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The proof of Lemma 19 of the paper is not correct as given. In fact, in order to prove the lemma,
a stronger hypothesis than the one given in the paper seems to be necessary.

Before stating the new hypothesis, we mention a stronger version of Theorem 3 of the paper
(though the theorem is correct as stated). Indeed, its hypothesis (33) is not satisfied in the case
where S is the fundamental solution of the heat equation. In order that this be the case, we
replace (33) by the following.

lim
h↓0

∫ T

0
dt

∫
Rd

µ(dξ) sup
t<r<t+h

|FS(r)(ξ) −FS(t)(ξ)|2 = 0. (1)

Notice that the supremum is over r near but greater than t, whereas in (33), the supremum is
two-sided.

The proof of Theorem 3 under this weaker hypothesis only requires the following changes.
Instead of the definition in the paper, define ϕn(t, x) as follows:

ϕn(t, x) =
2n−1∑
k=0

ϕ(tk+1
n , x)1[tkn,tk+1

n [(t),

The remainder of the proof is essentially unchanged, except that for t ∈ [tkn, tk+1
n [, Fϕn(t, ·)(ξ) =

Fϕ(tk+1
n , ·)(ξ) for all ξ, so ‖ϕ − ϕn‖2

0 converges to 0 by (1).
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We shall replace Hypothesis B of the paper by the stronger Hypothesis C below.

Hypothesis C. Assume, in addition to Hypothesis B (with (33) replaced by the weaker condi-
tion (1) above), that:

(i) t 7→ FΓ(t)(ξ) is continuous, for all ξ ∈ R
d ;

(ii) there is ε > 0 and a function t 7→ k(t) with values in the space of non-negative distributions
with rapid decrease such that for all t ≥ 0 and h ∈ [0, ε],

|FΓ(t + h)(ξ) −FΓ(t)(ξ)| ≤ |Fk(t)(ξ)|,

and ∫ T

0
dt

∫
Rd

µ(dξ) |Fk(t)(ξ)|2 < ∞.

We note that as in Remark 4, (ii) implies (1) above.

Proof that Lemma 19 holds under Hypothesis C.

Fix n ≥ 0, assume by induction that un is L2-continuous, and let Zn = α(un(t, x)). We begin
with the time increments. For t ∈ [0, T ], x ∈ R

d and h > 0, observe from (52) and the definition
of ‖ · ‖0,Z that

E((un+1(t, x) − un+1(t + h, x))2) ≤ 2(E1 + E2),

where

E1 = ‖Γ(t − ·, x − ·) − Γ(t + h − ·, x − ·)‖2
0,Zn

, (2)

E2 = E((
∫ t

0
ds

∫
Rd

β(un(t − s, x − y)) Γ(s, dy)

−
∫ t+h

0
ds

∫
Rd

β(un(t + h − s, x − y)) Γ(s, dy))2).

Notice by Lemma 18 that the law of the time-increments does not depend on x, so the L2-norm
will not either. By definition of ‖ · ‖0,Zn ,

E1 =
∫ t

0
ds

∫
Rd

µZn
s (dξ) |F(Γ(t − s, x − ·) − Γ(t + h − s, x − ·))(ξ)|2

+
∫ t+h

t
ds

∫
Rd

µZn
s (dξ) |FΓ(t + h − s, x − ·)(ξ)|2

=
∫ t

0
ds

∫
Rd

µZn
s (dξ) |F(Γ(t − s, ·) − Γ(t + h − s, ·))(ξ)|2

+
∫ t+h

t
ds

∫
Rd

µZn
s (dξ) |FΓ(t + h − s, ·)(ξ)|2,

and so E1 does not depend on x. The second integral has limit 0 by (28), (51) and (53). As for
the first integral, observe that the integrand goes to 0 pointwise by (i) in Hypothesis C, and by
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(ii) in this hypothesis, the integrand is bounded by |Fk(t − s)(ξ)|2, and by Theorem 2,
∫ t

0
ds

∫
Rd

µZn
s (dξ) |Fk(t − s)(ξ)|2

≤ sup
0≤s≤T

sup
x∈Rd

E(Zn(s, x)2)
∫ t

0
ds

∫
Rd

µ(dξ) |Fk(t − s)(ξ)|2

< +∞

by Hypothesis C. Therefore, the Dominated Convergence Theorem applies and so E1 has limit
0 as h ↓ 0. Note that the calculation is similar if one considers increments of the form
E((un+1(t, x) − un+1(t − h, x))2).

The proof that E2 → 0 as h ↓ 0 is the same as in the original proof of Lemma 19.

We now consider spatial increments. Observe from (52) and the definition of ‖ · ‖0,Zn that

E((un+1(t, x) − un+1(t, y))2) ≤ 2(F1 + F2),

where

F1 = ‖Γ(t − ·, x − ·) − Γ(t − ·, y − ·)‖2
0,Zn

,

F2 = E

((∫ t

0
ds

∫
Rd

(β(un(t − s, x − z)) − β(un(t − s, y − z))) Γ(s, dz)
)2
)

.

Note that

F1 =
∫ t

0
ds

∫
Rd

µZn
s (dξ) |F(Γ(t − s, x − ·) − Γ(t − s, y − ·))(ξ)|2

=
∫ t

0
ds

∫
Rd

µZn
s (dξ) |1 − ei ξ·(x−y)|2 |FΓ(t − s, ·)(ξ)|2.

The integrand converges pointwise to 0 as |x− y| → 0. Because |1− ei ξ·(x−y)|2 ≤ 4, we use (28),
(53) and (26) together with the Dominated Convergence Theorem to conclude that F1 → 0 as
|x− y| → 0. The proof that F2 → 0 as |x− y| → 0 is the same as in the original proof of Lemma
19.

We have shown that x 7→ un+1(t, x) is L2-continuous for t fixed, and t 7→ un+1(t, x) is L2-
equicontinuous for x ∈ R

d , 0 ≤ t ≤ T , so (t, x) 7→ un+1(t, x) is L2-continuous. This proves
Lemma 19.

Verification of Hypothesis C for the wave equation.

Assume d ≤ 3 and let Γ = Γ1 be the fundamental solution of the wave equation (as in Example
6). Assuming that (40) holds, we only check (i) and (ii) in Hypothesis C, because the remaining
conditions have already been checked in the paper.

Set k(t)(x) = 2G1(x), where G1 is the modified Bessel function defined in [28, Chap.V§3, Prop.2,
p.132]. This function is non-negative, with rapid decrease in x, and Fk(t)(ξ) = 2(1 + |ξ|2)−1/2.
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Further,

|FΓ(t − s + h)(ξ) −FΓ(t − s)(ξ)| =
∣∣∣∣sin(2π(t − s + h)|ξ|)

2π|ξ| − sin(2π(t − s)|ξ|)
2π|ξ|

∣∣∣∣
=

| sin(πh|ξ|) cos(2π(t − s + h/2)|ξ|)|
2π|ξ|

≤ | sin(πh|ξ|)|
2π|ξ| .

Observe that for x ≥ 0 and 0 ≤ h ≤ 1,

| sin(hx)|
x

≤ 2
(1 + x2)1/2

.

Finally, notice that ∫ T

0
dt

∫
Rd

µ(dξ) |Fk(t)(ξ)|2 = T

∫
Rd

µ(dξ)
4

1 + |ξ|2 < ∞

by (40).

Verification of Hypothesis C for the heat equation.

Let Γ = Γ3 be the fundamental solution of the heat equation (as in Example 8). As above, we
only check (i) and (ii) of Hypothesis C. Take k(t)(x) = Γ(t)(x), where Γ(t)(x) is the heat kernel.
This is a non-negative function with rapid decrease in the space variables, and

|FΓ(t − s + h)(ξ) −FΓ(t − s)(ξ)| = exp(−4π2(t − s)|ξ|2) − exp(−4π2(t − s + h)|ξ|2)
= (1 − exp(−4π2h|ξ|2)) exp(−4π2(t − s)|ξ|2)
≤ |FΓ(t − s)(ξ)|.

Furthermore, ∫ T

0
dt

∫
Rd

µ(dξ) |Fk(t − s)(ξ)|2 < ∞

by (40).

Other minor corrections

On page 22, Mn(t) should be defined without the supremum over s:

Mn(t) = sup
x∈Rd

E(|un+1(t, x) − un(t, x)|p).

The remainder of the proof is correct, except that in order to have the desired uniform conver-
gence of (un(t, x)), it is necessary to check that for 0 ≤ t ≤ T ,

Mn(t) ≤ an, with
∞∑

n=1

a1/p
n < ∞.
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For this, the statement of Lemma 15 should be strengthened as follows.

Lemma 15 (Extension of Gronwall’s Lemma.) Let g : [0, T ] → R+ be a non-negative function
such that ∫ T

0
g(s) ds < +∞.

Then there is a sequence (an, n ∈ N) of non-negative real numbers such that for all p ≥ 1,
Σ∞

n=1a
1/p
n < ∞, and with the following property. Let (fn, n ∈ N) be a sequence of non-negative

functions on [0, T ] and k1, k2 be non-negative numbers such that for 0 ≤ t ≤ T ,

fn(t) ≤ k1 +
∫ t

0
(k2 + fn−1(s))g(t − s) ds. (3)

If sup0≤s≤T f0(s) = M, then for n ≥ 1,

fn(t) ≤ k1 + (k1 + k2)
n−1∑
i=1

ai + (k2 + M)an. (4)

In particular, supn≥0 sup0≤t≤T fn(t) < ∞, and if k1 = k2 = 0, then Σn≥0 fn(t)1/p converges
uniformly on [0, T ].

The proof of the lemma is unchanged, except for the last line, which becomes “Finally,∑∞
n=1 a

1/p
n < ∞ by Lemma 17 below.” The statement of Lemma 17 should be strengthened

as follows.

Lemma 17 Let F be the common distribution function of an i.i.d. sequence (Xn, n ∈ N) of
non-negative random variables and fix p ≥ 1. Suppose that F (0) = 0 and set Sn = X1 + · · ·+Xn.
Then for any a ≥ 1 (and trivially, for 0 ≤ a < 1) and t > 0,

∞∑
n=1

an/pP{Sn ≤ t}1/p < +∞. (5)

The proof of Lemma 17 remains unchanged.

Acknowledgement. The error in the proof of Lemma 19 was pointed out by Mònica Sarrà
and Marta Sanz-Solé. The need for the remaining minor corrections was pointed out by Olivier
Lévèque.
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