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Abstract

We study the analyticity properties of the free energy f,(m) of the Kac
model at points of first order phase transition, in the van der Waals limit
v\, 0. We show that there exists an inverse temperature Gy and vy > 0
such that for all 8 > [y and for all v € (0,70), fy(m) has no analytic
continuation along the path m \, m* (m* denotes spontaneous magnetiza-
tion). The proof consists in studying high order derivatives of the pressure
p~(h), which is related to the free energy f,(m) by a Legendre transform.
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1 Introduction

The first equation of state giving precise predictions on the liquid-vapor
equilibrium at low temperature was given by van der Waals [vdW]:

<p+v%> (v-b) =RT. (1.1)

This equation follows from the hypothesis that the molecules interact via
1) a short range hard core repulsion, due to the assumption that molecules
are extended in space, 2) an attractive potential, whose range is assumed to
be comparable to the size of the system. Nowadays, such an approximation
is called a mean field approximation. As well known, there exists a critical
temperature T, = T.(a, b) such that for T' < T, %p > 0 for some values of
v, which implies thermodynamic instability. On physical and geometrical
grounds, the graph of the pressure was modified by Maxwell who replaced
p(v), on a suitably chosen interval [v;, v,], by a flat horizontal segment (the
“equal area rule”). The new function obtained, written MC p(v), describes

MCp(v)

Figure 1: The equation of state modified by Maxwell and the analytic continuation
at the condensation point.

precisely what is observed in the laboratory: v; is called the evaporation
point and v, is the condensation point (see Figure 1).

A particularity of this scenario is that MC p can be continued analytically
along the paths v " v; and v ™\, v,4: the liquid and gas branches can be
joined analytically by a single function, which is nothing but the original
isotherm p given in (1.1). The pressure obtained by analytic continuation
was originally considered as the pressure of a meta-stable state (see Figure
1). For instance, the meta-stable state obtained by analytic continuation
along the path v ™\ v, is called a super-saturated vapor.

Much later, Kac, Uhlenbeck and Hemmer [KUH] showed how the Maxwell

construction could be rigorously justified for a one dimensional model, from



first principles of statistical mechanics, using a double limiting process: if
the range of interaction diverges after the thermodynamic limit, then con-
vexity is preserved and the free energy converges to the convex envelope
of mean field theory. Later this was generalized and extended to higher
dimensions by Lebowitz and Penrose [LP]. From the point of view of an-
alyticity, these results imply, as in the theory of van der Waals, that the
free energy can be continued analytically across condensation/evaporation
points.

In the mean time, arguments were given, saying that when the range of
interaction is finite, the free energy might have some singularities that
forbid analytic continuation across the transition points. In [F] and [L],
Fisher and Langer analyzed in details simple models to illustrate this phe-
nomenon, but it was not until the seminal work of Isakov [I1] that this was
shown for the Ising model.

An important issue is thus to understand how the breakdown of analyt-
icity at a first order phase transition point relates to the range of interac-
tion. Since Kac potentials give a way of interpolating finite range systems
and mean field, it seems an interesting problem to study the dependence
on the scaling parameter v of the analyticity properties of the Kac model
at low temperature. The aim of this work is to show that for the Kac-Ising
ferromagnet on Z? (d > 2) at low temperature, the free energy has no
analytic continuation at first order phase transition points as long as the
range of interaction is finite (v > 0). Analytic continuation occurs only
after the van der Waals limit (v N\, 0). This result answers a question
raised by Joel Lebowitz at a conference devoted to Kac potentials, Inho-
mogeneous Random Systems, held in Paris, January 2001.

In Section 1.1 we remind the main properties of the free energy for
mean field and Kac potentials in the case of Ising spins. In Section 1.2 we
state our main results and give the strategy of the proof.

1.1 Mean Field and Kac Potentials
We consider the lattice Z¢, d > 2, with a distance d(x,y) = ||z — y||, where

||| == max || . (1.2)

yoooy

This distance will also be used for points of R?. The letter A will always
denote a finite subset of Z?. At each site i € Z¢ lives a spin o; € {+1}.
The configuration space is Q = {+1}2. For any set A, Oy = {£1}*. Our
notations are often inspired by those of Presutti [Pr].

Mean Field. In a mean field model, the interactions ignore the spatial
positions of the spins, and the hamiltonian in a volume A containing N



sites is (o € Qp)

1
HY (o) = N Z gioj . (1.3)
{igyca
i#]

As is well known, the free energy can be easily computed. For m € [—1, +1],

1 1
fup(m) = —-m? — =I(m), (1.4)
2 B
where
1—-m 1-m 1+4+m 1+ m
I(m):=— 5 log 5 T log g - (1.5)

When 8 <1 fap is strictly convex, but when 8 > 1, fy;r has two minima
at £m* (), where m*(3) is the positive solution of m = tanh(fm). . :=1
is the critical temperature of mean field theory. Asin van der Waals theory,
favr is non convex when 8 > [, in contradiction with thermodynamic

stability.
Kac Potentials. Kac potentials are defined as follows. Consider J : R¢ —
R* supported by the cube {y € R% : ||y|| < 1} = [~1,+1]¢ such that the

overall strength equals unity, i.e.

/ J(z)dz =1. (1.6)
R4
Let v € (0,1) be the scaling parameter. Define J, : Z? — R* as follows:

Ty () = ey () (L.7)

where ¢, is defined so that

> Jy(z)=1. (1.8)

x#0

It is easy to see that (1.6) implies lim\\gc, = 1. Since Jy(z) = 0 if
|lz|| > ~v~!, we call R:=~~! the range of the interaction.

Convention: Unless stated explicitly, R will always denote the range of
interaction, i.e. y~!. For simplicity, we will usually omit ~ from the nota-
tions of the quantities that will appear in the sequel (hamiltonian, partition
function).

For a finite A, o € Qy, the Kac hamiltonian is defined by

Hy(o)=— Y. Jy(i—joioc;—h) o, (1.9)
{z,]?};CA €A
(]



fo(m)

-1 +1
“n(3) T (8)

Figure 2: The free energy fo(m) when 8 > 1. The dotted line is the analytic
continuation provided by farr(m).

where h € R is the magnetic field. The magnetization in A is

1
mp(o) = mzﬂi, (1.10)

FISN

and takes values in a set xp C [—1,+1]. The canonical partition function is
defined by (5 > 0 is the inverse temperature, m € y):

Z(Am)= > exp(—BH}(on)). (1.11)
oAEQA:
mp (o)=m

The free energy density is, for m € [-1,+1],

. 1
fy(m) = — Ah/HZld Al log Z(A, m(A)), (1.12)

where the thermodynamic limit A Z? is along a sequence of cubes, and
the sequence m(A) is such that m(A) — m. The function f, exists and
is convex. The Theorem of Lebowitz-Penrose [LP] gives a closed form for
the free energy in the van der Waals limit v ™\, 0. For a function f(x), let
CE f(z) denote its convex envelope.

Theorem 1.1. [LP] For any 5 >0, m € [—1,+1],

fo(m) := il\mo fy(m) = CE fyrp(m). (1.13)
When g > 1, the graph of fo(m) is thus horizontal between —m*(3) and
+m*((), giving a rigorous justification of the Maxwell construction (see
Figure 2).
From the point of view of analyticity, we have

Corollary 1.1. When 8> 1, fo is analytic everywhere except at £m*([3),
and has analytic continuations along the (real) paths m /" —m*(3), m \
+m*(B). The unique analytic continuation is given by the mean field free
energy fumE.



That is: after the van der Waals limit, all the analyticity properties of
the free energy are known explicitly. There exists no formula for f, when
v > 0, and it was not shown, until the papers of Cassandro and Presutti
[CP] and Bovier and Zahradnik [BZ1], that the system exhibits a first order
phase transition before reaching the mean field regime: for all § > 1, the
graph of f,(m) already has a plateau [—m*(53,v),+m*(5,7)] when v is
small enough. In this sense, one can say that mean field, together with
the Maxwell construction, is a good approximation to long but finite range
interactions (and vice versa). Our purpose is to show that from the point
of view of analyticity, the situation is very different.

1.2 Obstruction for v > 0; Main Results

Our results hold for Kac potentials for which Lemmas 2.1 and 2.8 hold,
but we believe them to be true for any ferromagnetic potential satisfying
(1.6). For the sake of simplicity, we focus on a particular potential, i.e. on
the step function

J(z) = 27d1||x||§1(:6) . (1.14)
In this setting, our main result for the free energy density is the following:

Theorem 1.2. There exists 3y and v > 0 such that for all B > o,
v € (0,7%), [y is analytic everywhere except at £m*(B,7), but has no
analytic continuation along the paths m /" —m*(3,7), m \, +m*(3,7).

This result is in favor of the original ideas of Fisher and Langer, say-
ing that finiteness of the range of interaction is responsible for absence of
analytic continuation. In particular it excludes the possibility of obtaining
the free energy by a Maxwell construction: when ~ > 0 the phases + and
— cannot be joined analytically.

The proof of Theorem 1.2 will be done by working in the more appro-
priate grand canonical ensemble (in the lattice gas terminology), in which
the constraint on the magnetization is replaced by a magnetic field. Let

Z(A) = ) exp(—BH(0)). (1.15)
oEQA
Define the pressure density by

. 1
py(h) = Ah/rrzld py.A(h), where pyA(h) = B log Z(A) . (1.16)

The free energy and pressure densities are related by a Legendre transform:

f~(m) = sup(hm — p(h)) . (1.17)
heR



See for instance [Pr] for a proof of this property. The analytic properties of
[y at £m*(3, ) will be obtained from those of p, at h = 0. By the Theorem
of Yang and Lee [YL], p, is analytic outside the imaginary axis. The
main result of the paper is the following characterization of the analyticity
properties of the pressure at h = 0.

Theorem 1.3. There exists By, vo > 0 and a constant C,. > 0 such that
for all B> Po, v € (0,%), the following holds:

1) The directional derivatives p(yk)"_(O) exist for all k € N, i.e. p, is C™
at h = 0. Moreover, there exists a constant C1 > 0 such that for all k € N,

sup [ (h)] < (CoyTT 8T RITT 4+ ChR. (1.18)
0<Re h<e

2) The pressure has no analytic continuation at h = 0. More precisely,
there exists C— > 0 and an unbounded increasing sequence of integers

ki, ko, ... such that for all k € {k1,ko,...},
P9 (0)] > (€T T T) T — O, (1.19)

The lower bound (1.19) becomes irrelevant when v\, 0. Moreover, we
should mention that each integer k; depends on v and 3, with lim\ o k; =
+o00: information about non-analyticity is lost in the van der Waals limit.
Since we know from the Lebowitz-Penrose Theorem that p, converges,
when v N\, 0, to a function that is is analytic at h = 0, it is worthwhile
considering the low order derivatives of p,. Considering the upper bound
(1.18), it easy to show the

Corollary 1.2. There exists C = C(f) such that for small values of k,
i.e. for k <~~% we have the upper bound

sup [p{) ()] < CK!. (1.20)
0<Re h<e

This shows that a close inspection of the derivatives of the pressure allows
to detect how analyticity starts to manifest when ~ approaches 0. These
different behaviours are illustrated on Figure 3.

P (0) ~ &! P (0) ~ K17
‘ ‘ ,,,,,,,, ‘ 1 1 1
‘ ‘ { T T T N

Figure 3: The derivatives of the pressure at h = 0, when v > 0. The first ones
(k < y~%) behave like those of an analytic function, but non-analyticity always
dominates for large k.



To show Theorem 1.3, we first construct the phase diagram of the Kac
model with a complex magnetic field, at low temperatures, v small. Then,
we adapt the technique of Isakov to obtain lower bounds on the derivatives
of the pressure in a finite volume. These two essential steps deserve a few
comments.

1. Phase diagrams of lattice systems can be studied in the general frame-

work of Pirogov-Sinai Theory ([PS], [Z1]), which applies when the
system under consideration has a finite number of ground states, and
for which the unperturbed hamiltonian satisfies the Peierls condition.
In our case, the Kac potential has two ground states which are the
pure + and pure — configurations, but the Peierls constant (com-
puted with respect to these two ground states) goes to zero when
v \\ 0 since in the van der Waals limit, the interaction between two
arbitrary spins vanishes. Therefore, a direct application of Pirogov-
Sinai Theory would lead to a range of temperature shrinking to zero
in the van der Waals limit.
We will use a technique useful for the study of spin systems with
long but finite range interactions, invented recently by Bovier and
Zahradnik [BZ2]. Their technique allows to study, for instance, the
Kac model with a magnetic field, in a range of temperature that is
uniform in 7. In their approach, the ground states of Pirogov-Sinai
Theory are replaced by restricted phases, i.e. by sets of configurations.
In the +-restricted phase, for example, all the points are +-correct,
i.e. their y~!'-neighbourhood contains a majority of spins 4+. When
a point is in neither of the restricted phases, it is in the support of
a contour I', and it can then be shown that the contours defined in
this way satisfy the Peierls condition with a Peierls constant p that
is uniform in y: ||T'|| > p|T'| where ||T'|| is the surface energy of T'.
In Section 3 we show that a polymer representation can be obtained
for the restricted phases, and that their corresponding free energies
behave analytically at h = 0. The full phase diagram is then com-
pleted in Section 4: we give precise domains in which the partition
function can be exponentiated. These domains are made optimal
by introducing special isoperimetric constants associated to contours
(see the discussion hereafter, and (2.44)). Complications arise from
the fact that polymers of the restricted phases induce interactions
among contours. Besides the definition of the restricted ensembles,
our analysis of the phase diagram is independent of the paper [BZ2].
In a different setting, restricted ensembles were also studied in [BS],
[DS], [BKL], and [LMP].

2. To implement the mechanism used by Isakov, we consider the pres-
sure pi A in a finite box A, with a pure +-boundary condition. By
introducing an order among the contours inside A, the pressure can



be written as a finite sum:

1 1
+ + +
pry = log ZF(A) + E ui (1), 1.21
¥,A ﬁ|@| ( ) ﬁ|~| F€C+(A) A( ) ( )

where ZF(A) is the restricted partition function and C*(A) is the
family of all contours of type + in A. With the analysis of Sections
3 and 4, the derivatives of the functions u;(I') can be estimated
using a stationary phase analysis. When A is sufficiently large, the

contributions to p;r(f)(()) are the following: since it is analytic, the

restricted phase contributes a factor C¥k!. Then, a class of contours

d
called k-large gives a contribution of order k!4-1. The rest of the
contours is shown to have a negligible contribution in comparison of
the k-large ones. This gives a lower bound

pr W (0)] = (C_ya 18~ e 1) kT — Ot (1.22)

In the last step of the proof we show that limp p;}gk)(o) = pgk)’H(O),

and so (1.22) extends to the thermodynamic limit A  Z¢, which
gives (1.19).

Before going further, we make an important remark. In [I1], Isakov
proved Theorem 1.3 for the Ising model. An attempt was then made,
in a second paper [I2], to extend the method to any two phase model
for which the Peierls condition holds. Unfortunately, this extension could
only be done under two additional assumptions which we briefly describe.
Associate to each phase a discrete isoperimetric problem of the following
type: let V(I') denote the volume of the contour I" (of a given type) and
|IT'|| its surface energy. For N € N, consider the problem:

-

Find the best constant C'(IN) such that Yo < C(N)V (D)

Z(N) { T
for all contour I" with V(I') < N .

The assumptions of Isakov are then that in the limit N — oo, 1) the
asymptotic behaviour of the constant C'(N) is the same for the two phases,
2) there exist maximizers of arbitrary large size.

Clearly, these assumptions are satisfied by the Ising model, for which ||T'|| =
IT'| (the number of dual bonds on the dual lattice) and the maximizers
are always given by cubes, i.e. C(N) = (2d)~! for all N. But for a
model with no symmetry or with interactions that are more complicated
than nearest neighbours, these assumptions can be very hard to check.
The problem comes from the fact that the surface energy ||I'|| depends on
the detailed structure of the hamiltonian. In our case, symmetry reduces
the difficulty to the existence of large maximizers. We will see that the

10



construction of the phase diagram can be done when the isoperimetric
problem is formulated as follows:

-

Find the best constant K (IN) such that ‘ﬁ(TF) < K(N)V(T)

F'(N) { I

for all contour I' with V/(I') > N .
By formulating the problem in this way, the existence of large maximizers
is immediate, and we avoid the necessity of solving the isoperimetric prob-
lem explicitly.
It was actually shown in [FP] that the two assumptions of Isakov can be
swept out, and that the result of [I2] can be extended to the whole class
of two phase models treated generally in Pirogov-Sinai theory, the only
necessary ingredient for non-analyticity being the Peierls condition. The
general theorem of [FP] applies to the Kac model but with some restric-
tion 8 > Bo(y) where [y(y) diverges when  \, 0. In the present paper we
study the van der Waals limit at fixed (.

The description of the model in terms of contours and the verification
of the Peierls condition for ||I'|| will be done in Section 2. Section 3 is
entirely devoted to the study of restricted phases and to their analyticity
properties, adapting the technique of [BZ2]. Section 4 is the construction
of the phase diagram in the complex plane of the magnetic field. Section
5 contains the proofs of our main results, and Appendix A contains basic
definitions for the cluster expansion technique.

Conventions: we will often use the norm || f||p := sup,¢p |f(2)]. When G
is a graph we denote by V(G) its set of vertices and by E(G) its set of edges.

Acknowledgments: We wish to thank Anton Bovier and Milos Zahradnik
for many useful discussions concerning [BZ2], and Daniel Ueltschi for sug-
gesting the method used in the proof of Corollary 3.2.

2 Contour Description

For the description of configurations in terms of contours, we use the notion
of correct/incorrect point introduced by Bovier and Zahradnik in [BZ2].
There are two major requirements for the way in which contours should be
defined.

1. They are defined on a coarse-grained scale, and a Peierls condition
must hold for the surface energy of each contour, with a Peierls con-
stant that is uniform in . See Proposition 2.2.

2. Outside contours, a partial re-summation over configurations will
lead to restricted phases. To obtain convergent expansions for these

11



phases, care must be taken in the definition of contours. See the
parameter ¢ in (2.16).

Remark: In the study of Kac potentials, one finds in the literature another
definition of contour. For instance in [CP] and [BZ1], contours are defined
by comparing the local (empirical) magnetization to the mean field spon-
taneous magnetization £m*(/3). This allows to study the system very close
to the critical temperature, by using explicitly the mean field functionals.
Unfortunately, this technique hasn’t yet been extended to the study of the
Kac model with a magnetic field. In our case, the local magnetization
is always compared with £1 (rather than £m*(3)), and we must there-
fore work at low temperature, not reaching the whole coexistence regime.
Moreover, we need to introduce a complex magnetic field, which definitely
rules out the possibility of using the standard techniques existing for Kac
models.

2.1 Definition of Contours

We introduce some more notations. We have d(z,A) = inf{d(z,y) : y €
A}. For N > 1, define the box By(z) := {y € Z¢ : d(x,y) < N}, and
BY/(x) := Bny(z)\{z}. The N-neighbourhood of A is

Ay == | Ba(@), (2.1)
zEA
and the boundaries
OGN ={z € A°:d(z,A) < N}, (2.2)

OyA={zeA:d(z A <N}

A set A is N-connected if for all z,y € A there exists a sequence z1,Z2,...,Tp_1,Tn
with 21 = x, z, =y, z; € A, and d(z;, x;41) < N. If op € Qqp, Nac € Qpe,
we define the concatenation opnpe € € in the usual way:

OA)i ifi e A,
(GANAC); = (o) . (2.4)
()i ifi € A°.

We often use the symbol # to denote either of the symbols + or —, or the
constant configuration taking the value # at each site of Z¢. We define

81i(01,03) = =520 — )iy ~ 1), (25)

Let ¢ij := ¢4j(+,—). The overall interaction strength is the upper bound
on the energy of interaction of a single spin with the rest of the system,

and equals
> = Si-j)=1. (26)

Jij# Jij#

12



Relevant functions for the study of nearly constant spin regions are the
following (they will appear naturally later when reformulating the hamil-
tonian):

wi(04,05) = i (01, 05) — ¢ij (#.05) — di (01, #) - (2.7)

Notice that w??(#,aj) = wz{?(ai,#) = 0. Let § € (0,1), 0 € Q. With
regard to the step function J defined in (1.14), we define a point ¢ to be
(0, +)-correct for o if

|BR(i) N {j : 05 = —1}| < 3| Br(i)]. (2.8)

That is, the R-neighbourhood of a (d, +)-correct point contains a majority
of + spins. Although we will always consider the step function, it is often
easier to formulate proofs with the help of the functions w;’%, since they
will appear naturally later in the re-formulation of the hamiltonian. We
thus define the notion of correct/incorrect point in the general case.

Definition 2.1. Let § € (0,1), 0 € Q, i € Z°.
1. i is (8, +)-correct for o if 3. ., \w;;(—,aj)
2. i is (8, —)-correct for o if 37, i lwii(+,05)
3. i 1s d-correct for o if it is either (0,+)- or (9, —)-correct for o.

4. 1 is 0-incorrect for o if it is not d-correct.

It is easy to see that this definition coincides with (2.8) when J is the step
function.

The notion of correctness for a point ¢ depends on the spins in the R-
neighbourhood of ¢ but neither on the value of ¢;, nor on the magnetic
field. Notice that if 6 = 0 this notion of correct point essentially coincides
with the one of Zahradnik in [Z1]. We first show that when ¢ is small,
regions of (0,+)- and (J, —)-correct points are distant. In particular, a
point i cannot be at the same time (4, +)- and (J, —)-correct.

Lemma 2.1. Let § € (0,27%), 0 € Q. Then

1) If i is (0, +)-correct, the box Bgr(i) contains either (0,+)-correct, or J-
incorrect points (but no (J, —)-correct points).

2) If i is (0, —)-correct, the box Bgr(i) contains either (8, —)-correct, or
d-incorrect points (but no (0, +)-correct points).

Proof. Suppose i is (0, +)-correct for o. Consider j € Br(i) and compute

SN lwiphol= S 20> > 2. (29)

kik#j keB}}({) keB;a(j)ﬂlf}'%(i)
o'k:+ o'k:+

13



Using the properties of the function J(-) !, we can exchange j and i and

write
Z 20, = Z 20i = Z 201 — Z 20k
keBy(5)NBY, (i) keBY(7)NBY(4) k#i kZBY,(7)NBY(4)
Uk:-i-l O'ki-f—l Uk:+1 O'ki-f—l
(2.10)
Using (2.6) and | Bg(j)NBg(i)| > 274 Bg(i)|, this last sum can be bounded
by
2¢ -1
Y. < o (2.11)
kgBy, (7)NBE (i)
O'k=+1

Then, since i is (9, +)-correct for o,

Yo 2=2- ) 20w =2- Y |wi(—0on)>2-5. (212)
ki ki k:k#i

O‘k=+1 O‘szl

‘We thus have the lower bound

P |
> w4 0) >2-6 -2 i >0 (2.13)
i.e. j cannot be (0, —)-correct for o, which finishes the proof. O

In the sequel we will always assume that § € (0,27%) is fixed. The cleaned
configuration & € (1 is defined as follows:

+1 if i is (6, +)-correct for o,
o; =4 —1 ifiis (0, —)-correct for o, (2.14)

o; if 7 is d-incorrect for o .

For any set M C Z%, we can always consider the partial cleaning o /@ ase
which coincides with ¢ on M and with @ on M€. In the sequel, the cleaning
and partial cleaning are always done according to the original configuration
o, with a fixed §. Notice that if a point 7 is, say, (0, +)-correct for o, then the
cleaning of ¢ has the only effect, in the box Bg(i), of changing — spins into
+ spins (and not + spins into — spins). This is a consequence of Lemma
2.1. We denote by I5(o) the set of é-incorrect points of the configuration o.
The important property of the cleaning operation is stated in the following
lemma.

Lemma 2.2. Let My C My, &' € (0,6]. Then Iy (oo ne) C Is(0nnong)-

LAt this point we use the particularity of the step function: ¢,y is constant on the intersection
Bg(j) N By (i).

14



Proof. Let i be a (&', +)-correct point of op,7arg. Using the fact that
O M, O My and O M50 Mg coincide on M7 and Mg, we decompose

ST wh(— (omTae))l = D (= (oaTue) + Y wih (=)

kiki ki ki
kEM1UM2C kEMQ\Ml

There are at most three possibilities for a point k of the last sum. 1) If
k is (6,+)-correct for o then o = +1 and so |w(—,5%)] = 0. 2) If k
is d-incorrect for o then &) = o = (oaTng)k- 3) If k is (J, —)-correct
for o then it is also (d, —)-correct for op,T . By Lemma 2.1, 7 is not
(6, +)-correct for opr,Tag. This is a contradiction with the fact that i is
(¢',+)-correct for o, g, so there are no such .

We can then bound the whole sum by ¢’. This shows that i is (¢’, +)-correct
for opr, 0 ase, and finishes the proof. O

Contours are defined on a coarse-grained scale. Consider the partition of
Z% into disjoint cubes C'®) of side length | € N, [ > 2R, whose centers lie
on the sites of a square sub-lattice of Z%. We denote by CZ-(Z) the unique
box of this partition containing the site i € Z%. C®) will denote the family
of all subsets of Z? that are unions of boxes C(). For any set A C Z¢,
consider the thickening (compare with (2.1))

{Ah = . (2.15)

€A

In the sequel we always consider [ such that | = vR, with v > 2.

We will need to decouple contours from the rest of the system. Since in-
teractions are of arbitrary large finite range, we follow [BZ2] and introduce
a second parameter 5 € (0,9). This new parameter is crucial; its impor-
tance will be seen later, for instance in the proof of the analyticity of the
restricted phases. For each o € Q with |I5(0)| < oo, consider the following
set:

E(o) = {M e : M > [I5(0)r, M D [I3(cnmTnre)]r} - (2.16)

First we show that £(o) is not empty. Consider My := {[I5(0)|r};. If
My = 0 then I3(0) = Is(o) = () and any subset of Z¢ is in £(0). So we
assume My # (). This gives (o) # 0 since My € C, My > [I;(0)]g D
[I5(0)]r and My D [IS(O')]R D [IS(UMOEMS)]R by Lemma 2.2. We then
show that £(o) is stable by intersection. Suppose A,B € £(o). Then
clearly AN B D [I5(0)]r and using again Lemma 2.2,

A D [I5(04Ta¢)|r D [I5(04nBT (4nB) )R » (2.17)
B D [I5(o50se)|r D [I5(04nBT (anB) )R » (2.18)
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which implies AN B € (o). The following set is thus well defined, and is
the candidate for describing the contours of the configuration o:

I(o):= () M. (2.19)

Meé&(o)

By construction, I*(o) is the smallest element of £(0). A first important
property of I*(o) is the following, which will be essential to obtain the
Peierls bound on the surface energy of contours.

Lemma 2.3. There exists, in the 2R-neighbourhood of each box c® c
I*(0), a point j € I*(0) which is d-incorrect for the configuration o=o«c.

Proof. Let C) C I*(0). First, suppose Is(c) N [CW]gr # 0. Then each
j € Is(o) N [CW)yp is d-incorrect for o, and hence d-incorrect for oo s,
since 0 < 0 and ¢ and o7+F+ coincide on Bg(j).

Suppose there exists a box C¥) such that 2 [Is(0)]g N [CV]gr = 0. If
IS(O']*E[*C) N [C(l)]gR =0, ie. [IS(O']*?[*C)]R N [C(l)]R = (), then we define
I’ := I"\CW and show that I’ € £(0), a contradiction with the definition
of I*. First, I' O [I5(0)]g. Using Lemma 2.2, I* D [I5(01+Gr+<)]p D
[IS(U]/EI/C)]R. Since we have [IS(U[*EI*C)]R N [C(l)]R = @, this implies
I'> [IS(Ujlﬁj/cnR, ie. I' € 5(0‘) O

When studying restricted phases, we will need to re-sum over the set of
configurations that have the same set of contours, that is to consider, for
a fixed o (we assume [*(0) # 0),

A(o) :=={o": O'/I*(J) =0p+(o), I"(0") =T*(0) } . (2.20)

It is important to have an explicit characterization of the set A(co). Let
A7 (o) denote the set of points of I*(c)¢ that are (6, #)-correct for 0. By
Lemma 2.1 we have d(A*(0), A" (c)) > [, and we have the partition

Z¢=TI"(0) UAT (o) UA (o). (2.21)
We now show that the set A(o) can be characterized explicitly by
D(0) :={0" 107 () = 01+(0), €ach i € [A#(0)] g is (6, #)-correct for o'} .
Proposition 2.1. If I*(0) # 0, then A(c) = D(0).

Proof. 1) Assume o' € A(c). Then I* = I*(c) = I*(¢/) D [Is(d')]|r,
so that each i € [[*°|g is d-correct for o’. Let A be a maximal connected
component of [[*‘|g. There exists ¢ € A such that i € I*, since we assumed
I* # (. By Lemma 2.1, it suffices to show that i is (J, +)-correct for o if

ZHere we use the fact that AN [Blag = () if and only if [A]g N [B]g = 0.
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and only if it is (d,4)-correct for ¢’. Assume this is not the case, e.g.
suppose i is (8, 4)-correct for o and (, —)-correct for o’. That is,

Z ’wz] 0'[*0'[*0) )’ = Z ’ jj_( O )’ < S (222)
J#i JEBY(H)NI*
> lwii (0T = > w4, 05)] < 6. (2.23)
J#i JEBY(H)NI*

Since i € I* we have 3

Yo lwyth(orTr)l < Y w201 -279).

JEBS,(i)NI*° FEBS,(i)NI*°

Therefore we get a contradiction, since,

2= |wfi(= (orTre);)| + lw(+, (0r-71-),;)|
J#i
<2642 Y Jwg(+, (opTe)) <20+ 2(1-27%) <2, (2.24)
jEBS(HNI*e

where we used the fact that § < § < 279,

2) Suppose o’ € D(o). Since o’ coincides with o on I*(0) and all points
of [I*(0)¢|g are d-correct for o', we have Is(0’) = Is5(c). This gives
I*(U) D [Ig(a)]R = [Ig((f’)]R. Then, since UI*(U)EI*(J)C = OJI*(O-)E/I*(O-)C,
we have I*(J) D [IS(JI*(J)EI*(J)C)]R = [IS(O—/I*(J)E/I*(J)C)]R' This implies
I*(o) € E(0'), i.e. I*(0') C I*(0). Assume I*(0)\I*(0’) # 0. Using
the fact that o and o’ coincide on I*(0)\I*(¢”), we have o1+, T+ (o) =
O'/I*(U,)EII*(J,)C. This gives, like before, I*(0") D [I5(0'1+(6)T 1+(o)e)lR =
[IS(O-I*(O',)EI*(OJ)C):IR' With I*( ,) D) [ ( )]R = [ ( )]R, this implies

I*(o') € E(o), i.e. I*(0") D I*(0). So o’ € A(o). O
In particular, Proposition 2.1 implies that o7« (;)0r+(o)c is an element of
A(o).

Definition 2.2. The connected components of I*(co) form the support of
the contours of the configuration o, and are written suppI'1,...,suppl,,.
A contour is thus a couple I' = (suppT',or), where or is the restriction of
otol.

A family of contours {I'1,...,T',} is admissible if there exists a configura-
tion o such that {T'y,..., T} are the contours of o *

3Here we use a property of the step function, but this can be done for any Kac potential
whose function J has the symmetry J(z) = J(y) when |[z| = [|y]|.

4Note that the configuration ¢ is not unique, unlike in the usual situation treated in Pirogov-
Sinai Theory.
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The fact that the contours are defined on a coarse-grained scale will be
crucial when dealing with their entropy, which we must control uniformly
in . Notice that two (distinct) contours are at distance at least | from each
other. We will usually denote suppI' also by I". Contours should always
be considered together with their type and labels, which we are about to
define. The following topological property is needed for the definition of
labels.

Lemma 2.4. Fiz R > 1. Let B C Z% be R-connected and bounded. Then
6EA and On A are R-connected, where A is any mazimal R-connected com-
ponent of B¢ = Z\B.

Proof. Let A be any maximal R-connected component of B¢. Then A¢is R-
connected. Indeed, let z,y € A°, and consider a path x1 = x,29,...,2, =
Y, d(xi,xip1) < R. If x; € A€ for all i there is nothing to show. So
suppose there exists 1 <i_ <i; <mn such that {x1,...,2,__1,2;_} C AS,
i1 €A v 1 €A {xi, ,xi, 41,..., 25} C A°. Since A is maximal, we
have z;_ € B, x;, € B, and we can find a path from x; to x;, entirely
contained in B, i.e. in A°.

We then show that 8fr A is R-connected. Fix € > 0 and consider the sets

X:{xERd:d(:c,A)gg—f—e}, (2.25)
V={yeR:d(y,A) < & +¢}. (2.26)

Then X,Y are closed arc-wise connected subsets of R?, and X UY = R,
By a Theorem of Kuratowski, X NY is arc-wise connected ®. Let ¢ > 0
and consider x,y € 0] A, together with #,7 € X NY such that d(x, %) < %,
d(y,§) < 3. Then consider any sequence 1 = &,...,%, = §, & € X NY,
d(%;,%i+1) < €. For each i we have d(%;, A) < £+, d(%;, A°) < Z+e. This
implies that each box B N (#;) contains at least one element z} € 9 A,

Le. d(&;, ;) < & + e We have
d(x .%'ZJrl) < d(xé, .f'l) + d(i‘z‘, i’z‘—f—l) + d(i‘z‘_H, .%'ngl) <R+ 2+ €. (2.27)

If 2¢ + € < %, this shows that 6f A is R-connected, which implies that 823'14
is R-connected. The same proof holds when 8;{&4 is replaced by 0, A. [

Let T" be a contour of o, A a maximal R-connected component of (supp I')¢.
Let i € Oz A. By definition, i is (d, #)-correct for o for some # € {£1}.
By Lemmas 2.4 and 2.1, each i’ € 9pA is (6, #)-correct for o for the
same value #. We call # the label of the component A. There exists a
unique unbounded component of I'. The label of this component is called
the type of the contour I'. Let I" be of type + (resp. —). The union of
all components of I'“ with label — (resp. +) is called the interior of T',

5This property of R? is called unicoherence. See [Ku], vol. 2, Theorem 9 of Chapter 57.1,
and Theorem 2 of Chapter 57.11.
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and is denoted intI". Notice that there is only one type of interior. We
define V(') := |intT'|. The union of the remaining components is called
the exterior of I', and is denoted by extI'. A contour is external if it is not
contained in the interior of another contour.

Let " be a contour of some configuration o. Assume I' is of type +.
Consider the configuration o[I'], which coincides with o on the support
of I', and which equals +1 on extl’, —1 on intI'. Using Proposition 2.1, it
is easy to see that o[I'] has a single contour, which is exactly I'. This can
be generalized to a family of external contours of the same type, as in the
second part of the following lemma.

Lemma 2.5. External contours have the following properties:

1) External contours of an admissible family have the same type.

2) Let {I'1,..., Ty} be a family of external contours, all of the same type.
Then {T'1,..., Ty} is admissible if and only if d(T;,T';) > 1 for all i # j.

Proof. The first statement follows easily from Lemma 2.4. For the sec-
ond, we can assume that the contours are of type +. If {I'y,..., Ty} is
admissible, then by construction the I'; are at distance at least . Then,
assume d(I';,I';) > [ for all ¢ # j. Consider the configuration o[I'1,...,T',],
which coincides with or; on the support of I';, which equals +1 on [, extT’;
and —1 on |J;intl;. Then the contours of o[I',...,I';] are given by
{Ty,...,Tx}. O

2.2 Re-formulation of the Hamiltonian

Consider a finite volume A € C) with the pure +-boundary condition
+ac € Qpc. Let op € Qp. We set 0 := op+ac. The hamiltonian with
boundary condition +pc is defined by

Hy(o) = Hy(oatae) = > diloi o) + > uloy), (2.28)

{i,7}NA#D €A
i#]
where u(o;) = —ho;, h € R. Since we work in a finite volume, we will

from now on identify I*(c) with I*(c) N A and A*(o) with AT (o) NA. The
following lemma shows how the hamiltonian can be written in such a way
that spins in correct regions interact via the functions wf? and are subject
to an effective external field U#.

Lemma 2.6. Define the potential U*(o;) = u(o;) + > i Dig (i #).
Suppose o is such that I*(0) N0z A = 0. Then

HA(O‘) :H[*(J]*EI*C)+Z< Z U}ZE;(UZ,O'J)—F Z U#(Jz)) .
# {i,gINAFAD IEA#
i
(2.29)
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Proof. The proof is a simple rearrangement of the terms. Consider a pair
{i,7} appearing in Hx (o). Since d(AT,A™) > R we have a certain number
of cases to consider: 1) {i,j} C AT. In this case, write

$ij (04, 05) = w;(01,05) + ¢ij (00, +) + dij(+,05) - (2.30)

The second term contributes to UT(o;), the third to Ut (c;). 2) i € AT,
j € I*. In this case the third term contributes to Hy«(o+Gy«c). 3) i € AT,
J € A% in this case, ¢;;(+,0;) = 0. The other cases are similar. Notice
that the case i € A™, j € A® never occurs since points of 9z A can only be
(6, +)-correct. O

2.3 Peierls Condition and Isoperimetric Constants

We take a closer look at the term Hj«. Remember that contours are max-
imal R-connected components of I*. For each contour I', o[I'] and o7+G«c
coincide on [[*]g. Since d(I',I”) > I, we can decompose

Hp-(01-Gpec) = > Hr(o[T]) (2.31)
r
=3 (Irl+ Y utelr)s) (2.32)
r i€l

where the sum is over contours of the configuration o (contained in A),
and where the surface energy is defined as

T =" ¢i(olli,oll]y). (2.33)
{i,5}NT#0
i#]
The central result of this section is the following.

Proposition 2.2. The surface energy satisfies the Peierls condition, i.e.
there exists p = p(d,v) > 0 such that for all contour T,

WEY (2.34)
The constant p is independent of v and is called the Peierls constant.

Remark: |I'| denotes the total number of lattice sites contained in the
support of I'; in the litterature, it often denotes the number of blocks
C® contained in I'. In the latter case, the Peierls condition becomes
IT|| > p'v~4T| (with a different constant p’), and By~ is interpreted as

an effective temperature for the system on the coarse-grained scale .

We will need two lemmas. The first is purely geometric.

Lemma 2.7. For any finite set A C Z% and for all Ry € N, there exists
Ag C A, called an Ro-approximant of A, such that A C [Ag|gr, and d(x,y) >
Ry for all x,y € Ay, z # y.
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The second lemma is a property of the Kac potential. In [BZ2], this prop-
erty was called “continuity” for obvious reasons.

Lemma 2.8. Let o € Q, i € Z¢, # € {£}. Define
)= > ij(#,05). (2.35)
Jij#

Then there exists co > 0 such that for all x,y, d(z,y) < R,
d(z,y)

7
Proof. The difference V,(x; #) — V,(y; #) can be expressed as follows:

Z Guj(#,05) + Z (¢xj(#’gj) Dy;( #’O-] Z by (#,05)

JE€BR(x) Jj€BR(z)NBr(y) JE€BR(y)
J€BRr(Y) J’%ZBR(I)

|Va(x§ #) - Va(% #)| < e (2.36)

The first and last sum can be estimated as follows:

Z ¢xj(#,05) < (|Br(z)| — |Br(z) N Br(y)|) sup ¢;; (2.37)

JjEBR(x)
J¥¢BRr(y)

2R + 1>d*1 d(z,y)

< de (sup 1) (=% = (2.38)

Since we are considering the step function, sup, J(t) = 279 The middle
sum vanishes ¢, which finishes the proof. O

Proof of Proposition 2.2: By Lemma 2.3 there exists in the 2R-neighbour-
hood of each C") C T a point j € T that is d-incorrect for o[[]. Let A
be the set of all such points. We have I' C [A];42r. Let Ap be any 4R-
approximant of A. We have A C [Agl4g, i.e. I' C [Ao)i+6r. Each j € A is
b-incorrect for o[I] i.e. satisfies

> wi(F, o) > 6. (2.40)

k:k#j

SHere we use for the second time the fact that we are considering the step function (1.14).
Nevertheless, if J is an arbitrary K-Lipshitz function:

S Jbwi(#05) —dyi(# 0| < Kepyd Y d(yz, )
Jj€BR(z)NBr(y) J€BR(z)NBr(y)
d(z,y)

< Keyy|Br(@) =2

(2.39)
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Since \wﬁ.(%a[f‘]k)\ = 2¢;r(%, o [['x),

(2.41)

| On

Vo) = > dju(E0T) >
kiht

We bound the surface energy from below as follows:

INEED DI SIS DE M)

jE€A) ke BR(j)NT Ll£k

Y Y Vel =Y Y Vapkolth)

j€Ao keBr(j)NT Jj€Ao kEBR(j)ﬁC](l)

d(k.j)< 75 R

where ¢y was defined in Lemma 2.8. Moreover we have, using (2.36), for
each k of the sum,

Vo (k;o[Clk) = ‘N/a[r](j;ﬂ[r]k) + (Vo (k; o[T]k) = Vo (G5 0[T]k)) (2.42)

5 d(k,j
>0 (RJ)

(2.43)

We have used the fundamental fact that the correctness of a point j does
not depend on the value taken by the spin ;. This gives the lower bound

= | On

1 1 5 _
1T > §|Aol—2d|B4s RO = —2d+3|B4s 2OIBi6r(0)] "D > plT).
02 C2

O

Since the Peierls constant is uniform in v, we will be able to study the
van der Waals limit at fixed 3. Proposition 2.2 allows to define, for N =
1,2,..., the following numbers called isoperimetric constants:

K(N) := inf {m >0: V()T < kT, forall T, V() > N} L (2.44)

These constants will play a crucial role in the construction of the phase
diagram and in the study of non-analyticity. Some of their properties are
given in the following lemma.

Lemma 2.9. The sequence K(N) is decreasing and there exists positive
constants c_,cq such that

c_y < i%fK(N) < sxfp K(N) <cyy. (2.45)
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As a consequence, the following limit exists

K(o0):= lim K(N). (2.46)
N—oo
Moreover, there exists for all e > 0 a sequence (I'n)n>1, Iimy 00 V(I'y) =
400, such that for N large enough,

(1= K (c0)[ITn || < V(TN)T < (14 )K(c0)||T |- (2.47)

Proof. K(N) is decreasing by definition. For the upper bound, use the

Peierls condition and Lemma 2.10 hereafter: for all T,

d—1 d—1

vty _vI)a 1 1

< <—=—7=cy. (2.48)
Il pIL| pl  pv

For the lower bound, we explicitly construct a large contour of cubic shape.

Fix N and take M € N so that Ay = [-M;+M]|4NZ¢, Ay € cW,

|Aar| > 2N. Consider the configuration o defined by o; = —1 if i € Ay,

o; = +1ifi € A§;. Clearly, I*(o) contains a single contour I'js (of type +).

Using (2.6), |Tasl| < [Tas] < 20|07 Aps| = 2vR|0F Apg]. Taking M large

enough guarantees [Aps| > V(I'a) > 2[Aps|. This gives, since |0f Ay =

2d| Ay | T,

VITw) 1 1 Ay v 1
= > = V({Im)7 = cAV(Tm)e. 2.49
ITall = 22vR |0 Apy| — 8dv Tm)? =cyV(ITn) (2.49)

S

The existence of the sequence (I'y) y>1 follows from the definition of K (V)
and from the existence of the limit K (c0). O

Lemma 2.10. Let B € CV, and let A be the union of all finite mazimal
R-connected components of B¢. Then

|B| > 0] A| > 1|A]"T . (2.50)

Proof. Consider the edge boundary d7A := {e = (i,5) : i € A,j € A},
where (i,7) means that 4,j are nearest neighbours. Decompose 6T A =
E1U---UEy, where E, is the set of edges of T A that are parallel to the
coordinate axis . Suppose e = (i,7), i € A, j € A°. Since A is maximal,

C](-l) C B. Moreover,

Too= {53+ G~ +20 ).+ (- DG -0} CB. (251)

For all e,e’ € E,, T.NT, = . So for all o,

l
oAz | | =3 1Tl = 5lEl. (252)
ecE, e€Ty

Considering the inequality |67 A| < dmax, |F,| and the standard isoperi-
metric inequality |67 A| > Qd\A]d% finishes the proof. O
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3 Restricted Phases

Restricted phases intervene when a set of contours {I'} is fixed (with a
configuration op on each of them) and when we re-sum over all the con-
figurations that have this same set of contours. The set of configurations
having the same set of contours was completely characterized in Proposi-
tion 2.1. We are thus naturally led to consider systems living in a volume A
with a boundary condition nae, with the constraint that each point i € [A]g
must be d-correct. Our aim is to obtain a polymer representation for the
partition function of such systems, and to show that the associated pres-
sure behaves analytically at h = 0. As will be seen, the presence of the
constraint will allow to treat the system in a way very similar to a high
temperature expansion. The study of restricted phases we present was in-
vented by Bovier and Zahradnik in [BZ2]. At a few places our development
differs slightly from theirs, so we expose all the details.

A source of complication will be that the definition of polymers, as well as
their weights, will depend on the boundary conditions specified outside A.
Typically, the A we want to consider is the volume between a given set of
contours and the boundary of a box. That is, the boundary condition is
specified partly by the spins on the contours and partly by the boundary
condition outside the box. To have an idea of the objects we are going to
construct, see Figures 4 and 5.

We will only treat the case +, the case — being similar by symmetry.
Fix 0 < § < § < 2-%. Consider any finite set A € CW). First of all, we must
consider boundary conditions of the following type:

Definition 3.1. A boundary condition nxe € Qac is +-admissible if each
i € [A]g is (0,+4)-correct for the configuration +pnpe.

More intuitively, a +-admissible boundary condition means that when
looked from any point ¢ inside of A, there is a majority of spins +1 on
the boundary. In our case (i.e. with the step function), this can be formu-
lated as: for each i € [A]R,

|BR(i) N B| < §|Br(i)], (3.1)
where the set B is defined by
B = B(npe) :={i € A°: (npe); = —1}. (3.2)

In this sense, these boundary conditions are “good”; there is hope in being
able to control the +-phase in the volume A. Notice that the boundary
condition specified by a contour on its interior is always admissible. This
is the reason why the parameter § was introduced in their definition.

We define the function that allows to realize the constraint obtained after
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Proposition (2.1): consider a +-admissible boundary condition nae € Qpe.
Let i € [A]gr, oa € Qa, and define

(3.3)

1i(o) 1 ifdis (9, +)-correct for opnpe,
(o) ==
noa 0 otherwise.

Then define

Loa) = [] tilon). (3.4)

€[Alr

Notice that 1(+4) = 1 since npc is +-admissible. The hamiltonian we use
for the restricted system is the one obtained after the re-formulation of
Lemma 2.6 in a region of +-correct points. Set o := ganae. The restricted
partition function with boundary condition npe is

Z, T (Asmae) == Y 1(oa)exp ( -8 Y. wioi,0) =B U+(Ji)) :
OAEQA {3,7 }NAAD i€
i#]
We will show that Z,™ can be put in the form 7, = eﬁhWZT, where Z, is
the partition function of a polymer model, having a normally convergent
cluster expansion in the domain

Hy={heC:Reh>—%}. (3.5)
The reason for log Z, ™ to behave analytically at h = 0 is that the presence
of contours is suppressed by 1(oy ), and that on each spin o; = —1 acts an
effective magnetic field
Ut(=1)=h+ > ¢y =1+h, (3.6)
JigF

which is close to 1 when A is in a neighbourhood of h = 0.

3.1 Representation with Polymers

The influence of a boundary condition can always be interpreted as a mag-
netic field acting on sites near the boundary. We thus rearrange the terms
of the hamiltonian as follows:

Z w;;(ai, o;) + Z <U+(O'Z‘) + Z w;;(ai, (T]Ac)j)) . (3.7)
{i,j}CA i€A jEAE
i#]
By defining an new effective non-homogeneous magnetic field

pl(00) = Ut (o) + b+ > w0, (nae);), (3.8)
JEAC
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we can extract a volume term from Z,* and get Z," = eﬁhWZT, where

Z,:= ) 1oa)exp ( -8B Y wiloioy) - BZMT(@)) . (39)
oAEQA {ij}CA ieA
i#]
Notice that the field y1; (0;) becomes independent of e when d(i, A®) > R.
Since w;;(ai, 0j) =0if o; = +1 or 0; = +1 and y; (+1) = 0, we need only
consider points ¢ with o; = —1, which will be identified with the vertices of
a graph. Each vertex of this graph will then get a factor e=P1 (=1 When

he Hy,

Rep(—1) =14+2Reh+ > wi(— (ne);) > 1-21 =35> 1. (3.10)
JEAC

We used the fact that § < 27%.

The formulation of Z,. in terms of polymers will be a three step procedure.
We first express Z, as a sum over graphs, satisfying a certain constraint
inherited from 1(oa). Then, we associate to each graph a spanning tree
and re-sum over all graphs having the same spanning tree. We will see that
the weights of the trees obtained have good decreasing properties. Finally,
the constraint is expanded, yielding sets on which the constraint is violated.
These sets are linked with trees. After a second partial re-summation, this
yields a sum over polymers, which are nothing but particular graphs with
vertices living on Z? and whose edges are of length at most R.

A sum over graphs. Let Gy be the family of simple non-oriented
graphs G = (V, E) where V C A, each edge e = {i,j} € E has d(i,j) <
R. For e = {i,j}, set wl := w(—,—). Notice that wf = —2¢;; < 0.
Define also uj = uj(—l). Expanding the product over edges leads to the
following expression

z, =3 1v@) I e -1 [ e, (3.11)
Gega e€E(G) i€V (G)
where 1(V) := 1(oa(V)), and op(V) € Qp is defined by op(V); = —1
if i € V, 41 otherwise. With this formulation in terms of graphs, the
constraint 1(V(G)) = 1 is satisfied if and only if

> fwf <48, Vie[Ag. (3.12)
e:{ivj}
JEV(G)UB

Moreover, the fact that the boundary condition ¢ is +-admissible reduces
to
> I <é, Vie[Aln (3.13)
e={i,j}
jEB

26



A sum over trees. Suppose we are given an algorithm that assigns
to each connected graph Gy a deterministic spanning tree T(Gyp), in a
translation invariant way (that is if Gf, is obtained from G by translation
then T'(GY)) is obtained from T'(Gp) by the same translation). To be precise,
we consider the Penrose algorithm considered in Chapter 3 of [Pf] 7. We
apply the Penrose algorithm to each component of each graph G appearing
in the partition function (3.11). Let 7y C Gp denote the set of all forests.

We have
Z.= > 1(v(D) [Jw"(x), (3.14)

TETA teT

where the product is over trees of T, and the weight of each tree is defined

by
= 3 JJ e -1 [T e (3.15)
GEGp: e€E(G) ZEV(G)
T(G)=t

Isolated sites {i} C A are also considered as trees. In this case, w™ ({i}) =
e=B1 . The following lemma shows how the re-formulation in terms of
trees allows to take advantage of the constraint.

Lemma 3.1. Let T € Ty be a forest such that 1(V(T)) = 1. Then for
each tree t € T,

ecE(t zEV(t

Proof. For each t € T, let E* (t) denote the set of edges of the maximal
connected graph of {G € Gy : T(G) = t} (see [Pf]). We can express the
weight as follows:

Wty = I @ -1 I e % | G

c€E(t) i€V (%) ﬁE§A e€E(G)\E(t)
= H ﬁwe _ H efﬁ,ufl H efﬁwe .
c€E(t) i€V (t) e€E*(t)\E(t)

Since 1(V(T')) = 1, the constraint (3.12) is satisfied, and the last product
can be bounded by:

I <1 I ¢ (3.17)

e€E*(t)\E(t) i€V (t) e={ij}
JEV (%)
H exp (3 Z lwi| < H e . (3.18)
i€V (t) e={i,j} eV (t)
JEV(¢)

"The Penrose algorithm requires the choice of an origin among the vertices of the graph. We
choose this origin as the smallest vertex of the graph with respect to the lexicographical order.
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This gives the result, since Re ,u;r > % by (3.10), and § < 27% < %. U
Notice that to obtain (3.18), we only needed that the bound

S jwr<s, VieV(t) (3.19)
€={i,j}
JEV(t)

be satisfied. This is weaker than (3.12) and clearly 1(V(T")) = 1 only if
(3.19) is satisfied for all t € T'. In the sequel we can thus assume that the
trees we consider always satisfy (3.19), independently of each other. So the
bound (3.16) can always be used. A direct consequence of the last lemma
is the following result which shows that trees and their weights satisfy the
main condition ensuring convergence of cluster expansions.

Corollary 3.1. Let0 < c < %ﬁ, € > 0. There exists vo > 0 and 31 = (1(€)
such that for all v € (0,7), B > (1, the following bound holds:
Sl ()l eV < e (3.20)
£:V(£)30

Proof. Using Lemma 3.1,
ot (), eV < T (77 —1) T e +°. (3.21)

When t is a single isolated point (the origin), then we have a factor e 5P,
When V(t) 3 0, E(t) # 0, we define the generation of t, gen(t), as the
number of edges of the longest self avoiding path in t starting at the origin.
The sum in (3.20) is bounded by

RO | K |

g>1t:V ()30 ecE(t) ZEV(‘S)
gen(t)=g
NI Y | N |
g>1 t:V(£)30 e€ E(t) i€V (t)
gen(t)=g
<e 34N e w5y
921

where we defined (Vj(t) is the set of leaves of the tree t):

= Y L™ -1y [ e [ =’ (32

t:V(t)30 e€E(t) zEV(t)\Vl(t) 1€Vi(t)
gen(t)=g

We are going to show that ayy1 < a4 for all g > 1. Before going further,
we define

Yo 1= sup {'y> 0: 2077 supJ( ) < 64} (3.23)
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Since e ¢ — 1 < BlwF [P | and |wf| = 2¢;; we can bound, when
7 <,

Z (e*ﬁwE+ — 1)673712[3 < ﬁe*éﬁz lwl] < 25676714[3 =pC(B).  (3.24)

e30 ed>0

Clearly, a tree t of generation g+ 1 can be obtained from a sub-tree t’ C t
of generation g by attaching edges to leaves of t/. Let x be a leaf of t’.
The sum over all possible edges (if any) attached at x is bounded by

1+Z > - ZH “Pud _1)e” 32ﬂ<1+2. BC(B))F = XD

k>1 'elaz erdT i=1 E>1

Assuming 3 is large enough so that ((5) < 32, the weight of the leaf x

changes into e~ 1685¢(8) < 6_3_126 which is exactly what appears in ay.
This shows that ag41 < ay. We then have a1 <oy <--- < aq. Like we
just did, it is easy to see that a1 < e~ 5508, This proves the result. U

A sum over polymers. After the partial re-summation over the graphs
having the same spanning tree, the constraint 1(V(7")) in (3.14) still de-
pends on the relative positions of the trees. This “multi-body interaction”
can be worked out by expanding

= I 1 = [ a+xvoy= > JJuwvae

i€[Alr i€[Alr MC[Algi€EM

where 1$(V(T)) := 1,(V(T)) — 1. This yields

=>. > ( II 1?(V(T))) ( 11 w*(t)) . (3.25)

TeTn MC[Algr ‘€M teT

Consider a pair (T, M) in (3.25). Let ¢ € M. The function 1§(V(T)) is
non-zero only when 7 is not (4, +)-correct; it depends on the presence of
trees of T" in the R-neighbourhood of ¢ and possibly on the points of B(nxc)
if Br(i) N A # (). To make these dependencies only local, we are going to
link the R-neighbourhood of points of M with the trees of T

Consider the graph N = N (M) defined as follows: the vertices of N are
given by

= |J Brl(i). (3.26)
ieM

Then, N has an edge between z and y if and only if (z,y) is a pair of
nearest neighbours of the same box Br(i) for some i € M. The graph N
decomposes naturally into connected components (in the sense of graph
theory) N1, Na,..., Ni. Some of these components can intersect A°.
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We then link trees t; € T with components N; € N. To this end, we
define an abstract graph G: to each tree t; € T, associate an abstract
vertex w; and to each component NN; an abstract vertex z;. The edges of
G are defined as follows: G has only edges between vertices w; and zj,
and this occurs if and only if V(t;) N V(N;) # 0. Consider a connected
component of G’, whose vertices {w;,,. .. s Wiyy Zjpye e ,zjl} correspond to a
set P/ = {ti,,...,ti, Nj,...,Nj}. We change P/ into a set P, using the
following decimation procedure: if P/ = {t;, } is a single tree then P, := P].
Otherwise,
1) delete from P/ all trees t;, that have no edges,
2) for all tree t;, containing at least one edge, delete all edges e € E(t;,)
whose both end-points lie in the same component N, .
The resulting set is of the form P, = {t,,,...,ts,, Nj,,..., N}, where each
tree tg, is a sub-tree of one of the trees {t;,,...,t; }. P is called a polymer.
The decimation procedure P/ = P, is depicted on Figure 4.

The body of P, is B(P,) := V(Nj,)U---UV(Nj,). The legs of P, L(P),

N1 Nl

t1 ts,

to tsy

N\
. AR

te ts,

Figure 4: The decimation procedure P/ = P,. The hatched polygons represent
the body B(F;) and the legs are the trees {t,,ts,,ts;,ts,,ts, ). Each t; is a
sub-tree of some t;.

are the trees {t,,,...,ts}.

A polymer can have no body (in which case it is a tree of 7y ), or no legs
(in which case it is a single component Nj, ). We define the support V(P)
as the total set of sites:

v(P)= |J VieyulJvv). (3.27)
) 7

teL(P

Often we denote V(P) also by P. Two polymers are compatible if and
only if V(P) NV (P,) = 0, denoted P; ~ P». We have thus associated to
each pair (T, M) a family of pairwise compatible polymers { P} := (T, M).
The set of all possible polymers constructed in this way is denoted Py (nae).
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The representation of Z,. in terms of polymers is then

Z= Y I «* ), (3.28)

{PYCPF (nac) PE{P}
compat.

where the weight is defined by

wHP) = Y (H1§(V(T)))(Hw+(t)). (3.29)

(T,M): €M teT
o(T\M)=P

We should have in mind that w™ (P) depends on the position of P inside the
volume A, via the boundary condition nje: more precisely if B(P)NA° # ()
or if there exists a leg t € L(P) such that d(t,A°) < R. Therefore, we
define the family PT of free polymers of type + whose weights depends
only on the intrinsic structure of P, and not on the boundary condition.
The family P is translation invariant, as well as the weight of each of its
polymers. To any finite family P, we associate the partition function

zP)= > ][] «(P), (3.30)

{P}CP Pe{P}
compat.

where the product equals 1 when {P} = (). For instance, we have obtained
Z, (A nae) = MM Z (P (nae)) . (3.31)

Everything we have done until now can be done for a —-admissible bound-
ary condition 7ae, yielding a family of polymers P, (7pc), with weights
w™(P). In this case, sites get a factor e™#* . In particular, if we consider
the spin-flipped boundary condition —nje defined by (—nac); := —(na¢<)i,
which is —-admissible, we have when h is purely imaginary 8,

Z:(PR (nae)) = Z,(Py (=1ac)) - (3.32)

3.2 Analyticity of the Restricted Phases

Define the restricted pressures by
1
P, = lim ——log Z,&(A; ) | (3.33)

where the thermodynamic limit is taken along a sequence of cubes. A
result of the present section is that the restricted pressures, unlike the
total pressure p,, behave analytically at h = 0.

We study the weight w(P) (w™ (P) is similar by symmetry). The point is

8Here, z denotes the complex conjugate of z.
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that we linked trees with the R-neighbourhood of points of the set M, and
we must now see that this thickening does not destroy, from the point of
view of entropy, the uniformity we have been able to obtain with respect
to the scaling parameter 7. Moreover, the body of polymers can intersect
A°. At this point we will see that § —§ > 0 is crucial.

Lemma 3.2. There exists B2 and 79 > 0 such that for all 3 > P2 and for
all v € (0,7), the following holds: each polymer P € P} (nac) satisfies

“w+(P)”H+ Se—TOﬁ|B(P)‘ H ﬂwe — H e 12ﬂ (334)
66[:( ) ZE[:

Proof. Remember that the bound (3.16) holds for each tree under consid-
eration. If B(P) = (), then P is a tree and the result follows from Lemma
3.1. Otherwise, [|wT(P)||q, is bounded by

> (ITmsvep) IL( IT ™ -1 HH)-

(T,M): eM teT ecE(t) eV(t
o(T,M)=P
Consider a pair (T, M) such that (T, M) = P. Let ip € M, and assume
1¢ (V(T)) # 0. This implies, with regard to (3.12),

> lwfl >4, (3.35)
e={io,j}
jeV(T)UB
But, according to (3.13), we have
> wf <. (3.36)
e={io,j}
jeB
This implies the crucial lower bound
Y lwi=6-6>0. (3.37)
e={io0,j}
JeV(T)
Since |w)| = 2¢;; < 2¢,y%¢sup, J(s), we can find a constant c3 such that

V(T) N B (io)] > (5 — 8)es| Brlio)) - (3.38)

In this sense, the forests that contribute to w™(P) accumulate in the
neighbourhood of each point i € M. See Figure 5. Let My be any 2R-
approximant of M. Then we have |B(P)| < |My||Bsr(0)| and so

V(T) P)| > Z |V(T) N Bg(io)| > (6 — §)ea| B(P)], (3.39)

i0€Mpo
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Figure 5: The re-summation of Lemma 3.2. We emphasized the fact that the
forest T must have many points in B(P) N A, as was shown in (3.39).

where ¢4 is a constant. Now, each i € V(T') gets a factor e 18 = 3130,

One factor e 127 contributes to extract a term decreasing exponentially
fast with the size of B(P), using (3.39):

o~ 13(6—8)caBIB(P)| (3.40)

A second factor e~ 128 contributes to the weight of the legs. Extracting
this contribution gives

IT P 1) I e =°, (3.41)

ecL(P) 1€L(P)

The last factor e~ 129 is used to re-sum over all the possible configurations
of T inside the body B(P) (see Figure 5), that is over all forests 7, V(T") C
B(P), where each tree t’ € T' gets a weight bounded by

wo(t) = [[ (% -1 [] e=°. (3.42)

e€E(t’) 1€V (t!)

The remaining sum is thus bounded by

> I wot) =00(B(P)). (3.43)

T:V(T")CB(P) t'€T’

This partition function can be studied with a convergent cluster expansion.
Proceeding as we did in Corollary 3.1, we can take § sufficiently large so
that the weight wo(t) satisfies (3.20). We can then guarantee that

[log ©(B(P))| < |B(P)]. (3.44)
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The sum over all possible sets M such that N(M) has a set of vertices
given by B(P) is bounded by 2lB(P)l - Altogether these bounds give

o 15 (5-D)eaBIB(P)|9lB(P)| JB(P)| = ,~moBIB(P)]

)

which finishes the proof. O

We now give the consequence of this lemma, namely that polymers satisfy
the main criterion needed for having a convergent cluster expansion.

Corollary 3.2. Let 0 < ¢ < min(7, 24)ﬂ, e > 0. There exists B3 = [33(¢),
such that for all > B3 and for all v € (0,70), the following holds:

Yo Wt (P eV <e. (3.45)

P:V(P)30

Proof. Lemma 3.2 allows to bound

et Py < ([T wo)( I wo®) =wo(P),  (346)

NeP teL(P)

where the weight of each component of the body N is wy(N) := e~ AV
and the weight of each leg t was defined in (3.42). Fix € > 0 small. It is

easy to show that when ( is large enough,

> wp(WN)elet VNI < 1e, (3.47)
N:V(N)>30

and, proceeding like in Corollary 3.1,

> w(t)etIVEl < Le. (3.48)
t:V (t)20

Let n(P) denote the number of objects (components N and trees t) con-
tained in P. That is, if P = {t1,...,tz, N1,..., Nk}, then n(P) = L+ K.
We will show by induction on N =1,2,... that

Avi= Y wp(P)el P < e (3.49)

P:V(P)30
n(P)<N

which will finish the proof. If N = 1 then P can be either a single com-
ponent N or a tree t. The bound then follows from (3.47) and (3.48).
Suppose [ is large and that the bound holds for N. If P satisfies V(P) 5 0
n(P) < N + 1, we choose an object of P that contains the origin (which
can be a tree tg or a component Ny), and decompose P as follows: either
P ={No}U{Py,...,P.} with V(Ny) 20, V(F)NV(Ny) # 0, n(P;) <N,
P, ~ Pj for i # j, or P = {to} U{P,..., P} with V(tp) > 0, and
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V(P)NV(ty) # 0, n(P;) < N, P, ~ P; for i # j. In the first case, we
have, using the induction hypothesis and (3.47),

3 wO(NO)eCW(NO”Z%( 3 wO(P)eCW(P)')k (3.50)

No:V (Np)30 k>0 " P:V(P)NV(No)#0
n(P)<N
< > )eclV (o) ‘Z (IV(No)|An )" (3.51)
No:V (Ng)>0 k>0 k!
< Z wo(No)elV ol gelVINo)l < le. (3.52)
No:V (No)30

In the second case the same computation yields, using (3.48),

Z wO(tO)ecW(tO)\ Z %( Z wO(P)ec|V(P)|>k

t0:V (t0)30 k>0 T P:V(P)NV (t0)#0
n(P)<N
< Z wO(tO)eC|V(to)|e€|V(to)| < %6 (3.53)
t0:V (t0)20
This shows that Ay41 < € and finishes the proof. O

We now state the main result concerning restricted phases and their ana-
lyticity properties, again only for the case # = 4. We refer to Appendix A
for notations. Here polymers play the role of animals. Clusters of polymers
associated to P} (nac) are denoted P € Py (nac). By Lemma A.1, (3.45)
implies

SUPZ lw* (P)l| 1, < SUPZ jwo(P)] < nle), (3.54)

Pax P3:)3

where the weights w(P) and wy(P) are defined like in (A.3). Since € can
be made arbitrarily small by taking 3 large enough, we will replace 7(e)
by a function €,(3), where the subscript r is to indicate that this function
concerns the restricted phase. We define H, := {Reh > —%} C Hy.

Theorem 3.1. Let  be large enough, v € (0,7). Let A € C and npe
be a +-admissible boundary condition. Then Z,(Py (nac)) has a cluster
expansion that converges normally in H,, given by

log Z,(PY(mae)) = Y, wh(P). (3.55)

PEﬁX(T]AC)

The maps h — log Z,(P} (nac)), h — p;,(h) are analytic in H. Moreover
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there exists a function €.(3), limg ro €,(8) = 0, such that

Nog 2, (P o))l < BNl Y Nt (P)la, < e(B),
PG?/J((TIAC)
P30
H—logz (P ()| g, < er(B)IA]- (3.56)

The proof of the theorem follows easily from Lemma A.1. Analyticity
follows from the fact that the convergence is normal on H,. The bound
on the ﬁrst derivative is obtained by using the Cauchy formula: any disc
of radius 16 centered at z € H, is contained in H,. This also implies the
existence of a constant C, > 0 such that for all integer k > 2,

dk
TA] | 108 Zr T(Amae)| < CRRL R 0) < CRRL O (357)
h=0

4 The Phase Diagram

Throughout this section and until the end of the paper we assume v €
(0,70) is fixed, where vy was given in (3.23). To start with, consider the
partition function

Z e*ﬁHA(UAJFAC)’ (4.1)
UAGQX
where
Qj\' = {oa € Qp 1 d(I"(op+ac), A) > 1} . (4.2)

For each o5 € €, the decomposition of I*(oa+ac) into connected com-
ponents yields an admissible family {I'}, such that I' C A and d(I", A¢) > [
for each ' € {T'}. Then, A is decomposed into A = {T'} UAT UA~, where
A7 are the points of A\{I'} that are (8, #)-correct for the configuration
OA+tAe.

In (4.1), we re-sum over the configurations o+ (resp. op+) on AT (resp.
A7) that yield the same set of contours {I'}. In Proposition 2.1 we charac-
terized explicitly the constraints satisfied by the configurations op+: each
point i € [AT]z must be (§, +)-correct for the configuration o+ +ae oy
where oyr) is the configuration specified by the contours on the union of
their supports. Similarly, each point ¢ € [A™]g must be (4, —)-correct for
the configuration op-oyry. Using the re-formulation of the hamiltonian
given in Lemma 2.6 we get:

=2 ( I ~ ) TAY Hpeor)Z T (A sory), (43)

{T}CA Te{T}
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where the sum is over admissible families of contours, and
p(T) := ¢ PHr(@ll]) (4.4)

Notice that when {I'} = 0, then A = A" and the summand of (4.3) equals
Z,T(A;+nc). Since they are subject to boundary conditions that depend
on the family of contours {I'}, the restricted phases induce an interaction
among the contours. Nevertheless, the boundary conditions imposed by
the contours and +c on AT and A~ are admissible (in the sense of Defi-
nition 3.1). This implies that the results of Section 3 can be used for the
restricted partition functions appearing in (4.3).

Since we need to represent the partition function with objects whose
compatibility is purely geometrical, we need to proceed by induction, and
consider systems living in the interior of external contours. Therefore,
we must study functions similar to (4.3), with an arbitrary +-admissible
boundary condition npc. We thus define

OF (Asmae) == Y ( 11 P(F))Zr+(A+;UACU{F})ZF(ATU{F})- (4.5)
{T'}CcA Te{l'}

Contours always lie at least at distance [ from A¢. The external contours of
{T"} can be subject to particular constraints (as will appear, for example, in
Section 5), but we omit it in the notation. Notice that for the empty family
{T'} = 0, the summand corresponds to a pure restricted phase Z, (A;nac).

The aim, in the study of ©1(A;nac), is to extract from (4.5) a global
contribution of the restricted phase. In the Ising model, the same operation
amounts to extract the trivial term e®MAl. Here we extract Z,7 (A, npc) =
MM Z, (PF (nac)), and our aim is to reach the representation (4.17). The
deviations from the restricted phase will be described by chains, i.e. con-
tours linked by clusters of polymers (polymers describe the restricted phase).
In Section 4.1, we expose this linking procedure. In Section 4.2 we show
how to handle the entropy of chains, preserving the uniformity in the scal-
ing parameter v. In Section 4.3 we study the weights of chains and their
dependence on the magnetic field near Reh = 0, i.e. at coexistence. In
Section 4.4 we study pure phases, i.e. {Reh > 0} and {Reh < 0}.

4.1 The Linking Procedure

We first express O7(A;7pc) as a sum over external contours. By Lemma
2.5, each external contour is of type +. Let {I'} be a family of external
contours. Then, A is decomposed into

A=extp{Tyu{Ttu (J intT,
re{r}
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where extA{I'} := AN(\pery extl’. For each family of admissible external
contours {I'}, we re-sum over the configurations whose external contours
are given exactly by {I'}. This induces, for all I", a partition function
©~ (int[; +or), which can be expressed as in (4.5). On extp{I'}, we get a
restricted partition function Z, ¥ (exta{T'}; nacoqry). We thus have

O (A;mae) =

Z, (Nsmae) + Y ZeH(exta{T}macoqry) [ [ p(0)O ™ (intTs01)

{T'}cA r
ext.

(4.6)

where the sum is over non-empty families of external contours. Con-
sider the configuration —or obtained by spin-flipping or, i.e. (—or); :=
—(or); for all i € T. We introduce the functions Z," (intl'; —or) and
O©T(intl'; —or) and consider, for a while, the ratio

Z, F(extp{T };nacoqry) [1p Z,F (intl; —or)

ZF (s ac) |
Using the polymer representation of Section 3, we consider the family of
polymers P, := P;(tA{F}(nACO'{F}) associated to Z, ¥ (exta{l'};nacoqry),
the families P;f . := P} . (—or) associated to each of the Z, T (intI'; —op),
as well as the family Py := P{ (nac) associated to Z, T (A;nc). Since the
expansions of these functions are absolutely convergent, we can rearrange
the terms. The volume contributions from exty{I'} and Jp intI" cancel,

and we get

Zr(Pg;t)H ZT(PL ) _ >
e —exp<§iw+<P>+;EF>’

(4.7)

where we used the abbreviation

Y Hut(P)= D> WP - > wi(P). (4.8)
P

PepPl, Pepf
d(P{T}H<R d(P{TH<R
Prexta {T'}£0

The sign + in front of w* (P) is chosen in function of the sum to which P
belongs. Define At (P) := e () — 1 and expand

S [[aax @)= Y [IN@. 9
P {Pl,...,Pn}izl

The function E;r depends only on the structure of I', and is given by

Ef= > ot(P)- Y wi(P), (4.10)

Pepl _Pept
d(P,F)<R PnextT'=0
- d(P,IN<R
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where Pt denotes the family of clusters associated to free polymers of type
+. Notice that Bt is analytic in H. Since |[['|g| < 3%|T| we have, if 3 is
large enough (see Theorem 3.1)

1 1
1B, < 301, B, < 51T (411)

If we define the weight (we denote +or = or)

©~ (intl; +or)

wh(l) = Pl(r)m ; (4.12)

with pi(T) := p(I')e BrITI ePr | we have

Tl =i Yy (I @) ([ 07 ).

{F}CA {PL 7pn} =1

We can then repeat the same procedure of summing inside external con-
tours of O (int['; —or), etc. This procedure continues until we reach con-
tours whose interior can’t contain any contour. At the end,

T~ X S(IIv@)([lm). @

{ricaqpy P

where the sum over {I'} C A contains contours of type +, and each cluster
P lies at distance at most R from one or several contours of {T"}. For this
reason, the weight of some polymers can depend on the configuration op
of the contours I' that lie in their neighbourhood (or on 7).

We get rid of these dependencies by linking polymers to contours. Like
we did in Section 3 (when hnkmg trees with components of the graph N),
we associate to each pair ({T'},{P}) an abstract graph G as follows: each
contour I'; € {I'} is represented by an abstract vertex z;, each cluster
P, € {P} is represented by an abstract vertex wy. This defines V(Q).
Then, we put an edge between z; and wy, if and only if d(F], Pk) < R. We
also put an edge between wy, and wy, if and only if V (P, ) NV (Py,) # 0.
Each connected component of G, with vertices, say, {Zj1y s 2y Wiy -+, Wiy },s
represents a subset of {I'} U {P} given by X = {Tj,.. szv Py, ... ,]Skl}.
X is called a chain of contours, or simply a chain. We denote by {X} the
family of chains associated to the pair ({T'},{P}). The chains of {X} are
of type +, and pairwise compatible by definition. The support of X, also
written X, denotes the union Jrcx TUUpcx P. Notice that if two chains
X, X’ are not compatible, then b(X) Nb(X’) # 0, where

b(X):= (JmMLu | P. (4.14)



The weight of a chain is defined by
wH(X) = ( I1 A+(P))( I1 w+(F)) , (4.15)
Pex rex

and depends only on the intrinsic structure of the chain X (except, maybe,
if d(X,A°) < R). The final representation of the partition function is thus

O (Asmae) = Z:F (Asmae) Y [ wt(X) (4.16)
{X} Xe{X}
= Z, T (A;nae) =1 (A nac) (4.17)

In (4.16), the product is defined to be equal to 1 when {X} = (). This last
expression nicely expresses the fact that chains of contours describe devia-
tions from a restricted phase. For the restricted phase, there corresponds
a family Py (nac) associated to Z, T (A;nac). Similarly, there corresponds a
family of chains X} (nae) associated to ZF(A;mac). The partition function
can be written in terms of these families as

O (A;nac) = MMM ZL(PF (nae)) E(X) (mac)) (4.18)

By definition, E(X; (nac)) := 1 when X (nac) = 0. Everything that was
done until now can be applied also to the case where njc is —-admissible,
yielding chains of type —.

4.2 The Entropy of Chains

Before starting the analysis of the weights, we show how a priori bounds on
the weights AT (P) and w™(T") allow to handle the summation of weights of
chains. In this section we assume that |A\T(P)| < A\o(P), |w™(T)| < po(T),
ie.

WL (TT M) (T po(M) =wo(x).  (4.19)

PEX I'eX

Convention: Now and in the sequel we will always use a subscript “0” in
the weight of an object to specify that it depends only on the geometric
structure of the object (as we did in (3.46), Section 3.2). That is, such
weights will always be translation invariant. When a weight is defined for
an object, we use the same letter for the weight of the clusters of such
objects (see Appendix A).

The proof of the following lemma is essentially the same as the one
of Corollary 3.2. We use the notations |P| = |Upcp V(P)], |X]| =

Yorex T+ pex [P
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Lemma 4.1. Let ¢ > 0, € > 0, and assume the weights )\0(]5), po(T)
satisfy the bounds

Z Xo(P)e (cte@+1)|P| < E Z po(D)elctalllhl < <& (4.20)

P30 INTINIEY)
Then the weight wy(X) satisfies the condition (A.4) of Lemma A.1. Namely,
> wo(X)eM <e. (4.21)

X:b(X)30

[\)
l\?

Proof. For a chain X = {Fl,...,FL,pl,...,pM}, let n(X) := L+ M
denote the number of objects composing X (a cluster P; is considered as
a single object). We show by induction on N =1,2,... that

Evi= Y w(X)et® <e, (4.22)
X:b(X)30
n(X)<N
If n(X) =1 then X contains a single object, i.e. a contour. Then & < €
follows from (4.20). So suppose (4.22) holds for N, and consider &y 1; this
sum can be bounded by a sum in which each chain X is decomposed into
[Tol; 20, X 3 T, or into Py 30, X 5 By. This means:
1) in the first case, X decomposes into X = {To} U {X1,..., Xk} ? with
[Fo]l > 0, d(XZ,Fo) < R, TL(XZ) < N for all 1 = 1,...,K, Xz ﬂXj = @ for
all 7 # j. The contribution to {41 is thus bounded by

Z po(To)e C\ Lol | Z = H Z wo(Xi)ec‘b(Xi” (4.23)

To:[T0];30 K>0 'z 1 X;:d(X;,T0)<R
n(X;)<N

- Z po(ro)ec\[FoMZf(HFO]RKN)

To:[T0];20 K>0
< Z pO(FO)G(CJFG)HFo]z\ < £

2’
To:[T0];20

where we used the induction hypothesis &£y < e.

2) in the second case, X = {Py}U{X1,..., Xx} with Py 3 0, d(X;, By) < R,
n(X;) < N foralli=1,.. KXﬂX—@forallz;é] A chain X; of
this decomposition can be of two types: i) there exists a cluster Pe X;
such that P N Py # (). Then the contribution from these chains is at most

Pol Y wo(Xa)e X = |Byjen < [Pyl (4.24)
X;:b(X;)30

9The chains X; are obtained as follows: consider the abstract connected graph G associated
to the chain X. Then, remove all the edges of G that are adjacent to the vertex zg represent-
ing I'g and zg itself, and consider the decomposition of the remaining graph into connected
components. These components are exactly the representatives of Xy,..., Xk.
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i) there exists I' € X;, I' N {[Po]r}s # ), where the thickening {-}; was
defined in (2.15). Notice that the set {[Py]g}; € C?) contains at most 24| |
cubes CW. Since contours are composed of cubes C'¥); the contribution
from these chains can be bounded by

24 Bylen < 2% By (4.25)

We can then proceed like in (4.23), and get a contribution to £x41 bounded
by

3" ho(Bp)e Jecl ol eI+ DIR < % (4.26)
P030
Altogether, this shows that {41 < e. O

4.3 Domains of Analyticity

In this section we consider the dependence of the weights w™(X) on the
magnetic field A € C, in a neighbourhood of {Reh = 0}. For obvious
reasons, the domain in which w™(X) can be shown to be analytic depends
on the contour I' € X that has the largest interior. Everything we say in
this section holds for chains of both types, but for the sake of simplicity,
the statements will be given only for chains of type +.

The domains of analyticity depend on the isoperimetric constants K (N)
defined in (2.44). Consider the reals

R(N) := RN (4.27)

=

where 6§ € (0,1) will play an important role later in the study of the

derivatives. We know from Lemma 2.9 that R(N)N @ is increasing and
that

-

lim R(N)N i

N—o0 T 2K (o) (4.28)

Since we want the domains of analyticity to be decreasing with the size of
the contours, we define

R*(N):=min{R(N'): 1< N' < N}. (4.29)

The sequences R*(N) and R(N) have the same asymptotic behaviour, as
the following lemma shows.

Lemma 4.2.

lim R*(N)Ni =

Jim TR (4.30)



Proof. First notice that there exists an unbounded increasing sequence
Ny, Na, ..., such that R*(N;) = R(N;). This is a direct consequence of the
bounds

0

R*(N) < R(N) < ot

(4.31)

Since R(N)N 4 increases, it is sufficient to show that R*(N)N i is in-
creasing. Consider the interval [N, N + 1]. We have two possibilities: 1)

R(N +1) > R*(N). In this case, R*(N + 1)(N + 1)1 = R*(N)(N + 1) >
R*(N)Ni. 2) R(N +1) < R*(N). In this case, R*(N + 1)(N + 1)@ =
R(N +1)(N + 1)@ > R(N)Ni > R*(N)Ni. O
For r > 0, consider the strip

U(r):={2z€C:|Rez| <r}. (4.32)

Generally, we will restrict our attention to small magnetic fields, that is
h € Uy := U(hgy) where hy will be taken small enough. For instance,
hy < %6 so that the results on the restricted phases can be used in Uj.
We define the domain of analyticity for a contour:

Ur :=U(R"(V(I'))NUp, (4.33)
and for a chain X:
Ux:= () Ur. (4.34)
rex

That is, Ux = Urmax, where I'** € X has the largest interior. Notice that
the domains Ur,Ux depend on 0. Set V(X) := V(I"™*) = max{V (') :
I' € X}. The main result of this section is the following.

Proposition 4.1. Let 0 € (0,1), € > 0, ¢ > 0 small enough. There exists
B1 = (1(0,¢€) such that for all 8 > B1, the following holds. For each chain
X, h— wt(X) is analytic in Ux. Moreover,

o (o < w0(X), |z (Xl < wo(X) (4.35)

where wo(X) is defined via the weights A\o(P) and po(T) given in (4.37)-
(4.38) hereafter, and satisfies (4.21).

Before starting the proof of Proposition 4.1, we give explicitly the
weights A\g(P) and po(I'). These weights are defined such that they can
be used throughout the section, also when bounding the first derivative of
wt(X). As will be seen, the non-trivial part of w™ (") will be bounded by:

_ intF;—i—Ur)‘ < POITI 31T (4.36)

omr o

Ur
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Using (4.11), ||lor (D)l < e=BITl¢28halTl 3Tl Thig suggests to define the
weight po(T") in the following way:

po(T) := D1 B|T|75T e~ (1=0BIT 28holL| [T (4.37)

The term D13 |F|d%l1 has been added to take into account other contribu-
tions, especially when studying the first derivative. For clusters we get,
using the definition of AT (P) and (3.54),

wH(P
I (P)a, < llwt (P)]|, el Pl

< [wo(P) [P < fwg(P)|efr < Dalwo(P)] = Mo(P). (4.38)

The numerical constants Di, Do are assumed to be fixed and sufficiently
large, in order to cover all the cases that will appear in the sequel.

Lemma 4.3. Let 6 € (0,1), ¢ > 0, and € > 0 be small enough. Assume
2ho < 2(1—0)p (p is the Peierls constant). There exists 31 = (1(0,€) such
that for all > [1, the hypothesis (4.20) of Lemma 4.1 are satisfied.

Proof. Define a new weight for polymers (see (3.46)):
To(P) 1= wo(P)elcte@+DIPI (4.39)
If 3 is large enough, we can proceed as in (3.54) and get

d d
Z )\0 c+5 2441))|P| _ = D, Z ‘WO (c+e(2 +1))|P|
P30 P30

(4.40)

This shows the first inequality of (4.20). For the second, we use the Peierls
condition ||T'|| > p|T'| (Proposition 2.2). This gives

Z po(D)eletolllll < p, g Z ’F’%e—(1—6)6p|f‘|eQﬂhO\F\e|F|e(c+e)\[F}l|
[:[I;30 I:[I,30
<DiB > IT| @1 e~ 3(=0)3pI] I e+ NI
I:[I];30

Since |[I'];| < 34|, a standard Peierls estimate allows to bound this sum
by § as soon as 3 is large enough. O

Until now we have denoted by €, = €,(3) the small function appearing in
the study of the restricted phases. Similarly, we denote by €. = €.(3) the
small function appearing in the study of chains. These two parameters are
assumed to have a common bound max{e,, .} < €, which is small.
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Consider the weight w(T") given (4.12). We can use the linking procedure
for the partition functions ©% (intI'; For), yielding

e MMV 2, (P (1) E(Xpr (+01))

1

eJr[BhV(F) (Plntf‘( JF)) (‘)(1;1rtf‘( JF)) .
Proof of Proposition 4.1: The proof will be done by induction. We say a
contour I is of class n if V(I') = n. A chain is of class n if V(X) =n.
Consider a contour T of small class (say, of class smaller than [4). Then the
last ratio appearing in (4.41) equals 1. We bound w™ (T") at h = x+iy € Ur.
First,

|e=28RVID)| < 2B12IV(D) < (2BRT(VIDVIT) < (2BR(VIIDVD) < 0BITI
(4.42)

wh(T) = pa(T)

(4.41)

where we used the definition of the isoperimetric constants K (-) given in
(2.44). Then, write

Zr(Piyr (01))n _ 2y (Pir (+or)n Ze(Per (o1))iy Zr(PiﬁtF(_UF))iy
Zr(Piitr(_JF))h ZT(Pi;ltr(+JF))iy ZT(Piﬁtr(_JF))iy Zr(PiﬁtF(_UF))h

(4.43)

The middle term has modulus 1 by symmetry (see (3.32)). The two other
terms can be treated as follows:
Z (PlntF(+O-F)
Z (PlntF(+O-F) 1y

‘/ s—logZ(PlntF(+UF))s+zy < |zle V(I).

(4.44)
We used Theorem 3.1. Proceeding as in (4.42), we get
H ZT(PiitFH_OT))‘ < eferlll < o3irl (4.45)
Z(Pier(—or)) loe

when [ is large enough. Altogether this gives
08Il g3 IT] < o= (1=0)BITI g2BholTI 25 IT] o (1) |
(4.46)

lo ™ @llor < lor@llore

Since |AT(P)||ly, < Ao(P), we have shown the first inequality of (4.35)
for chains of small class. For the derivative, a Cauchy estimate (any disc
centered at h € Uy with radius % is contained in H) gives

N

P)|ly, < 16IAF(P)ln, - (4.47)

For contours,

d
EWJF(F)ZWJF( )Elogw I) =

d d d | Z(Ppr(tor))
H(0) (=B g Hr (o)) = AP + B = 28V(D) + gplog Zrmed =)
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Using V(T") < \I‘\d%l (this is a consequence of Lemma 2.10) and

d Z.(P. .r(+or))
“ o intl ‘ <2,V (I), 4.48
| e 2, (Pt (=) o = 2V (D) (4.48)
this gives the upper bound
| Swrm), < opirlats ot @)l (4.49)
dh Ur — r '
which implies, as can be seen easily, that
Hiw(X)H < wo(X) (4.50)
dh v O '

With Lemma 4.1, this shows the proposition for chains of small class.
Suppose it has been shown for chains of class < n. By this induction
hypothesis, (4.21) and Lemma A.1, a cluster expansion can be used for the
partition functions containing chains. Let X be a chain of class n + 1, and
consider I' € X. The treatment of the restricted phases is the same, and
we must study the ratio

E(Xipr (For)n _ E(Xpr(tor))n E(Xiyr (+0r))iy E(Xfer(—or))iy
E(Xl;rtr(_al‘))h E(Xl;tr(+01“))zy E(X;:tr(_al“))zy E(Xi;qtl“( or))h

Again the middle term has modulus 1 and the rest is treated using the
induction hypothesis.

E(Xer (Hor))n Cd
og Sl ot | /0 s 108 Sy (+or)) st | < JelecV (1)
= Aintr iy
(4.52)
This implies
B0 gl < i (4.53)
E(Xyr(—or)) llor = B
For the weight of I, we thus have (compare with (4.46)):
wt (D) |lop < e~ A-OBITI26hoITI33IT] < oo (T) (4.54)
For the derivative, use again the induction hypothesis, and bound
d E(X r(+or))
—log_L‘ < 2¢.V(D). 4.55
[ o2 2 o e <2V D 459

It is easy to check that (4.49) still holds which, in turn, implies (4.50).
This shows the proposition. O
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4.4 Pure Phases

In the last section we gave for each chain X a domain Ux in which the
weight w™ (X) behaves analytically. The size of the domain Ux shrinks to
{Reh = 0} when the size of the largest contour of X increases. In the
present section we show that the weights w™(X) can actually be controlled
when 0 < Reh < hi where hy is fixed, independently of the size of X.
This treatment is standard and was first introduced by Zahradnik [Z1].
We consider only chains of type +, the case — being similar by symmetry.
Define

U+ 3:{Z€CZO<R€h<h+}, (456)

where 0 < hy < min{, 5} is fixed (p is the Peierls constant). In Section
5, domains will have to be made optimal, with 6 close to 1, but here we
choose 6 := % The main result of this section is the following

Proposition 4.2. Let ¢,c > 0 be small enough. There exists B2 = [(a(e)
such that for all B > (o, the following holds. For each chain X of type +,
h— wt(X) is analytic in Uy, and

o™ (X)lvy < wo(X), (4.57)
where wo(X) satisfies (4.21).

Proof. Since Uy C Hy, clusters P and restricted phases are under control.
For each T', we use the representation (4.12) (rather than (4.41)). The main
ingredient of the proof is the following lemma, whose proof is standard and
can be found, e.g. in [Z1] or [FP] (with minor modifications due to the fact
that we are working with analytic restricted phases rather than ground
states).

Lemma 4.4. Let 3 be large enough. Then for each contour I' of type +,
we have OF (intT; —or) # 0 on Uy and

O~ (intl'; +or) ‘ 2y
-7 < . 4.58
H OF(intl'; —or) lluy — ° (4.58)
The proof of Proposition 4.2 finishes by using Lemma 4.1. O

5 Derivatives of the Pressure

In this section we prove Theorem 1.3, adapting the mechanism used by
S.N. Isakov for the Ising model. Although estimates of Theorem 1.3 hold
for the pressure density p,, we will always work in a finite volume A, and
obtain bounds on the derivatives of the pressure that are uniform in the
volume. As in the preceding section, we assume v € (0,7) is fixed.
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We consider a box A = [-M,+M]¢NZ?, with M large, chosen so that
A € ¢, Outside A we fix the spins to the value +1, i.e. we consider
the set Qf, defined in (4.2) and the associated partition function Z*(A)
defined in (4.1). The finite volume pressure p; , is defined by

1
p;rA = ——log ZT(A). (5.1)

Clearly, this function equals the pressure density of (1.16) in the thermo-
dynamic limit. Consider the set CT(A) of all possible external contours of
type + associated to the set Qj{ That is, each contour of C*(A) appears in
at least one configuration o € Q. Remember that V(I') = |intI'|, where
intI' denotes the union of all components of ['“ with label —. The family
C*(A) can be totally ordered, with an order relation denoted =<, such that
V(I") < V(T') when I" < T. When T is not the smallest contour we denote
its predecessor (w.r.t. <) by #(T").

For a given external contour I' € C*(A), consider the set

Qi (D) := {oa € Qf : I" < T for all external contour I of op+xc},

and define the partition function

Of(A):= > exp(—BHaloa+ac)). (5.2)

O'AEQX(F)

When T is the largest contour then clearly O (A) = ZT(A) and when T is
the smallest contour, we define @;EF)(A) := ZF(A). We also introduce the
following set in which the presence of I" is forced:

Qf [0 := {oa € Qf :I" < T for all external contour I of g5 +xe

and I" is a contour of op+pc}. (5.3)

The partition function @Eﬁ (A) is defined as (5.2), with QI in place of

QX(F) We have the following fundamental identity:

e (A) =6

o (V) +Of(A). (5.4)

A crucial idea of Isakov is to consider the following identity.

o (A
=z [ (5.5)
O (A)
rect(a) —il)
Then, the logarithm is written as a finite sum:
log ZT(A) =log Z (M) + > uf(I), (5.6)

rect(A)
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where

o Or()
uf(T) := log m . (5.7)

Using (5.4) we can write u} (') = log(1 + ¢ (I')), where

O (A)
+ (]
ot ()= I 5.9
Ojiry (M)
Non-analyticity of the pressure is examined by studying high order deriva-
tives of the functions ¢} (') at h = 0, using Cauchy’s formula

+ z
eh ™ (0) = Qk—ﬂ!i/c%dz. (5.9)

To obtain bounds on @X(F)(k)(O), we exponentiate ¢} (I') and use a sta-
tionary phase analysis to estimate the integral. The contour C will be
chosen in a k-dependent way. If the domain Ur 3 0 in which ¢} (T') is an-
alytic is too small, then no information (not even the sign!) can be given

about o1 (1) *(0).

For a while, consider the structure of the partition function @[Jli] (A).
We write A = extAI' UT'UintI', where extpI" := extI' M A. By construction,
extal” and intI" are at distance at least [ > 2R. We will therefore consider
extpAI' and intI" as independent systems (see Figure 6). The sums over

O~ (intl;or) |

@;r(r) (extal; +acor) 1o

Figure 6: The decomposition (5.10) of the partition function 9[41:] (A).

configurations on extpI' and intI" can be done separately, yielding

@[Jll](A) = p(F)@;EF) (extpAl'; +acor)O (intl'; or) . (5.10)
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All the contours of these partition functions are at distance larger than
[ from I'; and have an interior smaller than V(I'). The point is that we
control these functions for A € Up, where Ur C C is a domain that depends
only on the volume of T.

The program for the rest of the section is the following. In Section
5.1 we show that ¢} (I') can be exponentiated, using the results of Section
4. We then use a stationary phase analysis and obtain upper and lower
bounds on some derivatives of ¢ (I') and u} (T') at h = 0. In Section 5.2 we
fix k and take the box A large enough. For a class of contours called k-large
and thin, the k-th derivative of u} (I') can be estimated from below, using

the results of Section 5.1. This gives a lower bound on pj(f)(O). In Section

5.3 we show that for p:A, the operations lima and (-)*)(0) commute,
leading to the proof of our main results.

5.1 Study of the Functions ¢} (')

The proof of the following lemma requires the main results of Sections 3 and
4. After that, the proof of non-analyticity of the pressure will essentially
follow the argument of Isakov (see [I1], [I12] or [FP]).

Lemma 5.1. Let 0 € (0,1), (8 large enough. Then the following holds.
For all contour T € C*(A) with V(T) # 0 there ezists a map h — g1 (I')(h)
analytic in the strip Ur, such that for all h € Ur, @X(F) can be exponenti-
ated:

o (D) = exp (= BT = 26RV () + 26V (D) (1)) - (5.11)
Moreover, we have the following local estimate
26V(I)|g (T)(0)] < a1(B)BITII (5.12)

and a uniform bound on the first derivative

|
b < BB+ 2 (5.13)

d +
| ok
The functions &; are such that limg so 6; = 0.

Proof. Consider @Jf (A). We have seen how to re-sum over configurations
on extAIl' and intI’. We write

O (extAT; +pcor)OT (intl; —or) O~ (intT; +or)

(1) = p(I)—L) .

(5.14)

All the volume contributions coming from the first quotient will be shown
to vanish. The partition functions @IF) (extal'; +acor) and ©F (intT'; For)
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are of the type (4.5). We can therefore apply the linking procedure and
obtain a representation of the form (4.18) for each of them:

O/t (extal’; +acor) = ePMlexiall z (PY, DEXL 1), (5.15)
O (intT; For) = VO z (PE NE(XE L), (5.16)

where we omitted, in the notation, to mention that the families of polymers
and chains always depend on the boundary conditions specified by +¢ and
or. Moreover, the family X;MF contains chains X that satisfy V(X) <
V(T'). In the same way:
A —_
O/ (M) = MMz (P(XY), (5.17)
where the families Pf{ and X;{ depend only on the boundary condition

+c. Using the definition of p(T'), it is easy to see that ¢} (I') has the form
(5.11), where g (T') is defined by

26V(I) = -8 u((or)i) — BAIT| +10g Qr +10gQc,  (5.18)

el

where u(o;) = —ho;, and the quotients Q,, Q. are defined by

. Z,.(PL, TZ r(Pir) 2y (Piir)
+(h) == Z.(P) Z(Ph)’ (5.19)
S E () Sy
CM =TT 520

Since all the families of chains involved contain contours with an interior
smaller than I', h +— ¢ (T) is analytic in the strip Ur (by Proposition 4.1).
Rearranging the terms of the cluster expansions for @, leads to

logQrzlogﬂimF)—i- Z wh(P) + Z wh(P) — Z wt(P)

Z,.(P; ~ S
"Por) ool PP =
PAT] p£0 PN r#0 PN r#£0

Notice that the volume contributions from extpI' cancelled, and that the
three sums are boundary terms. By symmetry, the quotient equals 1 at
h =0, and so

110 Q,(0)] < 3¢, [Tz (5.21)

For the derivative, using (3.56) gives

d
<
Hdh 08 Qr

<26 V(') + 3¢ |[I]R| - (5.22)
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The same computations can be done for Q.. Clusters of chains are de-
noted X. The contributions from extaI" also cancel. Indeed, consider the

difference
Yo owtX) - ) Wwh(X). (5.23)

Xyt
Xex, Xex)

Using Lemma 2.5, there exists for all X € Xf(t r with d(X1,T) > R, a
cluster Xy € XA, Xy Nextal' # 0, d(X5,T) > R, such that wt(X;) =
wt(X3). We are thus left with

log Q. =log — (thr)+ Z Z wh(X) - Z wh(X).

XJr
=(Xiir) Xe/\,’;r(tAF XeXJgtF Xexy
X[ r#0 XN[T)r#0 X[ r#0
Using symmetry,
[1og Qc(0)] < 3ec|[I'g|- (5.24)
For the derivative, a similar treatment gives
H— log Qcf|,, < 2¢cV/(I) + 3ecl 5. (5.25)
Estimates (5.21) and (5.24) yield
28V(D)|gx M)(0)] < 3(er + €[TRl < 01(B)BIT, (5.26)

where 61(3) := 391371 (e, 4+ €.)p~! (p is the Peierls constant). We get
(5.13) by setting d2(3) := B~ (e, + €¢). O

We are now in position of computing derivatives of the functions ¢} (T').
The main ingredient is the following theorem, which appeared in [I2]. The
proof can be obtained by following the Appendix of [I1], which is nothing
but a stationary phase analysis applied to the Cauchy integral giving the
k-th derivative at z = 0 of a function of the type e~<*tbf(2),

Theorem 5.1. Let r > 0, F(z) = exp(—cz + bf(2)) where 1 <b < ¢, and
f s analytic in a disc {|z| < r}, taking real values on the real line, with a
uniformly bounded derivative:

1
sup |f'(2)| <A< —=. (5.27)
|z|<r 25
There exists kg = ko(A) such that the following holds: define ky = r(c —
2bv/A). For all integer k € [ko, k4] there exists rj, € (0,7) and c; > 0
satisfying

k k

1
< <
c+bA_Tk_c—bA’ < Gk <

1
\2mery, Jerg

30 (5.28)
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such that

Tl =M F ). (5.29)

In particular, (—1)*F®)(0) > 0. Moreover, if f satisfies the local condition
bf(0) < —arc, (5.30)
with a € (log2,1), then for all k € [ko, k] and A sufficiently small,
(log(1 + F))®(0) = (1 + a- e 2¥)F®) (0), (5.31)
where a is a bounded function of k,c,b and { = ((a) > 0.

In Lemma 5.1, we have put ¢ (T) in the form e~¢**%/() Tn order to satisfy
(5.27), we must introduce a distinction among the contours. Consider the
function d2(53) of (5.13).

Definition 5.1. A contour T' € CT(A) is thin if || < 52§ﬁ)V(I‘), and fat
if it is not thin.

Now, any thin contour I' satisfies, when ( is large enough,

1
2020 = A) < 5. (5.32)

Hd%gX(F)‘

Lemma 5.2. There exists ko such that when 3 is sufficiently large, the
following holds. For all thin contour I', define

k(D) := 26V (D)R*(V(I))(1 — 2VA). (5.33)

Then for all integer k € [ko, k+(I")], we have

(—DFuf (T)B(0) > %(2ﬁV(F)D,)ke_(H‘sl(ﬁ))”F”, (5.34)
(=DFui ()®)(0) < 20(26V(D) Dy ) e~ =0T, (5.35)
where limg_.oo D+ = 1.
Proof. Let I' be a thin contour. Consider @X (T") in its exponentiated form

(5.11). We apply Theorem 5.1 with ¢ = b = 28V(T), f = gi (T) — %%,

r = R*(V(I')), and A = A(B). (5.32) guarantees (5.27). There exists
rr = r,(I') and ¢, = ¢x(T") such that

(1) M™(0) = K- o (D) (=rp) . (5.36)
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Using the analyticity of gf (') in Ur, we have with (5.28)
ot (D) (—rg) = o BIITI gerr g (1)(0) ge(gx (D) (—7x)—g3 (D)(0))
> ¢ Il o157 ¢—018ITl = 725
o~ (148081 Jk~ 757k

Using Stirling’s formula and the estimates for r, cx, we get

“ 1)t ®(0) > L (28V/(T)D_ ) e GHonBIr 5.37

(=1)x (1) (0) = £(28V(T)D-)"e : (5.37)
where

24
D_(B)=(1—A)e 1-4a%. (5.38)

Using (5.12) we can satisfy (5.30):

bf(0) =28V (T)gy (T)(0) = BT < —(1 = &1)B|IT|
< —(1-6)28V(IDR*(V(T)) (5.39)

—(1=dy)rec. (5.40)
In (5.39) we used
1 _d_ 0 N
N2 gV O 2 2V (D) b 2 2V OR (VD)

We can thus use (5.31) once (3 is large enough. This gives the lower bound
(5.34). The upper bound is obtained similarly. O

5.2 Derivatives in a Finite Volume

In this section, we fix k large enough. When a thin contour satisfies
ko, k+(T)] > k then uf(I')*)(0) can be estimated with Lemma 5.2. To
characterize this class of contours, we introduce a k-dependent notion of
size.

Definition 5.2. Let k € N, ¢ > 0 small enough. A contour T' is k-large
if V(T') > Vo(k) where

K(co)(14¢€) \a5

Vo(k) :== (Mk>d ' (5.41)

08(1 — 2V A)
where K (00) was defined in Lemma 2.9. T' is k-small if V(I') < Vp(k).
Let Ny(¢') be such that for all N > Ny(€') (see Lemma 4.2),

1 0 0

(1+€) 2K (c0) N < BN < 2K (c0)N

(5.42)

=
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Let k— = k_(¢/,7) be such that when k > k_ then Vy(k) > Ny(€¢’). This
definition implies that when k > k_, we have for all k-large contour I
03(1 — 2V A) a1
k. (T)=28V(IT)(1 -2VA)R*(V(I)) > ——=V(T >k.
+() ﬁ ()( \/—) ( ())_K(OO)(l—l-E/) ()d e
(5.43)

That is, the k-th derivative of a k-large thin contour can be studied with
Lemma 5.2. The dependence of k_ on 7 comes from the bound K (co) >
c_7. We therefore have lim.\ g k_ = +oo.

Proposition 5.1. Let 0 be close to 1, B large enough. There exists a con-
stant C7 > 0 and an unbounded increasing sequence of integers ki, ko, ...
such that for large N, we have whenever A is sufficiently large,

—1)kNy gk 41 _d_
| |A)| Ahk~ > UX(F)‘ > (CLE (00) T 3701 ) N ln1aT . (5.44)
TeCt(A)

Proof. Fix € > 0 small and consider the sequence (I'y)n>1 of Lemma 2.9.
We have limy_.o V(I'y) = +00 and when N is large enough,

V(Ty) e

(1—-¢)K(c0) < < (14 ¢)K(x0). (5.45)

The sequence (ky)n>1 is defined such that the contribution from the con-

tour I'y to pj([f”\' )(0) is close to maximal. Let

b = | 28wl (5.46)

Since limy_ 0 V(I'y) = +00, we have limy_,oo ky = +oo. From now
on we consider N large enough so that (5.45) and (5.48) hold and ky >
max{kg, k—}. When considering the kx-th derivative, we use the following
decomposition:

o=+ >+ D> (5.47)
rect(A) rect(A) rect(A) rect(A)
ky—large, thin  ky—small, thin fat
We show that the dominant term comes from Iy, which belongs to the first
sum, and that the two other sums are negligible. To see that I'y appears
in the first sum, we first show that I'y is ky-large. Indeed, if 6 is close to
1 and €, €, A() are small,

K(oo)(1+€)d—1 Ty

o2/ )
1 1+€ed—1

S(@(l_z\/Z)l—e d

Volkn) < (

)ddlvmv) <V(Ty).
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Then we show that ' is thin:
Oxl _1frwl 1 |
V(Tn) = pV(In) = pK(00)(1 =€) Yy (ky)a
Finally, we assume A is large enough in order to contain at least a|A]

translates of 'y, @ > 0. Then we apply Lemma 5.2 to u}(I'y). Using
(5.45),

62(8).  (5.48)

1
< Z
-2

V(T )k e (400BITN I > ((1— 6)K(OO)HFNH)cf'llkNe—(lJr(Sl)ﬁIIFNII

> _ _° - 1) 727 (kN
> ((1 E)K(oo)d—lﬂkN) e a1
Lk ,Lk d -5 dilkl\’ _d
> k) K (00)1FN g~ a N[ﬁ(l—e)e } kN1, (5.49)

_1
where c(ky) > C3ky? and we used Stirling’s formula. Since

(—D)*ug(D)*(0) > 0 (5.50)

for all ky-large thin contour, we can bound the first sum from below using
only the contributions coming from the translates of I'yy. We get

(=1~ dhv +
TTAl dnEy > b (F)‘ >

reCt(A)
kn—large, thin
4k
—C(;“év)wa((oo)ﬂkwﬁlm [—d -(1—ee D | M ptat

(5.51)

Consider now a kx-small thin contour, i.e. R*(V(I')) > R*(Vo(kn)). Using
the Cauchy formula with a disc of radius R*(Vy(kn)) centered at h = 0,

i) Ol 652
Lemma 5.3. Setting oy = a1(0,3) := p~ (1 — 0(1 + A(B)) — 61(B)). If B
1s large enough, we have a; > 0 and the bound
N e BT
lux Mllor < T——ga7m (5.53)
Proof. Using (5.11), (5.12) and (5.32),

lox D) lor < sup e P=0IINI 2B+ AR AVI) < p=erBITl 9 (5.54)
eUr

[k () ©0)] < kvt

where we used the definition of the radius of analyticity:

* 0
sup AV () < RF(VI) V(L) < RVI)VT) < [T (5.55)
elr
The proof finishes by using the Taylor expansion of log(1 + x). O
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A standard Peierls estimate implies, when 3 is large, the existence of a
number Cy such that

> e Pl < gylal. (5.56)
rec+(A)

Ak d 1
Using the Stirling formula, it easy to see that kn!ky N < kyla-ted1hy,
The contribution from the kp-small contours is then bounded by

1| dky
+
|A]l ARk~ > W (F)‘hzo =
rect(A)
kn—small, thin

d 1

(1 - ;JZ)“]kaNlddl

(5.57)

it Kooy g s (L)

6

Since d%‘ll > e%, the comparison of the square brackets of (5.57) with those
of (5.51) shows that if 6 is close to 1, if €,€ are small, and if 3 is large
enough, then the contribution from the ky-small contours is negligible in
comparison to the ky-large ones.

We are then left with the contribution of the fat contours. We can use a
Cauchy bound

L 1 k

— F‘ S

A Oy = ¥ () T Ol
( 2K 1 )k‘v k _BOC1|F|

(9 1—6_6041|F|

2 % k€ —Baa |l
_> ) I K — Ty

< k'( %

Then a Peierls estimate leads to

S rjaem eIt < A1 ST Laem Pt < |A|(af5)”aT

rec+(A) L>1

(S +1), (5.58)

where I'(z) is the Gamma-function. Using the Stirling formula, it is then
easy to show that the contribution from the fat contours is bounded by

yAy‘dhk 2 “X(F)‘hzoﬁ(K(l)ﬁ_éD(k))kk!fdl, (5.59)
Fecf;rt(A)

where limy_o D(k) = 0. The fat contours can thus always be ignored.
This finishes the proof of Proposition 5.1 U
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With (3.57), we get the lower bound, for a large enough box A,
PR (0)] = (CLE (00)T7 57 77) V17T — ClVhy! (5.60)
> (C_nya i g a1 )V 17T — Ryl (5.61)

We used the lower bound K(oco) > c_v from Lemma 2.9. Notice that
we could extract the contribution of the translates of I'y to pj’(fN )(0)
without knowing its explicit shape. This is where our formulation of the
isoperimetric problems differs from the one of Isakov. Notice also that the
lower bound (5.61) shows how non-analyticity is detected in finite volumes.

5.3 Thermodynamic Limit; Proofs of Theorems
1.2 and 1.3
+(kn)

To extend the bounds we have on p_ ,™’(0) to the infinite volume limit, we
first show that in the strip U the derlvatives of the pressure are uniformly
bounded.

Lemma 5.4. Let 8 be large enough. There exists Cy. > 0 such that for all
k>2,

sup o Plle, < (CorTT77T) MTT 4 CERL (5.62)

Proof. Like in Section 4.4, we can fix 6 := % The term CFk! comes from
(3.57). Consider uj(T") and the representation (5.14) of ¢} (I'). From
Lemma 5.1, ¢ (T') is analytic in Up. From Proposition 4.2 and Lemma
4.4, it is also analytic in Uy, i.e. in Uy U Up. Proceeding like in the proof
of Lemma 5.1, we get

H O (extal; or)O7 (intT; —or) ‘

i(r) —8Re [T 3(er+eol Il
Oy (A)

< sup e
Ut heU4

— 63(€r+60)|[F]R| X

Assume 341 (e, + ¢.) < 1. Using (4.58),

ek (M) lu, < e PITlefhITleltl < gme2fill < 7 (5.63)

Notice that unlike in (5.54), ag in independent of #. This implies that

uf(T) is also analytic in Uy U Ur. Set az = min{aq, as}. Using a disc of

radius R*(V(I")) around each h € U, we have

1
it O, < k(3 ( (F))) et (D)l e
<k ( ) v(r 1 — e—Bas|T|
k k e ﬂa3|F|
S ( ) - 1—6_,3043|F|



We used the isoperimetric inequality of Lemma 2.10. Remember that
K(1) < ciy (Lemma 2.9), and that [ = vy~!. The proof finishes like
for the upper bound on fat contours. O

Corollary 5.1. For all ' € Uy U{Reh = 0} and for all k € N,

B)y—(p!y — 13 F(k) oy s (k)
2 (h)_Ah/H%dp%A (W) = lim p(h). (5.64)

Proof. We show (5.64) for k = 1. By definition,
- . y(W +6) — py(H)
p/(yl), (h/) — %I\I‘I(l) Y 5 '7
+ B+ 8) — + (K
~ lim lim p%A( ) P%A( )
SN0 A Zd o

- +Wpn , Lo+
i, 50+ 0 ),

where lims\ o h(6) = h'. The following lemma will allow to permute the
limits lims\ o and limy za.

Lemma 5.5. Let, for all N € N, § > 0, by(d) = an + cn(5), such that
len(0)] < D& uniformly in N, and imy_,oo by (5) = b(9) exists. Then
Iimy oo an and lims\ o b(9) exist and are equal.

Proof. We first show that lims\ o b(0) exists. Let (J;) be any sequence
0 > 0 such that limy_. o 0 = 0. Then we have

[6(5k) = b(dw)| = | lim (en(0k) = en(0))] < D(dk + ), (5.65)

and so limjy_o b(dy) exists. Fix € > 0. There exists N such that if
N > N then |[by(0) — b(6)| < e. We then have

b(0) —e— D6 < l}\Ifninf any <limsupay < b(6) + €+ DJ, (5.66)
— N—o0
which finishes the proof, once we take ¢ — 0, § — 0. O

Using the fact that the second derivative is uniformly bounded on Ui
(Lemma 5.4), this shows the first equality in (5.64). For the second, we
only need to consider the case where h' = 0.

400 = o PO =200




where h(0) € [$,6] and limg o ~(6) = 0. This shows

1), 1 1
Py (0) = Jim piD ((6)) (5.67)
which extends easily to any sequence h \, 0, since derivatives of any order
are uniformly bounded on Uy . O

We can then complete the proofs of our main results.

Proof of Theorem 1.3: The bounds on pgkz\(O) of (5.61) and Lemma 5.4
extend to the thermodynamic limit using Corollary 5.1. O

Proof of Theorem 1.2: Using the symmetry p,(h) = p,(—h), we can write,
for m > 0,

f+(m) = sup (hm — py(h)) . (5.68)
h>0

By the Theorem of Lee and Yang, h +— p,(h) and m — m,(h) := pgl)(h)

are analytic in {Reh > 0}. If m* := pgl)#(()), then for all m € (m*, 1),

fy(m) = h(m)m — py(h(m)), (5.69)

where h.(m) is the unique solution of the equation m = m,(h). The GKS
inequality (see [GKS]) allows to obtain, for all h # 0,

pi(h) = B(1 = tanh(B(h +1))?) >0, Jim piP(h) >0 (5.70)

Since pg)(h) # 0 for all A > 0, the biholomorphic mapping theorem
implies that m ~— h.,(m) is analytic in a complex neighbourhood of each
m € (m*,1). So f,, which is a composition of analytic maps, is analytic
on (m*,1).

We now show that f, has no analytic continuation at m*. Assume this is
wrong. We compute

10

W (m*) = i (1) — 1 D)1 = lim p@ (p) 1
hay (m”) mh\nrln* hy(m) %1\mom7 (h) }111{‘%]% ()™ #0. (5.71)

We used the fact that p(WQ)’H(O) is bounded at h = 0. Again, (5.71) implies
that the inverse of h, = hy(m) can be inverted in a neighbourhood of
m* and that the inverse, m, = m,(h), is analytic at h = 0. This is a
contradiction with Theorem 1.3. O

et g : D — C be an analytic function, 29 € D be a point such that g’(z9) # 0. Then there
exists a domain V' C D containing zp, such that the following holds: V' = ¢g(V) is a domain,
and the map g : V — V' has an inverse g~! : V/ — V which is analytic, and which satisfies,
for all w € V', g~V (w) = (g’(g’l(uj)))f1 . The proof of this result can be found in [Rem], pp.
281-282.
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6 Conclusion

Our analysis has lead to the following representation of the pressure for
h > 0:

py(h) = piy(h) + sy (h), (6.1)

where p; is the restricted pressure. As we have seen in Section 3, pl_,
which describes a homogeneous phase with positive magnetization, behaves
analytically at h = 0. On the other side, s;L contains the contributions
from droplets (contours) of any possible sizes, and is responsible for the
non-analytic behaviour of the pressure at h = 0. Non-analyticity can
be detected only in the very high order derivatives of sj, although s;r
contributes essentially nothing to the pressure when - is small. Indeed, sf{
can be expressed as a sum over clusters of chains, and each chain contains
at least one contour. Since the length |I'| of a contour is bounded below

by the size of a cube CW, we have
s llv, < ae™®7, (6.2)

where a,b > 0 are constants.
For the pressure, the Lebowitz-Penrose Theorem takes the form (see [Pr]):

po(h) == lim p,(h) = sup (hm — farp(m)), (6.3)
YN0 me[—1,+1]

where the mean field free energy fi/r was defined in (1.4). The bound
(6.2) implies, for h > 0,

po(h) = lim py, (h) = sup (hm — farr(m)). (6.4)

From this last expression, the analytic continuation of the pressure, in
the van der Waals limit, at h = 0, can be understood easily: for A > 0,
hm — fyrrp(m) has a unique global maxima at m*(h,3) > 0. When h < 0
this maxima is only local, but provides the analytic continuation at h = 0.
The identity (6.4) shows that the constraint on the local magnetization,
in pf{ -+ has the effect of always selecting the maxima m*(h, 3), which is
global when A > 0 and local when h < 0. When ~ > 0, this scenario
breaks down: droplets are well defined, and they are all stable at h = 0,
creating arbitrarily large fractions of the — phase. As we saw, this gives a

d
contribution k!4-1 to the k-th derivative of the pressure.

A Cluster Expansion

Consider a countable set D whose elements are called animals, and denoted
v € D. To each animal ~ is associated a finite subset of Z9, called the
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support of 7. Usually we also denote the support by . In the cases
we consider, the support is always an R-connected set. Assume we are
given a symmetric binary relation on D, denoted ~. We say two animals
~,7 are compatible if v ~ +'. When ~ and +/ are not compatible we write
~v % 7. We assume that the following condition is necessary to characterize
incompatibility: for each each animal +y, there exists a set b(y) C Z¢ such
that if v £ +/, then b(y) N b(y') # 0.

To each animal v € D we associate a complex weight w(vy) € C. The
partition function is defined by

D= > ]I v, (A1)

{}CD ve{v}
compat.

[1]

where the sum extends over all sub-families of D of pairwise compatible
animals (we assume this sum exists, which is the case in every concrete
situation). When {y} = ), we define the product over v as equal to 1.
We are interested in studying the logarithm of the partition function. To
this end, we define the family D of all maps 4 : D — {0,1,2,...}. The
support of 4 is the set {y € D : 4(y) > 1}. Usually we also denote the
support of 4 by 4. We will also write 4 3 «x if the support of 4 contains
an animal whose support contains . A map ¥ € D is a cluster of animals
if its support can’t be decomposed into a disjoint union Sy U S such that
each 1 € 1 is compatible with each 72 € Sy. Formally, the logarithm of
the partition function has the form (see e.g [Pf])

logE(D) = > w(4), (A2)

where the weight of 4 equals
w(®) =a" (@) [T wtn). (A.3)

The functions a’ (¥) are purely combinatorial factors. They equal zero if
4 is not a cluster. The following is the technical lemma that gives explicit
conditions for the convergence of the development (A.2). The proof is

standard and can be adapted from [Pf].
Lemma A.1. Let wo(7y) be a positive weight such that

sup Z wo(7)ePM < ¢ (A4)
€2 1 b(7)3a

where 0 < € < 1. Define wo(¥) as in (A.3) with wo(y) in place of w(7y).
Then there ezists a function n(e), lim_on(e) = 0 such that

sup > |wo(%)] < nle). (A.5)

d
z€Z yox
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Typically, in the cases we consider, the weights are maps z — w(7; 2),
analytic in a domain A C C, and there exists a positive weight wy(7y) such
that [|w(v;-)|[|a < wo(y) for all 4. Lemma A.1 thus implies that the series
(A.2) is normally convergent on A. This guarantees analyticity of the
logarithm of Z(D), by a standard Theorem of Weierstrass (see e.g. [Rem]).
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