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Abstract

Most multi-camera systems assume a well structured environment to detect and track objects across cameras. Cameras need to
be fixed and calibrated, or only objects within a training data can be detected (e.g. pedestrians only). In this work, a master-slave
system is presented to detect and track any objects in a network of uncalibrated fixed and mobile cameras. Cameras can have
non-overlapping field-of-views. Objects are detected with the mobile cameras (the slaves) given only observations from the fixed
cameras (the masters). No training stage and data are used. Detected objects are correctly tracked across cameras leading to a better
understanding of the scene.

A cascade of grids of region descriptors is proposed to describe any object of interest. To lend insight on the addressed problem,
most state-of-the-art region descriptors are evaluated given various schemes. The covariance matrix of various features, the his-
togram of colors, the histogram of oriented gradients, the scale invariant feature transform (SIFT), the speeded up robust features
(SURF) descriptors, and the color interest points [1] are evaluated. A sparse scan of the cameras’image plane is also presented to
reduce the search space of the localization process, approaching nearly real-time performance. The proposed approach outperforms
existing works such as scale invariant feature transform (SIFT), or the speeded-up robust features (SURF). The approach is robust to
some changes in illumination, viewpoint, color distribution, image quality, and object deformation. Objects with partial occlusion
are also detected and tracked.

Key words: Object Detection, Object Tracking, Region Descriptors, Cascade of descriptors, Multi-View, Mobile cameras,
Pedestrian Recognition

1. Introduction

Visual cameras are now installed in major cities1 and inte-
grated into many devices such as phones or vehicles. Such de-
ployment of cameras in fixed and moving platforms has pro-
moted the need to develop a framework to automatically detect
and track objects in such a mixed network of uncalibrated cam-
eras. Since cameras can be moving, their views are often not
overlapping. Objects need to be localized in each camera view,
and tracked (i.e. re-identify) across views.

In a surveillance application, the use of data provided by all
cameras capturing a given scene, leads to a better understand-
ing of the objects of interest. Object identification (e.g. face
recognition) or behavior analysis (e.g. facial expression) need
high resolution features. Mobile cameras (e.g. cameras held by
pedestrians or placed in cars) benefit from their proximity to the
objects of interest to capture such high resolution features. In a
safety context, car manufacturers and institutions are interested
in detecting potential collision of cars with pedestrians in ur-
ban areas [3]. For that purpose they have mounted cameras on
cars. Those cameras could collaborate with the fixed cameras
installed in the cities to better detect pedestrians or any moving
objects (such as animals).

1In 2002, approximately four million just for the UK [2]

Figure 1: Left column: objects of interest highlighted in a fixed (master) cam-
era. Right column: Corresponding objects detected and tracked in a mobile
(slave) camera by our proposed approach

Most multi-camera systems assume a well structured envi-
ronment, cameras need to be fixed and calibrated [4, 5, 6].
Moving objects are detected by modeling the background of the
scene [7]. The foreground points extracted by each camera are
projected in a common reference given a homography or a fun-
damental matrix estimated during calibration steps [4]. Then,
objects are detected and matched in a common reference plane
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[8]. However, these systems fail to detect and match objects
across uncalibrated and moving cameras.

Object detection with mobile cameras is usually solved with
pattern recognition techniques [9, 10, 11]. A set of features
such as Haar wavelet coefficients [12, 13], histogram of ori-
ented gradient [9, 14] or covariance matrices of a set of features
[10, 15], are extracted from a large number of training samples
to train a classifier with a support vector machine [12, 16], or
boosting approaches [17, 10]. Thousands of observations of
the objects of interest are desired, and only objects present in
the training data can be detected.

In this work, a multi-camera system is proposed based on
a master-slave approach. Objects are detected with mobile
cameras (from now on called slaves) given only observations
from fixed cameras (masters). Detected objects are correctly
matched across cameras. The proposed framework can be ap-
plied to any pair of uncalibrated cameras. It only assumes that
objects are correctly detected in at least one view, the master
view. Either simple processing can be achieved in that view
(i.e. foreground extraction with a fixed camera) [7], or a user
can manually select an object (object query). Cameras do not
require overlapping field-of-views. A validation step [18] is
proposed to evaluate the presence of an object in the views of
the cameras. No calibration, neither training process or data is
used. The detection and matching process is only based on the
appearance of the objects across cameras.

An Object Descriptor (OD) is proposed to handle defor-
mations occurring in the presented applications (e.g. safety,
surveillance, or robot navigation) such as: (i) photometric de-
formation, (ii) viewpoint changes ( i.e. rotation around the ver-
tical or horizontal axes), (iii) object deformation (e.g. walk-
ing pedestrians), and (iv) partial occlusions. The OD is made
of a cascade of grids of region descriptors. The detection and
matching process is speeded-up by the interest point locations
leading to a sparse search space. The state-of-the-art regions
descriptors such as the covariance matrix [19] of various fea-
tures, the histogram of colors [20], the histogram of oriented
gradients [14], the scale invariant feature transform (SIFT) [21],
the speeded-up robust features (SURF) descriptors [22], and the
color interest points [1] are evaluated to provide insight on the
object detection and tracking problem.

The rest of the paper is structured as follows. First, a review
of existing region descriptors is given. Then, the proposed OD
is presented in Section 3 followed by its localization strategy.
The master-slave object detection and matching approach is de-
scribed in Section 5. Finally, the detailed experimentation is
presented in Section 7. The proposed system is evaluated given
various schemes and strategies. Experiments show that objects
are successfully detected even if the cameras have significant
changes in image quality, illumination, and viewpoint as illus-
trated in Figure 1. Partial occlusions are also handled.

2. Existing Region Descriptors

A wide assortment of region descriptors has been proposed
in the literature to address specific goals. From monocular or

multi-view tracking problems, to image retrieval, simple and
complex descriptors have been used.

The most basic high dimensional descriptor is the vector of
pixel intensities [23]. Cross-correlation can be used to compute
the distance between the descriptors. Its high dimensionality
leads to high computational complexity without being robust to
geometric deformation. A natural alternative is to describe the
distribution of the pixel intensities by histograms. It copes with
translations and rotations. Striker and Orengo [20] quantize the
HSV color space instead of the RGB. They use 16 bins for Hue
and 4 for the Saturation and Value to match images. The log-
RGB [24], YCrCb [25], or Lab color spaces can also be used.
Color histogram can be sufficient for monocular tracking [26]
but leads to poor performance in a multi-view system. It is
vulnerable to bad camera calibration and illumination changes.
The inter-camera illumination change can be modeled to reduce
such an effect [27]. Nevertheless, in many applications, color
histograms are not discriminative enough to match or detect ob-
jects.

Another efficient-to-compute descriptor is the Histogram of
Oriented Gradient (HOG). It is based on the first order deriva-
tives with respect to x and y of the image intensity (denoted
by Ix and Iy). From these derivatives, a gradient field is com-
puted assigning to each pixel a magnitude mg(x, y) and an angle
o(x, y):

mg(x, y) =

√
I2

x (x, y) + I2
y (x, y) (1)

o(x, y) = arctan
(

Iy(x, y)
Ix(x, y)

)
(2)

The angle values o ∈ [0, 360[ are quantized to N discrete
levels oi. A histogram is formed where each bin is the sum of
all magnitudes with the same orientation on in a given region.

HOG has been extensively used to detect pedestrians in static
images [9, 14, 28]. It is also the key component of the descriptor
proposed by Lowe in [21].

Wang et al. in [29] use HOGs that incorporate detailed spa-
tial distribution of objects color across different body parts.
Likewise, Gheissari et al. in [30] segment the body into salient
parts and combine color and edgel histograms for appearance
representation and person re-identification.

To compare the histograms, any distance measure can be
used: Correlation, `1-norm , `2-norm , intersection, Chi-square,
Bhattacharyya. We compare all those distances and conclude
that Bhattacharyya [26] distance is performing either better or
similar than other distances:

σr(H1,H2) =

√
1 −

∑

i

H1(i).H2(i)√∑
i H1(i).

∑
i H2(i)

(3)

where H(i) is the histogram value of bin i.
Lowe presents a method to extract feature points invariant to

scale, rotation, substantial range of affine distortion, 3D view-
point, illumination, and addition of noise: scale-invariant fea-
ture transform (SIFT) [21]. Scale-space extrema is detected by
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difference-of-Gaussian function. Histograms of gradient direc-
tion are assigned to keypoints and used to create the descriptors.
Bay et al. propose an interest point detector and descriptor out-
performing SIFT in terms of speed and accuracy: speeded-up
robust features (SURF) [22]. Their descriptor is based on the
distribution of the Haar-wavelet responses within the interest
point neighborhood. Their detector and descriptor do not use
color information. Gabriel et al. in [1] consider color inter-
est points. The R,G,B values and first-order derivatives of the
(R,G,B) channels are considered to describe each interest point.
Similarity between two regions is computed by summing the
distance between IPs with shortest mahalanobis distance. How-
ever, interest point based matching perform poorly with noisy
low resolution images (see Section 7).

A more complex descriptor is the covariance descriptor. It is
first presented by Tuzel et al. [19] to outperform histogram de-
scriptors. For each pixel, a feature vector fn is extracted. Alahi
et al. in [31, 15] compare various set of features. The grayscale
intensity, the RGB values, the norm of the first and second order
derivatives, the gradient magnitude and its angle are considered.
Typically,

fn = (x, y, I, Ix, Iy)T (4)

with I the grayscale intensity, Ix and Iy the norm of the first
order derivatives.

The pixel coordinates (x, y) are integrated in the feature vec-
tor to consider the spatial information of the features. The co-
variance of a region is computed as:

Ci =
1

N − 1

N∑

n=1

(fn −m)(fn −m)T (5)

where N is the number of points in the region, and m the mean
vector of all the feature vectors.

With covariance matrices, several features can be fused in a
lower dimensionality without any weighting or normalization.
They describe how features vary together.

Similarity between two regions is given by the distance pro-
posed by Forstner and Moonen [32] summing the generalized
eigenvalues of the covariances:

σr(C1,C2) =

√∑

i

ln2 λi(C1,C2) (6)

where λi(C1,C2) are the generalized eigenvalues of the co-
variance matrices C1 and C2.

Although, a fast method based on integral images exists to
compute the covariance matrices [19], similarity measurement
takes time.

Other descriptors exist such as steerable filters [33], gaussian
derivatives [34], complex filters [35], phase-based local features
[36], and moment invariants [37]. However, according to Miko-
lajczyk and Schmid [38], their proposed descriptor, called gra-
dient location-orientation histogram (GLOH), as well as SIFT
descriptor, outperforms these descriptors. GLOH is a variant of
SIFT computing the HOGs in a log-polar location grid and re-
ducing the final descriptor size with principal component analy-

sis (PCA). Nevertheless, it is computationally more demanding
than SIFT.

In Section 7, the performances of the best presented descrip-
tors are compared.

3. Object Descriptor

3.1. A Collection of Grids of Descriptors

An OD is proposed taking into account local and global in-
formation. It is a collection of grids of region descriptors.
Each grid segments the object into a different number of sub-
rectangles of equal sizes (referred to as blobs in the rest of
the paper). Grids of finer blob size describe local information
whereas grids of coarse blob size describe a more global behav-
ior.

Similarity between two objects, φ(x, yi), is computed by sum-
ming distances σi between corresponding blobs segmenting the
grids. Since, many objects can be deformable, and some par-
tially occluded, only the most similar blobs are kept, the best
β percent. In this way, blobs belonging to the background can
potentially be discarded as well(see Figure 2).
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Figure 2: A collection of grids of descriptors. Left column is the object of
interest. Right column is a region to compute similarity. Colored blobs are kept
to compute the global distance (β = 50%)

Let σ be the set of all distances:

σ = {σ1, σ2, ..., σN} (7)

where N is the sum of all the blobs segmenting the grids.
We define the sorted set:

σs = {σa, σb, σc, ...} (8)

where σa < σb < σc < ... and | σs |= N .
Hence, the final similarity measurement is :

φ(x, yi) =
1
p

p∑

k=1

σs{k} (9)

where σs{k} is the kth distance of the sorted set σs, and p =

dβNe.
Therefore, the final similarity measurement is the average of

a sparse measurement of isolated blobs of various size and po-
sition.
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3.2. Several Observations

An object of interest can have several observations. Typi-
cally, the appearance of moving objects can change across time
from the same view-point. Therefore, the φ operator can use
several observations of an object in the matching process. Each
observation leads to an OD. To compute the similarity of a re-
gion in the given image, the minimum distance, σr, between
each blob of the grids is selected among all ODs leading to a
distance map (see Figure 3).

OD1 OD2 Region in a 

slave camera
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Figure 3: Generation of the distance map between a set of observations of an
object from a master camera and a region in the slave camera.

In order to cover the most different appearances of an ob-
ject, the most dissimilar observations are kept. As a result, if
an object does not have a similar appearance with the current
observation, it might have a better similarity with an older ob-
servation.

Let D be the set of observations of an object, and m the num-
ber of observations to keep:

D = {ODi,OD2, ...,ODm}. (10)

We define the “similarity” distance σset as the sum of all dis-
tances between the ODs of a set:

σset(D) =
∑

∀k,l∈D

σ(ODk,ODl) (11)

Initially, the set D corresponds to the m first observations of
the object. Then, given a new observation ODn, m + 1 choices
of the set D are possible, referred to as Dp:

Dp = {D1, ...,Dm+1} =

{{ODn,OD2, ...,ODm},
{OD1,ODn, ...,ODm},

...,
{OD1,OD2, ...,ODn},
{OD1,OD2, ...,ODm}}

(12)

The set with the most dissimilarity (highest σset) is kept:

Du = arg max
∀Di∈Dp

σset(Di) (13)

where Du is the new updated set of observations.

M aster C am era S lave  C am era

Figure 4: Illustration of an object described by 3 IP. The most similar IPs in the
slave camera leads to 3*6 candidate regions only

4. Object Localization

4.1. Preliminary remarks
Given the proposed OD, i.e. the collection of grids of region

descriptors, we are interested in localizing the most similar ob-
jects in the target image plane. Two strategies are evaluated
to select the candidate regions in the target image: a dense or
sparse approach.

4.2. Dense scan
All possible regions in the target image are compared with

the OD (similar to a brute force search): a window of size pro-
portional to the object bounding box scans the image plane at
different scales. Six scales are used with a 25% scaling factor
between two consecutive scales and a jumping step equivalent
to 15% of the window size.

A basic pruning technique is applied to discard regions with
very low similarity: the difference between the proportion of
edges in two regions is used to give a quick indication about
their similarity. If the proportion of edges is not similar, the
region is discarded. As a result, fewer regions remain to be
analyzed and it increases the likelihood to detect the right object
by reducing the search space. However, this pruning technique
does not reduce the search space sufficiently, a further reduction
is needed.

4.3. Sparse selection
A dense scan of the target image leads to thousands of re-

gions to evaluate. In order to reduce the cardinality of such a
set, a sparse selection given by the interest point (IP) extracted
from the object of interest is proposed. All the interest points
found on the object are matched to the most similar IPs in the
image. Any existing detector and descriptor can be used. In this
work, SURF [22] is used to detect and describe the IPs due to
its low computational cost.

Each IP extracted from the object is represented by its coor-
dinates with respect to the center of the bounding box. There-
fore, a matched IP corresponds to a bounding box with the same
spatial coordinates with respect to the center of the candidate
region (up to a scale2). Figure 4 illustrates the approach.

In Section 7, both strategies, i.e. dense and sparse selection
of the candidate regions are compared.

2Six different scales are also used.
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4.4. Cascade of Coarse to Fine Descriptors

Comparing the collection of grids of region descriptors is
computationally costly. Some regions can be easily discarded
without knowing the local information. Therefore, an approach
similar to a cascade of classifiers is proposed. “Easy regions”
are discarded with coarse grids (i.e. grids with small number of
blobs). More challenging regions require the use of finer grids
(i.e. larger number of blobs).

The detection process is divided into several stages. At each
stage, a finer grid is used (see Figure 5). After each stage, only
the best candidates remain, i.e. regions with highest similarity,
top ρ% of the evaluated regions.

The parameter ρ can be fixed (typically 30%)or chosen such
that after each stage the same percentage is kept and one region
remains after N stages:

Nr × ρN = 1 (14)

ρ = N−1/N
r (15)

where Nr is the total number of regions in the image plane to
compare with the object descriptor, and N is the total number
of stages to use.

Figure 5: A three stages cascade of coarse to fine descriptors

Figure 6 illustrates the remaining regions with their similarity
after each stage.

5. A Master-Slave Object Detection and Matching Ap-
proach

5.1. Problem Formulation

Given an observation x of an object O in a master camera, we
wish to detect its presence in the view of a slave camera, and if
present, locate it in its image plane. No calibration and training
data should used.

Let yi be a potential region in the slave. x and yi are rectan-
gular subsets of an image. An ”Object localization” operator is
defined, Φ, which maps a region x to the N most similar regions
in a given image I:

Φ(x, I,N) = {y1, y2, ..., yN} = Y (16)

First, the operator Φ is used to match an observation x from
the master to the most similar regions in the slave:

Φ(x, Is,Ns) = {y1, y2, ..., yNs } = Yx (17)

The same operator Φ is further used to map any yi to a set of
x̂i referred in this paper as the dual problem:

Φ(yi, Im,Nm) = {x̂1, ..., x̂Nm } = X̂i (18)

where Im is the image plane of the master.
In order to validate if a detected region in the slave really

matches the same object in the master, the dual problem is eval-
uated. If a region x̂i coincides with x, then the corresponding yi

should be the region bounding object O in the slave (see Figure
7). If none of the x̂i coincides with x, object O is probably not
present in the view of the slave. Hence, an operator ϑ validates
if a region yi matches x:

ϑ(yi|x,Φ(yi, Im,Nm)) = ϑ(yi|x, x̂1, ..., x̂ j) ∈ [0, 1]. (19)

Moreover, the dynamic of the system can be considered to
increase the performance. If results from previous frames are
available, they help the decision at the current frame. Two types
of prior are useful. First, an object moving in a scene can have
different appearances across time even from a fixed viewpoint.
A set of relevant observations, {xt, xt−i, ..., xt− j}, can be kept to
detect the same object with a slave camera. The object local-
ization operator becomes:

Φ({xt, xt−i, ..., xt− j}, Is,Ns) = Y t
x (20)

Second, the results of a detected object in the slave at previous
frames, {yt−1, yt−2, ..., yt−k}, can be used to detect the same object
at the current frame, corresponding to a tracking approach:

Φ({yt−1, yt−2, ..., yt−k}, Is,Ns) = Y t
yt−1 (21)

As a result, the problem can be formulated as follows: find
the region yt

x in the slave that maximizes ϑ(yt
i |xt,Φ(yt

i, Im,Nm))
for all yt

i ∈ {Y t
x,Y

t
yt−1 }:

yt
x = arg max

yt
i∈{Y t

x,Y t
yt−1 }

ϑ(yt
i |xt,Φ(yt

i, Im,Nm)) (22)

If such a yt
x does not exist (all ϑ < T ), it means that the object is

not present in the image plane of the slave camera. The choice
of the threshold T will be discussed in Section 7.5.

5.2. Detect, Track, and Validate
In order to solve the formulated problem, the approach can

be summarized as follows. First, an object observed by a master
is searched in the image plane of the slave with the Φ operator.
The dual problem is evaluated to validate the candidates. Then,
at the next frames, prior from the slave is first used to search the
new frames. If the tracked region validates the dual problem,
then the corresponding object is not searched given observation
from the master. However, If none of the candidates match the
initial object, the process is repeated without considering the
prior from the slave. Algorithm 1 summarizes the approach
and Figure 22 illustrates an example of a single object detected
and tracked in the slave camera.
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Figure 6: Illustration of the most similar regions after each stage of the algorithm (in Jet format, white regions are the least similar and black ones the most)

Algorithm 1: Overview of the approach ”detect, track, and
validate”

Input: A set of objects {x1, x2, ..., xp} observed in the
master camera

Output: Location {yx1 , ..., yxq } of the corresponding objects
in the image plane of the slave camera

for each object x in the master do
1. At t = 1, detect and validate:

y1
x = arg max

yi∈{Φ(x1,Is,Ns)}
ϑ(yi|x1,Φ(yi, Im,Nm)) (23)

2. At t = 2,
If y1

x exists, track and validate:

y2
x = arg max

yi∈{Φ(y1
x ,Is,Ns)}

ϑ(yi|x2,Φ(yi, Im,Nm)) (24)

If y2
x or y1

x do not exist, detect given prior from the
master and validate:

y2
x = arg max

yi∈{Φ(x1,x2,Is,Ns)}
ϑ(yi|x2,Φ(yi, Im,Nm)) (25)

3. Repeat step 2 till object x is present in the master
end

Master Slave

(a) Φ(x, Is, 3) = {y1, y2, y3} = Yx
Master Slave

(b)For i = 1 : 3: Φ(yi, Im, 3) = {x̂1, x̂2, x̂3} = X̂i

Figure 7: Illustration of the Φ operator. (a) An object x, highlighted in the
master camera, is mapped to the best 3 regions in the slave camera. (b) Then,
each region yi is mapped back to 3 regions in the master camera. If those regions
coincide with x, there is a match.

Master

S lave

Master

S lave

Master

S lave

t =  1 t =  2 t =  3 t

Φ (x 1,Is,1 ) Φ (y1,Im ,1 ) Φ (y2,Im ,1 ) Φ (y3,Im ,1 )

Φ (y1,Is,1 ) Φ (y2,Is,1 )

Figure 8: Illustration of the detect, track, and validate process. Only one object
is validated and tracked across frames

6. Validation

The validation operator, ϑ, evaluates the likelihood that ob-
ject x matches region yi in the slave camera. It considers the
dual problem by analyzing the set obtained by Φ(yi, Im,Nm) =

{x̂1, x̂2, ..., x̂Nm }. In the next section, the choice of Nm will be
studied.

A similarity measure ς between the original x and each x̂i is
estimated based on the spatial arrangement of their bounding
boxes:

ςl(x, x̂i) = 1 − (
1 − O
1 − t1

wo +
1 −C
1 − t1

wc +
Dc

t2
wd) (26)
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where

• C is a percentage which represents how much of the orig-
inal bounding box of x is covered by the bounding box of
x̂i. Likewise, O is the percentage which represents how
much of x̂i is covered by x. (see Figure 9)

• Dc measures the similarity of the center of two bounding
boxes. The smallest euclidian distance between the center,
the highest Dc.

• t1 is the minimum amount of O and C required, and t2 the
minimum distance Dc.

Figure 9: Illustration of the bounding boxes x (in red) and x̂i where C ≈ 0.75,
O ≈ 0.4

Note that we choose ς(x, x̂i) > 0 if and only if C and O > t1
and Dc < t2: t1 = 0.3 and t2 = 0.75∗max(widthx, heightx) leads
to satisfactory results.

A weight w. is associated with each factor to emphasize pri-
ority. In this work, focus is first on a high cover of x , then
a similar center of mass, finally x̂i should not be too big with
respect to x (decent O)3.

A linear ςl may be too sensitive to differences. The logistic
operator is used to reduce sensitivity to two regions overlapping
with a slight difference:

ς(x, x̂i) =
1

1 + c1e−c2 ·O
wo +

1
1 + c1e−c2 ·C

wc +
1

1 + c1e−c2 ·Dc
wd (27)

c1 and c2 are the parameters of the logistic function.
Figure plots the behavior of the logistic operator as opposed

to the linear one. Figure 11 presents an example of the value
obtained with ς and ςl.

Finally, ϑ(yi|x,Φ(yi)) is computed as follows:

ϑ(yi|x,Φ(yi)) = max
x̂i∈Φ(yi)

ς(x, x̂i) × w(yi) (28)

3wc = 0.5, wd = 1/3, and wo = 1/6
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Figure 10: x-axis represents C or O; y-axis represents its contribution to ς and
ςl. It can be seen that for values of C or O close to 1, the contribution remains
also almost 1 (full) for the logistic operator.

Figure 11: The linear ςl gave 0.63 and the proposed ς gives 0.86

where w(yi) weights region yi with respect to other y j based on
the similarity measurement computed by Φ(x) (in Section 3.1):

w(yi) =
φ(x, yi)

maxy j∈Φ(x) φ(x, y j)
(29)

where φ(x, yi) is the similarity measurement defined in Sec-
tion 3.1.

7. Performance Evaluation

7.1. Data Sets
Indoor and outdoor data sets have been used to evaluate the

proposed master-slave approach. Each data set is composed of
video sequences captured concurrently by a master and a slave
camera from the same scene4. Masters are located at a height
equivalent to the first floor of a building. Slaves are held by
pedestrians walking in the scene. The images are recorded at 25
fps with a resolution of 320× 240. The data sets have meaning-
ful changes in viewpoint, illumination, and color distribution
between master and slave cameras. Sensing devices are also
different. Indeed, slave cameras have a low-quality capturing
device and hence provide noisy images. A rough temporal syn-
chronization of the cameras is used (few frames delay) similar
to the delay that can occur in real-world applications.

To further evaluate the performance of the proposed descrip-
tor to track object identity, the VIPeR data set is used 5. It con-
tains hundreds of pedestrian image pairs taken from arbitrary
viewpoints (45 to 180 degree view difference) under varying
illumination conditions[39]. Hence, pedestrian recognition or
re-identification can be evaluated.

7.2. Experiments
To evaluate the proposed master-slave framework, thousands

of objects are selected within the masters, to find correspon-
dence in the slaves. Pedestrians and random rigid objects in
the scene are selected to prove the generality of the approach.
The performance of the system is quantitatively evaluated by
computing the precision (i.e. number of true positives divided
by the sum of true positives and false positives) and recall (i.e.
number of true positives divided by the sum of true positives
and false negatives) measures. A true positive is an object cor-
rectly detected in a slave camera and correctly matched to the
corresponding object in the master camera.

4The video sequences with their ground truth data (in xml format) are avail-
able at: http://lts2www.epfl.ch/˜alahi/data.htm

5The VIPeR dataset is available at: http://vision.soe.ucsc.edu/node/178
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First, only objects present in the view of the slaves are
searched, i.e. cameras have overlapping field-of-views (Section
7.4). Hence, the number of false positives is equal to the num-
ber of false negatives, leading to a similar recall and precision
measures. Then, to compute the performance of the full ap-
proach (detect, track, and validate), all the objects of interest in
the master are selected, i.e. all moving objects and some static
objects such as signs and cars. All the objects are searched in
the slaves even if they are not present in the field-of-view of the
cameras (Section 7.5). The proposed approach should detect
only objects present in the slave and locate them.

Finally, to measure the performance of the proposed descrip-
tors to recognize or re-identify pedestrians given the VIPeR
data set, we measure the cumulative matching characteristic
(CMC) curve and similar to Gray et al. in [25]. The CMC
curve is calculated by selecting pedestrians in the first (master)
camera view and finding the ranking of their match in the col-
lection of pedestrians observed by the second (slave) camera.
All the pedestrians observed by the slave are sorted given their
distance to the probe pedestrian in the master.

7.3. Region Descriptors Evaluation

After studying the literature and considering their relevant
results, the state-of-the-art region descriptors are compared for
the object descriptor.

First, the color histogram is evaluated as a benchmark of the
simplest low cost descriptor. Various color spaces and bin par-
titions are studied. The RGB, log-RGB, HSV, YCrCb, Lab and
opponent color space are evaluated. The Bhattacharyya dis-
tance is used to compare histograms since it performs better
than other distances (such as `1-norm , `2-norm , intersection,
Chi-square).

Then, HOG descriptor is considered since Mikolajczyk and
Schmid conclude that gradient based descriptors (i.e. GLOH,
SIFT) outperform other descriptors such as steerable filters
[33], gaussian derivatives [34], complex features [35], phase-
based local features [36], and moment invariants [37]. Eight to
sixteen bin partitions are compared.

Haar-wavelet responses are also analyzed since Bay et al.
obtained better results with such descriptor than HOG based.
Experimental results showed that Haar-wavelet responses are
very sensitive to the choice of the filter size and the sampling
grid. First, the same choices as Bay et al. are tested. Then, by
changing the parameter to a finer grid size and a bigger filter
size, we reach better performance (referred to as Haar SURF
tuned).

Finally, the covariance descriptor is exhaustively evaluated
for various feature vectors since Tuzel et al. [19] introduced
such a descriptor to outperform histogram descriptors. All the
presented color channels, the first and second order derivatives,
the magnitude and angle of the gradient, are used to form the
feature vector. Many combinations of features are tested.

All these descriptors are intensively studied for various
schemes and parameters. Table 1 illustrates the best performing
ones.

Region Descriptors
64 bins for RGB: H(64R,64G,64B)
32 bins for RGB: H(32R,32G,32B)
64 bins for log-RGB: H(log 64R,64G,64B)
32 bins for log-RGB: H(log 32R,32G,32B)
64 bins for YCrCb: H(64Y,64Cr,64Cb)

Histogram of 8 bins for YCrCb: H(8Y,8Cr,8Cb)
Color 64 bins for HSV: H(64H,64S,64V)

32 bins for H, 8 bins for S, V: H(32H,8S,8V)
16 bins for H, 4 bins for S, V: H(16H,4S,4V)
64 bins for Lab: H(64L,64a,64b)

HOG
8 bins: HOG 8
12 bins: HOG 12
16 bins: HOG 16

Haar-wavelet SURF distribution [22]: Haar(SURF)
responses SURF distribution tuned: Haar(SURFtuned)

Covariance

C(x, y, Ix, Iy)
C(x, y, Ixx, Iyy)
C(x, y,mg, o)
C(x, y, I, Ix, Iy)
C(x, y, I, Ix, Iy, Ixx, Iyy)
C(x, y, I, Ix, Iy,mg, o)
C(x, y, I, Ixx, Iyy,mg, o)
C(x, y, I, Ix, Iy, Ixx, Iyy,mg, o)
C(x, y,R,G, B, Ix, Iy, Ixx, Iyy)
C(x, y,R,G, B, Ix, Iy,mg, o)
C(x, y,H, S ,V, Ix, Iy, Ixx, Iyy)
C(x, y,Y,Cr,Cb, Ix, Iy, Ixx, Iyy)
C(x, y,Y,Cr,Cb, Ix, Iy,mg, o)

Table 1: Summary of the best performing region descriptors evaluated for the
object descriptor. x and y are the pixel coordinates, I the grayscale value, Ix and
Iy the 1nd order derivatives, Ixx and Iyy the 2nd order derivatives, mg and o the
gradient magnitude and angle.
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Figure 12: Recall for various region descriptors

7.4. Object Detection and Tracking across Overlapping Field-
Of-Views

For the sake of clarity, only the best performing descriptors
from table 1 are presented in the remaining study. Nevertheless,
the performance of some descriptors is presented in Figure 12
for the simplest scheme: an object is described by a single de-
scriptor with a dense scan of the candidate regions. Color fea-
tures perform poorly with histogram and covariance descriptor.
Since sensing devices are different, the color distribution is also
changed. Hence, color is not the right feature to use. Increasing
the number of features increases the performance of the covari-
ance descriptor. The HOGs perform almost as good as the best
covariances. However, it is clear that describing an object with
a single descriptor leads to very poor performance. Local infor-
mation is lost in the global behavior. In this work, a cascade of
grids of descriptors is proposed to tackle this problem. In order
to validate such an approach, the proposed cascade approach is
compared with other schemes (figures 13(a) to 13(c)) when a
dense scan is used.

First, an object is described by a single grid (Figure 13(a)).
Various numbers of sub-regions per grid are considered. In-
creasing the number of sub-regions increases the performance
with histogram of color, HOG, and covariance descriptors. The
color histogram still performs poorly compared to others. In-
terestingly, the performance of the descriptor based on Haar-
wavelet responses increases for a few set of coarse grids and
decreases for much finer grids. The filter size and sampling
grid are proportional to the sub-rectangle size. As mentioned
previously, changing the filter size and sampling grid affects the
performance. Hence, such a decrease of performance can hap-
pen with fine grids (i.e. high number of small sub-rectangles).

Second, an object is described by a collection of grids (Fig-
ure 13(b)). The final similarity measurement is the sum of the
distances over all the grids. Considering global and local infor-
mation increases the performance of all the descriptors reaching
a limit.

Finally, Figure 13(c) shows that the proposed cascade of
grids leads to a very similar performance as the collection of
grids but with a much lower computation cost. The number
of descriptors to compute is much less than the previous two
schemes. Figure 14 presents the performance of the cascade of
descriptors for various ρ (refer to Section 4.4) with respect to
the number of region descriptors needed.

Similarity between two regions is computed by summing the

H OG 8 H OG 12 H OG 16

C (I,Ix ,Iy ) C (I,Ix ,Iy ,m g ,o ) C (I,Ix ,Iy ,Ixx ,Iyy ,m g ,o )

H aar (S U R F tu n ed ) H (64H ,64S ,64V ) H (64R ,64G,64B )
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Figure 13: Recall for various region descriptors with 3 different schemes to
describe an object based on a dense scan.
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Figure 14: Recall with respect to the number of region descriptors needed
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Figure 15: Mean recall of the cascade of HOG and covariance descriptors for
various β value

β most similar blobs (see Section 3.1) within the grids of de-
scriptors leading to a sparse similarity measurement. Figure 15
illustrates the impact of β on the performance of the cascade of
HOG and covariance descriptors. The mean performance be-
tween the two descriptors is plotted. The impact of β depends
on the percentage of occlusion, object deformation, view-point
and photometric changes usually present in the data set. In our
application, keeping 75% of the blobs to compute the overall
similarity leads to the best performance.

All 3 strategies describe an object in a dense manner (grids
of region descriptors). However, an object can be described in
a sparse representation obtained by the detected interest points.
The state-of-the art interest points detector and descriptor, i.e.
SIFT ([21]) and SURF([22]), are evaluated for comparison pur-
poses. Figure 16 presents the matched interest points found
across cameras with both approaches. The matched interest
points do not correspond to the same objects where as our
proposed cascade of covariances correctly matched the objects
across cameras. Some objects, made of smooth regions, have
very few interest points leading to an unfeasible matching pro-
cess. In addition, the poor image quality affects the detection
process. Gabriel et al. in [1] compared IP within the region
of interest whereas SIFT and SURF matches the IPs over the
whole image. By comparing IPs of two regions [1], the per-
formance increases slightly. Various parameters are evaluated
for SIFT, SURF, and the color interest points proposed by [1].
They all lead to poor results. The best configuration leads to a
recall less than 15%. Therefore, the proposed dense representa-

(a) Matched SIFT interest points

(b) Matched SURF interest points

(c) Proposed approach (cascade of covariances)

Figure 16: Left-hand side are the objects observed in the master. Right-hand
side are the image plane of the slave to be searched.

tion of an object outperforms the sparse representation made by
interest points. Nevertheless, the matched interest points can be
used to reduce the search space in the image plane as explained
in Section 4.3. A sparse selection of the candidate regions is
evaluated in Figure 17.

The proposed sparse selection of the candidate regions com-
bined with the dense descriptor outperforms the approach based
on a dense selection (see Figure 17). The regions proposed
by the interest points are good candidates. The reduced search
space increases the likelihood to correctly detect and match the
objects. The number of regions to keep after each stage of the
cascade approach, ρ, can be increased with the sparse selection
since few candidates are examined. With both selection, dense
and sparse, 30 % of the regions are kept after each stage. Yet,
increasing ρ can lead to better recall measures with a still low
computational cost.

The computational cost of the different approaches to detect
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(b) A collection of grids per Object

0%

10%

20%

30%

40%

50%

60%

70%

80%

1
1+4

1+4+9

1+4+9+ 16

1+4+9+ 16+ 25

N u m b er o f b lo b s /g rid

R
ec

al
l

(c) A cascade of grids per Object
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Figure 17: Recall for various region descriptors with 3 different schemes to
describe an object based on a sparse search.
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Figure 18: Recall with respect to the number of best match kept

and match objects is also a crucial point. Table 2 summarizes
the performance of the presented approaches to search for one
object in the slave camera. Note that the full cost of the ap-
proaches is measured, i.e. the cost of allocating memories,
computing descriptors, comparing them, and creating and sort-
ing lists of distances. The implementation is written in C/C++,
without any optimization, and running on a Intel core 2 duo
(2.8 GHZ with 4 GB RAM). Therefore, the absolute cost of an
approach is not informative since it can be reduced, but the rel-
ative costs are interesting. The proposed sparse selection com-
bined with the cascade of dense descriptors outperforms other
approaches in terms of recall rate and computation cost. The
cascade of covariances has the best recall rate closely followed
by the cascade of HOG. However, HOG has a lower compu-
tational complexity. Although, integral images are not used to
compute the HOG descriptors as opposed to the covariances,
they still run faster. Hence, if computational complexity is an
issue, the proposed cascade of HOG might be a viable alterna-
tive.

Qualitative results are given in figures 19, 20, 21, and 22. Ob-
jects with severe change of viewpoint or partial occlusion are
correctly detected and match. Furthermore, a set of images has
been randomly selected from a data set to illustrate the strength
of the object localization operator on challenging images (see
Figure 23). It can be seen that very low resolution images made
of smooth areas can also be detected and matched. Also, faces
are correctly matched across images encouraging the use of the
descriptor for other applications such as object identification.
In Section 7.6, we explicitly address the intra-category recog-
nition problem showing how the cascade of grids of descriptors
outperform other schemes.

Figure 18 presents the performance of the approach if sev-
eral regions in the slave are kept to locate the object of inter-
est. Considering two or three regions is enough to increase the
performance. The validation operator classifies those candidate
regions as either matching or not the object of interest by eval-
uating the dual problem.

7.5. Object Detection and tracking across Non Overlapping
Field-Of-Views

Since we are dealing with mobile slave cameras, some of
them can have non overlapping field-of-views with the master
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Region Descriptors Recall Cost
SIFT detector and descriptor [21] < 0.15 250 ms
SURF detector and descriptor [22] < 0.15 31 ms
Covariance descriptor [19] 0.20 4350 ms
Dense selection combined with

Collection of HOGs 0.65 5588 ms
Cascade of HOGs 0.64 520 ms
Collection of Covariances 0.68 30 703 ms
Cascade of Covariances 0.69 2324 ms

Sparse selection combined with
Collection of HOGs 0.72 558 ms
Cascade of HOGs 0.66 75 ms
Collection of Covariances 0.74 1042 ms
Cascade of Covariances 0.74 291 ms

Table 2: Recall rate and computation cost of various approaches

Figure 19: Examples of correctly detected and matched objects in indoor scene.
1st column: objects of interest seen in a master. 2nd column: corresponding
detected objects in a slave

Figure 20: Examples of correctly detected and matched objects in outdoor
scene. 1st column: objects of interest seen in a master. 2nd column: corre-
sponding detected objects in a slave
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Figure 21: First column: objects detected by a master. Second column: cor-
responding objects detected with the slave given only the observation from the
master.

Figure 22: Given the left-hand side image, the same pedestrian is detected re-
gardless of changes in viewpoint and scale.

Figure 23: Examples of images randomly selected from a data set. Left column
are manually selected regions, and right column are the corresponding regions
detected and matched by our proposed approach
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Figure 24: Recall/precision graph for various Ns and Nm.

cameras. An object observed by a master is searched for in
all the slaves at all time frames even if the object might not
be present in the views of the slaves. The validation operator
classifies the presence of the object in the views.

The performance of the validation operator depends on two
parameters: the number of regions to keep in the searched im-
age plane, Ns, and the number of regions to keep in the dual
problem, Nm (see Section 5.1). Figure 24 presents the re-
call/precision graph for various N.. They are compared with
the greedy approach considering the best match proposed by
the object localization operator as the matched object (labeled
as “best match”) without any validation process. With the pro-
posed validation operator, setting Nm = Ns = 2, the number of
false positives is decreased by 70 % while the true positive rate
decreases by only ∼ 2%. In other words, it means that almost
all the objects present in the view of the slave are correctly clas-
sified as present while the others are correctly discarded with a
success rate of 70 %. For Nm = Ns = 3, the number of false
positives is reduced by half while the precision is reduced by
less than 1%. Higher values for Nm and Ns do not necessarily
lead to higher performance. Considering Ns = 2 and Nm = 1 is
the best tradeoff for our application in terms of cost and preci-
sion rate.

In addition, a possible approach to reduce the false positives
rate is to threshold the similarity measurements φ. However, if
the validation scheme is not used, it is not interesting to thresh-
old φ(x, yi), obtained between the object descriptor from the
master and the regions in the slave camera. Figure 25 illus-
trates the histogram of the values obtained when the regions
are correctly matched (T P) and the ones for the false positives
(FP). There is no clear decision boundary. Typically, setting
the threshold to 4.4 reduces the FP rate by 9% and reduces the
TP rate by 11%. However, it is possible to threshold the similar-
ity measurement φ(yi, x̂i), or the sum φ(x, yi)+φ(yi, x̂i) obtained
in the validation process. Figure 26 shows the histograms for
the two cases. Now, an interesting decision boundary exists: if
we keep yi such that φ(yi, x̂i) < 4.1 or φ(x, yi) + φ(yi, x̂i) < 8.2,
the remaining FP is reduced by 50% while reducing the T P rate
by 5% only. Therefore, the proposed approach can globally re-
duce the number of false positives by 75%−85% for a decrease
of 5-7% of the precision rate. This is feasible only because of
the validation approach considering the dual problem. Without
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Figure 25: Histogram of the similarity measurements φ(x, yi) for a set of T P
and FP
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Figure 26: Histogram of the similarity measurements in the validation process

the validation scheme proposed in this work, a reduction of the
false positive rate by 80% (with thresholding), would require a
reduction of the precision rate by 50%. Figure 27 summarizes
the overall performance with the different thresholding strate-
gies.

When priors are available, the performance of the system in-
creases. The gain in performance depends on the behavior of
the objects. By keeping three observations from the master, the
global performance increases by 7%. Moving objects are much
better detected. Considering the prior from the slave increases
the recall rate by 12% and decreases the precision rate by 6%.

Qualitative results are given in figures 28 and 29. It can
be seen that objects are successfully detected even if the cam-
eras have significant change in image quality, illumination, and
viewpoint. In addition, highlighted objects in the master which
are not present in the view of the slave do not generate false
positives. Figure 30 presents some missed detections and few
false positives.

7.6. People Recognition
To further evaluate the strength of the proposed cascade of re-

gion descriptors, we evaluate its performance to solve the peo-
ple recognition problem. Note that no tuning, neither training
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Figure 27: Overview of the recall/precision graph for various thresholding
strategies

Figure 28: Correct detections and no false positives. First column: objects
detected by a master. Second column: corresponding objects detected and
matched with a slave

Figure 29: Correct detections and no false positives. First column: objects
detected by a master. Second column: corresponding objects detected and
matched with a slave

15



Figure 30: Some false positives and missed true positives. First column: ob-
jects detected by a master. Second column: corresponding objects detected and
matched with a slave

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 11 21 31 41 51

R
e

c
o

g
n

i�
o

n
 P

e
rc

e
n

ta
g
e

Rank Score

1 Region Descriptor

4 Region Descriptors

9 Region Descriptors

16 Region Descriptors

25 Region Descriptors

Collec!on 1+4+9+16+25

Cascade 1-4-9-16-25
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Figure 32: The CMC curve for color histogram given various β value
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Figure 33: The CMC curve given 50 pedestrians present in the scene

is performed for such specific problem. The cascade of grids
of descriptors (1-4-9-16-25) is compared with the collection of
grids (5 grids of 1,4,9,16, and 25 region descriptors), and the
single grids (1, 4, 9, 16, or 25 region descriptors) of color his-
tograms in Figure 31. All various color spaces and bin parti-
tion are compared. The YCrCb color space with 64 bins per
channel performed best with the Bhattacharyya distance. Us-
ing finer grid size increases the performance. For such specific
recognition problem, the collection and cascade schemes also
outperform the single grid of descriptors. Although the cas-
cade and collection of descriptors perform similarly, the cas-
cade of descriptors outperforms other schemes in term of com-
putation cost since a much smaller number of region descriptors
are computed and compared (referred to Figure 14). Figure 34
illustrates the most similar pedestrians found in a camera given
an observation from another camera.

The sparse similarity measurement also influences the recog-
nition rate (see Figure 32). If all the blobs are kept (β = 1), the
worst performance is achieved. However, keeping half of the
blobs, the overall performance increases by roughly 25%. Note
that even if beta is low (e.g. β = 0.25), we have a gain in per-
formance.

In addition, all 4 region descriptors are compared in Fig-
ure 33 given the cascade of grids of descriptors (1-4-9-16-25).
Interestingly, the color feature is performing better than other
features given such problem. Indeed, in order to identify the
pedestrians across a set of pedestrian images (i.e. when only
pedestrians are present in the search space), the color feature is
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Figure 34: Examples of objects observed by a camera (left side), and the cor-
responding most similar pedestrians found by the cascade of grids of color
histograms (YCrCb space)within another camera (right side). The images are
sorted (most similar are the left ones) and the green bounding box is the correct
match.

a relevant cue. It coincides our intuition since all the objects
have similar shapes (all pedestrians), and only their clothes,
hence the color feature is the most discriminative feature to
match pedestrians across other pedestrians. However, when a
set of random objects are present in the search space similar
to our presented application (object localization across camera
views), the features considering the shape of the objects (e.g.
gradients) are more relevant and still perform well given the
re-identification problem (e.g. the covariance descriptor).

8. Conclusions

A master-slave system is presented to address the challeng-
ing problem of detecting and tracking any objects across any
network of cameras. Cameras are uncalibrated, moving, and
with non-overlapping field-of-views. Only the appearances of
the objects are used. Most state-of-the-art region descriptors
are evaluated to address such problem. Using them ”as is”, i.e.
a single descriptor per object leads to very poor performance.

Using a grid of region descriptors similar to Low [21], or Bay
et al. [22] increases the performance. However, we propose a
cascade of grids of region descriptors outperforming other ap-
proaches. The use of coarse to fine grids combined with the
sparse similarity measurement allow the detection and track-
ing of deformable objects with partial occlusion and change of
view-points. The reduced search space driven by the matched
interest points promotes near real-time performance.

Although many region descriptors have been studied, future
work can investigate other descriptors. We notice that when
an object needs to be localized in an image plane, color fea-
tures degrade the performance whereas to re-identify or rec-
ognize pedestrians within a data set of pedestrians only (intra
category), it performs best. Shape information is a crucial fea-
ture to localize objects and color increase the re-identification
rate. A descriptor combining both feature can lead to promis-
ing performance. The covariance descriptor combined both fea-
tures but did not perform best for the addressed problem since
equivalent weight are given to the features. One can further
combine those features given more weight to shape during the
object inter-category detection (localization problem) and more
to color during the intra-category (recognition problem). Also,
generic and easy-to-compute grids of descriptors (a set of rect-
angular grids made of uniform sub-rectangles) are used. Future
work can use more sophisticated grids. Notwithstanding, they
demonstrated a gain in performance using the proposed cascade
of grids of descriptors given the sparse similarity measurement.
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