which will follow a continuous diffusion process driven by a non-local
weighted equation. The active contour evolved then following a weighted curvature flow
and local constrains provided by the labels. An other type of semi-supervised segmentation
was proposed by Protiere, Xue and Sapiro [5, 80] with a fast algorithm based uniquely on
distance of each unlabeled pixel to the labels. The user provides labels on some part of the
object and the background. The unlabeled pixels are assigned to object or the background
labels depending on a fast geodesic distance to the labels. The option to correct some
misclassification by adding more label is included.
These methods, in particular [40, 98], are directly related to our semi-supervised method
that will be presented in the next chapter. In fact we will propose to constraint a segmen-
tation scheme by adding labels assigned to either the object or to the background.

7.3 Conclusion

First of all, this chapter presented the Mincut partitioning method over graphs. We wanted
to emphasize the strong link between partitioning and diffusing. Secondly, we noticed how
naturally graph partitioning can lead to semi-supervised techniques.
Graph technics are traditionally solved in the discrete space via combinatorial methods. In
the next chapter, a semi-supervised segmentation method based on a continuous formulation
of the Mincut is presented.
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Segmentation based on

Continuous Mincut 8
In this chapter a new non-local semi-supervised method is proposed. The method relies,
firstly on a continuous version of the Mincut from graph theory and secondly on the addition
of hard constraints in the variational framework.

8.1 Proposed Segmentation Method

8.1.1 Continuous Min Cut (CMC)

We first propose the continuous version of minimal cut problem (7.7), i.e. xi can take all the
values in the interval [−1, 1]. Let us make the change of variable ui = xi+1

2 , then ui ∈ [0, 1].
Since we relax ui to [0, 1], Eq.(7.7) can be written in the continuous form of as follows:

ECMC(u) =
1

2

∫ ∫

Ω×Ω
(u(x) − u(y))2w(x, y)dxdy, x, y ∈ Ω × Ω, (8.1)

=
1

2

∫ ∫

Ω×Ω
|∇wu|2dxdy.

where ∇wu is the graph gradient of u and u : Ω → R,. Minimizing this energy leads us to:

∂ECMC

∂u
= ∇ECMC =

∫

Ω
(u(x) − u(y))w(x, y)dy, (8.2)

which corresponds to a weighted Laplacian diffusion on u. The minimization process is
done by gradient descent as follows:

∂u

∂t
= −

∫

Ω
(u(x) − u(y))w(x, y)dy (8.3)

= −∇ECMC (8.4)
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Since at each pixel/node x the processing relies on all the other pixels y in Ω, then the
method is said to be non-local. We will see that in practice only the pixels in a close
neighborhood need to be taken (see Chapter 9).

Functional (8.1) is a particular case of a family of regularizer, the p-dirichlet form,
parameterized by the real value p and defined as 1

p

∫ ∫

Ω×Ω |∇wu|p.. In [33] a study of these
regularizers can be found. Let us just precise that we are in the particular case where p = 2
and it is also the well-known Tikhonov regularization on weighted graphs.

In [40], G. Gilboa and S. Osher have also studied Functional 8.1 and use it to perform
image denoising and semi-supervised segmentation. For performing supervised image seg-
mentation, the regularizing operator is applied on a trinary initial function u = {−1, 0, 1}.
Some marked pixels for the object are assigned to the value 1 and those for the background
to the value −1. The function u is then submitted to the weighted diffusion process via
a gradient descent. We propose to improve [40] in two way. Firstly, we define a semi-
supervised segmentation model which admits a non trivial solution at final state, while in
[40] the solution (u at time t = ∞) converges to a constant value

∫

Ω u0, where u0 is the
initial condition on u. Secondly, we introduce the TV-norm which regularizes the geometry
of the solution.

8.1.2 Semi-Supervised Segmentation with Labels

Our label constrained segmentation will be expressed in a variational framework following
the work in [98]. We will show further that these hard constraints lead to a well defined
solution of the segmentation problem based on the Mincut Functional (7.4). Suppose that
some points of the image are known with some certitude to belong to the object or to the
background. For example, a user can select this region manually (with some click). We
define a label L1 as the selected object area and a label L2 as the selected background area.
Let L(u) be the energy describing this constraint:

L(u) =

∫

Ω
λ(x)(u − f)2dx, (8.5)

where f(x) =

{
1 if x ∈ L1

0 if x ∈ L2
, and λ(x) =

{
∞ if x ∈ L1 or L2

0 otherwise

The function λ(x) is the degree of confidence of the data with respect to the labels.
Functional (8.5) is defined in order to constrain the function u of being equal to f if
x ∈ L1 ∪ L2 and being equal to anything else outside of L1 ∪ L2. The label constraint
energy is obviously highly discontinuous and this discontinuities make the computation
of L(u) gradient more complicated. To solve this problem, one can regularize L(u) by
considering the functional L(u, v) defined as follows:

L(u, v) =

∫

Ω
λ(x)(v − f)2dx +

1

2θ
(u − v)2dx, u : Ω → [0, 1], v : Ω → [0, 1]. (8.6)

where θ is chosen small. The gradient of L(u, v) with respect to u and v are given by:

∇uL =
1

θ
(u − v), (8.7)

∇vL = 2λ(v − f) +
1

θ
(u − v). (8.8)
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The minimization leads to:

u = v, (8.9)

v =
2λ(x)θf − u

2λ(x)θ − 1
=

{
u if λ = 0
f if λ = ∞ (8.10)

8.1.3 Our Semi-Supervised Segmentation Algorithm based on Mincut

The non-local semi-supervised algorithm that we propose is a combination of the weighted
diffusion process from Section 8.1.1 and the label constraint from Section 8.1.2. Further-
more, a TV- based regularization on the function u is added. The TV term presents two
advantages. Firstly it regularizes the contour between classes. Secondly we explain that
Mincut algorithms favor misclassification of small sets, which are smoothed out by a total
variation regularization.
The total variation norm is defined by:

TV (u) =

∫

Ω
|∇u|dx (8.11)

The TV norm has been widely and successfully used in image denoising [86] and image
segmentation [13, 24]. The TV norm minimization seeks at minimizing the length of u in
the L1 sense. The TV-norm is highly appreciate in image processing because it disfavors
oscillation such as noise while preserving the contrast.
Finally the segmentation energy is as follows:

E(u) =

∫

Ω×Ω
|∇wu|2dxdy +

∫

Ω
λ(x)(u − f)2dx + TV (u). (8.12)

and with the regularization of the label energy we get:

E(u, v) =

∫

Ω×Ω
|∇wu|2 +

∫

Ω
λ(x)(v − f)2 + TV (u) +

1

2θ
(u − v)2. (8.13)

In order to use the fast numerical scheme, explained in Chapter 5 Section 5.3, from [13, 21]
to minimize TV (u), we add a convex regularization to Functional 8.13:

E(u, v, s) =

∫

Ω
|∇wu|2dxdy+

∫

Ω
λ(x)(v−f)2dx+TV (s)+

∫

Ω

1

2θ
(u−v)2dx+

∫

Ω

1

2θ
(s−v)2dx.

(8.14)
The solution of Functional 8.12 is reached by an iterative process done successively over u,
v and s as follows:

un+1 = un − dt(∇uECMC +
1

θ
(u − s)), (8.15)

vn+1 =

{
s+u
2 if λ = 0
f if λ = ∞ (8.16)

sn+1 = v − θdivpn+1, (8.17)

where p = (p1, p2) is given by

pn+1 =
pn + δt∇(divpn) − v/θ

1 + δt|∇(divpn) − v/θ| , n ∈ N

See Section (4.2) for more details on the minimization of TV (u).
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8.2 Study of the Model

This section deals with the mathematical study of

min
u

{
E(u) =

∫

Ω×Ω
|∇wu|2dxdy +

∫

Ω
λ(x)(u − f)2dx + TV (u)

}
. (8.18)

A Convex functional The label Energy L(u) and the Mincut Energy are quadratic
functions. The total variation of a function u ∈ [0, 1] has been widely study [24, 86], and it
is a convex functional. We can then introduce the following statement:

Proposition 8.2.1. The Energy E(u) (Eq. 8.18) is a convex functional.

The convexity of our proposed functional for the segmentation task has important con-
sequences. The convexity implies the existence of a minimizer solution which is more over
unique. This is an interesting advantage since the minimization is done via gradient descent
and the risk of getting stuck in a local minimum, as it is the case when the functional is
non-convex, is discarded. Thus, as far as the labels are correctly defined, the results will be
independent of the initialization.

Link with mincut solution Let χΩC
be the characteristic function of the set ΩC defined

as follows:

χΩC
(x) =

{
1 if x ∈ ΩC ⊂ Ω
0 otherwise

Let u = χΩC
, u is then an exact solution of the discrete minimal cut problem (Eq. 7.4):

min
ΩC

{ECMC(χΩC
(x))} = min

ΩC

{cut(ΩC ,Ω\ΩC)}.

In the particular case where u is equal to the characteristic function, the original Mincut
problem is recovered.

Existence of a non-trivial solution The image segmentation problem proposed in
Section 8.1 consists of finding a continues function u which solves Functional 8.18.

Proposition 8.2.2 (Proposition). The segmentation formulation defined by Equation 8.18

implies: u = u0, where u0 =
∫

u0 and u0 is the initial condition on u, is not solution of the

minimization problem 8.18

Proof by contradiction. If u∞ = u0 then L(u0) =
∫

λ(x)(u0 − f)2 > 0.

The minimization implies that u0 = f .

Except that f(p) =

{

1 if p ∈ L1

0 ifp ∈ L2

Thus u0 6= f .

The solution of 8.18 is given by:

u =

{

anyvalue if λ = 0

f if λ = ∞
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8.3 Conclusion

In this chapter, we proposed our non-local semi-supervised segmentation model. From
graph based partitioning method a well defined variational method has been derived. Both,
non-local information from the graph and local information from the total variation of the
function have been used. All along the process the segmentation is constrained on some
part to belong to either the object or the background, which make our segmentation semi-
supervised.

The next chapter presents some applications of our method.
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Results and Discussion 9
In this chapter, results of our algorithm on different kinds of images are presented. We
start with a synthetic image where the influence of the parameters is studied. Then the
algorithm is used for object detection in textured and natural images for both gray-value
and color images. Finally we apply our algorithm to medical images.

9.1 Experimental Results

The goal here is to study the influence of the different parameters. The graph is constructed
from the following local and non-local definition:

w(i, j) =

{
|i−j|2

σ2
1

+ |F (i)−F (j)|2
σ2
2

if i, j ∈ Na×a(i)

0 otherwise
(9.1)

Na×a(i) is square window of size a × a around i. We suppose thus that if two points are
very far there should not be connected. From a2 neighbors only the cl closest points are
kept. The feature vector F is a square patch of size f × f centered on each pixel. The
segmentation is driven by Equations 8.15, 8.16, 8.17. The initial condition for u, v and s
are given by the label L1, i.e. u = v = s = 1 if x ∈ L1 and u = v = s = 0 otherwise.

9.1.1 Test on the Parameters

Our algorithm is applied to a simple image composed of an object and a background with
different means disturbed with a Gaussian noise. We propose to study the influence of the
different parameters during the graph construction. Our test image is shown on Figure
9.1(a), and the initial label on the object is on Figure 9.1(b). In this simple case we do not
need to label the background.
The parameters that will be studied are:

81
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(a) (b)

Figure 9.1: (a)Synthetic image test. (b)Initialization with label L1

• the number of closest neighbors cl,

• the window search size a,

• the patch size f ,

• the scale parameter σ2
2 .

The parameter σ2
1 has been empirically fixed to be equal to 3f2.

Parameter cl We first study the influence of the threshold value cl, for a fixed window
search a = 5, and a fixed patch size f = 3, and a given scale parameter σ2 = 0.004. Figures
9.2(a), 9.2(b),9.2(c) show the result for a number of closest neighbors equal respectively to
2, 3, 24 (which is the total number of neighbors for a window of size 5×5). We can see that
for less than 3 neighbors the result is noisy and not satisfactory. However from 3 neighbors
to the totality of neighbors the results are quiet similar. The difference will raise in the
computational time during the segmentation process. On one hand if the minimal number
of neighbors is taken then graph computation will be faster. On the other hand the diffusion
process will be slower than if there are a higher number of neighbors. This makes sense
because the graph contains the information on the connectivity between points. If each point
is already connected to several of its neighbors, then the diffusion process will be faster. We
concluded that cl = 8 neighbors is a good compromise between time computation for the
graph construction and segmentation process. With a unoptimized Matlab implementation,
the graph computation lasts approximatively 15 seconds and the segmentation is performed
in approximatively 1 minute. The image size is 128 × 128.

Parameter a Next the size of the window search is tested. Let us fix σ2 = 0.004, f = 3.
Figure 9.3 shows the segmentation results for two values of a, a = 5 and a = 9. We notice
that details are lost when the window of search get larger.

Parameter f Then the patch size is tested. Figure 9.5 shows the result for a fixed window
search of 9 and σ2 = 0.004. We can see that when the patch size get bigger the segmentation
is coarser and the small details are erased. Of course the size patch depends on the texture
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(a) cl=2 (b) cl=3 (c) cl=24

Figure 9.2: Results of our Semi-Supervised Segmentation for different number of selected

closest points.

(a) a=5, f=3 (b) a=9, f=3

Figure 9.3: Results of our Semi-Supervised Segmentation for different windows size of

search

of the object. It should contain a complete texture pattern. This important aspect will be
discussed for textures images containing repetitive patterns. If the windows search is too

(a) a=9, f=3 (b) a=9, f=7

Figure 9.4: Results of our Semi-Supervised Segmentation for different patch sizes
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large we notice a loss in details in the segmentation results.

Parameter σ2 Finally for a = 5, f = 3, cl = 8, the parameter σ2 is studied. Figure 9.5
shows the different results following the value of σ2. A low value of σ2 implies that only
the best pixels are kept. The scale parameter σ2 should be chosen on the one hand with
the goal that enough points are selected to allow the diffusion and on the other hand that
the σ2 value is enough discriminant to select only the pertinent points. Figure 9.5(a) shows
the case where σ2 is too low and Figure 9.5(c) the case where σ2 is too high.

Finally last very important parameters are the labels. They determine the object to be
segmented. Obviously, larger are the labels, easier and faster will be the segmentation.

(a) σ2=0.0004 (b) σ2=0.004 (c) σ2=0.01

Figure 9.5: Results of our Semi-Supervised Segmentation for three different values of scale

parameter.

9.1.2 TV-Regularization Effect

The importance of the TV-Regularization effect is emphasized in this section. A salt and
pepper noise is added on a two phase image with different means 9.6(a). The inside and
outside labels are shown in Figure 9.6(a). The results shows that if no TV regularization
is performed the segmentation fails (Fig 9.6(b)) and when TV regularization is added the
segmentation succeeds.

9.1.3 Texture Images

Our algorithm is applied to a synthetic texture image composed of five different pat-
terns 9.7(a). Figures 9.7(b) and 9.7(d) shows the initialization where the wanted texture
is chosen and Figures 9.7(c) and 9.7(e) the corresponded results. The size patch is here
chosen to be equal to 9×9 which correspond to a pattern size for the two selected textures.

9.1.4 Natural Images

We apply now our algorithm to a set of natural images taken from the Berkeley segmentation
dataset [65]. In the fist column of Figure 9.8, the inside and outside labels are shown and
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(a) (b) (c)

Figure 9.6: Application of our algorithm on a image with a salt and pepper noise.

(a)Initialization (b)The segmentation result without a TV-regularization.(c)The segmen-

tation result with a TV-regularization

in the second column the segmentation results.

9.1.5 Color Images

We propose now to apply our segmentation method on color images. Here we consider the
simple case of Red-Green-Blue (RGB) channels. The first step consists of computing the
graph by taking into account each channel. The distance considered will be expressed as
follows:

w(i, j) =

{
‖i−j‖2

σ2
1

+
‖Fr(i)−Fr(j)‖2+‖Fg(i)−Fg(j)‖2+‖Fb(i)−Fb(j)‖2

σ2
2

if i, j ∈ Nt×t(i)

0 otherwise
(9.2)

where Fr, Fg, Fb are respectively the red, green and blue feature channel. The images are
also taken from the Berkeley segmentation dataset [65]. In the fist column of Figure 9.8,
the inside and outside labels are shown and in the second column the segmentation results.

9.1.6 Medical Images

We apply our segmentation algorithm on 2D medical images of CT scans of the abdomen and
the head and neck. Figures 9.10(a) and 9.10(c) shows the inside and outside initial labels.
Figures 9.10(b) and 9.10(d) shows the segmentation results. For the liver segmentation,
the label on the background (black) prevents the diffusion from capturing as well the heart.
The segmentation of the structures in neck are challenging and the result that we obtain is
satisfying and encouraging. The extension for 3D images is one of our perspectives for this
method.

9.2 Discussion and Conclusion

In this part a non-local semi-supervised segmentation method has been proposed. The
success of graph cut in the discrete space for image segmentation was a first motivation
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(a)

(b) (c)

(d) (e)

Figure 9.7: Results on synthetic textures. (a)Initial image. (b) and (d) Initialization. (c)

and (e) results

to our work. To stay in a variational framework was also set as a goal. By translating
the discrete mincut in a continuous way we noticed the direct relationship between diffu-
sion and partition. In fact mincut which is a graph partitioning method has a well know
equivalence in the continuous space i.e the Tikhonov regularization. Then how diffusion
process which is traditionally a regularizer and denoising method can perform image seg-
mentation? In one sense the graph theory have already answered this question by proving
the equivalence between minimal cut and maximal flow of a network. This equivalence give
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the intuition of the close relationship between diffusion and segmentation in the continuous
space. The continuous formulation of the mincut i.e. a partitioning method is then equiv-
alent to a diffusion process. The addition of hard constrains which made the segmentation
semi-supervised allows a solid construction of the segmentation framework.
An other important point for mincut partition is that it relies on graphs which are powerful
representations of the non-local information for each pixel. The extraction and representa-
tion of features, independently from the segmentation, is a critical issue. Graph represen-
tation can give a non-local information, i.e information on a close neighborhood is taken
into account.
Our goal was not to outperform combinatorial methods in term of time processing but to
take advantage of both the non-local graph information and the tools from variational meth-
ods. In work presented local information with TV-norm was used. However, one could used
gradient information or even global information with a region competition model. Moreover
variational methods provide a sub-pixel/voxel precision whereas combinatorial methods are
limited to pixel/voxel precision. This explains faster computational and less precise results
of combinatorial methods with respect to variational methods.
In the variational framework, the most related work to ours is probably the method proposed
by Gilboa and Osher [40]. The diffusion is driven by the same process however their model
was initially drawn for image regularization and can to a trivial solution when adapted to
the segmentation task. Our model is well defined for the segmentation and experimental
results have shown it efficiency. Future work will focus on extending our method to 3D
medical images.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.8: Results on real world images from the Berkeley dataset. Left column: Initial

labels. Right column: Segmentation Result
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(a) (b)

(c) (d)

(e) (f)

Figure 9.9: Results on real world color images from the Berkeley dataset. Left column:

Initial labels. Right column: Segmentation Result
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Figure 9.10: First row, Segmentation of the liver. (a)Initial labels. (b)Segmentation

Result. Second row, Segmentation of the lateral muscles on the neck. (c)Initial labels.

(d)Segmentation Result. (e)Zoom on the segmentation of the muscles
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10.1 Achievements

The goal of this thesis was to study the problem of object segmentation and to propose
algorithms to solve it. Energy based methods solved with variational models were chosen to
introduce new efficient segmentation methods for images with textures. The main reason
is that these models offer a rigorous mathematical framework, a large flexibility to add
any kind of constrains or assumption on the model, including regularization and boundary,
region or shape constraints.

The segmentation models that we wanted to introduce meant to be very general, i.e.
able to handle any kind of image and particulary textured images. When we tackle the
texture image segmentation problem, the extraction of pertinent feature arise naturally.
Our first contribution is thus a definition of a new feature for textures. This feature is
based on the Beltrami representation of the image and the use of differential geometry.
More precisely the image is represented as a surface embedded in R

3 and the computation
of its principals curvatures of this surface are the feature of interest. It has been shown
that this feature is particularly efficient for natural images composed of textured regions
by one side and smooth or constant regions by the other side. Working on the appropriate
feature space make easier the segmentation task.
Second, An unsupervised region-based active contour segmentation model has been defined.
The segmentation is based on the Kullback-Leibler distance and on a non-parametric esti-
mation of the region distribution. Our model is then free of any assumption. A formulation
of the problem in a convex functional allowed us to have global minimizers and to use fast
numerical schemes to solve the segmentation problem.
This convex formulation has been studied for the multi-region case and our third contribu-
tion was to have a convex formulation for the multi-phase active contour segmentation.
This multi-phase segmentation was driven by region competition energy, and a fast imple-
mentation scheme was used to solve the problem. In fact compared with the classical level
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set segmentation method we noticed that the computational time of our method was 10
times faster. Results on both 2D and 3D images have been shown.
By getting familiar with common applications in image segmentation we get convinced that,
in some cases, interaction with the user should be integrated in the framework. The last
contribution of this manuscript is a non-local semi-supervised segmentation method. This
non-local semi-supervised segmentation stems from graph theory, more precisely from the
minimal cut of a graph. A continuous version of the mincut has been incorporate in a
variational framework. Tools from variational methods as the TV-norm has been added.
Moreover, the graph of image patches provides non-local information on the image and
manages, better than local information, the description of regions with textures. In fact
textures need to be treated at a non-local level.

10.2 Future Work

A brief description of work in progress and future work is given hereafter:

From the last part of our work, we noticed that the non-local information is powerful to
deal with textures. Considering this fact, we would like to examine the idea of a non-local
representation of the image with the Beltrami framework conversely to the local represen-
tation done in the first part. We could then use tools from differential geometry to extract
features of interest in this new manifold.

Concerning the multi-phase segmentation model presented in Part 2, it would be in-
teresting to see the behavior of other multi-phase AC models in the presented convex
framework. A formulation based on the Kullback-Leiber distance could be incorporated in
the multi-phase segmentation process.

An important issue that have not been studied during this thesis is the multi-scale ap-
proach. For improving the time cost of the different segmentation task, in particular for 3D
medical volumes, a coarse-to-fine segmentation should be considered.

Finally one important improvement will be in the algorithmic point of view for both
unsupervised and semi-supervised segmentation model. We want to consider a recent algo-
rithm for having very fast minimizers of the TV-norm, the Split Bregman algorithm [43].

During this thesis, a large variety of area has been investigated in order to be incor-
porated in a segmentation framework. Differential geometry, information theory, graph
methods have just as much provided us means for constructing segmentation methods.
There are still so many others areas to explore for solving this relatively new problem.



Annex A
A.1 Shape Derivation Tool

We remind hereafter the shape derivative tool proposed by Delfour and Zolesio in [30].
The shape derivative tool basically derives a region-based functional in an elegant and
straightforward way. Let us consider a general region-based functional which depends on
an artificial time τ as follows:

F (Ω(τ)) =

∫

Ω
f(x,Ω(τ))dx, (A.1)

that we want to optimize w.r.t Ω. The Gâteaux derivative of the functional F in the
directions V is given by:

< F ′(Ω), V >= lim
τ→0

F (Ω(τ)) − F (Ω)

τ
, (A.2)

where F ′(Ω) := ∂F
∂τ (Ω(τ)). As it has been shown in [3], the Gâteaux derivative can be

expressed as:

< F ′, V >=

∫

Ω

∂f

∂τ
(x,Ω, V )dx −

∫

∂Ω
f(s,Ω)(V (s).N (s))ds (A.3)

where N is the unit inward normal to ∂Ω the boundary of the evolving region Ω, ds its
length/area element. In the case where we have f(x) = f(x,G1(τ), G2(τ)) and







G1(τ) =
H1(τ)

H2(τ)
,

G2(τ) =
H3(τ)

H4(τ)
,
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we obtain:

∂f

∂τ
=

∂f

∂G1

∂G1

∂τ
+

∂h

∂G2

∂G2

∂τ

=
∂f

∂G1

[∂G1

∂H1

∂H1

∂τ
+

∂G1

∂H2

∂H2

∂τ

]

+
∂f

∂G2

[∂G2

∂H3

∂H3

∂τ
+

∂G2

∂H4

∂H4

∂τ

]

.

Gâteaux Derivative of Functional KL

KL(qin(Ω), qout(Ω)) =

∫

R

(
qin(I,Ω) − qout(I,Ω)

)
(A.4)

(
log qout(I,Ω) − log qin(I,Ω)

)
dI.

qin(I,Ω(τ)) = G1(τ) =

∫

Ω(τ) K(I(x) − I(x̂))dx̂
∫

Ω(τ) dx̂
=

H1(τ)

H2(τ)
,

qout(I,Ω(τ)) = G2(τ) =

∫

Ω0\Ω(τ) K(I(x) − I(x̂))dx̂
∫

Ω0\Ω(τ) dx̂
=

H3(τ)

H4(τ)
,

and h(τ) = G1(τ) log(
G1(τ)

G2(τ)
) + G2(τ) log(

G2(τ)

G1(τ)
),

∂h

∂τ
=

∂h

∂G1

[ 1

H2

(

−
∫

∂Ω(τ)
K(I(x) − I(s))(V.N)ds

)

+
(

− H1

H2
2

)(

−
∫

∂Ω(τ)
(V.N)ds

)]

+
∂h

∂G2

[ 1

H4

(∫

∂Ω(τ)
K(I(x) − I(s))(V.N)ds

)

+
(

− H3

H2
4

)(∫

∂Ω(τ)
(V.N)ds

)]

.

We can deduce that

∂h

∂τ
=

1

|Ω|
(

1 − qout(I(x),Ω)

qin(I(x),Ω)
+ log

qin(I(x),Ω)

qout(I(x),Ω)

)

( ∫

∂Ω(τ)
(−K(I(x) − I(s)) + qin(I(x),Ω))(V.N)ds

)

+
1

|Ω0 \ Ω|
(

1 − qin(I(x),Ω)

qout(I(x),Ω)
+ log

qout(I(x),Ω)

qin(I(x),Ω)

)

( ∫

∂Ω(τ)
(K(I(x) − I(s)) − qout(I(x),Ω))(V.N)ds

)

Finally, the Gâteaux derivative of Functional A.4 is:

< KL′, V >=

∫

R

∂h

∂τ
(x,Ω, V )dx,
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