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On the Property P, of Locally Compact Groups

A. DERIGHETTIY)

Introduction

A locally compact group G (with a left Haar measure dx and modular function
4) is said to have property P if for every ¢>0 and every compact subset K of G
there exists seL' (G) with ||s||; =1 and sup, . {¢ |s(xy)—s(»)| dy<e. This suggests,
for a general locally compact group G, studying the minimum g, of all non-negative
real numbers 4 such that for every ¢>0 and every compact subset K of G there exists
s>0 with [ls|l; =1 and sup,.x [¢ Is(xy)—s(»)| dy<i+e.

We prove (theorem 6) that ¢, <1 implies property P, (in fact a stronger result is
obtained). In other words from g, #0 it follows ¢, = 1. An extension to the case of
L' (G/H), with H satisfying property P, is given in section 2 (theorem 7).

The regular representation of G weakly contains the one dimensional identity
representation iz of G if and only if G has property P,. This leads us to consider,
for an arbitrary unitary continuous representation n of G acting on a Hilbert space
S (1), the supgcg inf) g =1 SUPLk|(m(x) &, &)—1| denoted d(x).

We remark that = weakly contains ig if and only if d(n)=0. It is therefore pos-
sible to consider d(r) as the “distance” from i¢ to 7.

For a large class of n (including those obtained by inducing the identity from
closed subgroups) a stronger result is obtained (theorem 13): d(n)>1 if and only if
n does not weakly contain ig.

In the last part we prove a property similar to property P; but valid for arbitrary
G (corollary 16): For every ¢>0 and every compact subset K of G there exists se L' (G)
with 520, [ s(x) dx=1 and sup, g || s—s|z<e where |s3 is the norm of s as an
element of the full C*-algebra of G.

The author would like to thank Professor K. Chandrasekharan and Professor G.
W. Mackey for advice and many valuable discussions. Also many thanks are due to
Professor P. Eymard for his helpful suggestions.

The main results of this paper had been announced in the Notices of the Amer.
Math. Soc. 17 (1970), p. 822 and 17 (1970), p. 958.

1. Some Results on L' (G)

In what follows, G is a locally compact group with unit element e. We use the
following notations:

1) This work was supported by the Fonds National Suisse de la recherche scientifique.
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Z (resp.) X') is the set of all finite (resp. compact) subsets of G,
Py (x)=¢(axb) ¢eC®, a,beG;

FO)=1(x7Y), )= D Ae(x7Y),
A.f =A46(x)f, where feL'(G).

& is the convex hull of {4, I xeG}. A is the set of all means on L”(G). Let M be
an element of #, then we set a(M)=sup{|M(.$)— M ()| | x€G, l$],<1}.

Finally we define L* (G) to be the set of all feI! (G) which are non-negative and
have L'-norm equal to one.

PROPOSITION 1. If there exists a non-negative A such that, for every ¢>0 and
every FeZ, there is an se L" (G) with max, g ||s—,s|l; <A+¢, then the set {Me.# |
a(M)<A} is non empty.

Proof. 1t is possible to associate to every seL' (G) a linear functional L on
L*(G) by setting L(¢)=[¢ ¢ (x) s(x) dx. We have {L, |seL" (G)}<.#. For ¢>0
and FeZ, the set {L lseL+ (G), sup,cpll,_, s—slly<e+4} is denoted A .. By as-
sumption Ay ,#0. The inequality |L;(,¢)—Ly(d)|<loll II,., s—sl; (seL* (G), zeG
and ¢eL*(G)) implies that for every M in the o (L*’, L*)-closure By , of Ap , we
have max,er|M($)— M (#)| < ¢, (A +e) for every peL (G).

It is easy to verify that {4y , | Fe#, ¢>0} has the finite intersection property; a
fortiori so does {By , | Fe#, ¢>0}. Then from the ¢ (L*’, L*)-compactness of .# it
follows that (" {By , | Fe#, >0} is non empty. Let M be any element of this set
and x an arbitrary element of G. We have MeB, , for every ¢>0. This implies
M (,p)—M(d)|I<(A+¢) [|pll, for every ¢eL®(G). This inequality is satisfied for
every xeG therefore we have a(M)<A+¢, i.e. a(M)<A.

Remark. See ([9] p. 179 and [10]) for the case 1=0.
We observe that for Me.# and geL® (G) the map which associates to every
¢€L” (G) the number M (g**¢) is an element M, of A.

LEMMA 2. If Me .# and geL" (G), then

Proof. We can assume that both fand ¢ are different from 0. Choose an arbitrary
¢>0. It is possible to find he L™ (G) with ||h* fxg—f*g|; <n and

M 8) = [ 169 dx M ()] <) nqsuw(ufnl n ] [ 1@ ax

g &
lh*g — <n where =min( ’ )
g—gli<n 1 3l 316l
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This clearly implies

lMg(F"*rlJ)—M((h*f*g)**rb)!<§' (1)

and

[ [ 76 ax

If we take into account the fact that the mapping x>, (h** @) of G into C*(G) is
continuous, we see that we can find a finite subset {x;}7_, of G and disjoint Borel
subsets {4;}j-, of G such that | Jj_, 4;=G and

IMhtg(¢) - Mg (¢)| < (2)

Wl m

€
<_
o 3

Fresieo - 3 a, (0749

where a;=[,, (f*g)*(x) dx. We therefore have

’th(h**ﬁb)—(ff*g(x) dx) M,.(¢)] <5 +a(nIf 1 18] &)
G
In the same way we get
U f(x) dx M., (¢) — ff*g(x) dx Mh(¢), < a(M) ol ff(x) dx|. @)
G G - G
From (1), (2), (3) and (4) it finally follows
Mg(f**gb) - ff(x) dx Mg(qS)] <a(M)|d]e (ff(x) dx| + Ilflll) +e.
G G

For feL' (G) we denote by d(f) the infimum of {||4f |, | AesA}.

PROPOSITION 3. For arbitrary feL' (G) and M in # the following inequality
holds:

(1 —a(M))d(f) < (1 +a(M))

[ 16 as

Proof. We can assume d(f)>0. In this case there exists ¢peL”(G) such that
Re (g Af (x) ¢ (x) dx=1 for every Aes/ and |§ll o= 1/d(f)-
From (;17)* *@(2)=[¢ A.- 1A (¥) ¢ () dy it follows that 1<ReM, ((Af)**)
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for arbitrary geL* (G) and every Ae <. By lemma 2 we therefore have

1<[£f(x)dx )

M, @)+ 2 00) 181 (1471 + [ 1)
G
for every Ae s, i.e.

d(f) < f £(x) dx

+a(M)d(f) + (M) Uf(x) dx

LEMMA 4. If for { f,})L = ' (G) we have

ff,,(x)dx=0, 1<sn<M,
G

then

it max 14,1, <00 {a@)| [ £ dx = 0, el < max 1A}

Aed 1snsM p 1sns<M

Proof. We denote by L,, the right hand side of the above inequality. For M =1
there is nothing to prove. Assume that for arbitrary ¢>0 there exists A'e&/ with
max; <psm—1 |4 fulli <€+Lay—1. We can find 4”e/ such that || 4" Afyll; <d(A4A'fr)
+e. [ A'fyr dx=0 and | A'fpsll; < || fulli S Ly imply | A"A’fpgll; <&+ Loy

For 1<n<M—1 we have |A"Af, |l <|Af,|li <e+Ly_,<e+Ly. To conclude
the proof of the lemma it is enough to take A=A"A4".

PROPOSITION 5. Let G be an arbitrary locally compact group. For every fe L' (G)
and every Ke X~ we have

inf sup I, (4f) — 47, < 2 sup {d(g> | [ e dx=0. 161, < uful}.
G

Aed xekK

Proof. Let ¢ be an arbitrary positive real number. We can find U an open neigh-
borhood of e such that ye U implies |, f—f [l; <&/2. On the other hand we can choose
a finite set {a,}o., = K with |-, Ua,> K. By lemma 4 there exists A€ .« such that

max |4,/ — f)l <e/2

1<n<M

+ sup {d @ [ 8 dx=0,lgh < max [/~ ful}
G

<¢/2 + sup {d(g)l fg(x) dx=0, gl <2 "f”l}'
G
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Therefore we obtain

sup 1, (47) = Afly <o+ 2sup {d(g)l ol <11, [ 89 dx=o}.
G

Remarks.

1) The idea of this proof comes from [9] p. 176-177. However our formulation is
more general.

2) It follows from prop. 5 that if G is a locally compact group such that feL' (G)
with [ f (x) dx=0 implies d( /)=0, then G has property P;. In fact, only functions
fwith [ f(x) dx=0 are used in the proof given in [9] p. 176-177.

THEOREM 6. If there exists A with 0<A<1, such that for every ¢>0 and every
Fe% one can find se L* (G) with max, g || ,s—s|; <A-+e, then G has property P;.

Proof. By proposition 1 there exists Me.# with o (M )<A; from proposition 3 it
follows that for every fe L' (G) (1—4) d(f)<(1+A) ¢ f (x) dx|. Finally proposition
5 and the assumption 0<A<1 imply that G has property P;.

Remarks.
1) In fact we have proved a stronger result. Namely, for every fe L' (G) and for every

KEI, ianed SupxeK”x(Af)_Af ”1 =0.
2) Let o7 be the least non-negative real number A such that for every >0 and every

FeZ there exists an se L' (G) with max,p || ,s—s|; <A+e. Replacing & by o we
define g, in the same way. By prop. 1, 3 and 5 we have

sup {d(g) l fg(x) dx =0, |igl, < 1} <eof <oy
G

<2sp{d@)| [ £ a0 el <1}.

Theorem 6 is equivalent to the following assertion: ¢ <1 implies g, =0.

2. Extension to the Case of L' (G/H)

Let H be a closed subgroup of G with a left Haar measure d¢, the modular function
4y and let g be a strictly positive continuous solution of the functional equation
g(x&)=q(x) 45(&) 46(¢)~! for xeG and &€ H; dx is the corresponding quasi-invari-
ant measure on G/H. We set x (y, X)=¢(yx) q(x)~! where x, ye Gand X =xH=my(x).
Define a map of L' (G) onto L' (G/H) by

o [0

and denote by L+ (G/H) the set {seL' (G/H) | |Isl, =1, s>0}.
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THEOREM 7. If H has property P, and if there exists 0<A<1 such that, for
every e>0 and FeF there is some se L* (G/H) with max, . [¢;q lx (y™*, %) s(y™1%)—
—5(%)| dX<e+A, then G has property P;.

Proof. 1t is enough to prove that the assumptions of theorem 6 are satisfied.
Choose Fe# and ¢>0 arbitrarily. Clearly there is some s'eL* (G/H) which is con-
tinuous, has compact support, and satisfies

f|X(y—1,5C)S'(y'1,5€)—s’(fc)[ dx <A+¢/2 forevery yeF.
G/H

Let § be a Bruhat function for the closed subgroup H. Then by the definition of g,
fi=s'ngPq is continuous and has compact support on G, and (¢ f; (x) dx=1. We
verify that

supp (,-1f1 — f1) = (F supp f;) U suppf; forevery yeF.

Then if we use a slight modification of the argument given in [9] p. 116, taking into
account the definition of dx, we can conclude that there exists an s,eL* (H), con-
tinuous and with compact support on H, such that

J

G

f(y-xfl — ) EY) A6 (E) 52 (€) dé| dx

< | Ty (,-1/1 = f1)ll1 +¢&/2 forevery yeF.
Defining

s(x)=ff1 (xE™Y) 46 (€7 Y) 51 (&) dE,

we have §>0 and

f s (x) dx = f ( f fi (xc-l)dx) A6(E7Y) s, (&)

=ff1(x) dxfsl(g)d¢=1, ie. seL*(G).
G H
Observe that

TH(y“‘fl) =X (y—l’ ')y‘1 (THf)'
Therefore we have

15070 —s@ldx < [ G705 070 = 5 @1 dé +of2

G, G/H
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for every yeF i.e.

max |[,-1s — sfl; <A +e.
yeF

Remarks.

1) This proof is a modification of the one for the case where H is normal and where
P, holds for G/H and H ([9] p. 169).

2) For A=0 a different proof of theorem 7 has already been obtained ([3]).
Asabove, define # (G/H ) as the set of all means on L® (G/H ); and for Me #(G/H),

set
(M) =sup{IM () — M ()| | ¢, <1, xeG}.

It is also possible ([3]) to formulate a version of property P,, for G/H:

G/H s said to have property Py, if forevery K €4 and ¢ >0thereissome se L (G/H)
with

sup [lx (x™%, *)er 5 — slly <e.

xeK

PROPOSITION 8. Let A=0. If for every ¢>0 and every FeZ there exists some
seL* (G/H) with

max |x(x™!, )-:s—s]; <A+e,

xeF
then the set {Me.# (G/H) | a(M)< 1} is non-empty.

The proof is exactly the same as for proposition 1.

L' (G) acts on L* (G/H) in the following way: if fe ' (G) and ¢ L” (G/H), then
the function i [ f(x) ¢ (xi) dx is an element f**xpel®(G/H) (see [7] and [8]).
For arbitrary ge L*(G) and M e #(G/H ) the map which associates to every ¢ € L°(G/H)
the number M (g**¢) is an element M, of .# (G/H ). Similarly to lemma 2 one can
prove that for Me.# (G/H), feL' (G), ¢eL* (G/H) and geL"* (G) the inequality

[ 16 ax+ 17ur1)

My 7 8) = ([ 169 ) 1,8) <xCan) 1.

holds, provided that H is compact and ,g=g for every he H 2). We were not able to
drop the assumption on the compactness of H. In the case «(M)=0, but for an
arbitrary closed subgroup H and arbitrary geL" (G), the preceding result is due to
F. P. Greenleaf ([7] p. 303-304).

2) The compactness of H is used only to assert the existence of such a g.
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PROPOSITION 9. For every Me # (G/H) and every finite subset {f,..., f,} of
L' (G) we have
(@) if a(M)=0 then

’

inf max ||TgAf;ll; = max
Adesd 1<j<p 1<j<p

f fi(x) dx

(b) if H is compact then
(1 —a(M)) inf max ||Tz4 ;ll; < (1 + «(M)) max

Aed 1<j<p 1<j<p

.

ffj(x) dx

Proof. We denote by E the cartesian product of p copies of L' (G/H) and define
on E a norm topology as follows: ||v| =max,; <<, [lv;ll; where v=(v,,..., v,). We can
assume that d=inf, . , max, ¢;<, | TgAf;l is positive. Then we can find a continuous
linear functional ¢ on E such that Re¢ ((TyAfy, ..., TyAf,))=1 for every Ae &/ and
I¢ll=1/d. Clearly @] =) 71 ll$;ll, where ¢=(¢y,..., ¢,) and ¢;eL*(G/H). For
ze G and every A€ </ we have

& (Tyds-iAf 1y . Tad, 1 Af))) = ;,,1 @) +3,(2).

In case (a) we choose an arbitrary geL* (G). We have
M@+ ) = ([ 1,0 dx) M, @)
G
for every Ae o/ and 1<j<p. We therefore obtain

ff,-(x)dx ff,-(x)dx 1/d.

14
1<y 161l < max
j=1 J
This inequality implies (a).
It remains to prove case (b). We can find geL" (G) such that ,g=g for every
he H. This implies (see above comment)

1<

< [|¢]l max
i

ffj(x)dx

|

[ 1y ax

+ a (M) ||9] {mgx | T Af;ll1 + max ffj (x) dx
J J G

for each Ae /. We therefore have

ffj(x) dx

+ a (M) (d+ max
j

).

d < max
j
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Remarks.

1) For a(M)=0 and f¢ f; dx=0 (1<j<p) prop. 9 is due to P. Eymard ([3] p. 8-9).
Using it, he proves an analogue of theorem 6 for G/H in the case A=0. Except
for H compact, which is then a special case of theorem 7, we were not able to
obtain a complete analogue of theorem 6 for G/H.

2) If H has property P, we have (by [9] p. 174) inf,. o || TyAf ||, =d(f) for every
feL'(G).

3. Other Generalizations and Applications to the Study of P(G)

Let = be an arbitrary unitary continuous representation acting on the Hilbert
space o (n). Directly related to d(n) (defined in the introduction) is

e(n)=sup inf sup z(x)&—¢|.

KeX |[¢]l=1xeK
We have in fact 4o(n)*<d(n)<g(r). If we replace " by F we define ¢*(n) and
d*(m), which satisfy the same types of inequalities.

Let A(n) be the set of all continuous positive definite functions associated to =
and ) A(r) the set of all finite sums of elements of 4 (n). We recall ([4] p. 371) that
n weakly contains =’ if and only if A (') lies in the compact-open closure of ) A ().
The following proposition is just slightly different from theorem 1.5 ([4] p. 374) and
lemma 2.2. ([S] p. 246). Nevertheless, we indicate a direct proof avoiding Banach-
algebra techniques.

PROPOSITION 10. © weakly contains an irreducible representation n’ if and only
if A(n') is in the compact-open closure of A(x).

Proof. Let p be an arbitrary element of 4(n"). We have to show that if p lies in
the compact-open closure of ) 4 () then p is already contained in the compact-open
closure of 4(n). It is easy to verify that p/p(e) is in the compact-open closure of
{9/a(e) | g€ A(x), q(e)>0} and that {g/q(e) | g€Y. A (), g(e)>0} is contained in
Py 0 ) A(m), where P, denotes the set {ueP(G) | u(e)=1}. The relation P, N Y. A(rn)
cco (P, N A(n)) implies that p (e)~'p is in the compact-open closure of co (P, N A(r)).
A fortiori p(e)~'p lies in the o (P(G), L' (G))-closed convex hull co(P, n A(r)) of
P, n A(rn). The o (P(G), L' (G))-compactness of co (P, N A(n)) and the irreducibility
of n’ imply ([2] p. 440) that p(e)™'p (an extremal point of co(P, N 4(r))) is in the
o (P(G), L' (G))-closure of P, n A(x). By D. A. Raikov ([1] p. 260) for every Ke X
and &>0 there exists an #>0 and a finite set { f;}}-; L' (G) such that ueP, and
f.fi(x) (&) 'p(x)—u(x)) dx|<n (1<j<n) imply sup,.x|p(e)™"'p(x)—u(x)I<
<p(e)~! e. If we choose ge P, N A (=) such that

f/f,-(x)(p(erlp(x)—q(x))dx <n 1<i<n,
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we finally get
sup [p(x) — ¢’ (x)| <¢ where g'=p(e)ged(n).

xekK

COROLLARY 11. 4 continuous unitary representation © of G weakly contains the
one-dimensional identity representation i of G if and only if d(n)=0.

PROPOSITION 12. Let n be an unitary continuous representation of G such that
d(n)<1. Then for every feL' (G) we have
| 7y ax
G

f)
4

< lw (O + (DI

Proof. a) For every feCyo(G) (set of all complex-valued continuous functions
with compact support) with f>0 we have (1—d(n)) [¢ f (x) dx<|= ()]
We can assume | f (x) dx>0. For every ¢€(0, (1 —d(n)) [ f (x) dx) we can find
¢esf (n) such that ||€]|=1 and
sup [(n(x) & &) — 1] < d(n) + : .
xesupp S 1+ ff(x) dx

This implies clearly that ’
Iff(x)(n(x)s, £) dx -—ff dx <s+d(7r)ff(x)dx.
[a@eor@ i = ianea<i=@

it follows that

(1> (1= d () [ 16 dx =

for every ee(0, (1—d(rn)) [¢ f (x) dx). This proves a).

b) For every fe Coo(G) with >0 we have [z (f) =g f dx. Let us assume that
there exists f,eCyo(G) such that f,>0 and |n(fo)#[¢ /o dx. We clearly have
17 (fo)ll <fg fo dx and therefore (by a)) [ (fo)ll >0. Consider f; = Im(fo)ll =1 fo. For
arbitrary neN we have [¢ £ dx=(f¢ £,)" and [z (f")I<1 where f{”=fi %+ f;
(n-times). Assertion a) implies that (1—d(n)) (J¢ fi dx)"<1 for every neN. But on
the other hand this inequality is not satisfied for n> —Jog(1 —d(n))/log _[G fi dx.
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¢) From b) it follows that for every real-valued feCy(G) we have |[g f dx|<
< |l (f)Il. Letfbe an arbitrary function in Cyo (G). Wecan write [ f dx=|[¢ f dx|e®.
It follows that

ifdx

- f Re(e™"f) dx < |m(Re e™™f)].
G

Finally

7 (Re e™®f)] = ” (——iiif)H
implies

2 f £ dx| < (Nl + 1= (D).

By continuity this inequality extends to L' (G).

THEOREM 13. Assume that G acts continuously on a locally compact space X
and that X admits a quasi-invariant Radon measure u with modular function x- Let
be the representation of G in I* (X, p) defined by n(x) p=x(x"%, )/? ¢. If d(n) <1,
then © weakly contains ig.

Proof. By definition of =, |z (f)| == (f)| for every feL! (G). Then by prop. 12
we have |[¢ f dx|< |z (f)].

This inequality permits us to finish the proof (by [11] theoreme 1).

Remark. An important exemple of a representation of the above kind is the
unitary representation U™ induced on G by the one dimensional identity representa-

tion iy of an arbitrary closed subgroup H of G.
Let n be a representation of G of the type described in theorem 13. It makes sense

to define

-1

0, (m) = sup inf sup flx(x™7, *)x-1 85— sl

KeX seLi(X,p), s20 xeK
and o7 (n). It is straightforward to verify that
e(m)* <y (7) < 4o (n)
¢* (n)* < of (7) < 4™ ().

Taking into account these inequalities, theorem 6, corollary 11 and theorem 13,
we can deduce the following:

COROLLARY 14. Let & be an unitary representation of G obtained as in theorem
13. Then the following statements are equivalent:
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(i) = does not weakly contain i,
(i) d(n)=1
(iii) o(n)=>1
(iv) ¢s(m)>1 ,
Moreover for n=U €} the preceding assertions are equivalent to:
(v) 0i(n)>1
(vi) d*(n)=+5.

Remark. H. Leptin introduced (see Bull. Amer. Math. Soc. 72 (1966), p. 870 and
Proc. Math. Soc. 19 (1968), p. 489) the following invariant:

KU
I(G) = sup inf {m_(—) |Uedt’, m(U) > 0}.
Kex m (U)
He proved that

{1 if G has property P, ,
1(6)= {+oo if not.

We were not able to relate directly I(G) with g, ¢F, d(U'®) and d*(U'"?).
4. On the C*-Algebra of G

Let B(G) be the complex linear span of P(G). The supremum norm closure of the
convex hull of the left (or right) translates of an arbitrary ue B(G) contains a unique
constant function, denoted M (u). M defines ([6] p. 59-61) a linear functional on
B(G) satisfying the following conditions: (i) M (;u,)=M (x), (i) M (&)=M (u) and
(i) | M ()] < [[ull -

PROPOSITION 15. For every finite subset { f,, ..., f.} of L' (G) we have

®

inf max |Af;]|y = max
Aed 1<j<n 1<j<n

[ £ a5

Proof. We first remark that for £, ge L' (G) and ue B(G) we have

< flull £z gls

Uf*u(x)g(x)dx

=Uu(x)f**g(x)dx

where |u|| denotes the norm of u as element ot the dual of the C*-algebra of G. We
therefore have f*ue B(G). From the uniform continuity of u it follows that for every
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¢>0 we can find disjoint Borel subsets {4;}7-; of G and {x;}7- | =G such that

fou— Z cmu
JI=

< ¢ where cj=ff(x)dx.

Using (i) and (iii) we obtain

M(f*u)——ffdxM(u)

<s, ie. M(f*u)=ffdxM(u).

For every Ae &/ and feL' (G) we have

=|£Afdx<

This implies that the Lh.s. in (*) is not smaller than the r.h.s. To prove the last part
of the theorem we can proceed as in prop. 9. Let d be the 1.h.s. We can assume d>0.
Then there exists a continuous linear functional ¢ on the product of n copies of B(G)
such that ||¢]|=1/d and Re¢d (Af)=1 for every AesZ/ (where Af=(Afi,..., Af,))-
Clearly ||¢[|=)7-1 llu;| where ¢=(u,,..., u,) and u;€ B(G). From

f f dx 1A I

6 (414) = 3 (AT) 1y ()

it follows that

1< 3 M@ )l = X |[ £,0) dx 1M )
i.e.
1< Max ff,(x)dx

COROLLARY 16. For every feL'(G) and every Ke X~ we have
inf, ¢ SUp,ex < (Af )= Af l=0.
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