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Three-Directional Box-Splines:
Characterization and Efficient Evaluation
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Abstract—We propose a new characterization of three-direc-
tional box-splines, which are well adapted for interpolation and
approximation on hexagonal lattices. Inspired by a construction
already applied with success for exponential splines [1] and
hex-splines [2], we characterize a box-spline as a convolution of
a generating function, which is a Green function of the spline’s
associated differential operator, and a discrete filter that plays the
role of a localization operator. This process leads to an elegant an-
alytical expression of three-directional box-splines. It also brings
along a particularly efficient implementation.

Index Terms—Approximation, box-splines, hexagonal sampling,
interpolation, three-directional mesh.

I. INTRODUCTION

THE representation of a digital signal by means of a dis-
crete/continuous model is essential for common tasks

such as interpolation and resampling. For images and other
two-dimensional (2-D) data, polynomial spline models based
on B-splines are particularly popular, mainly due to their
simplicity and excellent approximation capabilities [3].

For image data sampled on the traditional Cartesian lattice,
separable B-splines can be obtained in a straightforward way
using tensor products of one-dimensional (1-D) B-splines.
However, in the case of sampling on a hexagonal lattice (aka
three-directional mesh), separable B-splines are incapable
of exploiting the highly praised isotropy and twelve-fold
symmetry of this sampling scheme [4], [5]. Box-splines are
a multidimensional extension of 1-D splines [6] that have
found practical applications in geometric modeling, multi-
scale representation, and many other fields. Among the large
box-spline family, three-directional (nonseparable) box-splines
are particularly suitable for hexagonal lattices. They have been
successfully applied in numerous problems where hexagonally
sampled data are handled [7].

Early algorithms to evaluate box-spline surfaces were very
memory consuming and only resulted into an approximation of
the surface within a given tolerance [8], [9]. Later, more effi-
cient methods were proposed based on the recursive properties
of box-splines [10]–[12]. Here, we propose a new characteri-
zation of three-directional box-splines that provides us with a
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Fig. 1. Hexagonal lattice is generated using integer combinations of the vec-
tors r , r , and r . The hexagonal support of the first two box-splines � (x)
and � (x) has been indicated. Box-splines are polynomial inside each triangle.
Using the twelve-fold symmetry, � and � have only to be known in the tri-
angles I, II, and III that intersect the sector [0; �=6].

closed analytical formula, as well as an efficient implementa-
tion scheme. To this aim, we derive an explicit form of the gen-
erating function, which is the Green function of a three-direc-
tional differential operator associated with box-splines. Then,
the box-spline can be expressed as the convolution of the gen-
erating function with a discrete filter, which plays the role of
a localization operator. A similar construction was already ap-
plied on the Cartesian lattice to generalized polynomial splines
(i.e., exponential splines and L-splines [1]) and to the design of
hex-splines, another family of hexagonal splines [2].

II. BOX-SPLINES ON THE HEXAGONAL LATTICE

A. Mathematical Preliminaries

A 2-D lattice is a set of points of the plane, characterized by
two linearly independent vectors and , grouped in a matrix

, such that the lattice sites are the locations
for every . Within this letter, we define the vectors

, , and those shown in Fig. 1 as

(1)

The Cartesian lattice is then obtained for and the
regular hexagonal lattice, as in Fig. 1, for .

Bivariate functions are equivalently denoted as ,
, or , where is interpreted as

a vector in . The Fourier transform of a function
is defined as ,

where is the usual inner product of vectors.
A 2-D discrete signal is denoted as ,
, . Its representation in the continuous do-

main, associated with the lattice sites , is a weighted
Dirac comb: . Conse-
quently, its Fourier transform is defined accordingly as

. For ,
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Fig. 2. First two box-splines (left) � (x) and (right) � (x).

we get the -transform of as (
means ). Convolutions are denoted by .

B. Definition

A 2-D box-spline model defined on a lattice has the form

(2)

where are the box-spline coefficients that are weights for the
box-spline basis functions , placed on every lattice site.
They can be computed to ensure a desired property, typically
that interpolates a discrete available signal (i.e.,

for every ). The box-spline depends on a concate-
nated matrix of vectors and can
be defined as follows [6]. If , then

if
otherwise

(3)

and inductively, .
Therefore, we have the normalization and the

convolution property .
On a hexagonal lattice, box-splines can be constructed using

the three vectors , , and . In particular, we define the
so-called Courant element [6] as ,
where we have changed the normalization toward the density
of the lattice, i.e., . Further on, higher orders
are obtained as , . Their expres-
sion in the Fourier domain is

(4)

(5)

where . The box-splines have several
attractive properties, such as a hexagonal compact support and
twelve-fold symmetry, as illustrated in Figs. 1 and 2. In the next
section, we provide closed analytical formulas for these box-
splines in the spatial domain.

III. DIFFERENTIAL CHARACTERIZATION OF BOX-SPLINES

A. B-Spline Refresher

In the 1-D case, a polynomial spline for uni-
formly sampled data can be expressed similarly to (2) as

. is the causal B-spline of
degree , which can be defined in the spatial domain as

(6)

We identify as the th iterate of the finite difference
filter, which is usually expressed in the -domain as

. Further on, we have the one-sided
power function for otherwise . The
filtering process acts as a localization operator on the power
function, i.e., has a finite support. The term is also
called the generating function, and it corresponds to the (causal)
Green function of the differential operator , i.e.,
the function such that . This means that
a polynomial spline of degree , when differentiated
times, is a weighted Dirac comb.

On the 2-D Cartesian lattice, we can easily use tensor-product
B-splines: . Then, the associated differ-
ential operator is

(7)

where . In that
case, the (separable) generating function is

, and the corresponding localization oper-
ator .

B. From Differential Operators to Generating Functions

Inspired by the B-spline construction using Green functions,
we propose an extension for the box-splines on the hexagonal
lattice. For this purpose, we introduce the three-directional dif-
ferential operator , . Its Fourier
transform, in the sense of the distributions, is

(8)

Proposition: A Green function of the operator ,
is given by

(9)

where

(10)

The proof is given in the Appendix. Notice that the functions
and all have the same wedge-like support; they are

causal in and symmetric in , as illustrated in Fig. 3.

C. From Generating Functions to Box-Splines

In the Fourier domain, the generating function corre-
sponds to without its numerator in (4). The remaining term
can be identified by introducing the discrete filter

(11)
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Fig. 3. Green functions (a) � = � and (b) � = � +2� , which serve
to generate the box-splines � and � .

Using the property , we find that
is exactly the numerator of

(4). We can explicitly find the filter coefficients of by ex-
panding the th power of the -transform of (11). By collecting
the coefficient in front of the term , we get for every

,

(12)

By arranging the at the lattice sites ,
we can represent the first two localization filters as

(13)

Putting together (11) and (8) with the fact that
, we find that . Therefore, we obtain the

characterization

(14)

The complete analytical expression of , can then
be written as

(15)

IV. IMPLEMENTATION ISSUES

A. Generic Case

Equation (15) provides us with an efficient way to eval-
uate at any point , any three-directional box-spline .
Notice that the power functions grow rapidly, as shown in
Fig. 3, which could lead to problems of numerical stability.
A simple remedy consists of evaluating only for ,
which exploits the causality of in and the symmetry

. The following Matlab code per-
forms box-spline evaluations for a list of points ,
indexed by . The twelve-fold symmetry is used to fold coordi-
nates into the sector , where the number of evaluations
of the power functions is minimal. We use the coordinates

in the basis , instead of the coordinates in
the canonical basis . gives the binomial
coefficient .

This code was used to generate the plots in Fig. 2. The compu-
tational complexity is polynomial in , compared to exponential
for recursive methods in the literature [10]–[12]. For example,
the evaluation took 0.002 s, while 47 s were
required for the same operation using the Matlab code proposed
in [11] (that can evaluate any box-spline, not just the three-di-
rectional ones).

B. Further Optimization for Fixed

For evaluating a box-spline of fixed , an attractive
hybrid analytical/numerical implementation consists in deter-
mining the polynomial form inside each triangle of the
three-directional mesh. This polynomial, which is obtained
by the sums of (15), can be precomputed, stored, and only
evaluated at the end. The following code in C-language for

may serve as a template: coordinates are first folded in the
sector , then in , and finally in . This is
done conveniently with the coordinates . The coordinates

in the orthogonal basis are
the most appropriate for having short polynomials with rational
coefficients in each triangle.
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V. CONCLUSION

We proposed a new characterization of the three-directional
box-splines, based on a Green function of the differential op-
erator adapted to the hexagonal lattice. Together with a finite
difference filter that acts as a localization operator on the gen-
erating function, this provides us with new explicit analytical
formulas for the three-directional box-splines. This characteri-
zation also leads to particularly easy and efficient implementa-
tions. We provided the Matlab source code for the generic case
and a further optimized C-code for the case . The latter
one could be particularly interesting for high-quality visualiza-
tion of data sampled on a hexagonal lattice.

Finally, we note that these box-splines can be expressed on
any lattice with matrix , and not only on the hexagonal one,
by the simple change of basis .

APPENDIX

PROOF OF THE PROPOSITION

We verify whether of (9) is a Green function of , i.e.,
we need . First, we introduce the vectors

(16)

which allow us to express the dual bases of and
as and , respectively. For example, the co-
ordinates of in are .

We now derive the Fourier expression of , which we
first rewrite as

(17)

From distribution theory, we know the Fourier transform of the
one-sided power function

(18)

where is essentially the th derivative of Dirac. This term can
be omitted since it does not have any influence when applying a
differential operator of order (continuous or discrete) to
(see also [2, App. C]).

Hence, using a tensor product and a change of basis from
to (with Jacobian ), we

get

(19)

Similarly, the Fourier transform of is obtained
by replacing by in (19).

We now define the functions , for any integers ,
, and as

(20)

We recognize , . Using the property
, we can further obtain the following recurrence relation,

for :

(21)

By recurrence on , we can also show that

(22)

In the case of , we have

(23)

Finally, we identify the function as

(24)

which results in (9).
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