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Abstract. For a large class of functions f, we consider the nonlinear elliptic eigenvalue
problem

—Au(z) + flz,u(z)) = du(z) for z € RY,
lim w(z) =0, u#0.

We describe the behaviour of the branch of solutions emanating from an eigenvalue of
odd multiplicity below the essential spectrum of the linearized problem. A sharper result
is obtained in the case of the lowest eigenvalue. The discussion is based on the degree
theory for C? proper Fredholm maps developed by P.M Fitzpatrick, J. Pejsachowicz and
P.J. Rabier.

1 Introduction

We consider a nonlinear elliptic eigenvalue problem of the form

—Au(z) + f(z,u(z)) = Mu(z) for z € RN
lim (u();v) :(O, u(;t‘)%) o (1.1)

|z|—co

where f:IRY x IR — IR is a mapping satisfying

(HL) f(-,0) =0,
(H2) the function f satisfies the conditions of Caratheodory,

(H3) f(z,-) € C*(IR) for almost all z € IRV,
for all compact K C IR, the functions {02,f(z,-): K — IR | z € IRN} are equicon-
tinuous and 02,f is bounded on IRY x K,
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(H4) 8,f(-,0) is bounded on IRY. We set a := liminf d,f(z,0).

|z|—c0

For each C' > 0, we introduce the following real number,

i i (L029)
) = Jim inf {2}
|s|<C

We set
6 = inf 5(0)7

>0
and we make the following hypothesis

(H5) 8> —oc.

Remarks.

1. When we consider the mapping (z,s) — , we have always in mind the fol-

f(z,s)
s
lowing one
fes) if s #£0
(2,8)— { 02 f(z,0) if s =0.

2. We have 3 < a.

3. In Section 3, the condition (H3) is used to ensure that the Nemitsky operator N :
X — Y associated with f is of class C'? betweeen appropriate function spaces X and
Y. This means that we can use the degree theory for proper C? Fredholm maps (see
[10]). However the authors of [10] have kindly informed us that they can now define
a similar degree for proper C'! Fredholm maps. Anticipating that such a degree will
soon be available, we observe that it will then be possible to replace (H3) by

(H3)" f(z,-) € CY(IR) for almost all z € IR™, and
for every compact K C IR, the functions {d,f(z,-): K — IR | z € IRV} are
equicontinuous.

In fact, using the notation and arguments of Section 3, the hypotheses (H1),(H2),(H3)’
and (H4) are sufficient to ensure the following properties. For every compact K C IR,

(i) O.f is bounded on IRY x K,

(ii) there exists a constant C' = C'(K) such that for all (z,s;), (z,s;) € IRY x K, we
have |f(z,s1) — f(z,s2)| < Cls1 — s3].

For every u € X,



(iii) there exists a constant C' = C'(u) such that

f(u(@)] < Clu(@)]  aconzeRY

(iv) |1im {02f(z,u(x)) — 0o f(x,0)} = 0.

z| =00

Furthermore, N € C'(X,Y).

Then, using a degree for proper C'' Fredholm maps, Theorems 1.1 and 5.1 remain true

with (H3) replaced by (H3)".

Example.
Consider a mapping f of the kind

F(w,5) = (p(a) + qla)r(s))s
with the following properties.
1. p,q: IRY — IR are mesurable and r : IR — IR is continuous.
2. 7(0) = 0, r(s)s is C%(IR) and r > 0.
3. p,q € L=(IRY).

Set o = lim inf p(z).
|z| =00
It is easy to check that under the conditions (1) to (3), the mapping f satisfies all the
hypotheses (H1) to (H4).
Furthermore, if liminfg(z) > 0 then o = 8 and (H5) is satisfied.

|z|—c0

However if —oo < liminfg(z) < 0, then

|z|—co

B>a+ (lim infq(x)) (sup r(s))

|z| =00 selR

and in this case, (H5) is satisfied if sup r(s) < oo.
selR

For m € IN and p > 1, we adopt the standard notation [3] for the Sobolev space
Wrmr(IRN). Fixing a value p € (N/2,00) N (1,00) we set X := W2P(IRY), and we
recall that the condition |1|i£>n u(z) = 0 is satisfied for all u € X.

We are interested in pairs (A, u) € IRx W??(IR") which are solutions for the problem (1.1).
Our purpose is to show the existence of global branches of solutions of (1.1) bifurcating
from a trivial solution (Ag,0) in IR x X.



This kind of problem has been investigated under various assumptions on f in [2], [19]
and [7]. For example in [7] it is shown (under appropriate conditions on f) that the
branch of positive solutions covers the interval (A, a) where A is the lowest eigenvalue of
the linearization.

The difficulty is that the Laplacian operator does not have a compact inverse on IR". On
a bounded domain, an application of the Global Bifurcation Theorem of Rabinowitz [16]
would give us the existence of branches of solutions of problem (1.1). But on unbounded
domains, this theorem cannot be used because it is based on Leray-Schauder degree theory
for compact operators.

In [2] this difficulty is overcome by approximating (1.1) with Dirichlet boundary value
problems on balls, and then by showing that branches of the approximate problems con-
verge to a branch of positive solutions of (1.1).

In this paper, we establish the existence of global branches of solutions (positive or not)
directly on IRV,

More precisely, let
Z:={(Mu) € (—o0,8) x X | (A u)is a solution to (1.1) }.

Consider on ZU{(Xg,0)} the topology inherited from IR x X and let C,, be the connected
component of Z U {(Ag,0)} containing (Ao, 0).

Moreover consider the linear Schrodinger operator in LQ(IRN) defined by

Su:=—Au+0yf(-,0)u  for ue D(S):= WHIRM). (1.2)
Using these notations, we prove in Section 5, the following theorem

Theorem 1.1 Suppose that the hypotheses (H1) to (H5) hold, and there exists Ao < [3
such that dim Ker(S — X\g) is odd.

Then Cy, has at least one of the following properties.
1. Cy, ts unbounded,
2. the closure of Cy, contains a point of the form (X*,0) with \* # Ao,

3. sup A=[.

(A,’U,)ECXO

The article is organized as follows.

In Section 2, we recall some notions about the degree theory of proper C? Fredholm
mappings and we state using this degree a quite general version of the Rabinowitz Global
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Bifurcation Theorem for C'? proper Fredholm mappings proved by Fitzpatrick, Pejsachow-
icz and Rabier in [10].

In Section 3, we develop a functional framework, which will permit us to use this bifur-
cation theorem in order to handle problem (1.1). Using the hypotheses (H1) to (H3), we
find a C? mapping F' : IR x X — Lp(IRN), whose zeros are solutions of the problem
(1.1) and such that

DQF(/\,U)('U) = —Av + {a2f(7 u) - )‘}U

We show that the hypothesis (H5) implies that F' is boundedly proper for A < 3 in a
sense made precise below.

In Section 4, we check that the choice of p in the definition of the space X does not affect
the spectrum of the linearization. Furthermore, we show that there exists A\¢ satisfying
the hypotheses of Theorem 1.1 if and only if A < 3 where

A=inf{ [ V0P +0.f(, 000 [ v € CRRY), [ 0P =1}, (13)

More precisely, using (H4) we conclude that if A < «, then A is an isolated eigenvalue
of multiplicity one of the Schrédinger operator S defined by (1.2) and, since # < a, the
condition A <  implies that A < a. We conclude the discussion of this section by
proving, using (H4), that D, F{, ) is a linear Fredholm operator with index 0 for every
A <o

Finally in Section 5, we complete the proof of Theorem 1.1 and give a more precise
result, Theorem 5.1, for the branch C, in which we show that the second property given
in Theorem 1.1 cannot occur for this component because u has no zeros when (A, u) €

Ca\ {(A,0)5

The more detailed study of Cy is pursued in [14] under more restrictive hypotheses which

enable us to find a lower bound b € (A, ] for sup A. This is done by constructing su-
(/\,TL)ECA
persolutions which imply that if sup A < bthen C, is bounded in IR x X, contradicting
(A,U)ECA
Theorem 5.1.

2 Degree of Fredholm mappings

In this section, we outline the construction of the degree of proper C'? Fredholm mappings,
and then we state the general bifurcation theorem used to prove our result.

Let X and Y be real Banach spaces. Denote by L(X,Y) the Banach space of bounded
linear operators from X to Y with the usual norm. An operator in L(X,Y) is called
Fredholm with index 0 if its kernel has finite dimension and its image is closed with the
same finite codimension in Y. We denote by ¢o(X,Y') the subset of L(X,Y') consisting of
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those operators which are Fredholm with index 0 and by GL(X,Y') the subset of ¢o(X,Y)
consisting of the invertible operators.

If T"e GL(X) is a compact pertubation of the identity, we let degr, s(7T') be the Leray-
Schauder degree of T': U — X with respect to 0, where U is any neighborhood of the
origin.

For an interval I = [a,b] and a continuous path a : [ — ¢o(X,Y’) we call a continuous
path 3 : I — GL(Y, X) a parametrix for a if each S(A)a()) is a compact perturbation
of the identity. Parametrices always exist [9]. If the ends of the path, a(a) and «a(b) are
invertible, then the parity of o in I, o(e, I) defined by

o(a, ) = degr.s(B(a)a(a)) degr.s(B(b)a(b))

is independent of the choice of parametrix [9)].

Note that Leray-Schauder degree is used there only with linear compact perturbations
of the identity, and hence o(a, 1) € {—1,1}. The parity is an intersection index which,
generically, is a mod 2 count of the number of intersections of (/) with the set of singular
operators. It is an additive, homotopy invariant of paths in ¢o(X,Y) with invertible
endpoints. Moreover the parity is 1 if and only if the path is homotopic to a path of
invertible operators.

With this in mind, we can describe briefly the construction of the degree.

Let O be an open, simply connected subset of X and F' : O — Y be a C? Fredholm
mapping with index 0 (i.e. such that DF,) € ¢o(X,Y) for € O). A base point for the
degree of F'is any point zg € O at which DF{,,) is invertible.

Assume that there exists a base point p for F. Let © be a bounded open set with @ C O
and such that F' can be extended by continuity as a proper mapping to the closure Q of
Q); i.e. such that the preimage F'~*(K) N Q of every compact set K in Y is also compact.
Then, if y ¢ F(09) and if DF,) is invertible for all € F~'(y) N the degree of F on ()
with respect to y and relative to p is defined by

dp(F,Q,y) = Z op(),

zeF—1(y)nQ

where o,(2) = o(DFov,[0,1]) is the parity of the derivative DF along any curve v :
[0,1] — O joining p to x. That o,(x) does not depend on the choice of ¥ follows imme-
diately from the homotopy invariance of the parity and the simple connectedness of O.
Using the general Sard-Smale theorem [15], the definition of degree is extended by reg-
ular value approximation to the case when DF{;) is not necessarily invertible for all
ze Fl(y)nQ.

This base point degree satisfies the usual additivity, excision, and normalization proper-
ties. Its most important property is the homotopy property [10].

Definition 2.1 Let X,Y be Banach spaces and I an open interval of IR. We say that
a mapping ' 1 [ x X — Y s "boundedly proper” if the restriction of F' to any closed



bounded subset of [a,b] x X is proper for all a,b such that inf I < a <b <supl.
(i.e for every compact subset K of Y and for every closed bounded subset B of [a,b] x X,
F~YK)N B is compact.)

Definition 2.2 Let X, Y be Banach spaces and I an open interval of IR. We say that
a mapping F : I x X — Y is "Fredholm with index 07 if DyF(y ) exists and DaF(y ) €
do(X,Y) for all (\u) € I x X.

Now we can recall the global bifurcation theorem for Fredholm mappings [10]. Let p; :
IR x X — IR denote the projection p; (A, u) = A for (A, u) € IR x X.

Theorem 2.1 Let X, Y be real Banach spaces, I C IR be an open interval and
F:IxX =Y beaC? mapping with F(X,0) =0 for all X € IR.

Suppose that F s boundedly proper and Fredholm with indez 0.

Moreover assume that there exist \g € I and € > 0 such that 0 < |A — Ag| < € implies

ANeI, DyFp € GLIX,Y) and J(DQF(M)), Ao — €, Xo + 6]) — 1.

Let Z = {(\u) € I x X | F(\u) =0 and u # 0}, and denote by C,, the connected
component of Z U {(Xo,0)} containing (A,0). Then Cy, has at least one of the following
properties.

1. Cy, is unbounded,
2. the closure Cy, contains a point of the form (X*,0) with A" € I\ [Ao — €, Ao + €],

3. the closure of pi(C,,) intersects the boundary of I.

3 A Functional Framework

The aim of this section is to find a mapping F': IR x X — Y whose zeros are solutions of
the problem (1.1) and which satisfies the hypotheses of Theorem 2.1.

To do this we choose p € (%, o0) N (1,00), and we set
X =W?**(IRY) and Y = LP(IRY) (3.4)

with the following usual norms,

1 1

lo={ [ r} wmd pule={ ¥ porr )

0<|ul<2

where p is a multi-index.

We recall the following properties of the space X (see [3]).
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1. X — C(IRY), continuously.

Moreover, the injection W2?(Bgr) — C(Bg) is completely continuous for every ball
Br={z e RY | |z| < R}.

2. X — LI(IRY), continuously, for every p < ¢ < oc.

3. lim wu(xz) =0, for all v € X.

Consider the following mapping
F: RxX —Y (3.5)
(Au) — =Au+ f(-,u) — Au.

Here IR x X is considered with the norm
(A w) = A+ [ lx
The first results show that /' : IR x X — Y is a well-defined C? mapping.
Lemma 3.1 Let f be a mapping which satisfies the hypotheses (H1) to (H4) and let K

be a compact subset of IR. Then,
1. 0,f is bounded on RN x K.

2. There exists a constant C = C(K) such that for all (z,s1),(z,s;) € IRY x K we
have

|f($,$1) - f('raSQ)
102 f(x,51) — 02 f (,52)]

C|31_32|7

<
S C|81—82|.

3. Let uw € X. There exists a constant C = C(u) such that
|f(z,u(z))] < Clu(z)]  a.e on IRY.

Proof

1. For all (z,s) € IR x K, we have
Lrd
025 (e,5)| < 10uf(@,0) |+ [ | S{our et} | at

< 10uf(0,0)] + Is| [ 1022f(,ts) | dt

The conclusion is then a consequence of (H3) and (H4).



2. For all 51,52 € K we have,

[ S (st 1o — ) Y |

1

|81 — 82|/ agf(l’,SQ + t(Sl — 82)) ‘dt
0

C|81 —82|.

|f($731) _f($732)|

IN

IN

In the same way we prove that

|02 f(2,51) — Oaf(@,52) | < Clsy — sa].

3. Use the injection X — L>°(IRY), the previous assertion of this lemma and (H1).

To study the differentiability of the mapping F', we consider the nonlinear Nemitsky
operator

N: X —Y
u — f(-,u).
Theorem 3.1 Let f be a mapping satisfying (H1) to (H4), we have
1. N s well defined.
2. N is C? and foru € X,

DNw(§) = 0f(,u)€ VEEX,
DQN(“)(&’&) = Onf(hu)éiée V&, 6L e X

3. The mapping F' (see 3.5) is well defined, C* and
DQF(A,u) =—-A+ <a2f('7u) - )‘)-

Proof.

1. The fact that the Nemitsky operator N is well defined is a consequence of (H2), of
Thm. 18.3, pp.152 in [20] ( which assures that N(u) is measurable for every u € X))

and of Lemma 3.1.



2. Let u € X. For every £ € X, we have

N

| N+ = M) = 9uf ()l < || [ {0ufCout 1)~ dupow) feae ||
< sup sup {|0f(u+16) = Daf(u) | FIIE |,

zeIRY t€[0,1]

sup sup {|0af(-,u+16) = A f(u) |} I € Ilx -

zelRN telo,1]

IN

Thus, it follows from the second assertion of Lemma 3.1 that

[ N(u+&) = N(u) = 0af(w)

l|€][x—0 | € |lx

=0.
Moreover, by the first assertion of Lemma 3.1, we have that the following linear
operator is well defined and bounded,
X — Y
Hence N is Fréchet-differentiable.

Let u € X. For every &;,& € X, we have

| DNutes)(61) = DNy (&) — G2 f (5 u) &1 &2 |l
/ { O f(- u+ téy) — O f (-, } & & dt H
< sup sup {|@22f u+t€) — O f (-, |} [RSTSH

zeRY t€[0,1]

<

< sup sup { [0S utt€) —Onf(ou)| } Ol & lIx ]l & llx -

zeRY t€[0,1]

Using now the hypothesis (H3), we see that DN is Fréchet-differentiable.

With analogous arguments, we prove that D?N is continuous.

3. Using the previous assertion of this theorem and the fact that the mapping
RxX—Y (A u) — —Au— Au

is C°, we conclude that F'is C2.

The end of this section is devoted to show that the mapping F' defined by (3.5) is bound-
edly proper for A < 3. This will derive principally from the following result.
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Theorem 3.2 Let f be a mapping satisfying the hypotheses (H2) and (H5). Let E be a
subset of IR x X such that

1. There exist C > 0 and k < 8 such that for all (M u) € E,

|ullo< C  and X<k <p.
2. There exists © € Y such that for all (\,u) € F,
| — Au+ f(-,u) — Au| < @.
Then, there exist positive constants a and D such that for all (A, u) € E,

lu(z)| < De =l ¢ (=A+ a2)_1(ﬁ))($) vz e IRV,

Proof.
Choose a > 0 such that
1
0<a®< §(ﬂ — k). (3.6)

From the hypothesis (H5), there exists R > 0 such that

H@8) S g2 vee -0, v]e|> R

S

With these constants C, a, R, we define the following functions

U, = Ceallel-R)
\IIQ = (—A—|—a2)_1’ib.

We derive the following properties.
1. By calculation we see that —AW; + a?¥; >0 on IR™ \ {0}.
2. As (=A+a?): X — Y is an isomorphism for all p € (1,00), we have ¥, € X and

so lim Wy(z) = 0. Moreover, since (—A + a?)¥y = @& > 0, the maximum principle

| lelzeo
implies that
v, > 0.

3. For every z € IR with |z| < R, we have

u(z) — Uy(z) — Uyz) <ulx) — C — Uy(z) <ulz) —C <.
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4. lim {u(z) — Uy(z) — Uy(z)} = 0.

|z|—c0

We now show that for all (A, u) € E, we have

u(z) < Uy(z) + Uy(x) Vx| > R.

To this end we suppose that there exist (A,u) € E and |z,| > R such that
u(z,) > Wi(x,) + VUala,).
By property 3, we have that |z,| > R and setting
Q={z RN ||z|> R and u(z) > ¥;(z) + Vy(z) },
we see that Q # @) and @ € IR™ \ B(0, R). In particular 99 # () and

() = Uy(z) — Uy(z) =0  Va € 90.

<

Moreover, on {2 we have
1.u>W + ¥, >0,

f(z, ufz))

2. o(2)

—A>B—a*-)>pB—a*—k from (3.6).

Thus, on ) we have

Al — T, — )
_ (f(j;“) _ )\) " — ( — At f(u) - )\u) _ AT, — AT,
> (f(;“) - )\) w— @ — ATy — AW,
- (f(;“) - )\) ut AU, — a?T, — ATy — AT,
> (f(j;“) - )\) u— a*(Wy + Uy)

V
o

this last inequality following from the choice of @ in (3.6).
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Hence, we have shown that

Au—T; —Uy) >0 a.e on ),
and u— VY, — Uy, =0 on 0f).

Using property 4 and the maximum principle, this implies that v — ¥y — ¥, < 0 on {2,
contradicting the definition of 2. Thus (3.7) is established.

In the same way, we prove that for all (A, u) € E,
—u(x) < WUy(x) + Uy(x) Vx| > R.

Thus, since ¥y > 0, we have
lu(z)| < De el ¢ (=A+ a2)_1(ﬁ])($) Vo e IRV,

where D = Ce*F, O

Lemma 3.2 Let f be a mapping satisfying (H1) to (H5) and (u,):>, a sequence in X
which satisfies
1. (un)22, converges weakly to u in X,

n=1

2. there exists ¥ € Y such that |u,| < V¥, Vn e N,

Then,
1. (un)22, converges strongly to u in'Y.

2. (f(-,un))oo_l converges strongly to f(-,u) in'Y.

Proof.

1. Since (u,)S2, converges weakly to u, this sequence is bounded in X. Using the fact
that X — LOO(IRN) continuously we see that there exists a bounded interval I of
IR such that

u(z),us(z) € I Ve e IRN,

For R > 0, we have

Uy, — < ,n_.pp / ,n_,pp

R e e ey

oot ol Lo} (Lol
lel<R el >R el >R

The proof now follows from the following facts

IN
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(a) lim {/ |xp|p}p — lim {/ |u|p}p —0,
Rooo | Jiz[>R Rooo | Jiz[>R

(b) the sequence (u,)3%, converges uniformly on every compact set of IRY.

2. By the second assertion of Lemma 3.1, there exists a constant C' > 0 such that
| f(z,u(@)) = fz,ua(2)) | < Clu(e) —ua(e)| VeeRY,VneN

Thus,
1 fCun) = FCu) o< Cllun—ul,  YnelN

and the result follows from part 1.

Theorem 3.3 Let f be a mapping satisfying the hypotheses (H1) to (H5), and consider

F: IRxX —Y
(Au) — =Au+ f(-,u) — Au.

Then, the restriction of F' to (—oo, 3) x X is boundedly proper (see Definition 2.1 ).

Proof.

Let [a,b] C (—o0,), B be a bounded closed subset of [a,b] x X and K be a compact
subset of Y.

We must prove that every sequence {(A,,u,)} of F7'(K) N B has a convergent subse-
quence.

We set F'( A, u,) = w,.
Without loss of generality, we can suppose that

A = A <D,
u, = u weakly in X,

w, - w strongly in Y with w € K.
As is well known, we can choose the subsequence so that
w, = w a.e on IRV,

but we also make use of the fact that it can be choosen in such a way that there exists
an element w € Y such that

lw,| < @ a.e on IRY for all n € IN.
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(See Thm. IV.9 in [3].)
It follows from Theorem 3.2 that there exists ¥ € Y such that

lun(z)| < U(z) Vaze IRV,

Now consider the expression

Applying Lemma 3.2, we deduce that this last expression converges strongly in Y.

The operator —A + 1 is an isomorphism of X onto Y, so it follows that (u,)%, converges
in X, which completes the proof of the theorem.

4 The spectrum of the linear problem

In this section we show that the features of the spectrum of the linearized problem, which
are important for our results on bifurcation, do not depend on the value of p used in the

choice of the spaces X = W?P(IRY) and Y = LP(IRY).

We present the results for any operator of the form —Awu + Vu where V' € LOO(IRN). The
linearization of (1.1) is obtained by setting V' = 0, f(+,0).

For each 1 < g < oo, we consider the family (A, ) er of bounded linear operators defined
by

Ay WHI(IRN

and we set,

¥, = {AeR|A,,: WH(IRY) — LY(IRY) is not an isomorphism }.

Remarks
1. The mapping (z,s) — V(z)s satisfies the properties (H1) to (H5) with

a = liminf V(z) and 8= a.

|z|—co

( Thus we can set, without confusion, 1|HP infV(z) = a.)
T|—o0
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2. ¥, = 0(S,) where S, is the Schrédinger operator in L(IR™) defined by
Squ=—Au+Vu for u € D(S,) = W2(IRY),

and o(5,) is the spectrum of S, in the usual sense.
In the following the self-adjoint Schrodinger operator S5 will be denoted by S.

The results below show that, for ¢ € (1,00) and A < a,

1. A, is a Fredholm operator of index zero,
2. dim Ker A, is independent of ¢,
3. Lq(IRN) = Ker A, & Range A, .

In others words, the essential spectrum of S, is contained in [a, 00) and, for the eigenvalues
in (—oo, a), the algebraic and geometric multiplicities are equal and independent of ¢.

As a consequence of Theorem 3.2, we have the following result.

Theorem 4.1 Let V € L*(IRY) and ¢ > 1.
Consider A < o, h € ) L"(IRN) and g € W21(IRN) such that

r>1
—Ag+ (V —=X)g = h.
Then,

1. there exist positive constants a and D such that

l9()| < De 4 (=A+a®) 7N (|h])(2) Ve € RY,

2. ge [ W (IRY).

r>1

Proof
Since
(=A+1lg=h—(V-X-1)g (4.8)

it follows that ¢ € W?7(IRY) for all » > ¢. In particular, g € W2 (IR") for some
ro> max{%, 1}. Moreover we have already noted that the mapping (z,s) — V(z)s has
the properties (H1) to (H5) with a = 3.
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We can then apply Theorem 3.2 with
[z, s) =V(x)s, E={(\g}, w = |h|
and deduce thus the existence of positive constants ¢ and D such that
lg(z)| < De 4 (=A +a®) 7 (Jh])(z) Vo€ RN,
This implies that g € L"(IRY) for all 7 > 1 and from (4.8), we now deduce that
g € () W (IRY).

r>1

As a particular case of the previous theorem, we have

Corollary 4.1 Let V € L=(IRY) and ¢ > 1.
Consider A < a and g € W2I(IRY) such that

—Ag+(V—2X)g=0.
Then,
1. there exist positive constants a and D such that

lg(x)] < De~*Fl Vo € IRV,

2. ge (W (IRY).
r>1

In particular, Ker(A,\) = Ker(S — ).

Remarks
1. For other results in relationship with the property of exponential decay for eigen-
functions of Schrodinger operators we can refer for example to [1] or [11]. See also

Theorem C.3.4 in [17].)

2. The spectrum of Schrodinger operators is shown to be independent of the choice of
LP-space in [13], by viewing them as generators of semi-groups. (See also [4].)

Theorem 4.2 Let V € L=(IRY) and ¢ > 1.

1IfV >0 aeon RN, A\ : W2IRY) — LI(IRY) is an isomorphism for all A < 0.

17



2. If lim V(x) =0, the multiplication operator defined by

|z| =00
W2UIRY) = LYIRY),  uw~ Vu

15 compact.

Proof.

These statements are in principal well-known but for the reader’s convenience we sketch
the proofs.

1. For V = 0, this is well known and we already used the result several times. (See
Proposition 27 of Chapter II in [6] and Proposition 3 of Chapter III in [18].)

For V' > 0 and ¢ = 2, it is also well-known, since S is a positive self-adjoint operator.
Using these special cases, we can establishing the general case in the following way.
For ¢ € (1,00) set k(t) = [t|2"* for t € IR. By the basic result for Nemitsky
operators, the mapping

LY(IRY) = LY(IRY)  w s k(u)

is bounded and continuous, where 5 + % =1.

For any u € W2(IRY), there exists {u,} C C&(IRY) such that u, — wu in
W24(IRN). Then for ¢ > 2,

/]RN{—Au—I—Vu}k(u) = Jim [ {=Au+ Vi Fe(u)

n—00

= lim | (¢— D)|Vun|*|un|"? 4+ V]uy,|*

n—00 RN

> 0

For ¢ € (1,2), let {h,,} be a sequence of odd, increasing C''-functions such that
hy — k uniformly on IR. Then, for all n € IN,

/IRN {—Au, + Vi } k(u)

= lim . {=Auy + Vuy} h(uy)

m—»00

= Jim [ IV () + Vitho (u,)

m—00

> Vupk(u,) = / N Viun]? >0
R

IRN

and so, also in this case,
/IRN{—AU + Vaubk(u) > 0.

18



Now fix A < 0. Then,

_A. Y . _ k() — o 17
/]RN{ Au+ Vu— dutk(u) > )\/IRN uk(u) = [Al || u ||
and

/RN{_AU—I—VU—)\u}k(u) < —=Aut+Vu=D>Au || || k(w) ||gy=] —Dut+Vu—Au ||| u Hg/q/

Thus, for u € W21(IRY),
| =L+ V= du o= AL ]l

showing that A, ) is injective and that its inverse maps Range A, continuously
into Lq(IRN). But we know that Range A, ), = LQ(IRN) and so from Theorem 4.1
(with ¢ = 2) we deduce that CZ°(IR™) C Range A, for all ¢ € (1,00). But given
w € L(IRY), there exists {w,} C C& such that w, — w in LI(IRY). Setting
u, = (Ag2)"Hwy), we know that {u,} is a Cauchy sequence in Lq(IRN) and so
Ju € Lq(IRN) such that u,, — v in Lq(IRN). But then

(=A+Du, = wy+ A+ Du, — Vu,
— w4+ (A+1)u—Vu (in Lq(IRN) )

and we deduce that {u,} converges to u in W?4(IRY). Thus v € W>¢(IR") and
A, (u) = w showing that Range A, , = L(IR"). Thus A, is an isomorphism.

2. Let

, 1 for|z| <p
Xo() _{ 0 for |z| > p.

By the compactness of the Sobolev embedding on bounded domains it follows that
the operator

W2I(IRY) — LY(IRY)  uw x,Vu
is compact. But for u € WQ’q(IRN),

| Va—x,Vully = [ Vil
lz|>p

< sup{|[V(x)[} || u ],
|z|>p

< |Sl|1>p{|V($)|} Il [l gme)
z|>p

Since 1i_>m{sup |V (z)|} =0, it follows that u — Vu can be approximated by com-
P z|>p

pact operators and so is itself compact.

19



Theorem 4.3 Let V € L®(IRYN) and g > 1. We have the following assertions.
1. For A < a, A,y : W29(IRY) — L1(IRY) is Fredholm with index zero.
2. For all X € ¥, N (—o0,a), we have

Lq(IRN) = Ker(A;)) & Range(A,)).

3. Let A be as defined in Section 1 by (1.3). If A < a, we have dim Ker(A,a) = 1.

Proof.
1. We write
AqA:—A—I—(V—a)+—|—(oz—)\)—(V—oz)_.
From Theorem 4.2 (i) we have that

W2UIRY) — LY(IRY), u+r— —Au+(V —a)Tu+ (a—MNu

is an isomorphism for all A < & and is so a Fredholm operator with index 0.

Moreover, we have lim (V — )7 (z) = 0. It follows from Theorem 4.2 (ii) that the

|z| =00
multiplication operator

W2UIRY) — LY(IRY), wu+— (V —a) u

is a compact operator.

Recall that if T': X — Y is a bounded linear Fredholm operator and K : X — Y
is a compact operator, then 7' 4+ K is Fredholm and ind(7") = ind(7 + K) (see for
example [12], Thm 4.2, pp. 189).

Thus, the operator A, is a Fredholm operator with index 0 for all A < a.

2. Let A € ¥, N (—o00,a), and consider h € Ker (A, ) N Range (A,)).
Thus, on the one hand we have by Corollary 4.1 that h € ﬂ W2 (IRN).

r>1
On the other hand there exists g € W2(IRY) such that A = A,.(g), and from

Theorem 4.1 we have that g € [ W2 (IRM).

r>1
Hence,

h € Ker(Az,) N Range(Az)).

Since the Schrodinger operator S is self-adjoint, the above intersection is reduce to

{0} and then h = 0.

Moreover, since A,y is Fredholm with index 0, we deduce that

Ker (A, ) @& Range (A,)) = Lq(IRN), VA< a.
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3. It follows from Corollary 4.1 that Ker(A,x) = Ker (S — A).

Since S is self-adjoint, A € o(S5) and is equal to the infimum of ¢(S5). It follows
that A, A is Fredholm with index 0, and applying the open mapping theorem, we
see that

Ker(A,a) # {0}.

It follows then that dim Ker (S —A) =1 (see for example Theorem 10.33 in [21] ).

O

Theorem 4.4 Let f be a mapping satisfying (H1) to (H4). Consider the mapping F
defined by (3.5). Then, the restriction of F to (—oo,a) x X is Fredholm with index 0 (in
the sense of Definition 2.2 ).

Proof.
Let u € X. We have by Theorem 3.1 that DyF(y ) = —A + 0y f (-, u) — A

Since |1|im u(z) = 0, it follows from Lemma 3.1 that
T|— o0

lim {(%f(zr,u(x)) — 02f(x,0)} = 0.

|z|—co

Hence,
lpminf {00/ e,ule)} 2 liminf {00 (e, u()) = 3 (e,0)} + lmint {9, (,0)}

The conclusion now follows from the first assertion of Theorem 4.3.

Remark
Let A € ¥, N (—o0,a). From the second assertion of Theorem 4.3, we know that the

condition (6.17) of [8] is satisfied and thus, from Theorem 6.18 of [8], A is an isolated
point in X,.

5 Results on global bifurcation

Throughout this section, we consider a mapping f satisfying the hypotheses (H1) to (H5)
and we use the spaces X and Y defined by (3.4). Referring to Theorem 4.4, we consider
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the following smooth mapping

where ¢o(X,Y) has been defined in Section 2 and Dy Fy oy(u) = —Au+ 02 f(-,0) u — Au
(see Theorem 3.1).

Notations.

1. Weset ¥ = {X € IR | DyF{)) is not an isomorphism }. We have verified in the
previous section that this set is independent of the choice of p in the definition of
X and Y. (See the remark at the beginning of Section 4.)

2. Let A € ¥ N (—oo,a). We have remarked at the end of the previous section that A
is an isolated point in X. So there exists a closed interval J C (—o0,a) such that
JNY ={A} and X € J° The parity (see Section 2) of the restriction of A to J will
be denoted by o(A, \).

From Theorem 4.3, we see that the hypotheses of Theorem 6.18 in [8] are satisfied, thus
we conclude that for every A € ¥ N (—o0, ),

o(A,A) = =1 < dim Ker(A,) is odd .
From Corollary 4.1, we have Ker(A,) = Ker(S —X) and then for every A € ¥N(—o0, a),
(A, A) = —1 < dim Ker(S — X) is odd .
We are now able to prove the theorem on global bifurcation which was anounced in the
introduction.
Proof of Theorem 1.1

To prove this theorem, we verify the hypotheses of Theorem 2.1.

By (H1) F(X,0) = 0.

From Theorem 3.1 we see that F'is a C'* mapping.

From Theorem 3.3, the restriction of F' to (—oo, 3) x X is boundedly proper.

From Theorem 4.4, and since 8 < «, we deduce that the restriction of F' to (—oo, 8) x X
is Fredholm with index 0.

Moreover, since A\g < 8 < a, from the previous considerations we deduce

O'(A, )\0) = —1.
Hence all the hypotheses of Theorem 2.1 are fullfiled.
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Theorem 1.1 can be improved for the branch C, as follows.

Theorem 5.1 Let f be a mapping satisfying the hypotheses (H1) to (H5) and suppose
that A < B. If (A u) € CA \{(A,0)} then u has no zeros. Futhermore the component Cy

has at least one of the following properties.
1. Cy is unbounded in IR x X,
2. sup A=[.

(A,U)ECA

Proof.
Let D= {(\u) € Cy | u*(z) > 0Vz € IRN} and set Q@ = DU {(A,0)}.

The first step is to show that @ is (i) closed and (ii) open in Cy, and hence that ) = Cj.

i) Suppose that (A,u) € Cy and that there is a sequence {(\,,u,)} C @ such that
(A, ) = (A, u) in IR x X.

Then A < 8 and, passing to a subsequence we can suppose that either u,(z) > 0
for all z € IRY and all n € IN or u,(z) < 0 for all z € IR and all n € IN. We shall

deal with the first case, the second being similar.

Clearly, u(z) > 0 for all z € IR™ and
—Au(z)+ c""(r)u(a:) = ¢ (2)u(z) >0 a.e. on RN

where
fewe)) N i u(z) > 0
O2f(2,0) — X if u(z)=0.

Since u € X we also have that | 1|im u(z) = 0, and so the maximum principle implies

|—0o0
that either
a) u=0 or

b) u(x) > 0 for all z € RV,

In case (b), we already have that (A, u) € D C Q.

If u =0, then ||u,|x — 0. By Theorem 3.2, u,, € W¢(IR") for all ¢ > 1, since we
may assume that A, < 8 for all n € IN. Thus u, is a positive eigenfunction of the
Schrodinger operator —A + V,, where

[, un())

un()

Va(z) =

23



It follows that
)\n:inf{/ |Vol? + V,0? | 'UEHI(IRN),/ '02:1}.
]R.N RN

Since ||ty|lee — 0, it follows from (H1) to (H3) that V,, converges to dxf(-,0) uni-
formly on IRV,

Hence

Tim A, =iﬁ{éﬂﬁ%ﬁ+@ﬂymﬁ|veH%mN%4Mﬁ=1}
= A.
Thus in case (a), (A, u) = (A,0) € Q.
Suppose that (A, u) € ). We must show that there is an open subset U of IR x X
such that (A, u) € U and UNCy C Q.
Suppose first that u(z) > 0 for all z € IR,
Since A < B < « there exist sg and R > 0 such that

for all |s| < s¢ and |z| > R.

Futhermore, there exists R; > 0 such that 0 < u(z) < %30 for all |z| > R;. Thus
we can choose § > 0 such that |w(x)| < sg for all || > R; and

w(x) > %mm{u(r) | || = Ri} >0

for all w € Bx(u,d) ={w € X : ||lu —w||x < d}.
Let X
U={(s,w) € Rx X | |u—A| < S(a=A) and [Ju—w][x <&}

Then for (u,w) € U N Cx we have that,

—Aw(z) + c¢(z)w(z) =0

where
_ Sl w(z))
e
> a- %(a —A) —n
> a—Ha—A=A-a-N=0



for all |z| > Ry.

The maximum principle now implies that w(z) > 0 for all (u,w) € U NCy and for
all |z| > R;. Since u(z) > 0 for all z € IRY, by making § small enough, we also
have that

—_

w(z) 2 5 minfu(y) | |y| < R}

for all (u,w) € U and all |z| < R;.
Thus UNCy CD C Q.

The case where u(z) < 0 for all z € IRV being similar to the one just discussed, we
now turn to the only remaining possibility, namely (A, u) = (A, 0).

Using the theorem of Crandall and Rabinowitz [5] concerning bifurcation from a
simple eigenvalue, we know that there exist an open subset V in IR x X containing
(A,0) , 6 > 0 and two functions u € C*'((=4,6),IR), n € C*((—6,9), X) such that
(1(0),7(0)) = (A, 0) and

VN Z ={(u(s),slo+n(s)]) [ 0 <|s|] <3}

where Ker (A, 1) = span{¢} in the notation of Section 4 and Z is defined in the
introduction. As is well-known, we can suppose that ¢(z) > 0 for all z € IR".

There exist §; € (0,4) and R > 0 such that
fa. sl + n(s)s)
sé + n(s)](x)
for all |s| < d; and all |z| > R.

(Recall that if s[¢ + n(s)](z) = 0, the left hand side is interpreted as 0y f(x,0).)
Thus

1
206—5(04—/\)

—A[p+n(s)l(z) + e(2)[ +n(s)](x) 2 0
for all |s| < d; and |z| > R where

c(:s)za—%(a—/\)—,u(s)>0

provided that d; is small enough.

Futhermore, for ¢; small enough, we also have that

6+ n(s)](x) > 5 minf{4(y) | Iyl = B} > 0

for all |z| = R.

Since zh_)rgo[qb + n(s)](z) = 0, the maximum principle implies that
[¢+n(s)](x) >0 for all |s| < d; and |z| > R.
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Finally by choosing 4; sufficiently small we also have that

6+ n(s)](x) > 5 minfa(y) | Iyl < B}

for all |z| < R.

Hence for 0 < |s| < &1, we have that (u(s),s[¢+ n(s)]) € D and so there is an open
subset U of IR x X such that (A,0) € U and UN Z C D.

Having established (i) and (ii) we conclude that Cy, = Q.

To complete the proof we must show that Cy cannot have the property 2 of Theorem 1.1.
To see this it is sufficient to consider a sequence

{(Anun)} € Ca\{(A,0)} =D

such that ||u,||x — 0. As in the proof of case (b) in (i), this implies that A, — A. O

In fact from this result and its proof we can deduce some extra information about C,.

Let
Ci = {()\,u) €Ch |u(z)>0forall z e IRN}

and

Cy = {()\,u) €C | u(z) <0forall z € IRN}.

Corollary 5.1 Under the hypotheses of Theorem 5.1, both CX and Cy are non-empty and
connected. Futhermore Cy = C{ UCy U{(A,0)}.

Proof.

In the proof of Theorem 5.1, we see that

(1(s),s[o+n(s)]) €Cf for 0 < s < &

and that
(u(s),s[¢+mn(s)]) € Cy for —d; <s<0.

Since Cy = Q = Cf UCy U{(A,0)}, we need only to establish the connectedness of C;f
and Cy .

To show that C{ is connected, it suffices to prove that

P =i\ {(uls) slo+n()) 10 <5 < 561
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is connected.
Since we showed in the proof of Theorem 5.1 that
Ca N {(2,0) [ A € R} = (A,0),
it follows that there exists ¢ > 0 such that ||u — v||x > € whenever (A\,u) € P and
(n,v) € Cy U{(A,0)}.

If P is not connected there must be a non-empty subset A of

. 1 3
PA{ () slo 4 (o)) | 380 < s < 30
which is both open and closed in P. But then we see that A is open and closed in Cy

contradicting the connectedness of Cy.

Hence P and consequently Cy is connected. The connectedness of Cy follows from a
similar argument. O
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