
Communications in Mathematical Physics manuscript No.
(will be inserted by the editor)

On the Singularity of the Free Energy at a First
Order Phase Transition ?

Sacha Friedli1, Charles-Ed. Pfister2
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Abstract: At first order phase transition the free energy does not have an
analytic continuation in the thermodynamical variable, which is conjugate to
an order parameter for the transition. This result is proved at low temperature
for lattice models with finite range interaction and two periodic ground-states,
under the only condition that they satisfy Peierls condition.

1. Introduction

We study a lattice model with finite state space on Zd, d ≥ 2. The Hamiltonian
Hµ = H0 + µH1 is the sum of two Hamiltonians, which have finite-range and
periodic interactions. We assume that H0 has two periodic ground-states ψ1 and
ψ2, and so that Peierls condition is satisfied, and that H1 splits the degeneracy
of the ground-states of H0: if µ < 0, then Hµ has a unique ground-state ψ2, and
if µ > 0, then Hµ has a unique ground-state ψ1. The free energy of the model,
at inverse temperature β, is denoted by f(µ, β). Our main result is

Theorem 1.1. Under the above setting, there exist an open interval U0 3 0,
β∗ ∈ R+ and, for all β ≥ β∗, µ∗(β) ∈ U0 with the following properties.

1. There is a first-order phase transition at µ∗(β).
2. The free energy f(µ, β) is real-analytic in µ in {µ ∈ U0 : µ < µ∗(β)}; it has

a C∞ continuation in {µ ∈ U0 : µ ≤ µ∗(β)}.
3. The free energy f(µ, β) is real-analytic in µ in {µ ∈ U0 : µ > µ∗(β)}; it has

a C∞ continuation in {µ ∈ U0 : µ ≥ µ∗(β)}.
4. There is no analytic continuation of f along a real path from µ < µ∗(β) to

µ > µ∗(β) crossing µ∗(β), or vice-versa.

? Supported by Fonds National Suisse de la Recherche Scientifique.
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This theorem answers a fundamental theoretical question: does the free en-
ergy, which is analytic in the region of a single phase, have an analytic contin-
uation beyond a first-order phase transition point? The answer is yes for the
theory of a simple fluid of van der Waals or for mean-field theories. The analytic
continuation of the free energy beyond the transition point was interpreted as
the free energy of a metastable phase. The answer is no for models with finite
range interaction, under very general conditions, as Theorem 1.1 shows. This
contrasted behavior has its origin in the fact that for models with finite range
interaction there is spatial phase separation at first order phase transition, con-
trary to what happens in a mean-field model. Theorem 1.1 and its proof confirm
the prediction of the droplet model [1].

Theorem 1.1 generalizes the works of Isakov [2] for the Ising model and [3],
where a similar theorem is proven under additional assumptions, which are not
easy to verify in a concrete model. Our version of Theorem 1.1, which relies
uniquely on Peierls condition, is therefore a genuine improvement of [3]. The
first result of this kind was proven by Kunz and Souillard [4]; it concerns the
non-analytic behavior of the generating function of the cluster size distribution
in percolation, which plays the role of a free energy in that model. The first
statement of Theorem 1.1 is a particular case of the theory of Pirogov and Sinai
(see [6]). We give a proof of this result, as far as it concerns the free energy, since
we need detailed informations about the phase diagram in the complex plane of
the parameter µ.

The obstruction to an analytic continuation of the free energy in the variable
µ is due to the stability of the droplets of both phases in a neighborhood of µ∗.
Our proof follows for the essential that of Isakov in [2]. We give a detailed proof
of Theorem 1.1, and do not assume any familiarity with [2] or [3]. On the other
hand we assume that the reader is familiar with the cluster expansion technique.

The results presented here are true for a much larger class of systems, but for
the sake of simplicity we restrict our discussion in that paper to the above setting,
which is already quite general. For example, Theorem 1.1 is true for Potts model
with high number q of components at the first order phase transition point βc,
where the q ordered phases coexist with the disordered phase. Here µ = β, the
inverse temperature, and the statement is that the free energy, which is analytic
for β > βc, or for β < βc, does not have an analytic continuation across βc.
Theorem 1.1 is also true when the model has more than two ground-states. For
example, for the Blume-Capel model, whose Hamiltonian is

∑

i,j

(si − sj)2 − h
∑

i

si − λ
∑

i

s2
i with si ∈ {−1, 0, 1} ,

the free energy is an analytic function of h and λ in the single phase regions.
At low temperature, at the triple point occurring at h = 0 and λ = λ∗(β) there
is no analytic continuation of the free energy in λ, along the path h = 0, or in
the variable h, along the path λ = λ∗. The case of coexistence of more than two
phases will be treated in a separate paper.

In the rest of the section we fix the main notations following chapter two of
Sinai’s book [6], so that the reader may easily find more information if necessary.
We also state Lemma 1.1 which contains all estimates on partition functions or
free energies.
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The model is defined on the lattice Zd, d ≥ 2. The spin variables ϕ(x), x ∈ Zd,
take values in a finite state space. If ϕ,ψ are two spin configurations, then ϕ = ψ
(a.s.) means that ϕ(x) 6= ψ(x) holds only on a finite subset of Zd. The restriction
of ϕ to a subset A ⊂ Zd is denoted by ϕ(A). The cardinality of a subset S is
denoted by |S|. If x, y ∈ Zd, then |x − y| := maxd

i=1 |xi − yi|; if W ⊂ Zd and
x ∈ Zd, then d(x,W ) := miny∈W |x − y| and if W,W ′ are subsets of Zd, then
d(W,W ′) = minx∈W d(x,W ′). We define for W ⊂ Zd

∂W := {x ∈ W : d(x,Zd\W ) = 1} .

A subset W ⊂ Zd is connected if any two points x, y ∈ W are connected by a path
{x0, x1, . . . , xn} ⊂ W , with x0 = x, xn = y and |xi−xi+1| = 1, i = 0, 1, . . . , n−1.
A component is a maximally connected subset.

Let H be a Hamiltonian with finite-range and periodic bounded interaction.
By introducing an equivalent model on a sublattice, with a larger state space,
we can assume that the model is translation invariant with interaction between
neighboring spins ϕ(x) and ϕ(y), |x−y| = 1, only. Therefore, without restricting
the generality, we assume that this is the case and that the interaction is Zd-
invariant. The Hamiltonian is written

Hµ = H0 + µH1 , µ ∈ R .

H0 has two Zd-invariant ground-states ψ1 and ψ2, and the perturbationH1 splits
the degeneracy of the ground-states of H0. We assume that the energy (per unit
spin) of the ground-states of H0 is 0. Uµ

x (ϕ) ≡ U0,x + µU1,x is the interaction
energy of the spin located at x for the configuration ϕ, so that by definition

Hµ(ϕ) =
∑

x∈Zd

Uµ
x (ϕ) (formal sum) .

U1,x is an order parameter for the phase transition. If ϕ and ψ are two configu-
rations and ϕ = ψ (a.s.), then

Hµ(ϕ|ψ) :=
∑

x∈Zd

(Uµ
x (ϕ)− Uµ

x (ψ)
)
.

This last sum is finite since only finitely many terms are non-zero. The main
condition, which we impose on H0, is Peierls condition for the ground-states ψ1

and ψ2. Let x ∈ Zd and

W1(x) := {y ∈ Zd : |y − x| ≤ 1} .

The boundary ∂ϕ of the configuration ϕ is the subset of Zd defined by

∂ϕ :=
⋃

x∈Zd

{
W1(x) : ϕ(W1(x)) 6= ψm(W1(x)) , m = 1, 2

}
.

Peierls condition means that there exists a positive constant ρ such that for
m = 1, 2

H0(ϕ|ψm) ≥ ρ|∂ϕ| ∀ ϕ such that ϕ = ψm (a.s.) .

We shall not write usually the µ-dependence of some quantity; we write for
example H or Ux instead of Hµ or Uµ

x .
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Definition 1.1. Let M denote a finite connected subset of Zd, and let ϕ be a
configuration. Then a couple Γ = (M, ϕ(M)) is called a contour of ϕ if M is
a component of the boundary ∂ϕ of ϕ. A couple Γ = (M,ϕ(M)) of this type
is called a contour if there exists at least one configuration ϕ such that Γ is a
contour of ϕ.

If Γ = (M,ϕ(M)) is a contour, then M is the support of Γ , which we also de-
note by supp Γ . Suppose that Γ = (M,ϕ(M)) is a contour and consider the com-
ponents Aα of Zd\M . Then for each component Aα there exists a unique ground-
state ψq(α), such that for each x ∈ ∂Aα one has ϕ(W1(x)) = ψq(α)(W1(x)). The
index q(α) is the label of the component Aα. For any contour Γ there exists a
unique infinite component of Zd\supp Γ , Ext Γ , called the exterior of Γ ; all other
components are called internal components of Γ . The ground-state correspond-
ing to the label of Ext Γ is the boundary condition of Γ ; the superscript q in Γ q

indicates that Γ is a contour with boundary condition ψq. Intm Γ is the union
of all internal components of Γ with label m; IntΓ :=

⋃
m=1,2 Intm Γ is the

interior of Γ . We use the abbreviations |Γ | := |supp Γ | and Vm(Γ ) := |Intm Γ |.
We define1

V (Γ q) := Vm(Γ q) m 6= q . (1.1)

For x ∈ Zd, let

c(x) :=
{
y ∈ Rd :

d
max
i=1

|xi − yi| ≤ 1/2
}

be the unit cube of center x in Rd. If Λ ⊂ Zd, then |Λ| is equal to the d-volume
of ⋃

x∈Λ

c(x) ⊂ Rd . (1.2)

The (d−1)-volume of the boundary of the set (1.2) is denoted by ∂|Λ|. We have

2d |Λ| d−1
d ≤ ∂|Λ| . (1.3)

The equality in (1.3) is true for cubes only. When Λ = Intm Γ q, m 6= q, V (Γ q) ≡
|Λ| and ∂V (Γ q) ≡ ∂|Λ|; there exists a positive constant C0 such that

∂V (Γ q) ≤ C0|Γ q| q = 1, 2 . (1.4)

For each contour Γ = (M,ϕ(M)) there corresponds a unique configuration ϕΓ

with the properties: ϕΓ = ψq on Ext Γ , where q is the label of ExtΓ , ϕΓ (M) =
ϕ(M), ϕΓ = ψm on Intm Γ , m = 1, 2. Γ is the only contour of ϕΓ . Let Λ ⊂ Zd;
the notation Γ ⊂ Λ means that supp Γ ⊂ Λ, IntΓ ⊂ Λ and d(suppΓ, Λc) > 1.
A contour Γ of a configuration ϕ is an external contour of ϕ if and only if
supp Γ ⊂ Ext Γ ′ for any contour Γ ′ of ϕ.

Definition 1.2. Let Ω(Γ q) be the set of configurations ϕ = ψq (a.s.) such that
Γ q is the only external contour of ϕ. Then

Θ(Γ q) :=
∑

ϕ∈Ω(Γ q)

exp
[− βH(ϕ|ψq)

]
.

1 Here our convention differs from [6].
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Let Λ ⊂ Zd be a finite subset; let Ωq(Λ) be the set of configurations ϕ = ψq (a.s.)
such that Γ ⊂ Λ whenever Γ is a contour of ϕ. Then

Θq(Λ) :=
∑

ϕ∈Ωq(Λ)

exp
[− βH(ϕ|ψq)

]
.

Two fundamental identities relate the partition functions Θ(Γ q) and Θq(Λ).

Θq(Λ) =
∑ n∏

i=1

Θ(Γ q
i ) , (1.5)

where the sum is over the set of all families {Γ q
1 , . . . , Γ q

n} of external contours in
Λ, and

Θ(Γ q) = exp
[− βH(ϕΓ q |ψq)

] 2∏
m=1

Θm(Intm Γ q) . (1.6)

We define (limit in the sense of van Hove)

gq := lim
Λ↑Zd

− 1
β|Λ| log Θq(Λ) .

The energy (per unit volume) of ψm for the Hamiltonian H1 is

h(ψm) := U1,x(ψm) .

By definition of H1, h(ψ2)− h(ψ1) 6= 0, and we assume that

∆ := h(ψ2)− h(ψ1) > 0 .

The free energy in the thermodynamical limit is

f = lim
Λ↑Zd

− 1
β|Λ| log Θq(Λ) + lim

Λ↑Zd

1
|Λ|

∑

x∈Λ

Ux(ψq) = gq + µh(ψq) . (1.7)

It is independent of the boundary condition ψq.

Definition 1.3. Let Γ q be a contour with boundary condition ψq. The weight
ω(Γ q) of Γ q is

ω(Γ q) := exp
[− βH(ϕΓ q |ψq)

]Θm(Intm Γ q)
Θq(Intm Γ q)

(m 6= q) .

The (bare) surface energy of a contour Γ q is

‖Γ q‖ := H0(ϕΓ q |ψq) .
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For a contour Γ q we set

a(ϕΓ q ) :=
∑

x∈supp Γ q

U1,x(ϕΓ q )− U1,x(ψq) .

Since the interaction is bounded, there exists a constant C1 so that

|a(ϕΓ q )| ≤ C1|Γ q| . (1.8)

Using these notations we have

H(ϕΓ q |ψq) =
∑

x∈supp Γ q

(Ux(ϕΓ q )− Ux(ψq)
)

+
∑

x∈Int Γ q

(Ux(ϕΓ q )− Ux(ψq)
)

= H0(ϕΓ q |ψq) + µa(ϕΓ q ) + µ(h(ψm)− h(ψq))V (Γ q)
= ‖Γ q‖+ µa(ϕΓ q ) + µ(h(ψm)− h(ψq))V (Γ q) (m 6= q) . (1.9)

The surface energy ‖Γ q‖ is always strictly positive since Peierls condition holds,
and there exists a constant C2, independent of q = 1, 2, such that

ρ|Γ q| ≤ ‖Γ q‖ ≤ C2|Γ q| . (1.10)

Definition 1.4. The weight ω(Γ q) is τ -stable for Γ q if

|ω(Γ q)| ≤ exp(−τ |Γ q|) .

For a finite subset Λ ⊂ Zd, using (1.5) and (1.6), one obtains easily the
following identity for the partition function Θq(Λ),

Θq(Λ) = 1 +
∑ n∏

i=1

ω(Γ q
i ) , (1.11)

where the sum is over all families of compatible contours {Γ q
1 , . . . , Γ q

n} with
boundary condition ψq, that is, Γ q

i ⊂ Λ and d(suppΓ q
i , supp Γ q

j ) > 1 for all
i 6= j, i, j = 1, . . . , n, n ≥ 1. We also introduce restricted partition functions and
free energies. For each n = 0, 1, . . . , we define new weights ωn(Γ q)

ωn(Γ q) :=

{
ω(Γ q) if V (Γ q) ≤ n,
0 otherwise.

(1.12)

For q = 1, 2, we define Θn
q by equation (1.11), using ωn(Γ q) instead of ω(Γ q). It

is essential later on to replace the real parameter µ by a complex parameter z;
we set (provided that Θn

q (Λ)(z) 6= 0 for all Λ)

gn
q (z) := − lim

Λ↑Zd

1
β|Λ| log Θn

q (Λ)(z) and fn
q (z) := gn

q (z) + z h(ψq) . (1.13)

fn
q is the restricted free energy of order n and boundary condition ψq. Let

l(n) := C−1
0

⌈
2dn

d−1
d

⌉
n ≥ 1 . (1.14)

Notice that Θn
q (Λ) = Θq(Λ) if |Λ| ≤ n, and that V (Γ q) ≥ n implies that

|Γ q| ≥ l(n) since (1.3) and (1.4) hold. Lemma 1.1 gives basic, but essential,
estimates for the rest of the paper. The only hypothesis for this lemma is that
the weights of the contours are τ -stable.
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Lemma 1.1. Let ω(Γ q) be any complex weights, and define ωn(Γ q) by (1.12).
Suppose that the weights ωn(Γ q) are τ -stable for all Γ q. Then there exists K0 <
∞ and τ∗0 < ∞ independent of n, so that for all τ ≥ τ∗0 ,

β|gn
q | ≤ K0e−τ . (1.15)

For all finite subsets Λ ⊂ Zd,
∣∣ log Θn

q (Λ) + βgn
q |Λ|

∣∣ ≤ K0e−τ ∂|Λ| . (1.16)

If ωn(Γ q) = 0 for all Γ q such that |Γ q| ≤ k, then

β|gn
q | ≤

(
K0e−τ

)k
. (1.17)

For n ≥ k and k ≥ 1
β|gn

q − gk−1
q | ≤ (

K0e−τ
)l(k)

. (1.18)

Furthermore, if ωn(Γ q) depends on a parameter t and

∣∣ d

dt
ωn(Γ q)

∣∣ ≤ D1e−τ |Γ q| and
∣∣ d2

dt2
ωn(Γ q)

∣∣ ≤ D2e−τ |Γ q| , (1.19)

then there exists Kj < ∞ and τ∗j < ∞ independent of n, j = 1, 2, so that for all

τ ≥ τ∗j ,
dj

dtj
gn

q exists and

β
∣∣ d

dt
gn

q

∣∣ ≤ D1K1e−τ and β
∣∣ d2

dt2
gn

q

∣∣ ≤ max{D2, D
2
1}K2e−τ . (1.20)

For all finite subsets Λ ⊂ Zd,
∣∣ d

dt
log Θn

q (Λ) + β
d

dt
gn

q |Λ|
∣∣ ≤ D1K1e−τ ∂|Λ| (1.21)

and
∣∣ d2

dt2
log Θn

q (Λ) + β
d2

dt2
gn

q |Λ|
∣∣ ≤ max{D2, D

2
1}K2e−τ ∂|Λ| . (1.22)

If the weights ωn(Γ q) are τ -stable for all Γ q and all n ≥ 1, then all these esti-
mates hold for gq and Θq instead of gn

q and Θn
q . Moreover, gn

q and its first two
derivatives converge to gq and its first two derivatives.

Proof. Let ω(Γ q) be an arbitrary weight, satisfying the only condition that it is
τ -stable for any Γ q. The partition function Θq(Λ) is defined in (1.11) by

Θq(Λ) = 1 +
∑ n∏

i=1

ω(Γ q
i ) ,

where the sum is over all families of compatible contours {Γ q
1 , . . . , Γ q

n} with
boundary condition ψq, that is, Γ q

i ⊂ Λ and d(suppΓ q
i , supp Γ q

j ) > 1 for all
i 6= j, i, j = 1, . . . , n, n ≥ 1. We set, following reference [5] section 3 2,

Γ q := {x ∈ Zd : d(x, supp Γ 2) ≤ 1} . (1.23)

2 In [5] Γ q is denoted by i(Γ q), which has another meaning here (see subsection 2.3).
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There exists a constant C5 such that |Γ q| ≤ C5|Γ q|, and

(Γ q
i and Γ q

j not compatible) =⇒ (suppΓ q
i ∩ Γ q

j 6= ∅) .

We introduce

ϕ2(Γ
q
i , Γ q

j ) :=

{
0 if Γ q

i and Γ q
j compatible

−1 if Γ q
i and Γ q

j not compatible .

If the weights of all contours with boundary condition ψq are τ -stable and if τ
is large enough, then one can express the logarithm of Θq(Λ) as

log Θq(Λ) =
∑

m≥1

1
m!

∑

Γ q
1⊂Λ

· · ·
∑

Γ q
m⊂Λ

ϕT
m(Γ q

1 , . . . , Γ q
m)

m∏

i=1

ω(Γ q
i ) (1.24)

=
∑

m≥1

1
m!

∑

x∈Λ

∑

Γ q
1⊂Λ

x∈supp Γ q
1

· · ·
∑

Γ q
m⊂Λ

ϕT
m(Γ q

1 , . . . , Γ q
m)

|supp Γ q
1 |

m∏

i=1

ω(Γ q
i ) .

In (1.24) ϕT
m(Γ q

1 , . . . , Γ q
m) is a purely combinatorial factor (see [5], formulas (3.20)

and (3.42)). This is the basic identity which is used for controlling Θq(Λ). An
important property of ϕT

m(Γ q
1 , . . . , Γ q

m) is that ϕT
m(Γ q

1 , . . . , Γ q
m) = 0 if the follow-

ing graph is not connected (Lemma 3.3 in [5]): to each Γ q
i we associate a vertex

vi, and to each pair {vi, vj} we associate an edge if and only if ϕ2(Γ
q
i , Γ q

j ) 6= 0.

Lemma 1.2. Assume that

C :=
∑

Γ q :supp Γ q30

|ω(Γ q)| exp(|Γ q|) < ∞ .

Then

∑

Γ q
1 :

0∈supp Γ q
1

∑

Γ q
2

· · ·
∑

Γ q
m

|ϕT
m(Γ q

1 , . . . , Γ q
m)|

m∏

i=1

|ω(Γ q
i )| ≤ (m− 1)!Cm .

If, furthermore C < 1, then (1.24) is true, and the right-hand side of (1.24) is
an absolutely convergent sum.

Lemma 1.2 is Lemma 3.5 in [5], where a proof is given. There exists a constant,
KP , called Peierls constant, such that

|{Γ q : supp Γ q 3 0 and |supp Γ q| = n}| ≤ Kn
P .

If ω(Γ q) is τ -stable, then there exist K̂0 < ∞ and τ∗0 < ∞ so that K̂0 e−τ∗0 < 1,
and for all τ ≥ τ∗0 ,

C =
∑

Γ q :supp Γ q30

|ω(Γ q)| exp(|Γ q|) ≤
∑

j≥1

Kj
P e−(τ−C5)j ≤ K̂0 e−τ . (1.25)
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If this is true, (1.24) implies 3 that

−β gq =
∑

m≥1

1
m!

∑

Γ q
1

0∈supp Γ q
1

· · ·
∑

Γ q
m

1
|supp Γ q

1 |
ϕT

m(Γ q
1 , . . . , Γ q

m)
m∏

i=1

ω(Γ q
i ) .

Therefore, there exists K0 < ∞ so that for all τ ≥ τ∗0 ,

β|gq| ≤ C

1− C
≤ K̂0

1− K̂0

e−τ ≡ K0 e−τ .

We have for all finite subsets Λ ⊂ Zd

∣∣ log Θq(Λ) + βgq |Λ|
∣∣ ≤

∑

x∈∂Λ

∑

m≥1

1
m!

∑

Γ q
1 ,...,Γ q

m

∃i Γ q
i 3x

|ϕT
m(Γ q

1 , . . . , Γ q
m)|

m∏

i=1

|ω(Γ q
i )|

≤ K0 e−τ ∂|Λ| .

If ω(Γ q) = 0 for all Γ q such that |Γ q| ≤ m, then C ≤ K̂m
0 e−τm, and

β|gq| ≤
(
K0e−τ

)m
.

If n ≥ k and k ≥ 1, then

β|gn
q − gk−1

q | ≤
∑

j≥1

1
j!

∑

Γ q
1 30,Γ q

2 ,...,Γ q
j

∃i V (Γ q
i )≥k

|ϕT
j (Γ q

1 , . . . , Γ q
j )|

j∏

i=1

|ωn(Γ q
i )|

≤
∑

j≥1

1
j!

j∑

i=1

∑

Γ q
1 30,Γ q

2 ,...,Γ q
j

V (Γ q
i ) ≥ k

|ϕT
k (Γ q

1 , . . . , Γ q
j )|

j∏

i=1

|ωn(Γ q
i )|

≤ (
K0e−τ

)l(k)
.

The last inequality is proved by a straightforward generalization of the proof of
Lemma 3.5 in [5]. The last statements of Lemma 1.1 are proven in the same way,
by deriving (1.24) term by term. ut

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is given in the next five subsections. In subsection
2.1 we construct the phase diagram and in subsection 2.2 we study the analytic
continuation of the weights of contours in a neighborhood of the point of phase
coexistence µ∗. These results about the analytic continuation are crucial for the
rest of the analysis and cannot be found in the literature. We need stronger

3 The corresponding formula (3.58) in [5] is incorrect; a factor |γ1 ∩ Z2∗|−1 is missing.
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results than those of Isakov [3] in order to prove Theorem 1.1 under the only
assumption that Peierls condition is true. For the construction of the phase dia-
gram in the complex plane we follow Isakov [3] and Zahradnik [7]. In subsection
2.3 we derive an expression of the derivatives of the free energy at finite volume.
We prove a lower bound for a restricted class of terms of this expression. This
is an improved version of a similar analysis of Isakov [2]. From these results we
obtain a lower bound for the derivatives of the free energy fΛ in a finite box Λ.
We show in subsection 2.4 that for large β, there exists an increasing diverging
sequence {kn}, so that the kth

n -derivative of fΛ with respect to µ, evaluated at
µ∗, behaves like kn!

d
d−1 (provided that Λ is large enough). In the last subsection

we end the proof of the impossibility of an analytic continuation of the free en-
ergy across µ∗, by showing that the results of subsection 2.4 remain true in the
thermodynamical limit.

2.1. Construction of the phase diagram in the complex plane. We construct the
phase diagram for complex values of the parameter µ, by constructing iteratively
the phase diagram for the restricted free energies fn

q (see (1.13)). We set z :=
µ + iν. The method consists in finding a sequence of intervals for each ν ∈ R,

Un(ν;β) := (µ∗n(ν;β)− b1
n, µ∗n(ν; β) + b2

n) ,

with the properties

(µ∗n(ν; β)− b1
n, µ∗n(ν;β) + b2

n) ⊂ (µ∗n−1(ν;β)− b1
n−1, µ

∗
n−1(ν; β) + b2

n−1) (2.1)

and limn bq
n = 0, q = 1, 2. By construction of the intervals Un−1(ν;β) the re-

stricted free energies fn−1
q of order n− 1, q = 1, 2, are well-defined and analytic

on
Un−1 := {z ∈ C : Rez ∈ Un−1(Imz;β)} .

The point µ∗n(ν; β), n ≥ 1, is solution of the equation

Re
(
fn−1
2 (µ∗n(ν; β) + iν)− fn−1

1 (µ∗n(ν; β) + iν)
)

= 0 .

µ∗n(0; β) is the point of phase coexistence for the restricted free energies of order
n − 1, and the point of phase coexistence of the model is given by µ∗(0; β) =
limn µ∗n(0; β). This iterative construction is as important as the statement of
Proposition 2.1, which is the main result of subsection 2.1.

Proposition 2.1. Let 0 < ε < ρ and 0 < δ < 1 so that ∆− 2δ > 0. Set

U0 := (−C−1
1 ε, C−1

1 ε) and U0 := {z ∈ C : Rez ∈ U0}
and

τ(β) := β(ρ− ε)− 3C0δ .

There exists β0 ∈ R+ such that for all β ≥ β0 the following holds.

1. There exists a continuous real-valued function on R, ν 7→ µ∗(ν; β) ∈ U0, so
that µ∗(ν; β) + iν ∈ U0.

2. If µ + iν ∈ U0 and µ ≤ µ∗(ν;β), then the weight ω(Γ 2) is τ(β)-stable for
all contours Γ 2 with boundary condition ψ2, and analytic in z = µ + iν if
µ < µ∗(ν; β).
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3. If µ + iν ∈ U0 and µ ≥ µ∗(ν;β), then the weight ω(Γ 1) is τ(β)-stable for
all contours Γ 1 with boundary condition ψ1, and analytic in z = µ + iν if
µ > µ∗(ν; β).

It is useful to put into evidence here some points of the proof of Proposition
2.1, before giving it in detail.

Remark 2.1. The iterative method depends on a free parameter θ′, 0 < θ′ < 1,
which is fixed at the end of the proof of Theorem 1.1. Let 0 < θ′ < 1 be
given, as well as ε and δ as in the proposition. We list here all major constants
which appear in the proof, since these constants are used at different places in
the paper. We use the isoperimetric constant χ, which is defined as the best
constant in (2.2),

V (Γ q)
d−1

d ≤ χ−1‖Γ q‖ ∀ Γ q , q = 1, 2 . (2.2)

Existence of χ in (2.2) follows from (1.3), (1.4) and (1.10).

τ1(β; θ′) := β
(
ρ(1− θ′)− ε

)− 2δC0 ; (2.3)

τ2(β; θ′) := τ1(β; θ′)− d

d− 1
; (2.4)

C3 := C1 + 2δC0 + (∆ + 2δ)(χ−1C2)
d

d−1 . (2.5)

We choose β0 so that, for all β ≥ β0, τ2(β) > max{τ∗0 , τ∗1 , τ∗2 }, (2.18) holds 4,

Ke−τ1(β) ≤ δ and C3Ke−τ2(β) ≤ δ . (2.6)

K is a constant, which is greater than max{K0, K1}, and K0, K1 are the con-
stants of Lemma 1.1; ρ is the constant of Peierls condition and ∆ = h(ψ2) −
h(ψ1) > 0. We also require for Proposition 2.3 that

τ(β)−max
{ d

d− 1
, p

} ≥ τ2(β; θ′) ∀β ≥ β0 .

Here p ∈ N is fixed in the proof of Proposition 2.2.

Remark 2.2. In the above formulas we may choose δ in such a way that δ = δ(β)
and limβ→∞ δ(β) = 0. Indeed, the only condition which we need to satisfy is
(2.6). So, whenever we need it, we consider δ as function of β, so that by taking
β large enough, we have δ as small as we wish.

Remark 2.3. The main technical part of the proof of Proposition 2.1 is the proof
of point D below. If we want to prove only the first statement of Theorem 1.1,
then it is sufficient to prove points A, B and C below. This gives a constructive
definition of the point of phase coexistence µ∗(β), as well as the main estimates
necessary to construct the different phases at this point, since we get that all
contours are τ1(β)-stable at µ∗(β). For example, existence of two phases follows
from a straightforward Peierls argument.

4 τ∗k , k = 0, 1, 2, are defined in Lemma 1.1. Condition τ2(β) > τ∗2 is needed only in Lemma
2.1. We have stated Lemma 2.1 separately in order to simplify the proof of Proposition 2.1.
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Remark 2.4. We emphasize here a key step of the iterative proof of Propostion
2.1. Assume that β ≥ β0, and for q = 1, 2, that the weights ωn−1(Γ q) are
τ1(β; θ′)-stable and

∣∣ d

dz
ωn−1(Γ )

∣∣ ≤ βC3e−τ2(β;θ′)|Γ | .

From (1.20) and (1.16),

∣∣ d

dz

(
fn−1
2 − fn−1

1

)−∆)
∣∣ ≤ 2δ , (2.7)

and (m 6= q)
∣∣ log Θn−1

q (Intm Γ q) + βgn−1
q V (Γ q)|

∣∣ ≤ δ C0|Γ q|∣∣ log Θn−1
m (Intm Γ q) + βgn−1

m V (Γ q)|∣∣ ≤ δ C0|Γ q| .
Let Γ q be a contour with V (Γ q) = n. Then

|ω(Γ q)| = exp
[− βReH(ϕΓ q |ψq)

] ∣∣∣Θm(Intm Γ q)
Θq(Intm Γ q)

∣∣∣ (m 6= q) (2.8)

≤ exp
[
− β‖Γ q‖+

(
βε + 2C0δ

)|Γ q| − βRe
(
fn−1

m − fn−1
q

)
V (Γ q)

]
,

since all contours inside Intm Γ q have a volume smaller than n − 1, and (see
(1.8))

|Rez a(ϕΓ q )| ≤ ε ∀ z ∈ U0 .

To prove the stability of ω(Γ q) we must control the volume term in the right-
hand side of inequality (2.8). If

−Re
(
fn−1
1 − fn−1

2

)
V (Γ 2) ≤ θ′‖Γ 2‖ , (2.9)

−Re
(
fn−1
2 − fn−1

1

)
V (Γ 1) ≤ θ′‖Γ 1‖ , (2.10)

then ω(Γ 2) and ω(Γ 1) are τ1(β; θ′)-stable. Indeed, these inequalities imply

|ω(Γ q)| ≤ exp
[
− β(1− θ′)‖Γ q‖+

(
βε + 2C0δ

)|Γ q|
]

≤ exp
[
− (

β(1− θ′)ρ− βε− 2C0δ
)|Γ q|

]
.

Verification of the inequalities (2.9) and (2.10) is possible because (2.7) provides
a sharp estimate of the derivative of fn−1

2 − fn−1
1 . We also use the isoperimetric

inequality (2.2).

Proof. Let θ′, 0 < θ′ < 1. On the interval U0(ν; β) := (−b0, b0) with b0 = εC−1
1 ,

f0
q (µ + iν) is defined and we set µ∗0(ν;β) := 0. The two decreasing sequences
{bq

n}, q = 1, 2 and n ≥ 1, are defined by

b1
n ≡ b2

n :=
χθ′

(∆ + 2δ)n
1
d

, n ≥ 1 . (2.11)
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then it is immediate to verify, when β is large enough or δ small enough, that

bq
n − bq

n+1 >
2δl(n)

β(∆− 2δ)
, ∀n ≥ 1 . (2.12)

On U0 all contours Γ with empty interior are β(ρ− ε)-stable, and
∣∣∣ d

dz
ω(Γ )

∣∣∣ ≤ βC1|Γ |e−β(ρ−ε)|Γ | ≤ βC1e−[β(ρ−ε)−1]|Γ | ≤ βC3e−τ2(β)|Γ | .

We prove iteratively the following statements.

A. There exists continuous solution ν 7→ µ∗n(ν;β) of the equation

Re
(
fn−1
2 (µ∗n(ν; β) + iν)− fn−1

1 (µ∗n(ν; β) + iν)
)

= 0 ,

so that (2.1) holds.
B. ωn(Γ q) is well-defined and analytic on Un, for any contour Γ q, q = 1, 2, and

ωn(Γ q) is τ1(β)-stable. Moreover, Θn
q (Λ) 6= 0 for any finite Λ, and fn

q (z;β) is
analytic on Un.

C. On Un,
∣∣ d

dz
ωn(Γ q)

∣∣ ≤ βC3e−τ2(β)|Γ q|.

D. If z = µ + iν ∈ U0 and µ ≤ µ∗n(ν; β) − b1
n, then ω(Γ 2) is τ(β)-stable for any

Γ 2 with boundary condition ψ2. If z = µ + iν ∈ U0 and µ ≥ µ∗n(ν; β) + b2
n,

then ω(Γ 1) is τ(β)-stable for any Γ 1 with boundary condition ψ1.

From these results the proposition follows with

µ∗(ν;β) = lim
n→∞

µ∗n(ν; β) .

We assume that the construction has been done for all k ≤ n− 1.

A. We prove the existence of µ∗n(ν;β) ∈ Un−1. µ∗n(ν;β) is solution of the equation

Re
(
fn−1
2 (µ∗n(ν; β) + iν)− fn−1

1 (µ∗n(ν; β) + iν)
)

= 0 .

Let F k(z) := fk
2 (z)− fk

1 (z). Then, for µ′ + iν ∈ Un−1,

Fn−1(µ′ + iν) = Fn−1(µ′ + iν)− Fn−2(µ∗n−1 + iν) (2.13)

= Fn−1(µ′ + iν)− Fn−1(µ∗n−1 + iν) + Fn−1(µ∗n−1 + iν)

− Fn−2(µ∗n−1 + iν)

=
∫ µ′

µ∗n−1

d

dµ
Fn−1(µ + iν) dµ +

(
gn−1
2 − gn−2

2

)
(µ∗n−1 + iν)

− (
gn−1
1 − gn−2

1

)
(µ∗n−1 + iν) .

If V (Γ ) = n− 1, then |Γ | ≥ l(n− 1). Therefore, (1.18) gives

|(gn−1
q − gn−2

q

)
(µ∗n−1 + iν)| ≤ β−1δl(n−1) . (2.14)
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If z′ = µ′ + iν ∈ Un−1, then (2.13), (2.7) and (2.14) imply

∆(µ′ − µ∗n−1) + 2δ|µ′ − µ∗n−1|+ 2β−1δl(n−1) ≥ ReFn−1(z′)

≥ ∆(µ′ − µ∗n−1)− 2δ|µ′ − µ∗n−1| − 2β−1δl(n−1) .

Since (2.12) holds,

bq
n−1 > bq

n−1 − bq
n >

2δl(n−1)

β(∆− 2δ)
,

so that ReFn−1(µ∗n−1 − b1
n−1 + iν) < 0 and ReFn−1(µ∗n−1 + b2

n−1 + iν) > 0.
This proves the existence of µ∗n and its uniqueness, since µ 7→ ReFn−1(µ+ iν) is
strictly increasing (see (2.7)). Moreover, by putting µ′ = µ∗n(ν; β) in (2.13), we
get

|µ∗n(ν; β)− µ∗n−1(ν; β)| ≤ 2δl(n−1)

β(∆− 2δ)
.

Therefore Un ⊂ Un−1. The implicit function theorem implies that ν 7→ µ∗n(ν; β)
is continuous (even C∞).

B. By the induction hypothesis the weights ωn(Γ q) are analytic in Un−1. We
prove that on Un ωn(Γ q) is τ1-stable for all contours Γ q, q = 1, 2. This implies
that fn

q is analytic on Un. The proof of the stability of the contours is the
content of Remark 2.4. Let Γ q be a contour with V (Γ q) = n. We verify (2.9) if
µ ≤ µ∗n + b2

n, and (2.10) if µ ≥ µ∗n− b1
n. The choice of {bq

n} and the isoperimetric
inequality (2.2) imply

∣∣Re
(
fn−1

m − fn−1
q

)∣∣V (Γ q)
‖Γ q‖ =

∣∣∣Re
∫ µ

µ∗n

d

dµ

(
fn−1

m − fn−1
q

)
dµ

∣∣∣V (Γ q)
‖Γ q‖

≤ |µ− µ∗n|(∆ + 2δ)
V (Γ q)
‖Γ q‖ ≤ θ′ .

C. We prove that on Un

∣∣ d

dz
ωn(Γ )

∣∣ ≤ βC3e−τ2(β)|Γ | .

Let V (Γ q) = n; from (1.9)

d

dz
ωn(Γ q) = ωn(Γ q)

(
− βa(ϕΓ q )− β

(
h(ψm)− h(ψq)

)
V (Γ q)

+
d

dz

(
log Θm(Intm Γ q)− log Θq(Intm Γ q)

))
.

(1.20), (1.21), (1.4), (1.8), (2.2) and (1.10) imply

∣∣ d

dz
ωn(Γ q)

∣∣ ≤ β|ωn(Γ q)|(|Γ q|(C1 + 2δC0) + V (Γ q)(∆ + 2δ)
)

≤ βC3|ωn(Γ q)||Γ q| d
d−1

≤ βC3e−τ2(β)|Γ q| .
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D. We prove that ω(Γ 2)(z) is τ(β)-stable for any contour Γ 2 with boundary
condition ψ2, if µ ≤ µ∗n(ν; β)− b1

n. Using the induction hypothesis it is sufficient
to prove this statement for z = µ + iν ∈ Un−1 and µ ≤ µ∗n(ν; β)− b1

n.
The next observation, leading to (2.15) and (2.17), is the key point of the

proof of D. If z = µ + iν ∈ Un−1, then all contours with volume V (Γ ) ≤ n − 1
are τ1(β)-stable; (2.7) and µ ≤ µ∗n imply that µ 7→ Re(fn−1

1 − fn−1
2 )(µ + iν) is

strictly decreasing. If µ ≤ µ∗n(ν; β)− b1
n, then (see (2.11) and (2.12))

βRe(fn−1
1 − fn−1

2 )(µ + iν) = −β

∫ µ∗n

µ

d

dµ
Re(fn−1

1 − fn−1
2 )(µ + iν) dµ

≥ −β

∫ µ∗n

µ∗n−b1n

d

dµ
Re(fn−1

1 − fn−1
2 )(µ + iν) dµ

≥ βb1
n(∆− 2δ) ≥ 2δl(n) . (2.15)

First suppose that V (Γ 2) ≤ n. From (2.15) and (2.8) it follows that ω(Γ 2) is
β(ρ− ε− 2β−1C0δ)-stable, in particular τ(β)-stable. Moreover, if |Λ| ≤ n, then

∣∣∣ exp
[− βz(h(ψ1)− h(ψ2))|Λ|

]Θ1(Λ)
Θ2(Λ)

∣∣∣ ≤ e3δ∂|Λ| . (2.16)

Indeed, all contours inside Λ are τ1(β)-stable. By (1.16) and (2.15),
∣∣∣ e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)

Θ2(Λ)

∣∣∣ ≤
∣∣ e−β(zh(ψ1)−zh(ψ2)+gn−1

1 −gn−1
2 )|Λ|∣∣ e2δ∂|Λ|

= e−βRe(fn−1
1 (z)−fn−1

2 (z))|Λ|e2δ∂|Λ|

≤ e2δ∂|Λ| .

To prove point D, we prove by induction on |Λ| that (2.16) holds for any Λ.
Indeed, if (2.16) is true and if we set Λ := Int1Γ 2, then it follows easily from
the definition of ω(Γ 2) and from (1.9) that ω(Γ 2) is τ(β)-stable.

The argument to prove (2.16) is due to Zahradnik [7]. The statement is true
for |Λ| ≤ n. Suppose that it is true for |Λ| ≤ k, k > n, and let |Λ| = k + 1.
The induction hypothesis implies that ω(Γ 2)(z) is τ(β)-stable if V (Γ 2) ≤ k.
Therefore (1.16) gives

∣∣∣ e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)
Θ2(Λ)

∣∣∣ ≤
∣∣ e−β(zh(ψ1)−zh(ψ2)−gk

2 )|Λ|Θ1(Λ)
∣∣eδ∂|Λ| .

From (1.5)

Θ1(Λ) =
∑ r∏

j=1

Θ(Γ 1
j ) ,

where the sum is over all families {Γ 1
1 , . . . , Γ 1

r } of compatible external contours
in Λ. We say that an external contour Γ 1

j is large if V (Γ 1
j ) ≥ n. Suppose that

the contours Γ 1
1 , . . . Γ 1

p are large and all other contours Γ 1
p+1, . . . Γ

1
r not large.

We set

Extp
1(Λ) :=

( p⋂

j=1

ExtΓ 1
j

) ∩ Λ .



16 Sacha Friedli, Charles-Ed. Pfister

Summing over all contours which are not large, we get from (1.6) and (1.9)

Θ1(Λ) =
∑

Θn−1
1

(
Extp

1(Λ)
) p∏

j=1

exp
[− βH(ϕΓ 1

j
|ψ1)

]
Θ1(Int1Γ 1

j )Θ2(Int2Γ 1
j )

=
∑

Θn−1
1

(
Extp

1(Λ)
) p∏

j=1

e
−β‖Γ 1

j ‖−βza(ϕ
Γ1

j
)+βz(h(ψ1)−h(ψ2))|Int2Γ 1

j |

· Θ1(Int1Γ 1
j )

Θ2(Int1Γ 1
j )

Θ2(Int1Γ 1
j )Θ2(Int2Γ 1

j ) ;

the sums are over all families {Γ 1
1 , . . . , Γ 1

p } of compatible external large contours
in Λ. All contours which are not large are τ1(β)-stable, and we use Lemma 1.1
to control Θn−1

1

(
Extp

1(Λ)
)
, Θ2(Int1Γ 1

j ) and Θ2(Int2Γ 1
j ). We have

∂|Extp
1(Λ)| ≤ ∂|Λ|+

p∑

j=1

C0|Γ 1
j | .

Hence, (1.16), IntΓ 1
j = Int1Γ 1

j ∪ Int2Γ 1
j and the induction hypothesis imply that

(Rez = µ)

∣∣ Θ1(Λ)
∣∣ ≤ eδ∂|Λ|∑ e−βRegn−1

1 |Extp
1(Λ)|

p∏

j=1

e−(β(ρ−ε)−C0δ)|Γ 1
j |

· eβµ(h(ψ1)−h(ψ2))(|IntΓ 1
j |−|Int1Γ 1

j |)
∣∣∣Θ1(Int1Γ 1

j )
Θ2(Int1Γ 1

j )

∣∣∣
∣∣Θ2(Int1Γ 1

j )Θ2(Int2Γ 1
j )

∣∣

≤ eδ∂|Λ|∑ e−βRegn−1
1 |Extp

1(Λ)|
p∏

j=1

e−(β(ρ−ε)−4C0δ)|Γ 1
j |

· eβµ(h(ψ1)−h(ψ2))|IntΓ 1
j |

∣∣Θ2(Int1Γ 1
j )Θ2(Int2Γ 1

j )
∣∣

≤ eδ∂|Λ|∑ e−βRegn−1
1 |Extp

1(Λ)|
p∏

j=1

e−(βρ−βε−5C0δ)|Γ 1
j |

· eβ(µh(ψ1)−µh(ψ2)−gk
2 )|IntΓ 1

j | .

We have

|Λ| = |Extp
1(Λ)|+

p∑

j=1

|Γ 1
j |+

p∑

j=1

|IntΓ 1
j | .

Writing zh(ψ2) = fn−1
2 −gn−1

2 , and adding and subtracting
∑

j gn−1
1 |Γ 1

j |, we get

∣∣∣ e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)
Θ2(Λ)

∣∣∣ ≤ e2δ∂|Λ|∑ e−βRe(fn−1
1 −fn−1

2 +gn−1
2 −gk

2 )|Extp
1(Λ)|

·
p∏

j=1

e−(βρ−βε−6C0δ)|Γ 1
j |e−βRe(fn−1

1 −fn−1
2 +gn−1

2 −gk
2 )|Γ 1

j | .
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We define
τ̂(β) := β(ρ− ε)− 6C0δ .

From (2.15) and (1.18) we have

βRe(fn−1
1 − fn−1

2 − gk
2 + gn−1

2 ) ≥ δl(n) . (2.17)

Hence,

∣∣∣ e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)
Θ2(Λ)

∣∣∣ ≤ e2δ∂|Λ|∑ e−δl(n)|Extp
1(Λ)|

p∏

j=1

e−(δl(n)+τ̂(β))|Γ 1
j | .

We define (C0δ is introduced for controlling boundary terms later on)

ω̂(Γ ) :=

{
e−(τ̂(β)−C0δ)|Γ | if |Γ | ≥ l(n);
0 otherwise.

Let Θ̂(Λ) be defined by (1.11), replacing ω(Γ q) by ω̂(Γ ), and let

ĝ := lim
Λ↑Zd

− 1
β|Λ| log Θ̂(Λ) .

Our definition of β0 is such that for all β ≥ β0,

Ke−τ̂(β) ≤ δ . (2.18)

Since β|ĝ| ≤ δl(n), putting into evidence a factor eβĝ|Λ|, we get

∣∣∣ e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)
Θ2(Λ)

∣∣∣ ≤ e2δ∂|Λ|+βĝ|Λ|∑
p∏

j=1

e−τ̂(β)|Γ 1
j |e−βĝ|Int Γ 1

j |

≤ e2δ∂|Λ|+βĝ|Λ|∑
p∏

j=1

e−(τ̂(β)−C0δ)|Γ 1
j |Θ̂(Int Γ 1

j ) .

We have interpreted e−βĝ|Int Γ 1| as a partition function (up to a boundary term),
since by (1.16)

e−βĝ|Int Γ 1| ≤ Θ̂(IntΓ 1) eC0δ|Γ 1| .

We sum over external contours and get

∣∣∣ e−βz(h(ψ1)−h(ψ2))|Λ|Θ1(Λ)
Θ2(Λ)

∣∣∣ ≤ e2δ∂|Λ|+βĝ|Λ|Θ̂(Λ) ≤ e3δ∂|Λ| .

ut

It is not difficult to prove more regularity for the curve ν 7→ µ∗(ν;β). We
need below only the following result.
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Lemma 2.1. Let 0 < δ < 1. If β is sufficiently large, then for all n ≥ 1
d

dν
µ∗n(0; β) = 0, and

∣∣ d2

dν2
µ∗n(ν; β)

∣∣ ≤ 2δ

∆− 2δ

(( 2δ

∆− 2δ

)2

+
2δ

∆− 2δ
+ 1

)
.

Proof. Let δ be as in the proof of Proposition 2.1. Because the free energies fn−1
1

and fn−1
2 are real on the real axis, it follows that they satisfy fn−1

q (z) = fn−1
q (z),

and therefore ν 7→ µ∗n(ν; β) is even, and
d

dν
µ∗n(0; β) = 0. By definition µ∗n(ν; β)

is solution of

Re
(
fn−1
2 (µ∗n(ν; β) + iν)− fn−1

1 (µ∗n(ν; β) + iν)
)

= 0 ,

which implies that

∆
dµ∗n
dν

=
d

dµ
Re

(
gn−1
1 − gn−1

2

)dµ∗n
dν

+
d

dν
Re

(
gn−1
1 − gn−1

2

)

and

∆
d2µ∗n
dν2

=
d

dµ
Re

(
gn−1
1 − gn−1

2

)d2µ∗n
dν2

+
d2

dµ2
Re

(
gn−1
1 − gn−1

2

)(dµ∗n
dν

)2

+
d2

dµdν
Re

(
gn−1
1 − gn−1

2

)dµ∗n
dν

+
d2

dν2
Re

(
gn−1
1 − gn−1

2

)
.

From the proof of Proposition 2.1, step C, we have on Uk

∣∣ d

dz
ωk(Γ )

∣∣ ≤ βC3e−τ2(β)|Γ | .

Let τ3(β) := τ1(β) − 2 d
d−1 . A similar proof shows for β sufficiently large, that

there exists C4 with the property

∣∣ d2

dz2
ωk(Γ )

∣∣ ≤ β2C4e−τ3(β)|Γ | .

Assume that β is large enough so that

β max{C4, C
2
3}K2e−τ3(β)|Γ | ≤ δ .

Let Gn−1 := Re
(
gn−1
1 − gn−1

2

)
; by Lemma 1.1

∣∣ d

dµ
Gn−1

∣∣ ≤ 2δ ,
∣∣ d

dν
Gn−1

∣∣ ≤ 2δ ,

∣∣ d2

dµ2
Gn−1

∣∣ ≤ 2δ ,
∣∣ d2

dν2
Gn−1

∣∣ ≤ 2δ ,
∣∣ d2

dµdν
Gn−1

∣∣ ≤ 2δ .

Hence
∣∣dµ∗n

dν

∣∣ ≤ 2δ

∆− 2δ
,

∣∣d2µ∗n
dν2

∣∣ ≤ 2δ

∆− 2δ

(( 2δ

∆− 2δ

)2

+
2δ

∆− 2δ
+ 1

)
.

ut
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Proposition 2.2. Under the conditions of Proposition 2.1, there exist β0 ∈ R+

and p ∈ N so that the following holds for all β ≥ β0. Let

τ ′(β) := τ(β)−max
{ d

d− 1
, p

}
.

1. If µ + iν ∈ U0 and µ ≤ µ∗(ν; β), then

∣∣ d

dz
ω(Γ 2)(z)

∣∣ ≤ βC3e−τ ′(β)|Γ 2| .

2. If µ + iν ∈ U0 and µ ≥ µ∗(ν; β), then

∣∣ d

dz
ω(Γ 1)(z)

∣∣ ≤ βC3e−τ ′(β)|Γ 1| .

Proof. Let Un and bq
n be as in Proposition 2.1. Suppose that z = µ + iν ∈

Un−1\Un and µ ≤ µ∗(ν; β). We distinguish two cases, V (Γ 2) ≤ n and V (Γ 2) >
n. If V (Γ 2) ≤ n, then step C of the iteration method of Proposition 2.1 implies
that

∣∣ d

dz
ω(Γ 2)

∣∣ ≤ β|ω(Γ 2)|(|Γ 2|(C1 + 2δC0) + V (Γ 2)(∆ + 2δ)
)

≤ βC3|Γ q| d
d−1 |ω(Γ 2)| .

Since by Proposition 2.1 ω(Γ 2) is τ(β)-stable, we get for all Γ 2 such that
V (Γ 2) ≤ n,

∣∣ d

dz
ω(Γ 2)

∣∣ ≤ βC3|Γ 2| d
d−1 e−τ(β)|Γ 2| ≤ βC3e−τ ′(β)|Γ 2| .

Suppose that V (Γ 2) ≥ n + 1. We estimate the derivative at z of ω(Γ 2) using
Cauchy’s formula with a circle of center z contained in {µ + iν : µ ≤ µ∗(ν; β)}.
We estimate from below |Rez − µ∗(ν;β)| when z ∈ Un−1\Un, uniformly in ν.

|Rez − µ∗| ≥ |Rez − µ∗n| − |µ∗n − µ∗| ≥ b2
n − |µ∗n − µ∗| .

We estimate |µ∗n − µ∗| by first estimating |µ∗k − µ∗n|. Let k > n; then, since
µ∗k ∈ Un,

0 = Re
(
fk−1
2 (µ∗k)− fk−1

1 (µ∗k)
)− Re

(
fn−1
2 (µ∗n)− fn−1

1 (µ∗n)
)

= Re
(
fk−1
2 (µ∗k)− fn−1

2 (µ∗k)
)− Re

(
fk−1
1 (µ∗k)− fn−1

1 (µ∗k)
)

+ Re
(
fn−1
2 (µ∗k)− fn−1

2 (µ∗n)
)− Re

(
fn−1
1 (µ∗k)− fn−1

1 (µ∗n)
)
.

From (2.14) we get

|µ∗k(ν; β)− µ∗n(ν; β)| ≤ 2δl(n)

β(∆− 2δ)
∀ k > n ,

so that

|µ∗(ν;β)− µ∗n(ν; β)| ≤ 2δl(n)

β(∆− 2δ)
. (2.19)



20 Sacha Friedli, Charles-Ed. Pfister

If V (Γ 2) ≥ n + 1, then |Γ 2| ≥ l(n + 1). Choose p ∈ N so that for all n ≥ 1

1
|Γ 2|p ≤

( 1

2dn
d−1

d

)p

≤ χθ′

(∆ + 2δ)n
1
d

− 2δl(n)

β(∆− 2δ)

≤ b2
n − |µ∗ − µ∗n| ≤ |Rez − µ∗| .

We use Cauchy’s formula, with a circle of center z and radius |Γ 2|−p, to estimate
d
dz ω(Γ 2),

∣∣ d

dz
ω(Γ 2)

∣∣ ≤ |Γ 2|pe−τ(β)|Γ 2| ≤ e−τ ′(β)|Γ 2| .

ut

2.2. Analytic continuation of the weights of contours at µ∗. In this subsection
we consider how the weight ω(Γ 2) for a contour with boundary condition ψ2

behaves as function of z = µ + iν in the vicinity of z∗ := µ∗(ν; β) + iν. We
obtain new domains of analyticity of the weights of contours, by introducing
the isoperimetric constant χ2(n) (see (2.20)), which differs from that used in
[3]. This is one very important point of our analysis. The main result of this
subsection is Proposition 2.3. At z∗ the (complex) free energies fq, q = 1, 2, are
well-defined and can be computed by the cluster expansion method. Moreover,

Ref2(z∗) = Ref1(z∗) .

Therefore

Reg1(z∗) + µ∗(ν; β)h(ψ1) = Reg2(z∗) + µ∗(ν; β)h(ψ2) .

With δ as in the proof of Proposition 2.1, we get

|µ∗(ν; β)| ≤ 2δ

β∆
,

and
|ω(Γ q)(z∗)| ≤ exp

[− β‖Γ q‖+
2C1δ

∆
|Γ q|+ δC0|Γ q|] , ∀ Γ q .

We set
µ∗ := µ∗(0; β) ,

and adopt the following convention: if a quantity, say H or fq, is evaluated at
the transition point µ∗, we simply write H∗ or f∗q .

The analyticity properties of ω(Γ 2) near µ∗ are controlled by isoperimetric
inequalities

V (Γ 2)
d−1

d ≤ χ2(n)−1‖Γ 2‖ ∀ Γ 2 , V (Γ 2) ≥ n . (2.20)

The difference with (2.2) is that only contours with boundary condition ψ2 and
V (Γ 2) ≥ n are considered for a given n. By definition the isoperimetric constants
χ2(n) satisfy

χ2(n)−1 := inf
{

C :
V (Γ 2)

d−1
d

‖Γ 2‖ ≤ C , ∀ Γ 2 such that V (Γ 2) ≥ n
}

.
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χ2(n) is a bounded increasing sequence; we set χ2(∞) := limn χ2(n), and define

R2(n) := inf
m:m≤n

χ2(m)
m

1
d

.

There are similar definitions for χ1(n) and R1(n). The corresponding isoperi-
metric inequalities control the analyticity properties of ω(Γ 1) around µ∗.

Lemma 2.2. For any χ′q < χq(∞), there exists N(χ′q) such that for all n ≥
N(χ′q),

χ′q
n

1
d

≤ Rq(n) ≤ χq(∞)
n

1
d

.

For q = 1, 2, n 7→ naRq(n) is increasing in n, provided that a ≥ 1
d .

Proof. Let q = 2 and suppose that

R2(n) =
χ2(m)
m

1
d

for m < n.

Then R2(m′) = R2(n) for all m ≤ m′ ≤ n. Let n′ be the largest n ≥ m such
that

R2(n) =
χ2(m)
m

1
d

.

We have n′ < ∞, otherwise

0 < R2(m) = R2(n) ≤ χ2(∞)
n

1
d

∀ n ≥ m ,

which is impossible. Therefore, either

R2(n′) =
χ2(n′)

n′
1
d

or R2(n′ + 1) =
χ2(n′ + 1)
(n′ + 1)

1
d

,

and for all k ≥ n′ + 1, since χ2(m) is increasing,

R2(k) = inf
m≤k

χ2(m)
m

1
d

= inf
n′≤m≤k

χ2(m)
m

1
d

≥ inf
n′≤m≤k

χ2(n′)
m

1
d

=
χ2(n′)

k
1
d

. (2.21)

Inequality (2.21) is true for infinitely many n′; since there exists m such that
χ′2 ≤ χ2(m), the first statement is proved.

On an interval of constancy of R2(n), n 7→ naR2(n) is increasing. On the
other hand, if on [m1,m2]

R2(n) =
χ2(n)
n

1
d

,

then n 7→ naR2(n) is increasing on [m1,m2] since n 7→ χ2(n) and n 7→ na− 1
d are

increasing. ut

The next proposition gives the domains of analyticity and the stability prop-
erties of the weights ω(Γ ) needed for estimating the derivatives of the free energy.
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Proposition 2.3. Let 0 < θ < 1 and 0 < ε < 1 so that ρ(1− θ)− ε > 0.
There exist 0 < δ < 1, 0 < θ′ < 1 and β′0 ≥ β0, such that for all β ≥ β′0 ω(Γ 2)
is analytic and τ1(β; θ′)-stable in a complex neighborhood of

{
z ∈ C : Rez ≤ µ∗(Imz;β) + θ∆−1R2(V (Γ 2))

} ∩ U0 .

Moreover
∣∣ d

dz
ω(Γ 2)

∣∣ ≤ βC3e−τ2(β;θ′)|Γ 2| .

Similar properties hold for ω(Γ 1) in a complex neighborhood of

{
z ∈ C : µ∗(Imz; β)− θ∆−1R1(V (Γ 1)) ≤ Rez

} ∩ U0 .

τ1(β; θ′) and τ2(β; θ′) are defined at (2.3) and (2.4).

Proof. We prove the proposition for ω(Γ 2). By Proposition 2.1 ω(Γ 2) is τ(β)-
stable if Rez ≤ µ∗(ν;β)∩U0, and by Proposition 2.2 d

dz ω(Γ 2) is τ ′(β)-stable on
the same region. Let

In(ν;β) :=
(
µ∗(ν; β)− θ∆−1R1(n), µ∗(ν; β) + θ∆−1R2(n)

)
. (2.22)

We prove by iteration, that on the intervals In(ν;β) ω(Γ q), q = 1, 2, is τ1(β; θ′)-
stable, and d

dz ω(Γ q) is τ2(β; θ′)-stable. To prove the stability of ω(Γ q) it is
sufficient by Remark 2.4 to verify (2.9) and (2.10). Suppose that the statement
is correct for V (Γ q) ≤ n−1. Let V (Γ 2) = n, z = µ+ iν, and µ ≥ µ∗(ν;β). Then

−Re
(
fn−1
1 (z)− fn−1

2 (z)
)V (Γ 2)
‖Γ 2‖ = −Re

∫ µ

µ∗n

d

dµ

(
fn−1
1 (z)− fn−1

2 (z)
)V (Γ 2)
‖Γ 2‖

≤ (∆ + 2δ)
(|µ− µ∗|+ |µ∗ − µ∗n|

) n
1
d

χ2(n)

≤ ∆ + 2δ

∆
θ +

2(∆ + 2δ)δl(n)

β(∆− 2δ)
n

1
d

χ2(n)
≤ θ′ .

We used (2.19) to control |µ∗ − µ∗n|. If β is large enough and δ small enough,
then there exists θ′ < 1. The stability of d

dz ω(Γ 2) is a consequence of

∣∣ d

dz
ω(Γ 2)

∣∣ ≤ β|ω(Γ 2)|(|Γ 2|(C1 + 2δC0) + V (Γ 2)(∆ + 2δ)
)

≤ βC3|Γ q| d
d−1 |ω(Γ 2)| .

ut
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2.3. Derivatives of the free energy at finite volume. Although non-analytic be-
havior of the free energy occurs only in the thermodynamical limit, most of the
analysis is done at finite volume. We write

[g](k)
t′ :=

dk

dtk
g(t)

∣∣∣∣
t=t′

for the kth order derivative at t′ of the function g. The method of Isakov [2]
allows to get estimates of the derivatives of the free energy at µ∗, which are
uniform in the volume. We consider the case of the boundary condition ψ2.
The other case is similar. We tacitly assume that β is large enough so that
Lemma 1.1 and all results of subsections 2.1 and 2.2 are valid. The main tool for
estimating the derivatives of the free energy is Cauchy’s formula. However, we
need to establish several results before we can obtain the desired estimates on the
derivatives of the free energy. The preparatory work is done in this subsection,
which is divided into three subsections. In 2.3.1 we give an expression of the
derivatives of the free energy in terms of the derivatives of a free energy of a
contour u(Γ 2) = − log(1 + φΛ(Γ 2)) ≈ −φΛ(Γ 2) (see (2.24)). The main work is
to estimate

k!
2πi

∮

∂Dr

φΛ(Γ 2)n(z)
(z − µ∗)k+1

dz .

The boundary of the disc Dr is decomposed naturally into two parts, ∂Dg
r and

∂Dd
r , and the integral into two integrals Ig

k,n(Γ 2) and Id
k,n(Γ 2) (see (2.26) and

(2.27)). In 2.3.2 we prove the upper bound (2.28) for Ig
k,n(Γ 2), and in 2.3.3 we

evaluate Id
k,n(Γ 2) by the stationary phase method, see (2.34) and (2.35). This is

a key point in the proof of Theorem 1.1, since we obtain lower and upper bounds
for Id

k,n(Γ 2).

2.3.1. An expression for the derivatives of the free energy. Let Λ = Λ(L) be the
cubic box

Λ(L) := {x ∈ Zd : |x| ≤ L} .

We introduce a linear order, denoted by ≤, among all contours Γ q ⊂ Λ with
boundary condition ψq. We assume that the linear order is such that V (Γ ′q) ≤
V (Γ q) if Γ ′q ≤ Γ q. There exists a natural enumeration of the contours by the
positive integers. The predecessor of Γ q in that enumeration (if Γ q is not the
smallest contour) is denoted by i(Γ q). We introduce the restricted partition
function ΘΓ q (Λ), which is computed with the contours of

CΛ(Γ q) := {Γ ′q ⊂ Λ : Γ ′q ≤ Γ q} ,

that is

ΘΓ q (Λ) := 1 +
∑ n∏

i=1

ω(Γ q
i ) , (2.23)

where the sum is over all families of compatible contours {Γ q
1 , . . . , Γ q

n} which
belong to CΛ(Γ q). The partition function Θq(Λ) is written as a finite product

Θq(Λ) =
∏

Γ q⊂Λ

ΘΓ q (Λ)
Θi(Γ q)(Λ)

.
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By convention Θi(Γ q)(Λ) := 1 when Γ q is the smallest contour. We set

uΛ(Γ q) := − log
ΘΓ q (Λ)

Θi(Γ q)(Λ)
.

uΛ(Γ q) is the free energy cost for introducing the new contour Γ q in the restricted
model, where all contours satisfy Γ ′q ≤ Γ q. We have the identity

ΘΓ q (Λ) = Θi(Γ q)(Λ) + ω(Γ q)Θi(Γ q)(Λ(Γ q))

= Θi(Γ q)(Λ)
(

1 + ω(Γ q)
Θi(Γ q)(Λ(Γ q))

Θi(Γ q)(Λ)

)
.

In this last expression Θi(Γ q)(Λ(Γ q)) denotes the restricted partition function

Θi(Γ q)(Λ(Γ q)) := 1 +
∑ n∏

i=1

ω(Γ q
i ) ,

where the sum is over all families of compatible contours {Γ q
1 , . . . , Γ q

n} which
belong to CΛ(i(Γ q)), and such that {Γ q, Γ q

1 , . . . , Γ q
n} is a compatible family. We

also set

φΛ(Γ q) := ω(Γ q)
Θi(Γ q)(Λ(Γ q))

Θi(Γ q)(Λ)
.

With these notations

uΛ(Γ q) = − log
(
1 + φΛ(Γ q)

)
=

∑

n≥1

(−1)n

n
φΛ(Γ q)n , (2.24)

and for k ≥ 2
|Λ|β[fq

Λ](k)
µ∗ =

∑

Γ q⊂Λ

[uΛ(Γ q)](k)
µ∗ .

We consider the case of the boundary condition ψ2. [φΛ(Γ 2)n](k)
µ∗ is computed

using Cauchy’s formula,

[φΛ(Γ 2)n](k)
µ∗ =

k!
2πi

∮

∂Dr

φΛ(Γ 2)n(z)
(z − µ∗)k+1

dz ,

where ∂Dr is the boundary of a disc Dr of radius r and center µ∗ inside the
analyticity region of Proposition 2.3,

U0 ∩
{
z ∈ C : Rez ≤ µ∗(Im(z); β) + θ∆−1R2(V (Γ 2))

}
.

The function z 7→ φΛ(Γ 2)n(z)
(z−µ∗)k+1 is real on the real axis, so that

(φΛ(Γ 2)n(z)
(z − µ∗)k+1

)
=

φΛ(Γ 2)n(z)
(z − µ∗)k+1

,

and consequently

k!
2πi

∮

∂Dr

φΛ(Γ 2)n(z)
(z − µ∗)k+1

dz = Re
{ k!

2πi

∮

∂Dr

φΛ(Γ 2)n(z)
(z − µ∗)k+1

dz
}

. (2.25)
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Remark 2.5. From Lemma 2.1, there exists C ′ independent of ν and n, so that

µ∗n(ν; β) ≥ µ∗n(0; β)− C ′ν2 .

This implies that the region {Rez ≤ µ∗−C ′(Imz)2 +θ∆−1R2(V (Γ 2))} is always
in the analyticity region of ω(Γ 2), which is given in Proposition 2.3. Therefore,
if

C ′ ≤ 1

2
(
θ∆−1R2(V (Γ 2))

)2 ,

then the disc Dr of center µ∗ and radius r = θ∆−1R2(V (Γ 2)) is inside the
analyticity region of ω(Γ 2). This happens as soon as V (Γ 2) is large enough.

Assuming that the disc Dr is inside the analyticity region of ω(Γ 2), we de-
compose ∂Dr into

∂Dg
r := ∂Dr ∩ {z : Rez ≤ µ∗(Im(z); β)− θ∆−1R1(V (Γ 2))} ,

and
∂Dd

r := ∂Dr ∩ {z : Rez ≥ µ∗(Im(z); β)− θ∆−1R1(V (Γ 2))} ,

and write (2.25) as a sum of two integrals Ig
k,n(Γ 2) and Id

k,n(Γ 2),

Ig
k,n(Γ 2) := Re

{ k!
2πi

∮

∂Dg
r

φΛ(Γ 2)n(z)
(z − µ∗)k+1

dz
}

(2.26)

and

Id
k,n(Γ 2) := Re

{ k!
2πi

∮

∂Dd
r

φΛ(Γ 2)n(z)
(z − µ∗)k+1

dz
}

. (2.27)

2.3.2. An upper bound for Ig
k,n(Γ 2). Ig

k,n(Γ 2) is not the main contribution to
(2.25), so that it is sufficient to get an upper bound for this integral. Let z ∈ U0

and Rez ≤ µ∗
(
Im(z); β

)
. From (2.16) we get

|ω(Γ 2)| ≤ exp
[− β‖Γ 2‖+ β|Rez|C1|Γ 2|+ 3C0δ|Γ 2|] .

Using formula (1.24), we get after cancellation and the use of Lemma 1.2 and
Proposition 2.3 (see also (1.23)),

∣∣∣Θi(Γ 2)(Λ(Γ 2))
Θi(Γ 2)(Λ)

∣∣∣ ≤ eδ|Γ 2| ≤ eδC5|Γ 2| .

We set
ζ := z − µ∗ .

Therefore, there exists a constant C6 so that

|φΛ(Γ 2)| ≤ e−β‖Γ 2‖(1−C6δ−|Reζ|C1ρ−1) if Reζ ≤ µ∗
(
Im(ζ); β

)− µ∗ .

This upper bound implies

Ig
k,n(Γ 2) ≤ k!

rk
e−nβ‖Γ 2‖(1−C6δ−rC1ρ−1) . (2.28)
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∂Dd
r

∂Dg
r

r

µ∗(ν; β)

ν

µ
µ∗(0; β)

θ4−1R1(V (Γ 2))

θ4−1R2(V (Γ 2))

Fig. 2.1. The decomposition of the integral into Ig
k,n(Γ 2) and Id

k,n(Γ 2)

2.3.3. Lower and upper bounds for Id
k,n(Γ 2). In order to apply the stationary

phase method to evaluate Id
k,n(Γ 2), we first rewrite φΛ(Γ 2) in the following

form,
φΛ(Γ 2)(z) = φ∗Λ(Γ 2) eβ∆V (Γ 2)(ζ+g(Γ 2)(ζ)) , (2.29)

where g(Γ 2) is an analytic function of ζ in a neighborhood of ζ = 0 and
g(Γ 2)(0) = 0. Let

µ∗
(
Im(z); β

)− θ∆−1R1(V (Γ 2)) ≤ Rez ≤ µ∗
(
Im(z); β

)
+ θ∆−1R2(V (Γ 2)) .

In this region (see figure 2.1) we control the weights of contours with boundary
conditions ψ2 and ψ1. Therefore, by the cluster expansion method, we control
log Θ1(Int1 Γ 2), and we can write

φΛ(Γ 2) = exp
[
− βH(ϕΓ 2 |ψ2) + log

Θ1(Int1 Γ 2)
Θ2(Int1 Γ 2)

+ log
Θi(Γ 2)(Λ(Γ 2))

Θi(Γ 2)(Λ)︸ ︷︷ ︸
:=G(Γ 2)

]
.

By definition z = ζ + µ∗, so that we have (see (1.9))

−βH(ϕΓ 2 |ψ2)(z) + G(Γ 2)(z) = −βH(ϕΓ 2 |ψ2)(µ∗) + β∆V (Γ 2)ζ

− βa(ϕΓ 2)ζ +
∫ µ∗+ζ

µ∗

d

dz′
G(Γ 2)(z′)dz′ + G(Γ 2)(µ∗)

= −βH(ϕΓ 2 |ψ2)(µ∗) + G(Γ 2)(µ∗) + β∆V (Γ 2)ζ

+
∫ µ∗+ζ

µ∗

( d

dz′
G(Γ 2)(z′)− βa(ϕΓ 2)

)
dz′

︸ ︷︷ ︸
:=β∆V (Γ 2)g(Γ 2)(ζ)

.
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This proves (2.29). For large enough β, τ(β) ≥ τ1(β, θ′) ≥ τ2(β, θ′).

d

dζ
g(Γ 2)(ζ) =

1
β∆V (Γ 2)

( d

dζ
log Θ1(Int1 Γ 2)− d

dζ
log Θ2(Int1 Γ 2) (2.30)

+
d

dζ
log

Θi(Γ 2)(Λ(Γ 2))
Θi(Γ 2)(Λ)

− βa(ϕΓ 2)
)

.

The last term of the right-hand side of (2.30) is estimated using (1.8). The first
two terms are estimated using Proposition 2.3, (1.21) and (1.20). The third term
is estimated by writing explicitly the logarithm of the quotient, using (1.24).
After cancellation the resulting series is derived term by term and is estimated
as in Lemma 1.2 using the basic estimates of Proposition 2.3. There exists K ≥
max{K1, K0}, such that

∣∣ d

dζ
g(Γ 2)(ζ)

∣∣ ≤ 2C3Ke−τ2(β;θ′)
( 1

∆
+

C0|Γ 2|
∆V (Γ 2)

+
|Γ 2|

∆V (Γ 2)

)
+

C1|Γ 2|
∆V (Γ 2)

≤ C7 e−τ2(β;θ′) + C8
|Γ 2|

V (Γ 2)
, (2.31)

for suitable constants C7 and C8. Moreover, there exists a constant C9 so that

exp
[− β‖Γ 2‖(1 + C9δ)] ≤ φ∗Λ(Γ 2) ≤ exp[−β‖Γ 2‖(1− C9δ)] . (2.32)

Let
c(n) := nβ∆V (Γ 2) .

We parametrize ∂Dd
r by z := µ∗ + reiα, −α1 ≤ α ≤ α2, 0 < αi ≤ π.

Id
k,n(Γ 2) = k!

φ∗Λ(Γ 2)n

2πrk

∫ α2

−α1

ec(n)r cos α+c(n)Re g(Γ 2)(ζ)
[
cos(ψ̃(α))

]
dα ,

where
ψ̃(α) := c(n)r sin α + c(n) Im g(Γ 2)(ζ)− kα .

We search for a stationary phase point ζk,n = rk,neiαk,n defined by the equations

d

dα

(
c(n)r cosα + c(n)Re g(Γ 2)

(
reiα

))
= 0 and

d

dα
ψ̃(α) = 0 .

These equations are equivalent to the equations ( ′ denotes the derivative with
respect to ζ)

c(n) sin α
(
1 + Re g(Γ 2)′(ζ)

)
+ cos αIm g(Γ 2)′(ζ) = 0 ;

c(n)r cosα
(
1 + Re g(Γ 2)′(ζ)

)− r sin αIm g(Γ 2)′(ζ) = k .

Since g(Γ 2) is real on the real axis, αk,n = 0 and rk,n is solution of

c(n)r
(
1 + g(Γ 2)′(r)

)
= k . (2.33)
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Lemma 2.3. Let αi ≥ π/4, i = 1, 2, A ≤ 1/25 and c(n) ≥ 1. If g(ζ) is analytic
in ζ in the disc {ζ : |ζ| ≤ R}, real on the real axis, and for all ζ in that disc

∣∣ d

dζ
g(Γ 2)(ζ)

∣∣ ≤ A ,

then there exists k0(A) ∈ N, such that for all integers k,

k ∈ [
k0(A), c(n)(1− 2

√
A)R

]
,

there is a unique solution 0 < rk,n < R of (2.33). Moreover,

ecrk,n+c(n) g(Γ 2)(rk,n)

10
√

c(n)rk,n

≤ 1
2π

∫ α2

−α1

ec(n)r cos α+c(n)Re g(Γ 2)
[
cos(ψ̃(α))

]
dα

≤ ec(n)rk,n+c(n) g(Γ 2)(rk,n)

√
c(n)rk,n

.

Proof. Existence and uniqueness of rk,n is a consequence of the monotonicity of
r 7→ c(n)r

(
1 + g(Γ 2)′(r)

)
. The last part of Lemma 2.3 is proven in appendix of

[2]. The computation is relatively long, but standard. ut

Setting c(n) = nβ∆V (Γ 2) and R = θ∆−1R2(V (Γ 2)) in Lemma 2.3 we get
sufficient conditions for the existence of a stationary phase point and the follow-
ing evaluation of the integral Id

k,n(Γ 2) by that method. Since rk,n is solution of
(2.33), we have

k − kA

(1 + A)
=

k

(1 + A)
≤ c(n)rk,n ≤ k

(1−A)
= k +

kA

(1−A)
,

and

c(n)|g(Γ 2)(rk,n)| = c(n)
∣∣∣
∫ rk,n

0

g(Γ 2)′(ζ)dζ
∣∣∣ ≤ Ac(n)rk,n ≤ k

A

1−A
.

Therefore Lemma 2.3 implies
√

1−A

10
√

k
ck
− c(n)k k! ek

kk
φ∗Λ(Γ 2)n ≤ Id

k,n(Γ 2) (2.34)

≤
√

1 + A√
k

ck
+ c(n)k k! ek

kk
φ∗Λ(Γ 2)n ,

with

c+(A) : = (1 + A) exp
[ 2A

1−A

]
(2.35)

c−(A) : = (1−A) exp
[
− 2A

1−A2

]
.

If A converges to 0, then c± converges to 1. We assume that (see (2.31))

C7 e−τ2(β;θ′) ≤ A

2
and C8

|Γ 2|
V (Γ 2)

≤ A

2
. (2.36)

A can be chosen as small as we wish, provided that β is large enough and |Γ 2|
V (Γ 2)

small enough.
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2.4. Lower bounds on the derivatives of the free energy at finite volume. We
estimate the derivative of [f2

Λ](k)
µ∗ for large enough k. The main result of this

subsection is Proposition 2.4. Subsection 2.4.2 is a very important point of our
analysis.

Let 0 < θ < 1, A ≤ 1/25, and set

θ̂ := θ(1− 2
√

A) .

Let ε′ > 0 and χ′2 so that

(1 + ε′)χ′2 > χ2(∞) . (2.37)

The whole analysis depends on the parameters θ and ε′. We fix the values of θ,
and ε′ by the following conditions, which are needed for the proof of Proposition
2.4. We choose 0 < A0 < 1/25, θ and ε′ so that

e
1
d

1
θ(1− 2

√
A0)

<
d

d− 1
c−(A0)

d−1
d

1 + ε′
and

1− 2
√

A0

1 + ε′
d

d− 1
> 1 . (2.38)

This is possible, since
d

(d− 1) e
1
d

> 1 .

Indeed,

d
(
e

1
d − 1

)
= d

(
e

1
d − 1− 1

d
+

1
d

)
=

∑

n≥2

1
n!

(1
d

)n−1

+ 1

= 1 +
∑

n≥1

1
(n + 1)!

(1
d

)n

< 1− 1
2d

+
∑

n≥1

1
n!

(1
d

)n

= e
1
d − 1

2d
.

Notice that conditions (2.38) are still satisfied with the same values of θ and ε′

if we replace A0 by 0 < A < A0. Given θ, the value of θ′ is fixed in Proposition
2.3. From now we assume that β is so large that all results of subsections 2.1
and 2.2 are valid. The value of 0 < A < A0 is fixed in the proof of Lemma 2.5.

Given k large enough, there is a natural distinction between contours Γ 2 such
that θ̂βV (Γ 2)R2(V (Γ 2)) ≤ k and those such that θ̂βV (Γ 2)R2(V (Γ 2)) > k. For
the latter we can estimate Id

k,n(Γ 2) by the stationary phase method. We need
as a matter of fact a finer distinction between contours. We distinguish three
classes of contours:

1. k-small contours: θ̂βV (Γ 2)R2(V (Γ 2)) ≤ k;
2. fat contours: for η ≥ 0, fixed later by (2.41), V (Γ 2)

d−1
d ≤ η ‖Γ 2‖;

3. k-large and thin contours: θ̂βV (Γ 2)R2(V (Γ 2)) > k, V (Γ 2)
d−1

d > η ‖Γ 2‖.
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We make precise the meaning of k large enough. By Lemma 2.2 V 7→ V R2(V )
is increasing in V , and there exists N(χ′2) such that

R2(V ) ≥ χ′2
V

1
d

if V ≥ N(χ′2) .

We assume that there is a k-small contour Γ 2 such that V (Γ 2) ≥ N(χ′2), and
that the maximal volume of the k-small contours is so large that remark 2.5 is
valid. We also assume (see Lemma 2.3) that k > k0(A) and that for a k-large
and thin contour (see (2.31) and (2.36))

C8
|Γ 2|

V (Γ 2)
≤ C8

ρηV (Γ 2)
1
d

≤ A

2
,

so that |g(Γ 2)′| ≤ A, and

C1k

ρ∆(1−A0)ηV (Γ 2)
1
d

≤ k

10
(2.39)

are verified. There exists K(A, η, β) such that if k ≥ K(A, η, β), then k is large
enough. From now on k ≥ K(A, η, β).

2.4.1. Contribution to [fq
Λ](k)

µ∗ from the k-small and fat contours. Let Γ 2 be a
k-small contour. Since V 7→ R2(V ) is decreasing in V , uΛ(Γ 2) is analytic in the
region

{z : Rez ≤ µ∗(Imz;β) + θ∆−1R2(V ∗)} ∩ U0 ,

where V ∗ is the maximal volume of k-small contours. V ∗ satisfies

V ∗ d−1
d ≤ k

θ̂βχ′2
.

Hence

θ∆−1R2(V ∗) ≥ θ̂∆−1χ′2V
∗− 1

d ≥ ∆−1
(
θ̂χ′2

) d
d−1 β

1
d−1 k−

1
d−1 .

Since remark 2.5 is valid, we estimate the derivative of uΛ(Γ 2) by Cauchy’s

formula with a disc centered at µ∗ with radius ∆−1
(
θ̂χ′2

) d
d−1 β

1
d−1 k−

1
d−1 . There

exists a constant C10 such that
∣∣∣

∑

Γ 2:Int Γ 230

V (Γ 2)
d−1

d ≤ k
θ̂βχ′2

[uΛ(Γ 2)](k)
µ∗

∣∣∣ ≤ C10

( ∆

β
1

d−1 (θ̂χ′2)
d

d−1

)k

k! k
k

d−1 . (2.40)

Let Γ 2 be a fat contour, which is not k-small. We use in Cauchy’s formula a
disc centered at µ∗ with radius

θ̂∆−1χ2(1)V (Γ 2)−
1
d ≤ θ∆−1R2(V (Γ 2)) .
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We get (see (1.10))

∣∣[φΛ(Γ 2)n](k)
µ∗

∣∣ ≤ k!

(
∆V (Γ 2)

1
d

χ2(1)θ̂

)k

e−n[τ1(β;θ′)−C5δ]|Γ 2|

≤ k!

(
∆ (C2η)

1
d−1

χ2(1)θ̂

)k

|Γ 2| k
d−1 e−n[τ1(β;θ′)−C5δ]|Γ 2| .

We sum over n and over Γ 2 using the inequality
∑

m≥1

mp e−qm ≤ 1
qp

Γ (p + 1) (p ≥ 2 , q ≥ 2) .

There exist C11 and C12(θ′) > 0 so that

∑

Γ 2:Int Γ d30

V (Γ 2)
d−1

d ≤η‖Γ 2‖
Γ 2 not k-small

∣∣[uΛ(Γ 2)](k)
µ∗

∣∣ ≤ C11

(
∆ (C2η)

1
d−1

(C12β)
1

d−1 χ2(1)θ̂

)k

k! Γ
( k

d− 1
+ 1

)

≤ C11

(
∆ (C2η)

1
d−1

(C12β)
1

d−1 χ2(1)θ̂

)k

k! k
k

d−1 .

We choose η so small that (see (2.40))

∆ (C2η)
1

d−1

(C12β)
1

d−1 χ2(1)θ̂
<

∆

β
1

d−1 (θ̂χ2(∞))
d

d−1
<

∆

β
1

d−1 (θ̂χ′2)
d

d−1
. (2.41)

2.4.2. Contribution to [fq
Λ](k)

µ∗ from the k-large and thin contours. For k-large

and thin contours we get lower and upper bounds for [φΛ(Γ 2)n](k)
µ∗ . There are

two cases.

A. Assume that R1(V (Γ 2)) ≥ R2(V (Γ 2)), or that V (Γ 2) is so large that

θ̂βV (Γ 2)R1(V (Γ 2)) > k .

For each n ≥ 1 let c(n) = nβ∆V (Γ 2). Under these conditions we can apply
Lemma 2.3 with a disc Drk,n

so that ∂Drk,n
= ∂Dd

rk,n
. Indeed, if R1(V (Γ 2)) ≥

R2(V (Γ 2)), then we apply Lemma 2.3 with R = θ∆−1R2(V (Γ 2)), and in the
other case we set R = θ∆−1R1(V (Γ 2)). In both cases rk,n < R, which implies
∂Drk,n

= ∂Dd
rk,n

. Therefore we get for Id
k,n(Γ 2) the lower and upper bounds

(2.34).

Lemma 2.4. There exists a function D(k), limk→∞D(k) = 0, such that for β
sufficiently large and A sufficiently small the following holds. If k ≥ K(A, η, β)
and R1(V (Γ 2)) ≥ R2(V (Γ 2)) or θ̂βV (Γ 2)R1(V (Γ 2)) > k, then

(1−D(k)) [φΛ(Γ 2)](k)
µ∗ ≤ −[uΛ(Γ 2)](k)

µ∗ ≤ (1 + D(k)) [φΛ(Γ 2)](k)
µ∗ .
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Proof. We have

−[uΛ(Γ 2)](k)
µ∗ = [φΛ(Γ 2)](k)

µ∗ + [φΛ(Γ 2)](k)
µ∗

∑

n≥2

(−1)(n−1)

n

[φΛ(Γ 2)n](k)
µ∗

[φΛ(Γ 2)](k)
µ∗

.

From (2.34) there exists a constant C13,

[φΛ(Γ 2)n](k)
µ∗

[φΛ(Γ 2)](k)
µ∗

≤ C13 φ∗Λ(Γ 2)(n−1)
(c+

c−

)k

nk .

The isoperimetric inequality (2.20), R2(n) ≤ χ2(n)n−
1
d and the definition of

k-large volume contour imply

β‖Γ 2‖ ≥ βχ2(V (Γ 2))V (Γ 2)
d−1

d ≥ θ̂βR2(V (Γ 2))V (Γ 2) ≥ k .

Let b := C9δ (see (2.32)); we may assume 9
10 − b ≥ 4

5 by taking β large enough.
Then

ck
+

ck−

∑

n≥2

nk−1e−(n−1)(1−b)k ≤ ck
+

ck−

∑

n≥2

e−
1
10 (n−1)ke−k

[
( 9
10−b)(n−1)−ln n

]

≤ ck
+

ck−

∑

n≥2

e−
1
10 (n−1)ke−k

[
4
5 (n−1)−ln n

]

≤
(c+

c−
e−

1
10

)k ∑

n≥1

e−
1
10 nk .

We choose A so small that c+(A)c−(A)−1 e−
1
10 ≤ 1. ut

B. The second case is when

θ̂βV (Γ 2)R1(V (Γ 2)) ≤ k ≤ θ̂βV (Γ 2)R2(V (Γ 2)) .

Since the contours are also thin,

β‖Γ 2‖ ≤ η−1θ̂−1χ1(1)−1βθ̂χ1(1)V (Γ 2)
d−1

d

≤ η−1θ̂−1χ1(1)−1βθ̂V (Γ 2)R1(V (Γ 2))

≤ η−1θ̂−1χ1(1)−1k ≡ λk .

We choose R = β∆−1R2(V (Γ 2)) in Lemma 2.3. The integration in (2.25) is
decomposed into two parts (see figure 2.1). We show that the contribution from
the integration over ∂Dg

rk,n
is negligible for large enough β. Since k ≥ K(A, η, β)

and the contours satisfy V (Γ 2)
d−1

d > η‖Γ 2‖, we have

nβ‖Γ 2‖rk,n ≤ k

∆(1−A)ηV (Γ 2)
1
d

≤ k

∆(1−A0)ηV (Γ 2)
1
d

.
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By definition of K(A, η, β) (see (2.39))

nβ‖Γ 2‖ρ−1C1rk,n ≤ k

10
.

From (2.28) with r = rk,n we obtain that the contribution to |[uΛ(Γ q)](k)
µ∗ | is at

most

(1 + A)k
(
β∆V (Γ 2)

)k exp
( k

10
) k!
kk

∑

n≥1

nke−nβ‖Γ 2‖(1−C6δ) .

As in the proof of Lemma 2.4, we choose β large enough so that we can assume
that 9

10 − C6δ ≥ 4
5 . Then

∑

n≥1

nke−nβ‖Γ 2‖(1−C6δ) ≤ e−β‖Γ 2‖(1−C6δ)
(
1 +

∑

n≥2

e−
1
10 (n−1)ke−k

[
4
5 (n−1)−ln n

])

≤ e−β‖Γ 2‖(1−C6δ)
(
1 +

∑

n≥1

e−
1
10 nk

)

= e−β‖Γ 2‖(1−C6δ)
(
1 + D(k)

)
.

Since β‖Γ 2‖ ≤ λk, by choosing A small enough and β large enough, so that δ is
small enough, we have

(1−D(k))ck
−eke−β‖Γ 2‖C9δ ≥ (1−D(k))ck

−eke−kλC9δ > e
2k
3

and

(1 + D(k))(1 + A)ke
k
10 eβ‖Γ 2‖C6δ ≤ (1 + D(k))(1 + A)ke

k
10 eλkC6δ < e

k
3 .

If these inequalities are satisfied, then the contribution to −[uΛ(Γ q)](k)
µ∗ coming

from the integrations over ∂Dg
rk,n

is negligible with respect to that coming from
the integrations over ∂Dd

rk,n
. Taking into account (2.34) we get Lemma 2.5.

Lemma 2.5. There exists 0 < A′ ≤ A0 so that for all β sufficiently large, the
following holds. If k ≥ K(A′, η, β) and Γ 2 is a k-large and thin contour, then

−[uΛ(Γ 2)](k)
µ∗ ≥

1
20

(1−D(k))
(
β∆V (Γ 2)

)k
ck
− φ∗Λ(Γ 2) .

Proposition 2.4. There exists β′ so that for all β > β′, the following holds.
There exists an increasing diverging sequence {kn} such that for each kn there
exists Λ(Ln) such that for all Λ ⊃ Λ(Ln)

−[f2
Λ](kn)

µ∗ ≥ Ckn
14 kn!

d
d−1 ∆knβ−

kn
d−1 χ′2

− dkn
d−1 .

C14 > 0 is a constant independent of β, kn and Λ.
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Proof. We compare the contribution of the small and fat contours with that of
the large and thin contours for k ≥ K(A′, η, β). The contribution of the small
contours to |[f2

Λ](k)
µ∗ | is at most

C10 ∆k β−
k

d−1 (θ̂χ′2)
− kd

d−1 k! k
k

d−1 ≤ C10 ∆k β−
k

d−1

( e
1
d

θ̂χ′2

)k d
d−1

k!
d

d−1 .

The contribution of the fat contours is much smaller by our choice of η (see
(2.41)). The contribution to −[f2

Λ](k)
µ∗ of each large and thin contour is nonneg-

ative. By assumption (2.37) and the definition of the isoperimetric constant χ2,
there exists a sequence Γ 2

n , n ≥ 1, such that

lim
n→∞

‖Γ 2
n‖ → ∞ and V (Γ 2

n)
d−1

d ≥ ‖Γ 2
n‖

(1 + ε′)χ′2
.

Since xk d
d−1 e−x has its maximum at x = k d

d−1 , we set

kn :=
⌊

d− 1
d

β‖Γ 2
n‖

⌋
.

For any n, Γ 2
n is a thin and kn-large volume contour, since by (2.38)

β (1− 2
√

A′)V (Γ 2)R2(V (Γ 2)) ≥ β (1− 2
√

A′)V (Γ 2)
d−1

d χ′2

≥ (1− 2
√

A′)
1 + ε′

β‖Γ 2
n‖ ≥ kn .

If Λ ⊃ Γ 2
n , then

−[uΛ(Γ 2
n)](kn)

µ∗ ≥ 1−D(k)
20

[
β∆c−V (Γ 2

n)
]kn

φ∗Λ(Γ 2
n)

≥ 1−D(k)
20

∆knβ−
kn

d−1

( d c
d−1

d−
(d− 1)(1 + ε′)χ′2

) dkn
d−1

k
knd
d−1
n φ∗Λ(Γ 2

n)

and (see (2.32))

k
knd
d−1
n φ∗Λ(Γ 2

n) ≥ k
knd
d−1
n exp

[− (
kn

d

d− 1
+ 1

)
(1 + C9δ)

]

∼ kn!
d

d−1 e−C9δ d
d−1 kn

e−1−C9δ

(2πkn)
d

2(d−1)
.

By the choice (2.38) of the parameters θ and ε′, if δ is small enough, i.e. β large
enough, then

e
1
d

θ(1− 2
√

A′)
<

d

d− 1
c

d−1
d−

1 + ε′
e−C9δ .

Hence the contributions of the small and fat contours are negligible for large kn

(see (2.40) and (2.41)). Let Λ(Ln) be a box which contains at least |Λ(Ln)|/4
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translates of Γ 2
n . For any Λ ⊃ Λ(Ln), if kn and β are large enough, then there

exists a constant C14 > 0, independent of β, kn and Λ ⊃ Λ(Ln), such that

−[f2
Λ](kn)

µ∗ ≥ Ckn
14 kn!

d
d−1 ∆knβ−

kn
d−1 χ′2

− dkn
d−1 .

ut

2.5. Lower bounds of the derivatives of the free energy at infinite volume. We
show that it is possible to interchange the thermodynamical limit and the op-
eration of taking the derivatives, and that the Taylor series, which exists, has
a radius of convergence equal to 0. These statements are the consequence of
Lemmas 2.6 and 2.7.

Lemma 2.6. If β is sufficiently large, and ε > 0 sufficiently small, then for any
k ∈ N there exists Mk = Mk(β) < ∞, such that for all t ∈ (µ∗ − ε, µ∗] and for
all finite Λ, ∣∣[f2

Λ](k)
t

∣∣ ≤ Mk .

Proof. For sufficiently large contours, ω(Γ 2) is analytic and τ1(β, θ′)-stable on a
disc of radius θ∆−1R2(V (Γ 2)). From Cauchy formula

∣∣[uΛ(Γ 2)](k)
t

∣∣ ≤ k! Ck
15|Γ 2| k

d−1 e−βκ|Γ 2| ,

for some constants C15 and κ > 0. Therefore, for sufficiently large contours,
∑

Γ 2⊂Λ

∣∣[uΛ(Γ 2)](k)
t

∣∣ ≤ k! Ck
15

∑

Γ 2⊂Λ

|Γ 2| k
d−1 e−βκ|Γ 2| ≡ |Λ|βM ′

k < ∞ .

This implies the existence of Mk such that
∣∣[f2

Λ](k)
t

∣∣ ≤ Mk. ut

Lemma 2.7.
lim

L→∞
[f2

Λ(L)]
(k)
µ∗ = lim

t↑µ∗
[f ](k)

t .

Proof. We compute the first derivative at the origin. Let η > 0.

A(η) : =
f(µ∗)− f(µ∗ − η)

η

= lim
L→∞

f2
Λ(L)(µ

∗)− f2
Λ(L)(µ

∗ − η)

η

= lim
L→∞

[f2
Λ(L)]

(1)
µ∗ η + 1

2! [f
2
Λ(L)]

(2)
µ∗−xL(η) η2

η

= lim
L→∞

(
[f2

Λ(L)]
(1)
µ∗ +

1
2!

[f2
Λ(L)]

(2)
µ∗−xL(η) η

)
.
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By Lemma 2.6, |[f2
Λ(L)]

(2)
µ∗−xL(η)| ≤ M2. Therefore {A(η)}η is a Cauchy sequence.

Hence the following limits exist,

[f ](1)µ∗ = lim
η↓0

f(µ∗)− f(µ∗ − η)
η

= lim
t↑µ∗

[f ](1)t = lim
L→∞

[f2
Λ(L)]

(1)
µ∗ .

Same proof for the derivatives of any order. ut
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