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1. Introduction

We consider the computation of the leading term of exponentially small elements$itiadrix natu-
rally associated with singularly perturbed 3-dimensional systems of linear ordinary differential equations
without turning points on the real axis by means of the complex WKB method. Several progresses have
been made during the last few years on general aspects of this method in several directions, such as the
improvement of the asymptotics it yields [11] or its application to systems of ODE of higher dimen-
sion than two [7,3]. However, it is well known [2], that in general thienatrix cannot be completely
determined asymptotically for systems of dimension higher than 2.

In this note, we present a model whose study illustrates the fact that the complex WKB method can
actually give results for specific cases going beyond those proven in [7] or [3] for “generic” three-
dimensional systems. Indeed, for this modelwh®le S-matrix is computed asymptotically. Moreover,
and this is the main point of this study, this is true for a whole class of systems we describe at the end of
the paper.

Before introducing our model, let us mention that the complex WKB theory has a very long history
which can be retraced in the classics [4,15,14,1] for example. More recent developpements as well as
studies of non-generic situations can be found in [10,11,13,7,3] and references therein. The reader is
directed to this non-exhaustive list for an historic point of view and precise references on the general
aspects of the theory.

We now define our model and then explain in more details the strategy we will follow to determine the
correspondings-matrix. Consider the following system in the singular limit> 0

ie/(t) = H(t,0)Y(t), tER,e—0, (1.1)
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where the prime denotes the derivative with respe¢t tgt) € C2, and

1 tanh@ 0 0 0 tet
H(t,8) = H(t,0)+ §V(t) = (tanh@ -1 0 ) +5( O 0 O ) (1.2)
0 0  atanhf) te® 0 0

for o > 3v/2. Here, denotes a small strictly positive parameter which will be fixed below. It is readily
seen that fov > 0 the eigenvalues;(t, ), j = 1,2, 3, are non-degenerate for any¥ R, including

t = £o0, see below. This is the statement of the absence of turning point on the real axis, which is an
important hypothesis for the method. We note that the genefafw) is hermitian

H(t,6) = H*(t,0) (1.3)

and that it can be continued analytically in the stip= {z | [Im z| < 7/2}. The S-matrix associated
with this equation is defined as follows. Let(Z, ) be a complete set of normalized eigenvectors of
H(t,0) for t € R, associated with the eigenvaluegt, 6), j = 1, 2,3, which are uniquely determined
(up to a constant factor) by the phase fixing condition

(pi(t,0)|(t,6)) =0, VteR, j=1,2,3 (1.4)

Here(- | -) denotes the usual scalar productih
It can be shown that these eigenvectors are analytidrira neighbourhood of the real axis#f(¢, 6)
is analytic and self-adjoint on the real axis [12]. Hence, any solutighof (1.1) can be expanded as

3 t
W) = 3 ci(t) e o A (1 5) (1.5)

i=1

by means of unknown coefficients(t), j = 1, 2, 3, to be determined (omitting teeandé dependence

. rt
in the notation). The phases_'e[o ¢i(=#) /< are introduced for convenience. By inserting (1.5) in (1.1)

we get the following differential equation for the(t)'s

3
() =" aju(t, ) €mrtA e (1), (1.6)
k=1
where
t
Ajk(t,é):/o (¢(5,8) — ex(s,6)) ds (1.7)

and

aji(t, 0) = —(p;(t, O) @ (t, 8))- (1.8)
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Since our generator (1.2) tends to limiting matridé&t) (independent ob) fast enough ag — +oo
(exponentially fast), we have the existence of the litnits

tliim cj(t) = cj(£o0), j7=1,2,3 (2.9)

Then we define th&-matrix, S € M3(C), by the identity

c1(—0o0) c1(+00)
S (02(—oo)> = (cz(—i—oo)) . (2.10)
c3(—00) c3(+00)

We can think of Eq. (1.1) as describing the adiabatic limit of the Schrdédinger equation governed by
the time-dependent hamiltonian (1.2) and thenatrix describes the transition probabilities between the
different energy levels.

Under our hypotheses, the elemesis, j, k € {1, 2, 3}, of the S-matrix satisfy the estimates [1,2,4,
8,10,11,13-15]

5;(6) =1+ 0), je{1,23}, (1.11)
sjr=0(1%), I>0,j+#k (1.12)

in the limite — 0. We will compute the leading term afl exponentially small off-diagonal elements of
the S-matrix, ass — O.

This leading behaviour can be computed by shifting the path of integration of Eq. (1.1) from the real
axis to the upper or lower half plane, a harmless procedure for the solutirich is analytic in¥’. The
leading term we are looking for is thus determined somehow by the turning points, or degeneracy points,
defined as the set af € C such thak;(zo, 6) = ey (20, 6) for e; ande;,, some analytic continuation iy
of the corresponding eigenvalues defined on the real axis. The idea is to make use of the generic multi-
valuedness of the eigenvalues and eigenvectofs iofthe expansion (1.5) and thus get an exponentially

.t
small contribution as — 0 from the analytic continuations of the phasééfe ¢899/ This is the so-

called complex WKB method. Roughly speaking, this is some kind of steepest descent analysis which,
in general, requires more than one path in the complex plane. Moreover, because of their global nature,
the technical assumptions required to validate from a mathematical point of view this formal procedure
yielding the asymptotics of th8-matrix are neither easy to check, nor always satisfied. This important
step is sometimes neglected in applications, leading to incorrect results.

In the casen = 2, the situation is nevertheless well understood now, at least in generic cases, see [8,
10,11]. However, the corresponding conditions required when 3 may be incompatible for a given
generator, see [1,2] and [5]. This fact is expressed by M.V. Fedoryuk in the review [2] in the following
way: “In short, at present there is no global asymptotic theory for [linear] equations of orger3
and, in the author’s opinion, it is impossible to construct one in general.” Nevertheless, some light has
been cast recently on the case= 3 in a perturbative context we describe in more details below. Roughly
speaking H is assumed to depend on a supplementary parafetdd such that fov = 0, the spectrum
of H(t,6 = 0),t € R, displays real degeneracy points which,far 0, are turned into avoided crossings,

IActually, a dependence in§ of the limiting matrices is allowed and a decay characterized by
lime— oo [t]*F° SUR,|,yises IH(E +1s,6) — H(ZE, 6)[| < oo, uniformly in 6, for somea > 0 is enough [11,7].
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i.e., degeneracy points close to the real axis. Under some genericity conditions, it is possible to get the
asymptotic behaviour cdomeoff-diagonal elements of th8-matrix, namely those governed by these
avoided crossings.

The construction of our model (1.2) can now be explained. Whea 0, H(t, 0) consists in the
direct sum of a 2-dimensional system and a 1-dimensional system. The 2-dimensional system is such
that the off-diagonal elements of the associatechatrix are governed by one degeneracy point,gay
The third eigenvalue admits one real crossing point with each eigenvalue of the 2-dimensional system.
For 6 > 0 small, the two sub-systems get coupled and the real crossings mentionned above become
avoided crossings. Thus, the results in [7] yield the elements ofmatrix which are governed by the
induced degeneracy points close to the real axis. We show that due to the properties of the unperturbed 2-
dimensional sub-system and to the perturbative nature of the construction, it is also possible to compute
the missing elements of thfematrix associated with the perturbed degeneracy point which corresponds
to zp and which is thus located far from the real axis in the complex plane. As will be clear from our
analysis, a whole class of models sharing these same general properties can be dealt with in a similar
fashion. This class of models is specified in Section 6.

It is also possible to improve the accuracy of the asymptotic formulae we derive by making use of
the so-called superasymptotic renormalization procedure, see [9,11,7], but we will not deal with this
systematic aspect of the theory.

In the next two sections, we recall the basics and the main results in the complex WKB method and
make precise the hypotheses under which it works. The following sections contain the detailed study of
our model whereas the definition of the class of systems for which equivalent results hold follows.

2. Analyticity properties

As a first step, we recall the analyticity properties of the quantities of interest. The proofs of the
statements made here can be found in [12] and [6] for example.

The generatoi{ (z, 6) being analytic inY, the solution of the linear equation (1.4)z) is analytic
in X’ as well. The eigenvalues and the eigenvectors defined by (14)aan be analytically continued
in X but they may have isolated singularities, actually branching points at the set of degen@(aties
given by

2(6) = {20 | €j(z0,6) = ex(z0,6), for somek, j and some analytic continuatipn (2.1)

This set is symmetric with respect to the real axis due to Schwarz’s principle. We detefdnm a
perturbative manner in the parametewhens = 0, the unperturbed eigenvalues are given for al >

by
e1(z, 0) = atanhg), (2.2)

ea(z,0)= —\/1+ tantf(z), (2.3)
e3(z,0)= +1/1 + tant?(z). (2.4)

They display two real eigenvalue crossings at the points

{t, = —arctani{l/va? — 1), t, = arctani{l/va? — 1)}
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such that
ex(t1, 0) = ex(ts, 0), (2.5)
ex(t2, 0) = e3(t2, 0), (2.6)
9 (ea(t,0)— ext, O) i #0, @7)
%(el(t, 0) — es(t, 0)) |1, # O. (2.8)

Note that all eigenvalues are analytic at the real degeneracy peirtsdue to the self-adjointness of
H(t, 0) for realt. The only other degeneracy pointsihare {zo = iw/4,Zo} such that

e2(+20, 0) = e3(+20, 0). (2.9)
They are generic in the sense thHat, are square root branching points tafz, 0) — ex(z, 0). Hence
2(0) = {arctant{1l/v a? — 1), —arctani{1/v a? — 1), in /4, —im/4}. (2.10)

Whené > 0 is small enough, the eigenvaluegt, $), j = 1,2, 3, are nondegenerate for anyg R
and are analytic in a neighbourhood of the real axis. We have the following asymptotic relations with the
unperturbed eigenvalues(t, 0): we fix the indices of the non-crossing eigenvalugs, 6), z real, by
continuity and the condition

ej(—00,6) =ej(-0,0), =123 (2.11)
Then, we have

e1(+00, 6) = ez(+00, 0),

e2(400, 6) = e3(+00, 0),

e3(+00, 6) = e1(+00, 0), (2.12)

see Fig. 1.

More precisely, the real eigenvalue crossinfecomes an avoided crossing for the eigenvaly@ss)
andey(t, 6). This means that faf > 0 small enough, there exists a unique pai(b) with Im z1(6) > 0
andz;(6) — t1 = O(6) such that

e1(z,6) — ea(z,0) ~ vz — z1(6) (2.13)

for any analytic continuations @f; ande, in a neighbourhood of;, as easily verified by perturbation
theory. Hence:1(6) andz1(6) belong tof2(6). In the same neighbourhooel,(z, §) + e2(z, 6) andes(z, 6)
are analytic ands(z, ¢) is distinct from the other two eigenvalues. Similarly, there exists a unigde
with Im 22(6) > 0 andzz(6) — t2 = O(6) such that

ea(z,6) — e3(z,0) ~ 'z — 22(6) (2.14)
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Fig. 1. The pattern of avoided crossings of the model.

for any analytic continuations @b andes in a neighbourhood ab. Here,ex(z, 6) + e3(z, 6) andes(z, )
are analytic in this neighbourhood. Finally, in a neighbourhoodgof= i7/4 there exists a unique
20(6) = zo + O(6) and a pair of indiceg # k € {1, 2, 3}, depending on the analytic continuation of the
eigenvalueg;(z, 9), i = 1, 2, 3, from the real axis to this neighbourhood, such that

€j(2,0) — ep(z,6) ~ 'z — 20(6). (2.15)

The other eigenvalug(z, ) with [ # j, 1 # k ande;(z, ) + ex(z, 6) are analytic close tag(6). This
means that

02(6) = {21(6), 22(6), 22(6), 22(6), 20(6), 20(6) }, (2.16)

where allz;(6) are square root degeneracy points. By perturbation theory again, far any' \ 2(0)
andé > 0 small enough, there exists a neighbourhood iofwhich any analytic continuatiod;(z, 6) of
the perturbed eigenvalues is analytic and tends in the éfimit 0 to some corresponding analytic con-
tinuationey(z, 0) of the unperturbed eigenvalues. Similarly, the eigenvegtofs 6) defined on the real
axis are analytic on the real axis and possess multivalued analytic continuatibnsvith singularities
at 2(6). Of course, these multivalued eigenvalues and eigenvectors become single valued when defined
on a suitable multi-sheeted Riemann surface. Since we shall need the values of these quantities along
certain paths i \ £2(6) only, we do not need to introduce the Riemann surface explicitely.
For future reference, we need to see more precisely what happens to these multivalued functions when
we turn around a subset of degeneracy paints 2(6). This amounts to make a comparison between
the values of the eigenvalues on certain sheets of the Riemann surfagdd aoop based at the origin
which encirclesv and let {;(z, 6)}?2l be a set of eigenvalues defined in a neighbourhood of the origin
in X'\ £2(6). We perform the analytic continuation of this set along a patfhich is homotopic to; in
Y\ £2(6), see Fig. 2. We denote by {(z, 6)}j3}:1 the resulting set of analytic continuations which satisfies
for 6 > 0 small enough

€j(2,0) = eqs(j(2,0), =123, (2.17)
where

o:{1,2,3} — {1,2,3} (2.18)
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n
0 Z R

Y

Fig. 2. The loop; and the pathp.

is a permutation which depends gnFor example, if the loop encirclesz1(6) only, it follows from
(2.13) that the corresponding permutatiois such that

c({1,2,3}) ={2,1,3}. (2.19)
If n encircleszg(6) only, we get
c({1,2,3}) ={3,2,1}, (2.20)

sincee1(0,6) — e2(0, 0) andes(0,6) — e3(0, 0) asd — 0, whereas, if) encirclesz;(6), z2(6) andz(6),
one sees using, e.g., (2.12) that the corresponding permutation

c({1,2,3}) ={3,2,1}. (2.21)
Similarly, and with the same notations, we get for the analytic continuation of the eigenyettof)
along p, the eigenvectop;(z, 6) which must be proportional t@.(;)(z, ). We introduce the complex

quantityd;(n; 6) € C by the definition
QE](Z, 6) = eﬁiej(n;é)gpo.(j)(z, 5), ] = 1, 2, 3 (222)
One can also show, see [11], that the couplinggt) can be analytically continued ib'\ £2(6) so that
the differential equation (1.6) can be analytically continuedify £2(6) together with the coefficients
c;(t) solutions to (1.6). They admit multivalued continuationsin £2(6). In order that)(z) be analytic
throughoutX’, there must be a relation between the analytic continuatigf$ aroundp of the c;(z),
when z belongs to a neighbourhood of the real axis, and the analytic continuations of the eigenvalues
and eigenvectors. This is the key point of the method.

Lemma 2.1. For anyj = 1, 2, 3 we have
E](Z) efi fn ej(u,6) du/e e 10;(md) — Ca(j)(z)l (2.23)

wheren, 6;(n; 6) ando(j) are defined as above.



98 A. Joye and C.-E. Pfister / Complex WKB method

Proof. ¢(z) is analytic inX’ so that
3 oz 3 CE o
ZCJ(Z) e*l fO e](u,6)du/€(p](21 6) — Zgj(z) e*l fO e](u,6)du/€[ﬁ](21 6)
j=1 j=1
3 . s .
=3 ()@ S s [ e dufe it ) () (2.24)
j=1

We conclude by the fact thatf;(z, 6)} §:1 is a basis.

3. WKB estimates

We now come to the second essential point of the method. We see from Lemma 2:1=witho that
if we takecy(—oo) = ;3 as initial conditions at-oco, we have access to the elemept;); of the S-matrix
provided we can contral;(z) in the complex plane as— 0. This section describes basic estimates on
the coefficientg;(z) in certain domains extending to infinity in both the positive and negative directions
inside the strip¥.

It is obvious from the differential equation

3 -
a(2) = aw(z) €haE0/5g (2) (3.1)
=1

the coefficients(2) satisfy in X'\ £2(6) that sufficient control o@y (=) in the complex plane as— 0
can usually be achieved along special paths only, called dissipative paths, or inside special domains,
called dissipative domains. Lgte {1, 2, 3} be fixed and consider the initial condition in (1)

m G = lim o) =6, k=123 (3.2)

(where the analytic continuation of (3.1) for Re< Rez1(6) is performed from the real axis vertically
to z). We say that a pathy, € X'\ £2(6) parametrized by €] — o0, t] such that

lim Rey,(u) = —co,  (t) == (3.3)
is adissipative path fof j£} if it satisfies the monotonicity conditich
Im Ejk(yk(u), 8) is a non-decreasing function ofe ] — oo, t]. (3.4)

~i IS strictly dissipative fof jk} if Im Ejk(yk(u),é) is increasing as a function af €] — oo, t]. Here
Aj;, denotes the analytic continuation fgff(ej(s, 6) — er(s,0))ds from 0 along the real axisteT € R

2We note that due to the decay Hi(z, §) to its limits H(+) as Rez — oo in X as well, the limits lim_, +o, ¢;(t + is) are
independent of €] —7/2,7/2[.
®Note that the quantity Im;x(z, 8) is finite Vz € 5\ £2(6).
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with —T < Rez1(6), then up or down tey,.(—T) and finally alongy;. A sufficient condition fory, to be
strictly dissipative for §k} is

Im 5, (w) (e (Ve (), 6) — ex(Vk(u),8)) >0 Vu €] —o0,t], (3.5)

wheres(u) = d/du g (u).

It is a standard manipulation to see by an integration by parts on the exponentials in the \Volterra
equation corresponding to (3.1) that if there exists a path®\ £2(6) which links —oo to +oco and which
is dissipative forall couples §k}, & € {1,2, 3}, then, with the initial conditions (3.2), the following
estimate is true

&i(00) = 1+ O(e). (3.6)

We shall prove below the existence of such a path for our nfodelwever, in general, this notion is too
restrictive, see, e.g., [2], and we have to resort to the notion of dissipative domain.

We callD; C X'\ £2(6) a dissipative domain for the indexif it stretches from—oo to +o0o and if for
anyz € D; and anyk € {1, 2, 3}, there exists a dissipative path C D; for { jk} which links —oo to
z. Itis shown by similar methods that when such a dissipative domain exists for thejintiexsolution
of (3.1) subjected to the initial conditions (3.2) still satisfies (3.6) [8,7].

Proposition 3.1. Assume there exists a dissipative domainfor the index;. Letn; be a loop based
at the origin which encircles all degeneracy points between the real axis/anend leto; be the
permutation of labels associated wigh The loopr; is negatively, respectively positively, orientedif
is above, respectively below, the real axis. Then the solutidf.6§ subjected to the initial conditions
cx(—00) = 63, satisfies

fnj ej(z)dz/e

o, (+o0) = & Pi)e” (1+0). 3.7

Proof. Use Lemma 2.1 and estimate (3.6).

Remark. We can prove exponential estimates for the other coefficignys (+oc) by the same method,
see, e.g., [7].

The difficult part of the problem, as stressed in the introduction, is to prove the existence of such
domainsD;, which do not necessarily exist, and to have enough of them to compute the asymptotic of
the wholeS-matrix.

4. Avoided crossings

We apply the results of [7] to the avoided crossings of our model.

The main point of [7] is the proof of the existence of dissipative domains in an avoided crossing
context, assuming some genericity properties of the unperturbed genBr@td@), to be checked for
real t's.> Essentially:

“In particular, the real axis is a dissipative domain for all indices and we Bdvéu)) = c;(u). Hence we get by applying
this result for all indices successively thait= 1 + O(e).

®Mild regularity conditions on the behaviour &f(z, §) in (z, 6) € X'x]0, 6*], for some small positivé* (which are satisfied
by our generator (1.2)) are also assumed.
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() For each couple 1, £}, there exists at most one real crossing painof the eigenvalues;(t, 0)
andey(t, 0) which must be generic in the sense thad{¥(e; (¢, 0) — ex(t, 0))|;. # 0.

(i vj €{1,2,3}, the eigenvalue;(t, 0) crosses eigenvalues whose indices are all superjoottall
inferior to j.

Egs (2.5) to (2.8) show that o (¢, 0) satisfies those requirements. Under hypotheses (i) and (ii), it
is shown in Lemma 6.1 in [7] that: for eagh= 1, 2, 3, there exists a dissipative domd above or
below the real axis which is close to the real axis and such that all avoided crossings are befween
and the real axis. The permutatioms associated with these dissipative domains (see Proposition 3.1)
are independent of, o; = o, ando can be read on the pattern of avoided crossings of the eigenvalues
on thereal axis(see Fig. 1) in the following way: for any= 1, 2, 3, att = oo, the eigenvalue; (o, 0)
coincides withey (oo, ), for somek € {1, 2, 3}. Then we haves() = k, 1 = 1,2, 3 (see also below).
The dissipative domai; is above (resp. below) the real axis wheneyer o(j) (resp.; > o(j)). Note
that the actual shape of these domains is irrelevant for our purpose. It remains to apply the results of the
previous section to get the desired exponentially small asymptotic formula of the off-diagonal elements
sq(j)j» J = 1,2,3, of theS-matrix. Note that we only get one off-diagonal element per line and per
column from that result.

In our case, see Fig. ky(co0,0) = e3(00,8) so thato(l) = 3 andey(oo, 0) = e1(oo,8) so that
o(1) = 3. Thus we have

c({1,2,3}) ={3,1,2} (4.1)
so thatD; is above the real axis whered® and D3 are below the real axis in our case (actually,

D, = D3 = D1 [7]). See Fig. 3. Hence, with a negatively oriented loop based at the origin which
encirclesz1(6) andz(6) and denoting byj its complex conjugate, we get fér> 0 small enough

r =g D1 oy 42
om0 RECOEI (L o) @3
spg= e 10T GO/ (1 4 oy). (4.4)

We can rewrite these formulae in terms of quantities related to each avoided crossing and computed in
the upper half plane only in the following way. Let us introduce two negatively oriented loops based at the
origin, n1 andmn,, which encircle respectively; (6) andz2(6) only. The analyticity properties reviewed
above show that,

/%62(2,5) dz = /ﬁl ex(z,6)dz = /7;1 ex(z,6)dz = /171 e1(z, 6) dz, (4.5)

and similar identities for other loops and eigenvalues. Corresponding identities are true for the factors
e 19i(n9)  Indeed, the eigenvectoys;(z, 6) can be expressed ag(z, 6) = W(z)y;(0,6), whereW (z) €

®The remainder€(e) ares-dependent at that point. However, it should be possible to prove that they are actually uniform
in 8, using the techniques of [6].
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Zo (6) . D1
z(8) . z(d) R
= - . 0
D, =D,

2 -

Nwh!

Fig. 3. The positions of the dissipative domains.

M3(C) is multivalued inX'\ £2(6). Moreover, wherf (¢, 6), t € R, is self-adjoint,J¥/(¢) is unitary so that
W*(Z) = W(z), see [12,11,7]. As a consequence, we easily get the identities

e 101(n1:6) g=1602(n1;6) _ —1, (4.6)

e 101(1:0) — g=101(m:6) 4.7)

and their equivalents for other indices. Hence,

sa1= e—i91(n1;5)e—iﬁz(nz;é)e_i fnl e1(z,6) dz/ae—i fnz ez(z,6)dz/e (1 n O(E)), (48)
PR ey PO EC) “f 14 0@), (4.9)
spa= @O0 gy, 2D S (14 o). (4.10)

Note here that the positive exponential decay rates
1y(5) = —Im / e1(z,6) dz, (4.11)
m

(0)=—Im [ ex(z6)dz (4.12)
2

are such that

lim I;(5) =0, j=12, (4.13)

by continuity. The actual computation of the different prefactoréids addressed in an appendix of [9]
when the generator is self-adjoint and it can also be shown that they have vanishing modulusCas
see [6].
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We can get some more information by making use the unitarity afthmatrix, which is a consequence
of (1.3). It is shown in [7] (making use of exponential estimates mentionned after Proposition 3.1) that
there exists & > 0 independent of such that foy small enough

— _s1u —2[% /e
5,211 P
g — 512 522( +O(e )) 522 523 L (414)
531 Ty (1+ O(e?11/e)) 533
522

where alls;;, above can be computed asymptotically, see (1.11).

The smallest asymptotically computable elemesit describes the transition frore(—oo,6) to
ea(+00, 6). The result we get for this element is in agreement with the rule of the thumb claiming that the
transitions take place locally at the avoided crossings and can be considered as independent. Accordingly,
we can onlyestimatethe smallest element of akl;3, which describes the transition froeg(—oc, 8) to
e1(+00, 6), for which the avoided crossings are not encountered in “right order”, as discussed in [5]. This
is all we can say about th&-matrix under generic circumstances. We prove that it is possible however
to get an asymptotic expression for this element on our model, which must be governed by a degener-
acy point which is locatefar in the complex plane. This turning point corresponds to the degeneracy
point —i7 /4 of the unperturbed levels(z, 0) andes(z, 0), as explained in the introduction. We show in
the next section that;3 can be computed asymptotically for> 0 small enough, using the techniques
presented above, by proving the existence of a dissipative dawafor the index 3 in the lower half
plane which passes below all degeneracy paigs), z1(6), z2(6) in X. It is the fact that the relevant
turning point for the computation of 3 lies far away from the real axis which makes the existence of a
dissipative domairD3 non generic, in some sense.

5. Existence ofDs
As a first step, we show that there exists a dissipative dorainvith respect to the unperturbed
eigenvalues, located below the line tm= —x /4. The second step consists in proving that when
0, this domain remains dissipative, with respect to the perturbed eigenvalues now, prisdedall
enough. The associated permutation of indices is, see (2.21),
c({1,2,3}) ={3,2,1}. (5.1)
Actually, we show that any horizontal path parametrized by

T (T)=7+Iis; T€]—00,+x[; s€] —7/2,—7/4] (5.2)

is strictly dissipative for {32} and {31} and thus defines a dissipative domain Indeed, the strict
dissipativity conditions to fulfill are in such a case, see (3.5),

Im(e3(~(7),0) — e2(~(7),0)) >0, el _ o
{'m(es(v(f),o) —er(y(r).0) >0, T El oo Fodl s €] —m/2,—m/4] (5.3)
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which are equivalent for our model to

V1 €]l —oo,+o0[; s€] —n/2,—7/4[. (5.4)

IM2y/1 + tani(r +is) > 0,
Im \/1+ tant?(r + is) — atanh¢ +is) > 0,

Using the identities

sinh(2r) + isin(2s)
cosh(2) + cos(z)’
(costt(27) + cosh(2) cos() + cog(2s) — 1) + i sinh(2r) sin(2s)
2
(cosh(Z) + cos(%))2

tanh¢ +is) =

1+ tantf(r +is) = (5.5)
we see that the image of(ir) = 7 + is by 1+ tant?(z) is a loop which looks like Fig. 4 withs €
] —7/2,—7 /4], so that the image of by /1 + tant?(z) lies in the upper half plane, thus insuring that

Im /1 + tant?((r)) > 0, V1 €] —o0, +00[. As Imtanh¢ + is) = sin(2s)/(cosh(2) + cos(%)) < 0,
we see that both conditions (5.4) are satisfied along the horizontad/fgth
It remains to prove thai(r) is still dissipative wherd > 0 and small enough. We have

ej(26) = ¢;(z, 00+ O(6||V(R)), j=1,23, (5.6)
for all z € v and, in particular,
Im(e3(v(7),6) — e;(¥(7),6))
= Im(e3(7(7),0) — ¢;(¥(7),0)) + O(8||[V (v(™)|)), j=1,2, (5.7)
with
[V(r +is)| = O(Vr2+ 26 7)) = O(re ™). (5.8)

2 (cos (2s)+1)
cos (2s) 0 , R

Fig. 4. The image of by the function 1+ tant?(z).
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For || large,
Im \/1+ tanr?(r +is) = —%(1+ (’)(e*ZH)),
: (5.9)
_imtanhg + is) = ci';@) (14 O(e-2)

so that we can write

Im(e3(v(7),6) — e (v(1),6)) = Im(ez(7(7), 0) — e;(7(7),0)) (1 + O(67 e_(TZ_ZM))). (5.10)

Hence, for6 > 0 small enoughy(7) is dissipative and we can apply Proposition 3.1 to compuie
Introducing two negatively oriented loops based at the origimesp.nz which encirclezg(6) only, resp.
20(0), z1(6) andz»(6), we get by similar considerations as above

S13= e_igs(ﬁyé)efifﬁs e3(z,0) dZ/E (1 + 0(5)) _ e—i93(ﬁ0;6)e*if50 e3(z,6) dz/e (1 I 0(5))
— feiﬂl(no;é)eifno el(zvé)dz/g (1+ O(g)) (511)

It is clear from these formulae that the corresponding positive exponential decay rate

I5(6) = —Im | ey(z,6)dz (5.12)
o0

tends to a fixed positive value &s— 0 which can be computed by means of the unperturbed eigenvalues:

lim Ip(6) = —Im eo(z,0)dz > 0, (5.13)
6—0 70

sincees(z, §) — e2(z, 0) asé — 0 when the analytic continuation is performed alagg

6. From the model to a class of self-adjoint generators

The only property of the perturbatidri(z) we use in the previous proof is the fact th&(v(7))|| de-
cays faster to zero as— +oo than Imez(y(7), 0)—e;(v(7), 0)), j = 1, 2. Thus the present construction
of a three-dimensional model whosematrix is completely computable asymptotically can clearly be
adapted to generate a whole class of models. Let us mention briefly what the main steps to take are:

1. Leth(z) be a two-dimensional matrix depending analyticallyzoim some strip)’ including the
real axis such that:

(&) h(t) is non-degenerate and self-adjoint for @any R, includingt = +oc;
(0) iMoo [t SUR, ise s 1t +is) — h(E)]| < oo, for somea > 0;
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(c) The eigenvalues df(z), denoted by,(z, 0) andes(z, 0), possess two generic degeneracy non-
real pointszg andzo such that there exists a strict dissipative paftHfor {32} in the lower
half plane, parameterized by €] — oo, oo[, which goes from—co to +o00 in X' and passes
belowzg.

2. Letes(z,0),z in X, be an analytic function such that:

(@) ei(z,0) is real on the real axis and ljm_, [t|}*¢ SURyptisex |ea(t +is,0) — ea(+, 0) < oo,
for somea > 0;

(b) e1(—o0,0) < ex(—o0, 0) < ez(—o0, 0) and there exists one generic real crossing pairt 0
for ey (¢, 0) andey(t,0) and one generic real crossing potat> 0 for e1(¢, 0) andes(t, 0).
Moreovere; (+oo, 0) > e3(+0o0, 0);

(c) ea(z,0) is such thaty is a dissipative path for {31} as well.

3. Define the unperturbed self-adjoint generdidr, 0) as

0
< M=) g ) € Ms(C).
0 0 e1(2,0)

4. LetV(z) € M3(C), z in X, be an analytic matrix such that:

(@) V(t) is self-adjoint for reak’s and lim_.... |t|*T® SURytises IV +is)[| < oo, for some
a > 0;

(b) The perturbatiodV () turns the real crossing pointgsandt, of H (¢, 0) into avoided crossings
for 6 > 0 small enough antie R;

(©) [V (~(m))| tends to zero as — +oo sufficiently fast so that, recall (3.5),

SOV 6O o
T oo MO R oo o) R At 6.1)

Then, by mimicking the proofs above, we have the following

Proposition 6.1. Assume the above hypotheses. Then,SHmeatrix corresponding to the self-adjoint
generatorH (¢, 6) = H(t, 0) + 6V (t) so constructed is completely computable asymptotically -asO0,
provideds is small enough, and it is given, by

S11 512 513
= S11 —2[% /e
—S12—(14+ O(e <2
g_ | —F12 522( +0O( ) 522 523 | (6.2)
831 —523 g (1 + 0(67211/5)) 833
522

wheres;; = 1+ O(e), sa1, s12, s23 are given by(4.8)to (4.10)and s13 by (5.11)

"Not necessarily horizontal.
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Remarks. We can of course deal with the case where the supplementary eigenvalue is above those of
h(—oc0) att = —oo by obvious changes in the computations above.

The locus of the unperturbed degeneracy peinwith respect tat; andis is irrelevant. However,
formula (5.13) is true whety < 0 < ¢, only.

7. Example of difficulty in the construction of a dissipative domain

Let us finally show on the model (1.2) that the symmetry of $hmatrix, here the unitarity, is neces-
sary to compute asymptotically all its entries. Using the result of [7], we can compute in absence of any
symmetry, the elementssy, s12, s23 only. We have also access to the elem@ntin our model by the
construction explained above. The unitarity$&llows then to get the missing off-diagonal elements.

If S were not unitary, in order to compute say by our method, we should show the existence of a
dissipative domairD; with associated permutatiensatisfyingo(1) = 2. The simplest domain with the
required permutation is such thatis the only turning point between the real axis dnd® However, we
show below that such a domain does not exist, thus showing the importance of symmetfies tfe
computation of the remaining elements. This illustrates the difficulty in the construction of dissipative
domains.

In order to do this, we introduce the set of level linesAm(z,8) = cst, where the analytic con-
tinuations are performed from the real axis, vertically. In a neighbourhoed(&, this set of lines is
independent of the analytic continuation (see (2.13)). Let us consider the set of lines defined by

IMmA1x(z,6) = |mA12(21(5),5) 75 0 (7.2)

for Im z > 0, which we call Stokes lineSA local analysis shows that there are three branéhés, I3
emanating fromz1(6). These Stokes lines are of interest since a dissipative path for {12} cannot cross
more than one Stokes line emanating frejtd) in a simply connected set &f \ 2(6). As the dissipative
domainD; contains such dissipative paths by definition, the Stokes lines become the borders of certain
sectors in¥'\ £2(6) where the dissipative domaid is constrained to lie (see below). A similar argument
with the Stokes lines of (the suitable analytic continuation ofAla(z, 6) emanating forne,() is true.
We show below that the global behaviour of these Stokes lines prevents the dbmimirextend from
—oo to +o0o. Some of the claims we make below on the global behaviour of the Stokes lines or their
pertubative behaviour as — 0 are non-trivial. The reader is directed to the proposed references for
complete proofs.

By virtue of the perturbative nature of the whole construction, the Stokes lines

Im Alz(z,é) = |mA12(zl(5),(5) #0 (7.2)

are close to the corresponding Stokes lineséfer 0 [6]. Whené = 0, the Stokes lines emanating from
z1(0) = t1 consist in the real axis together with a liherossingR perpendicularly at1, see Fig. 5. By
construction, the dissipative domaih in the upper half plane we considered in section 4 is close to the
real axis foré > 0 small enough so that it crosskss explained in [7]. Hence, whén> 0, one of the

8Actually any other more complicated domain satisfying the condition on the permutation of indices would do. However it
is very unlikely that such a more complicated domain could be dissipative.
®We use the terminology of [8]; these lines are also called anti-Stokes lines.
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Iy

Fig. 5. Stokes lines associated witf{6).

three branches, sd@y, must cros9); as well, by perturbation [6]. Moreover, another braicfoes from
z1(6) to —oo below D+, for 6 small, by perturbation again. It follows from the detailed analysis of Stokes
lines performed in [8] that the third branéhcannot go frone;(6) to —oo unless there is a singularity of
e1(z, 6) — ea(z, 6) between the branchésandiz, which not the case since bathande, are analytic for
Rez < Rez1(6). Hence we have the situation described in Fig. 5. Note howevertftis a branching
point forex(z, 6).

If D, is a dissipative domain for {12} and {13}, there exists by definition a dissipative path for {12}
which goes from—oo to +oo and passes betwee(s) and z2(6). Hence it crosses the branéh To
be dissipative, such a path can cross neitgenor Iz, so thatD; must lie abovds which becomes a
boundary forD;, see Fig. 6. Consequently, must pass belows(§) if we want D, to pass betwees (8)
andz,(6).

Then we note that due to the property

H(z,0) = —H(-2,6), V6>0,z¢€2X, (7.3)
we haveey(z,6) = —ex(—=z,06) andei(z,6) = —es(—z, 6), where the analytic continuations are per-

formed from the real axis, vertically. Hence, the pattern of level lineAistz, §) = cst for Rez < 0 is
symmetric with respect to the imaginary axis to the pattern of level lines

Im Ay3(z, 6) = cst, Rez > 0, (7.4)

with analytic continuation performed as above. Hence, by symmetry, we can draw the brignthés
of the Stokes lines defined as

Im Ay3(z, 6) = |mA23(22(5),5) 75 0, (7.5)

with analytic continuations chosen as above, see Fig. 6.

SinceD; is to pass above, (5) the set of level lines (7.4) is equivalent to the set of lined\a{z, §) =
cst where the analytic continuations are performed aldhg By definition, there must also exist a
dissipative path for {13}, passing betwee(6) andz,(6) which goes from-oo to +o00. Noting thate;
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Fig. 7. Intersections of Stokes lines.

is changed t@, when passing above (6), and for the same reasons as above, this path créisaes
can cross neithelb, nor ;. Thus D; must lie belowl}, which becomes a boundary fd¥;. Hence we
must have the situation described in Fig. 6. N

However, we check below thaf andl, have an intersection, which preverits to link —co to +oo,
see Fig. 7. Indeed, atco we have

IM D21 (21(6), 8) = ha(—V2+ ), (7.6)
whereh; is the height of, above the real axis atoco, and, similarly at-oo,

Im Ag1(21(6), 8) = ha2v/2 (7.7)
with h3 the height oflz above the real axis atoo. As

ha 22

the brancheg; andi, must have an intersection by continuity due to the symmetry betvjeserd/,.

>1 sincea > 3v2, (7.8)
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