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From Differential Equations to the Construction
of New Wavelet-Like Bases

Ildar Khalidov and Michael Unser, Fellow, IEEE

Abstract—In this paper, an approach is introduced based on dif-
ferential operators to construct wavelet-like basis functions. Given
a differential operator L with rational transfer function, elemen-
tary building blocks are obtained that are shifted replicates of the
Green’s function of L. It is shown that these can be used to specify
a sequence of embedded spline spaces that admit a hierarchical
exponential B-spline representation. The corresponding B-splines
are entirely specified by their poles and zeros; they are compactly
supported, have an explicit analytical form, and generate multires-
olution Riesz bases. Moreover, they satisfy generalized refinement
equations with a scale-dependent filter and lead to a representa-
tion that is dense in 2. This allows us to specify a corresponding
family of semi-orthogonal exponential spline wavelets, which pro-
vides a major extension of earlier polynomial spline constructions.
These wavelets are completely characterized, and it is proven that
they satisfy the following remarkable properties: 1) they are or-
thogonal across scales and generate Riesz bases at each resolution
level; 2) they yield unconditional bases of 2—either compactly
supported (B-spline-type) or with exponential decay (orthogonal or
dual-type); 3) they have vanishing exponential moments, where

is the order of the differential operator; 4) they behave like mul-
tiresolution versions of the operator L from which they are derived;
and 5) their order of approximation is ( ), where and

give the number of poles and zeros, respectively. Last but not
least, the new wavelet-like decompositions are as computationally
efficient as the classical ones. They are computed using an adapted
version of Mallat’s filter bank algorithm, where the filters depend
on the decomposition level.

Index Terms—Continuous-time signal processing, differential
operators, Green’s functions, multiresolution analysis, multireso-
lution approximation, splines, wavelets.

I. INTRODUCTION

I N recent years, the wavelet transform has emerged as a pow-
erful tool for performing multiresolution signal analysis and

processing [1]–[3]. Wavelets have led to a multitude of appli-
cations with a significant impact on image compression, com-
munications, and on other areas of applied mathematics. There
has also been an intense activity in wavelet design leading to
the construction of a large variety of wavelet bases, the most
prominent ones being tailored to special requirements such as
orthogonality and short support [4], high number of vanishing
moments [5], symmetry and regularity [6], explicit analytical
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form [7]–[9], near-optimal time-frequency localization [10], to
cite but a few.

One of the key mathematical properties of wavelets is that
they behave like multiscale differentiators [1], i.e., the wavelet
coefficients of a signal are the samples of the th-order deriva-
tive of smoothed versions of it. Thus, there is a correspondence
between a wavelet with vanishing moments and the differ-
entiation operator . One of the questions that motivated this
work is: What happens if we consider an arbitrary linear differ-
ential operator L instead of ? Will we be able to construct
wavelets that qualitatively behave like L? In this paper, we show
that this is indeed possible for differential operators with arbi-
trary rational transfer functions.

The derivative-like behavior of wavelets was investigated
in some depth in [11]. Specifically, it was shown that it is the
regular component of the scaling function (i.e., the polynomial
B-spline that lies hidden within) that induces this property.
Mathematically, this behavior turns out to be intimately linked
to the property that the polynomial B-spline of order is a
localized version (i.e., a linear combination of shifted repli-
cates) of the Green’s function of the operator . Thus, a
possible way to induce a modified wavelet behavior is to
consider generators that are localized versions of the Green’s
functions of more general differential operators. In the case
of ordinary differential operators, the exponential B-splines
are natural candidates [12]. In the cardinal setting, it has been
shown recently that these B-splines share all important prop-
erties of their polynomial counterparts: they are compactly
supported, they generate Riesz bases, and they satisfy some
general multiresolution-like embedding properties [13], [14].
In this paper, we go one step further and use these functions
to specify an extended family of exponential spline wavelets
that satisfy some interesting mathematical properties. While
we believe that our proposal to construct wavelets based on
operators with rational transfer function is novel, there is a the-
oretical connection with earlier work on nonstationary wavelets
[15]–[20]. For instance, the present construction falls within the
generalized multiresolution framework of de Boor, DeVore and
Ron [16]. These authors even briefly considered exponential
splines as an illustrative example of their general scheme ([16,
sec. 6]); they established the existence of such multiresolution
bases of , but they did not go into much practical details
beyond this. Also relevant is the work of Lyche and Schumaker
[19], who construct general L-spline wavelets with nonuniform
knots on the interval, starting with a time-varying differential
operator. Finally, there is a link between exponential spline
wavelets and some nonstationary subdivision schemes that
preserve exponential polynomials [21]. We note, however, that
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these only correspond to the low-pass synthesis part of the
wavelet algorithm and that the filters are interpolating, which is
typically not the case here.

This paper is organized as follows. In Section II, we illustrate
our wavelet-construction method by producing an extension of
the Haar transform that is matched to the first-order differen-
tial operator with parameter . In Section III, we
consider the general case of a differential operator L and in-
troduce the corresponding exponential B-splines as space-gen-
erating functions. We specify the embedding properties of the
exponential B-spline spaces and give a new result on their ap-
proximation properties that guarantees that the representation is
dense in . In Section IV, we use these functions to construct
orthonormal and semi-orthogonal wavelets and characterize the
corresponding filters. This provides the generalization of the
polynomial spline wavelet family [9] for a much larger class
of splines. In Section V, we identify the key mathematical prop-
erties of the exponential B-spline wavelets. Finally, we discuss
the computational aspects of the introduced wavelet transform
and consider specific examples.

II. EXPONENTIAL EXTENSION OF THE HAAR SYSTEM

To introduce our new wavelet concept, we start with a simple
illustrative example and show how piecewise exponentials can
be used to construct an extended version of the Haar transform.

A. E-Spline Multiresolution: First-Order Case

Consider the first-order linear differential operator
. As is well known from linear dif-

ferential equation theory, the Green’s function for this operator
is , where is the step function. We recall
that the Green’s function is causal and satisfies , where

denotes the Dirac impulse; it is simply the impulse response
of the causal inverse operator .

By definition, the exponential spline associated with the
operator L is a function such that

where the ’s are arbitrary coefficients, and where the ’s
are called the knots of the spline. In our case where L is a first-
order differential operator, the spline , as defined above, is
discontinuous at these points. We can integrate this equation by
applying the inverse operator to this relation,
which yields

(1)

where the additional term , with , is a so-
lution of the homogeneous equation to be chosen so
that satisfies specific boundary conditions.

To be able to apply fast filtering algorithms, we restrict our-
selves to the case where the knots are equally spaced; i.e.,

, where is the interval between two knots. The cor-
responding spline space is in this case

-shift invariant. One can also omit , the element of the null

Fig. 1. Localization of the Green’s function, T = 1.

space of L in (1), because it can be expressed through the shifts
of the Green’s function [13].

While the representation of a spline in terms of shifted
Green’s functions is attractive conceptually, it
has the disadvantage of involving basis functions that are not
compactly supported. The key idea, which is in the foundation
of the present paper, is that one can construct an equivalent set
of compactly supported basis functions by taking a suitable
linear combination of basis functions. It is not difficult to see
that the shortest possible functions in take the form

(2)

This function, which is compactly supported in , is the ex-
ponential B-spline of order one. In effect, the Green’s function
is truncated by substracting its weighted and shifted version (see
Fig. 1).

The -integer-shifted B-splines are ob-
viously orthogonal to each other, and they form a Riesz basis.
Conversely, it is also possible to invert (2) and to express the
Green’s function as the linear combination of B-splines

The above Green’s function reproduction formula, which is
easily visualized graphically, implies that all -shifts of the
Green’s function belong to , and thus

The Green’s function itself does not depend on the step size
. Thus, given a fixed parameter , we can construct the Green’s

function and build as a span of -shifts of . On the
contrary, the B-splines depend on the scale imposed by

, and this is the price paid for their compact support. Moreover,
if we compare the B-spline to a standard scaling function, we
can clearly see that the relation between the scales and is
no longer a dilation (see Fig. 2).
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Fig. 2. Multiresolution analysis: E-spline representation.

So far, we have constructed the spaces . The Green’s func-
tion representation makes the inclusion obvious, as
illustrated in Fig. 3. It is then a natural step to attempt the con-
struction of a multiresolution-like structure using B-splines at a
dyadic scale . For this purpose, we localize the Green’s
functions and consider B-splines as basis functions (see Fig. 2).
What we get is not a multiresolution analysis in the classical
sense because it is not dilation that links the B-splines at dif-
ferent scales. Also, as soon as belongs to each space

(i.e., when ), the intersection is not
empty. In this case, this happens because the Green’s function is
square-integrable. This means that the sum in the wavelet-space
decomposition of must start from a finite scale and include
the corresponding low-pass space. One should mention, how-
ever, that in practical applications one always keeps low-pass
data at the coarsest scale, which makes the empty-intersection
property irrelevant.

From now on, we denote the space with
, and , the corresponding nor-

malized generating function. As we see from the Green’s func-
tion representation of these spaces, is a subset of .
This means that we can expand in

. Specifically, we have that

which points out a fundamental difference with conventional
wavelet theory: The present filter coefficients exhibit a scale de-
pendence. The Fourier expression for the refinement filter is

which is clearly -periodic in .
The next step is to examine the orthogonal complement

such that , as it is done in
classical wavelet construction. It is not difficult to see that

Fig. 3. Toward a multiresolution analysis: Green’s function representation of
spline spaces. The basis of V contains every other element of the basis of V .

Fig. 4. Left: First-order E-spline wavelet  at different scales. Right: Haar
wavelet at different scales.

the function
is a generator of . It is clearly included in and is
orthogonal to , as justified by

We show this wavelet in Fig. 4. We observe that the Haar wavelet
corresponds to .

There are several important properties that can be seen with
this first E-spline wavelet. First, its integral is not necessarily
zero, which means that the corresponding filter is not neces-
sarily high pass. Second, the wavelets (and, consequently, their
spectra) at different scales are not dilated replica of each other.
For instance, when , the wavelet is complex of constant
amplitude and its spectrum is shifted by as compared to the
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Haar case. Finally, we can prove that the extended Haar mul-
tiresolution is dense in (cf. Section III-B). This is the final
ingredient that is required to have a wavelet-like basis of .

III. E-SPLINES

In this section, we generalize the previous construction by
introducing E-splines associated with higher-order operators
and by defining the corresponding multiresolution analysis
of . We then consider the approximation properties of the
constructed multiresolution representation and prove that it is
dense in .

A. E-Spline Multiresolution

We start with the specification of a linear differential system.
This system takes an input function and produces an output

; its behavior is generally described by

with . This equation can also be written in the equivalent
operator form . To obtain the transfer function of
L, we take the Laplace transform of both sides and solve for

, which yields

with parameter vectors and
, where and are the

roots of the polynomials and
, respectively. The Green’s function

of the system is given by

which can be determined by explicitly computing the inverse
Laplace transform. We will therefore refer to the spline-defining
parameters, and , as the poles and the zeros,
respectively.

A generalized E-spline with vector of poles , vector of zeros
and knots is a function

of the form

where is a linear combination of exponential polynomials
from the null space of the operator . To make the nota-
tion simpler, from now on, we will omit the indexes .

As in our illustrative example, we now consider exponential
splines on a uniform grid with knots . In this case
[14], all null-space elements are reproduced by

. Consequently, from the definition of an E-spline, the
shifted versions of the Green’s functions form a basis of the
space of generalized exponential splines.

Now, we are interested in a localized basis function. If is
empty, the Green’s function is a convolution of first-order ones,

and we use the composition of first-order localization opera-
tors (which corresponds to the convolution of their impulse re-
sponses) to localize it, as in

where . It can be
further seen [14] that the same localization operator can
be used to localize for arbitrary , as long as .

The function is called an ex-
ponential B-spline; it is supported in . Its Fourier trans-
form is given by

(3)

We assume the stability condition for all
distinct pure imaginary roots . The -integer shifts of the
B-spline then form a Riesz basis [14, Th. 1], i.e., they provide a
stable signal representation. In addition, one can show that the
Green’s function can be reconstructed as

where are some suitable weights [14]. This reproduction
formula ensures the completeness of in the
space spanned by the shifted Green’s functions. Thus, the expo-
nential B-splines form a stable and complete basis of this space.

To define a corresponding multiresolution analysis, we focus
on the dyadic scales . The ’s are the subspaces of
spanned by -shifts of the Green’s function

where the ’s are arbitrary coefficients.
Due to the equivalence provided by the localization process

and by the Green’s function reproduction formula, we can also
write

where is the normalized scaling function
.

We give in Fig. 5 a diagram that summarizes the construction
of the exponential-spline spaces. The space is included in

by construction. Moreover, as we shall see in the corol-
lary to Theorem 1, the approximation error in goes to zero
as . We therefore have a ladder of spaces satisfying

. However, in contrast with the common definition
of a multiresolution analysis, the scaling function whose shifts
form a basis of is not a dilated version of if . In-
stead, at each scale , we have a specific generating function .
Similarly to the first-order case, the causal Green’s function
belongs to all spaces if ; else,
their intersection is empty as is usually expected (i.e.,

).
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Fig. 5. Construction of exponential-spline spaces.

B. Order of Approximation

To measure the quality of the E-spline approximation of a
signal , we estimate the asymptotic behavior of the approxi-
mation error as the scale goes to zero (or, equivalently,
as ). There are results from basic spline theory, ap-
plicable to the case where is empty, that imply that the error
should decay like as [12], [22]. An exact asymptotic
formula is given in [13, Th. 2]. Here, we extend this result for
the general rational case .

Theorem 1: Let be a defining operator for a linear dif-
ferential system with . Let
be a function such that , and let denote the orthog-
onal projector into the exponential B-spline space . Then, we
have the following asymptotic formula for the approximation
error as :

where with
(Riemann’s zeta function).

The proof of this theorem is quite technical and is given in
Appendix A. The following corollary ensures that the approxi-
mation order tends to zero as for any , as stated
in the previous subsection.

Corollary 1: For any function we have
as .

Proof: We use the fact that the Sobolev space is dense
in . Specifically, we estimate the error from above as

, where can be chosen to be arbitrarily
close to .

Theorem 1 is a result for the approximation of smooth func-
tions. For rougher functions whose Sobolev degree of smooth-
ness is , we expect that the error will only decay
like . A proof for the standard wavelet case can be found
in [23].

IV. MULTIRESOLUTION BASIS FUNCTIONS

So far, we have constructed the spaces spanned by the
-shifts of the Green’s function and have given an equivalent

representation using compactly supported B-splines. In this sec-
tion, we construct orthonormal and dual basis-generating func-
tions for , as well as the corresponding wavelets.

A. E-Spline Scaling Functions

We start with a proposition that helps us construct Riesz bases
in . First, we define

(4)

which is the Gram sequence—or autocorrelation—of the
basis . We then have that

, where
is the -transform of . is also referred to as

the autocorrelation filter.
Proposition 1: Let be an exponential B-spline at scale

, with exponential parameter vector such that
for all distinct purely imaginary roots

. Then , with

is a Riesz basis of if and only if
.

Proof: We know that, if satisfies the conditions of the
theorem, then is a Riesz basis of [14, Th.
1]. Considering the autocorrelation filter for , we get

Thus, the left-hand side expression is positive and bounded if
and only if is positive and bounded.

The compactly supported basis that we con-
structed in the previous section is generally not orthogonal if the
order of the exponential B-spline is greater than 1. To construct

a dual basis of the same space , we write in
the Fourier domain the condition of biorthonormality between

and , from which we deduce that

(5)

The dual basis is useful to project an arbitrary signal
onto . This least-squares approximation is computed via the
projection formula
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To build an orthonormal basis , we or-
thonormalize in the Fourier domain, which yields

Since the weighting functions and
are bounded from above and are nonva-

nishing, we can invoke Proposition 1 which ensures that the
constructed dual and orthonormal bases are Riesz bases as well.

As noticed before, . In particular, can
be decomposed in the basis of , which gives us the scaling
relation

(6)

Taking the Fourier equivalent of this formula and plugging it in
(3), we find that

where is a normalizing constant.
We note that this refinement equation was already given in

[16] for the standard (nonrational) case. The more general case
of a rational operator and of an arbitrary integer dilation factor

(not necessarily a power of two) is considered in [14].
Interestingly, the refinement filter

is now different for each scale; also,
it is the same irrespective of the zero vector up to multiplica-
tion by a constant. The dual refinement filter is given by

(7)

and the dual scaling function satisfies the relation

By substituting (6) into the expression for the autocorrelation se-
quence at scale given by (4), it is easy to express
in terms of and as

(8)

B. E-Spline Wavelets

The inclusion allows us to uniquely introduce
the orthogonal complements such that

The residual space is the orthogonal complement of
in . It plays the same role as in the case of semi-

orthonormal wavelet functions, which are orthonormal across
scales, but not necessarily within a given scale. Thus, at a given
scale , we are looking for a wavelet of the form

(9)

that is orthogonal to . In other words, for all , we must
have

From (9) and (6), and after having expressed the -transform of
this orthogonality relation, we obtain

In contrast to the classical wavelet theory, all filters now depend
on the scale. Hence, the solution depends on the scale,
too. Its general form is

where is a Laurent polynomial in . We show now how to
choose to get a Riesz basis of , while
noting that we cannot directly apply Proposition 1 since
and belong to different functional spaces.

Proposition 2: is a Riesz basis of if
and only if the filter is bounded and nonvanishing on the
unit circle.

Proof: The autocorrelation filter is

Thus, for to be a Riesz basis in , there
should exist such that .

In order to perform a hierarchical decomposition in our new
wavelet basis, we would like to apply Mallat’s filter bank algo-
rithm. Therefore, we build the filter bank shown in Fig. 6 and
impose a perfect reconstruction condition. Following the same
construction procedure as before, we obtain the dual wavelet re-
lation

where the dual wavelet filter is given by

(10)

We typically use on the analysis side and on
the synthesis side, so that the synthesis wavelet is compactly
supported. However, it is possible to interchange these filter
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Fig. 6. Two-channel filter bank used for the wavelet transform.

pairs; this corresponds to performing a dual E-spline wavelet
transform.

For the orthonormal E-spline wavelet transform, the same fil-
ters are used on the analysis and synthesis side. These filters are
denoted by and are given by

The constructed scaling functions and wavelets at each scale
belong to the space . Indeed, they all can be expressed
as weighted sums of the shifts of ([14], sec.
3). The scaling and the wavelet filters are either finite-impulse
response (FIR) (B-spline case) or infinite-impulse response
(IIR) with exponential decay (dual or orthogonal case); thus,
the basis functions are either compactly supported, or decay
exponentially.

V. PROPERTIES OF E-SPLINES AND E-SPLINE WAVELETS

A. Reproduction of Exponential Polynomials

The following proposition generalizes the polynomial-repro-
duction property of the classical wavelet theory:

Property 1: Suppose that contains a root of multiplicity
. Then, for the exponential monomial

has the B-spline representation

where are suitable coefficients.
For the arbitrary parameter vector consisting of distinct

roots of multiplicity , the direct corollary is
that the exponential polynomials

that constitute the null space of the operator L can be repro-
duced with B-splines. The result follows from Proposition 2 in
[13].

B. Vanishing Exponential Moments

In conventional wavelet theory, the vanishing-moment prop-
erty of the wavelet is closely related to the ability of the scaling
function to reproduce polynomials. This can be generalized as
well to our case of rational operators.

Property 2: For each scale , shift , and degree
, the analysis wavelet satisfies

where is the multiplicity of . In other words, the analysis

wavelet has vanishing exponential moments that corre-
spond to the basis functions of the null space of L. Equivalently,
for each , we have

This proposition becomes obvious if we remember that
is an orthogonal complement of ; thus, as long as the null
space of L can be reconstructed with the basis functions of

is orthogonal to it. In addition, the null space is shift-in-
variant [14]; i.e., , which completes the proof.

C. Operator-Like Wavelets

The following theorem is a key result of the present work. It
states that our new wavelets behave qualitatively like the differ-
ential operator from which the multiresolution analysis is de-
rived.

Theorem 2: Let be an E-spline wavelet basis of
. Then, there exists a sequence of E-spline scaling

functions of order such that ;
in addition, generates a multiresolution analysis of .
The wavelet coefficients of are therefore the samples of the
smoothed versions of .

Proof: Consider the wavelet coefficient

. We now define

and study the behavior of this function. Com-
bining (7) and (10), we get

In order to further simplify this expression, we notice that
. Hence, taking (5) into account,

we have

In this expression, corresponds to an exponential
B-spline with augmented parameters .
The discrete filters , and , are bounded and do not
vanish on the unit circle. According to Proposition 1,

is a Riesz basis of the space generated by

, which implies that the ’s generate a multiresolution
analysis of .
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When for all and for
, then the filters are low pass. The sufficient condi-

tion is that is a valid E-spline scaling function with
for at least one . The validity statement then implies all other
requirements. This is exactly the case for the examples in Sec-
tion VI.

VI. IMPLEMENTATION AND EXAMPLES

In this section, we describe the filter bank implementation
for the wavelet decomposition and reconstruction based on
E-splines. We also discuss possible algorithms for the calcula-
tion of the autocorrelation filter. Finally, we show examples of
exponential B-splines, illustrating the concepts of this paper.

A. Filter Bank Implementation

In practice, it is more efficient to work with discrete se-
quences and filter banks, rather than with continuous-time
signals and projections. In the conventional wavelet theory, this
idea leads to Mallat’s fast filter bank algorithm [1]. It is easy to
see that this algorithm can be applied to the E-spline-wavelet
case as well; however, the filters and must
be precalculated for each iteration. IIR filters can be imple-
mented recursively (as in [9]) or approximated with FIR filters
of sufficient length. A simple alternative is to evaluate these
in the Fourier domain using the fast Fourier transform (FFT)
algorithm [24].

The algorithm first interpolates the given samples with
the exponential B-splines at the initial scale

(11)

where , and where is the interpolation
prefilter given by

(12)

The ’s are used to initialize the hierarchical decomposition.
In the unlikely event where is not stable, which is also

sometimes the case with conventional splines, we propose to
replace the filter by a generalized quasi-interpolant [25] that is
specifically designed to reproduce the exponential polynomials.

The (quasi-)interpolation model (11) implies that .
Thus, the ’s given by the initialization procedure are also
the coefficients of the projection of into . Indeed

because of the biorthogonality of and .
For each iteration, we need to know the autocor-

relation filter at the current scale . Then, the
wavelet filters , and the scaling filters

, can be computed using the explicit
expressions given in Section IV. Equation (8) allows us to
find from . For , we recall that the
autocorrelation function of the exponential B-spline corre-
sponds to the scaled symmetrical B-spline with parameters

[13].

We see that, both for the autocorrelation filter and for the
interpolation prefilter, we need to compute the exponential
B-spline samples in the time domain. This can be done by
evaluating the samples of the Green’s function and by applying
finite-difference operators to them.

In the first order case, the procedure is especially simple be-
cause . In that case,

and
, where we observe the simple

dependence on the scale. Interestingly, the filters tend to those
of the Haar system (sum and difference) as the scale gets finer

.

B. Computation of the Green’s Function Samples

For , the Green’s function grows exponentially.
To deal with this issue, we use anticausal Green’s functions for
all such that , tuning the sign in the partial frac-
tion decomposition. Having decomposed into partial frac-
tions

we express the components with as

In the time domain, the latter corresponds to anticausal Green’s
function with parameter .

We further notice that, to calculate samples of the B-spline,
we need values of the Green’s function; thus, should
be calculated for .

C. Computation of the Exponential B-Spline Samples
and Filters

We apply finite-difference operators
to the Green’s function samples and obtain sam-

ples of the exponential B-spline. The value is
equal to the norm of the B-spline and is used for normalization.
The autocorrelation filter is obtained by taking the value of the
trigonometric polynomial

Since the samples of the exponential B-spline are known, the
interpolation prefilter can be computed from (12).

D. Examples

For our first example, we choose and empty.
We show the basic and dual scaling functions and the wavelets
in Fig. 7(a)–(d). It can be seen that these functions are non-
symmetric, piecewise exponential, and yet continuous because

. The two synthesis functions and are com-

pactly supported, while their dual counterparts and are
exponentially decaying.
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Fig. 7. Example 1: Basic and dual scaling functions and wavelets;
~� = (0;�1); ~
 is empty. (a) Scaling function ' (t). (b) Dual scaling

function ' (t). (c) Synthesis wavelet  (t). (d) Analysis wavelet  (t).

The spectrum of the analysis wavelet is displayed in
Fig. 8(a). The frequency response of the corresponding op-

Fig. 8. Example 1: Spectral behavior of the analysis wavelet and of the
smoothing kernel; ~� = (0;�1); ~
 is empty. (a) Spectrum of the analysis

wavelet j
^
 (!)j and jL(j!)j. (b) Spectrum j�̂ (!)j of the smoothing kernel.

erator is overlaid with a dashed line. It can be
seen that the two plots are well matched around the origin (at
the location of the pole ), which illustrates the
differential-operator property (see Theorem 2). We show the

spectrum of the smoothing kernel
in Fig. 8(b); it is clearly low pass and decays rapidly for high
frequencies.

With our second example, we illustrate the spec-
tral behavior of the wavelets and of the scaling func-
tions. For this purpose, we choose the parameters

and
to be pure imaginary and to have Hermitian sym-

metry, which ensures that the time-domain functions are real.
In Fig. 9, we show the scaling function and the wavelets
and in the time domain; these have a strong oscillatory char-
acter, with a larger number of lobes as the scale gets coarser.
It is clearly apparent that is not a dilate of . Figs. 7 and
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Fig. 9. Example 2: Scaling function at the scale i = 0 and the
wavelets at the scales i = 1; i = 2; ~� = (�(5�=8)j;�(5�=8)j;
(5�=8)j;(5�=8)j;0; 0);~
 = (�5j;5j). (a) Scaling function ' ; i = 0. (b)
Wavelet  ; i = 1. (c) Wavelet  ; i = 2.

9 illustrate the diversity of shapes that can be obtained with
E-spline scaling functions and wavelets.

Fig. 10. Example 2: Spectrum of the scaling function and the spectrum
of the wavelet; ~� = (�(5�=8)j;�(5�=8)j;(5�=8)j; (5�=8)j;0; 0);~
 =
(�5j;5j). (a) Scaling function spectrum j'̂ (!)j; i = 1. (b) Wavelet spectrum
j ̂ (!)j; i = 1.

The plots in Fig. 10 show the effect of the poles and of
the zeros on the frequency response. In Fig. 10(a), the pole

produces a peak of the scaling-function spec-
trum near and makes it vanish with period-
icity . There is also a peak at the origin because of the pole
at . The zero makes the frequency response
vanish at . In contrast, the wavelet spectrum [Fig. 10(b)]
vanishes at , as a result of the vanishing exponen-
tial moment and of the linear-differential-operator properties of
E-spline wavelets.

VII. CONCLUSION

In this paper, we have introduced a new procedure for con-
structing wavelet-like bases from linear differential operators.
Similar to analog filters, the wavelet spaces are characterized
by the poles and zeros of the underlying operator. The wavelets
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come in three different flavors: basic (B-spline), dual, and or-
thonormal. We have studied the approximation-order proper-
ties of the multiresolution analysis. These wavelet bases pos-
sess powerful properties, including the ability to kill exponen-
tial polynomials, which generalizes the notion of the vanishing
moments found in the conventional wavelet theory. More im-
portantly, they essentially behave as multiscale versions of the
underlying operator. We recover the polynomial B-spline case
by choosing the parameter , where the corre-
sponding operator is the th derivative.

The constructed wavelets are not dilates of a single function
anymore; however, they still can be implemented using a non-
stationary version of Mallat’s fast filter bank algorithm.

The proposed framework should be of interest for signal pro-
cessing applications. It might be well suited to signals that are
not predominantly low pass but that have substantial energy con-
centrations in some frequency bands. In particular, it offers the
possibility of adapting the model for a given class of signals, by
selecting roots that fit the natural resonances of the data.

APPENDIX

A. Proof of Theorem 1

First, we outline some basic notations used in [13] to be
able to perform the estimations. The spectrum of the first-order
E-spline achieves its maximum at

. For the th-order case, we denote .
By referring to the general approximation results of Blu et al.

[26], we consider the limit

(13)

We denote and

.
To evaluate (13), we would like to exchange the and

signs. To be able to apply Lebesgue’s theorem, we must
first prove that is bounded
by a summable and integrable function that does not depend on

. As we are interested in small values of only, we assume
that

(14)

Then, for , we have that

We perform the partial fraction decomposition

From ([13], Appendix A), we know that

. Thus, taking into account (14), we get the
following estimation for :

We now bound from below. Using a technique similar to the
one in [13] for the lower Riesz-bound estimation, we obtain

Consequently, for we get the bound

which is summable over and integrable over under the as-
sumptions of the theorem.

We thus exchange the limit with the integration and summa-
tion and calculate

which yields the desired result
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