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1 Introduction

Modelling with stochastic partial differential equations (spde’s) can lead to
the successful understanding of the evolution of many physical phenomena.
One basic issue is how to choose the ingredients so that the spde possesses a
solution in a strong sense—giving rise to a function-valued stochastic process—
and to determine, in the most precise possible way, the function space that
contains the sample paths of the solution. It is well known that this amounts
to finding the right balance between the roughness of the driving noise—the
stochastic input in the model—and the singularities of the differential operator
that defines the equation, which may depend on the dimension.

This paper focusses on the analysis of the following class of spde’s:

(

∂2

∂t2
+ (−∆)(k)

)

u(t, x) = σ
(

u(t, x)
)

Ḟ (t, x) + b
(

u(t, x)
)

,

u(0, x) = v0(x),
∂

∂t
u(0, x) = ṽ0(x). (1)

In this equation, t ∈ [0, T ] for some fixed T > 0, x ∈ R
d, d ∈ N, k ∈ ]0,∞[

and ∆(k) denotes the fractional Laplacian on R
d. This includes for instance

the stochastic wave equation in any spatial dimension d. The coefficients σ
and b are Lipschitz continuous functions and satisfy |σ(z)|+ |b(z)| ≤ C|z|, for
some positive constant C. The generalized process Ḟ is a Gaussian random
field, white in time and spatially homogeneous with spatial correlation. More
precisely, let Γ be a non-negative and non-negative definite tempered measure
on R

d. Let D(Rd+1) be the space of Schwartz test functions (see [18]). On a

probability space (Ω,F , P ), we define a Gaussian process F =
(

F (ϕ), ϕ ∈

D(Rd+1)
)

with mean zero and covariance functional given by

E
(

F (ϕ)F (ψ)
)

=
∫

R+

ds
∫

Rd
Γ(dx)(ϕ(s) ∗ ψ̃(s))(x),

where ψ̃(s)(x) = ψ(s)(−x).

Using an extension of Walsh’s stochastic integral with respect to martingale
measures [22], developed in [5], we give a rigourous meaning to problem (1) in
a mild form (see Equation (44)). In fact, in [5] a particular case of Equation
(1) (when k ∈ N is an integer and b ≡ 0) was introduced and studied.

Let µ = F−1Γ be the spectral measure of F and assume that

∫

Rd

µ(dξ)

(1 + |ξ|2)k
<∞. (2)
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Under suitable assumptions on the initial condition and the restrictions on k
and b mentioned above, Theorem 9 in [5] establishes the existence of a unique
solution satisfying

sup
0≤t≤T

E
(

‖u(t)‖2
L2(Rd)

)

<∞,

for which t 7→ u(t) ∈ L2(Rd) is mean-square continuous.

Here, we want to study the regularity properties of the sample paths—both in
time and in space—of Equation (1), when conditions stronger than condition
(2) are imposed.

In several examples of spde’s driven by spatially homogeneous noise, one can
prove that their solutions are real-valued random fields u =

(

u(t, x), (t, x) ∈

[0, T ] × R
d
)

. This is the case for the stochastic heat equation in any spatial

dimension d ≥ 1, for the stochastic wave equation in dimension d ∈ {1, 2}, or
even in dimension d = 3, if the initial conditions vanish ([3], [4], [13]). Joint
Hölder continuity in (t, x) of the sample paths of the solution can usually be
obtained using Kolmogorov’s continuity condition ([13], [16]). However, for
more general equations, such as those considered in this paper, one can only
expect solutions u =

(

u(t), t ∈ [0, T ]
)

taking values in some function space.
Kolmogorov’s condition is still well suited for establishing regularity properties
in time, but other methods are needed for the study of spatial continuity.
Regularity in space may be obtained by means of Sobolev type imbeddings, if
one can prove that the solution takes values in some fractional Sobolev space
Hα

p , p ∈ [1,∞[, α ∈ [0,∞[. Indeed, Hα
p is imbedded in the space of γ-Hölder

continuous functions Cγ(Rd), for any γ ∈ ]0, α− d
p
[, whenever α > d

p
. This fact

explains one of the main advantages of an Lp-theory for spde’s, for arbitrary
values of p, leading to optimal results in γ.

Until now, Lp-theory for spde’s has been mainly developed for parabolic spde’s
(see for instance [11] and the references herein). Recently, we have been able
to use an Lp approach to study the sample path behaviour in (t, x) of the
stochastic wave equation in dimension d = 3 (see [6]), driven by the type
of noise described above and with a covariance function whose singularity is
given by a Riesz kernel. The methods used in the analysis of this particular
equation are very much related to the special form of the fundamental solution
of the equation and of the covariance function of the noise; they do not seem
to be exportable to the more general situation we are considering here.

In this paper, we establish sufficient conditions on the spectral measure µ
of the noise that ensure that the solution of Equation (1) belongs a.s. to
some fractional Sobolev space Hα

2 , for some α ∈ [0, k[. Then we prove Hölder
continuity in time of the solution and show that the results are optimal when
the covariance measure is a Riesz kernel.
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Let M be the martingale measure extension of the process F , constructed in
[3] (see also [4]) and let Z be an L2(Rd)-valued stochastic process. In Section
2, we prove that under suitable assumptions on the S ′(Rd)-valued function G,
the stochastic integral

vG,Z(T ) =
∫ T

0

∫

Rd
G(s, · − y)Z(s, y)M(ds, dy)

introduced in [5], which defines a random element of L2(Rd), belongs in fact

to Hα
2 (Rd) and is such that E

(

‖vG,Z(T )‖2
Hα

2 (Rd)

)

< ∞. To establish this fact,

we will need to prove the existence of the Fourier transform of the stochastic
integral vG,Z(T ). Recall [21] that for a function g ∈ Hα

2 (Rd),

‖g‖2
Hα

2 (Rd) =
∫

Rd
dξ (1 + |ξ|2)α |Fg(ξ)|2,

where, for ϕ ∈ C∞
0 (Rd),

Fϕ(ξ) =
∫

Rd
dx eiξx ϕ(x).

Let L = ∂2
tt + (−∆)(k), k ∈ ]0,∞[. We prove that, if for some α ∈ [0, k[,

∫

Rd

µ(dξ)

(1 + |ξ|2)k−α
<∞, (3)

then the preceding result applies to the fundamental solution of Lu = 0. For
the other results of this paper, we will assume property (3). We note that we
treat indifferently the case of integer and fractional powers of the Laplacian.

Section 2 is devoted to studying path properties in time of the stochastic
integral

vG,Z(t) =
∫ t

0

∫

Rd
G(s, · − y)Z(s, y)M(ds, dy)

and the Hölder continuity of

uG,Z(t) =
∫ t

0

∫

Rd
G(t− s, · − y)Z(s, y)M(ds, dy). (4)

We first identify the increasing process of the Hα
2 (Rd)-valued martingale

(

vG,Z(t), t ∈ [0, T ]
)

. Fix α ∈ [0, k[ and assume that there exists η ∈ ]α
d
, 1[

such that the following condition, which is stronger than (3), holds:

∫

Rd

µ(dξ)

(1 + |ξ|2)kη−α
<∞. (5)

Using Kolmogorov’s continuity condition, we obtain that the sample paths of
(uG,Z(t), t ∈ [0, T ]) are a.s. Hölder continuous. In the particular case where
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Γ(dx) = |x|−β, β ∈ ]0, d[, the results are proved to be optimal. By means
of the Sobolev imbedding theorem, we also obtain Hölder continuity in the
space variable. However, the conditions for validity of this result are rather
restrictive.

In Section 3, we transfer the results of the preceding sections to the solution
of Equation (1). Fix α ∈ [0, k[, assume (3) and that the initial conditions
are such that v0 ∈ Hα

2 (Rd) and ṽ0 ∈ Hα−k
2 (Rd). We prove the existence of a

solution to (1) satisfying

sup
0≤t≤T

E
(

‖u(t)‖q
Hα

2 (Rd)

)

<∞.

Replacing assumption (3) by (5) and under additional (but natural) hypothe-
ses on the initial conditions, we obtain Hölder continuity in time of the solution
of the equation.

2 The stochastic integral as a random vector with values in a frac-
tional Sobolev space

In this section, we consider the stochastic integral defined in Theorem 6 of [5].
Our aim is to prove that under suitable assumptions, this integral takes its
values in the fractional Sobolev space Hα

2 (Rd), for some α ∈ ]0,∞[.

Throughout this section, let Fs be the σ-field generated by the martingale mea-
sure (Mt, 0 ≤ t ≤ s) described in the introduction. We consider a stochastic
process Z = (Z(s), s ∈ [0, T ]) with values in L2(Rd) such that Z(s) is Fs-
measurable and the mapping s 7→ Z(s) is mean-square continuous from [0, T ]
into L2(Rd).

The main result of this section is as follows.

Theorem 1 Consider a deterministic map G : [0, T ] −→ S ′(Rd). Fix α ∈
[0,∞[ and assume that the following three conditions hold:

(i) For each s ∈ [0, T ], FG(s) is a function and

sup
0≤s≤T

sup
ξ∈Rd

(1 + |ξ|2)
α
2

∣

∣

∣FG(s)(ξ)
∣

∣

∣ <∞.

(ii) For all ψ ∈ C∞
0 (Rd),

sup
0≤s≤T

sup
x∈Rd

∣

∣

∣

(

G(s) ∗ ψ
)

(x)
∣

∣

∣ <∞.
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(iii)
∫ T

0
ds sup

ξ∈Rd

∫

Rd
µ(dη)(1 + |ξ − η|2)α

∣

∣

∣FG(s)(ξ − η)
∣

∣

∣

2
<∞.

Then the stochastic integral

vG,Z(T ) =
∫ T

0

∫

Rd
G(s, · − y)Z(s, y)M(ds, dy)

satisfies
E
(

‖vG,Z(T )‖2
Hα

2 (Rd)

)

<∞

and

E
(

‖vG,Z(T )‖2
Hα

2 (Rd)

)

= E
(

‖v
(I−∆)

α
2 G,Z

(T )‖2
L2(Rd)

)

= Iα
G,Z , (6)

where

v
(I−∆)

α
2 G,Z

(T ) =
∫ T

0

∫

Rd
(I − ∆)

α
2G(s, · − y)Z(s, y)M(ds, dy)

and

Iα
G,Z =

∫ T

0
ds
∫

Rd
dξE

(

|FZ(s)(ξ)|2
)

×
∫

Rd
µ(dη)(1 + |ξ − η|2)α

∣

∣

∣FG(s)(ξ − η)
∣

∣

∣

2
. (7)

The proof of this theorem relies on a preliminary result that identifies the
Fourier transform of the stochastic integral vG,Z for G and Z satisfying more
restrictive assumptions than those above, namely:

(G1’) For each s ∈ [0, T ], G(s) ∈ C∞(Rd), FG(s) is a function,

sup
0≤s≤T

sup
x∈Rd

|G(s, x)| <∞ and sup
0≤s≤T

sup
ξ∈Rd

|FG(s)(ξ)| <∞.

(G2) For s ∈ [0, T ], Z(s) ∈ C∞
0 (Rd) a.s., and there is a compact set K ⊂ R

d

such that suppZ(s) ⊂ K, for s ∈ [0, T ]. In addition, the mapping s 7→ Z(s)
is mean-square continuous from [0, T ] into L2(Rd).

(G3) IG,Z <∞, where

IG,Z =
∫ T

0
ds
∫

Rd
dξ E(|FZ(s)(ξ)|2)

∫

Rd
µ(dη)|FG(s)(ξ − η)|2. (8)

Notice that our assumption (G1’) is stronger than (G1) in [5] (which does
not suppose the boundedness of the Fourier transform of G), while (G2) and
(G3) appear with the same name in [5].
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Under (G1’), (G2), and (G3), the stochastic integral

vG,Z(T )(x) =
∫ T

0

∫

Rd
G(s, x− y)Z(s, y)M(ds, dy)

is well-defined, for any x ∈ R
d, as a Walsh stochastic integral (see Lemma 1

in [5]). The integral

∫ T

0

∫

Rd
FG(s, · − y)(ξ)Z(s, y)M(ds, dy)

is also well-defined as a Walsh stochastic integral. Indeed, FG(s)(· − y)(ξ) =
eiξ·yFG(s)(ξ), and

E
( ∫ T

0
ds
∫

Rd
Γ(dy)

∫

Rd
dz|eiξ·zFG(s)(ξ)Z(s, z)eiξ(y−z)FG(s)(ξ)Z(s, y − z)|

)

≤ sup
0≤s≤T

sup
ξ∈Rd

|FG(s)(ξ)|2
∫ T

0
ds
∫

Rd
Γ(dy)E

(

|Z(s, ·)| ∗ |Z̃(s, ·)|
)

(y)

≤ C
∫ T

0
dsE

(

‖Z(s, ·)‖2
L2(Rd)

)

Γ(K −K) <∞.

Proposition 1 We assume the hypotheses (G1′), (G2) and (G3). Then the
Fourier transform FvG,Z(T ) of the stochastic integral vG,Z(T ) is given by

FvG,Z(T )(ξ) =
∫ T

0

∫

Rd
FG(s, · − y)(ξ)Z(s, y)M(ds, dy).

Proof. Let ϕ ∈ S(Rd). We want to check that

〈vG,Z(T ),F−1ϕ〉 = 〈
∫ T

0

∫

Rd
FG(s, · − y)(·)Z(s, y)M(ds, dy), ϕ〉, (9)

where 〈·, ·〉 denotes the inner product in L2(Rd).

We verify the assumptions of the stochastic Fubini’s theorem in [22]: since G
is uniformly bounded and Z(s) has compact support,

E
( ∫

Rd
dx
∫ T

0
ds
∫

Rd
Γ(dy)

∫

Rd
dz |F−1ϕ(x)|2|G(s, x− z)|

× |Z(s, z)| |G(s, x− z + y)| |Z(s, z − y)|
)

≤ CE
( ∫

Rd
dx |F−1ϕ(x)|2

∫ T

0
ds
∫

Rd
Γ(dy)

∫

Rd
dz |Z(s, z)| |Z̃(s, y − z)|

)

≤ C‖ϕ‖2
L2(Rd)Γ(K −K)

∫ T

0
dsE

(

‖Z(s)‖2
L2(Rd)

)

<∞.
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Applying this Fubini’s theorem and Plancherel’s identity, we obtain

〈vG,Z(T ),F−1ϕ〉 =
∫

Rd
dx
(

∫ T

0

∫

Rd
F−1ϕ(x)G(s, x− y)Z(s, y)M(ds, dy)

)

=
∫ T

0

∫

Rd

(

∫

Rd
dxF−1ϕ(x)G(s, x− y)

)

Z(s, y)M(ds, dy)

=
∫ T

0

∫

Rd

(

∫

Rd
dξ ϕ(ξ)FG(s)(ξ) exp(iy · ξ)

)

Z(s, y)M(ds, dy).

(10)

In order to apply again the stochastic Fubini’s theorem, we note that

E
( ∫

Rd
dξ
∫ T

0
ds
∫

Rd
Γ(dy)

∫

Rd
dz |ϕ(ξ)|2|FG(s)(ξ)|2|Z(s, z)| |Z(s, y − z)|

)

≤ Γ(K −K)
∫

Rd
dξ
∫ T

0
ds |ϕ(ξ)|2|FG(s)(ξ)|2E

(

‖Z(s)‖2
L2(Rd)

)

≤ C‖ϕ‖2
L2(Rd) sup

0≤s≤T
E
(

‖Z(s)‖2
L2(Rd)

)

sup
0≤s≤T

sup
ξ∈Rd

|FG(s)(ξ)|2. (11)

Therefore, applying again the above-mentioned Fubini’s theorem shows that
the last right-hand side of (10) is equal to

∫

Rd
dξ ϕ(ξ)

(∫ T

0

∫

Rd
FG(s, · − y)(ξ)Z(s, y)M(ds, dy)

)

,

which establishes (9). 2

Proof of Theorem 1. We proceed in several steps.

Step 1. Assume first that G and Z satisfy the assumptions (G1’), (G2) and
(G3). Suppose also that Gα(s) := (I − ∆)

α
2G(s) satisfies (G1’) and that

Iα
G,Z <∞ (this last condition is implied by (iii)). Then the stochastic integral
v
(I−∆)

α
2 G,Z

(T ) is well-defined in Walsh’s sense and satisfies

E
(

‖v
(I−∆)

α
2 G,Z

(T )‖2
L2(Rd)

)

= Iα
G,Z . (12)

Indeed, this follows from Lemma 1 in [5]. Moreover, Proposition 1 implies that

Fv
(I−∆)

α
2 G,Z

(T ) = v
F(I−∆)

α
2 G,Z

(T ). (13)

By the definition of the norm inHα
2 (Rd), Plancherel’s theorem and Proposition
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1, we obtain

E
(

‖vG,Z(T )‖2
Hα

2 (Rd)

)

= E
(

∫

Rd
dξ (1 + |ξ|2)α

∣

∣

∣FvG,Z(T )(ξ)
∣

∣

∣

2)

= E
(

∫

Rd
dξ (1 + |ξ|2)α

∣

∣

∣vFG,Z(T )(ξ)
∣

∣

∣

2)

= E
( ∫

Rd
dξ
∣

∣

∣

∫ T

0

∫

Rd
(1 + |ξ|2)

α
2 FG(s, · − y)(ξ)Z(s, y)M(ds, dy)

∣

∣

∣

2
)

= E
( ∫

Rd
dξ
∣

∣

∣

∫ T

0

∫

Rd
F
(

(I − ∆)
α
2G(s, · − y))(ξ)Z(s, y)M(ds, dy)

∣

∣

∣

2
)

= E
(

‖v
(I−∆)

α
2 G,Z

(T )‖2
L2(Rd)

)

. (14)

Consequently, the theorem is proved in this particular situation. Notice that
(6) follows from (12) and (14).

Step 2. Assume that G(s) and Gα(s) satisfy (G1’) and that condition (iii)
holds. By Lemma 3 in [5], there exists a sequence of stochastic processes
(Zn, n ≥ 1) satisfying (G2) and (G3) such that limn→∞ I0

Gα,Zn−Z = 0 and

vGα,Z(T ) = lim
n→∞

vGα,Zn(T ),

with the limit taken in L2(Ω;L2(Rd)). The properties of Gα ensure that
limn→∞ Iα

G,Z−Zn
= 0 as well.

We want to prove that (vG,Zn(T ), n ≥ 1) is a Cauchy sequence in
L2(Ω;Hα

2 (Rd)). Since Hα
2 (Rd)) is imbedded in L2(Rd), the two limits of the

sequence—in L2(Ω;Hα
2 (Rd)) and in L2(Ω;L2(Rd))—must coincide.

By the results proved in Step 1,

lim
n,m→∞

E
(

‖vG,Zn−Zm(T )‖2
Hα

2 (Rd)

)

= lim
n,m→∞

Iα
G,Zn−Zm

= 0. (15)

Let us now prove (6) in this particular case. The previous convergence, the
results stated in the first part of the proof and Lemma 3 in [5] applied to
g := (I − ∆)

α
2G yield

E
(

‖vG,Z(T )‖2
Hα

2 (Rd)

)

= lim
n→∞

E
(

‖vG,Zn(T )‖2
Hα

2 (Rd)

)

= lim
n→∞

E
(

‖v
(I−∆)

α
2 G,Zn

(T )‖2
L2(Rd)

)

= lim
n→∞

Iα
G,Zn

= Iα
G,Z .

Step 3. Let us now put ourselves under the assumptions of the theorem. Let
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(ψn, n ≥ 1) be an approximation of the identity such that |Fψn(ξ)| ≤ 1, for
all ξ ∈ R

d. Set Gn(s) = G(s) ∗ ψn, Gα
n = (I − ∆)

α
2Gn. We now check that Gn

and Gα
n satisfy (G1’) and the assumption (iii) of the theorem.

It is clear that Gn(s) ∈ C∞(Rd). Moreover, condition (ii) yields

sup
0≤s≤T

sup
x∈Rd

|Gn(s, x)|) <∞.

Since FG(s) is a function, FGn(s) is also a function and (i) implies

sup
0≤s≤T

sup
ξ∈Rd

|FGn(s)(ξ)| ≤ sup
0≤s≤T

sup
ξ∈Rd

|FG(s)(ξ)| <∞.

Notice that Gα
n(s) = G(s) ∗ (I − ∆)

α
2ψn. Since (I − ∆)

α
2ψn ∈ S(Rd), the

Schwartz space of C∞ test functions with rapid decrease, we have Gα
n ∈

C∞(Rd) (see for instance [8], Proposition 32.1.1).

The condition sup0≤s≤T supx∈Rd |Gα
n(s, x)| <∞ is a consequence of assumption

(ii). Since FG(s) is a function, so is FGα
n(s). Moreover, condition (i) yields

sup
n≥1

sup
0≤s≤T

sup
ξ∈Rd

|FGα
n(s)(ξ)| = sup

n≥1
sup

0≤s≤T
sup
ξ∈Rd

|FG(s)(ξ)| |(1 + |ξ|2)
α
2 Fψn(ξ)|

≤ sup
0≤s≤T

sup
ξ∈Rd

|(1 + |ξ|2)
α
2 |FG(s)(ξ)|

<∞.

Consider the sequence of stochastic integrals (vGn,Z(T ), n ≥ 1). Theorem 6
in [5] shows that vG,Z(T ) is well-defined as an L2(Ω;L2(Rd))-valued random
variable and

E
(

‖vGn,Z(T ) − vG,Z(T )‖2
L2(Rd)

)

= IGn−G,Z

=
∫ T

0
ds
∫

Rd
dξ E(|FZ(s)(ξ)|2)

∫

Rd
µ(dη)|FG(s)(ξ − η)|2|ψn(ξ) − 1|2.

By dominated convergence, this expression tends to zero as n tends to infinity.

We want to prove that (vGn,Z(T ), n ≥ 1) is a Cauchy sequence in
L2(Ω;Hα

2 (Rd)). Indeed, by the results stated in Step 2, we obtain

E
(

‖vGn−Gm,Z(T )‖2
Hα

2 (Rd)

)

= Iα
Gn−Gm,Z

=
∫ T

0
ds
∫

Rd
dξ E(|FZ(s)(ξ))|2)

×
∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(s)(ξ)| |(Fψn −Fψm)(ξ)|2.
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This last expression tends to zero as n,m tend to infinity, by dominated con-
vergence and assumption (iii). We have therefore proved that

lim
n→∞

E
(

‖vGn,Z(T ) − vG,Z(T )‖2
Hα

2 (Rd)

)

= 0.

By the results of Step 2, we obtain

E
(

‖vG,Z(T )‖2
Hα

2 (Rd)

)

= lim
n→∞

E
(

‖vGn,Z(T )‖2
Hα

2 (Rd)

)

= Iα
G,Z .

This finishes the proof of the theorem. 2

Example 1 Consider the differential operator L = ∂2
tt + (−∆)(k), k ∈ ]0,∞[,

and denote by G the fundamental solution of Lu = 0. It is easy to check that

FG(t)(ξ) =
sin(t|ξ|k)

|ξ|k
. (16)

Fix α ∈ [0, k[ and assume that

∫

Rd

µ(dξ)

(1 + |ξ|2)k−α
<∞. (17)

Then the assumptions of Theorem 1 are satisfied.

Indeed, FG(s) ∈ C∞(Rd). Moreover,

sup
0≤s≤T

sup
ξ∈Rd

(

(1 + |ξ|2)
α
2
sin(t|ξ|k)

|ξ|k

)

≤ T sup
|ξ|≤1

(1 + |ξ|2)
α
2 + sup

|ξ|≥1
(1 + |ξ|2)

α−k
2 .

Since α < k, this last expression is finite and thus condition (i) is satisfied.

Let ψ ∈ S(Rd). Then,

sup
0≤s≤T

sup
x∈Rd

|
(

G(s) ∗ ψ
)

(x)| ≤ sup
0≤s≤T

‖F(G(s) ∗ ψ)‖L1(Rd)

≤ T‖Fψ‖L1(Rd) <∞,

proving (ii).

Finally, we prove (iii). For any k ∈ ]0,∞[, it is easy to check that

sup
0≤s≤T

|FG(s)(ξ)|2 ≤
2k(1 + T 2)

(1 + |ξ|2)k
. (18)

11



Therefore,

sup
0≤s≤T

∫

Rd
µ(dη)(1+ |ξ− η|2)α|FG(s)(ξ− η)|2 ≤ C

∫

Rd

µ(dη)

(1 + |ξ − η|2)k−α
, (19)

where C is a positive constant depending on T and k.

Set γ = k − α. We will show that

sup
ξ∈Rd

∫

Rd

µ(dη)

(1 + |ξ − η|2)γ
≤
∫

Rd

µ(dη)

(1 + |η|2)γ
. (20)

Combining this property with assumption (17) yields (iii). Note for future
reference that

sup
0≤s≤T

sup
ξ∈Rd

∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(s)(ξ − η)|2 <∞. (21)

In order to prove (20), set τy(x) = x+ y. Following an argument that appears
in [10], observe that

∫

Rd
µ(dη)

e−2π2t|η|2

(1 + |ξ − η|2)γ
=
∫

Rd
Γ(dx)F−1

(

e−2π2t|·|2τ−ξ(1 + | · |2)−γ
)

(x)

=
∫

Rd
Γ(dx)

(

F−1(e−2π2t|·|2) ∗ F−1(τ−ξ(1 + | · |2)−γ)
)

(x)

=
∫

Rd
Γ(dx)(pt ∗ eξGd,γ(x),

where pt = F−1(e−2π2t|·|2) is the Gaussian density with mean 0 and variance
t, eξ(x) = e2πi〈x,ξ〉 and Gd,γ(x) = F−1(1 + | · |2)−γ(x).

Since both pt and Gd,γ are positive functions,

|(pt ∗ eξGd,γ(x)| ≤
∫

Rd
pt(y)Gd,γ(x− y)dy.

Using monotone convergence and the fact that pt is a probability density
function on R

d, we obtain

sup
ξ∈Rd

∫

Rd

µ(dη)

(1 + |ξ − η|2)γ
= sup

ξ∈Rd

lim
t→0

∫

Rd
µ(dη)

e−2π2t|η|2

(1 + |ξ − η|2)γ

≤ lim
t→0

∫

Rd
Γ(dx)

∫

Rd
Gd,γ(x− y)pt(y)dy

≤ sup
y∈Rd

∫

Rd
Γ(dx)Gd,γ(x− y).

However,

sup
y∈Rd

∫

Rd
Γ(dx)Gd,γ(x− y) =

∫

Rd

µ(dξ)

(1 + |ξ|2)γ
, (22)
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(see for instance [17], Lemma 8.8). This proves (20).

Example 2 Let L and G be as in Example 1. Assume that Γ(dx) = |x|−β,
with β ∈ ]0, d[. Then µ(dξ) = C|ξ|−d+β (see for instance [7]). Elementary
calculations show that (17) holds provided that β < 2k and α ∈ [0, k − β

2
[.

Fix q ∈ ]1,∞[ and s ∈ ]0,∞[. It is well known that the fractional Sobolev space
Hs

q (R
d), is imbedded in the space Cγ(Rd) of γ-Hölder continuous functions with

γ ≤ s− d
q
, whenever s− d

q
> 0. Moreover, if 1 < q < d, d > sq, then Hs

q (R
d) is

imbedded in Lp(Rd), for q < p < dq
d−sq

(see [19, Thm.E.12 p.257]). This yields
the following.

Corollary 1 (1) Suppose that the assumptions of Theorem 1 are satisfied
for some α ∈ ]d

2
,∞[. Then almost surely, the stochastic integral vG,Z(T )

belongs to Cγ(Rd), for any γ ∈ ]0, α− d
2
[.

(2) If the hypotheses of Theorem 1 are satisfied with some α ∈ [0, d
2
[, then

E
(

‖vG,Z(T )‖2
Lp(Rd)

)

<∞, for any p ∈ ]2, 2d
d−2α

[.

Remark 1 (a) Let G be as in Example 1. Assume that condition (17) holds
for some α ∈ ]d

2
, k[. Then the conclusion of part 1 of Corollary 1 holds. This

applies for instance to the wave equation in dimension d = 1.
If condition (17) holds for some α ∈ [0, d

2
∧k[, then the conclusion of part

2 of Corollary 1 holds.
(b) Let G be as in part (a) and Γ(dx) be as in Example 2. Suppose that

d
2
< k − β

2
. Then a.s., vG,Z(T ) belongs to Cγ(Rd), for any γ ∈ ]0, k − β+d

2
[.

3 Path properties in time of the stochastic integral

We are now interested in the behaviour in t of the sample paths of the process
uG,Z = (uG,Z(t), t ∈ [0, T ]), where

uG,Z(t) =
∫ t

0

∫

Rd
G(t− s, · − y)Z(s, y)M(ds, dy).

We notice that in Theorem 1, one can replace everywhere the finite time
horizon T by an arbitrary t ∈ [0, T ] and G(s) by G(t−s); therefore, under the
assumptions of this theorem, the process uG,Z takes its values in the Hilbert
space Hα

2 (Rd).

Our aim is to prove Hölder continuity of the sample paths. We shall apply
a version of Kolmogorov’s continuity condition; hence we are led to estimate
Lp-moments of stochastic integrals with values in a Hilbert space by means
of an extension of Burkholder’s inequality. We therefore need to identify the

13



increasing process associated with the martingale (vG,Z(t), t ∈ [0, T ]) of The-
orem 1. We devote the first part of this section to this problem; the second
part deals with the study of Hölder continuity.

3.1 The increasing process

Following [12], we term the Meyer process or first increasing process of the
Hα

2 (Rd)-valued martingale (vG,Z(t), t ∈ [0, T ]) the unique real-valued, contin-
uous, increasing process, denoted by (〈vG,Z〉t, t ∈ [0, T ]), with the property
that ‖vG,Z(t)‖2

Hα
2 (Rd) − 〈vG,Z〉t is a real-valued martingale.

Proposition 2 Assume that the hypotheses of Theorem 1 are satisfied. Then
for any t ∈ [0, T ],

〈vG,Z〉t =
∫ t

0
ds
∫

Rd
dξ |FZ(s)(ξ)|2

×
∫

Rd
µ(dη)(1 + |ξ − η|2)α

∣

∣

∣FG(s)(ξ − η)
∣

∣

∣

2
. (23)

Proof. Assume first that G and Z satisfy the assumptions (G1’), (G2) and
(G3) with T replaced by t, that is, I0,t

G,Z <∞, for any t ∈ [0, T ], where

I0,t
G,Z =

∫ t

0
ds
∫

Rd
dξ E(|FZ(s)(ξ)|2)

∫

Rd
µ(dη)|FG(s)(ξ − η)|2.

Suppose also that Gα(s) = (I−∆)
α
2G(s) satisfies (G1’) and Iα,t

G,Z <∞, where

Iα,t
G,Z =

∫ t

0
ds
∫

Rd
dξ E(|FZ(s)(ξ)|2)

×
∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(t− s)(ξ − η)|2.

Then, following Lemma 1 in [5], for any t ∈ [0, T ] and x ∈ R
d, the stochastic

integral

v
(I−∆)

α
2 G,Z

(t, x) =
∫ t

0

∫

Rd
(I − ∆)

α
2G(s, x− y)(x)Z(s, y)M(ds, dy)

is well-defined as a Walsh stochastic integral. Its increasing process is given
by

〈v
(I−∆)

α
2 G,Z

〉t =
∫ t

0
ds
∫

Rd
µ(dη) |F

(

(I − ∆)
α
2G(s, x− ·)Z(s, ·)

)

(η)|2,

(use Theorem 2.5 in [22] and elementary properties of convolution and the
Fourier transform).
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In particular, the process

|v
(I−∆)

α
2 G,Z

(t, x)|2 −
∫ t

0
ds
∫

Rd
µ(dη)

∣

∣

∣

∣

F
(

(I−∆)
α
2G(s, x−·)Z(s, ·)

)

(η)

∣

∣

∣

∣

2

, (24)

t ∈ [0, T ], is a real-valued martingale.

The properties of the Fourier transform yield

F
(

(I − ∆)
α
2G(s, x− ·)Z(s, ·)

)

(η)

=
(

F
(

(I − ∆)
α
2G(s, x− ·)

)

∗ FZ(s, ·)
)

(η)

= F
(

(1 + |ξ′|2)
α
2 FG(s, ·)(η − ξ′)FZ(s, ·)(ξ′)

)

(x).

Then, by Plancherel’s theorem,

∫

Rd
dx
∫ t

0
ds
∫

Rd
µ(dη)

∣

∣

∣

∣

F
(

(I − ∆)
α
2G(s, x− ·)Z(s, ·)

)

(η)

∣

∣

∣

∣

2

=
∫ t

0
ds
∫

Rd
dξ |FZ(s)(ξ)|2

∫

Rd
µ(dη)(1 + |ξ − η|2)α

∣

∣

∣FG(s)(ξ − η)
∣

∣

∣

2
. (25)

Following Step 1 in the proof of Theorem 1,

‖vG,Z(t)‖2
Hα

2 (Rd) = ‖v
(I−∆)

α
2 G,Z

(t)‖2
L2(Rd),

for any t ∈ [0, T ].

Integrating over x ∈ R
d the expression in (24) and using (25), we find that

the process

‖vG,Z(t)‖2
Hα

2 (Rd) −
∫ t

0
ds
∫

Rd
dξ |FZ(s)(ξ)|2

×
∫

Rd
µ(dη)(1 + |ξ − η|2)α

∣

∣

∣FG(t− s)(ξ − η)
∣

∣

∣

2

is a real-valued martingale. This proves (23) under the particular set of as-
sumptions stated at the beginning of the proof.

Assume next the setting of Step 2 in the proof of Theorem 1. That is, G(s)
and Gα(s) satisfy (G1’) and condition (iii) holds. There exists a sequence
of processes (Zn, n ≥ 1) satisfying (G2) and Iα,t

G,Z < ∞, such that for any
t ∈ [0, T ],

lim
n→∞

E
(

‖vG,Z−Zn(t)‖2
Hα

2 (Rd)

)

= lim
n→∞

Iα,t
G,Zn−Z = 0. (26)
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By the previous step,

Mn
t : = ‖vG,Zn(t)‖2

Hα
2 (Rd) −

∫ t

0
ds
∫

Rd
dξ |FZn(s)(ξ)|

2

×
∫

Rd
µ(dη)(1 + |ξ − η|2)α

∣

∣

∣FG(t− s)(ξ − η)
∣

∣

∣

2
,

t ∈ [0, T ], is a real-valued martingale. Set

Mt = ‖vG,Z(t)‖2
Hα

2 (Rd) −
∫ t

0
ds
∫

Rd
dξ |FZ(s)(ξ)|2

×
∫

Rd
µ(dη)(1 + |ξ − η|2)α

∣

∣

∣FG(t− s)(ξ − η)
∣

∣

∣

2
.

From (26), it follows that L1(Ω)-limn→∞Mn
t = Mt. This shows that (Mt, t ∈

[0, T ]) is a martingale and proves (23) in the setting of Step 2.

Finally, we consider the situation given by the hypotheses of the theorem.
From Step 3 in the proof of Theorem 1, it follows that for any t ∈ [0, T ],

lim
n→∞

E
(

‖vG−Gn,Z(t)‖2
Hα

2 (Rd)

)

= lim
n→∞

Iα,t
G−Gn,Z = 0,

where Gn(s) = G(s) ∗ ψn and (ψn, n ≥ 1) is an approximation of the identity.
The sequence (Gn(s), n ≥ 1) satisfies the conditions of the previous step.
Therefore, we can conclude using a limiting procedure, in a manner analoguous
to the previous step. This completes the proof of the Proposition. 2

Proposition 3 Assume the hypotheses of Theorem 1. Fix q ∈ [1,∞[. Then
there is C > 0 such that for all t > 0,

E
(

‖vG,Z(t)‖2q
Hα

2 (Rd)

)

≤ C tq−1
∫ t

0
dsE

(

‖Z(s)‖2q
L2(Rd)

)

×
(

sup
ξ∈Rd

∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(s)(ξ − η)|2

)q

.
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Proof. Using the Hilbert space version of Burkholder’s inequality ([12], p. 212),
Proposition 2, Hölder’s inequality and Plancherel’s identity, we obtain

E
(

‖vG,Z(t)‖2q
Hα

2 (Rd)

)

≤ CE
(

(

∫ t

0
ds
∫

Rd
dξ |FZ(s)(ξ)|2

∫

Rd
µ(dη)(1 + |ξ − η|2)α

× |FG(s)(ξ − η)|2
)q
)

≤ Ctq−1
∫ t

0
dsE

(

(

∫

Rd
dξ |FZ(s)(ξ)|2

×
∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(s)(ξ − η)|2

)q
)

≤ Ctq−1
∫ t

0
dsE

(

‖Z(s)‖2q
L2(Rd)

)

×
(

sup
ξ∈Rd

∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(s)(ξ − η)|2

)q

.

This proves the proposition. 2

3.2 Hölder continuity in time

In this section, we consider the distribution-valued function G(s) of Example
1. Our goal is to give sufficient conditions ensuring a.s.-Hölder continuity of
the sample paths of the process (uG,Z(t), t ∈ [0, T ]) defined in (4).

We first study the case of a general covariance measure Γ. In a second part, we
consider the particular case Γ(dx) = |x|−β, β ∈ ]0, d[. The radial structure of
this measure makes it possible to obtain a higher order of Hölder continuity.
Indeed, we prove that the result obtained in this situation is optimal.

Theorem 2 Let L = ∂2
tt + (−∆)k, k ∈ ]0,∞[, and let G be the fundamental

solution of Lu = 0. Fix α ∈ [0, k[ and assume that there exists η ∈ ]α
k
, 1[ such

that
∫

Rd

µ(dξ)

(1 + |ξ|2)kη−α
<∞. (27)

Fix q ∈ [2,∞[ and assume that sup0≤s≤T E(‖Z(s)‖q
L2(Rd)) < ∞. Then the

Hα
2 (Rd)-valued stochastic integral process (uG,Z(t), 0 ≤ t ≤ T ) satisfies

E
(

‖uG,Z(t2) − uG,Z(t1)‖
q
Hα

2 (Rd)

)

≤ C(t2 − t1)
q

(

1
2
∧(1−η)

)

, (28)

for any 0 ≤ t1 ≤ t2 ≤ T . Consequently, (uG,Z(t), 0 ≤ t ≤ T ) is γ-Hölder

continuous, for each γ ∈
]

0, (1
2
∧ (1 − η)) − 1

q

[

.

Proof. Fix 0 ≤ t1 ≤ t2 ≤ T and set q = 2p. Then

E
(

‖uG,Z(t2) − uG,Z(t1)‖
2p
Hα

2 (Rd)

)

≤ C
(

T1(t1, t2) + T2(t1, t2)
)

,
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where

T1(t1, t2) = E
(

‖
∫ t2

t1
G(t2 − s, · − y)Z(s, y)M(ds, dy)‖2p

Hα
2 (Rd)

)

,

T2(t1, t2) = E
(

‖
∫ t1

0

(

G(t2 − s, · − y) −G(t1 − s, · − y)
)

× Z(s, y)M(ds, dy)‖2p
Hα

2 (Rd)

)

.

Arguing as in Proposition 3 and using (21), we obtain

T1(t1, t2) ≤ C(t2 − t1)
p−1

∫ t2

t1
dsE

(

‖Z(s)‖2p
L2(Rd)

)

×

(

sup
ξ∈Rd

∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(t2 − s)(ξ − η)|2

)p

≤ C(t2 − t1)
p sup

0≤s≤T
E
(

‖Z(s)‖2p
L2(Rd)

)

× sup
0≤s≤T

sup
ξ∈Rd

(∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(s)(ξ − η)|2

)p

≤ C(t2 − t1)
p. (29)

We now study the contribution of T2(t1, t2). Clearly,

∫

Rd
µ(dη)(1+ |ξ−η|2)α|F(G(t2−s)−G(t1−s))(ξ−η)|

2 ≤ I1(t1, t2)+I2(t1, t2),

where

I1(t1, t2) =
∫

|ξ−η|≤1
µ(dη)(1 + |ξ − η|2)α|F(G(t2 − s) −G(t1 − s))(ξ − η)|2,

I2(t1, t2) =
∫

|ξ−η|>1
µ(dη)(1 + |ξ − η|2)α|F(G(t2 − s) −G(t1 − s))(ξ − η)|2.

By (16), the mean-value theorem, the bound (20) and assumption (27),

I1(t1, t2) ≤ (t2 − t1)
2
∫

|ξ−η|≤1
µ(dη)(1 + |ξ − η|2)α

≤ 2k(t2 − t1)
2 sup

ξ∈Rd

∫

Rd

µ(dη)

(1 + |ξ − η|2)k−α

≤ C(t2 − t1)
2
∫

Rd

µ(dη)

(1 + |η|2)k−α

≤ C(t2 − t1)
2.
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By the formula sin x− sin y = 2 cos x+y
2

sin x−y
2

,

I2(t1, t2) ≤
∫

|ξ−η|>1
µ(dη)(1 + |ξ − η|2)α

(

sin
(

1
2
(t2 − t1)|ξ − η|k

)

)2(1−η)

|ξ − η|2k

≤ C(t2 − t1)
2(1−η)

∫

Rd

µ(dη)

(1 + |ξ − η|2)kη−α

≤ C(t2 − t1)
2(1−η).

Consequently,

sup
0≤s≤T

sup
ξ∈Rd

∫

Rd
µ(dη)(1 + |ξ − η|2)α|F(G(t2 − s) −G(t1 − s))(ξ − η)|2

≤ C(t2 − t1)
2(1−η). (30)

Using (30) and arguing as in the lines that led to (29), we see that

T2(t1, t2) ≤ C sup
0≤s≤T

E(‖Z(s)‖2p
L2(Rd)) sup

0≤s≤T
sup
ξ∈Rd

(∫

Rd
µ(dη)(1 + |ξ − η|2)α

× |F(G(t2 − s) −G(t1 − s))(ξ − η)|2
)p

≤ C(t2 − t1)
2p(1−η). (31)

Finally, (28) is a consequence of (29) and (31).

The statement on Hölder continuity follows from Kolmogorov’s continuity
condition [15, Chap.I, §2]. In particular,

E

(

sup
t1 6=t2

‖uG,Z(t2) − uG,Z(t1)‖Hα
2 (Rd)

|t2 − t1|γ

)

<∞, (32)

for each γ ∈
]

0, (1
2
∧ (1 − η)) − 1

q

[

. 2

The previous theorem, together with part 1 of Corollary 1, yields the following.

Corollary 2 Suppose that the hypotheses of Theorem 2 are satisfied with
some α ∈ ]d

2
,∞[ and η ∈ ]α

k
, 1[ Then there is a version of the process

(

uG,Z(t), t ∈ [0, T ]
)

that belongs to Cγ1([0, T ]; Cγ2(Rd)), with γ1 ∈ ]0, (1
2
∧(1−η))− 1

q
[ and γ2 ∈ ]0, α−

d
2
[. Therefore, for such (γ1, γ2), (t, x) 7→ uG,Z(t, x) belongs a.s. to Cγ1,γ2([0, T ]×

R
d,R).
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Proof. Let γ1 and γ2 belong to the indicated intervals. By part 1 of Corollary 1,
uG,Z(t) belongs a.s. to Cγ2(Rd). By (32), t 7→ uG,Z(t) is γ1-Hölder continuous,
that is, t 7→ uG,Z(t) belongs to Cγ1([0, T ]; Cγ2(Rd)), which establishes that first
statement of the corollary.

Since

‖g‖Cγ2(Rd) = sup
x∈Rd

|g(x)| + sup
x 6=y

|g(x) − g(y)|

|x− y|γ2
,

we deduce from (32) that for a.a. ω, there is C(ω) < ∞ such that for all
x, y ∈ R

d and t1, t2 ∈ [0, T ],

|uG,Z(t2, x) − uG,Z(t1, x)| ≤ C(ω)|t2 − t1|
γ1 (33)

and

|uG,Z(t2, x)− uG,Z(t1, x)− uG,Z(t2, y) + uG,Z(t1, y)| ≤ C(ω)|x− y|γ2 |t2 − t1|
γ1 .

(34)
From part 1 of Corollary 1 and the Sobolev imbedding theorem,

|uG,Z(T, x) − uG,Z(T, y)| ≤ C(ω, T )|x− y|γ2.

From this inequality and (34), we see that for all t2 ∈ [0, T ] and x, y ∈ R
d,

|uG,Z(t2, x) − uG,Z(t2, y)| ≤ |uG,Z(t2, x) − uG,Z(t2, y) − (uG,Z(T, x) − uG,Z(T, y))|

+ |uG,Z(T, x) − uG,Z(T, y)|

≤ C(ω)|x− y|γ2 |t2 − T |γ1 + C(ω, T )|x− y|γ2

≤ (C(ω)T γ1 + C(ω, T ))|x− y|γ2. (35)

By (33) and (35), there is C̃(T, ω) < ∞ such that for all t1, t2 ∈ [0, T ] and
x, y ∈ R

d,

|uG,Z(t1, x) − uG,Z(t2, y)| ≤ C̃(T, ω)(|t2 − t1|
γ1 + |x− y|γ2). (36)

This completes the proof of the corollary. 2

Consider now the particular case Γ(dx) = |x|−β, β ∈ ]0, d[. The results ob-
tained in Theorem 2 can be improved as follows.

Theorem 3 Let L and G be as in Theorem 2. Fix α ∈ [0,∞[, k > α and
assume that Γ(dx) = |x|−β with β ∈ ]0, 2(k − α)[. Fix q ∈ [2,∞[ and suppose
that sup0≤s≤T E(‖Z(s)‖q

L2(Rd)) <∞. Then for any 0 ≤ t1 ≤ t2 ≤ 1,

E
(

‖uG,Z(t2) − uG,Z(t1)‖
q
Hα

2

)

≤ C(t2 − t1)
q(1−β+2α

2k
). (37)

Consequently, (uG,Z(t), 0 ≤ t ≤ T ) is γ-Hölder continuous for any γ ∈
]

0, (1−
β+2α

2k
) − 1

q

[

.
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Remark 1 If β + 2α < k, then we obtain a stronger conclusion than in
Theorem 2.

Proof. As in the proof of Theorem 2, set q = 2p and

T1(t1, t2) = E
(

‖
∫ t2

t1
G(t2 − s, · − y)Z(s, y)M(ds, dy)‖2p

Hα
2 (Rd)

)

,

T2(t1, t2) = E
(

‖
∫ t1

0

(

G(t2 − s, · − y) −G(t1 − s, · − y)
)

Z(s, y)M(ds, dy)‖2p
Hα

2 (Rd)

)

.

Let

T11(t1, t2) =
∫ t2−t1

0
ds sup

ξ∈Rd

(

∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(s)(ξ − η)|2

)p
.

Then, proceeding as in the steps that led to (29), we find that

T1(t1, t2) ≤ C(t2 − t1)
p−1 sup

0≤s≤T
E
(

‖Z(s)‖2p
L2(Rd)

)

T11(t1, t2).

Introducing the new variables (ξ̃, η̃) = s
1
k (ξ, η) and substituting |η|−d+β for

µ(dη) and formula (16) for FG(s) yields

T11(t1, t2) =
∫ t2−t1

0
ds sp(2−β+2α

k
)

× sup
ξ̃∈Rd

( ∫

Rd

dη̃

|η̃|d−β
(s

2
k + |ξ̃ − η̃|2)α sin2(|ξ̃ − η̃|k)

|ξ̃ − η̃|2k

)p

.

Taking into account (19), (20) for µ(dη) = |η|−d+βdη and the remark made in
Example 2, we obtain

T11(t1, t2) ≤ C(t2 − t1)
p(2−β+2α

k
)+1.

Consequently,

T1(t1, t2) ≤ C(t2 − t1)
p(3−β+2α

k
). (38)

For the analysis of the term T2(t1, t2), we also follow the same scheme as in the
proof of Theorem 2 but we improve the upper bound on I2(t1, t2), as follows.

Set h = t2 − t1 and consider the change of variables (ξ̃, η̃) = (h
2
)

1
k (ξ, η). Then,

I2(t1, t2) ≤
∫

|ξ−η|>1

dη

|η|d−β

(

1 + |ξ − η|2
)α sin2

(

1
2
(t2 − t1)|ξ − η|k

)

|ξ − η|2k

≤ Ch2−β+2α
k

∫

|ξ̃−η̃|>(h
2
)
1
k

dη̃

|η̃|d−β
(1 + |ξ̃ − η̃|2)α sin2(|ξ̃ − η̃|k)

|ξ̃ − η̃|2k
,

where C is a constant depending on k. Therefore,

T2(t1, t2) ≤ C(t2 − t1)
p(2−β+2α

k
). (39)
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The estimates (38) and (39) imply (37). The proof of the theorem is complete.
2

We finish this section by showing that Theorem 3 provides an optimal result.
We do this by studying the case where Z is the smooth deterministic function
Z(s, x) = e−|x|2/2, with no dependence on s. For this Z, we shall write uG(t)
instead of uG,Z(t).

Theorem 4 Let L, G and Γ be as in Theorem 3. Fix t0 ∈ (0, 1] and assume
β ∈ ]0, 2(k − α)[. Then there exists a constant C > 0 such that for any t1, t2
satisfying t0 ≤ t1 ≤ t2 ≤ 1,

E
(

‖uG(t2) − uG(t1)‖
2
Hα

2 (Rd)

)

≥ C|t2 − t1|
2−β+2α

k . (40)

Consequently, a.s. the mapping t 7→ uG(t) is not γ-Hölder continuous for
γ > 1−(β+2α)/(2k), while it is γ-Hölder continuous for γ < 1−(β+2α)/(2k).

Proof. Let p(ξ) denote the standard Gaussian density function. Using the
isometry property (7), we obtain

E
(

‖uG(t2) − uG(t1)‖
2
Hα

2 (Rd)

)

≥ S(t1, t2),

where

S(t1, t2) =
∫ t1

0
ds
∫

Rd
dξ p(ξ)2

∫

Rd
µ(dη)

(

1 + |ξ − η|2
)α

×
∣

∣

∣FG(t2 − s)(ξ − η) − FG(t1 − s)(ξ − η)
∣

∣

∣

2
. (41)

Set h = (t2 − t1)/2. By the formula sin x − sin y = 2 cos x+y
2

sin x−y
2

, Fubini’s
theorem and integrating with respect to the time variable s, we obtain

S(t1, t2) = 4
∫

Rd
dξ p(ξ)2

∫

Rd

dη

|η|d−β

(

1 + |ξ − η|2
)α sin2(h|ξ − η|k)

|ξ − η|2k

×

(

t1
2
−

sin((t2 − t1)|ξ − η|k)

4|ξ − η|k
+

sin((t1 + t2)|ξ − η|k)

4|ξ − η|k

)

.

Notice that for |ξ − η|k > 2/t1 and, in particular, for |η| > 2(2/t1)
1/k and

|ξ| < (2/t1)
1/k, the factor in parentheses is bounded below by t1/4. Therefore,

S(t1, t2) ≥ t0

∫

|ξ|<(2/t1)1/k
dξ p(ξ)2

∫

|η|>2(2/t1)1/k

dη

|η|d−β

×
(

1 + |ξ − η|2
)α sin2(h|ξ − η|k)

|ξ − η|2k
.

Let a = (2/t1)
1/k. Note that

{(ξ, η) : |ξ| < a, |η| > 2a} ⊃ {(ξ, η) : |ξ| < a, |ξ − η| > 3a}
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and that 1/|η| > 1/(2|ξ − η|) for (ξ, η) in these sets. With this inequality and

this smaller domain of integration, we use the change of variables η̃ = h
1
k (ξ−η)

(ξ fixed) to see that

S(t1, t2) ≥
t0
2
h2−β+2α

k

∫

|ξ|<a
dξ p(ξ)2

∫

|η̃|k>3kak

dη̃

|η̃|d−β+2k
(h

2
k + |η̃|2)α sin2(|η̃|)

≥
t0
2
h2−β+2α

k

∫

|ξ|<21/k
dξ p(ξ)2

∫

|η̃|k>3k2/t0

dη̃

|η̃|d−β+2(k−α)
sin2(|η̃|).

Notice that the last double integral is a positive finite constant. Hence, the
inequality (40) is proved.

We now use the fact that uG is a Gaussian stationary process together with
classical results on Gaussian processes to translate the lower bound (40) into
a statement concerning absence of Hölder continuity of the sample paths of
t 7→ uG(t). Fix γ ∈ ]1− (β+2α)/(2k), 1] and assume by contradiction that for
almost all ω, there is C(ω) <∞ such that for all t0 ≤ t1 < t2 ≤ 1,

sup
t1<t2

sup
ϕ∈H−α

2 (Rd), ϕ 6≡0

〈uG(t2) − uG(t1), ϕ〉

(t2 − t1)γ ‖ϕ‖H−α
2 (Rd)

= sup
t1<t2

‖uG(t2) − uG(t1)‖Hα
2 (Rd)

(t2 − t1)γ

< C(ω).

Then the real-valued Gaussian stochastic process





〈uG(t2) − uG(t1), ϕ〉

(t2 − t1)γ ‖ϕ‖H−α
2 (Rd)

, t1 < t2, ϕ ∈ H−α
2 (Rd), ϕ 6≡ 0





is finite a.s. By Theorem 3.2 of [1], it follows that

E





 sup
t1<t2

sup
ϕ∈H−α

2 (Rd), ϕ 6≡0





〈uG(t2) − uG(t1), ϕ〉

(t2 − t1)γ ‖ϕ‖H−α
2 (Rd)





2




 <∞.

Thus,

E



 sup
t1<t2

‖uG(t2) − uG(t1)‖
2
Hα

2 (Rd)

(t2 − t1)2γ



 <∞.

In particular, there would exist K <∞ such that

E
(

‖uG(t2) − uG(t1)‖
2
Hα

2 (Rd)

)

≤ K |t2 − t1|
2γ.

However, this would contradict (40) since 2γ > 2 − (β + 2α)/k. We conclude
that t 7→ uG(t) is not γ-Hölder continuous for γ > 1 − (β + 2α)/(2k).
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On the other hand, for γ < 1− (β + 2α)/(2k), the map t 7→ uG(t) is γ-Hölder
continuous by Theorem 3, since in this theorem, q can be taken arbitrarily
large. 2

4 Application to stochastic partial differential equations

This section is devoted to studying the properties of the sample paths of the
solution of the spde

(

∂2

∂t2
+ (−∆)(k)

)

u(t, x) = σ
(

u(t, x))Ḟ (t, x) + b
(

u(t, x)
)

,

u(0, x) = v0(x),
∂

∂t
u(0, x) = ṽ0(x). (42)

In this equation, t ∈ [0, T ] for some fixed T > 0, and x ∈ R
d. We assume that

k ∈ ]0,∞[ (k is not necessarily an integer), σ and b are Lipschitz continuous
functions and moreover, that

|σ(z)| + |b(z)| ≤ C|z|, (43)

for some positive constant C > 0. Notice that the assumption (43) was also
made in [5] and it is also standard in the study of the deterministic wave
equation (see for instance [9, Chapter 6] or [20]).

Concerning the initial conditions, we assume for the moment that v0 ∈ L2(Rd),
ṽ0 ∈ H−k

2 (Rd). Regarding the noise Ḟ , we assume that its spectral measure
satisfies (17).

By a solution of (42), we mean an L2(Rd)-valued stochastic process
(

u(t), 0 ≤

t ≤ T
)

satisfying sup0≤t≤T E
(

‖u(t)‖2
L2(Rd)

)

<∞ and

u(t, ·) =
d

dt
G(t) ∗ v0 +G(t) ∗ ṽ0

+
∫ t

0

∫

Rd
G(t− s, · − y)σ(u(s, y))M(ds, dy)

+
∫ t

0
ds
∫

Rd
dy G(t− s, · − y)b(u(s, y)). (44)

Here, G is the fundamental solution of Lf = 0, where L =
(

∂2
tt + (−∆)(k)

)

,
and the stochastic integral is of the type considered in the preceding sections
(see also Section 2 in [5]).

The path integral is also well-defined. Indeed, let Z = (Z(s), s ∈ [0, T ])
be a stochastic processes satisfying the conditions stated at the beginning of
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Section 2, and let G : [0, T ] → S ′(Rd) be such that for any s ∈ [0, T ], FG(s)
is a function and

∫ T

0
ds sup

ξ∈Rd

|FG(s)(ξ)|2 <∞. (45)

Then for any t ∈ [0, T ] a.s.,

x 7→ JG,Z(t, x) :=
∫ t

0
ds
(

G(s) ∗ Z(s)
)

(x)

defines an L2(Rd)-valued function. Moreover,

‖JG,Z(t)‖2
L2(Rd) ≤ C

∫ t

0
ds ‖Z(s)‖2

L2(Rd) sup
ξ∈Rd

|FG(s)(ξ)|2. (46)

Assume the following condition, which is stronger than (45):

∫ T

0
ds sup

ξ∈Rd

(1 + |ξ|2)α|FG(s)(ξ)|2 <∞, (47)

for some α ∈ [0,∞[. Easy computations based on Fubini’s theorem yield

‖JG,Z(t)‖2
Hα

2 (Rd) = ‖J
(I−∆)

α
2 G,Z

(t)‖2
L2(Rd) a.s.

Fix q ∈ [2,∞[. Schwarz’s inequality and Fubini’s theorem yield a.s.:

‖J
(I−∆)

α
2 G,Z

(t)‖q
L2(Rd) ≤ C

(∫ t

0
ds ‖(I − ∆)

α
2G(s) ∗ Z(s)‖2

L2(Rd)

)

q
2

= C
(∫ t

0
ds
∫

Rd
dξ (1 + |ξ|2)α|FG(s)(ξ)|2|FZ(s)(ξ)|2

)

q
2

≤ C

(

∫ t

0
ds ‖Z(s)‖2

L2(Rd) sup
ξ∈Rd

(

(1 + |ξ|2)α|FG(s)(ξ)|2
)

)
q
2

≤ C
∫ t

0
ds ‖Z(s)‖q

L2(Rd) sup
ξ∈Rd

(

(1 + |ξ|2)
αq
2 |FG(s)(ξ)|q

)

.

Now let G be the fundamental solution of Lf = 0. Assume that α ∈ [0, k[ and
supt∈[0,T ]E(‖Z(t)‖q

L2(Rd)) <∞. Then

sup
ξ∈Rd

(1 + |ξ|2)
αq
2 |FG(s)(ξ)|q ≤ C sup

ξ∈Rd

(1 + |ξ|2)q(α−k)/2 <∞,
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and therefore the above inequalities yield

E
(

‖J
(I−∆)

α
2 G,Z

(t)‖q
L2(Rd)

)

≤ C
∫ t

0
ds sup

ξ∈Rd

(1 + |ξ|2)
αq
2 |FG(s)(ξ)|q

× E(‖Z(s)‖q
L2(Rd))

<∞. (48)

Set

Jb(t) =
∫ t

0
ds
∫

Rd
dy G(t− s, · − y)b(u(s, y)) =

∫ t

0
ds
(

G(s) ∗ b(u(s)
)

.

Particularizing (48) to α = 0, q = 2 and Z(s, x) = b(u(t− s, x)) yields

E
(

‖Jb(t)‖
2
L2(Rd)

)

≤ C sup
0≤s≤T

E
(

‖u(s)‖2
L2(Rd)

)

∫ T

0
ds sup

ξ∈Rd

|FG(s)(ξ)|2 <∞.

A slight extension of Theorem 9 in [5] provides the existence of a unique
solution of equation (44), in the sense given above. We observe that in [5],
k ∈ N and b = 0.

By means of Burkholder’s and Hölder’s inequalities (as in the calculation that
led to (29)), the inequality (48) with α = 0 and a version of Gronwall’s lemma
(see [4, Lemma 15]), one can easily show that for any q ∈ [2,∞[,

sup
0≤s≤T

E
(

‖u(s)‖q
L2(Rd)

)

<∞. (49)

In the next theorem, we analyze the existence of Hα
2 (Rd)-valued solutions to

(44).

Theorem 5 Let σ, b be real-valued Lipschitz continuous functions satisfying
(43). Fix α ∈ [0, k[ and assume that v0 ∈ Hα

2 (Rd), ṽ0 ∈ Hα−k
2 (Rd) and

∫

Rd

µ(dξ)

(1 + |ξ|2)k−α
<∞.

Then for any q ∈ [2,∞[, the solution of (44) satisfies

sup
0≤t≤T

E
(

‖u(t)‖q
Hα

2 (Rd)

)

<∞. (50)

Proof. Fix q ∈ [2,∞[. We shall check that each term on the right hand side of
(44) belongs to Lq(Ω;Hα

2 (Rd)), with norm uniformly bounded over t ∈ [0, T ].
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Set U1(t) = d
dt
G(t) ∗ v0. Then

‖U1(t)‖Hα
2 (Rd) =

∥

∥

∥(1 + | · |2)
α
2 F
( d

dt
G(t)(·)

)

Fv0(·)
∥

∥

∥

L2(Rd)

=
∥

∥

∥(1 + | · |2)
α
2 cos(t| · |k)Fv0(·)

∥

∥

∥

L2(Rd)

≤ ‖v0‖Hα
2 (Rd).

Similarly, define U2(t) = G(t) ∗ ṽ0. Then, by (18),

‖U2(t)‖
2
Hα

2 (Rd) =
∥

∥

∥(1 + | · |2)
α
2 FG(t)(·)F ṽ0(·)

∥

∥

∥

2

L2(Rd)

≤ 2k(1 + T 2)‖ṽ0‖
2
Hα−k

2 (Rd)
.

Hence,
sup

0≤t≤T
(‖U1(t)‖

2
Hα

2 (Rd) + ‖U2(t)‖
2
Hα

2 (Rd)) <∞. (51)

Let

U3(t) =
∫ t

0

∫

Rd
G(t− s, · − y)σ(u(s, y))M(ds, dy).

Using (43), we see as in (29) that

E
(

‖U3(t)‖
q
Hα

2 (Rd)

)

≤ C sup
0≤s≤T

E(‖u(s)‖q
L2(Rd))

× sup
0≤s≤T

sup
ξ∈Rd

( ∫

Rd
µ(dη)(1 + |ξ − η|2)α|FG(s)(ξ − η)|2

)
q
2

.

By (21) and (49),

sup
0≤t≤T

E
(

‖U3(t)‖
q
Hα

2 (Rd)

)

<∞. (52)

Finally, set

U4(t) =
∫ t

0
ds
∫

Rd
dy G(t− s, · − y)b(u(s, y)).

The estimate (48), (43) and (49) imply

sup
0≤t≤T

E
(

‖U4(t)‖
q
Hα

2 (Rd)

)

<∞. (53)

With (51)-(53), we finish the proof of the theorem. 2

The next results concern the sample path properties of the solution of (44).

Theorem 6 Let σ, b be Lipschitz functions satisfying (43). Fix k ∈ ]0,∞[,
α ∈ [0, k[ and assume that there exists η ∈ ]α

k
, 1[ such that

∫

Rd

µ(dξ)

(1 + |ξ|2)kη−α
<∞. (54)
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Suppose also that v0 ∈ Hkδ+α
2 (Rd), for some δ ∈ ]0, 1] and ṽ0 ∈ H

−(kγ−α)
2 (Rd),

for some γ ∈ [0, 1[. Set θ0 = inf(1
2
, 1 − η, δ, 1 − γ). Then, for any q ∈ [2,∞[

and 0 ≤ s ≤ t ≤ T ,

E
(

‖u(t) − u(s)‖q
Hα

2 (Rd)

)

≤ C(t− s)qθ,

with θ ∈ ]0, θ0[. Therefore, the sample paths of the Hα
2 (Rd)-valued process

(u(t), t ∈ [0, T ]) solution of (44) are almost surely θ-Hölder continuous for
any θ ∈ ]0, θ0[.

Proof. Fix 0 ≤ s ≤ t ≤ 1. As in the proof of Theorem 5, let U1(t) = d
dt
G(t)∗v0.

Using the formula cosx− cos y = −2 sin x+y
2

sin x−y
2

, we obtain

‖U1(t) − U1(s)‖
2
Hα

2 (Rd) = ‖(1 + | · |2)
α
2 (cos(t| · |k) − cos(s| · |k))Fv0(·)‖

2
L2(Rd)

≤ 4
∫

Rd
dξ (1 + |ξ|2)α

(

sin
(t− s)|ξ|k

2

)2δ

|Fv0(ξ)|
2

≤ (t− s)2δ‖v0‖
2
Hkδ+α

2 (Rd)

≤ C(t− s)2δ. (55)

Consider now the term U2(t) = G(t) ∗ ṽ0. Applying the formula sin x− sin y =
2 cos x+y

2
sin x−y

2
yields

‖U2(t) − U2(s)‖
2
Hα

2 (Rd) ≤ ‖(1 + | · |2)
α
2





sin (t−s)|·|k

2

| · |k



F ṽ0(·)‖
2
L2(Rd)

≤ T1 + T2,

where

T1 = (t− s)2
∫

Rd∩{|ξ|<1}
dξ (1 + |ξ|2)α |F ṽ0(ξ)|

2

|ξ|2k
,

T2 =
∫

Rd∩{|ξ|≥1}
dξ (1 + |ξ|2)α|F ṽ0(ξ)|

2

(

sin (t−s)|ξ|k

2

)2(1−γ)

|ξ|2k
.

Therefore,

T1 + T2 ≤ C1(t− s)2
∫

Rd

dξ

(1 + |ξ|2)k−α
|F ṽ0(ξ)|

2

+ C2(t− s)2(1−γ)
∫

Rd

dξ

(1 + |ξ|2)kγ−α
|F ṽ0(ξ)|

2

≤ C(t− s)2(1−γ)‖ṽ0‖
2

H
−(kγ−α)
2 (Rd)

.

Consequently, by the assumption on ṽ0,

‖U2(t) − U2(s)‖Hα
2 (Rd) ≤ C(t− s)1−γ. (56)
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Set

U3(t) =
∫ t

0

∫

Rd
G(t− r, · − y)σ(u(r, y))M(dr, dy).

For any q ∈ [2,∞[, the following estimate holds:

E
(

‖U3(t) − U3(s)‖
q
Hα

2 (Rd)

)

≤ C(t− s)q( 1
2
∧(1−η)). (57)

Indeed, set Z(s, y) = σ(u(s, y)). Properties (43) and (49) imply that

sup
0≤s≤T

E
(

‖σ(u(s))‖q
L2(Rd)

)

<∞.

Hence, (57) follows from the upper bound estimate (28).

Finally, set

U4(t) =
∫ t

0
ds
∫

Rd
dy G(t− s, · − y)b(u(s, y)).

Clearly,

E
(

‖U4(t) − U4(s)‖
q
Hα

2 (Rd)

)

≤ A(s, t) + B(s, t),

where

A(s, t) = E
(

‖
∫ t

s
dr
∫

Rd
dy G(t− r, · − y)b(u(r, y))‖q

Hα
2 (Rd)

)

B(s, t) = E
(

‖
∫ s

0
dr
∫

Rd
dy
(

G(t− r, · − y) −G(s− r, · − y)
)

b(u(r, y))‖q
Hα

2 (Rd)

)

.

The Cauchy-Schwarz inequality, Hölder’s inequality, Plancherel’s identity, (43)
and the fact that α < k yield

A(s, t) = E
(( ∫

Rd
dx
∣

∣

∣

∫ t

s
dr
∫

Rd
dy (I − ∆)

α
2G(t− r, x− y)b(u(r, y))

∣

∣

∣

2
)

q
2
)

≤ (t− s)
q
2E
(( ∫ t

s
dr
∫

Rd
dx
∣

∣

∣

∫

Rd
dy (I − ∆)

α
2G(t− r, x− y)b(u(r, y))

∣

∣

∣

2
)

q
2
)

≤ (t− s)q−1
∫ t

s
dr E

((∫

Rd
dx
∣

∣

∣

∫

Rd
dy (I − ∆)

α
2G(t− r, x− y)b(u(r, y))

∣

∣

∣

2
)

q
2
)

= (t− s)q−1
∫ t

s
dr E

(( ∫

Rd
dξ (1 + |ξ|2)α|FG(t− r)(ξ)|2|Fb(u(r))(ξ)|2

)
q
2
)

≤ C(t− s)q.
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Analogously, by the formula sin x− sin y = 2 cos x+y
2

sin x−y
2

,

B(s, t) ≤ C
∫ s

0
drE

(

(

∫

Rd
dx
∣

∣

∣

∫

Rd
dy (I − ∆)

α
2

(

G(t− r, x− y) −G(s− r, x− y)
)

× b(u(r, y))
∣

∣

∣

2
)

q
2
)

≤ C
∫ s

0
dr E

(

(

∫

Rd
dξ (1 + |ξ|2)α

∣

∣

∣

∣

sin (t−s)|ξ|k

2

|ξ|k

∣

∣

∣

∣

2

|Fb(u(r))(ξ)|2
)

q
2

)

≤ C
∫ s

0
dr E

(

(

∫

Rd
dξ (1 + |ξ|2)α (sin (t−s)|ξ|k

2
)2(1−η)

|ξ|2k
|Fb(u(r))(ξ)|2

)
q
2

)

≤ (t− s)q(1−η)
∫ s

0
dr E

(

(

∫

Rd
dξ (1 + |ξ|2)α−kη |Fb(u(r))(ξ)|2

)
q
2

)

≤ C(t− s)q(1−η),

because α− kη < 0. Consequently,

E
(

‖U4(t) − U4(s)‖
q
Hα

2 (Rd)

)

≤ C(t− s)q(1−η). (58)

The result then follows from (55)-(58). 2

We finish this section with a refinement of the previous theorem in the par-
ticular case of a covariance measure Γ given by a Riesz kernel.

Theorem 7 Fix k ∈ ]0,∞[ and α ∈ [0, k[. Let σ, b, v0, ṽ0, δ and γ be as
in Theorem 6. We assume that Γ(dx) = |x|−β, with β ∈ ]0, 2(k − α)[. Set
θ1 ∈ ]0, inf(1 − β+2α

2k
, δ, 1 − γ)[. Then, for any q ∈ [2,∞[, 0 ≤ s ≤ t ≤ T ,

E
(

‖u(t) − u(s)‖q
Hα

2 (Rd)

)

≤ C(t− s)qθ, (59)

with θ ∈ ]0, θ1[. Therefore, the sample paths of the Hα
2 (Rd)-valued process

(u(t), t ∈ [0, T ]) solution of (44) are almost surely θ-Hölder continuous for
any

θ ∈

]

0, inf

(

1 −
β + 2α

2k
, δ, 1 − γ

)[

.

Proof. We shall use the same notations as in the proof of Theorem 6. By
Theorem 3 with Z(s, y) = σ(u(s, y)) (see (37)),

E
(

‖U3(t) − U3(s)‖
q
Hα

2 (Rd)

)

≤ C(t2 − t1)
q(1−β+2α

2k
). (60)

It is easy to check that for µ(dξ) = |ξ|−d+β, the condition (54) holds in fact
for any η ∈ ](β + 2α)/(2k), 1[. Consequently, (58) yields

E
(

‖U4(t) − U4(s)‖
q
Hα

2 (Rd)

)

≤ C(t2 − t1)
qθ2, (61)
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for any θ2 ∈ ]0, 1 − (β + 2α)/(2k)[.

The upper bound estimate (59) is a consequence of (55), (56), (60), (61) and
Hölder continuity of the Hα

2 (Rd)-valued process (u(t), t ∈ [0, T ]) follows from
Kolmogorov’s continuity condition. 2
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