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1. Introduction

In this paper we develop a new approach to compute Billingsley dimension of saturated

sets. Basic references about Billingsley dimension are [B1], [B2], where this dimension is

introduced, [W] and Cajar’s monograph [C], which is devoted to this topic. Billingsley

introduced this dimension in a probability space (Σ, ν) in analogy with Hausdorff

dimension in a metric space. However, for spaces of sequences based on a finite alphabet

A and when the probability measure ν is non-atomic, which is the case considered here,

there exists a semi-metric dν on Σ so that the Billingsley dimension of a subset B of

the probability space (Σ, ν) is equal to the Hausdorff dimension of B in the semi-metric

space (Σ, dν) [W]. Dimension theory plays an important role in the modern theory of

dynamical systems. A good reference is the monograph [P], which however does not

mention the work of Billingsley. See also [T1].
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Let Σ denote a compact metric space. Let S: Σ → Σ be a continuous mapping.

For ω ∈ Σ we use δω to denote the Dirac measure, which is concentrated on the single

point ω. The empirical measure (of order n) is

Tn(ω) :=
1

n

n−1∑

k=0

δSk(ω) . (1.1)

The sequence {Tn}n has limit points, which are S-invariant probability measures. The

set of limit points of this sequence is a compact connected set (weak∗ topology).

Saturated sets are subsets of Σ of the form

GF := {ω ∈ Σ: the set of all limit points of {Tn(ω)}n is F} ,

where F is compact and connected, or an arbitrary union of sets of the above form. If

F = {α}, then ω ∈ G{α} is called a generic point for the stationary probability measure

α [DGS]. Note that if F is not a singleton, then GF contains no generic points. It is

known that α[G{α}] = 1 for all ergodic α, and α[G{α}] = 0 otherwise. The fundamental

problem considered here is how “large” is GF for specified F . In this paper Σ is a

S-invariant compact subset of AN, where A = {0, 1, . . . , r − 1} is a finite alphabet with

r characters, and S is the shift operator. A special and interesting case is when Σ = AN

and ν = β, with β the probability measure on AN, which is product over N of the

probability giving equal weight 1/r to all symbols of A. The mapping,

ω = (ω1, ω2, . . .) 7→ I(ω) :=
∞∑

k=1

ωkr
−k ,

maps AN to [0, 1]. Eggleston [Eg] showed that the Hausdorff dimension of

I(G{ρ}) = {x ∈ [0, 1]: x = I(ω) , ω ∈ G{ρ}} ,

as subset of the metric space [0, 1] with metric d(x, y) = |x−y|, is equal to the Shannon

entropy of ρ computed using logr, where ρ is the product of probability distributions on

A which give unequal weights to the points of A. Eggleston’s result can be extended to

the case in which ρ is ergodic, and Colebrook [Co] showed that the Hausdorff dimension

of I(GF ), where GF is a saturated set of AN, is equal to the minimum Shannon entropy

of the measures in F . The relevance of these results in our context is that the Hausdorff

dimension of I(GF ) ⊂ [0, 1] is equal to the Billingsley dimension of GF , as subset of

the probability space (AN, ν), when ν = β (see e.g. section 14 in [B3]). In [C] Cajar

investigated the case when ν is an ergodic Markov chain. Central to Cajar’s approach

is the study of limits of the form

lim inf
n

log ν([ωn
1 ])

log ρ([ωn
1 ])

.

The power of this approach is shown by the fact that is applicable to the dimension of

uncountable unions. A short partial list of recent works about Billingsley dimension is

[R], [O1], [O2], [Cha], [ChaO]. In [T1] and [T2] closely related dimensions are studied

(see comment 4 in subsection 2.3). In [ChaO] the results of Cajar are extended to the

case of g-measure on aperiodic subshifts of finite type by approximating the g-measure

by n-step Markov chains and using Cajar’s results for the n-step Markov chains.
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Our approach to compute Billingsley dimension of saturated sets is fundamentally

different from [C] or from the above references. It is inspired by large deviations

ideas‡ and energy/entropy arguments of Statistical Mechanics. It includes all cases

considered by Cajar, where ν is an ergodic (possibly periodic) Markov chains, as well

as the generalizations in [ChaO]. But it also includes cases which are not considered by

Cajar or Chazottes and Olivier, for example when ν is the maximal entropy measure of

an irreducible sofic shift§. Sofic shifts form an important class of symbolic dynamical

systems, which also play a fundamental role in finite-state automata theory. See [LM].

Our main result is theorem 2.2, which gives an explicit formula for the Billingsley

dimension dimν(GF ) of a saturated set GF ,

dimν(GF ) = inf
α∈F

hSh(α)

〈 eν , α 〉 .

In this formula hSh(α) is the Shannon entropy of α and eν is a continuous function

associated with the reference measure ν; it is defined in hypothesis H3 of subsection 2.3.

When ν is the measure of maximal entropy of an irreducible sofic shift Σ, the above

formula becomes

dimν(GF ) = inf
α∈F

hSh(α)

htop(Σ)
,

where htop(Σ) is the topological entropy of the shift space Σ. The topological entropy

htop(Σ) is equal to hSh(ν). Although we cannot apply our approach directly to

uncountable unions, we can find a set which contains the union and has the desired

dimension (see theorem 2.3). The core and difficult part of our method is an explicit

(algorithmic) construction of a subset of a given saturated set, which is large from the

point of view of dimension theory, in the sense that the dimension of the subset is equal

to the dimension of the saturated set. This construction is given in subsection 4.1 and

the results are summarized in proposition 4.1. This result is already new and important

by itself. It is a non trivial generalization of a long list of results about construction of

generic points or normal numbers, starting with the seminal paper of Champernowne

[Ch]. See also the interesting paper of Lebesgue [L]. We make hypotheses (see section

2) on the reference probability measure ν and the shift space corresponding to the

support of ν. A central assumption is that the shift space Σ is such that for any

neighbourhood U of any shift-invariant probability measure α on Σ (weak∗ topology)

and for any ε > 0, there exists an ergodic probability measure α′ ∈ U , such that the

Shannon entropy hSh(α
′) ≥ hSh(α)−ε. We prove in section 5 that irreducible sofic shifts

have this property and that theorem 2.2 applies to the measure ν of maximal entropy of

an irreducible sofic shift; one can show that theorem 2.2 also applies to an equilibrium

state relative to ν of an absolutely convergent potential.

‡ A large deviation result is proved in [ChaO], but their approach to Billingsley dimension uses Cajar’s
results.
§ Transitive sofic shifts in the terminology of [F1].
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2. Definitions, notations and main results

2.1. Notations

The cardinality of any finite set C is denoted by |C|. Let A := {0, 1, . . . , r − 1}
(with discrete topology) and Ω := AN be the product space. We use the notations

[i, j] := {k ∈ N: i ≤ k ≤ j} (i ≤ j), X[i,j] for the projection from Ω to A[i,j], and

the abbreviation Xn := X[1,n]. Elements of A[i,j] are denoted by ωj
i . The shift operator

S: Ω → Ω, (Sω)n := ωn+1, n ∈ N, acts on functions by (Sf)(ω) := f ◦ S(ω).

Let f : Ω → R. The sup-norm of f is ‖f‖ := supω |f(ω)|. A function f is local if

there exists 1 ≤ i ≤ j < ∞ such that f(ω) = f(η) whenever X[i,j](ω) = X[i,j](η). The

σ-algebra generated by Xn is denoted by Fn; the same symbol also denotes the set of

local functions which are Fn-measurable. The family of cylinder sets‖ S is the collection

of all sets

[bn
1 ] := {ω ∈ Ω: ωn

1 = bn
1} , bn

1 ∈ A[1,n] .

The space of Borel probability measures on Ω is M, and MS is the subset of shift-

invariant probability measures. The integral of f with respect to α is denoted by 〈 f, α 〉.
The shift S acts on measures by 〈 f, Sα 〉 := 〈Sf, α 〉. The empirical measure Tn(ω) is

defined in (1.1). The Shannon entropy of α ∈MS is

hSh(α) := lim
n→∞

1

n
Hn(α) with Hn(α) := − ∑

ωn
1 ∈A[1,n]

α([ωn
1 ]) log α([ωn

1 ]) .

The topology on M, which coincides with the weak∗ topology, is given by the norm

‖ρ‖ :=
∞∑

n=1

2−n‖ρ‖TVn , where ‖ρ‖TVn := sup
f∈Fn, ‖f‖≤1

|〈 f, ρ 〉| .

It is also convenient to use the semi-norms

‖ρ‖M :=
M∑

n=1

2−n‖ρ‖TVn.

2.2. Billingsley dimension

Let ν ∈ MS be a non-atomic probability measure. For any s ∈ R+, δ > 0 and B ⊂ Ω,

set

Cs
δ(B) := inf





∑

j

ν[Uj]
s: {Uj} countable cover of B , Uj ∈ S , ν[Uj] ≤ δ





and

Cs(B) := lim
δ↓0
Cs

δ(B) .

The Billingsley dimension dimν(B) of B is

dimν(B) := inf{s: Cs(B) = 0} = sup{s: Cs(B) = ∞} .

‖ Same convention as in [B1].
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Since Cs is an outer measure, for a countable family of sets Bk, k ∈ N,

dimν

( ⋃

k∈N

Bk

)
= sup

k∈N
dimν(Bk) .

There is a natural way of expressing the Billingsley dimension as a Hausdorff dimension

[W]. Let dν be the semi-metric

dν(ω, η) :=





0 if ω = η;

1 if ω and η have no common prefix;

ν[bk
1] if bk

1 is the largest common prefix in ω and η.

One has diam([bn
1 ]) = ν([bn

1 ]); hence dimν(B) is equal to the Hausdorff dimension of B

as subset of the semi-metric space (Ω, dν). It is natural to introduce the shift-invariant

compact subset Σν ,

Σν := support(ν) := {ω ∈ Ω: ν([ωn
1 ]) > 0 , ∀n ∈ N} .

The topology of the metric space (Σν , dν) coincides with the induced topology on Σν ⊂ Ω

(see e.g. [E]). We have dimν(B) = dimν(B ∩ Σν), since Ω\Σν can be covered by a

countable union of sets A ∈ S with ν(A) = 0. Therefore dimν(B) is equal to the

Hausdorff dimension of B ∩ Σν as subset of the metric space (Σν , dν).

2.3. Main results

Let ν ∈ MS be a given non-atomic probability measure. The metric space (Σν , dν) is

defined in subsection 2.2, Mν denotes the set of Borel probability measures on (Σν , dν),

and Mν
S the shift-invariant probability measures on Σν . We also denote by [bn

1 ] the set

{ω ∈ Σν : ωn
1 = bn

1}. A finite string of length n ≥ 1, bn
1 ∈ An, is a word of length n of Σν

if and only if there exists ω ∈ Σν such that X[1,n](ω) = bn
1 . The set of words of length

n of Σν is Lν
n; Lν

0 := {ε}, where ε is the empty word of length 0. Notice that for any

bn
1 ∈ Lν

n and any i ∈ N, there exists ω ∈ Σν , such that ωi+k−1 = bk for all k ∈ [1, n].

The shift space Σν is defined by the forbidden words bn
1 such that ν([bn

1 ]) = 0, n ≥ 1.

Its language is Lν = ∪n≥0Lν
n. Our main hypotheses are formulated for convenience as

follows.

H 1 For any neighbourhood U of α ∈ Mν
S, and for any ε > 0, there exists an ergodic

α′ ∈ U ∩Mν
S such that hSh(α

′) ≥ hSh(α)− ε.

H 2 There exist two functions gl: Lν → N0 and gr: Lν → N0, N0 := N ∪ {0}, and a

non-decreasing function g: N0 → N0 so that

gl(w) ≤ g(|w|) , gr(w) ≤ g(|w|) and lim
n→∞

g(n)

n
= 0 ;

if w1 ∈ Lν and w2 ∈ Lν, then there exists v ∈ Lν, such that the string w := w1vw2 ∈ Lν

and |v| ≤ max{gr(w
1), gl(w

2)}; furthermore, gl(w) ≤ gl(w
1) and gr(w) ≤ gr(w

2).
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H 3 The given reference probability measure ν is shift-invariant and non-atomic. There

exists a continuous nonnegative function eν on Σν so that

lim sup
n

sup
ω∈Σν

∣∣∣∣
1

n
log ν[ωn

1 ] + 〈 eν , Tn(ω) 〉
∣∣∣∣ = 0 (2.1)

and

∃Cν > 0 so that 〈 eν , ρ 〉 ≥ Cν ∀ ρ ∈Mν
S. (2.2)

Comments.

1) Hypothesis H1 is an important condition which has been used in various contexts

including large deviations and dynamical systems. A general result which implies

H1 is theorem B of [EKW], where the context is a Zd action on a compact metric

space which satisfies a specification property. This theorem implies that the shift

space of an irreducible aperiodic subshift of finite type satisfies H1, but does not

cover the periodic case. Proposition 5.1 shows that the shift space of an irreducible

sofic shift satisfies H1. This includes all irreducible subshifts of finite type. Note

that it does not suffice to approximate α by ergodic α′; in AN, every neighbourhood

of α ∈ MS contains ergodic measures with zero entropy concentrated on periodic

points.

2) Hypothesis H2 is similar to the concept of specification, which has been extensively

studied (see [KH]). Specification implies topological mixing, while the weaker H2

only implies topological transitivity. In section 5 we show that irreducible (possibly

periodic) sofic shifts satisfy H2. Here is an example of a shift space Σ∗ neither sofic

nor periodic which satisfies H2. Let A = {0,1}. We represent ω ∈ AN in terms of

its runs of 0’s and 1’s, (m0; n1,m1; n2,m2; . . .). The number of 0’s before the first

1 is m0; if ω1 = 1, then m0 = 0, but all other defined mi, ni are strictly positive.

The length the run of 1’s following the first m0 0’s is n1; the length the run of 0’s

following the first run of 1’s is m1; then n2 1’s, m2 0’s and so on. Possibly mi = ∞
or ni = ∞, meaning ωk takes a fixed value for large enough k; all further mj, nj

are undefined. The point ω is in Σ∗ if and only if whenever ni and nk are defined

and i < k, there exists j, i ≤ j < k so that m2
j ≥ max{ni, nk}. In particular

if ω ∈ Σ∗ has a defined ni = ∞, then i = 1. Hypothesis H2 holds for Σ∗ with

g(n) := d√n e; gl(w) = g(nl), where nl ≥ 0 is the length of the leftmost run of

1’s in w and gr(w) = g(nr) ≥ 0 is the length of the rightmost. Concatenate words

using runs of 0’s.

3) In lemma 3.1 below we show that if ν is non-atomic and possesses a regular

conditional probability kernel¶ ν(ω1|ω2, ω3, . . .) that is continuous and strictly

positive, then

eν(ω) := − log ν(ω1|ω2, ω3, . . .)

satisfies (2.1). Non-atomic ergodic (possibly periodic) Markov chains satisfy H1,

H2 and H3. g-measures on irreducible aperiodic subshifts of finite type also satisfy

¶ See [B] p.387 for a definition.
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H1, H2 and H3. In section 5 we show that the maximal entropy measure of

an irreducible sofic shift satisfies H3, even though − log ν(ω1|ω2, ω3, . . .) is not

continuous. Therefore these measures also satisfy H1, H2 and H3.

4) It is not necessary that ν is a probability measure. Our method also applies if

hypothesis H3 is stated as follows: for each ω of the shift space ν[ωn
1 ] > 0, is

decreasing in n and limn→∞ ν[ωn
1 ] = 0. There exists a continuous nonnegative

function eν on Σν so that (2.1) and (2.2) hold.

In [T1] and [T2] metrics dν of that type are considered for the special case eν(ω) ≡ γ,

γ > 0 a constant. In the rest of the paper we however always suppose that ν is a

shift-invariant non-atomic probability measure.

Theorem 2.1 Let α ∈ MS. Then there exists a sequence {Γn ⊂ An : n ∈ N} with the

following two properties.

lim
n

1

n
log |Γn| = hSh(α) ;

for any open neighbourhood U of α, there exists N(U), such that if n ≥ N(U), then

Tn(ω) ∈ U ∀ ω ∈ [bn
1 ] , ∀ bn

1 ∈ Γn . (2.3)

Furthermore, if α is ergodic, then one can choose the sets Γn so that

lim
n

∑

bn
1∈Γn

α([bn
1 ]) = 1 .

Theorem 2.1 (see [LPRS] for proof) is formulated for the full shift space Ω. If α ∈Mν
S

is ergodic, then the second part of theorem 2.1 implies that one can choose Γn ⊂ Lν
n.

In general one cannot have simultaneously property (2.3) and Γn ⊂ Lν
n if α ∈ Mν

S.

However, this is true if hypothesis H1 is verified.

Corollary 2.1 Let α ∈ Mν
S and Σν be a shift space verifying hypothesis H1. Then

there exists a sequence {Γn ⊂ Lν
n: n ∈ N} with the following properties. Given ε > 0

and a neighbourhood U of α, there exists N(U, ε) such that for all n ≥ N(U, ε),

log |Γn| ≥ n (hSh(α)− ε) and Tn(ω) ∈ U , ∀ ω ∈ X−1
n (Γn) .

Proof: Let Uk, k ∈ N, be a decreasing sequence of neighbourhoods of α such that

∩kUk = {α}. In each Uk choose an ergodic αk such that hSh(αk) ≥ hSh(α) − 1/k. For

each k there exist Nk and Γn,k ⊂ Lν
n, such that for all n ≥ Nk,

1

n
log |Γn,k| ≥ hSh(αk)− 1

k
,

and

Tn(ω) ∈ Uk ∀ ω ∈ [bn
1 ] , ∀ bn

1 ∈ Γn,k .

Define

Γn :=




Lν

n if 1 ≤ n < N1;

Γn,k if Nk ≤ n < Nk+1.

2
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Definition 2.1 Let F ⊂Mν
S be a closed connected subset. We define

FG := {ω ∈ Σν : {Tn(ω)}n has a limit point in F} , (2.4)

and

GF := {ω ∈ Σν : the set of all limit points of {Tn(ω)}n is F} . (2.5)

The set FG ⊃ GF is in general much larger then GF . One can show that ω ∈ FG if

and only if there exists a closed connected set F ′ with ω ∈ GF ′ and F ′ ∩ F 6= ∅.
Proposition 2.1 Let ν ∈ MS be a probability measure verifying hypothesis H3. Let

F ⊂Mν
S be a nonempty closed subset. Then

dimν(
FG) ≤ s∗ := sup

α∈F

hSh(α)

〈 eν , α 〉 .

Proposition 2.2 Let ν ∈ MS be a probability measure verifying hypotheses H1, H2

and H3. Let F ⊂Mν
S be a nonempty closed connected subset. Then

dimν(GF ) ≥ s∗ := inf
α∈F

hSh(α)

〈 eν , α 〉 .

Remark: The restriction to F ⊂Mν
S is not severe, because, if {Tn(ω)} has a limit-point

which does not belong to Mν
S, then ω 6∈ Σν . Our bounds for ν-Billingsley dimension

depend on the ratio hSh(α)/〈 eν , α 〉; it must be computed using the same base for the

logarithm in hSh and eν ; the resulting ratio is independent of the choice of base. Note

that 1 is an upper bound both for s∗ and s∗. Results below show that our hypotheses

imply that G{ν} has ν-Billingsley dimension 1, because 〈 eν , ν 〉 = hSh(ν). If Mν
S 6= {ν},

all points of the set GFa , where Fa := {(1 − t)ν + tα : 0 ≤ t ≤ a}, 0 < a ≤ 1 and

α ∈Mν
S \ {ν}, are nongeneric; as a ↓ 0, the ν-Billingsley dimension of GFa goes to 1.

Propositions 2.1 and 2.2 imply our main result which is the following.

Theorem 2.2 Let ν ∈ MS be a probability measure verifying hypotheses H1, H2 and

H3. If F ⊂Mν
S is a nonempty closed subset, then

dimν(
FG) = sup

α∈F

hSh(α)

〈 eν , α 〉 .

If, in addition, F is connected, then

dimν(GF ) = inf
α∈F

hSh(α)

〈 eν , α 〉 .

Proof: Let {α} ⊂ F . Then

G{α} ⊂ FG .

Hence

sup
α∈F

hSh(α)

〈 eν , α 〉 ≥ dimν(
FG) ≥ hSh(α)

〈 eν , α 〉 ∀ α ∈ F .

Similarly

GF ⊂ {α}G .
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Hence

inf
α∈F

hSh(α)

〈 eν , α 〉 ≤ dimν(GF ) ≤ hSh(α)

〈 eν , α 〉 ∀ α ∈ F .

2

The saturated sets are unions of sets of the form GF . Since Billingsley dimension

is based on countably additive measures, it is easy to apply our results to countable

unions. In the next theorem we handle uncountable unions.

Theorem 2.3 Under hypotheses H1, H2 and H3, let {Ft: t ∈ T } be a collection of

closed connected subsets of Mν
S such that

⋃
T Ft 6= ∅. Then

dimν(
⋃

t∈T
GFt) = ŝ := sup

t∈T
inf

α∈Ft

hSh(α)

〈 eν , α 〉 .

Proof: That dimν(∪t∈T GFt) ≥ ŝ follows from the definition of Billingsley dimension

and proposition 2.2. Each ω ∈ ⋃
T GFt has the property that {Tn(ω)} has a limit point

α with hSh(α)/〈 eν , α 〉 ≤ ŝ. We could then consider instead of the given union, the

set of ω corresponding to all such α, but this set of α ∈ Mν need not be closed, so

we cannot apply our upper bound of proposition 2.1. However, we prove in lemma 2.1

below, that for s, 0 < s < 1, there exists a sequence of closed sets {W s
n ⊂ Σν} such

that dimν(W
s
n) ≤ s and

⋃
W s

n contains all ω ∈ Σν such that {Tn(ω)} has a limit point

α with hSh(α)/〈 eν , α 〉 < s. This shows that

dimν(
⋃

t∈T
GFt) ≤ s, ∀ s > ŝ .

2

Lemma 2.1 Assume H1, H2 and H3. For s, 0 < s < 1, there exists a sequence of sets

{W s
n: n ∈ N} in Σν such that dimν W s

n ≤ s; if {Tk(ω)}, ω ∈ Σν, has limit point α, then

ω ∈ ⋃
W s

n, provided that

hSh(α)

〈 eν , α 〉 < s . (2.6)

Proof: Define

Ds
n := {α ∈Mν :

1

n
Hn(α) ≤ s〈 eν , α 〉} ,

and let W s
n ⊂ Σν be those points ω for which {Tn(ω)} has a limit point in Ds

n. The set

Ds
n is closed because Hn( · ) and 〈 eν , · 〉 are continuous. If Ds

n = ∅, then dimν(W
s
n) = 0;

otherwise proposition 2.1 and the fact that

Hn(α)

n
↓ hSh(α)

imply that dimν(W
s
n) ≤ s. Now let α ∈ Mν satisfy (2.6). Then for some n

Hn(α)/n < s〈 eν , α 〉, so α ∈ W s
n. 2
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3. Proof of proposition 2.1

3.1. Preliminary results

Lemma 3.1 Let ν ∈MS be a probability measure which possesses a continuous strictly

positive regular conditional probability ν(ω1|ω2, ω3, . . .). Then

eν(ω) := − log ν(ω1|ω2, ω3, . . .)

satisfies (2.1). If ν satisfies (2.1), then for each δ > 0 there exist mδ, Nδ ∈ N and

fδ ∈ Fmδ
so that for all n ≥ Nδ, for all ω ∈ Σν, |eν(ω)− fδ(ω)| ≤ δ and

|〈 fδ, Tn(ω) 〉+
1

n
log ν([ωn

1 ])| < δ . (3.1)

Proof: When there exists eν satisfying (2.1), the bound (3.1) follows from the fact

that local functions are dense in the set of continuous functions. For the conditional

probability distribution case to simplify the notation we set

h(ω) :=





eν(ω) = − log ν(ω1|ω2, ω3, . . .) if ω ∈ Σν ;

+∞ otherwise.

hn(ω) := − log ν(ω1|ω2, . . . , ωn) .

We have

hn(ω) = − log
∫

exp(−h(ω)) dν(ωn+1, ωn+2, . . . |ω2, . . . , ωn) .

It follows that

‖hn‖ν := sup
ω∈Σν

hn(ω) ≤ sup
ω∈Σν

h(ω) =: ‖h‖ν .

By hypothesis h is continuous on Σν . Therefore, for each δ > 0 there exist mδ ∈ N and

a local function f̂δ ∈ Fmδ
, so that

|h(ω)− f̂δ(ω)| < δ/2 ∀ω ∈ Σν .

Since h ≥ 0, this inequality is maintained if any negative value of f̂δ is replaced by 0.

f̂δ is explicitly defined on Xmδ
(Σν); we set

fδ(ω) :=





f̂δ(ω) if Xmδ
(ω) ∈ Lν

mδ
and f̂δ(ω) ≥ 0 ;

0 otherwise.

We have, for ω ∈ Σν ,

exp(−fδ(ω)− δ/2) < ν(ω1|ω2, . . .) < exp(−fδ(ω) + δ/2) .

For n ≥ mδ, using the measure dν(ωn+1, . . . |ω2, . . . , ωn) to integrate the above and

noting that fδ(ω) depends only on ω1, . . . , ωmδ
, we have

exp(−fδ(ω)− δ/2) < ν(ω1|ω2, . . . , ωn) < exp(−fδ(ω) + δ/2) ;

hence for n ≥ mδ

|hn(ω)− fδ(ω)| < δ/2 ∀ω ∈ Σν .
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Slightly abusing function notation, we note that

− log ν[ωk
1 ] = h1(ωk) + h2(ωk−1, ωk) + · · ·+ hk(ω) =

k∑

j=1

Sk−jhj(ω) .

Therefore,

∣∣∣− 1

k
log ν[ωk

1 ]− 〈 fδ, Tk(ω) 〉
∣∣∣ ≤

∣∣∣1
k

k∑

j=1

Sk−j (hj(ω)− fδ(ω))
∣∣∣

≤ k + 1−mδ

2k
δ +

mδ − 1

k
(‖h‖ν + ‖fδ‖) .

2

Corollary 3.1 Let ν ∈ MS be a probability measure verifying hypothesis H3. For

α ∈Mν we have |〈 eν , α 〉 − 〈 fδ, α 〉| ≤ δ and

lim
n→∞−

1

n

∑

ωn
1 ∈Lν

n

α[ωn
1 ] log ν[ωn

1 ] = 〈 eν , α 〉 .

3.2. Proof of proposition 2.1

Since ν verifies hypothesis H3, the conclusions of lemma 3.1 hold. Let F ⊂ Mν
S be a

closed subset. With s∗ as defined in the proposition, assume that s∗ < s < 1. It is

sufficient to show that there exists a collection of cylinder sets {Bn: n ∈ N} such that

ΩF ⊂ ⋃
n

Bn,
∑
n

ν[Bn]s < ε .

For δ > 0 (to be specified more precisely below) and a > 0 define F a,δ by

F a,δ := {α ∈ F : |〈 fδ, α 〉 − a| ≤ δ} ,

with fδ specified in lemma 3.1. Suppose that F a,δ 6= ∅; the closed neighbourhoods

UM,ε := {α ∈M: ∃α′ ∈ F a,δ , ‖α− α′‖M ≤ ε} ,

are such that
⋂

M,ε

UM,ε = F a,δ .

Since hSh is upper semi-continuous on MS, one can find a closed neighbourhood, say

F̂ a,δ := UM,ε, so that M ≥ mδ, |〈 fδ, α 〉−a| ≤ 2δ for all α ∈ F̂ a,δ, and if α ∈ F̂ a,δ ∩MS,

then hSh(α) ≤ supα∈F a,δ hSh(α) + δ. Define

Γa,δ
n := Xn+M

[
{ω ∈ Σν : Tn(ω) ∈ F̂ a,δ}

]
.

Since we cover FG by such cylinder sets, we need an upper bound for
∑

ωn+M
1 ∈Γa,δ

n

ν([ωn+M
1 ])s .

For ω ∈ Σν , such that Xn+M(ω) ∈ Γa,δ
n , we have for n ≥ Nδ (lemma 3.1),

|〈 fδ, Tn(ω) 〉 − a| ≤ 2δ and
∣∣∣ 1

n + M
log ν([Xn+M(ω)]) + a

∣∣∣ < 3δ .



Billingsley dimension 12

Hence

log
∑

ωn+M
1 ∈Γa,δ

n

ν([ωn+M
1 ])s ≤ log |Γa,δ

n |+ s
(

max
ωn+M

1 ∈Γa,δ
n

log ν([ωn+M
1 ])

)

≤ log |Γa,δ
n |+ s(n + M)(−a + 3δ) .

To estimate log |Γa,δ
n |, we use a standard large deviations result for the empirical measure

Tn on the probability space (Ω, β), where β is the uniform product probability: for any

compact subset K ⊂M
lim sup

n

1

n
log β({ω ∈ Ω: Tn(ω) ∈ K}) ≤ sup

α∈K∩MS

(hSh(α)− log r) .

(if K ∩ MS = ∅, then the supremum is equal to −∞). We apply this result with

K = F̂ a,δ; the set {ω: Tn(ω) ∈ F̂ a,δ} is Fn+M -measurable. Therefore

β({ω ∈ Ω: Tn(ω) ∈ F̂ a,δ}) =
|Xn+M({ω ∈ Ω: Tn(ω) ∈ F̂ a,δ})|

rn+M
.

Hence, for n large enough,

log |Γa,δ
n | = log |Xn+M({ω ∈ Ω: Tn(ω) ∈ F̂ a,δ})|

≤ n
(

sup
α∈F̂ a,δ∩MS

(hSh(α) + δ)
)
.

By the choice of F̂ a,δ, definition of s∗, F a,δ ⊂ F and corollary 3.1, we then have

sup
α∈F̂ a,δ∩MS

hSh(α) ≤ sup
α∈F a,δ

hSh(α) + δ ≤ sup
α∈F a,δ

s∗(δ + 〈 fδ, α 〉) + δ ≤ s∗ a + 3δ .

Therefore

log
∑

ωn+M
1 ∈Γa,δ

n

ν([ωn+M
1 ])s ≤ (n + M)[a(s∗ − s) + 7δ] .

The constant Cν of hypothesis H3 is strictly positive. If F a,δ 6= ∅, then we have (corollary

3.1) a ≥ Cν − 2δ. We choose δ > 0, so that Cν − 3δ > 0 and for all a ≥ Cν − 3δ,

a(s∗ − s) + 7δ < 0. Since F is compact, we can cover F by finitely many sets of the

form F̂ aj ,δ, j = 1, . . . , k, with aj ≥ Cν − 3δ. For such {aj} and δ, we can find M so that

the sum

∑

n≥m

k∑

j=1

∑

ωn+M
1 ∈Γ

aj,δ
n

ν([ωn+M
1 ])s

can be made arbitrarily small by taking m sufficiently large. If ω ∈ Σν is such that

{Tn(ω)} has a limit point in F , then ω is in

∞⋃
n=m

k⋃

j=1

⋃

ωn+M
1 ∈Γ

aj,δ
n

X−1
n+M{ωn+M

1 }

for arbitrary large m. Hence, for arbitrary large m,

{[ωn+M
1 ]: ωn+M

1 ∈ Γaj ,δ
n , 1 ≤ j ≤ k , n ≥ m}

is a cover of FG. 2
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4. Proof of proposition 2.2

Let F ⊂ Mν
S be a nonempty, closed and connected subset. We do not try to deal

directly with GF but instead generate a subset B ⊂ Σν whose limit points are exactly

the points of the closed connected set F , and so that we can compute its Billingsley

dimension. The construction of B is the main part of the proof of proposition 2.2. It is

done in subsection 4.1, and the main results are summarized in proposition 4.1

4.1. Construction of B ⊂ GF

The idea of the construction of B is simple. We construct a dense sequence in F , {α′n},
an increasing sequence of integers {Lj} and a sequence of subsets Γα′j ⊂ Lν

Lj
, in such a

way that for ω, with XLj
(ω) ∈ Γα′j , we have TLj

(ω) ≈ α′j (i.e., in a neighbourhood of

α′) and log |Γα′k | ≈ LjhSh(α
′
j). This is possible because of hypotheses H1 and H3. We

then use hypothesis H2 in order to construct a set B, whose elements are obtained by

concatenation of the words of the sets Γα′j . The sets Γα′j are chosen to make F the set

of limit points of {Tn(ω)} for each ω ∈ B. We first describe the construction of the set

B from the sets Γα′
k
, and then the construction of the sequence {Γα′

k
}.

We define iteratively a sequence of subsets of Lν , B1, B2, . . ., so that each word of

Bk is a prefix of a word of Bk+1, so that we can define B as the limit of these sets,

B :=
⋂

k

⋃

w∈Bk

[w] .

Let B1 := Γα′1 ⊂ Lν
L1

. On B1 we define a function

b1(w) := |w| .
For each w ∈ B1 we have b1(w) = L1 and gr(w) ≤ g(L1), and for each w ∈ Γα′2 we have

gl(w) ≤ g(L2). According to H2, for each w1 ∈ B1 and each w2 ∈ Γα′2 , there exists at

least one word v12 of length |v12| ≤ g(L2), so that w1v12w2 ∈ Lν . In this way we obtain

for each w1 ∈ B1 a set E ′(w1) of |Γα′2| new words, which have the same prefix w1, but

not necessarily the same length. For lemma 4.1 it is important that all words of the

form w1v12w2, with the same prefix w1, have the same length. In order to achieve this

we select a subset E(w1) ⊂ E ′(w1). We partition E ′(w1) into at most g(L2)+1 subsets,

so that each word in a given element of the partition has the same length. We choose

for E(w1) an element of the partition of maximal cardinality. By definition

B2 :=
⋃

w1∈B1

E(w1) .

On B2 we define a function b2,

b2(w) := |w| .
In general b2 is not constant. Notice that b1 can be defined also on B2. We have

b1(w) + L2 ≤ b2(w) ≤ b1(w) + L2 + g(L2) for all w ∈ B2, and

|B2| ≥
|B1| · |Γα′2|
g(L2) + 1

. (4.1)



Billingsley dimension 14

We say that B2 is a concat-product of B1 and Γα′2 . Of course, a concat-product is in

general not unique, since it depends on the specific choices of the words v12 in w1v12w2

and of E(w1), but it is well-defined. By hypothesis H2, for all w ∈ B2, gr(w) ≤ g(L2).

We can iterate this procedure, and define Bk as a concat-product of Bk−1 and Γα′
k
,

and on Bk the function bk(w) := |w|, as well as the extensions of the functions bj,

j + 1, . . . , k − 1, on Bk are well-defined. Because of the prefix property the set B is

well-defined. It is convenient to define b0 on B by b0(ω) := 0. The next lemma shows

that the functions bk, for all k ∈ N, are well-defined on B.

Lemma 4.1 Each ω ∈ B has a unique decomposition into

ω = w1v12w2v23w3 · · · with wj ∈ Γα′j , j ∈ N .

Let ω, ω̂ ∈ B. Then ω = ω̂ if and only if

bk(ω) = bk(ω̂) ∀ k ∈ N and ω
bj

bj−Lj+1 = ω̂
bj

bj−Lj+1 ∀ j ≥ 1 .

Proof: Let ω ∈ B. Suppose that

ω = w1v12w2v23w3 · · · = ŵ1v̂12ŵ2v̂23ŵ3 · · · .
Since b1(ω) = L1 for all ω, we must have w1 = ŵ1. This implies that w1v12w2 ∈ E(w1)

and w1v̂12ŵ2 ∈ E(w1), and therefore |v12w2| = |v̂12ŵ2|. But |w2| = |ŵ2|, and therefore

w2 = ŵ2 and v12 = v̂12. Hence b2(ω) is well-defined. By induction this proves the

first statement. The second statement follows from the fact that at each step of the

construction of B, the choice of vn n+1 depends only on w1v12w2v23w3 · · ·wn and wn+1.

2

We describe the construction of the sequence {Γα′
k
} in detail. For each ε > 0 there

exists a finite sequence of points α1, . . . , αn in F such that each point of F is within

ε of some αj. Because F is connected, possibly repeating some αj, we can choose

this sequence so that α1, . . . , αn′ is not more than ε away from any point of F and

‖αj − αj+1‖ < 2ε for each j. Extending this argument we deduce the following.

Lemma 4.2 Let F be a nonempty closed connected set of the compact metric space

(Mν
S, ‖ · ‖). Then there exists a sequence α1, α2, . . . in F so that the closure of

{αj: j ∈ N, j > n} for each n ∈ N equals F and

lim
j→∞

‖αj − αj+1‖ = 0.

Let ε < 1 and α ∈ Mν
S. By lemma 3.1 there exists Nε, mε and fε ∈ Fmε , so that

for all n ≥ Nε,
∣∣∣ 〈 fε, Tn(ω) 〉+

1

n
log ν([ωn

1 ])
∣∣∣ <

ε

3
and | fε(ω)− eν(ω) | < ε

3
∀ ω ∈ Σν .

Define M(ε) ∈ N by

M(ε) := max
{
mε, min{m ∈ N: 21−m ≤ ε}

}
.

For ρ, ρ′ ∈M, since ‖ρ− ρ′‖TVn ≤ 2, we have

‖ρ− ρ′‖M(ε) < ε =⇒ ‖ρ− ρ′‖ < 2ε .
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For fixed α and ε > 0, by corollary 2.1, there exist sets Γ(α, n) ⊂ Lν
n and N(α, ε) ≥ Nε,

so that for all n ≥ N(α, ε),

‖Tn(ω)− α‖M(ε) <
ε

3
∀ ω ∈ Σν , Xn(ω) ∈ Γ(α, n) ;

g(n)

n
< ε ;

log |Γ(α, n)| > n
(
hSh(α) +

log(g(n) + 1)

n
− ε

)
;

| 〈 eν , α 〉+
1

n
log ν([ωn

1 ]) | < ε ∀ ωn
1 ∈ Γ(α, n) .





(4.2)

We choose a dense sequence {αn}, as in lemma 4.2, and a sequence {εn ↓ 0}; we

assume that ε1 < ε, 0 < ε < 1 arbitrary but fixed, and set Nk := N(αk, εk), so that

conditions (4.2) hold for all n ≥ Nk, with α = αk and ε = εk. From these inputs

we construct a new sequence {α′k}, a sequence of integers {Lk} and sets Γα′
k
. The

construction of {α′k} is done by stretching the sequence {αk}. This amounts to define

an increasing diverging sequence of integers {Km} and to define the stretched sequence

{α′k} by

α′k := αm if Km ≤ k < Km+1 .

We write α′k ≡ αjk
. We also stretch the sequence {εk} in the same way. α′k and Lk are

defined iteratively.

To start we set j1 := 1, α′1 := αj1 and L1 := Nj1 , so that for all n ≥ L1 conditions

(4.2) obtain; set Γα′1 := Γ(αj1 , L1) and B1 := Γα′1 . Assume that α′m ≡ αjm and Lm have

been chosen for 1 ≤ m ≤ k.

A1 Check whether

‖Tbk(ω)(ω)− αjk
‖ < 5εjk

, (4.3)

fails to hold for any ω ∈ Bk. If this is the case, then go to A2. If this is not the

case, i.e. (4.3) holds for all ω ∈ Bk, go to A3.

A2 Set

jk+1 := jk , Lk+1 := Lk + 1 , L̂k+1 := Lk+1 + g(Lk+1) .

Define Γα′
k+1

:= Γ(αjk+1
, Lk+1) (see (4.2)). Construct Bk+1, a concat-product of Bk

and Γα′k+1
. Then start again at A1.

The new strings of Bk+1 have length bk+1(ω),

bk(ω) + Lk+1 ≤ bk+1(ω) ≤ bk(ω) + L̂k+1 .

We continue with the same αjk
and tolerance εjk

until Tbk(ω)(ω) is within 5εjk
of αjk

for

each ω ∈ Bk. Estimate (4.5) below shows this eventually occurs. This assures that for

ω ∈ B, the sequence {Tn(ω)} gets close to each αj, the criterion of closeness approaching

0 as j → ∞. Note that we increment Lk by one at each step. This is convenient, but

not essential.
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A3 Check whether Njk+1 > Lk + 1. If this is the case, then go to A2. If this is not the

case, i.e. Njk+1 ≤ Lk + 1, then go to A4.

A4 Set

jk+1 := jk + 1 , Lj+1 := Lj + 1 , L̂k+1 := Lk+1 + g(Lk+1) .

Define Γα′
k+1

:= Γ(αjk+1
, Lk+1). Construct Bk+1, a concat-product of Bk and Γα′

k+1
.

Then start again at A1.

Using this algorithm we construct the sets Γα′k . Set ε′k := εjk
. Because of the rules, we

have by definition

Ln = L1 + (n− 1)

and
n∑

j=1

Lj = nL1 +
n∑

j=1

(k − 1) = n

(
L1 +

(n− 1)

2

)
.

Since εj < 1 and (4.2) holds,
n∑

1

Lj ≤ bn(ω) ≤
n∑

1

L̂j < 2
n∑

1

Lj .

The next estimates are important,

lim
n→∞

L̂n

bn−1

= 0 and lim
n→∞

n

bn−1

= 0 .

To simplify the notations we drop from now on the prime index, and write bj for bj(ω).

We prove estimate (4.5) and show that B ⊂ GF . Let ω ∈ B, n = bm + k with

0 ≤ k < bm+1 − bm, and 0 ≤ q < m. We have

Tn(ω) =
bq

bm + k
Tbq(ω)+

m−1∑

j=q

bj+1 − bj

bm + k
Tbj+1−bj

(Sbjω)+
k

bm + k
Tk(S

bmω) .(4.4)

Using (4.2) and

‖Tn(ω)− Tm(ω)‖ ≤ 2(n−m)

n
if n > m ,

we get for ω ∈ B, with q = 0,

∥∥∥ Tbm+k(ω)−
m−1∑

j=0

bj+1 − bj

bm + k
TLj+1

(Sbjω)
∥∥∥ ≤ 2k

bm

+ 2
m−1∑

j=0

bj+1 − bj

bm

εj+1 ,

and
∥∥∥ Tbm+k(ω)−

m−1∑

j=0

bj+1 − bj

bm

αj+1

∥∥∥ ≤ 3k

bm

+ 3
m−1∑

j=0

bj+1 − bj

bm

εj+1 . (4.5)

Suppose that limp Tnp(ω) = α. We write np = bmp + kp with 0 ≤ kp < bmp+1. According

to the construction of B, if p is large enough, there exists αj ∈ F , and a decomposition

of mp into mp = qp + tp, with

‖Tbqp
(ω)− αj‖ ≤ 5εqp and ‖TLqp+i

(Sbqp+i−1ω)− αj+1‖ ≤ εj+1

3
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for all i = 1, . . . , tp . Using (4.4) we get that

‖Tbmp
(ω)− αj‖ ≤ 5εj +

εj+1

3
+ ‖αj − αj+1‖+

2kp

bmp

.

This shows that α ∈ F . Similarly, one shows that each α ∈ F is a limit-point of F .

Finally, by (4.1) and (4.2)

log |BN | ≥
N∑

j=1

Lj(hSh(αj)− εj) .

We summarize the results of subsection 4.1 as follows.

Proposition 4.1 Let ε, 0 < ε < 1. Let F ⊂ MS be a nonempty closed and connected

set. Then there exist a sequence of subsets Bn ⊂ Lν, n ≥ 1, an increasing diverging

sequence of integers Ln, n ≥ 1, a decreasing sequence εn, n ≥ 1, such that εn ≤ ε and

limn εn = 0, and a sequence αn ∈ F , n ≥ 1 with the following properties.

1. The closure of {αj : j ≥ n} is F , for all n ≥ 1.

2. log |Bn| ≥ ∑n
j=1 Lj(hSh(αj)− εj).

3. Each word of Bn is a prefix of a word of Bn+1, and

B :=
⋂

k

⋃

w: w∈Bk

[w] ⊂ GF .

4.2. Proof of proposition 2.2

Proposition 2.2 is trivial if s∗ = 0. We therefore assume that 0 < s < s∗. We construct

B as in proposition 4.1, and show that Cs(B) = ∞. To compute Cs
δ(B) we can consider

finite covers since B is compact. Let D be a finite cover of B. Each cylinder of D is

labeled by a word in Lν , and we also denote the set of these words by D. Two cylinders

labeled by two different words, say w1 and w2, are either disjoint or one is a subset of

the other. The latter case occurs if and only if one of the word is the prefix of the other.

For each n ∈ N we set

yn := min{ν([w]): w ∈ Bn} .

The main part of the proof of Cs(B) = ∞ is lemma 4.3.

Lemma 4.3 Let 0 < s ≤ 1. Let D be a cover of B, so that ν([w]) < yN , for all w ∈ D.

Then there exists n ≥ N so that

∑

w∈D
ν([w])s ≥ exp (

n∑

j=1

Lj(hSh(αj)− εj)) ys
n+1 .

Proof: Since ν([w]) < yN , each w ∈ D is of the form w = vu, with v ∈ BN . Moreover,

any v ∈ BN appears as prefix, since D is a cover of B. We write
∑

w∈D
ν([w])s =

∑

v∈BN

∑

u: vu∈D
ν([vu])s .

Let v∗ ∈ BN so that for all v ∈ BN ,
∑

u: vu∈D
ν([vu])s ≥ ∑

u: v∗u∈D
ν([v∗u])s .
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Then, by proposition 4.1,

∑

w∈D
ν([w])s ≥ |BN |

∑

u: v∗u∈D
ν([v∗u])s ≥ exp (

N∑

j=1

Lj(hSh(αj)− εj))
∑

u: v∗u∈D
ν([v∗u])s .

Either

∑

w∈D
ν([w])s ≥ exp (

N∑

j=1

Lj(hSh(αj)− εj)) ys
N+1 ,

or

∑

w∈D
ν([w])s < exp (

N∑

j=1

Lj(hSh(αj)− εj)) ys
N+1 .

In the latter case, we have
∑

u: v∗u∈D
ν([v∗u])s < ys

N+1 ,

so that ν([v∗u]) < yN+1 for all u. Let PN+1 := {v ∈ BN+1: v∗ is a prefix of v}. For each

u such that v∗u ∈ D, we can write v∗u = v′u′, with v′ ∈ PN+1. Since D is a cover of B,

all prefixes v′ ∈ PN+1 occur in the decompositions of v∗u = v′u′. By the construction of

BN+1 and (4.2), we have

|PN+1| ≥ exp (LN+1(hSh(αN+1)− εN+1)) .

Choose v′∗ ∈ PN+1 so that for all v′ ∈ PN+1,
∑

u′: v′u′∈D
ν([v′u′])s ≥ ∑

u′: v′∗u′∈D
ν([v′∗u

′])s .

Therefore we get

∑

w∈D
ν([w])s ≥ exp (

N∑

j=1

Lj(hSh(αj)− εj))
∑

u: v∗u∈D
ν([v∗u])s

= exp (
N∑

j=1

Lj(hSh(αj)− εj))
∑

v′∈PN+1

∑

u′: v′u′∈D
ν([v′u′])s

≥ exp (
N+1∑

j=1

Lj(hSh(αj)− εj))
∑

u′: v′∗u′∈D
ν([v′∗u

′])s .

We can repeat the above argument; since the cover D is finite, there exits n ≥ N such

that
∑

w∈D
ν([w])s ≥ exp (

n∑

j=1

Lj(hSh(αj)− εj)) ys
n+1 .

2

We complete the proof of proposition 2.2. By lemma 3.1 and (4.5) we have

lim
n

sup
w∈Bn+1

∣∣∣∣∣∣
1

bn+1

log ν([w]) +
n∑

j=0

bj+1 − bj

bn+1

〈 eν , αj+1 〉
∣∣∣∣∣∣
= 0 . (4.6)
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For δ > 0 there exists Nδ so that for n ≥ Nδ we deduce from (4.6), (4.1), (4.2) and the

inequality hSh(αj)/s∗ ≥ 〈 eν , αj 〉 ≥ Cν that
n∑

j=1

Lj(hSh(αj)− εj) + s log yn+1 ≥

n∑

j=1

hSh(αj)(Lj − s

s∗
(bj − bj−1))− s(bn+1 − bn)〈 eν , αn+1 〉 −

n∑

j=1

Ljεj − δsbn+1.

Taking δ > 0 so that s δ < (s∗ − s) Cν and noting that limn
∑n

1 Lj/bn+1 = 1, we deduce

lim inf
n

exp (
n∑

j=1

Lj(hSh(αj)− εj)) ys
n+1 = ∞ ,

and therefore Cs(B) = ∞ by lemma 4.3. 2

5. Application to irreducible sofic shifts

It is known that irreducible, aperiodic sofic shifts satisfy a specification condition, so

theorem B of [EKW] implies that H1 obtains. We give another proof here which does

not require aperiodicity, and then remark that H2 obtains. We also show that the

measure of maximal entropy on an irreducible sofic shift verifies H3, so that our results

apply for such a measure. Let ν ∈ MS be a non-atomic probability measure, Σν the

corresponding shift space. We follow [LM] for the treatment of sofic shifts+.

Proposition 5.1 Suppose that the shift space Σν is an irreducible sofic shift, and let

α ∈Mν
S. Then for any neighbourhood U of α, and for any ε > 0, there exists an ergodic

α′ ∈ U ∩Mν
S such that hSh(α

′) ≥ hSh(α)− ε.

We first prove the following

Lemma 5.1 Let G = (G,L) be an irreducible, fixed labeled graph, which is a minimal

right-resolving presentation of Σν. Let G = (V , E) be the underlying graph, with set of

vertices V := {A1, . . . , Ap} and set of edges E. Assume that there exists Aj with at least

two distinct outward edges. Then there exists a prefix-code with p2 synchronizing words

T := {wj,k: j, k = 1, . . . , p} such that wj,k has a presentation with initial vertex Aj and

terminal vertex Ak.

Proof: We suppose that A1 is the vertex with two outward edges. For every Aj there

exists a synchronizing word, which has a presentation by a path from Aj to A1 (see

proposition 3.3.16 in [LM]). For each Aj we choose such a word of minimal length and

denote it uj. Note that possibly ui = uj for i 6= j. Because of the minimality property

the set of these words is a prefix code. Next choose two nonempty distinct words w0 and

w1 so that they have presentations with initial and terminal vertices A1 and in these

+ Chapter 3 of [LM] is written for two-sided sofic shifts. Our case corresponds to the one-sided shifts
as defined in [LM] p. 461.
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presentations A1 does not otherwise appear. We construct a prefix-code with exactly p2

words by setting

vj,k := w0 · · ·w0
︸ ︷︷ ︸

j times

w1 · · ·w1
︸ ︷︷ ︸

k times

w0 j, k = 1, . . . , p .

These words are used to encode the end-points of the paths presenting the words of T .

Finally let zk, k = 1, . . . , p be p words, such that zk has a presentation by a path from

A1 to Ak. We set

wj,k := ujvj,kzk j, k = 1, . . . , p and T := {wj,k: j, k = 1, . . . , p} .

2

Proof of proposition 5.1: If the minimal right-resolving presentation of Σν does not

have a vertex with two distinct outward edges, then Σν is finite and α is ergodic, so

there is nothing to prove. It remains to consider the case when the assumptions of

lemma 5.1 are satisfied. Let α ∈ Mν
S. For each n, Lα

n ⊂ Lν
n. We partition Lα

n into

p subsets Lα
n(i), i = 1, . . . , p, so that each y ∈ Lα

n(i) has a presentation by a path

starting at Ai. The partition is not in general unique; we make a specific choice. For

1 ≤ j ≤ p, we construct a set Wn(j). Let r be the maximal length of the words in

T . Let y ∈ Lα
n(i). We concatenate wj,i and y, and extend the word wj,iy to a word

in Lν
n+r by a specified choice if necessary. We do this construction for all y ∈ Lα

n; this

defines Wn(j) and a bijection between Lα
n and Wn(j), since we can recover y := ψ(w)

from w by first decoding the word of T , which is the prefix of y in w, and then reading

the next n letters. Notice that ψ is well-defined on Wn :=
⋃Wn(j). Each w ∈ Wn is

synchronizing; hence the terminal vertex, denoted by t(w), of any presentation of w is

unique. For w ∈ Wn we use s(w) to denote the initial vertex j of the unique wj,k ∈ T
which appears at the start of w. Next we introduce the p× p stochastic matrix

Mn = (Mn
i,j) , Mn

i,j :=
∑

w∈Wn(i), t(w)=Aj

α(ψ(w)) .

Let Yn be the product space Lα
n
N, whose elements are written y = (y1, y2, y3 · · ·), where

yj ∈ Lα
n. Given a vertex Ak ∈ V , we construct an injective map Φk

n: Y → Σν .

Φk
n(y) := w1w2w3 · · · is the concatenation of w1, w2, w3, where w1 ∈ Wn(k) and

ψ(w1) = y1, w2 ∈ Wn(t(w1)) and ψ(w2) = y2, and so on.

For each n ∈ N we construct a probability measure αn ∈ Mν . Let k∗ be a

recurrent state of the Markov chain defined by Mn on the state space {1, . . . , p}. Let

K∗ ⊂ {1, . . . , p} be the communicating class of k∗. Let M∗
i,j denote the restriction of

Mn
i,j to K∗. K∗ and M∗

i,j may depend on n, but for simplicity n is not included in the

notation. (M∗
i,j) is the stochastic matrix of a stationary ergodic Markov chain on K∗.

Let {m(j): j ∈ K∗} be the stationary distribution:

m(j) > 0,
∑

j∈K∗
m(j) = 1,

∑

i∈K∗
M∗

i,jm(i) = m(j).

We define αn on the algebra Fk(n+r). Each atom of Fk(n+r) is labeled by a word of Lν
k(n+r),

which is uniquely decomposed into k blocks of length n + r, ω
k(n+r)
1 ≡ w1w2 · · ·wk. For
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i ∈ K∗, w1 ∈ Wn(i) and w2, . . . , wk satisfying wj ∈ Wn(t(wj−1)), j = 2, . . . , k,

αn
i ([w1 · · ·wk]) :=

k∏

j=1

α([ψ(wj)]),

αn([w1 · · ·wk]) :=
∑

i∈K∗
m(i)αn

i ([w1 · · ·wk]),

with αn([w1 · · ·wk]) = 0 otherwise. αn is defined consistently on the increasing family

of algebras Fk(n+r), k ∈ N. Kolmogorov’s theorem implies the existence of αn. Let

W ∗
n :=

{
w ∈ Wn: s(w) ∈ K∗} .

It is not difficult to verify that αn is a stationary Markov chain with state space W ∗
n .

The stochastic matrix entry for (w,w′) equals zero unless s(w′) = t(w), in which case

it equals α([ψ(w′)]) > 0. For i, j ∈ K∗, it is possible to go from the vertex Ai to the

vertex Aj because K∗ is a communicating class. It follows that αn is a stationary ergodic

Markov chain on W ∗
n . Define the sequence {ρn} on Σν by

ρn :=
1

n + r

n+r−1∑

i=0

Siαn (5.1)

Lemma 5.2 Let α ∈ Mν
S. Then ρn is a stationary ergodic probability measure on Σν.

We have

lim
n

ρn = α

and

lim inf
n

hSh(ρn) ≥ hSh(α).

Proof: Since Sn+rαn = αn, ρ is stationary. Let f and g be two local positive functions.

To prove the ergodicity of ρn, we show that

lim
k

1

k

k−1∑

j=0

〈 f Sjg, ρn 〉 = 〈 f, ρn 〉 〈 g, ρn 〉 . (5.2)

Elementary estimates show that it suffices to do so for the case that k a multiple of

n + r.
k(n+r)∑

j=0

〈 f Sjg, ρn 〉 =
k∑

j=0

n+r−1∑

i=0

〈 f Sj(n+r)+ig, ρn 〉.

By the ergodicity of αn relative to Sn+r,

lim
k→∞

1

k(n + r)

k(n+r)∑

j=0

〈 f Sjg, ρn 〉 =
1

n + r

n+r−1∑

i=0

〈 f, ρn 〉〈Sig, ρn 〉

= 〈 f, ρn 〉〈 g, ρn 〉,
since Sρn = ρn. This implies (5.2).

We estimate the entropy of ρn. Hm( · ) is continuous and concave. Therefore

Hm(ρn) = Hm

( 1

n + r

n+r−1∑

j=0

Sjαn
)
≥ 1

n + r

n+r−1∑

j=0

Hm(Sjαn) .
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Recall that Hm(α) ≡ HF[1,m]
(α) is the entropy of the restriction of α on the algebra F[1,m],

which is generated by the projection X[1,m]. Denote by F[j,k] the algebra generated by

X[j,k]. We have

HF[1,m]
(Sjαn) = HF[j,m+j]

(αn) .

Let now m ≡ k(n+r), k ≥ 2. Let k1 be the smallest integer such that j ≤ k1(n+r), and

k2 the largest integer such that k2(n+ r) ≤ m+ j. We decompose the interval [j, m+ j]

in [j, k1(n + r)] ∪ [k1(n + r) + 1, k2(n + r)] ∪ [k2(n + r) + 1,m + j]. By monotonicity of

the entropy and definition of αn, HF[j,m+j]
(αn) ≥

HF[k1(n+r)+1,k2(n+r)]
(αn) = HF[1,(k2−k1)(n+r)]

(αn) = H(k−1)(n+r)(α
n) ,

and

H(k−1)(n+r)(α
n) = (k − 1)Hn(α) .

Therefore,

hSh(ρ
n) = lim

k

1

k(n + r)
Hk(n+r)(ρ

n) ≥ lim
k

k − 1

k(n + r)
Hn(α) =

1

n + r
Hn(α) .

Given ε > 0, if n is large enough, then hSh(ρ
n) ≥ hSh(α)− ε.

Next we compare 〈 f, ρn 〉 and 〈 f, α 〉 for f ∈ Fq. Let 1 ≤ q < n and define

ψ1(ω) := ψ(ωn+r
1 ). The function f is defined on Σν but the value of Sjf(ω) depends

only on ωj+q
j+1. Let y := ψ1(ω). Then

∣∣∣∣∣∣

n+r−1∑

j=0

Sjf(ω)−
n−q∑

j=0

Sjf(y)

∣∣∣∣∣∣
≤ (r + q − 1)‖f‖ . (5.3)

By the shift-invariance of α

n−q∑

j=0

〈Sjf(ψ1(ω)), αn 〉 = (n− q + 1)〈 f, α 〉 .

Inequality (5.3) implies
∣∣∣∣〈 f, ρn 〉 − n + 1− q

n + r
〈 f, α 〉

∣∣∣∣ ≤
r + q − 1

n + r
‖f‖ ;

hence limn〈 f, ρn 〉 = 〈 f, α 〉 . 2

Remark 1: That an irreducible sofic shift Σν satisfies H2 is easily seen as follows.

Consider a connected graph giving a minimal right resolving presentation. For each

pair of vertices A, B, let mA,B denote the length of the shortest path from A to B.

Let m be the maximum of mA,B over pairs of distinct vertices. Then for pair of words

w1, w2 ∈ Lν there is a word v ∈ Lν of length not greater than m so that w1vw2 ∈ Lν ;

hence g(n) = gl(w) = gr(w) ≡ m suffices.

Remark 2: The measure ν of maximal entropy of an irreducible sofic shift satisfies

H3. Let ν ′ be the Parry measure of an edge shift Markov chain whose projection is a

minimal right resolving presentation of ν (see [LM] for details). Let A(ω1, ω2) be the



Billingsley dimension 23

01-matrix corresponding to ν ′. Let λ be the Perron eigenvalue and u(ω1) and v(ω1) be

the left and right Perron eigenvectors normalized so that
∑

ω1
u(ω1)v(ω1) = 1. Then

ν ′[ωn
1 ] = u(ω1)v(ω1)

n−1∏

i=1

v(ωi+1)A(ωi, ωi+1)

λ v(ωi)
= λ1−nu(ω1)v(ωn),

hence eν′ :≡ log λ satisfies the corresponding (2.1). Since the unique measure of maximal

entropy ν on the sofic shift is the image of ν ′ under a finite to one map (see theorem 5

in [F2]), eν :≡ log λ satisfies H3 if ν is non-atomic. One can show that if ρ ∈ Mν
S is an

equilibrium state of an absolutely summable potential (see [LPS]) relative to ν, then ρ

satisfies H3 when ν does.

Remark 3: A simple example of a periodic sofic shift is the double even shift: for

ω ∈ Σ ⊂ {0, 1}N, whenever ωj 6= ωj+1 = ωj+2 = · · · = ωj+k 6= ωj+k+1, k is even. A

run of odd length could appear at the start of ω. Let ν denote the measure of maximal

entropy for this shift. Then ν(ω1|ω2, ω3, . . .) is not continuous at the two points ω ∈ Σν

where ωi = ωj for all i, j. Other sofic shifts have sets with nonzero entropy on which the

corresponding conditional probability kernel is not continuous.
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