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Abstract
We present a new formulation of the equations for planar and cylin-
drical TM-modes in a uniaxial self-focusing dielectric medium. By us-
ing the amplitude of the magnetic field as the basic unknown and by
inverting the usual constitutive assumption we obtain a single second
order equation. The existence of guided planar TM-modes is then
studied.

1 Introduction

The guidance of light is usually achieved by exploiting the effect of variations
in the refractive index due to inhomogeneity of the medium through which the
beam is propagating. As can be understood from Snell’s law, the favorable
configuration consists of a region of high refractive index surrounded by layers
of material having a lower refractive index. However it is also well-known
that nonlinear effects can be used to enhance,or even to produce, guidance.
For example, no guidance occurs in a homogeneous linear medium (where
the refractive index is constant) whereas it will occur, at least for sufficiently
intense beams, in a homogeneous self-focusing medium (where the refractive
index is an increasing function of the intensity of the light passing through
it).

The mathematical discussion of this phenomenon amounts to the study
of special solutions of Maxwell’s equations in a homogeneous medium whose
constitutive relation expresses the electric displacement field as a nonlinear
function of the electric field. In a self-focusing material this dielectric re-
sponse is an increasing function of the electric field strength. The special



solutions which have been studied in this context are either TE (transverse
electric field) or TM (transverse magnetic field) modes having a planar or
cylindrical symmetry. For isotropic self-focusing materials the mathematical
analysis of these problems has been undertaken in [1],[2] ,[3],[4],[5] and [6].

In this paper we deal with TM-modes in an anisotropic self-focusing
medium. (For TE-modes in a uniaxial material propagating in the direc-
tion of the axis, the equation for the amplitude of the electric field is the
same as that for an isotropic material.) It is generally recognized (see [20],
[13], [12], [10], [17], [18], [19] for example) that, even for isotropic materi-
als, the discussion of TM-modes is considerably more complicated than the
corresponding treatment of TE-modes because the nonlinear effect is a func-
tion only of the electric field strength. In a TM-mode the electric field is
composed of two orthogonal components which are 7/2 out of phase and the
problem is usually formulated as a system of equations for the amplitudes of
these two components. In a TE-mode the electric field has a single harmonic
component and the problem reduces to a second order differential equation
for its amplitude. Using a mixture of approximations and numerics, TM-
modes in anisotropic media have been discussed in [11], [12], [13], [15], [14],
and [16]. Most of these contributions deal only with the special case of a
Kerr nonlinearity and there are a number of other contributions dealing only
with isotropic materials [8], [9], [16], [17], [18], [19].

Here we give a rigorous discussion based on a new, but equivalent, for-
mulation of the problem which covers a wide range of constitutive laws for
anisotropic materials, with or without saturation. For planar and cylindrical
waveguides, we use the amplitude of the magnetic field to reduce the study
of TM-modes to a single second order differential equation as in the case of
TE-modes. To do so we must first invert the constitutive relation for a self-
focusing anisotropic medium and this is the subject of the Section 2. The
resulting equations have forms that are more complicated than the semilinear
equations obtained for the corresponding TE-modes but, at least for planar
modes, the equation does have a first integral. This is exploited in Sec-
tion 3 to give necessary and sufficient conditions for the existence of planar
guided TM-modes. The corresponding equation for a cylindrical waveguide
is nonautonomous and it does not have a first integral. The discussion of
guided modes in this case is less elementary and is the subject of [6].

2 Equations for TM-modes

We start with Maxwell’s equations in the form



«(VAE)=—-8,B,c(VAH)=08D,V.D=0,V.B=0

where ¢ is the speed of light in a vacuum,[7].
To introduce the constitutive assumption for a homogeneous uniaxial ma-
terial we choose an orthonormal basis {e; : ¢ = 1,2, 3} with ez in the direction

of the axis of the medium. All the e-m fields £, D, H and B that we consider

can be expressed in the form

F(z,y,z,t)= Fr(z,y)cos(kz —wt) + F.(z,y)sin(kz — wt)

where Fr, F, : R? — R3 are such that Fr.e3 =0 and F,.¢; = 0 for : = 1, 2.
Thus the transverse and axial components of the fields are out of phase
by a quarter of a cycle and the fields constitute monochromatic waves prop-
agating in the direction of the material axis.
For fields of this type the constitutive relation which we adopt is expressed
as follows.

(CR) B = H and there exist two continuous functions &; : [0.00)* —

(0, 00) such that

Dy(z,y) = el] Er(z,y) " /2,] Ex(2,y) |* /2) Er(z,y)

D.(x,y) = eal| Br(x,y) ' /2,] Bx(2,y) |* [2)E.(x,y)

where 0 < A < g;(s1,s2) for i = 1,2 and for s1,55 > 0.

This means that with respect to the basis {e;:7=1,2,3} the dielec-

&1 0 0
tric response tensor is represented by the diagonal matrix| 0 &; 0
0 0 €9

where the elements are functions of the time-averages,| Er(z,y) |* /2 and
| E.(x,y) |* /2, of the intensities of the transverse and axial components of

the electric field F.

By a TM-mode we mean a solution of the above type for which H, = 0
and for such modes we expect to reduce Maxwell’s equations and (CR) to
a system of equations for Hp. Indeed since 0D = —w*D we must have



—w?D = ¢V A O:H and hence we set D = —(¢/w)V A Hysin(kz — wt).This
ensures that V.D = 0 and so it suffices to choose Hp in such a way that

V.H =0 and ¢(V A E) = —wHypsin(kz — wt).

Setting Hr.e; = h; for © = 1,2 the first equation becomes 9,hy + Jyhy = 0
but to express the second equation using Hp we must express F using Hp.
Since D has been given in terms of Hp this can be done by inverting the
constitutive relation (CR). To show that this is possible we require some
additional properties of the dielectric response.

According to (CR) the dielectric response of the medium is determined
by a function & = (e1,¢,) : [0,00)> — (0, 00)* about which we now make
some further assumptions.

(V) There is a potential ¢ € C''([0, 00)?) such that ¢ = V.

This property of the dielectric response is used explicitly in [13] where it
is assumed that dye; = 01e4 for all sy, > 0. When (V) holds the potential,
normalized so that ¢(0) = 0 is given by

1
o(s) = / e(ts).sdt
0
and we define an auxiliary function ® by

®(s1,52) = @(51/2,53/2).

(C) We suppose that ® € C?*(R?) and that D*®(s) is positive definite
for all s € R2.

The positive definitiveness of D*®(s) implies that 9; [e;(s7/2, s3/2)s:] > 0
for s € R* and ¢ = 1,2 and that ® is strictly convex. Since ®(0) = 0
and V @©(0) = 0, it follows that ®(s) > 0 for all s € ®*\ {0}. By (CR),
IV®(sy,s2)|| > A/ (5% 4 s2) for all (s1,s2) € R* and so from the conclusions
of Theorem 26.4 to Lemma 26.7 of[22] we find that V& : ®* — R? is a
diffeomorphism and [V®]™" = V®* where ®* is the Legendre transform of ®
which can be defined by

®*(1) =sup {s.7 — ®(s) : s € R*} for 7 = (11, 2) € R



From this formula we deduce that ®*(0,0) = 0 and ®*(s;.s2) = ®*(| s1 |
.| s2 ]). Since e1and e > 0 we also have that V® maps the four quadrants

1(81/2,83/2)s1
d half- to th lves. Of Vo =
aln a axes onto el1nselves course (51752) < 52(5%/2, 83/2)52

and we now show that V®* has a similar structure. From (C) we deduce
that ®* € C?*(R?) and that D*®*(¢) is positive definite for all ¢ € 2. See
Corollary 4.2.10 of [21].

Define 1 : [0, 00)2 — R by

U(ty,ta) = O (V2L V21y)
so that
& (6, 1) = P(E/2.£2/2).

Clearly, ¥ € C*((0,00)?) with 0;®*(¢1,1y) = 0,0(1/2,13/2)t; and we define
v = (7,72) € CY(0,00)% R?) by v; = ;2. Then

(0)=(atimane)

&S t=Vo(s) & VI () =s &

st\ _ ( m(t3/2,65/2)h
w ) = i )
It follows that for ¢« = 1,2 and t1,t3 > 0,7;(t1,%2) =

L/ei(yi(t1, )%t ya(te, 12)t2) =

Ve [0 (V2 V20)]” /2, [0, (V2 V25)] /2).

Using this formula, and recalling that V®* is continuous on %, we see that
~ can be extended by continuity to [0, 00)”.

Let us note an additional property of 4. Since D*®*(¢) is positive definite
for all t € R* ., 0 < 02®*(t1,t2) = 0; {Vi(t7/2,45/2)t;} for i = 1,2 and all
(t1,t2) € R



. . _( m(t/2,45/2)h
Summarizing these remarks we see that VO*(¢,,¢3) = ( (21212121,

where v has the following properties.

(H) v € CY((0,00)%,R*) N C([0,00)? K?) and for i = 1,2,

0 < ’)/Z'(tl,tg) < 1/A,

vi(t3)2,15/2) = 1/ei(s3/2,55/2) where t; = &;(s7/2,55/2)s; and

9 {vi(t1/2,13/2)t;} > 0 for all (4,1;) € R

As an example of the above procedure let us consider the Kerr law for a
uniaxial material.

Example 1 We suppose that there are four positive constants ar,a,, P and
Q) such that

e1(s1,82) = ar + Ps; + Qs

€2(81,82) = o, + Qs1 + Psy for all sy, > 0.

Clearly e = Vi where ¢(s1,82) = ars; + a,s2 + Qs182 + P(s] + s3)/2
and it is easy to check that ®(sy,sy) = p(s}/2,s3/2) satisfies the condition
(C) provided that Q/P < 3. Referring to [12] or to page 246 of [11], we see
that the ratio Q/P is % when the nonlinearity of the dielectric response is
due to electronic distortion, whereas it s 1 when this nonlinearity is caused
by electrostriction.

Returning to the general case we see that, if the function ¢ in the con-

stitutive relation (CR) has the properties (V) and (C), then (CR) can be
expressed in the following way where the function v has the properties (H).

(CR)* B=H and

Er(z,y) = (| Dr(z,y) [* /2,] D:(x,y) | /2) Dr(z,y)

E.(z,y) = v(| Dr(z,y) I /2,] D.(z,y) |* /2)D(x,y)

where v is obtained from ¢ by the above construction.



Returning to the problem of expressing the equations for TM-modes using
Hyp, and recalling that we have D = —(¢/w)V A Hrsin(kz — wt) with Hy =
hier + haeg, we find that

Dy = k(e/w){—haes + hiea} and that D, = (¢/w){0,hs — dyh1}.

Using (CR)* we can now express F in the equation ¢(VAFE) = —wHy sin(kz—
wt) in terms of Hp. To write the resulting equations in a concise way it is
convenient to introduce the following notation.

Set

g = i (kefw)? [h] + R3] /2, (c/w)? [0:hs — Oyhi]? /2) fori=1,2.
The magnetic field
Hy(x,y,z,t) = [h(z,y)er + ha(z, y)ea] cos(kz — wi)

satisfies Maxwell’s equations and the constitutive relation (CR), where the
dielectric response ¢ is supposed to have the properties (V) and (C), provided
that (h1, hz) is a solution of the following system of equations.

a$h1 —|— 8yh2 - 0

3y {92 [0:hy — 0yh1 ]} + K2gihy — (w/c)’hy =0

—0: {92 [0ha — Oyha]} + K*giha — (w/c)*hy =0

There are two important cases where this system can be reduced to a
single equation.

Planar TM-modes

There is a solution of the form
hi(z,y) = 0 and h(z,y) = (w/ke)u(kz) (1)
provided that u satisfies the equation
{920/ (2)} = gru() + Au(z) =0 (2)

where now g; = v;(u(z)?*/2,u'(z)*/2) for i = 1,2 and A = (w/kc)?.
Cylindrical TM-modes



There is a solution of the form
hi(z,y) = —(w/ke)u(r)y/r and hy(z,y) = (w/kc)u(r)u(r)z/r
where r = /22 + y2, provided that u satisfies the equation
{g20(r)} — gru(r) + Au(r) = 0 (3)

where now g; = v;(u(r)?/2,v(r)?/2) for i = 1,2 , v(r) = u'(r) + u(r)/r and
A = (w/ke)?.

3 Guided planar TM-modes

We suppose henceforth that the dielectric response function € in (CR) has
the properties (V) and(C).

By a guided planar TM-mode we mean a solution u # 0 of equation (2)
which has the properties that

lim u(z)= lim u'(z)=0. (4)

r—rtoco r—+oo

In this section we discuss the existence of such solutions. The analysis is
based on the observation that the function I defined by

I(p,q) = ®*(p,q) — ¢29*(p,q) — Ap*/2

is a first integral for (2). Indeed, recalling that Vi) = v = (71, 72), we see
that

I(p,q) = ¥(p*/2.4°/2) — 12(p*/2,4°/2)q" — Ap* /2
and hence it is easy to verify that if u satisfies (2) then
[ (@)Y = () [gru(e) - ) — fgaul(2)}] = 0.

Since *(0,0) = 0 and 0 < ¥2(p,q) < 1/A, it follows that if u satisfies (2)
and(4) then

I{u(z),u'(z)) = 0 for all z € R.

Hence the orbit of a guided TM-mode lies in the set I7*(0)\ {(0,0)} and, in

view of the symmetries of I , it is sufficient to discuss the set
C={(p.q) : I(p,q) = 0 with p > 0 and ¢ > 0}.

8



For this we introduce some additional hypotheses about the dielectric
response.

(S) (a) e1(s1,0) is a strictly increasing function of s; on [0,00), and
(b) there exist B > 0 and o > 0 such that e3(s1,$2)/s§ — B as s —»
oo, uniformly for s; in bounded subsets of [0, o).

We observe that, in the example of a Kerr material which was discussed
in the previous section, the condition (S) is satisfied with @ = 1. On the
other hand for realistic constitutive laws which model saturation, the value
a = 0 in (S)(b) is appropriate. (See [11] for examples of such constitutive
relations. )

These properties of ¢ imply some analogous behaviour of the function ~.

(a) Recalling that v, (¢1,0) = 1/e;(y1(¢1,0)*¢1,0), it follows from (H) that
71(t1,0) is a strictly decreasing function of ¢; on [0, 00). Setting v;(00,0) =
lim; 00 11(2,0), we have 0 < v1(00,0) = 1/lims_ €1(s,0) = 1/e1(00, 0).

S1 i ’Yl(t%/Qvt%/E)tl
(b) For t1,t; € [0, 00) let < 89 ) - ( 72(13/2,45/2)t2 )

279 .2/
Then < 2 ) = < 222%?;:2%?3;2 > and so t; > As;. Hence if ¢; varies
over a bounded subset of [0, 00) so does s;. Also, setting 8 = /(1 + 2a), we
have that

o (12/2,13/2)[12/2]° = 278 {e5(53/2,52/2)s5 }" [ea(s?/2,52/2)

= 1/{ea(s3/2,53/2)/(s3/2)"}/" ) — L as 1, — o,
uniformly for ¢; in bounded subsets of [0, oc), where L = 1/B'/(1+22),

Lemma 2 Let the dielectric response have the properties (CR),(V),(C) and
(S).

If X ¢ (71(00,0),71(0,0)), then C N {(p,0) : p > 0} = 0.

If X € (71(00,0),71(0,0)), then there exist py > 0 and f € C([0,p,]) N
C((0,py)) such that

f(O) = 07f( p/\) = Oaf(p) >0 fOT’ allp € (0,]?,\)

and C'={(p,f(p)) : 0 <p <pr}.

Furthermore lim, o f'(p) = % and lim,_,,, f'(p) = —oo.
0 71(0,0)
Also, py — A — ’ )
50, P { o B { 71(00, 0)

9



Proof. Forp >0,
I(p,0) = p* {&*(p,0)/p* — A/2} and

®*(p,0)/p* = Jy n(t**/2,0)tdt — { %1(105700))//22 as p — { OOO :
Furthermore, by (S)(a), v1(t1,0) is a strictly decreasing function of ¢; on
[0,00) and so ®*(p,0)/p* is a strictly decreasing function of p on [0, 00) .
Thus,
if A ¢ (71(00,0),71(0,0)), then C N {(p,0):p >0} =0 and
if A € (71(00,0),71(0,0)), then there exists a unique py > 0 such that
0 ~41(0,0
Clearly py — { o &8 A — { 71(00,0)
From now on we suppose that A € (vy1(00,0),41(0,0)).
For all (p,q), d21(p,q) = —qd39*(p,q) and so 021(p,q) < 0 if ¢ > 0. Hence
for p=0and p > py, I(p,q) <0 for all ¢ > 0.
Using (S)(b) we now show that /(p,q) — —oc as ¢ — oo. In fact,

1
®*(p,q) — 02,9 (p,q) = / 0@ (tp.tq)p + 0,07 (tp, tq)qdt — g0, @ (p, q)
0

= Jo NP /2,822 2)tp? + 2 (19 12,1267 | 2)tqPdt — 1a(p? /2,47 [2)* .
Hence

g 208220 {0*(p, q) — 0,9 (p, q)} =
g~204)/420) [Lo (125212 12¢2 2)tp2di+ [ 12(12p /2,27 /2)[t2¢2/2]°[¢? /2] ~Ptdt
12(/2,4°[2)[¢*2)°2°

— 04+2°L {fol =284t — 1} = —2°L/2(14a) < 0 as ¢ — oo, uniformly
for p in bounded intervals.

It follows that, given P > 0, there exists Q(P) > 0 such that /(p,q) <0
for all p € [0, P] and ¢ > Q(P).

Thus, for p € (0,p)), there is a unique ¢ = f(p) such that I(p, f(p)) = 0.
Since d:1(p, f(p)) < 0, the implicit function theorem yields f € C* ((0,p,)).

Furthermore, if p, — 0 and f(p,) — ¢ we have that ¢ € [0,Q(p))]
and so [(0,q) = 0. This implies that ¢ = 0 and we may conclude that

lim,_0 f(p) = 0.
Similarly, lim,_,,, f(p) = 0.

10



For p € (0,p)),
f'(p) = =0iL(p, f(p))]0:1(p, f(p)) = Ol (p, f(p))] F(p)0; @ (p, f(p))

and

nl(p,q) =n(p*/2,4*/2)p — 017v2(p* /2. 4% /2)pg* — Ap.

Since 01 I(p, f(p))/p — 711 (P3/2,0) = A <7(0,0) = A <0 as p — pa,
we see that f'(p) — —oo as p — pa.

On the other hand, I(p,q) =0

= [0 (22,2631 2)tp* + 7 (t2p?/2,£2¢% /2t dt — 1(p?/2,¢%/2)q* —
Ap?/2 =0

= {f) (82?2, 8267 12)tdt—72(p* /2, 4% /2)}4* = —{ f (29?2, 12¢7 [2)tdt—
A/2}p?

= {f(p)/p}} — 2L@O2 - nBIA oy, 0,

’72(0,0)/2—’72(0,0) ’VQ(0,0)
Hence f'(p) — W;(QO(&)O_)A asp— 0. m

From these properties of C' we can deduce the following information about
guided TM-modes in a straightforward way so we only give a brief indication
of the arguments.

Recall that v1(0,0) = 1/£1(0,0) and that v;(c0,0) = 1/&1(c0,0).

Theorem 3 Let the dielectric response have the properties (CR),(V),(C)
and (S).

If X ¢ (71(00,0),71(0,0)), then there is no guided TM-mode.

If X € (71(00,0),71(0,0)), then there exists a unique guided TM-mode uy
such that u)(0) = py and v’ (0) = 0.

Furthermore, uy(x) = uy(—z) > 0 for all x € R and,

for any u < W;(QO(’S’)O_)A,limI__)oo exp(px) uy(xz) = 0.

All guided TM-modes are of the form Luy(x + §) for some & € R and
some A € (y1(00,0),71(0,0)) .

Proof. If u is a guided TM-mode so is +u(x + 4) for all 6 € R. Hence
we may assume that u(0) = maxu(z) > 0 and that «'(0) = 0. Since
(u(0),u'(0)) € C, this shows that A € (y1(00,0),41(0,0)).

For A in this range we denote by u, the solution of (2) which satisfies the
initial conditions u(0) = py and u/(0) = 0 where p, is given by the lemma.
Note that in (2) we have that

{g20/(2)} = Ovya(u(x)?/2, 0/ () [2)u(x)u'(x)”

11




H O (ulx)?/2, v/ (2)*/2)u'(2)* + ma(u(2)?/2, v/ (2)*/2) }u"(x)

Recalling that 0y {72(t3/2,13/2)t2} > 0, we see that the coefficient of u”(z)
is a C'—function of u and u’ which cannot vanish. It is now easy to show
that w) is unique, is defined on all of R and is a guided TM-mode. m
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