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Rényi Entropy, Guesswork Moments and Large
Deviations

C-E Pfister and WG Sullivan

Abstract

For a large class of stationary probability measures on AN, where A is a finite alphabet, we compute the specific Rényi entropy of order
α and the specific guesswork moments of order β > −1. We show that the specific guesswork moment of order β equals the specific Rényi
entropy of order α = 1/(1 + β) multiplied by β. The method is based on energy–entropy estimates suggested by statistical physics. The
technique also yields a simple proof of the large deviation principle for the empirical measure on the space of an irreducible sofic shift with
reference probability measure ν, which is stationary and satisfies a rate condition on the probability of allowed words.
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I. Introduction

Assume that a certain system allows n possible options and that an option is chosen from the probability distribution
specified by p1, . . . , pn, where p1 ≥ · · · ≥ pn ≥ 0,

∑
i pi = 1. If one tries to guess the chosen option using the strategy of

guessing in decreasing order of probability, the expected number of guesses required to determine the chosen option is

G({pi}) :=
n∑

i=1

i pi. (1)

In practice one rarely knows {pi} exactly, but the above expression gives a lower bound for the expected number of
guesses required by an exhaustive search to find the chosen value. We write {pi} as a simple probability distribution;
often the guesses involve additional data so that {pi} is conditional distribution. This type of search arises in several
contexts. One case is that of a distributed data base. A central server can repeatedly query secondary servers until the
desired record is found. The order in which the secondaries are polled may be conditioned on the nature of the request.
As the number of servers grows, the average number of machines queried per record requested may increase significantly.

A more familiar context is that of guessing passwords. Here the options are the possible passwords. Hackers have
complied lists of frequently chosen passwords to facilitate access to computer accounts of careless users. As a coun-
termeasure, the system may disallow passwords which appear to be vulnerable. Alternatively, the system may assign
passwords using algorithms intended to provide more secure choices.

Essentially the same problem arises with ciphers used to impede unauthorized access. Wireless ethernets, digital
television and DVDs have schemes which make access by hackers marginally more difficult. Public key encryption also
makes use of ciphers. In order for a public key system to be secure, attack by exhaustive search must be beyond current
hardware and software capabilities. However, calculations with public keys are time consuming. In practice public key
encryption is used to exchange keys for cipher methods requiring much less computing power.

One can consider (1) in the context of guessing a cipher key. The distribution {pi} will depend on the program which
selects keys. Typically, such programs combine a pseudo-random number generator algorithm with external information,
which is presumed to be random. There may also be checking to eliminate keys which are cryptographically weak. In
the past, data such as the system time and process numbers have been used to provide “random” input. However, such
data may be readily available to an intruder: the resulting {pi} may have a much smaller value for G({pi}).

Arikan [1] has applied guesswork techniques to sequential decoding. Here we outline a simpler channel decoding
model. Consider the data sequence u1, u2, . . . in which each ui is a character from a finite alphabet, perhaps a binary
digit or a byte. We take a block of characters u1, . . . , uk and append verification characters uk+1, . . . , un. A simple case
is a parity bit appended to seven data bits, which allows single error detection. Here we assume that the verification
data contains more sophisticated data digests, e.g., md5 (see [11]). The input and verification data may be distributed
throughout u1, . . . , un. For transmission (or storage) the data will be coded to v1, . . . , vm in such a way that u1, . . . , un

can be recovered exactly from v1, . . . , vm. An example in common practice is the storage of blocks of bytes in sectors
of magnetic disks using run length limiting coding; each sector contains check data to allow for error detection. Let us
assume that the transmitted data v1, . . . , vm is received as v′1, . . . , v

′
m, where vk �= v′k for some k. If the verification data
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appended to the original u1, . . . , uk is sufficiently detailed, we may be able to recover the original message by guessing.
Experience could be used as a guide to the likely nature of how v1, . . . , vm might have been changed. For example, if
only one vk is changed, the number of cases to check is at most m times the number of characters allowed for each vk.

To place the channel decoding problem in the context of guesswork moments, let us assume that given the received
data v′1, . . . , v′m, one repeatedly guesses v′′1 , . . . , v′′m until values are obtained so that the corresponding u′

1, . . . , u
′
n satisfy

the verification conditions. If v1, . . . , vm is run length limited coded, the guesses are naturally restricted to the space
of this code. Next one needs an estimate of the distribution of v1, . . . , vm conditioned on observing v′1, . . . , v

′
m. Then

(1) gives a lower bound for the expected number of guesses required, conditioned on v′1, . . . , v
′
m. The bound for the the

expected number of guesses is obtained by averaging over the distribution of v′1, . . . , v′m. For distributions of the type
considered here, this expected number of guesses grows exponentially in m. From knowledge of limits of the form (3),
one can estimate how large m can be, given the available computing power.

In this note we consider the asymptotic behavior of

Gβ({pi}) :=
mn∑
i=1

iβpi (2)

as n → ∞ in the context of keys of the form (u1, . . . , un) arising from a stationary distribution on a finite alphabet. The
probabilities of the mn possible keys in decreasing order are p1, . . . , pmn . The case in which the {ui} are independent
and identically distributed is treated in Arikan [1]. This is extended to the case of an ergodic Markov chain in [7].
However, the distributions which arise in guesswork problems may have greater complexity. The distribution of {ui}
may be supported by a shift space which is a proper subset of the full shift. An important case is that of sofic shifts,
which includes subshifts of finite type such as run length limited codes. Sofic shifts can be generated by finite state
machines. See [6] for more details about shift spaces.

Let A = {0, . . . , r − 1} be a finite alphabet with r characters. Let ν be a stationary probability measure on AN, with
N := {1, 2, . . .}. Corresponding to (2) we define the βth specific guesswork moment

lim
n

1
n

log
∑
w∈An

ν([w]n1 ) rankβ(ν([w]n1 )), (3)

where rank(ν([w]n1 )) takes on the values 1, . . . , rn and rank(ν([w]n1 )) is nonincreasing. Here [w]n1 denotes the points of
AN whose first n coordinates coincide with those of w. We use log to denote the logarithm. In information theory the
common practice is to use log2, but logb for any real b > 1 suffices. Whenever exp is used below, it refers to the same
base as used with log: if log := log2 is used, then exp(x) := 2x.

A related quantity is the specific Rényi entropy of order α �= 1,

lim
n

1
n(1 − α)

log
∑

w∈An

(
ν([w]n1 )

)α
. (4)

For many problems in information theory, e.g., noiseless data compression, the significant asymptotic limit is the specific
Shannon entropy. In this paper we show that, under appropriate hypotheses, the βth specific guesswork moment is β
times the specific Rényi entropy of order α = 1/(1 + β).

Here the case in which ν is a stationary probability measure on the shift space Σ ⊂ AN is considered. Our approach
is based on ideas related to simplification of the treatment of large deviations of the empirical measure on shift spaces.
The standard approach is to place various mixing conditions on the stationary distribution ν (see [2]). Instead of mixing
conditions on ν, we assume a limit property for the marginal distributions {ν([w]n1 )} and an entropy property for the
shift space Σν defined by (6) .

For a given stationary probability measure ν of the type considered here, there are considerable theoretical similarities
between specific entropy and specific guesswork moments. In practice there is a marked difference. The specific entropy
specifies the logarithmic growth rate of the number of “words” of length n whose statistics are “typical” for ν; but there
is no need to work with all such words. Exhaustive guessing involves calculations with each word, so practical values
of n are relatively small. Also, a very significant contribution to (3) comes from words whose probability is very low.
In practice it is useful to allow truncation of the guessing procedure when the probability of the untried words becomes
sufficiently small. This can reduce significantly the expected number of guesses, but it allows the possibility of failure.

The structure of the remainder of this note is as follows. We first give a precise mathematical formulation and state
our results. Then we give two related examples of channel decoding by guesswork, including numerical calculations to
show the effect of truncation. The final section gives proofs of the theoretical results.
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II. Definitions, notation and main results

A. Notation

The cardinality of any finite set C is denoted by |C|. Let A := {0, 1, . . . , r − 1} (with the discrete topology) and
Ω := AN be the product space. Xn : Ω → An indicates the mapping ω → (ω1, . . . , ωn). Note [w]n1 = X−1

n {w}. M
denotes the space of Borel probability measures on Ω.

We use σ to denote the probability measure on Ω which is the product of the equiprobable distribution on each factor
A. Given n ∈ N, the restriction of ρ ∈ M to An is denoted ρn, so that for C ⊂ An,

1
n

log σn(C) =
log |C|

n
− log r. (5)

S: Ω → Ω is the shift operator, (Sω)j := ωj+1, for each j ∈ N. The action of S on the function f is given by
(Sf)(ω) := f ◦ S(ω). MS ⊂ M denotes shift-invariant probability measures. For ν ∈ MS we define the shift space
Σν ⊂ Ω by

Σν
n := {w ∈ An : ν([w]n1 ) > 0}, Σν :=

⋂
n

X−1
n (Σν

n). (6)

Thus ω ∈ Σν if and only if ν([ω1, . . . , ωn]n1 ) > 0 for all n.
Let f : Ω → R. ‖f‖ := supω |f(ω)|. Fn denotes the σ-algebra generated by Xn. We write f ∈ Fn to mean the function

f is Fn measurable. f is local if there exists n ∈ N so that f ∈ Fn. We use the weak topology on M (see [2]). There
exists a sequence {fj} of local functions which determines this topology. In fact one could take {fj} to be the set of
indicator functions of each word in An for each n ∈ N. The integral of f with respect to ρ is denoted by 〈 f, ρ 〉. S acts
on measures by 〈 f, Sρ 〉 := 〈Sf, ρ 〉.

We use Tn(ω) to denotes the empirical measure,

Tn(ω) :=
1
n

(
δω + δS(ω) + · · · + δSn−1(ω)

)
, (7)

where δSjω denotes the measure concentrated on the point Sj(ω) = (ωj+1, ωj+2, . . .). This is convenient notation, but
its conceals the real significance. Measures concentrated at single points of the space are unimportant. However, the
sequence {Tn(ω) : n ∈ N} gives easy access to the statistics of ω = (ω1, ω2, . . .). For a ∈ A define

fa(ω) :=
{

1 if ω1 = a;
0 otherwise.

Then 〈 fa, Tn(ω) 〉 gives the fraction of times the character a appears in the first n entries of ω. By using functions of ω
which depend only on ω1, ω2, we can use {Tn(ω)} to obtain pair probability distributions; functions which depend on
ω1, . . . , ωm yield distributions on Am. For these to be useful we need n to be much larger than m. A complication is the
fact that the probability distributions on Am resulting from Tn(ω) depend on ωn+1, . . . , ωn+m−1. In the analysis below
we have to prove that, in the limits we consider, the dependence of Tn(ω) on ωk for k > n is negligible.

The Shannon entropy of ρ ∈ MS is

hSh(ρ) := lim
n→∞

1
n

Hn(ρ) (8)

with
Hn(ρ) := −

∑
w∈An

ρ([w]n1 ) log ρ([w]n1 ) . (9)

We have hSh(σ) = log r, since |A| = r.
The specific I-divergence of ρ ∈ MS with respect to ν ∈ MS is given by

h(ρ | ν) := lim
n→∞

1
n

∑
w∈An

ρ([w]n1 ) log
ρ([w]n1 )
ν([w]n1 )

, (10)

when the limit exists. For all ρ ∈ MS , h(ρ |σ) exists and equals −hSh(ρ) + log r.

B. Main results

Let ν ∈ MS be a given stationary probability measure. Σν is the shift space defined by (6). Mν denotes the set of
Borel probability measures on Σν , and Mν

S the shift-invariant probability measures on Σν . Our main hypotheses are
formulated for convenience as follows.

H1 For any neighbourhood U of ρ ∈ Mν
S , and for any ε > 0, there exists an ergodic ρ′ ∈ U ∩Mν

S such that hSh(ρ′) ≥
hSh(ρ) − ε.
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H2 The given reference probability measure ν is shift-invariant. There exists a continuous nonnegative function eν : Ω →
R satisfying

lim
n

sup
w∈Σν

n

1
n
| log ν([w]n1 ) + eν(ω)| = 0. (11)

Several authors have employed conditions similar to H1 (see [3], [8]). These works often include a “specification”
hypothesis, which implies strong mixing, so periodic subshifts of finite type are not covered. Note that H1 depends only
on the allowed words of the shift space Σν . Spaces which satisfy H2 of [9] satisfy H1. In particular, the space of any
irreducible (possibly periodic) sofic shift satisfies H1. An example of a space which does not satisfy H1 is the space Σe,o

over the alphabet {0, 1, 2, 3} in which ω ∈ Σe,o if and only if all {ωi} are even or all {ωi} are odd.
Hypothesis H2 corresponds to the probability ν([w]n1 ) being determined (in an approximate sense) by the character

combinations in w. The Parry measure ν of an irreducible sofic shift satisfies H2 with the function eν equal to the
constant hSh(ν) (see [9]). When different weights are assigned to the characters of the alphabet, one obtains an invariant
measure ν′ with Σν = Σν′

, and eν′(ω) is a function of ω1. The continuity requirement for eν allows for more complex
weightings.

The basic ideas in the proofs below are quite simple, but the details can be confusing. Using assumption H2 we use
eν to split the measures into K parts and then use Tn to split the words of length n, Σν

n, into K corresponding parts.
Actually we first approximate eν by fδ, but this is just a technical detail. Two words in the same part have nearly
equal ν probability. The appearance of (1/n) log in the asymptotic limits means that we only need to consider a single
term which maximizes a combination of the entropy of a part and the probability of words in that part. This approach
suffices for the large deviation results and specific Rényi entropy. Some elementary inequalities are needed with the
guesswork asymptotics. In expressions involving ranks, we show that the same result obtains if parts other than that
where the maximum occurs are ignored.

First we consider the large deviation problem, using well-known result that the sequence {σ ◦ T−1
n : n ∈ N} satisfies

a large deviation principle with rate function h(· |σ).
Theorem II.1: For each closed subset F ⊂ M

lim sup
n

1
n

log σ({ω ∈ Ω : Tn(ω) ∈ F})

≤ sup
ρ∈F∩MS

hSh(ρ) − log r. (12)

For each open subset G ⊂ M
lim inf

n

1
n

log σ({ω ∈ Ω : Tn(ω) ∈ G})
≥ sup

ρ∈G∩MS

hSh(ρ) − log r. (13)

Basic to the discussion below are sets of the form

{ω ∈ Σν : Tn(ω) ∈ B}, (14)

where B ⊂ M. We treat such sets by considering the corresponding words of length n, w = Xn(ω). One difficulty is
that there can be ω, ω′ ∈ Σν so that Xn(ω) = Xn(ω′), Tn(ω) ∈ B but Tn(ω′) /∈ B. To handle this situation we define
two sets of words of length n associated with (14):

Γ̂n,B := {w ∈ Σν
n : ∃ω ∈ Σν , Xn(ω) = w and Tn(ω) ∈ B} (15)

and
Γ̃n,B := {w ∈ Σν

n : ∀ω ∈ Σν , Xn(ω) = w ⇒ Tn(ω) ∈ B}. (16)

Note Γ̃n,B ⊂ Σν
n ∩ Xn(T−1

n B) = Γ̂n,B and

|Γ̃n,B| ≤ rnσ(T−1
n B) ≤ |Γ̂n,B|. (17)

Consider the word w ∈ Σν
n and all possible infinite extensions: [w]n1 ∩ Σν

n. If ω ∈ [w]n1 ∩ Σν satisfies Tn(ω) ∈ B, then
w ∈ Γ̂n,B; if for all ω ∈ [w]n1 ∩ Σν , Tn(ω) ∈ B, then w ∈ Γ̃n,B.

Here is an example in which Γ̃n,B and Γ̂n,B differ. Let A := {0, 1}. Let f∗: Ω → R be given by f∗(ω) = ω1ω2. Then
〈 f∗, Tn(ω) 〉 is equal to 1/n times the number of adjacent pairs of 1′s in ω1, . . . , ωn+1. Define

B∗ := {ρ ∈ M: 〈 f∗, ρ 〉 ≥ 0.5}.
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Let m ≥ 1 and n := 2m. Let w∗ be the word consisting of m 0’s followed by m 1’s. If Xn(ω) = w∗, then Tn(ω) ∈ B∗ if
and only if ωn+1 = 1, so w∗ ∈ Γ̂n,B∗ \ Γ̃n,B∗ . However, lemma IV.1 shows that, if F ⊂ G, where F is closed and G is
open, then for sufficiently large n, Γ̂n,F ⊂ Γ̃n,G.

Theorem II.2: For each closed subset F ⊂ Mν

lim sup
n

1
n

log |Γ̂n,F | ≤ sup
ρ∈F∩Mν

S

hSh(ρ). (18)

If Σν satisfies hypothesis H1, then for each open subset G ⊂ Mν

lim inf
n

1
n

log |Γ̃n,G| ≥ sup
ρ∈G∩Mν

S

hSh(ρ). (19)

Theorem II.1 is formulated for the full shift space Ω. For the slightly stronger theorem II.2, the upper bound will be
shown to follow from that for Ω; the lower bound does not obtain in general, but is valid under H1.

The next results relate to the large deviation principle for the empirical measure relative to ν.
Proposition II.1: Let ν ∈ MS satisfy H2. Then for each ρ ∈ Mν

S ,

h(ρ | ν) := lim
n

1
n

∑
w∈Σν

n

ρ([w]n1 ) log
ρ([w]n1 )
ν([w]n1 )

(20)

exists and equals 〈 eν , ρ 〉 − hSh(ρ).
Proposition II.2: Let ν ∈ MS satisfy H2. Let F be a closed subset of Mν . Then

lim sup
n

1
n

log ν({ω : Tn(ω) ∈ F}) ≤ sup
ρ∈F∩Mν

S

−h(ρ | ν). (21)

Proposition II.3: Let ν ∈ MS satisfy H1 and H2. Let G be an open subset of Mν . Then

lim inf
n

1
n

log ν({ω : Tn(ω) ∈ G}) ≥ sup
ρ∈G∩Mν

S

−h(ρ | ν). (22)

Since Mν is compact, the above propositions show that {ν ◦T−1
n } satisfies a large deviation principle with rate function

h(· | ν), when H1 and H2 obtain. The same techniques allow us to compute specific Rényi entropies and guessswork
moments. Note, however, that a set which supports the βth specific guesswork moment of ν can be distinct from one
which supports ν. For example in the Bernoulli 1

3 case with A = {0, 1}, for large n the measure is concentrated on
ω which have

∑n
1 ωi ≈ n/3, while the dominant term in the β = 1 guesswork moment comes from ω which have∑n

1 ωi ≈ n
√

1/3/(
√

1/3 +
√

2/3).
Theorem II.3: Let ν ∈ MS satisfy H1 and H2. If α ≥ 0, α �= 1, then

lim
n

1
n(1 − α)

log
∑

w∈Σν
n

(
ν([w]n1 )

)α
=

1
(1 − α)

sup
ρ∈Mν

S

[
hSh(ρ) − α〈 eν , ρ 〉

]
. (23)

Theorem II.4: Let ν ∈ MS satisfy H1 and H2. If β > −1, then

lim
n

1
n

log
∑

w∈Σν
n

ν([w]n1 ) rankβ(ν([w]n1 ))

= (1 + β) sup
ρ∈Mν

S

[
hSh(ρ) − 〈 eν , ρ 〉

1 + β

]
. (24)

III. Application to decoding

Proofs of the above results are given in a section below. First we discuss the implications and give an application.
Let ν′ ∈ Mν

S and let F be a closed neighbourhood of ν′ such that

sup
ρ∈F∩Mν

S

hSh(ρ) ≈ hSh(ν′).

If Tn(ω) ∈ F , then the sample statistics of ω approximate the distribution of ν′. The nature of the approximation
depends on the choice of neighbourhood F . Theorem II.2 means that the number of words of length n with these
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m 1 − Psm Gsm 0.5Rsm

1 2.64 × 10−1 1.85 × 10+2 1.96 × 10+2

2 8.02 × 10−2 4.63 × 10+4 5.22 × 10+4

3 1.89 × 10−2 5.17 × 10+6 6.17 × 10+6

4 3.64 × 10−3 3.24 × 10+8 4.11 × 10+8

5 5.88 × 10−4 1.30 × 1010 1.75 × 1010

6 8.20 × 10−5 3.63 × 1011 5.20 × 1011

42 < 1 × 10−9 1.15 × 1025 2.01 × 1026

TABLE I

Probability and expected guesses, n = 1000, θ = 0.001

sample statistics, |Γ̃n,F |, is approximately exp(nhSh(ν′)). Propositions II.2 and II.3 are similar, but the conclusion is
that νn(Γ̃n,F ) is approximated by exp−nh(ν′ | ν).

The guesswork moment of most significance is that for β = 1. Let G denote the limit in (24) with β = 1. Note that
(23) with α = 1/2 also yields G. The expected number of guesses required to determine a word of length n chosen
according to the distribution ν is approximately expnG.

One aspect of expectations of the form (1) is that a large contribution can be due to events with very low probability.
This suggests truncating the procedure when the probability of untried words reaches a certain level. Truncation can
reduce the expected number of guesses dramatically, but this means the procedure will occasionally fail.

We now discuss two related examples of decoding by repeated guessing. We give an upper bound for the guesswork
expectation which allows for truncation. Also, the ranking function 2i− 1 is technically convenient. For the probability
distribution p1 ≥ p2 ≥ · · · ≥ pn we define for 1 ≤ m ≤ n,

Gm :=
m∑

i=1

i pi; Ĝm :=
m∑

i=1

(2i − 1)pi; (25)

Pm :=
m∑

i=1

pi; Rm :=

(
m∑

i=1

p
1/2
i

)2

. (26)

Note Gm = 0.5(Ĝm +Pm). By expanding (26) and noting that there are exactly 2i−1 pairs p
1/2
j p

1/2
k with i = max{j, k},

we deduce
Ĝm ≤ Rm, Gm ≤ 0.5(Rm + Pm), (27)

with equality if an only if p1 = · · · = pm.
Now we apply guessing to channel decoding. First we assume a source of words u1, . . . , un, which have k data bits

with n − k verification bits embedded. We assume that the data bits are independent and identically distributed with
equal probability for 0, 1. The transmitted u1, . . . , un is received as the binary word v1, . . . , vn. We assume a binary
symmetric channel: the probability that ui �= vi is θ � 1/2 and independent of the remaining uj, vj . Under the
simplifying assumption that the verification data has negligible effect on conditional distributions, it follows that the
events ui �= vi, i = 1, . . . , n, conditioned on receiving v1, . . . , vn, are independent with probability θ. Then R2n

=(
n∑
0

(
n

k

)
θk/2(1 − θ)(n−k)/2

)2

=
(
1 + 2

√
θ(1 − θ)

)n

,

which, in this case, coincides with the asymptotic estimate exp nG mentioned above. Define

sm :=
m∑

k=0

(
n

k

)
, Psm :=

m∑
k=0

(
n

k

)
θk(1 − θ)n−k.

We consider the specific example with n = 1000, θ = 0.001, Table I shows the residual probability and expected
number of guesses for truncated guessing allowing for up to m changed bits Here the Rényi entropy upper bound is
0.5R21000

= 2.09 × 1026, while the actual total expected number of guesses, 1.15 × 1025, is essentially achieved when
terms for m ≤ 42 are included.

We consider a second example in the same context: a stationary binary input u1, . . . , un producing the binary output
v1, . . . , vn. The basic aim is to compute or bound Gm from the conditional distribution of u1, . . . , un given v1, . . . , vn.
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j k 1 − P G 0.5R
0 15 6.96 × 10−2 1.65 × 103 1.65 × 103

1 18 6.87 × 10−3 1.01 × 105 1.39 × 105

1 21 9.11 × 10−4 1.66 × 105 2.30 × 105

2 24 4.13 × 10−5 1.46 × 106 2.74 × 106

2 26 7.52 × 10−6 1.57 × 106 2.97 × 106

3 28 5.94 × 10−7 5.40 × 106 1.36 × 107

10 36 < 1 × 10−9 2.36 × 107 1.76 × 108

TABLE II

Probability and expected guesses, n = 2000, θ = 0.005

The difficulty is that this conditional distribution may not have a simple mathematical form. A case which does have a
relatively simple form is as follows. The distribution of u1, . . . , un is the double even shift: each “run” of 1’s or 0’s must
have even length, and all allowed words of length n have equal probability. The distribution of v1, . . . , vn is obtained
from u1, . . . , un by requiring that the events ui �= vi are independent with probability θ. We take n to be even. For
a long sequence {ui}, by shifting the index by 1 if necessary, we can arrange for uk+1 �= uk only when k is even. We
consider v1, . . . , vn as n/2 adjacent o-pairs: (vk, vk+1) with k odd. We say that a defect occurs at k if k is odd and
vk+1 �= vk, which means that exactly one of uk �= vk and uk+1 �= vk+1 obtains. The probability that there are exactly k
defects and exactly j o-pairs both of which have been changed is

2kθk(1 − θ)k

(
n/2
k

)(
n/2 − k

j

)
θ2j(1 − θ)n−2k−2j .

Given v1, . . . , vn with k defects, there are 2k choices for which member of each of these pairs which has changed; this is
combined with the probabilities corresponding to o-pairs both of which have changed. One can show that Ĝ in this case
is 2k times Ĝ for the probability distribution of the non-defect o-pairs (the corresponding result also holds for R). Thus
we compute Ĝ for the distribution (

n/2 − k

j

)
θ2j(1 − θ)n−2j(θ2 + (1 − θ)2)−n/2+k,

j = 0, . . . n − k, which we denote Ĝ(n,k). It is easy to compute the corresponding Rényi entropy:

R̂(n,k) = (θ2 + (1 − θ)2)−n/2+k.

The expected Ĝ number of guesses is

Ĝ∗ :=
n/2∑
k=0

2kĜ(n,k)

(
n/2
k

)
2kθk(1 − θ)k(θ2 + (1 − θ)2)n/2−k.

Since Ĝ(n,k) ≤ R̂(n,k), we obtain
Ĝ∗ ≤ (1 + 4θ(1 − θ))n/2.

Table II shows the residual probability and expected number of guesses for truncated guessing allowing for up to j
changed o-pairs and k defects.

IV. Proofs

For a proof of theorem II.1 see [2], section 6.2. We prove theorem II.2 using theorem II.1, noting that Σν is a closed
subset of Ω and Mν is a closed subset of M.

Lemma IV.1: Let F ⊂ G ⊂ M with F closed and G open. Then there exists n′ ∈ N such that for all n ≥ n′,
Γ̂n,F ⊂ Γ̃n,G.

Proof: If there were no such n′, then we could find a sequence {(ωnk
, ω′

nk
)} with Xnk

(ωnk
) = Xnk

(ω′
nk

) such that

Tnk
(ωnk

) ∈ F, Tnk
(ω′

nk
) /∈ G, (28)

lim
nk

Tnk
(ωnk

) = ρ∗ ∈ F, lim
nk

Tnk
(ω′

nk
) = ρ′ ∈ M \ G. (29)
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Now if f ∈ Fm and Xn(ω) = Xn(ω′), then

|〈 f, Tn(ω) 〉 − 〈 f, Tn(ω′) 〉| ≤ 2‖f‖m− 1
n

. (30)

Hence we have 〈 f, ρ∗ 〉 = 〈 f, ρ′ 〉. Since this holds for all local f , we have ρ∗ = ρ′, which contradicts (29).
Lemma IV.2: Let G be an open set in Mν . Let ρ ∈ G be an ergodic probability measure on Σν . Then

lim inf
n

1
n

log |Γ̃n,G| ≥ hSh(ρ). (31)

Proof: Let {fj} be a sequence of local functions which determines the topology of M. The open set G ⊂ Mν can
be expressed as G = G′ ∩Mν , where G′ is open in M. There exist {ε1 > 0, . . . , εm > 0} so that

N := {ρ′ ∈ M : |〈 fi, ρ
′ − ρ 〉| ≤ εi, i = 1, . . . , m} ⊂ G′. (32)

By lemma IV.1 for all sufficiently large n
Γ̂n,N ⊂ Γ̃n,G′ = Γ̃n,G. (33)

Since ρ is assumed to be ergodic, there exists a Borel set B ⊂ Σν so that ρ(B) = 1 and

ω ∈ B =⇒ lim
n
〈 fi, Tn(ω) 〉 = 〈 fi, ρ 〉, i = 1, . . . , m. (34)

It follows that for each ω ∈ B there exists nω so that n > nω ⇒ Tn(ω) ∈ N ; hence

lim
n

ρn(Γ̃n,G) = 1. (35)

Then (31) follows from lemma 2.1 of [4].
Proof of (19): Hypothesis H1 implies that for open G ⊂ Mν

sup
ρ∈G∩Mν

S

hSh(ρ) = sup
ergodic ρ∈G∩Mν

S

hSh(ρ); (36)

the rest follows from the above lemma.
Proof of (18): We consider F = F ∩Mν as a subset of M. For each ρ ∈ F \MS , we can find a closed neighbourhood

Nρ with Nρ ∩MS = ∅. Given ε > 0 and ρ ∈ F ∩MS , we can find a closed neighbourhood Nρ of ρ of the form (32) so
that

sup
ρ′∈Nρ∩MS

hSh(ρ′) ≤ hSh(ρ) + ε. (37)

Here we use the upper semicontinuity of hSh( · ) which follows from the lower semicontinuity of h( · |σ) (see [2]). By
compactness, there exist ρ1, . . . , ρm so that the interiors {N◦

ρi
} cover F . Lemma IV.1 shows that there exists n′ so that

for n ≥ n′, Tn(ω′) ∈ ⋃i N◦
ρi

whenever both Tn(ω) ∈ F and Xn(ω′) = Xn(ω). We apply (12) to deduce

lim sup
n

1
n

log |Γ̃n,
⋃

i
N◦

ρi

| ≤

log r + lim sup
n

1
n

log σ({ω : Tn(ω) ∈
⋃
i

Nρi}) (38)

lim sup
n

1
n

log |Γ̂n,F | ≤ sup
ρ∈MS∩

⋃
Nρi

hSh(ρ). (39)

From (37) and the fact that ε > 0 is arbitrary we deduce (18).
An elementary consequence of the product topology on Ω = AN and compactness of A is the following.
Lemma IV.3: Let ν ∈ MS be a probability measure verifying hypothesis H2. Then for each δ > 0 there exist

mδ, Nδ ∈ N and fδ, which is Fmδ
measurable, so that ∀n ≥ Nδ, ∀ω ∈ Σν , |eν(ω) − fδ(ω)| ≤ δ/2 and

|〈 fδ, Tn(ω) 〉 +
1
n

log ν([Xn(ω)]n1 )| < δ .

Corollary IV.1: Let ν ∈ MS be a probability measure verifying hypothesis H2. For ρ ∈ Mν
S we have

lim
n→∞− 1

n

∑
w∈Σν

n

ρ([w]n1 ) log ν([w]n1 ) = 〈 eν , ρ 〉 . (40)
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The above corollary and the well-known limit (8) prove proposition II.1.
Lemma IV.4: For δ > 0 and fδ, mδ, Nδ as in lemma IV.3, there exist an integer Kδ, numbers 0 ≤ a0 < · · · < aKδ

with aj − aj−1 < δ, j = 1, . . . , Kδ and sets {Gδ
j ⊂ F δ

j ⊂ Mν : j = 0, . . . , Kδ} so that each Gδ
j is open and each F δ

j is
closed and

Nδ⋃
j=0

Gδ
j = Mν , (41)

ρ ∈ Gδ
j ⇒ |〈 fδ, ρ 〉 − aj | < δ, (42)

ρ ∈ F δ
j ⇒ |〈 fδ, ρ 〉 − aj | ≤ δ. (43)

Proof: Define Kδ, aj , Gδ
j and F δ

j by

Kδ :=
⌈

1 + ‖fδ‖
δ

⌉
, aj :=

j

Kδ
‖fδ‖, (44)

Gδ
j := {ρ ∈ Mν : |〈 fδ, ρ 〉 − aj | < δ}, (45)

F δ
j := {ρ ∈ Mν : |〈 fδ, ρ 〉 − aj | ≤ δ}. (46)

Proof of proposition II.2: Using the notation of (15) from (18) we have

lim sup
n

1
n

log |Γ̂n,F∩F δ
j
| ≤ sup

ρ∈F δ
j
∩F∩Mν

S

hSh(ρ). (47)

Also
1
n

log ν({ω : Tn(ω) ∈ F ∩ F δ
j }) ≤

1
n

log |Γ̂n,F∩F δ
j
| + max

w∈Γ̂
n,F∩F δ

j

1
n

log ν([w]n1 ). (48)

From lemma IV.3 we deduce that for n ≥ Nδ, ρ ∈ F δ
j ∩Mν

S and w ∈ Γ̂n,F δ
j
,

1
n

log ν([w]n1 ) ≤ −aj + 2δ, 〈 eν , ρ 〉 ≤ aj + 2δ. (49)

From proposition II.1 we deduce

sup
ρ∈F∩F δ

j
∩Mν

S

hSh(ρ) ≤ sup
ρ∈F∩F δ

j
∩Mν

S

−h(ρ | ν) + aj + 2δ. (50)

Now
lim sup

n

1
n

log ν({ω : Tn(ω) ∈ F}) (51)

equals the maximum over the corresponding lim sup’s with F replaced by F ∩ F δ
j . We then have

lim sup
n

1
n

log ν({ω : Tn(ω) ∈ F}) ≤

max
0≤j≤Kδ

sup
ρ∈F∩F δ

j
∩Mν

S

−h(ρ | ν) + 4δ. (52)

As δ > 0 is arbitrary, the proposition follows.
Proof of proposition II.3: Let G ⊂ Mν be open and let ρ ∈ G ∩Mν

S. Then there exists j so that ρ ∈ Gδ
j . From (19)

given ε > 0, for all sufficiently large n
1
n

log |Γ̃n,G∩Gδ
j
| ≥ hSh(ρ) − ε. (53)

By an argument similar to that in the proof of proposition II.2,

−h(ρ | ν) = hSh(ρ) − 〈 eν , ρ 〉 ≤ hSh(ρ) − aj + 2δ. (54)
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Also for w ∈ Γ̃n,G∩Gδ
j
,

1
n

log ν([w]n1 ) ≥ −aj − 2δ. (55)

Then
1
n

log ν(Γ̃n,G∩Gδ
j
) ≥ hSh(ρ) − ε − aj − 2δ ≥ −h(ρ | ν) − ε − 4δ. (56)

Since ε and δ are arbitrary and ν(T−1
n G) ≥ ν(Γ̃n,G∩Gδ

j
), the proposition follows.

Proof of theorem II.3: We use the covers {Gδ
j} and {F δ

j } introduced in lemma IV.4 and the notation (15), (16). For
α ≥ 0, ρ ∈ F δ

j ∩Mν
S and n ≥ Nδ, arguing as above we deduce

w ∈ Γ̂n,F δ
j
⇒ 1

n
log
(
ν([w]n1 )

)α ≤ α(−〈 eν , ρ 〉 + 4δ) (57)

and
lim sup

n

1
n

log |Γ̂n,F δ
j
| ≤ sup

ρ∈F δ
j
∩Mν

S

hSh(ρ), (58)

so
lim sup

n

1
n

log
∑

w∈Γ̂
n,F δ

j

(
ν([w]n1 )

)α
≤ sup

ρ∈F δ
j
∩Mν

S

hSh(ρ) − α〈 eν , ρ 〉 + 4αδ. (59)

The lower bound is similar.
lim inf

n

1
n

log
∑

w∈Γ̃
n,Gδ

j

(
ν([w]n1 )

)α
≥ sup

ρ∈Gδ
j∩Mν

S

hSh(ρ) − α〈 eν , ρ 〉 − 4αδ. (60)

The theorem follows by noting that
⋃

Γ̃n,Gδ
j
⊂ Σν

n =
⋃

Γ̂n,F δ
j
, that the lim inf and lim sup of the total sum equals the

maximum over the Kδ + 1 sets of each cover and that δ > 0 is arbitrary.
Proof of theorem II.4: This proof is similar to that just completed, but treatment of the rank function requires some

care. We use {Γ̂n,F δ
j
}, which splits Σν

n into Kδ + 1 overlapping parts. For j = 0, . . . , Kδ, we set

hj := |Γ̂n,F δ
j
|, g0 := 0, gj+1 := gj + hj , (61)

select the ranking functions {rnkj} so that

rnkj : Γ̂n,F δ
j
→ {gj + 1, . . . , gj + hj} (62)

and define the injection rnk : Σν
n → {1, . . . , gKδ+1},

rnk(w) := min
j

{rnkj(w): w ∈ Γ̂n,F δ
j
}. (63)

The properties (see (3)) of rank( · ) imply

∑
w∈Σν

n

ν([w]n1 ) rankβ(ν([w]n1 ))
{≤ (if β ≥ 0)
≥ (if β < 0)

∑
w∈Σν

n

ν([w]n1 ) rnkβ(w). (64)

For the β ≥ 0 case we then have ∑
w∈Γ̂

n,F δ
j

ν([w]n1 ) rankβ(ν([w]n1 )) ≤
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hj∑
k=1

(gj + k)β max
w∈Γ̂

n,F δ
j

ν([w]n1 ). (65)

Using (49) and the bound

(g + h)βh ≥
g+h∑

k=g+1

kβ ≥
∫ h

0

xβ dx =
h1+β

1 + β
, (66)

we deduce

lim sup
n

1
n

log
Kδ∑
j=0

hj∑
k=1

(gj + k)β max
w∈Γ̂

n,F δ
j

ν([w]n1 ) ≤

max
j=0,...,Kδ

[
lim sup

n

1
n

(log hj + β log(gj+1) ) − aj

]
+ 2δ. (67)

Define Hj

Hj := lim sup
n

1
n

log hj (68)

and then choose j∗ so that
(1 + β)Hj − aj ≤ (1 + β)Hj∗ − aj∗ , j = 0, . . . , Nδ. (69)

Since gj+1 =
∑j

0 hj , we have

max
j=0,...,Kδ

lim sup
n

1
n

(log hj + β log(gj+1) ) − aj ≤

max
j=0,...,Kδ

[
Hj + max

k≤j
βHk − aj

]
= (1 + β)Hj∗ − aj∗ , (70)

because if k ≤ j, −aj ≤ −ak, so that if Hk ≥ Hj , we have

Hj + βHk − aj ≤ (1 + β)Hk − ak ≤ (1 + β)Hj∗ − aj∗. (71)

Using the same techniques as in the previous proof, we deduce

lim sup
n

1
n

log
∑

w∈Σν
n

ν([w]n1 ) rankβ(ν([w]n1 )) ≤

sup
ρ∈Mν

S

(1 + β)hSh(ρ) − 〈 eν , ρ 〉 + 4δ. (72)

Next we use the second inequality in (66) to deduce∑
w∈Γ̂

n,F δ
j

ν([w]n1 ) rankβ(ν([w]n1 )) ≥

h1+β
j

1 + β
min

w∈Γ̂
n,F δ

j

ν([w]n1 ) (73)

for each j.
Since Γ̃n,Gδ

j
⊂ Γ̂n,F δ

j
, we have

lim inf
n

1
n

log
∑

w∈Σν
n

ν([w]n1 ) rankβ(ν([w]n1 )) ≥

sup
ρ∈Mν

S

(1 + β)hSh(ρ) − 〈 eν , ρ 〉 − 4δ. (74)

This covers the β ≥ 0 case. The −1 < β < 0 is similar, using

(g + h)β h ≤
g+h∑

k=g+1

kβ ≤
∫ h

0

xβ dx =
h1+β

1 + β
. (75)
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From this it is not difficult to deduce (72). For the lower bound, when −1 < β < 0, we note that

gj+hj∑
k=gj+1

kβ ≥ (gj + hj)β hj . (76)

Notice that, although the rank function we use may not correspond strictly to the actual ordering, we still have a lower
bound. We have ∑

w∈Σν
n

ν([w]n1 ) rankβ(ν([w]n1 )) ≥ hj min
w∈Γ̂

n,F δ
j

ν([w]n1 )
( j∑

k=0

hk

)β

. (77)

We redefine Hj

Hj := lim inf
n

1
n

log hj , (78)

and then choose j∗ so that (69) obtains. Then

lim inf
n

1
n

log
∑

w∈Σν
n

ν([w]n1 ) rankβ(ν([w]n1 )) ≥

Hj∗ + β max
k≤j∗

Hk − aj∗ − 2δ. (79)

Now k < j∗ ⇒ aj∗ − ak > 0, so

(1 + β)Hk ≤ (1 + β)Hj∗ − (aj∗ − ak) ⇒ Hk < Hj∗ . (80)

This means
lim inf

n

1
n

log
∑

w∈Σν
n

ν([w]n1 ) rankβ(ν([w]n1 ))

≥ max
j=0,...,Kδ

[(1 + β)Hj − aj ] − 2δ. (81)

Since Γ̃n,Gδ
j
⊂ Γ̂n,F δ

j
,

max
j=0,...,Kδ

[(1 + β)Hj − aj ] − 2δ ≥

sup
ρ∈Mν

S

(1 + β)hSh(ρ) − 〈 eν , ρ 〉 − 4δ, (82)

so we have (74).
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