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ABSTRACT

            Wavelet transform analysis of projected fringe pattern for phase recovery in 3-D shape measurement of objects is 
investigated. The present communication specifically outlines and evaluates the errors that creep in to the reconstructed 
profiles when fringe images do not satisfy periodicity. Three specific cases that give raise to non-periodicity of fringe 
image are simulated and leakage effects caused by each one of them are analyzed with continuous complex Morlet 
wavelet transform. Same images are analyzed with FFT method to make a comparison of the reconstructed profiles with 
both methods. Simulation results revealed a significant advantage of wavelet transform profilometry (WTP), that the 
distortions that arise due to leakage are confined to the locations of discontinuity and do not spread out over the entire 
projection as in the case of Fourier transform profilometry (FTP).  
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1. INTRODUCTION 

The automatic measurement of an object shape is very important in industrial quality control, machine vision 
and solid modeling applications. Several 3-D object profilometry methods including phase measurement profilometry 
(PMP), Fourier transform profilometry (FTP), modulation measurement profilometry (MMP), spatial phase detection 
(SPD) etc., have been exhaustively studied. Among these, owing to its ability to evaluate the phase from a single fringe 
pattern1, FTP became the most preferred choice for dynamic applications. Since the introduction of FTP, several 
improvements have been suggested during last two decades2.

The common procedure in extracting the object profile through FTP involves- projecting a sinusoidal fringe 
pattern on to the object from an offset angle and recording the image of the pattern which is phase modulated by the 
topographical variations of the object surface. FFT analysis is then carried out to extract the phase from the deformed 
fringe pattern from which height distribution of the object can be calculated. Although Fourier transform profilometry 
has grown into a mature technique, some important restrictions still exist in the range of geometries that can be 
measured. This is inherently tied to the use of a Fourier transform where the fringe and height distributions are assumed 
to be periodic with the image window, if not distortions (leakage) will result (the effect will be illustrated in Sec-4).  

Recently some attempts were made to avoid this leakage and thereby reduce the errors in the reconstructed 
profiles. A common approach to this problem is using some filters3 to reduce the effect, which, however, results in a 
diminishing frequency resolution. Effectiveness of pre-transform windowing in tackling leakage problem was     
evaluated 4. Windowing reduces the magnitude of fringes at the outer edges of the image to such an extent that the phase 
there is no longer discernable. Moreover, the reduction in errors with the use of pre-transform window is found to be 
only a few percent if the noise level is more than ~10%. Recently Vanherzeele et al.,5 have proposed a method that do 
not exhibit this leakage effect where in, instead of applying a Fourier transform on the full image, the image is divided 
into small partitions. For each of these partitions phase and frequency of the fringes is estimated using a regressive 
Fourier transform technique.  
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Computational load of this technique is quite heavy, because for every window first of all least squares has to be 
performed to generate initial values for the maximum likelihood equations which in turn have to be iterated at least about 
10-20 times. This process has to be repeated (M-M0)*N times to evaluate the entire image (M×N).  

On the other hand, very recently only, use of WT analysis in phase recovery from projected fringe pattern for 
3D shape measurement was introduced for the first time6 and its advantage over Fourier transform with respect to the 
applicable limit (maximum measurable slope of object surface) was demonstrated 7. Just as FFT analysis, WT analysis 
can also extract phase information from a single fringe pattern. Even though few papers mentioned the use of wavelet 
transform for the extraction of phase of fringes8,9, no reference to its effectiveness in handling issues related to leakage 
problem faced in FTP have been found. This paper evaluates for the first time, errors that creep into the calculation of 
the three-dimensional shape of an object using wavelet transform analysis from a non-periodic fringe image. Sec-2 
provides a brief description of FTP and issues related to leakage. Description of WTP is presented in Sec-3. In Sec-4 
different height distributions which cause leakage are simulated and profiled through FTP and WTP methods. Sec-5 lists 
the conclusions. 

2. FOURIER TRANSFORM PROFILOMETRY (Takeda’s Method)1

This section briefly summarizes the procedure involved in analyzing a fringe pattern through FFT method.  The 
intensity profile of the recorded image when fringe pattern is projected on to the object is given by  

g (x, y) = a(x, y) + b(x, y) cos (2 f0x + (x, y)) 

where (x, y) contains the information about the object profile and a(x, y), b(x, y) represent unwanted irradiance 
variations arising from the non-uniform light reflection by a test object. This equation can be rewritten as  

g(x, y) = a(x, y) + c(x, y) exp(j2 f0x) + c*(x, y) exp(-j2 f0x)  where c (x, y) = ½b(x, y) exp (j  (x, y)) 
                                                                             
 * denotes complex conjugate. Next above Eq. is Fourier transformed with respect to x by the use of a fast Fourier 
transform algorithm, which gives  

G(f, y) = A(x, y) + C( f-f0 , y) + C*(f- f0 , y )

where capital letters denote the Fourier spectrum and f is the spatial frequency in the x direction. Since the spatial 
variations of a(x, y), b(x, y) and (x, y) are slow compared with the spatial frequency f0 , the Fourier spectra in above 
equation are separated by the carrier frequency f0. One can make use of either of the two spectra centered around the 
carrier, say C (f- f0, y) and translates it by f0 on the frequency axis towards the origin to obtain C (f, y). The unwanted 
background variations a(x, y) has been filtered out in this stage. Again using inverse FFT, inverse Fourier transform of C 
(f, y) w.r.to f is computed to obtain c (x, y).
 The phase part of c(x, y) can be separated from the rest by calculating the imaginary part of the complex logarithm:  

(x, y) =Im{log[ c(x, y) ]}  

The phase map for the whole image is formed by repeating this process for each horizontal line in the image. However 
the phase thus obtained is indeterminate to a factor of 2  (wrapped phase). The phase unwrapping algorithm can correct 
these discontinuities. 

Although different authors have shown independently that the Fourier transform method works well on various 
examples, there is an important restriction on the applicability: 10

The image i(x, y) should be periodic (values on the left and right side of the image borders should be equal). If this is not 
the case leakage will occur (the energy of a spectral line at frequency k will spread out over its neighboring frequency 
lines). 
This means that in order to avoid distortions in the reconstructed image with classical Fourier transform methods a few 
‘rules’ have to be respected. 



The carrier frequency f 0 should be chosen in such a way that the image i(x, y) contains an integer number of 
fringes. 

The height distribution h(x, y) itself should be periodic in the time window (this is for example satisfied   when 
the object under investigation falls completely within the image because then the height is zero near the border 
of the image). 

The origin for the leakage can be seen by considering the following simple one dimensional sinusoidal signal:  

i(x) = 1/M  I(k) exp 2 i(k/M), 

where I(k) are the FFT coefficients. The exponential basis functions that are used in the approximations have the 
frequencies f k = k/M for k=1, …, M/2. If the spatial carrier frequency f0 of the original sinusoidal signal i(x) is not equal 
to one of FFT frequencies f k (e.g., f0 = 1.5/M), leakage will occur (see Fig. 1). 

In this paper analysis of images which do not satisfy the periodicity condition is carried out with both Fourier 
transform method and Wavelet transform method and the results are compared. Next section briefly summarizes 
procedure involved in wavelet transform profilometry (WTP). For elaborate description reader is advised to go through 
Ref. 7.   

3. WAVELET TRANSFORM PROFILOMETRY (WTP)

Wavelets offer a powerful method to quantify how energy is spatially distributed at multiple frequencies. The one 
dimensional wavelet transform of the fringe signal is defined by 

W (a, b) = 1/ a h*[ (x-b) /a ] g(x, y) dx 
            
Each wavelet is obtained by scaling a mother wavelet h(x) by a >0 and translating it by b. The choice of an appropriate 
wavelet for a given application is an important practical question. In this study, the Morlet wavelet was used to deal with 
phase recovery because it is known to provide a better localization in both spatial and frequency domains6. The Morlet 
wavelet, which is a plane wave modulated by a Gaussian, is defined as   

h (x) = 1/4 exp (icx) exp(-x2 /2), 

where c is a fixed spatial frequency. Computing the 1-D complex Morlet wavelet transform of the signal only in the x 
direction with y fixed, we obtain the phase of WT coefficients by taking the inverse tangent of the quotient of the 
imaginary part and by dividing it by the real part: 

 (a, b) = arctan { imag[W(a, b)]/ real[W(a, b)] } 

and the amplitudes of WT coefficients are defined as 
                

A(a, b) = ({imag[W(a, b)]}2 + {real[W(a, b)]}2 )1/2

The desired phase distribution (x, y) which contains the information about the object topographical variations can be 
obtained from the phase  (a, b) at ridge points7 (The maximum of the WT amplitudes at every position is defined as the 
ridge of the WT coefficient).   Phase distribution of the entire image can be obtained by repeating this process for each 
value of y.  It should be noted that the phase function obtained is a wrapped phase map and unwrapping is required to get 
continuous profile. 

Because the instantaneous frequencies f k (or equivalently scales) that can be used in the WT analysis is 
arbitrary, leakage can be reduced. (i.e., f k is not limited to the frequencies of the FFT frequency lines). WT analysis can 
be carried out at different range of scales with variable resolution and thus the unknown local frequency can be estimated 
with better accuracy (see Fig. 5.6). 



Figure. 1 (a) sine wave with integer number of periods and its spectrum (b) non-integer number of periods 

4. COMPUTER SIMULATIONS AND DISCUSSIONS

To evaluate the performance of WTP in handling non-periodic fringe images, an object with the following height
distribution is simulated and processed. When any one of the following condition is satisfied then the image becomes
non-periodic. The same images are analyzed with FTP and reconstructed profiles are compared against the true profile.
The height distribution of the object considered for simulation is same as the one illustrated in Ref. 10. The simulated
object has the height distribution given by:

h (x, y) = cos(2 fx x) * sin(2 f y y)

This height distribution allows simulations of varying distortions which can occur in practice (Fig.2).

A carrier frequency f 0 which does not coincide with a frequency line of the FFT grid, which simply means that
the number of fringes in the image is not an integer.

The height distribution h(x, y) is not periodic in the time window (i.e. f x or f y are not integers).

A discontinuity in the height distribution.

Fig.3 shows the simulated image of the projected fringe pattern with non integer number of fringes on the object with
periodic height distribution. Frequency spectrum of this image (along a row) is shown in Fig. 4, which clearly shows the
presence of leakage. As can be seen, when a considerable amount of energy goes out of the filter band width, non-
negligible errors creep into the reconstructed 3-D profile. The presence of higher harmonics makes the process even
more difficult. Fig 7(a) shows the reconstructed profile with 2D-FFT method. In our work wavelet transform analysis is
carried out with MATLAB. Graphical User Interface wavelet tool box enables to analyze the signals just by setting 
various parameters in the window such as range of scales, resolution, sampling period and type of mother wavelet etc.
Fig 5 show the image of the complex continuous 1-D wavelet transform GUI menu. As is already pointed out earlier,
accuracy of measurement depends on the accuracy with which instantaneous local frequency of the pattern is estimated. 
This in turn depends on the resolution of the scale used in calculating wavelet coefficients. Thus first WT is calculated
over a large range of scales with less resolution. Then ridges (corresponding scale values at each position where the WT
coefficients have maximum amplitude) are identified. Then again WT is computed over very small range of scales
centered on ridge points with increased resolution. This procedure ensures reduction in leakage by accurately estimating
instantaneous frequency. This is illustrated in Fig. 5,6.



  Fig.2 Simulated height distribution h(x, y)   Fig.3 Intensity image of projected fringes
with carrier frequency f0=10.5

Fig. 4 Frequency spectrum of image in Fig.2 along a row (exhibiting leakage)

Fig.5 Image showing GUI tool box in MATLAB for Wavelet analysis



Fig. 6 Amplitude and phase of wavelet coefficients calculated with increased resolution of scale near ridges (position (x
or b) along x-axis and scale/dilation factor (a) along y-axis)

Fig.7 Height demodulated from Fig. 3 using (a) 2D-Fourier transform and (b) Wavelet Transform analysis

Fig.8 Height demodulated from Fig. 3 along 135th row using (a) Fourier transform and (b) Wavelet Transform analysis 

As it was already pointed out in 10, leakage due to a non-periodic height distribution is of even greater importance. The
most important reason is a practical one. When measuring large objects one usually has to relay on taking separate sub
images. This almost guarantees that the height will not be the same at the borders, which means a discontinuity and in
turn leads to leakage. On top of that these distortions are not confined to the image edges but are spread out over the
entire projection. Fig. 9 show image of simulated non-periodic height distribution and Fig. 10 shows the results obtained
by FFT and WT analysis. Fig. 11 shows the comparison of reconstructed profiles along a row with true profiles.  To see
the effect of surface discontinuity on the reconstruction of profile, the height distribution shown in Fig. 12 is simulated.
Fig. 13 shows amplitude and phase of WT coefficients as Gray scale images. As can be seen from the Fig. 14, 15, WT
analysis gives very good results except for the region near the step of the image. It is very clear that even though at 
locations of discontinuities there is small error in reconstruction it does not propagate and affect other regions in the WT
method.



  Fig. 9(a) Height distribution with fx=2.5, fy=2.5 (b) Intensity of projected fringes
 (Non-periodic distribution)

Fig.10 Height demodulated from Fig. 9(b) using (a) Fourier transform and (b) Wavelet Transform analysis

Fig.11Height demodulated from Fig. 9(b) along 250th row using (a) Fourier transform and (b) Wavelet Transform analysis

Fig.12 (a) Height distribution with a step  (b) Intensity of projected fringes



Fig. 13 Amplitude and phase of wavelet coefficients represented as gray scale map (position/pixels (x or b) along x-axis
and scale/dilation factor (a) along y-axis)

Fig.14 Height demodulated from Fig. 12(b) using (a) Fourier transform and (b) Wavelet Transform analysis

Fig.15. Height demodulated from Fig. 12(b) along 135th using (a) Fourier transform and (b) Wavelet Transform analysis



5. CONCLUSIONS 

Performance of wavelet transform profilometry in handling non-periodic fringe images is evaluated. By varying either 
geometry of the object surface or the illumination conditions three typical cases which introduces non-periodicity in 
fringe image are simulated and analyzed with WTP. To verify its ability in handling issues related to leakage, same 
objects are profiled with FFT method and errors in the reconstructed profiles obtained from both methods are compared.  
It is observed that the performance of WTP is superior to that of FTP. The significant advantage of using WTP is that the 
errors in the reconstruction are confined to the locations of discontinuities and does not spread out over the entire 
projection. As it was already demonstrated in literature that other important problems faced in the use of FTP such as 
maximum measurable slope of the object and robustness against noise are well handled with WTP, and also as our work 
shows some important advantages of it in issues related to leakage, wavelet transform profilometry can become a 
reliable and promising tool for 3-D shape measurement in future.              
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