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INTRODUCTION

This lecture reviews some recent work concerning the existence and be-
haviour of self-guided beams of light in a nonlinear medium. In order to
model propagation in a optical fibre we seek beams having a cylindrical sym-
metry. The propagation of light is governed by Maxwell’s equations together
with a nonlinear relationship between the electric field and the displacement
field. For a guided beam the light must remain concentrated near the axis
of propagation and the amplitudes of the electro-magnetic fields must decay
to zero far from this axis.

Mathematically, the problem can be formulated by seeking solutions of
Maxwell’s equations which have an appropriate cylindrical symmetry and
which satisfy certain boundary conditions. There are two types of solution for
which Maxwell’s equations can be reduced, without approximation, to a much
simpler form which is amenable to a rigorous analysis. These are the TE
(transverse electric) and the TM (transverse magnetic) field modes described
below. In this lecture some of the results concerning these special modes are
summarized. They involve the analysis of a boundary-value problem for a
second order differential equation on the interval (0,00). The equation is
of semilinear type in the case of TE-modes, whereas for TM-modes it has a
more complicated quasilinear form.

The presentation is organized as follows.

§1.Mathematical formulation of the guidance problem.
§2.Analysis of TE-modes.

§3.Analysis of TM-modes.

§4.Related problems.



1. MATHEMATICAL FORMULATION OF THE GUIDANCE
PROBLEM

In a dielectric medium Maxwell’s equations can be written as [1],

1 1
VAE=-—-8,B,VAH==0D,
C C

V-D=0,V-B=0 (ME)

where ¢ > 0 is the speed of light in a vacuum and the electro-magnetic fields
are functions of space, (r,0,z), and time, ¢.

Here (r, 60, z) denote cylindrical polar co-ordinates and the usual orthonor-
mal basis associated with this system is denoted by

cos 0 —sinf 0
i, = | sinf , 1 = cos 0 , 1, = 0
0 0 1

Afield F: R* — R? can be resolved into orthogonal components (F,, Fy, F,)
by setting

Fo(r,0,z,t)=F(r,0,z,t) i, fora =10, z. (1.1)

We seek solutions of Maxwell’s equations which have the form of monochro-
matic cylindrical modes propagating in the direction of the z—axis. More
precisely, each field F' should have the form

| falr)cos(kz —wt) for a =r,0 .

Fo(r,0,2,1) = { falr)sin(kz —wt) for a = z (1.2)

where f, : [0,00) — R is a scalar function and the positive constants k
and w give the Wavelength,i—”,and the frequency w of the associated beam.

For such modes the behaviour of the medium is characterized by the
following constitutive relations[2,3,4],

B(r,0,z,t)= H(r,0,z,1) (CR)

1
Do =z (5 [d+d+2) 1)) Birozn



For an isotropic medium, ¢ : [0,00) — (0, 00) is a scalar function called the

dielectric response of the medium. The quantity § [eZ + €f + €Z] (r) is the
time-average of |E (r,0, z,t)|” since E has the form (1.2).

bl bl bl
It is physically reasonable to assume that ¢ has the following properties.

(A) e € C([0,00))NCH((0,00)) with &'(s) >0 Vs >0,
e(0) > 0, e(o0) = limse €(8) < 00 and lims_yo se’(s) = 0. Furthermore,
ele)==(0) _ |

there exist positive constants L and o such that lim,_q pe

Since ¢ is increasing the dielectric response is of the type called self-
focusing. The fact that e(co) < oo means that this response saturates as
the field strength becomes infinite. For a large class of materials ¢ = 1, but
other values do occur for some materials, [5,6,7].

Finally we introduce the conditions on the e — m fields corresponding to
the requirement that they represent a confined beam of light.

Guidance Conditions

2T 00

(i) [ [ [E-D+ H-B] rdrdf < oo
00
(ii) lim, 0o F'(r,0,2,t) = 0 where F = E, D, B and H.

bl b bl
The first condition asserts that the total e —m energy in planes transverse

to the direction of propagation is finite and the second one means that the
fields decay to zero far from the axis of propagation.

In what follows we seek solutions of (ME) and (CR) in the form (1.2)
that satisfy these guidance conditions. The strength of these guided beams
is measured by the time-average of the energy flux

27 o2
/ / c(ENH)- 1, rdrdd
0
0

across planes transverse to the direction of propagation. Using (1.2) this



quantity becomes

o0

P = 7rc/ (e hg — egh,) r dr (1.3)

0

and it is referred to as the power of the beam.

In the following discussion, the frequency w is fixed and we consider the
relation between the power, P, and the wavelength, 2%, for guided modes. The
results are expressed most conveniently using the variable y = (ﬁ)Q instead
of 27,

k

Both TE and TM modes have the following common features provided
that the dielectric response satisfies (A).

(i)For all guided beams ﬁ <p< 5(1_0)'

(ii)For all guided beams, the amplitudes of the e — m fields decay expo-
nentially to zero as r — oo.

(iii)Guided beams exist at sufficiently high powers and, as P — oo, we
have p — @

(iv)If o > 1 in (A), there are no guided beams with power below a certain
threshold, P, > 0.

(V)If 0 < 0 < 1 in (A), guided beams exist at arbitrarily small powers

and, as P — 0 we have y — —~

(0)”

Our formulation based on the unknown ey for TE-modes is standard. On
the other hand, due to the form of the constitutive relation (CR), the basic
unknown in the study of cylindrical TM-modes is usually taken to be the
couple (e, e,) . (See [15], for example.) Setting e, = ¢ and e, = k¢ , (ME)
with (CR) reduce to the following system of equations,

o)+ 000} = e (5 [olr? + 0] ) 00

e+ O = e (5 [l + 2007 ) 000



where p = (ﬁ)Z .However in [9] we have shown that by inverting (CR) (see
(CR)* in Section 3) we are able to use the scalar function hy as the basic
unknown for the TM-modes. In this way we obtain a formulation in the TM
case which closely resembles that for TE-modes. In particular the equations
(2.2) and (3.2) have exactly the same linearizations at v = 0 , namely the

Bessel equation

{U’(r) + M}/ + {%26(0) - kQ} v(r) =10

r

since v(0) = 5(1_0) The low-power modes mentioned in (v) bifurcate from the

infimum of the essential spectrum of this linear eigenvalue problem.



2. CYLINDRICAL TE-MODES

We seek solutions for which the electric field E has the additional prop-
erties that e, = e, = 0.

Setting eg = v,we have

E(r,0,z,t)=v(r)cos (kz — wt) 14 (2.1)

In [8] we have shown that (ME) together with (CR) are satisfied in the
region r > 0 provided that v € C'? ((0, 00))and satisfies the equation

[U’ (r) + M] / + w—j&: (l v(r)2> v(r) — k*v(r) = 0. (2.2)

r 2

From a solution v of this equation the displacement and magnetic fields

are defined by

1
D(r,8,z,t)=¢ <§ ’U(T)2> E(r,0,z,1),

B(r,0,z,t)=H(r,0,z,1) .

To extend these fields smoothly onto the axis r = 0, we require that

7
limv(r) = lim |:’U,(T) + ﬂ} = (0 and that lin% v'(r) exists.
r—

r—0 r—0 r

Furthermore the guidance conditions reduce to

(1)}0{ {ci}fj +e (% 'U(r)?)} v(r)? + 5—22 {U(T) + @r} rdr < oo
and
(i)lim, 00 v(r) = lim,s V'(r) = 0.

The power (1.3) of such a guided beam is given by



o0

i Qk
p="C /v(r)2 rdr.

w

0

For the analysis of this problem it is convenient to introduce the new
variables defined by

u(r) =r?v(r) and 7= —k

Then we have shown [8] that the guidance problem is equivalent to finding
(n,u) € (—o0,0) x H} (0,00) such that

u Z 0 and J'(u) = nu (GE)

where J : H} (0,00) — R is defined by

o0

J(u) = / : [u (r) + %r —rE (%U(T)Q) dr

0

with E(s) = (%)QOfS c(t)dt.

Using Hardy’s inequality it is easy to check that .J is Cland, for any
solution (n,u) of (GE), we see that u € C?((0,00)) and —°c“—22 g(o0) < <
2J(u) since E(s) < (%)25(3)3 Vs > 0.

One way of obtaining solutions of (GE) is to solve the following mini-
mization problem.

Given d > 0,set

S(d) = {u € Hj(0,00) : / u(r)?dr = d2} and (ME)

m(d) =inf{J(u) : we S(d)}.

Then find u € S(d) such that J(u) = m(d).



Clearly if u is a solution of (ME) then there is a Lagrange multiplier n
such that (n,u) satisfies (GE) provided that n < 0. However (ME) does
not always have a solution. Indeed we have shown in Theorem 4.6(ii) of [§]
that,if o > 1 in (A), then there exists d; > 0 such that fooo u(r)*dr > di for
all solutions (n,u) of (GE).

Consequently (ME) has no solution for d € (0,d;). This happens because
in such cases minimizing sequences on S(d) converge weakly to zero, and this

in turn implies that m(d) > —1 °C“—22 £(0)d?. But, for any ¢ > 0 in (A),

. m(d) 1 w? 1 w?
< __ X _-
A mg s g g <5 0
and so 3 d, > 0 such that
1 w? 9
m(d) < 32 e(0)d* for all d > d,.
c

Furthermore, if 0 < o < 1 in (A), we can set d, = 0. Hence for d > d,, we
are able to show that (ME) has a solution, ugq, with ug > 0 on (0,00). The
corresponding Lagrange multiplier satisfies the following inequalities,

w? ) w?
=z g(o0) < mg < 2m(d)/d* < =z (0)
where limg_oo 14 = —‘;’—22 g(oo) and, if 0 < o < 1in (A), limgsone =
—4 (0).
In proving these results in [8] we found it convenient to replace J by
N 1 2 7
J(u) = J(u) + 3 <(i> (0) / u(r)*dr.
c

0

The main steps in proving that (ME) has a solution are
(a) to show that J : H!(0,00) — R is weakly sequentially lower semi-

continuous, and
(b) to show that m(d) < 0 where

in(d) = inf {J(u): we S(d)} = m(d)+ % (2) =

It is in the analysis of part (b) that the difference between the cases
0 <o <1 and o >1 occurs.



3. CYLINDRICAL TM-MODES

We seek solutions for which the magnetic fields have the additional prop-
erties that h, =b, = h, =b, = 0.

Setting hg(r) = by(r) = “v(r), this means that

H(r,0,z,t)= B(r,0,z,1) = “ v(r) cos(kz — wt) 1g. (3.1)

[

Our initial aim is to reduce Maxwell’s equations (ME) with the constitu-
tive relations (CR) to an equation for v.The first step involves an inversion
the constitutive relation. This is done as follows.

Supposing that e satisfies (A), we set

f(s) =¢e(s)*s for s >0
and then define a new function v by

B 1/e(0) for 7 =0
’W—{ N LR

It is shown in [9] that + is well-defined and has the following properties.

(H) v € C([0,00)) N C'((0,00)) with v'(7) < 0 < 4(7) + 277'(7) for
all 7 > 0,7(00) = lim; 40 y(7) = 1/e(00) > 0 and lim,o7y'(7) = 0.
Furthermore, lim,_q 1)) _ g where K — L/5(0)2(1+0).

7o

According to Proposition 1.1 of [9] the constitutive relationship (CR) is
equivalent to

H(r,0,z,t)= B(r,0,z,1) (CR¥)

1
E(r,0,z,t) =7~ (E [df + dz + dﬁ] (r)> D(r,0,z,1).

Using this it can be shown [9] that Maxwell’s equations with the con-
stitutive relation (CR) are satisfied in the region r > 0 provided that v €



C*((0,00)) and v satisfies the differential equation

{’7 G [K2o(r)* + w(r)Q]) w(r)}/ — K’y G (K2 (r)® + 'w(r)Q]) o(r) + = vo(r) =0

where w(r) = v'(r) + wr).

Eliminating w, we see that this is a single second order quasilinear differ-

ential equation for v.
From a solution v of this equation the electric fields are defined by

d.(r) =kv(r), d¢(r)=0, d,(r) =—w(r) and

1
E(r,0,z,t) =~ (E [kQ'v(T)Q + w(r)2]> D(r,0,z,1).
In order to extend these fields onto the axis r = 0 we require that

limv(r) = 0 and limv'(r) = 0.

r—0 r—0

(See Proposition 5.1 of [9].)

The guidance conditions reduce to

o0

(i)bf {Z’—j’U(T) + (5 B2 (r)? +w(r)?]) [K*o(r)* + w(r)Q]} rdr < oo

and
(ii)lim, 00 v(r) = 0 and lim, ., v'(r) = 0.

The power (1.3) of such guided beams is given by

P = nwk? 7 5 G [k*u(r)? + 'w(r)2]> v(r)*r dr.

For the analysis of this problem it is convenient to introduce new variables
as follows,

u(r) = kv/r v(r/k) and p = (%)2

10



Then as is shown in [10] the guidance problem is equivalent to finding

(,u) € (0,00) x H} ((0,00)) such that
u#0and j(u) = pu (GM)

where j : Hj(0,00) — R is defined by

j(u)z]or<% ['u(r)2+(T'u(r))2]> rdr

with Tu(r) = u'(r) + % and ['(7) = f y(t)dt
0

By (H), ' € C'([0,00)) and 0 < y(oo)r < T(7) <~(0)7 Vr>0.

Hardy’s inequality implies that 7' : H}(0,00) — L?(0,00) is a bounded
linear operator. Hence j is C'' and for any solution of (GM) we find that
p > v(o00) . By applying regularity theorems due to Tonelli we have shown
in Theorem 3.3 of [10] that w € C'*((0,00)) whenever (u,u) is a solution of
(GM).

One way of obtaining solutions of (GM) is to solve the following mini-
mization problem.

Given d > 0,set

S(d) = {u € H(0,00): /00 u(r)?dr = d2} and (MM)
M(d) =inf{j(u):u € S(d)}.
Then find u € S(d) such that j(u) = M(d).

Clearly if u is a solution of (MM) then there exists a Lagrange multiplier
p such that (u,u) satisfies (GM). However (MM) does not always have a
solution.

Indeed we have shown in Theorem 4.6 of [10] that if & > lin (A) then
there exists d; > 0 such that fooo u(r)?dr > di for all solutions (u,u) of
(GM). Consequently (MM) has no solution for d € (0,d;). In such cases
minimizing sequences on S(d) converge weakly to zero. On the other hand,
if a minimizing sequence on S(d) converges weakly to zero then we find that

M(d) > v(0)d?*/2.

11



But for any o > 0 in (A),

lim M(d)/d* <~(o0)/2 < ~(0)

d—y00

and so there exists dy > 0 such that
M(d) < v(0)d?/2 for all d > dy.

Furthermore, if 0 < o < 1 in (A), we can set dy = 0.

In such cases, minimizing sequences on S(d) cannot converge weakly to
zero and we are able to show that (MM) has a solution, wug, with ug >
0 on (0,00). The corresponding Lagrange multiplier satisfies the following
inequalities

y(00) < pa < (0) for all d > dy
where
lim pg = y(o0) and, if 0 < o < 1, lim g = v(0).
d— o0 d—0

In proving these results in [10] we found it convenient to replace j by

The main steps in proving that (MM) has a solution are
(a)to show that 7 : Hj(0,00) — R is weakly sequentially lower semicon-
tinuous, and

(b)to show that M(d) < 0 where

M(d) = inf {j(u) tu € S(d)} = M(d) — %7(0)0[2.

It is in the analysis of part (b) that the difference between the cases
0 <o <1 and o >1 occurs.

12



4. RELATED RESULTS
We end with some remarks about variants of the problems discussed in
Sections 2 and 3.

Higher modes

In the variational principles (ME) and (MM) we have only considered the
existence of fundamental TE and TM modes. However higher modes can
also be found by studying all critical points of J and j on S(d), rather than
just looking for minima. This has been done by H.-J. Ruppen in a series of
interesting papers [11,12].

Inhomogeneity of the medium

The assumption (A) requires the medium to be homogeneous. In the
context of optical fibres it is natural to allow the material composition to
vary with distance from the axis » = 0. This amounts to considering ¢ to
be a function of two variables, e(r,s), where s = 1[e? 4+ € + €Z] (r). The
discussion of TE-modes in [8] covers this case. For TM-modes work in this
direction in underway.

Defocusing media

The assumption (A) requires the medium to be self-focusing since ¢’ > 0.
However some materials have a dielectric response for which ¢’ < 0. The
existence of cylindrical guided modes has also been studied in such defocusing
media, but it is essential to allow appropriate inhomogeneity of the fibre to
counteract the dispersive effect of the nonlinearity. The case of cylindrical
TE-modes is discussed in [13], and the study of TM-modes is in progress.

Planar waveguides

Analogous results are available for the case of planar rather than cylindri-
cal symmetry. See [12] and [16] for the case of planar TE-modes. For planar
TM-modes work is in progress.
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