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Abstract. We provide a framework in: which a class of conditional limit theo-
rems can be proved in a unified way. We introduce three eoncepts: a concen-

* tration. set for a sequence of probability measures, generalizing the Weak Law

of Large Numbers; conditioning with respect to a sequence of sets which satis-
fies a regularity condition; the-asymptotic behaviour of the mformation gain of
one seguence of probability measures with respect b0 another. These concepts
are required for the statement of our main absteact result, Theorem 5.1, which
describes the asymptotic beliaviour of the information gain of a sequence of
conditioned measures with respect to a sequence of tilbed measures. Provided
certain natural convexity assumptions are-satisfied, i follows that conditional
limit theorems are valid in great generality; this Is the content of Theorer 6.1.
We give several applications of the formalism, both for independent and: wealily
dependent random variables, extending in all cases previously known resulis.
For the empirical measure, we provide a conditional Lmit. theorem and, give an
alternative proof of the Large Deviation Principle. We discuss also the problem
of equivalence of ensembles for lattice models in Stadistical Mechanies,

KeYwonos: Entropy, Large Deviation Principle, Concentration, Conditional Eimit
Theorem, LD-Regalarity, Equivalence of Ensembles
AMS SurigcT CLASSIFICATION: 50810, 66B12, 60505, 60F10; 60¥35, 32B05, 821320

1. Introduction

The purpose of this paper is to develop a framewerk in which conditional
limit theorems can be proved. We have in mind a elass of limit theorems of

* Fhis work was partially supported by the Buvopean Unien uander the Human Capitai
and Mability Scheme (EU contract CHRX-CT93-0411} andk by Fonds National Suisse de ia
Recherche Scientifique.
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which the following, due to van Campenhout and Cover, is an early example:

Theorem 1.1.. ([CC}} Let V3, Y2, ... be idd. randomn variables having uniform
probability mass on the range {1,2,...,m}. Then, for 1 < o < m and for all
z€{1,2,...m}, we have

H n B .y
lim Prob{¥; =z~ Mu\ = o} = (), (1.1)
na integer jz=

where

™

B = () (12)

Rl

; ; AN R e
and the constant X is chosen to satisfy the constraint 3, k#* (k) = c.

A landmark in the development of such n.EwQ.mEm is sﬁ‘ paper by ﬂw_vaw—
{C], in which several important concepts are introduced. When one mﬁwﬁmﬂ M
to peneralize Csiszar's results, one finds the :m.ma to gw.rm Ema._bnﬁwosm W _Mu :
not arise in the iid. setting. For example, E?m.ﬁmmsoz, gain arises :m._ [ .W M.c
two ways: it serves as the rate-function of the empirical distribution ‘NE Humo § e
tool used to compare probability measures z:.,c:m.w ”&..w Wmﬁﬁmﬁug-. :% er
inequality; only the second of these functions survives in the mmsﬂ.& Hﬁ%wm
We introduce three concepts in our analysis of the structure of conditional Jimi

theorems;

s & concentration set for a seguence of probability measures, generalizing
the Weak Law of Large Numbers;

¢ conditioning with respect to a sequence of sets which satisfies a regularity
condition;

¢ the asymptotic behaviour of the information gain of one sequence of prob-
ability measures with respect to another.

These concepts are related to ones introduced by Omiw%ﬁﬁ? 2:.. first H‘m me,
Iated to the generalized I-projection; the mmmmsa. to the Sanov mxovmms.: A HM.
third, to the concept of asymptotically quasi-independence. Oocnowﬂnwﬂmcw o
measures and regular conditioning sequences of sets are defined and ﬂ..:%m WS
Part I. Fundamental to all this is the notion of the .ijﬁm-bm&moa function (R1-
function) through which we express the large aﬁ.hwﬁc: ﬁﬁmnﬁ.@m the problem
[LP}. In Part II, we study some properiies of the EmoHEmJOb gain of a mm@:mﬁn”n
of conditioned measures with respect to a sequence of tilted measures. mﬁm
substantial use is made of convexity theory. In 1&2 III, on the basis of the
results of Parts I and II, we prove conditional limit %mﬁﬂg E:m.mﬂ:% the
question of equivalence of ensembles in mﬂ&mﬂn& ?Hmawwﬁ.om. We %we ,mw,mo an
alternative proof of the Large Deviation Principle for empirical measures. For
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the reader’s convenience, we summarize below our main results, First we set
the notation and recall some basic facts. We follow essentially the setting of
ILP); however, in the course of this work, we have found it useful to take a
slightly more general point of view and this has led to some modifications of the
framework established in {LP],

Throughout the paper, (X, B) is a measurable space and B is the collection
of measurable subsets of X. Tt is essential for our purposes that X have some
topological structure; we assume the minimum required for our purposes;

* X is a Hausdorff topological space:

¢ each point # of X has a local base of measurable subsets (that is, each
open set containing T contains a measurable neighbourhood of x)

Often we choose B to be the Borel a-algebra of X, but this is not always the
case; there are some interesting examples in which B is not the Borel o-algebra.,
This approach obviates the discussion of non-measurable sets, required in {C].

We denote the closure of a subset A of X by ol A and its interior by int 4. We
adopt the following convention: G always denotes a measurable neighbourhood
and B a measurable subset.

We use R to denote the extended real line: T = Ru {00, +00}; for a, b in
R, we define a Vv := max{a, b}, aAb = min{e,b}. I f: X — Risan arbitrary
function, we put

sup f{z) = —oo. {1.3)
et}

Let {M,},>; be a sequence of positive measures on B which are locally finite
(that is, for each z in X, there exists (7, such that Gy 9 2 and M[G,] < oo);
let { Vilnz1 be o scole, that is, an increasing sequence of positive real numbers
diverging o +o0 as n - oo, We are interested in the asymptotics of {M,} on
the scale {V,} as n diverges. Define the set-function

tiaB] = m; In M..[B]; (1.4)
iet
MB] = limsupm,[B], {1.5}
Pk OO
m{B] = mww,wwwm ma[B]. (1.6)

The following properties of the set-functions 1, W are easily proved. Property
(L.11) below is the key to the development; we refer to it as the Principle of the
Largest Term, It is a consequence of

limsup (a,, Vbs) = (limsup a,) v (lim sup by}, {1.7)

oo b0 b0

vaiid for each pair {an}azt, {butnsy of sequences in .
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Lenmmma 1.1. On 8, we have

— oo £ m[B] < @W[B] £ +oc; (1.8)
€ B then m[Bi} < m{By], {1.9)
e FR[B] < FAB.]; (1.10)
furthermore, for all B, and By in 8 |, we have
B By = w[B;| VBl (1.11)

Following Orey 70, we exploit the tapalogy of X to .mwmmqm m.e.B it and m
two auxiliary functions on X, the lower and upper devigtion functions:

wle) = intmiG.] , i) = ipf G (1.12)
Because the set-functions T and i are increasing, the definition (1.12) of p(x)

and E(x) is independent of the choice of the local base {G,} of measurable
neighbourhoods of .

Defimition 1.1. A pair ({M..}, {Va}) has a Ruelle-Lanford function (RL-func-

tiomn) ;0 #f () = () {1.13)

for all z in X in which case we put
#ix) =3z} = plz). {1.14)

Lemma 1.2 is elementary; nevertheless, it contains the two fundamental inequal-
ities of Large Dewviation Theory.

Lemma 1.2. The RI-function p is upper semicontinuous (u.s.c.) and

miB] > sup plx), any B€B; {1.15)

o #Eint B

] < sup glzr) ,B relatively compact. {1.16)
zielB

Lemna 1.2 can be regarded as an abstract version of Ruelle’s $reatment
of entropy in Statistical Medhanics JRul]. Ruelle gave a precise mathematical
intenpretation of Boltzmann’s remarkable formula

§=kinW , (1.17)

relating the entropy S of 2 macroscopic equilibrium state to a measure W of
the size of the set of microsvopic states corresponding to the macroscopic state.
Lanford L] made explicit the connection with Large Deviations.
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Often one needs a stronger version of (1.16), valid for all B in B. Together
with a compactness property for g, the strengthened bounds constitute a Large
Deviation Prineiple (LDP) as defined by Varadhan in [Val] (see also [Va2],
[A],[DS]). A pair ({M,},{V,}) obeys a Large Deviation Principle with rate-
function s if there exists an u.s.c. function s : X -3 R whose level sets {r:
s{x} > a}, a € R, are compact, and such that

m{Bl > sup s(z), any B e B; (1.18)
®€Cint B

m[B] < sup s(z), any B e B, {1.19)
wiclB

Note. For the remainder of this Introduction, we specialize our results to the case
in which the space X is compact; this yields sirapler statements. In the main
part of the paper, the theorems are stated and proved without this restriction.

The thermodynamic entropy is a concave function; this is not necessarily
the case with g in our general context. However, as with the thermodynamic
entropy, there is a “mmaximum principle” associated with y: the set on which T
attains its maximum is a concentration set for the sequence {M,,}. We say that
a sequence {Mn} of probability measures is eventually concentrated on the sef
A if, for any measurable neighbourhood G of A, we have

fim M,[G] = 1. (1.20)

For a sequence {M,} of probability measures, an RL-function is necessarily
non-positive. If an RL-function p exists, the sequence { M., } is eventually con-
centrated on the set

A={reX: px) =0} {1.21)

on which g takes its maximum value. If 4 in (1.21) is a singleton, then (1.20)
means that the sequence {M.,.} satisfies a2 Weak Law of Large Numbers, The
word “entropy” in the title of this paper refers to the RL-function.

In the rest of this Introduction, we shall assume that an RL-function ux
exists for the pair ({M,}, {V,}}, and that the M,, are probability measures.
Let Cp € B be a non-empty set, and let C = clChy be its closure. We say that
Co € B is LDwregular if

1. for n sufficiently large, 0 < M..[Col;
2. the limit lim m,[Cy] exists, is finite and lim M [Ch] = sup p(x).
T ° zel!

The notion of an LD-regular set Cy is closely related to the Sanov property of
Csiszar {C]; it coincides with it when Cy is convex and J+ concave on C = ¢lCq.
More generally, we say that a sequence of sets {C.} is LD-regular if

L {Cp}isa decreasing sequence of measurable sets and, for n sufficiently
large, 0 < ML{C,);
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9. the closed set = D el is non-empty;

T

% the limit limm,[C,] exists, is finite and m,E Mma[Cn] = sup ulz). .
" t xel
The notion of LD-regularity of a sequence is not a notion of convergence since
we do not reguire that €, be eventually contained in any neighbourhood of C.
Given an LD-regular sequence {C,.} , we study in Section 3 the corresponding
sequence of conditioned measures MY,

MYB} = M,[B|C.| . B€B. (1.22)

In general, we cannot determine the RI-function of this sequence of probability
measures; it is possible that it does not exist. However, we prove (see Theorem
3.1} the following useful result:

Theorem 1.2. Let X be compact and {C,,} be LD-regular. Then the sequence
of conditioned measures {MS} is eventually concentrated on the non-empty

compact set
Ne = {z € C : p(z) = sup p{y)}. {1.23)
yed
Part I is devoted to the study of the tilted measures and the comparison
of these measures with the conditioned ones. To infroduce the tilted measures,
we need a convex strucsure for the space X. It is natural to work with a dual
pair (E*, E) of locally convex topological vector spaces with pairing (z',%) €
E* x B vy (2", 2) € R. We require that the measurable space (X, B) be a closed
convex subset of E with the induced topology. Furthermore, we require that
the maps z — {z', ) be B-measurable for every x' € E*. For convenience, we
extend g to all E by seiting p(x) := —co for z € E\X. A typical example is the
following: (€2, F) is a measurable space and E is the space M{(2} of all finite
signed measures on {Q, F); E* is the space C3{Q2) of ail bounded F-measurable
functions on §1; the pairing is given by the bilinear form

(o, a) = \ieva_i € G, TE M) (1.24)
)
the topology on M(Q) is the o(E, E*)-topology: a sequence {z,} of measures

converges to a measure  if and only if

lim \ Flw) ] = \ Flw)oldw] all f € Cs ; (1.25)
0 9

X is the closed convex subset M} {(}) of all probability measures on (2, F)
equipped with the induced topology, and B is the g-algebra generated by the
maps x — {x',z), ' ¢ B
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We detine on E* a function p | the sraled generating function,

.1 ’
. px') = rw.m A E\mﬁ_? ..»,v M, [dx] . {1.26)
" x
.ﬁﬁ assume throughout this paper that p is well-defined, possibly non-finite; it
is automatically convex. The essential domain of p is the subset of E* defined
by
domp = {2’ € E*: p(x) is finite}. (1.21)
For X compact, Varadhan's Theorem implies that dom p = E* and that pis
the conjugate of the function —

pla’) = (—p)*(x") 2= mmwﬁawﬁ + p{m)}. (1.28)

For any 2’ € dom p, we define the iilted measure ?mm_ by the formula

[t an
MZ (B =2 p— , BeB. (1.29)
\ et (= =M, [d]
4
An RIL-function p® given by
1 (z) = plx) + (&, 1) — p(a'), {1.30)

exists for the pair ({M7 },{V,.}), and the sequence A?ﬂnav is eventually concen-
trated on the non-empty compact set

N¥ = {re X ”:h?v = 0}. (1.31}

The central concept of Part II is the notion of asymptotically I-nuliness,
In order to compare the asymptotic properties of two sequences of probability
measures, we make use of the information gain. Recall that the information

gain H{Ay | A2} of two probability measures A, and X, defined on the same
space {Q, F) is

lnh{w)h [dw], if A [dew] = h{w)Agdw],
H(A | Ag) 1= :\ Rl (1.32)
+ oo, otherwise,

Let {K,} and {Q,,} be two sequences of probability measures. We say that the

sequence {Kn} is asymptotically Inull to the sequence {Q,,} on the scale {V}
if

.1
wm,m ,,HNEN: Q=0 (1.23)
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The notion of asymptotically I-nullness is a generalization of the notion of
asymptotically quasi-independence, introduced in [C]; it is not a symmetric re-
lation. To get some feeling for its significance, consider a sequence { Q.. } which
is eventually concentrated on a set A at an exponential rale on the scale {Vo}:
instead of {1.20), the stronger statement

lirm sup W InQ,[X\G] <0 (1.34)

holds for any measurable neighbourhood G of A . If, in addition, (1.33) holds,
then the sequence {K,} is eventually concentrated on the set A, not necessarily
at an exponential rate on the scale V,: this is the content of Theorem 2.3

One of the main result of Part 1] is Lemina 5.1 which gives the following
bounds: if {C} is LD-regular and X compact, then

0 < inf {~plx) - p"(@)} m?m&ﬂmﬁzm_zwv (1.35)

zENe

H ’
< limsup o H(MS | M7} < sup {p(z') - (=',z) - p(z)};
n <3 zeNo
here p* is the conjugate of p . The next theorem, a special case of Theorem 5.1,
follows immediately from these inequalities.

Theorem 1.3. Let X be compact and {C,} LD-regular. If No C N*', then
ﬁgmw is asymptotically I-mdl to {M, }.

The condition N¢ C N* has an immediate geometric interpretation: when
11 is concave and {1.28) holds, each = in N satisfies

pz) + (', z) = p(a’) 2 ply) +{z",y) , forally€ E; (1.36)
writing ¥ = z + 2z, we have
—plrt2) > —plz)+(2,2) , forallzek; {1.37)

in the language of convex analysis, z' is a m:mumam%mmp of ~p at z. When C
is convex, we verify the condition Ng C N* by showing the existence of a
subgradient z'; see Section 6, This result, Theorem 6.1, is a theorem of convex
analysis; it is a consequence of the Hahn-Banach Theorem.

Theorem 1.4. Let X be compact and {C,} LD-regular. Let ¢ = {1}, clC, be
convex and let p coincide on C with its concave envelope. Ifint C is non-empty
or p is continuons at some point of C, then there exists x' € E* such that
Ne © N* and %' is a subgradient of —p at x for all z € Ne.

In Part ITI, we apply the general formalism to prove conditional limit the-
orems. The spaces X, E and E* are as above. Let {5, 5) be a standard Borel

by
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space; for each ¢ € 29, let ({1, F:) be a copy of (8, S) and define (€, ) as the
product space. There is a natural action on {1 of Z¢ as group of translations.
This dction lifts to the space of random variables on {2, and to the space of prob-
ability measures M on {; the action of translation by j € Z? is denoted in all
cases by 8;. Let Fyoe be the space of quasilocal functions on ({1, F); we equip
the space M{ with the o(M, Fyoc)-topology: a sequence {1, } converges to
v if and ondy if for every f € Fue

lm \ F)nlde] = \ Fe)vldal. (1.38)
] 4

We choose an increasing sequence {A,} of cubes in Z%, each cube A, being
centered at the origin and having cardinality V,, = (2n + 1)%. On the space of
random variables and on the space M7, we define the averaging operation

Ay = mi >0 (1.39)
" fEAa

Let ¢ : = X be a random variable whose distribution is given by the prob-
ability measure 8§ € M. Define for each n the random variable T), : 0 — X

Tolw) = Anp{w) (1.40)
and put M, := 8o T,!. In Section 8, we considér the case where 8 is a weakly
dependent translation invariant probability measure. (Weak-dependence is de-

fined in Section 8.1; examples of weakly dependent measures are Gibbs measures
defined by a local specification with an absolutely summable potential.) On the

space t_SH?m of translation invariant probability measures, the specific informa-

tion gain h{\ | 3} is well-defined; on the space Fyoc, the scaled generating
function

p(/16) =1 g [expl 3 f(0))plae] (L.41)

a €A

is well-defined. In fact, these two functions are conjugate to each other; this
statement is the content of the variationsl principle in Statistical Mechanics.
Let f belong to Fyiee; for any A € .iw.m, we have

\ Fl)Ndw] < p(f | B) +h(X | B). (1.42)
Q

We say that A is an (f, B)-equilibrium state if

\ F(@)Mdw] = p(f | B) + (A | B). (1.43)
J |
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The set of such states is non-empty and convex; it is not necessarily a singleton.
Suppose that, for 2’ € E*, the function fZ : { = R defined by

. £ (W) = )} (1.44)

is quasilocal; we define
pula) 1= gt [espl 3 17 (0,00} Ble)] (1.45)

Vo . =
Am ! .
s B2 [dw] = exp{ M J3 (Bjw) = Vapa(x')}Bldw], (1.46)
FEAL

e BE[dw] == Bldw | T € Cil, , (1.47)

where U, € B is a sequence of sets with B[1} € Cpn] > 0. Recall that for every
pe M . . .
h(p | B) =lim z=Hr,, (0| B) ‘ (1.48)
exists, and is non-negative.

Theorem 1.5. In the above setting, assume that there exists x' € E* such that
the function bw is quasilocal and

lim -H(5S | %) =0, (1.49)

mﬁmﬂ the set of linit points of the sequence
{AB - |The Cnl} {1.50)

is non-empty, and any limit point 8% satisfies the identity

ME° 1 8) = ~lim - InpiTy € Ol = [ J7 @)F%1ae] ~pla). (151

In particular 8 is an { \..w_ , B)-equilibrium state.

We give two applications of this theorem, one when p is a quasilocal R*-
valued function (Theorem 8.4), and another one when p{w) = 4, where b
is the Dirac mass at w, so that T, is the empirical measure (Theorem 8.5).
Our formalism yields an alternative proof of the Large Deviation wmmsaﬁwm. %.om
empirical measures: there is a natural embedding of the space of Eovpr.%g
measures in the unit ball of the dual of the Banach space of quasilocal functions
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on {1 equipped with the weak*-topology; since the unit ball is compact in that
topology, we have an LDP when the random variable T, is regarded as taking
values in the unit ball; by a simple argument, we show that p(z) > ~o0 implies
that x is a translation ifvariant probability measure. ’

In the special case where 8 is a product measure and ¢ depends only on
the value of w at 0, p{w) = p{we), we can use an argnment due to Csiszér [C]
to prove directly a theorem extending the van Campenhout -~ Cover Theorem
{Theorem 7.2).

In Section 9, we deal with the question of equivalence of ensembles in Sta-
tistical Mechanics [(G]. Theorem 8.4 is reformulated in the standard framework
of lattice systems, and the connection with the theory of Gibbs states is made.
We give proofs of the results announced in [LPS1] and {LP32]. Since Gibbg’
time, many proofs have been offered of the equivalence of ensembles, We re-
fer to [LPS1] and [LP32} for some (incomplete) rersarks on the history of the
question, The recent works [DSZ], [RZ) and [(G1] all approach the problem of
equivalence of ensernbles through the Large Deviation Principle for empirical
measures; our large deviation analysis, based on Theorem 8.4, is less technical
and yet more natural; it has the merit of yielding more precise results. The
main advantage of the large deviation analysis, common to both approaches, is
that it permits the treatment of systems with phase transitions.

The essential features of our approach are these: we concentrate attention on
a sequence {T),} of generalized energy functions taking values in R¥; we apply
our formalism: Lo the sequence M, of probability distributions on wﬂﬁ where M,
is the distribution of T5,. In this case, the Ruelie-Lanford function g is concave
and is precisely the thermodynamic entropy, the scaled generating function is
the grand canonical pressure and «' is the generalized chemical potential which
row lies in R*. We prove that, provided the sequence {C,} of sets we use for
conditioning is LD-regular, the set of limit-points of the sequence

m\ﬂ:»ﬁ : _ m;: € QLW :.mwv

of averaged conditioned measures is non-empty and each Hmit-point 8 is an
equilibrium state characterized by the generalized chemical potential ', More-
over; ir’ is characterized as a subgradient of ~p at any point of the non-empty
compact set Ner. In typical situations in statistical mechanics, the thermody-
nataic entropy is C1 on the interior of its essential domain, and then ' is given
by &' = —gradp(z), = € Np.

We obtain very satisfactory results voncerning a subclass of transtation in-
variant micrrocanonical states; to extend these results to non-translation invari-
ant states is an open problem. The theory of Large Deviations works well, even
in the presence of phase transitions, because of its thermodynamic character: it
exploits the properties of thermodynamic potentials, the RE-function and the
scaled generating function. On the other hand, it seems that its thermodynamic
character restricts it to those equilibrium states which are transiation invariant.
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1t is an interesting and difficult problem to consider limits of the sequence

{8l | T el (1.53)

of conditioned measures without averaging; the technigues of large deviations do
not apply when the limits are not translation-invariant because the rate-function
of the distribution of the empirical measure is non-trivial on the translation-
invariant measures alone,

Part I
Concentration of probability and conditioning

2. Concentration of probability

Throughout this section, we assume that {M,} is a sequence of probability
measures. Given a scale {V,,}, the upper deviation function determines a set on
which the measures are eventually concentrated (Theorem 2.2 and the comment
following it); the usefulness of this information about {M,} depends on how
well we have chosen the scale {V,,}.

Definition 2.1. Let {M,} be a sequence of probability measures on B; we
say that {M,} is eventually concentrafed on a set A if, for each measurable
neighbourhood G of A, we have

lim M,[G]=1. 2.1
Pk OO
This definition is a hypothesis of the following theorem which provides, via
Lemnma 5.1, the essential bounds for our main results, Theorem 5.1 and Theorem
6.1.

Theorem 2.1. Let {M,.} be a sequence of probability measures on B, let [ :
X — R be a measurable function and Iet {B,} be a sequence of measurable
subsets of X such that
lim M,[B,]=1. (2.2)
RO
Suppose that {M,} is eventually concentrated on a subset N of X, and that
each open set containing N contains a measurable neighbourhood of IV,

a) If f is Jower semicontinuous and uniformly bounded below on B, for n suffi-
ciently large, then

wE N n—roo

inf f(z) < liminf \ F(z) Mi[dz] . (2.3)
B,
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b) ¥ f is upper semicontinuwows and uniformly bounded above on B, for n
sufficiently Iarge, then

Fiem sup \ F(x) Miyfds) < sup f(z) . (2.4)
TE -4 xeEN

Proef. We give a proof of the upper bound; the lower bound can be deduced
by applying the upper bound with —f in place of f. Let (7 be a measurable
neiphbourhood of N; for each sufficiently large n we have

\ f@) Mafdsl < fsup (2] Ma[B. 0 G] + [sup f(z)] Ma[B.ACT (2.5)
B,

&G x2€ B,
and
Jim M [G]=1; (2.6)
since
Ms_.wwo M.[B.]=1, 2.7}

it follows that, given £ > 0, we have

M,{B, NG| > [—~¢, (2.8)
and
MLIBA\G] < &, (2.9)
for all n sufficiently large. Thus we have
lim sup \ Flz) M, [dz] < sup f(x) {2.10)
FomF 00 B €7

for every measurable neighbourhood G of N. Since every open set containing
N contains a measurable neighbourhood ¢ of IV, the upper semicontinuity of f
implies

inf sup f{z} = sy z}, 2.11
Gt sup f(z) = sup f(c) (2.11)
and hence the lemma follows. 8]

Later, we shall make use of the fact that any compact set N has the property
that any open set containing N contains a measurable neighbourhood of N. Of
course, when B is the Borel o-algebra of X, this property holds for an arbitrary
subset N. We mention also the following particular case of Theorem 2.1. Recall
{[S]} that a sequence {M,} 6f Radon measures converges narrowly to a Radon
measure M-if and only if, for every botnded w.s.c. function f on X, we have

limsup K:S < Mif].. (2.12}
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The Weak Law of Large Numbers.

Let B be the Borel o-algebra of the Hausdorff space X; let {M, }be e sequence
of Radon measures on B which is eventually concentrated on Sm set N = {z,};
then { M.} converges narroiely Lo the Dirac measure 8., .

To proceed further, we need to be able to identify a set on which a sequence
of probability measures is eventually concentrated; we shall prove that the null-
set of an RE-function is such a set. However, we are not always able to compute
the RE-function on a given scale, even when we can prove it exists; for that
reason, the following result is important.

Theorem 2.2, Let {M,} be a sequence of probability measures ou B and let
{V,.} be a scale. Suppose there exists a function s which Is u.s.c., has comnpact
level-sets and the upper bound

B < sup s(z) {2.18)
TEcl B
holds. Then
a) the set .
= {re X,s{z) >0} {2.14)

is non-empty and compact;

b} the sequence {M,} is eventually concentrated on the set N and, for any
measurable neighbourhood G of N, we have

iim wzmu 5 M, [X\G] < {2.15)

Va
Proof. Applying the upper bound to the set B = X, we have

A < sup (). {2.16)
wEX

Since {M,} is a sequence of probability measures, we have M, [X] == 1; hence

sup s(z} > 0. {2.17)
aeX
Since ¢ is w.s.e. and has compact level-sets, the supremum of s is attained on
any closed set, in particular, on X; thus the set

Ng={re X, s{x) >0}
is a non-empty compact subset of X and {a) is proved.
Fix a in (—o0,0); the level-set L, := {& € X : s(x) > a} is compact and

non-empty. Let G be a measurable neighbourhood of N,; there are two cases to
be considered: (a) cl{(X\G) N L, is empty; since s(x) < a on cl{X\), we have

sup  slz)<a<; {2.18)
2€cl (X\G)
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{b} ¢l (X\G)N L, is non-empty; then o (X\G)N L, is a non-empty compact set,
and, since s is w.s.c., there exists z, € 1 {(X\G) " L, such that

; sup  s{z) = s(z,) <0, . (2.19)
z€cl (N\)

because N, is disjoint from ol {X\(), In either case, we have

sup  s(x) <0 {2.20}
read (X \&)
so that
mAXNG] < sup sz} <9, (2.21)
zect {X\G)

establishing (2.15). It follows that

:_wmwo M_.[X\C] =0 (2.22)

and hence
r;w: M, [G] = 1. . (2.23)
a

Comment. In-order to have the best result, one must find the smallest possible
function s with the properties mentioned in Theorem 2.2. If the upper devia-
tion function fi has compact level-sets and if it has the upper bound property
{2.13), then i is the best possible choice for Theorem 2.2 whenever the space X
is regular (Lemma 5.1 in [LP]). Moreover, if the pair ({M,}, {V,.}) is ezponen-
tially tight, that is, if there exists a sequence {K,}.51 of measurable relatively
compact subsets of X such that

lim sup W[ X\IG] = —o0, (2.24)

TEF O
then the upper deviation function 7 has the upper bound preperty (2.13) and has
corupact level-sets {see Lemmas 5.2 and 5.3 in [LP}; there the proofs are given in
the case of B the Borel g-algebra of X', but they hold with easy modifications in

the general case). Thus the hypotheses of Theorem 2.2 are satisfied with s =71
in the following cases:

e X is compact;
o ({M,}.{V,}) is exponentially tight;
the pair ({M.,.}, {V..}) obeys an LDP with RL-function g as rate-function.

Notice that, in Theorem 2.2, we proved a little more than that the sequence
{M..} is eventually concentrated on the set N, : in proving (2.15), we estab-
lished a bound on the rate at which the measure of a set in the complement of
N, goes to zero. The Lehaviour described by (2.15) is worth naming.
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Definition 2.2, Let {M, } be a sequence of probability messures; if, for every
measurable neighbourhood 7 of N, we have

_wam%wws?amﬁg <o, {2.25)
we say that the sequence {Ma,} is eventually concentroted on N at an exponen-
tiel rate on the seale {V,}.

Definition 2.3. Let {S,.} and {Q,} be two sequetices of probability measures
on the same space. The sequence {8,} is asymplofically I-null {0 the sequence
{Q,.} on the scele {V, }if

lim o H(Sa | Q) =0, {2.26)

where #(S, | Q,,) is the specific information gain of §,, with respect to Q,,.

Theorem 2.3. Let {Q, } be a sequence of probability measures which is even-
-tually concentrated on N ai an exponential rate on the scale {V,.}. If{S,} is a
sequence of probability measures which is R%Ewnom_@@\ Faull to {Q,} on the
scale {V..}, then {8,,} is eventually concentrated on N.

Proof. We note that

Q.l6] Q.IX\G]
> ~In2-8,[X\G}in c..mwé.

HE Q) 2 Sufin 2 s, e ST 5,

e fim sup .dW: InQ,.[X\Gl <0, {2.28)
there exists § > 0 such that, Mcn all n sufficiently large, we have
m,u InQ,[X\G] < —4. (2.29)
Thus we have g o
FHE Q)2 T 45 SING 2 5 2a)
- lim muﬁma (Q,) =0 (2.31)
by hypothesis, so that lrn 8, \G] = 0 (2.5
n
nd lim S.[G] = 1. (2.33)
. a
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3. Conditioning

Throughout this section, we use M., to denote a positive measure {not nec-
essarily normalised). We make the standing assumption that an RI-function u
exists for the pair ({M,.}, {V.1. .

Given a measurable set € for which M.,[C] is strictly positive for all suffi-
ciently large n, we can construct a sequence of probability measures M,[-|C]
by conditioning on the set . We are interested in finding a set on which the
conditioned measures are eventually concentrated; if we could compute the RI-
function pe for the conditioned measures using the RI-function g, we could use
the fact that a sequence of probability measures is eventually concentrated on
the null-set of its RL-function, In some cases this computation can be carried

out, yielding the result that the sequence of conditioned measures is eventually
concentrated on the set

Zm”n?mamuiaﬂ%un@x. 3.1}
: g€ O

It turns out that we can prove this concentration property in a much wider
setting than that in which we can compute pe; this motivates the following
definition:

Definition 3.1. Let u be the RL-function of the pair ({MLL{V. D). A se-
quence {C,} of sets is LD-regular if

a) {Cy} is a decreasing sequehce of measurable sets, and 0 < ML[C,] < oo for
all sufficiently large n:

b) the closed set
C = D cdC,
n
is non-empty;

¢} the limit lim,, m,[C,] exists, is finite and

im m,[Cy) = sup u(z).
" TEC

Lemma 3.1. Let {C,} and {D.} be LD-regular sequences. Then {CruD,}
is an LD-regular sequence.,

Proof. Since, for any sets A and B, we have

d{(AUB)=cdAUdB, (3.2)

it follows that

N (Cauby) n_DE CaUelD,) = ADQ_,QL U mDa Fv . (33)
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We have
liminf ma[CoU Dy} > liminf ma[Ca] v Himinf malDa].  (3.4)

On the other hand, by the principle of the largest term (see {1.7)), we have

limsup m,[C, U D,] = limsup ma{Cu] Vv mﬁw up ol Dn] o
Hence we have (3.6)
. uD,] = sup  plr) . .
_wmﬁ :f.mﬁ.z u acct (€I
3

For any sequence {Cp } such that 0 < Mp[C,] < co, we define the conditioned
measures MY by

MC[B]:=M,[BiC.} , BeB. (3.7)
We set : N
i [B] = limsup 7 In MY {B] (3.8)

and define the upper deviation function as before by

7 inf 77 3.9)

fie:(x) == mﬁw.w e [G) {
The main result on the concentration of probability of the sequence {M, '} is
contained in the next theorem.

Theorem 3.1. Let the pair ({M,},{V.}) obey an LDP with RL-function p.
Let {C,.} be an LD-regular sequence with C 1= N,clC,,. Then

) . o
a) the upper deviation function Ji; has compact level-sets and, for each mea.
surable set B, we have B

“ wic[B] < sup Folx); (3.10)
xccl B

b) the sequence {M%} of conditioned measures is eventually concentrated on
the non-empty compact subset

Ne={zeC: pz)= Mmmn@? (3.11)

¢) if the sets C, are relatively compact, then it is m:.mme.mbn to mwwﬁomm%ww
existence of an RI-function for the pair ({M,}, {V.}} in order that a) an
hold.
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Remark. Essentially the same theorem holds when the sequence {C,} satisfies
a) and b) of Definition 3.1 and ¢) is replaced by the weaker statement that

— oo <liminf m,[C,] = lim sup m, [(,) < oo, (3.12)

7

In that case, one must replace the set N¢: by

freC: ) > lim ma[Cnl}. (3.13)

Proof Let & := lim,, ma[Cnl; by hypothesis, a is finite. We assume that
Mi[B] > —oo, otherwise there is nothing to prove, Since {Cr} is decreasing,
for any index k, we have

In

M [B] limsupm, BNyl — o (3.14)

A

sup  plr) - a.
zEol (Bndy)

Since (B ¢ el Brd Cy, we have

—oo <MglBl+ o <inf  sup plx); (3.15)
5 rrel Brol o,

hence the compact level-set
K=z p(z) > FipBl+ o} (3.16)
is non-empty and has a bon-emply intersection with ¢l B, Let ¢ be any open

neighbourhood of K; by definition of K, and because u attaing its naximum on
every closed set, we have

sup  p{z) < Wie[B] + e, (3.17)
XN

The upper bound property for closed sets implies that

Me[X\G] < X\G) ~ o < sup p(x} — a < TR, (3.18}
€ X\ .
and
m.mmh..ﬁ& = mﬂﬁ%@/ﬁ& <,.mm..ﬁ_zw M ﬁuw mw.ﬂwv

= WMol X\G] Viig[B n G
< Wl Bna).

~y

siven € > U, there exists for each z an open set (7, 3 = such that

Me(G) < Tprln) +e 5 (3.20)
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i ; : K 01cl B by a finite number of these
51 M ct B is compact, we can cover . ! er ¢
MWMM MME say Gpys---yGo, . Let U be an open neighbourheod of K'; then

G = [U\Ad BlU U N (G, U - UG {3.21)
is also an open neighbourhood of K and, by the prinetple of the largest term,

7, sup e (%5 < sup Fglz) +e.
c|B] < Fcld BN G < gl JGal < supTiole:) +2 = sup Tig
' (3.22)
For any &, if = & clCy, then there exists a measurable neighbourheod G 2
v eﬂﬁm‘ﬂﬂu = =X (3.23)
On the other hand, for any measurable neighbourheod G 3 = we have

MolG) < MG - o (3.24)

Consequently, for any k

Bolz) <4 o, otherwise;

hence p(@)—a, fzeC,

- (3.26)
Fio(z) Ss(x) =14 _ 00, otherwise.

= m._. . coremn N .
(04 g

DOLIce 8 meww Ooamwm-ﬁ». wm v mw sets 3 Pm.em same 15 true mnum : SiN m : 01 w

aw M&WH (4 ?go 101 5§y ﬂw CO 1 a measures are entil ¥

W * ww t101 §, we COlb ﬁﬁw@ ﬁ?&h ﬂm~® N _.: o1 €2 G £V t mwm_

concentrated on the non-empty compact set

Ng :={z € C: plz}) = meie:. (3.27)

To prove the last statement ¢}, we notice that we used ﬂ.ﬁ upper Uo:bm wﬁmwwmmﬁw
oM% in (3.14) and (3.18). Lemma 1.2 covers (3.14). Since C; contains s

we have

e[ X\G] = i [Ch\G] (3.28)
Therefore, we only need the upper bound for the relatively compact set Ci\G,
and A |
] ~a < mc[B), 3.29

ic[X\G] < MCI\G] —a < ammﬂ%{ntﬁav o o8]

since (¥ is a neighbourhood of

{z:plz) >Tc[Bl+a}. . . (3.30)
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]
Example. a) We consider several variants of the following example. Let X :=
CI-1L,41), W, im0, and - .

M, = e™ ¥ + mﬁn:mwlpxa +m!»%%§~+:= 4 {1~ 2g=an miaamvm.L\m, {3.31)

with a some given positive real number. The RL-function of the pair ({M.,},
{Vul) is
0, ife=-1/2,
wz) =4 —a, Hz=0orzx=1 , (3.32)
—00, otherwise.

Let {C,.} be the sequence of sets defined by

9
Cp = {0} U T - =, L‘ (3.33)

n
We have C' = M,cC, = {0} u {1} and lm,m,
quence {Ch} is LD-regular. Since X is compact, we can apply Theorem 3.1:
the sequence {MY} of conditioned measures is eventually concentrated on .
Moreover, this sequence converges (in the narrow topology) to do /2 + &; /2. We

wmﬁwmmBmHmacomoEmwcwmmim replace the sequence {C,} by the seqience {C] },
with

{Cn] = ~a; hence the se-

c=a-2), (3.31)

Here C" = {1}, and the sequence M5} converges to 4. In this case, we have
Ma[{1} [ C)] = 6 and N,C7, = §.

b} We consider the same example in the space X' 1= {~1,+1). Now the RI-
function is

0, ife=-1/2,
Wizye=d —a, =0, (3.35)
—oo, otherwise,

The sequence {C,} is still LD-regular, but now C = {0}; the conditioned mea-

sures gm are the same as before, We cannot apply Theorem 3.1 because we do
not have an LDP,

1
— = wﬂ.:i,wv_ £ sup p{z). (3.36)
2 € [1/2,1)
If we consider the sequence {CL}, we have lim,, m O] = —a and
2
r o = -
¢ = Q%z = O [ 1) =9. (3.37)

Hence the sequence {C} is not LD-regular.
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Part 11
Tilted measures and convexity

We introduce the tilted measures and we compare them with the conditioned
measures, using the notion of an asymptotically I-null sequence. To develop
the theory we require that the space X be a closed convex subset of a locally
convex topological real vector space.

4. Tilting

4.1. Convex structure

We fix the setting for the next three sections. Let (F,7) be a locally convex
Hausdorfl topological vector space £ over R. The topological dual of (E,7)
is denoted by E*. We choose a topology 7 on E” so that the pair (£, E*) is
in duality: the topological dual of (E*,7*) is E. Elements of E are denoted
by = and those of E* by 2'; the pairing between E and E™ is denoted by
(z',x) — {2',x). We require that the space X be a closed convex subset of
E equipped with the induced topology. As before, (X, B) is also a measurable
space, and each point # in X has a local base of measurable neighbourhoods;
moreover, we reguire that the maps « + (z',%) be B-measurable for every
z' e B,

Somie important examples of the above setting are of the following kind: E
and E' are real topological spaces and {-,) is a bilinear map E' x E — R so
that
a) for each 1 # 0 of E there exists 2’ € E' with (z',x} £ §;

b) for each ' # 0 of E' there exists @ € B with (z',x) # 0.

When conditions «) and b) are satisfied, we say that (E, E') is a dual pair.
For the topology 7, we choose the o(E, E')-topology which is generated by the
base of {closed) neighbourhoods

{o: sup [zl,x)] <1} (2 € E'); {4.1)

1<i<n

the topology o E, ') is locally convex and Hausdorff since condition @) holds.
The topological dual E* of (E,7} is the set of all continuous linear forms on
F. By definition of the topology o(E, E'}, E* contains the set E'. Since a)
and b) hold, the topological dual of (E,7) is E* = E; if we choose for the
topology 7* on E* the o(E", E)-topology, then the topological dual of (B*,77)
is . (See, for example, [RR] or {B].) We require that the maps x v (. 1)
be B-measurable for every ' in B*, and that X be a closed convex subset of
.E. This implies that each point x in X has a local base of open {respectively
;.EOmm& convex meastrable neighbourhoods. Typical examples are:

(I) £ = R*, with RY equipped with the Eudlidean topology; in this case, we
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have E* = RY, the Lilinear form is th i
2 s the Euclidean scalar product, t
closed convex subset of R® and 5 is the Borel ?&mmvwm@oh R:. »the st

(I} Let (£2, F) be a Polish space and £ = M {1, F),the space of fipite signed

measures on (€, F). Let B = () be ¢ € i
functions on 2. The bilinear form mm@ () be the Ppace of bounded continuous

Xiga

(o' z) = \ H(wirldo] | 7€ CUQ) € M(Q), (1.2)
11

The imu.. Cu{))-topology coincides with the
the set X' = M (Q2, F) is the space of
(§2,F) and B is the o-algebra
In this case, the set X is

._mcccﬂom% of narrow convergence,
probability measures on the Polish space
.mm:m:ﬁmm by the maps  + (z',x), 2’ € Cu (11},
a Polish space and 8 is the Borel o-algebra of X,

(HI} Let (£2,F) be a measurable space and E = M(Q, F), the space of fnite

signed measures on (92, F). Let E' be the sp: :
functions on ). The bilinear form is ¢ space of all w.,uE&ma Frmeasurable

(', ) = \‘;\.AEVEEEW , .a‘ EC{) ,x e \KQMV (4.3)
Q <

We choose the o(F, E')-topology: a sequence

. 4 Tn} of measures converges
measure x in this topology if and only if o) Seomerss o s

liu \ ] = \ x{dw] for all B € B(). (4.4)
B B

2 set X = MO T
wﬂ: set X = MT{Q, F) is the space of probability measures on (Q, F) and B
is the o-algebra generated by the maps i~ (z', 1), ' € B, ,
Finally, we recall two definitions of cc i
. lty, vcal convex analysis. Let g be any functi
g E — R; the conjugaie function 7" of g is defined on E* :w v meen

.a...?,.vﬁ Mmm:a: igiai. (4.5)

Similarly, the conjugate function [P E-Rof f:E* - Ris defined by

fre) = sup (o', 2) - Fah)). (4.6)

e Er

The mznnﬁoﬁm g* and s;” are always lower semicontinuous and convex. Let [ be
convex on £7; the subdifferential 9f of f at x' is the subset of E given by

f(z"y ={re E: F +y) > pi') + {',z}, for all € E™}. 4.7}
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4.2. Tilted probability measures

Let {M,.} be a sequence of measures on (X, B) and {V,.} a scale. We suppose
always that - . .
p{z'} == lim A Fe\m__\ia *F M, [da] {4.8)
"X

exists (but is not necessarily finite). The function p: B — w.,. called the mn&.ﬁ
generating function, is necessarily convex; the essentiol domain of p, domp, is

defined by _
domp:= {z’' € " : p{z') € R}. {4.9)

For all ' € dom p, we have

0< \ eV~ (=" PN, [de] < oo (410)

X
mm.m. n sufficiently large; for _&Omm.ﬁ,, we define the filted {probability) measure
M by
¥ (=M, [da]
: (4.11)

M [B] = . .
" eV IM, [da]

M\.__s b:%\-___,

* e, ' be an interior point of
Theorem 4.1. Let E, E* and X be as wvoc.m Let x ; :
dom p, and suppose that the pair ({M,}, {V..}) obeys an LDP with RIL-fanction
g which is not identically —oo and bounded above on X. Then

a) An RL-function u*, givent by

1 (z) = plz) + (&', 7) - p(z") <0; (4.12)

exists for the pair ({MZ },{V,.}), and the sequence {M, } is eventually concen-
trated on the non-empty compact sef

N® = {z € X: p* (2) =0} (4.13)
b} If domp = E* and p(x) = ~p* (), then the concentration set N =" coincides
with the subdifferential 8p of p at z'.

Proof. For ¢ small and positive and a non-negative, we have

e |

{(z"sa)>a}

¥ & 2IM [de] < —ta + mz_m: \ (I IM [de) 5 (4.14)
X

o
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thus 1
Jim (lim Sup 35 In .\ " LRI M, [da]) = - co.

{4.15)
- {(=',7)2a} ~ :

Using Theorem 6.3 of [LP] we conclude that the pair igm.fﬁﬂsdﬂv obeys an
LDP with RL-function

p¥(2) = p(x) + (2, 7) ~ plx’) < 0. (4.16)

Theorem 2.2 implies that {MZ'} is eventually concentrated on the non-empty
compact set

N ={z € X : p(a’) = p(a} + (z',2)}. (4.17)

This proves a). The second part of the wwmcmmﬁ is an elementary exercise in
convex analysis. For any ¥’ and any x € N® , we have

py') 2 pla)+ @) {4.18)
= pla) - @\ n+ @ 2)
= p()+ ' ~ ')
hence = € Op(z’). Let ~p(x) = p*(x) and = € p(x'); we have
py) 2 p(e") + (' - 2’ 2) = plz) - (&', 2) + (', 2); (4.19)
thus
{#h2) = p(z) 2 sup(ly',2) - p(y)) {4.20)
¥
= p'(z}
= —p{x).
Since p* is non-positive, this implies that = € N®'. o

5. Asymptotically I-null sequences

We compare the sequence of conditioned probability measures {MS} with

the sequence of tilted measures t(mm }. Lemma 5.1 gives upper and lower bounds
on the specific information gain

mamlEKm M), 5.1)
Lemma 5.1. Let E, E* and X be as above, and let u be the Rl-function

of the pair ({M,.},{V,}). Let C, be a sequence of measurable sets such that
@ = lim, ma{Cy] is finite. Assume that the sequence {MS} is eventually
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concentrated on the non-empty subset N and that any open neighbourhood of
N contains a measurable neighbourhood of N, For x' in domp, we have:
a) If the coptinuous linear functional x w {z',z) is uniformly bounded below
on Cy, for n sufficiently large, then
1 ‘ )
lim sup —H(MY | M%) < sup{p(a’) —~ (', z) —a}. {5.2)
n n N

b) Let fi be the concave envelope of the RI-function . If the continuous linear
functional & v (z',z) is uniformly bounded above on Cy, forn sufficiently large

and N ¢ {z: plzr) > o}, then

liminf - H(ME (M) 2 ) = (4" () (5:3)
il ) - (@) 20,

buth terins on the right-hand side being nonnegative. If, in addition, domp =
E*, then

i inf - H(MC | MZ) > inf {—p(z) - p* (€)} 2 0, (5.4)
it Va xeN
Proof. 2} Let us introduce the notation
pula’} = IHIE\.@S@_E?ML%_. (5.5)
Va
X
We have
LS M) = - [, ML)+ pu(e) —malCal - (50)
so that
Jinu sup m&EEm IMZ) < liminf \ oM (57)
n 1 b Q:
+plz') - o
Using Theorem 2.1, we have
liminf [ (&', 2)M5{dx] > inf (', =) (5.8)
Cu
thus
lim sup Mzﬁagw i gw_u < - ww_mﬁ?,_av +plz’) —
b 1 T
< sup{p(x') ~ (&',2) — a}. {5.9)
ziz N
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13} We have

!Wr\xﬁgmu _ w(m..u_ . ' 4

7 n A MG )= [ )M [d2] 4 pal2’) ~ ma[C) (5.10)
[0

so that

. i ;
i e & z’ . ?
:mea. v HM, | MEY > - M:.J,m:v\?\,ﬁvgw [dz] (5.11)

<y
+p{a') ~ e
Using Theorem 2.1, we have
Hin m;ﬁ\?i )M fdz] < sup (' :
, y < supx’, z). 512
o | [[de] < sup (s’ o) (5.12)
Since
02> () = (&', 2) + plz) ~ p(z') , forallze E, {5.13)
we gel
| (=197(") < p(a) (5.14)
by taking the supremurm over 2. Thus we have
i .
o [ z’
r:wha ﬂﬂ\xﬁg: M) > —sup{a’,2)+p{z')—a (5.15)

TEN
= (&) (=p)* (=)
+[- www.?i_ )+ (~p) {2} — ).
But, stnce p(2) > o on N, we have

=R )+ () @) — e 2 ﬁm.ﬁnwmm?ci+TE,E,:na (5.16)

=o', 0) + ()" ()} = o

inf {~(~4)™(2)} — a

TEN
inf {ji(z) ~ ()}

reN

il

A

From {5.13), we have
Pz} < - pfa) (5.17

_,wv tal :.—mm &TO b _.mmu TELELIT 5 F - wmu 1
r 5 TeTE over . m« O “- :- y 1S ﬁuﬂ@ —,m Qm €813 &mmn:.. 11
& On 2 we mum:\nw M v wmm 7 1 ﬂ v s

——r

L i - s
lim inf ,,.\!\xm?mw fMy) > —sup(e’,2) 4+ pa') — (5.18)
n rEN )
> —sup doay - plz
> amwnmhm? yxy = pl2’) + o
> il (=" () - p(x)} 2 0.

*EN
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[

Lemma 5.1 gives estimates which enable us to compare a sequence of condi-
tioned measures with a sequence of tilted measures.

Theorem 5.1. Let the pair ({M,},{V.}) obey an hUN with Wh%mbmacn i
as rate-function. Let {C,} be an LD-regular sequence with C := [, clC,, and
domp = E*. Then

(i) If the map = ++ {z',x) is bounded below on Cy, for n sufliciently large and

Ne = {z€C:supuly) =p(x)} C N = {ze X: pa’) = plz) + (2", 2)},
yeC
then the sequence ﬁ(mmw of conditioned measures is asymptotically I-null to the
sequence ﬁﬁww of tilted measures on the scale {Vy,}:

lim - H(ME | MZ) =0,

(ii) If the map z — (u',x} is bounded above on C, for :.mcmwamat% large
and the sequence mgmw of eonditioned measures is asymptotically F-null to the
sequence mgw,w of tilted measures on the scale {V,.}, then p is conjugate to —p
at z';
p(a') = sup{(a',2) + (@)}
€

If the sets (', are relatively compact, then it is not necessary to have an
LDP; it is sufficient to asswne the existence of an RL-function p.
"~

Proof. By Theorem 3.1, we can apply Lermma m.H. with N = N¢. Am.wanm Ne
is compact, every open neighbourhood of N contains a measurable neighbour-

hood of Ng.} Thus

0 < limsup Wlﬁﬁgm IMZ) < sup {p(z') ~ (z',2) — sup u(y)}

TENg yel
< sup {p(z') — (a', ) ~ p(z)}
zENe

since Ng € {r € X : p(z') = p{z) + (2, 2)}. If the C,, are relatively nca%.mhr
then Theorem 3.1 is still valid if we assume only the existence of the Wﬁ,mcaneoﬁ.
The second statement of the theorem follows from Lemma 5.1 b), since Ne C

{x: p(z) > lim, ma[Cal}. =}
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6. Convexity

We investigate the consequences of the assumption that C is a convex set
and g a concave function. The main result is that, under this assumption, we
can fulfil the hypotheses of Theorem 5.1. References on convex functions are [B},

[R} and [ET].
6.1. Convexity and LD-regularity
Let 5 be a subset of a real vector space I; we say that a point y € E is
linearly accessible in 8 from z if there exists r € § . & # ¥, such that
Iz yl= {az+(1-a)y: 0<a<1}Cs (6.1)

Lemma 6.1. Let the pair ({M,}, {V,)) obey an LDP with RI-function 1.

a) Let B be a subset of E with non-empty interior. If p is concave on ¢l B and
each point y in cl B is linearly accessible in int B from some with p(x} finjte,
then B is LD-regular.

b} Let B be a convex subset of E with nop-emply interior. If u is concave on
<1 B and Bnite at some point of int B, then B is LD-regular.

if the set B is relatively compact, then in order that statements a) and b)
hold it is not necessary to have an LDP; it is suflicient to assume the existence
of an RL-function p.

Proof. Since we have an LDP, we have

sup u(z) < m{B] <A B] < sup p(x). (6.2}
cintB x€cl B
We prove that
sup p(r) = sup uiz). (6.3)
=€ B x€cl B

Let y € ¢l B. By assumption, there exists z € int B such that lz,¥[C int B and

#(x) is finite. Let x4 = ax + (1~ a)y. Since u is concave on o B, for alt & > 0,
we have

m(za) 2 ep(z) + (1 - a)uly}, (6.4)
which implies
liminf pfza) > uly) . (6.5)

Since u is ws.c., we have

lim sup m(Za) < ply), (6.6)
which implies
I pl(ea) = ply). (6.7)
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Sinee, for all o different from zero, the vo.:wn Ty i8 wz int B, m&ﬁm.mow (6.3) ?_u.Ew.
It remains to show that sup,.cq p p{r) is finite. This supremum s not —eoo, since
¢ is finite at some point of B. Sinee y is us.c., n.osﬁﬁﬁ and finite at some point
of B, a standard result of convexity theory implies that i) < oo HE.. all x A%M
for exaniple, [ET}). Since p has compact mme:mm;wma.m, the suprernum om poncl
is atlained and is therefore finite. Statement b) is a consequence of nowﬁﬁ@
theory: if B is convex and has a non-enpty E,.,Mms.oﬁ S%s all points o.mw rm.m Eﬁm
linearly accessible in int B from any given m_voEn a. € z.%m. .m.mm.:.b .nmm Mm..m:.
follows from a). If B is relatively compact, then (6.2) still holds; therefore a) is

[}
still true.

6.2, Convexity and No C N

We denote by fi the concave envelope of the RL-function p; it is no.hﬁwm:mzﬁ.
to extend fi to all of E by putting u(z) = —0 mo.m. F m E\X. Let B Un a rEEMW
subset of F and sel € = ¢l B; let g coincide with \wwm concave envelope nw_
Maximizing p on C is equivalent to minimizing {(—f) + he on E, where he is
the indicator funclion of C:

0, ifzed, 6.8
() 1= _?9 ifxgC. (65)

Lemma 6.2. Let B be a convex subset, ¢ == 1 B, and assume that

Ne = € C: sup n{y} = u{x}} (6.9)

yal

is non-empty and sup, e p{y) is linite. b,nw.mE:m .h.E.EHE. that t_.m Hw‘b..bw:nf.ow __.h.
cofncides with its concave envelope Ji on C. If either ' has an Interior point or
p is coutinuous at some point of C, then

a) there exisis x’ in E* which is bouanded below ou C;

b) &' € d(~p)(x) for all ¥ € Ne;

) —x' € Ahe)() for all w € Ne;

&) Ne: is a subset of the subdifferential

A=) (£) = {z € E: (o', 2) = —plz) + {—py* (=)} (6.19)

Remark. The subgradients of he(x) have a simple geometrical interpretation:
if 0 5 o' € he ), then (sec {6.24))

0z z~x), forall z €} (6.11)

gt ph
thus ' is the exterior normal to the closed half-plane {z € E: (2,2} £ Aw L}
containing (. Conversely, if x € € and the closed half-plone {lze B {g' 2} <
(', x}} contains C, then 2’ € dh; ().
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Proof. We set
PR Emﬁﬂvu T € \va
file) = Ae, e (6.12)
and
folx) := he(z). (6.13)
The convex function fi is a closed function (that is, it is lower semicotitinuous),
it never takes the value —co and domf; = {x € E: fi(z) < oo} is non-empty.
Since C is closed, fi is a closed convex function, as is F= A+ fo. Let z
belong to Ng; by hypothesis, ¢ is 2 minimum of f on E so that the definition
of subgradient implies that 0 € 8f(z), The heart of the proof is to show that

(f1 + ful(z) = Ofi(z) + O fa(s); {6.14)

if this holds, then there exists ' € E* such that &' € dfi{z) and —2' €

mb?&.gmmozwiﬁﬁmouwrmm:cow,cmha.xv.mno;maa:mw%omwwmmwmﬁ-
Bapach Theorem. :

Since either C has an interior point or p is continuous at some point of C,
it follows that there exists z € dom f; N dom f> where fi or f; is continuous,
say fi. Let y' be any subgradient in 8(f, + f2){z); this means that fi{z) < oo,
Fa(r} < oo and, for all y € E, we have

[ilyd + o) > file) + fole) + 9 — 1), (6.15)
Let
¥y g9(y) o= fily) ~ fule) — 'y — ) (6.16)

the function g is a closed convex function on E which is continuous at 2. Let
us consider the convex sets ¢y and Cy in E x R:

Ciz={(y,0): gly) < a}, (6.17)
and
Cri=A{ya): o < folr) — o)} (6.18)
Relation (6.15) implies that C; and C; have only boundary-points in common;
since Cy is the epigraph of g and g is continuous at z, the set ¢, has a non-
emply interior intCy. We can separate Cy and intC; by a closed hyperplane.
"The hyperplane cannot be vertical; indeed, if the hyperplane were vertical, then
we could separate dom fy and dom fo; this is impossible since there exists z &
dom fi Ndom f; which is a continuity peint of fi. Consequently, the separating
hyperplane is of the form .

ye Wyt ¥ EET aeR, (6.19)

and for all ¥ we have

falz) = Lly) <@y +a < fily) ~ filz) -y — ). (6.20)
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Putting y = z, we get a = —{y", 2}, and hence
f2(y) 2 folz) +{~y"\y— 7} , forally, (6:21)

e L)z Az + @ +y"y—a) , forally. (6.22)

Therefore we can decompose ¥ into y' = (3 -+ 9"} + Al.taw. émﬂww“w_..._. ¥ € af
and —y” € Bf;. In our case, we have y" = 0 and we set 1" 1=y Hence there
exists ¥ € E* such that —z' € 8f2(x); that is,

ho(u) > (~2' ,u—x) , foraliueE, {6.23)
which is equivalent to
{z',u) > (2,2} , foraltueC. (6.24)

i i F bel C and a) is proved.
he functional 2 is therefore bounded below on | |
B mH.Mm rest of the proof is elementary. We show that z' € 8fi(y) for any
y € Ne, which implies that

fiiey+ Aly) ={z"y) ., forally € Ne. (6.25)

Indeed, let « and y be distinct elements of N¢; since fi(z) = fi(y) and {z',y—
x) > 0 by (6.24), for all z, we have

fle) 2 fle) + ez —x) (6.26)
)+ z-n+Ey—=)
fily) +{z',z - o)
Therefore (6.25) holds, and N is a subset of
{z€ C: {&,2) = (-B)z) +{-)" (=)} (6.27)

On Ne, we have fi(z) = p(z); we show that (—f)*(z") = (—p)"(z'). For any
z € E, we have fi(z) > p(2); using {6.25), we have

A%

It

v

(-p'(&) < (=B (6.28)
= (2,2} + p(z)
< (-t
Hence d) holds. We have
(—py* (&) + ply) = {2',y) , forally e Ny, (6.29)
so that ' € 8(—p)(y) for all y € N hence b) and ¢} hold. ]

Finally, we recall the following useful result which relates —p to the conjugate
function of p ( see [DS] or [LP}).

-~
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Lemma 6.3. Let the pair ({M,,}, {Va}) obey an LDP with RL-function B If
domp = E* then

. pla’) = (~py* (2). ) (6.30)
If, in addition, u is concave, then —p and p are conjugate functions:
Pa’) = (=p)"(@') and - p(z) = p*(2). (6.31)

6.3. Convexity and asymptotically F-null sequences

We summarize the results obtained so far, For convenience, we recall the
setting. (X, B) is a measurable space. There exists a locally convex Hausdorff
topological vector space (E,7) over R with topological dual (E*,+*), so that
the pair (E,E*} is in duality; X is a closed convex subset of E, equipped
with the induced topology. The measurable and topological structures on X
are compatible in the following sense: each point x € X has a local base of
measurable neighbourhoods; the maps z {z', ) are B-measurable for every
z' € B*, where (z',x) denotes the pairing between E and E*.

Theorem 6.1. The setting is as above. Assume that the pair (M.}, 4V, 1)
obeys an LDP with RL-function p. Let {C} be an LD-regular sequence with
C = N Cp. Assume that C is convex and thai the concave envelope of y
coincides with p on C; assune further that either int ' is non-empty or p s
continuous at some point of . Then

a) The sequence of conditioned measures {MS} is concentrated on the non-
empty compact set

Ne ={x € C: pu(z) = sup ply)}; (6.32)
yeC

there exists x' € Nyen, 3—p)(x) bounded below on C such that
Ne CO{—p)" (), (6.33)

b) If, in addition, ¥’ is bounded below on C,, forn sufficiently large and p(z'} =
{(-1£)*(x"), then Ng is a subset of

N ={z€E: p(z) + (&', 2) — p(') = 0}
and the sequence of conditioned measures ﬁ(ﬁw is asymptotically I-null to the

sequence of normalized tilted ineasures {M? } on the scale {V.}).

If the sets C, are relatively compact, then it is not necessary to have an LDP;
it is sufficient to assume the existence of an RI-function It
2— 3708
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Lemma 6.2. In particular, (6.33) reads i
Noec{zgE:{z',x)= —p(x) + (—p)*(z")}.

y implies N¢ C N*. If z € Ng, then {—p)*{z') is
fore b) follows from Theorem 5.1. 0

(6.34)

Therefore p{z') = ﬁlw&.* {z'
finite; hence p(x') is finite. There

Part 111
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7. Independent random variables

We show how the formalism developed mc.muﬁ.nm T and u.u can be NMWWMW:“M

; ditional limit theorems. In Subsection q..m“ we give & gener o s

o ect to seciuence of Theorem 5.1. In Subsection 7.2, we give a concreie

. m%mnw.nmnmwmﬂwwﬁumg random variables. In the final Subsection, 7 _w._..im study
Mﬂ“ﬁﬂmﬂmxmﬂ:&msiwﬁm the hypotheses of Theorem 6.1 aze not verified,

7.1, General case | iy
Let (8,5} bea standard Borel space and 8 a E,ovmw%wp% HMmMmM“m omm ﬂw& Nm
et > S and define {§1, .
y 1 t (§3:, F:) be a copy of the space (S, ) :
Mowﬁmwnww%uw umm“wh% mﬁ Wﬂ. i=1,..., be independent random variables,
1 . 4
Vi 8, Yi(w)i=uw;, (7.1)
her random variable ¢ : § - X with
il law 4. We consider another ran s 2
swwwmwnwwmwﬁw“m%mﬂnwgm space (X, B) which satisfies the hypotheses of Part IL
Vi sait ;
Tor each n € N, we take Vi, = n and define T, : & = X by

T

! 7.2)
T{w} = M Mwﬁ?&“v. {
n—uﬂ
The distribution of T, on X is M,. A typical example is
w: 8= MT(S) , pls)=19,, (7.3)

here 8. is the Dirac mass at s € 5. Here T, is the empirical &mﬂ?:ﬁrﬂ &W;
Mwmm Wmm been extensively studied, see for mxaEEm ENM, MOCE, mﬂ Wwﬁmwwm.
Wrm scaled generating function p(a') exists for all 2' € E* but is not necessarily

finite; it iz given by
plz') = lim L \ &= M [de] = In \ ot (N glds). (7.4)
i non /
4 5
X
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The function p is automatically convex, a consequence of Halder’s inequality. If
{z.} is a sequence converging to ', then Fatou’s Lemma implies that

lim inf In \ =0 AN giga > 1y \ @10 g,
i g
Hence p is a closed convex function on BE*. Let be a convex neighbourhood of

{z+¥)/2 € X; there exist convex neighbourhoods (7; 3 2 and &3 2 i such that
Gi/2+ G4/2 C G. Since the random variables ¥; are independent, we

(7.5)

have
M. [Gh] - MGy < My, (Gl (7.6)

From this inequality, the existence and concavity of the RL-function g follow
immediately using the standard subadditivity argument [L]

Theorem 7.1. Let Vi,Y;... be a sequence of Lid. random variables taking
their values in a standard Borel space (5,8} with common law 8. Let W@
§ = X be a random variable with values in a the measurable space X which
satisfies the hypotheses of Part I Let {C.} be an LD-regular sequence in X
with € = [\, dC,. If there exists z' € dom p such that the sequence of
conditioned measures (MY} is asymptotically I-null to the sequence of tilted
neasures ﬁ(mw.? then the law AS of Y| conditioned with respect to the event
{T. € Cu} converges in information as n — 0o to the probability measure

. (@' (s}
F s} = A .1
\mﬁx,ﬁﬂ:v%mmm&
- 5
that is, \

Proof. The idea of the proof comes from [C]. Let v be the infinite product
measure on & with all factors equal to 8 and let 0* = 11,51 2j, where the

"
first = factors are equal 0 the measure A% and the remaining ones to the
measure 3. We observe that the conditioned measure MY is the image under
T, of the measure

vl - T €0, (7.9}
and that the tilted measiure gm\ is the image under T}, of the product measure
vy . By a change of variable, we have

HME | M) =H@| - | T, € G | 2). (7.10)
The law >m of ¥] conditioned with respect to the event {5, € C,.} is equal to the

marginal of ¥ - | T, € C,}; therefore the theorem follows from Theorem 5.1
and Lemma 10.2. ]
yx
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7.2. Lattice case

Let 11,Y. be a sequence of iid. integer-valued random 435%@@ with
mow w_wém_,m. . .ﬁd assume that the variables have maximal span one. or @,
COMm - .
we choose the identity function, so that

Tofw) = mMﬁﬁav_ (7.11)
F=

Here X = E = R with its Borel structure, and E* = R; the scaled generating
function p is given by .
p(z') =ln \ e taldt] {7.12)
R

and we define as above the tilted measure

:

e” *plds] (7.13)
\ o tp(d]

R

ma\ [ds} ==

i = T.% and
Let p be the RL-function of the pair ({Ma}, {Val}), let M, = fo
V,, = n. By definition of p, for any point z € R, we have

w ~mwvm m x v w_.me m.C.mv m “ T W xr m . 4

M ™ ﬁ w nt g A W < tﬁ v. A u. v

m mccﬁmwm ﬁ#ﬁwﬁ mwwm m=wmu.@~ O AU M ﬁ.ﬂ.v 15 an HLUlm@NCwE V@w 18 @ﬂ.ﬁuc@mmﬂwﬂ o prov _.Mu.m
| 13 m = wnmu:\ _ T == ). M.Hm

an show that
There is a simple case where this can be done, namely, when we can

mE:.Em ma[{z} =0 (7.16)

i = ince p is nonpost-
Tndeed, if this happens, we must have lim, ma[{z}] = p{r) since p is nonp
%4@ kﬂ@?ﬁ elementary remark js that whenever we have

7.17
limma{{z}] = plz), (7.17)
"
have also an analogous result for the tilted case for any < such that p(z') is
we hav
- . @ 7.18
e s ()] = 17 (). (7.18)
n

We make use of these two remarks to prove
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Lemma 7.1. Let z be a rational number with the properties:
a) there exists k € N so that Prob{{T, = x}] > 0;
b} there exists o' in the interior of dormrp such that grad p{z’) = =, ’
Then we have 1
mmm p In M. [{z}] = p(z). (7.19)

Proof. Let Z;, i = 1,2,. - be Lid. random variables with common law ¢
by choice of £, we have E[Z;] = z. The distribution of L i Z; I8 the tilted

measure M7 . Since 2 is in the interior of the essential domain of p, all moments

of Z; are finite and, by the Central Limit Theorem for lattice distributions {see
FD), we have

kn , 1
?&WM Z; = kna] = MZ,[{z}] = omﬁv. (7.20)
I follows that 1 “ x
0= mw.c, ya In M, [{z}] = p® (2). {7.21)
But, clearly, we have
#(2) = 2w p(a) + ple) (7.22)
= lim mm I M [z} = o' -~ p(e') + lim Mw In My [{z}],

which means precisely that {z} is LD-regular for the pair ({M,,,}, {Vinh). o

Theorem 7.2. Let Y;,Y;... bea saquence of i.i.d. integer-valued random varj-
ables with maximal span one and common law 3. Let domp be the essential
domain of the closed convex function iR RU {0},

p(') = In \ " lds]. (7.23)

R

Assume that dom p contains a neighbourhood of the
number with the properties:

a) there exists k € N so that Prob{{T: = z}] > 0;
b) there exists x' in the interior of dom p such that gradp(z') = z.

origin. Let x be a rational

Then the law A%, of Y, conditioned with respect to the event {T}, = z} con-
verges in information for n - oo o the probability measure 5%, Conseguently,

we have ,
Jim S (e} - 8% [} = 0. (7.24)
rEL
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Proof. Since domp contains a neighbourhood of the origin, we have an LD for
the pair ({Mgn}, {Vin})- The function p is differentiable on the interior of its
essential domain, which implies that j is strictly concave and continuous on

Aw={yeR:y=gradp(z'}, ' €inf (domp)}. (7.25)

The set ¢ = {z} is LD-regular (Lemma 7.1). Wehave N¢- = {z}; by hypothesis,
risin A and this implies that ' is the unique subgradient to {—p) at x and thus
satisfies the hypothesis of part (b) of Theorem 6.1; hence Theorem 7.1 applies.

The final statement says that we have convergence in the fotal variation metric

as a consequence of the Kernperman-Pinsker inequality (see Proposition 10.3)
W]

7.3. A counter-example

The following example, inspired by a model from Statistical Mechanics, the
Curie-Weiss model, shows that if the RL-function is not concave, then the con-
clusions of Theorem 6.1 need not obtain; this example shows that there are
mieagures obtained by conditioning on convex sets, which are not equal to tilted
measures. We also illustrate the fact that, for [Net > 1, it is necessary to study
large deviations on a scale smaller than the scale {V,,} in order to determine
more precisely the concentration set of the conditioned measures.

Let S := {—1,+1} and, for each b € [—1,+1], let B* be the probability
measure on S defined by

TR PR (SSVE =2 (7.26)

For each j € N, let (€15, .{U be a copy of (S, 3%); let € be the infinite product
space J];», (% and let A* be the infinite product measure [}, A} Tet ¥,
j € N, be the random variable defined on by

Yy {=1, 41}, Yilw) = wj, (7.27)
and for each n € N let
Tolw) = MMw,.A_aTwM,Ua. (7.28)
N Y .
F=1 3=1
The random variable T}, is distributed according to the probability measure vy,
exp {nET2Hw)} A [dw] 30

u\*;&b&_ Tmm T
exp Tvmﬂ: {w")
0

{d1). (7.29)
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In this example V,, = n, F == E* = R and
. s B B e X =[~1,+1] C R. The distributi
of T on X is M, = 15, o T,71. Let s be defined on {0, w_w by ¢ distribution

m.ﬁvf: wa mm.@ﬁcﬂ
s{y) == mwt.c ny~{(1-yhn(l-y), fo<y<i, (7.30)
, fy=1

The RL-function y of the pair ({M,},{ Vol)is

Pt o
thvaA v;rmmm..lﬁa_

2 2 (7.31)

where p, s the constant

} H+H Déu
.ﬁﬁizm: .. sll
nm_ow_u:TA 2 v + 2 }- Aﬂ.wmv

Moh,mmnw~a~mmwunw_...mﬂ _ .~. .
meastire e u mnm measure w.\HM 18 ﬂww image mwu« nwwﬁ map H;..e G.m ﬁuﬂm
2 ] = SR ANETW) + 2T ()} A0l

: MW 2y 7 ;
m\ee {n( 5 T} + ' T (W) }A%[dw'}

: (7.33)

The scaled generating function p, (') can be computed by Varadhan's Theorem

pal2’) = sup {s

£ nw.r.&v ax’

3ttt ' -z} (7.34)

o L . . .
MMW M w& 5, the m@-mﬂwnsoc 215 not concave: the RL-function attains its max-
- value at the points dm*, where m* = m*(a) is the positive of
equation : root of the
tanh 200 = {7.35)
The concave envelope of 1,

- plx), fHaxe[-1,-m,
i(z) = { 0, ifx € [-m*,m*| 7
i ,m*], 36
wl(x), ifzem”, 1], (739

is strictly larger than p on the open interval {—m*, m*).
We choose the parameter o > 1/2. Let ¢ = [—a,+af, with 0 < a < m*

The set € is LD-rep s
. -regular; since the RL-function is . .
seb is given by . 1e RL-function is symunetric, the concentration

Ne={z€C:ple) = sup p(y)} = {~a,+a}. (7.37)
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For any z' € R, we have
] “_. . 2
lim wigm M) = lim S H{al | {Tn € CH102) 2 ~a(e) > 0. (7.39)

A simple analysis shows that the tilted measures are concentrated on the subset
N®  where

{b.(x")}, bu(&') € (=1,-m"), ifx' <O,
if 2 =0, (7.39)
ifz' >0

v

N® = { {—m",+m"},
{b.(2)}, blz") € (m", 1),

One can prove that the sequence Tﬁ_w converges to a probability measure,
denoted by v%,. Since ¥Z, is invariant under any finite permutation of the w;,
it follows from de Finetti’s Theorem (see, for example, {F]} that

PR if3' #0,

=A™ 2 AT 2, il = 0. (7.40)

v,
The conditioned measure v,[ - | {Tw € C}| has a limit as n tends to infinity,
which s also invariant under any finite permutation of the w;, so that again we
can use de Finetti’s Theorem. We show that we find different limiting measures
by choosing different LD-regular sequences {C.,} converging to C. For example,
we choose e, > 0, such that £, § 0 and ne,, — oo faster than Inn, as n — o0
and C,, := [—a,a + £,]; the sequence {C} converges to C and is LD-regular,
thus the concentration set for the sequence of conditioned measures {MEY s
again No = {—a,+e}. However, a finer analysis based on Lemma 7.2 shows
that the measures MY converge to a Dirac measure 6, concentrated at a, 50
that lim, oo #n] - | {Tn € C}] = A%, Notice that A* is not of the form

\ A ], {741}

R
with p a probability measure on R.

Lermma 7.2. Let J be an open subinterval of {—1,1] and let D, == [a—d,a] C
D, = [a—d,a +e,) € J, where § > 0 and e, § U as n = co. With p'(x)
denoting the derivative of the RL-function, if infyc s p'(x) s strictly positive
and ne, /lnn = oo, then

M [Doo]

Tim Mg~ 0. (7.42)

Proof. We prove the lemma for the case where the function g is given by

1+ %), (7.43)

ple) = gla) +5( 5
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wiww g: i~1,1]—+Ra n‘onsﬂcczmm% differentiable function, The measure M, is
in this case {we can omit normalization because the lmit involves a ratio)

gaﬁw_ = M .B:A_m..vmmw\wwtum.mww. Aﬂ.ﬂnmv
k=0
where
pulk) i= () enatBs/mD) (7.45)

From Stirling’s formula, we have the following estimate: given 0 < o < o' < 1,

there exist Ky > 0 and ny € N such that, for n > ng and & such that a <
k/n < o, we have

1) k
|1n Oﬂv ~ns=| < Kolan. (7.46)

From this it follows that there exist K > 0 and n; € N such thag, for n > ny
and % such that 2k/n — 1 € J, we have

_an?v - :_:Awma. - Hv_ < K lan. (7.47)

n
Define the measures wdm,.: n > 1, on the subsets of [~1,1] by
H(M:me_ - Mmﬁtﬁwk\ﬁlww&.&r\q«l;m_w ﬁ.wmmmv
ka0
for B C J and n > ny, we have
e~ 1mnff 1B] < M[B] < X M 1B (7.49)

Maoﬁ let B be an interval of length {B[; by the principle of the largest term, we
1ave

mw w) mw. H
HIIA; %Ev
oy (5~ 1) € B < ma (S -1) ¢ S0, (rs0)

where ¢7'B = {k:2k/n — 1 € B}. Thus there exist K, > 0 and n, € N such
that, for n > ny, we have

Mo [Doo]

0 < mmbeel ot : 2k _
M.D.] exp{HzInn +Iné} - exp ?Awmwwmowztﬁ - Hv (7.51)
2k
—am, ()
Since p is continuously differentiable, we have
2k 72k €n
et () g, (5 - 1) S -5 s o)
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taking i — oo, the result follows. O
Let & be strictly positive, so that

[

[~a,a+en] = [~ ~a+8]U (—a+ha -6 Ula—Satel  (753)
* we write the measure MY as .
e IR o . . ?ma.zl.af,!a:ﬁ;&_ .. .
Oy = e, ) :
wmzh ] = Z_L _M_ aw,,.a.;rm: MO Q.m&
. e Mof(=a + 8,0~ 5)
M, (et b a - Sl S
. . ”. ﬂ »,”— ﬁ o | : . gﬂ.ﬁ aL N
. ’ . YR s e ‘_..A.gam.mlmu.g.n...msm e
o M tesebel TR
Using ZLTP%@ + 8l = M: fa .,..._mw@z‘\ it {allows immediately that :
L ME s, e L (Rs5)

, i . ' Co

i

8. Oo.samawgdmﬁin er@cnén-m stationary case

“We nai,m@.amm.mmm ,amtm:mnnn random ém.ww?m.. .Hﬁa. mvwnﬂm case %.‘.Kmmwcﬁ

" conditioning is addressed in JOCC); our results cover a much wider range of

applications. The miain vesult; proved in Subsection 8.2, is a conditionsl timit
theoram for statjonary sequences of random variables {Y;} indexed by the points’
of the lattice Z%. Two concrete applications of this theorem are given in Subsec-
tion 8.3 and Subsection 8.4. In particular, we give in Subsection 8.4 a new proof
of the LDP for the empirical measure. In Subsection 8.1, we define the notion
of equilibrium state. For that purpose, we introduce the concept of a weakly
dependent measure and recall the basic properties of the specific information

gain.

8.1. Equilibrium states

Let (5, 8) be a standard Borel space; for each i € Z7, let (Q;,F,) be a copy
of (5,5) and define (£2,F) as the product space. We set [i] := max lig] if
= (i1,...44) € 7% and use JA| to denote the cardinality of a subset A C yAS
{f15, Fa) denotes the product space (Mica Qs Tlica F3) and (€2, F) stands for
(Qga, Fya). We write f € Fy to mean that the function f is Fa-measurable.
For i € Z%, we have the translation operator 8; acting on Z4 by 7+ j+i. This
lifts to

B;: 05 — o, with Amﬂtﬁ = Wi . Am.c
For [ € Fa, we define 6;f € Fon by & f{w) = f(f_w). For the measure v, we
define 8;v so that [ fd(:) = [(8-:f)dv obtains. For any bounded function
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p: Q- RY o= (fi,..., fi), we set

wel (82)

o)l = max 1£,)l, loll = sup fo(w))
Definition 8.1. A real valued function f on 0 is n&_m,.w local if f 15 F
Emmmﬁwmvmw for some finite A. The symbol Fi,. dénotes the mmwnm of all @My MM
local functions; the closure of Fi,. with respect to the norm ||| is %nogmﬁ% .
and f € .ﬁ.__oa is called quasilocal. The vector space of all finite signed me: e
on (2,7} is denoted by M; the probability measures, by M, mn_mwmmmﬁwmﬁmm
variant probability measures, by \Sw.m‘ , v e

For f € Fye and v € M, there is the natural pairing

() = \ )i, (8.3)
9]

Equipped with the o(F ., M)-topology, M and Faloe are mutually dual locall
convex Hausdorff topological vector spaces. The set M7 is a convex wmdw%m
o.m..\S and \Swwm is a convex subset of M. Though .wm tae and Emmmm
&m.mnmi topologies on M, the topology on MY induced vw .W_cn nQaMWmm with:
the topology (M7, Fuoe). A sequence {vn} of ﬁaovm&wmﬁw measures on )
converges to the probability measure » in this topology if and only if :

(8.4)

fise d e

lim { fdw, = \w&v

for each f € Foo. Sometimes this convergence is called r-convergence. Unless

otherwise specified, the discussion of limits robabili
’ g 0 babil
this topology. ’ f f probability measures below employs

We fix once and for all a sequence of finite subsets A,, C Z%, ne N,

Ay = [-n,n] C Z* (8.5)

w:ow w.m,&ﬁ eventually mbw finite subset of Z% is contained in A,,; the corresponding

Wﬂ_.%m is Mw.\a. e mw..malw. 1)?}. The complement of A,, in Z% is written &, = .Na/> ",

e restrichion of ili asur y : i . Ve

o of a probability measure A to a o-algebra B is denoted Mp. We
_Ea(f)

M\/_uu_:: &oxzmu..ﬁv A.\mv

eafA) 1= sup A_FA : P [200n P} {8.6)

{If the numerator and denominator :
the or are both zero, then the ient i .
definition of ¢,(») is defined to be 1.) “ ¢ duotient i the

Definition 8.2. A translation invari ili
.2, iant probabilit, : is
weakly dependent if : iy messure A on (S5 s
) i
fim —e,{A) = 0.

n—oe ¥,

(8.7)
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Remark. In the case of a loeal specification defined by an absolutely summable
potential, Gibbs measures are weakly dependent (see Section 9). In [Su], a
similar definition is introchzced ((3.8) of {Su}); however, the present formulation
using {8.6) is more convenient. -

In this setting, we define two important functions: the specific information
gain k{ - | 3) on M # and the scaled generating function p( - | §) for mwm
empirical meagure, mmmnmm ont Fylee. In the following, 3 is a fixed translation
invariant weakly dependent probability measure. Let A be an element of mi

we set

My, (M B) = H(Nigw, | Bira, ) (8.8)
Definition 8.3. A probability measure A has specific information gain h(ATA
relative to the probability measure 3, if

RN | B) = lim eHe, (A ] B) (3.9)

T+ 00 n
exists.
Theorem 8.1, Let B € .iwrm be a weakly dependent probability measure.

a) For any A € g_&w_?m“ the specific information gain

lim |£;ﬁ> (A] B) {8.10)

-0

h(ALB) =
exists as a nonnegative nmber or +oo and k(- | B) is a lower semicontimious
affine fanction on M wfa.
b} The level-sets of h(- | B) in M are compact.
The proof is given in Section 10.2.

Definition 8.4. Let f be an element of Fgo. and let 3 € ?Qfm be weakly
dependent. We define

p(f|B) = mE%..E ;%M wb\axﬂﬁ MU F(8;w)}8]dw]. (8.11)
Q

JE€A,

The empirical measure is the Edvmgms measure given by

MU 8o, (8.12)

" jEAn

Since
3 fbjw) = Va (f,— 7 Y o5, (8.13)
FEA, jEA,

the function p( - | B} is the scaled generating function for the empirical measure
defined on the probability space (&, F, 5).

by p(- | #) and k(- | B) are conjugate functions:
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Theorem 8.2. Let § ¢ .\Sw.e be & weakly dependent probability measure.

a) For any f € Faoe, p{f | B) given by {8.11) exists as a limit, not just as a
limit superior, and p( - | §) is a lower semicontinuous convex funetion on Fyo..

p(f15)
h{x1{8)

i

sup{(f, A} ~ h(A | 8) : A e MP¥), (8.14)
mCﬁAAM, \/v x;»dm.% ~ mv . xw, = ..m;l.u:oow.

i

¢} For any o € kiw:m and f € Fytoc, we have
(f,a) <p{f | B) + hia | B). (8.15)

The proofs of a) and b} are consequences of the results of Section 8.4. One
can give a direct and straightforward demonstration of a) along the lines of the
proof of Lemma 8.2, while ¢) foliows from b).

Definition 8.5. Let f € Fy,. and 8 € \SWTQ be weakly dependent. A trans-
lation invariant probability measure o is an (f, #)-equélibrium state if

{fred = p(f 1B} +h{e{B). (8.16)

In this section we shall make use of the following two operations. Let X be
any prohability measure on (1. For any k € N, we define a periodic probability
measure P A by

Ped = [ B (F ) (8.17)
Fe7e
We call Py the blocking operation. We define also the aweraging operation Ay
by
M 8;, (8.18)
JEA,

acting on the space of measures or on the space of quasilocal functions; by
definition of the action of Z?, we have

(Anf, A = {f, AuA). (8.19)

It is immediate that v is a limit point of the sequence { A} if, and only if, v is
a limit point of {PrAi}. An elementary estimate shows that v is a limit point
of {Ax A} if, and only if, » is a limit point of {.A,(PyAs)}. Notice that A PpA
is an ergodic probability measure. To see this, it suffices to note that, for any
G € Floe, we have

2
,\ 9(@) - Big(@) (AxPeN)[d] = ( \ o) (AP ), (8.20)

2 1

provided |{| is large enough.
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Lemma 8.1. Let g £ gSHDm be weakly dependent.

a) For any probability measure A, we have
(Hrn, O 18) = em() =10V ) Vo S D(AwPuA|B) - (8.21)
(M0, A 1B)+ enlB) 1V,

A

b} For any sequence {),.} of probability measures, we have
1 .
lim sup .ﬂiﬂ? (X, | B) = limsup h(A,P. A, | 5), (8.22)

and the corresponding equality with liminf obtains.

The proof of a) is given in Section 10.2, while b) is a direct consequence
of a).

8.2. Conditional limit theorem: general case

Let 3 be a translation invariant weakly dependest probability measure. We’

consider a random variable  : )} = X, defined on the probability space
(t, F, ) with values in 8 measurable space (X, B), which satisfies the hypoth-
esis of Part II (sce Section 4.1}. For each n, we define the random variable
T.: Q- X by

Tplw) = A, plw). {(8.23)
If for ' € E* the function &w‘ : 2 — R defined by
FEw) = (7 p(w)) (8.24)

is quasiiocal, then

mWZf?J = :Eww.g.\@ai MU [ (0,w) }Bldw] = p(x) {8.25)

JEA,
exists. We set .
B ] = exp{ Y S5 {Bw) — Vapalz') } B, (8.26)
FEA,
and
B dw) = Bldw | Tn € Cal, (8.27)

where £, € B is a sequence of sets with [T, € C,.] > 0. Recall that for every
pe M’ .
hlp | ) = lim 5 Hz, (61 §) (5.28)

et

exists, and is non-negative.
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Theorem m.wu In the above setting, assune that there exists ¢’ € E* such that
the function f7 is quasilocal, and

rEi H(BE | B2 v = (8.29)
Then the set of limit points of the sequence

{4l [Toecdy (830)

is non-empty, and any limit point 8% satisfies the identity

ME° 1 5) = lim g BT, € Col = [ J7 @)Ll - o). (831

In .?..wws.nﬁmb B¢ is an { ‘&w@;mn:%vaﬁ.n state,

Fd&q ¢<@ have

lxaa_usﬁ%i 18- \ F2 ) ABE 1) + pule’)  (8.32)

and
L, Y el :
v Hra #7183 m T A1 B) =~ In T € G, (8.33)
Since fZ is quasilocal, sup,, | )| = lify < o and lim, a2’y = plz")
exists and is finite. Using Lemma 8.1, (8.33) and {8.32) we get
1 . .
0 < lim M%ﬂxﬁ; B8 = lim inf AP | B (8.34)
< rﬁ Em %Iwm BT, € Cy] <lim mﬂwl..lg.mﬁﬂ € Chyl
= timsup (S 153 \ 12 @) AnBS (0] - pu(z'))
<

< mnw‘w:ﬁ\.ﬂgavahmm&tw ~p(z') £ :b%: - p(a') < o0.
o

Since the level-sets of the specific information gain are compact, the set of Hmit
points of the sequence {A, P, 85} is non-empty. This set coincides with the set
of limit points of the sequence {A.85}. Let B¢ be such a limit point. Since
QE is quasilocal,

tm [ 7z 04,09 = [ £ a6, (8.35)

i e A E e i
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P . : NI
the lower semicontinuity of the specific information gain on A" implies that

<
\ FE (w)B%dw} — p(z').
0

1 . ) i
R 18 < mmmzm:mléﬂmsuﬁﬂz €0, < HHEMEU A In i, Qﬂﬁw.wmv,

iA

Since 8° is translation invariant, Theorem 8.2 implies the reversed inequality
W% 1) [ 7 @8%lde] - pla). (3:37)
)

&

The above result may be applied to sequences which approximate { A, p{w)}.
‘We have the following

Corollary 8.1. Assume the hypotheses of Theorem 8.3 are satisfied with {T,,}
which does not equal { Anp(uw)}, but such that
lim [j{z', Th{w)) — {z', Antplw))f = 0. - (8.38)

TFO0

Then the conclusions of the Theorem still obtain.

ial i se of the lower semicontinuity
Bemark, A crucial step of the proof is the use o . _
of the specific information gain on kSMTm. The following mxgvy.m shows S.&S
this praperty fails to hold on M7, even il the limiting measure is translation
invariant. We construct a sequence of probability measures t{.v m.:ow ﬂ.vmn
{A.} converges (the topology is that induced by Fye.) to a translation invariant
probability measure and

lim (A, | B) < Emm_u Ao § B). (8.39)

Consider Z' with ©; = {0,1}. We have A, = {-n,...,n} and Vo =2n+1.
Let 3 be the product probability measure with g[{1}] = P.moﬁ all i € Z, ésﬁm
0 < a < 1, and let » be the product probability measure with v{{w; = 1}] = ¢
for all 1 € Z, where 0 < a' < 1 and @' # a. Define

o, i<k

8.40
a, otherwise, (8.40)

vel{wi =1} =

Then {1,} converges to v. Set A, = Puuy; m\_’a.w converges to v. Note that
Hr, (v, | B is of order 24/n, so that Lemma 8.1 implies the equality

lim h(A | 8) = lim —Ho, (v | B) == 0. (8.41)

RO -0l Vi

But Ay | 8} is non-zero.
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8.3. Conditional Limit theorem: euclidean case

We give an application of Theorem 8.3 when the measurable space (X.B)is
a compact subset of R* with its Borel structure, We fix a translation invariant
weakly dependent probability measure Bon (,F) Let ¢ : § = R* be a
quasilocal function. Recall the norms defined in {8.2). Let £ = F* = R* with
the pairing given by the Euclidean scalar product (', z). Let X ¢ E be a dosed
ball at the origin with max norm radius larger than [ip|. The distribution on
XofT, = A4,pis gﬁﬂmcmﬂ,w.

Lemma 8.2. The RL-function y of the pair ({Mpn},{V.}) exists; it is a coneave
function on R*. The scaled generating function

P&} = lim - 1n \ elV =M, (4], (8.42)
n v,
k‘

exists; it is a closed convex fanction with dom p = R¥.

Proof. Let B.(a) be an open ball of radius ¢ and centre a € R*, Lot Gg, 0,y

be elements of R* which satisfy ag 4 a, = 203 and let 0 < &” < &' < £ we shall
prove

m{B.(a;)] > m{B.w{ao)] + mfB.n(a;))]

. . (8.43)

If we put og = a; = ay in (8.43), we have

Eﬁwm?‘oz z ﬂmmmwm: ﬁ_ua: ) (8.44)

which implies 4 = B To see that the resulting function, denoted by s, Is
concave, we note that (8.43) implies the inequality

jt{ao) + pl{ay)
5 )

Since g is upper semicontinuous, this implies the concavity of . The existence

of p is a consequence of Varadhan’s Theorem; since X is compact, we have an
LDP. Therefore

play) >

(8.45)

ple') = :w,mﬂws \ eV "IN ] (8.46)
" X
P wE@ﬁHJHVL;_:Ava.
2EX

We return to the proof of (8.43). If @ were a function of a single coordinate
and 8 a product measure, then this would follow from (7.6); we have to show
that, under the existing assumplions, the inequality got from {7.6) by taking
logarithms and dividing by V, continues to hold up to a small correction {which
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. P . _

c.mw:umw*:wmv as 1 N:Auv O ::.m_w_ ﬁ.(un\wma— we ccOu.W on a ...vCH. m.mcu. y L > -

jis) v Pr mwwww COarse s{ mwm.

wven ﬁ.w‘:« To.uﬁ >3.u we Q@?nw@ MON T > M mmwm Uﬂﬁvmmﬁ?ﬁnﬂ >=_3: ccvaVAw wuou.:ﬂ.rm. are

mww %ﬁ_:.uv Om. Aw.mw fr mﬂ.mwm.ﬁ@uu Om P _.u@ nﬁw;wﬂmmuﬂﬁv .Um Mq: + “—. Ewwmﬁmw mﬂ.mvv‘ m:wwnm@ gwj..
C

f 8.47
>3_3« = #ﬁwﬁw + Hv.u 1y E >A$!¥Ln=<ﬁm=-+wvwv A v
4
i 8.48
gln{m) = Anp] = ‘ﬁmﬁ: — m)div{2m + 1)} + Mv \ (8.48)
where div denotes the integer part of the quotient. Then
| #AmCA, and | L 0An | =a(n]m)Va,, (8.49)
¥ 3t .
€A ’ FEA R ]
since the translates 6;An are disjoing.
@.I:..‘ao-J“.m‘vnqot..‘noltG-Q
1 A !
Ay

d=1: bozes Ay and Ayi; large s are the points of Ay q(11}2) = 3.

muvﬂﬁnﬂm ate Mwm olnts Qm Ji 2 .Uw 2 ] = Hv. v n T 50 nwwm»ﬂ 1 corre-
1 bl QA _ vv

T t mv I _5_3 H

r‘.mwc:@mu 0 wrm Dwu.mu:mw n .:u.p_ﬂ;. wmﬁw‘ﬁm@ QA: _ :_\v 15 Oﬁwnwu we omilt ﬂ.r.m Omum:w _MCH;

; . i 9
i 3 ex relationship ap = (80 + a1 }/2,
sums involving Ay, Making use of the conv

we have for n > m

g(nlm)
i
HTn(w) ~ a2)Va — 3 (65, Tm(@) = 8jmoa2)Vml (8.50)
j=1
< (Vi (gl 1 m) = 1)Van) Gzl + el -
For any mn € N, we can find G, € Fa,, 50 that
= 8.51
lim 2 sup |G {w) ~ M p(fw)] = 1. (8.51)
m a\:s w Pyl
Therefore there exists M so that m > M implies
{8.52)

i e e Y
L oplGn(w) = 3 @l0;w)] < minfe’ - "6 ')
<3H w .Q.mhfu-v

e
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For m > M, it follows from the two estimates above that

{n|m)
1 ’ ﬁzu ¢ m.
trnsup |75 ) ~ a} - Vo 2 g Gnl) = ajmoaz} | <o, (5.53)
n n e m\u:
and )
\;ﬁﬂwﬁmm:ﬁnu E.KE& C ﬁE : Ml\e.i,ﬁwu:?uv [= .Nwh_?mu anmvw.
™

Then there exists N, such that n 2 Ny, implies

(8.54)

H .
AE ..%np ﬂfgupmﬁtv [ mw.m.ﬁpuscamy j= Mu o ucﬁ.; wﬂ:vw c Hﬂ#%@mﬁgwx .

{8.55)
Using the fact that g is weakly dependent, we can write
In M., [B.(ay)] > In M, [B,or(a)] -+ In M, (B (ay 0 Vi (g(n ) — 1) (8.56)
Va 2V, Va
- %v m,s;oa ). |
To deduce {8.43) from (8.56), select a sequence {m;} so that
In M.y, [Ber ()} Vi, (8.57)
converges to M[B. (ag)]. Using this sequence and the fact that
(90 | ma) = 1) Vi, / Vi (8.58)
Boes to 1 ag n = o0, (8.43) follows. O

Theorem 8.4. Let J ¢ iw_a be weakly dependent, Let w be a quasilocal
R*-valued random variable on the probability space (Q, F, ). The distribution
of T = A on RY is M.,,, and w4 is the RL-function of the pair (M.}, (VD).
Let {7} be an L-regular sequence in R* with respect to g, Assume there
exists ¥’ € R such that Ne © N Then the following hold:

a} The set of limit poiuts of the sequence

A\TYQ— ' Wm.,: & sz mmmmv

15 non-empty.

b) Any limit point of the sequence (8.59) is an (
7= (ot ).

c) ' is a subgradient of ~p for any poini of the non-emnpty compact set Ney =
{z € R*: p(a) = sup,e ¢ puly)}.

In particular, if B is a convex set contalning an interior point where 1 15 finite,

then the sequence {C,, = B} is LD-regular and there exisis ' so that Ne © N¥
with O := clB.

m s A)-equilibrium state, with
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Proof. The pair ({M,}, {Ve}) has an RL-function: » and a scaled penerafing
TOG]. nis E0
function p, with domp = R*, and

pla') = (=) (=), ;

mwwuwnm .uﬂ is OO:.:u@ t, we mrnwcmw an MLUM 1 we vaunuww_ Hm:wnummmmw m.H. Hmwm U@Qﬂ@ﬂ.ﬂ@ Om
o - mu w 2_.. 3
easires Aﬂgnw 15 ntu % ¥ 15141} OE@WOH se
mea n eve a,rz ca vO@nw&m mﬂﬁﬁw 813} ﬂwwm oI ty o t
ﬁww@um exists ©° € _ _ enN. mﬁ tv?ﬂv C Mﬂ. 3 WC.AWH ﬂymn

(8.60)

1 z' 61
lim —H(ME | M%) = 0. (8.61)

H et q azay . € par-
w wmeHAw:H i§ NOW 4 CONSe uence Om waﬁ@m@mww m M Hsmnmzuum. mw M COVEES ﬁwﬁ af
i

]
ficular case.

8.4. Conditional limit theorem: empirical measure

'} : takes its
We consider here a case where the nm&mcm.w ﬁémﬁm p . 1= X take
values in the space of probability measures My Putting

p(w) ==, , 0, Diracmass at w, {(8.62)

the random variable T,

Talw) = Anp(w), (8.63}

is called the empirical measure. The main result of this section is a simple proof
is calle

i irical measures. ‘ . . .
o ﬁwaUw MMHHMM%H& embedding of M7 in the unit ball of the &ﬁﬁnmu_mm A.uﬁ,
Th HWMMMA.M space of quasilocal functions Ftoc equipped ﬁwﬂnwm %MM |
o If AEW_ ,.ém take advantage of the fact that the norm um atocr
sup,, .

{5 € Fipoo : (2 < IS} forall f € Faroch, (8.64)

e hoose this topology for
i i *  Fuoc)-topology. We always ¢ :
e .woammn““wwm mwmw.mwwom M_oimwwm M as a proper subspace wﬂm Mg mNM“MmMM
Ao e 5 M mm the topology introduced in Section 8.1, 50 t .w* we m
wavowmww\ " f M into F*_ . On Fyoe , we consider the o(Fqloc, asnv-womuo MW%
e e Hron 7 - logy. With this topology, the
ich di i al from the o(Fqie, M)-topo £y. .
e e E% WMS are in m:m.w;m.s With the notatioss om. Section ﬁ, we r%Mm
W%mm W. o m.m ~ % and we choose X as the norm unit ball (8.64). e
= Fooes = Lo

o-algebra B on X is generated by all maps

T Cﬂ Hv 3 ...n = un.q:cc“ Ammmv

% ticn invariant
where {f, &) is the pairing between Fatoc and F, .. We mwn moﬂmw_ﬂmwwwm e
zmmﬁ.w a,ovmc%wﬂ probability measure § on (€1,F) and c©
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measure T, on the probability space (£}, F, 3
X. The distribution of ThoonXis M, =

The proof of existence and concavity
essentially the same as the proof of Le
of z* € X is of the form

with values in the compact space
o7

of the RL-function for {({Mn}, {Vo}) is.
mma 8.2 since a base of neighbourhoods

.WAH*.‘M“MV = Tﬂ €X: _A_Mm;.&,v . A.b.u.ﬂ*x < mw,.u.. = Hu.‘.,_m\.w

where £ = (f1,..., fi) with each fi € Floe, € = {gq,.

0 and k an arbitrary positive integer. (It is sufficient to consider only f; €
Fioc because X is & norm bounded subset of m"on.v The RL-function u for
({Ma},{V.}) can at each = € X be approximated arbitrarily closely by an
RL-function ps for some fnite vector f = {fi,..., fr) with each fi € Foe.

, (8.66)

.+ €x) with each £y >

Lemma 8.3. The Ri-function 1+ associated to th

e empirical measure, regarded
as & random variable with values

in X, exists and is concave.

Since X is compact we have an LDP;

we compute the scaled generating
function by Varadhan’s Theorem:

o 1) = tim o [ exp{Vite!, i) o)

f
= lim— V(o' ) :
= rwmﬂg \ e M, [dz]
X

= mcmﬁ.@.a x} + plzr)},
nEX

(8.67)

for any =' € Fegoe- This identity shows that ol
—; since —y is closed convex and proper,
conjugate of p( - | A).

) is the conjugate function of
the converse is also true: — 415 the

Remark. It is possible to treat on the same footing the foll

owing variants of the
empirical measure. Define

ma_am?\.v = .\A:ﬁzﬁﬁtvm mm.mmv

T i3 called the periodic empirical measure. More generally, define

Tw) 1= A,Q, (), (8.69)
where (, (w) is any probability measure on Q) which is a measurable function
of w and whose marginal distribution on F,

A, coincides with §,,. The empirical
measure (8,63} and the periodic empirical measure (8.68) are special cases of

(8.69). In all cases, the RL-functions and scaled generating functions are the
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\e. so that we have the same large deviations results on the seale {V,}.
san large :
H:%m,nu for any f € Fioc and any i € &%, we have

’ {0:1,6,) = (8:£5 Qalw)), (8.70)
if n is large enough; hence

lim [{f, Tl - D) = (£ Ta( - D=0 (8.71)

i, 8.4, Let v € X satisfy tﬁm,v > —oo. Then x is translation invariant
mBEw Ea ¥ o 2 ) ‘ .
and A.w. @.v > O for all nounegative fE Floo; INOregver, we have A.P _v = 1

L e

Proof. We show translation invariance; the c.nr.wm wm&wm E.m. meww§W>mMM-Mmmw
is zcw. transiation invariant. Then there exist ¢ € 2% ¢ > 0 and f € Floc
with g := f — 0:f, we have (z,g) > ¢ Notice that

limsup [A.g] = 0. {8.72)

Therefore, for all w and all sufficiently large, we have
73
g Talwhi = Anglw)] <& (8.73)

- + has Fiy = —00,
{his implies that the neighbourhood {u € X : {u,g) > e} of z has 7ty >
hence p{xr) = —o0.

Lemma 8.5. For fi, fz € Falee, we have [p(fy | 8)—plfz | B < 1A - Pl
Also, for any i € Z°%, we have p(fi + fo — 0if2 18) =p(fL 1 B).

Proaf. The inequality follows from

p(fi | B) = sup (f;, @) + pelz) (8.74)
e X

d o, fr — f)1 < Wi — fell for = € X. The second part follows wmnmﬁm

alk Ly Jy — I =~ ) ) )

() = Moo unless = i3 translation invariant.

Lemma 8.6. If v &€ X is a translation invariant probability measure, then the
m i ) - . o fl A

conjugate function of p( - | B) at v, phly), satisfies

— (v} = pp{v) < hiv | B). (8.75)

Preof. By definition, we have

! : Wi . 76,
pa(v) = sup Tb vy — lim Iﬂﬁ\mx_xm &; flu))pld & (8.76)

FE€Fqoe s ¥n i€A,

. 50 f € A implies
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We have shown already that p{ - { #) and —p are conjugate functions. From
Lemma 8.5 and the continuity of (v, f}, it follows that the supremum over F,,.
yields the same value. Take any f € 74, . Then, by Proposition 10.2, we have

v - mlz \ exp( Y fif (w))Bldw) = (8.77)
" €A,
1 1
7 (3 0sm) -1n [exp( 37 oustonpian) < SHr 018),
TigA. icA, "

v_mnm.m.mm,m 2oica, 0T € Fa,... Now
o liminf Vo HF L1 8) = hiv | B), . (8.78)

AR tm e fen(D ashaA < ke 18, (s19)
e “ ® Vn €hn N . -

Then Amqmv follows. . . ; ‘ =

. Forany ¥ € X with p(z*) > —o0, each measurable neighbourhood C of

x” and each positive integer 1 with B{Tw € L] > 0, we consider the probability
measure = - .“

.Q.:.l Cli= B - W.H: € L, _Qha = AP o Am.mcv

Lemma 8.7, Let 2* € X with #{(x*) > —oc, where /3 is a translation invariant
weakly dependent probability measure. Let C be a measurable neighbourhood
of 2* in X. Then, forn sufficiently large, we have

h{Bac | BY < p%m =BT, € CJ/V,.. (8.81)

If, in addition, < is closed and COnvex,

then any limit point y of the sequence
{8} satisfiesy € C.

Proof. From Lemma 8.1, we have

B2 | ) - ﬁs

[N

Hr (Bl 1 TheC))B) (8.82)

A

HPL - |TaeC]|B)
= —lplw:T, e}

>mmcEPEmm&&ow_zwmpﬂmmqwgm@gmnoﬁ:@r Let y be an element of X\ C;
then there exists f € Fatoc 80 that

(fix) <0forallz e C, )y =1 (8.83)
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Given f € Faoc satisfying the above, one can find f* € Flqe satisfying the same
condition, 5o we may assume without loss of mmsmmmm@.gwﬂ we have f € Fie
satisfying (8.83), say f € Fa,,.. An elementary calculation shows that

- <3L3;
Anf — Ancre 11 S 2B (8.80)

We have defined the action of A, so that
A%umg_‘:ﬁ:.&v = A.\w:%, %Evg Cn_ .Q“MQV = A.\»ﬁ%“ Huﬁ.ms.muv. AmmmV

Becauge A‘Lzl.ﬂ. £ \.U:QS.QV = A\AZWE* [ .Q.PQV , we have

w\s - @\:x.:ﬂ

1, B20) = (Aneme £, Brott € 2 fl—; (8.86)

Now S, c is supported by those w € ) which satisfy {Anf,dw) < 0; hence we

e {(Anf,Bne) 0. (8.87)

From the four above displayed formulas we deduce that

(1, BA0) < %_Mﬁmé . (3.58)

'L

Since (Vy — Vawm=}/Va — 0 as 1t — 0, if 2 is a limit point of ﬁ.@%QT then
(f,z) < 0; that is, y € X \ C implies y is pot a limit point of {8A,}. 0

For the probability measure v € X from {8.75), we always wm.im - t?.v <
h(v | B). A periodic probability measure v which is not translation invariant
has p(v) = —~o0, but one may have h{v | B} < co. In the case of translation

invariance, h coincides with ~p.

Lemma 8.8, If u(z*) > —oo, then £* is a translation invariant probability
measure. If v € X is a translation invariant probability measure, then

(@) = —h(v | f). {8.89)

Proof. Let z* be an element of X such that u(z*) > —co. For any closed convex
neighbourhood €' 3 z*, we have

piz") < mlC); (8.90)
for € > 0 and all n sulficiently large, we have

- o0 < u(z*) £ A\PFEH: €Ol +e. (8.91)
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For those n, Lemma 8.7 implies that, for 82, defined in (8.80), we have

_ B 1 8) < 9%9 — p(z*) +e < ooy

. (8.92)
since the level-sets of A( - | ) are compact on the space M, for each closed
convex neighbourhood C of £* the sequence { mﬂmw has at least one limit point
which is a probability measure which we denote by fr; Lemma 8.7 shows that
Bc belongs to C. The lower semicontinuity of the specific information gain on
M7 implies that

MBo i) < —p(x*) + e < oo, {8.93)

The net of probability measures {fi;} parameterized by the closed convex neigh-
bourhoods of z* ordered by inclusion has limits points which are probability
measures because of (8.93). By definition, this net converges to z*. Since the
topology is Hausdorfl, the limit is unique and is thus a probability measure.
If v € M with p(v) = ~o0, then (8.75) implies (8.89); otherwise, the re-
verse inequality follows from (8.81) and the lower semicontinuity of the specific
information gain. |

We consider again the setting of Section 8.1 with the empirical measure T,
regarded as a random variable defined on the probability space (2, 7, 4, where
pe .Kw_m is weakly dependent. We have the following result:

Theorem 8.5, Let 7 ¢ Kw,m be a weakly dependent probability measure.
Then the empirical measure T, defined on the probability space (1, F, B) with
values in the space of probability measures M7 satisfies an LDP with RL-
function p given by

~h{r | B), ve M,

M= oo, e MM

{8.94)
Proof. We know that we have an LDP on the space X. Since the empirical
measure T, takes its values in M{, the RL-function at v € M} is equal to
the above RL-function; it remains to show the upper bound for closed sets. Let
B be a measurable set in M}'; denote by B its closure in M} and by By its
closure in X. We have B = By M7 thus from Lemma 8.8 and the LDP on
A we have

[B] < sup p(z) = sup p(z). (8.95})

€ Bx 2€B

0

The proof of Theorem 8.4 and Corollary 8.1 yield the following result.

Theorem 8.6. Let § € M be weakly dependent. Let {T} be the empirical
measure (8.63) or one of the the variants of the empirical measure given by
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(8.68) and (8.69). Let M, = o T and let u be the RL-function of the pair
({M.}, {Vu}). Let {Cn} be an LD-regular sequence in X such that there exists

4

a' € Fyoe s0 that N C N¥ | where ¢ ;= a1 C,,. Then the following hold:

a) The set of limit points of the sequence

ﬁkﬁﬁ: ' mm.m: € Q:: Am.@mv

is non-empty.

b o' is a subgradient of —p for any point of the non-empty compact set N =
{r € M} : pu(z) = supyec n(0)}-

In particular, if B is a convex set containing an interior point where yu is finite,
then the sequence {Cr = B} is LD-regular and there exists 7' so that No € N®'
with C = clB.

9. Equivalence of ensembles for lattice systems

As an application of Theorem 8.4, we discuss the guestion of equivalence of
ensembles in the case of lattice systers, giving proofs of the results announced
in {LPS1] and [LPS2}.

The setting is that of Section 8.1. An infernction ® = {®p} is a family of
Fy-measurable functions &5, indexed by the finite nonempty subsets A of VAR
such that

8,5 = Bp.p , forall A, and for alli € Z° (9.1)

A potential is absolutely summable if

18] =Y ll@all < o0, (9.2)
A0
where [|&4]] is the supremum of | (w)| over 2. Another norm used with lattice
models 1s given by

I @lis = D li@ali/iAl {9.3)

A0

For each interaction ®, we define a quasilocal function fg by

far=1 _wl_?. (9.4)

ADO

It is convenient Lo allow the interaction to be R*-valued. For a given R*-valued
interaction &, we define

Up(w)= 3 @alw), Walw):= > ®alw), (9.5)

A:ACA A ANA#ED
S ANARY
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and the families of mappings {9,}, {52}, and {85} of (? inte R* by
VaSa(w) = {Uinw),. .., Urnlw}}; {9.6)

VS (w) = (U p(w) + Wy nlwy, Wi e Uk @) + Wialwa,ng ). (97)
The first index of U; » refers to the coordinate of R* and the notation wy s
Bﬂmm.um the point of £ whose A,, coordinates are taken from w while the Mm \M
Z7\ Ay coordinates are taken from 7; {S5} is {5} with 1 arising from w ma>i
by periodic continuation to Z?. The sequence { 5.} corresponds to the mnmamw
with free boundary conditions; {57}, to fired boundary condition n; 1551 to
cyclic boundary conditions. o

The next estimates allow us to make the connection with the results of
Section 8.3. We define the A-boundary of the set A,, as the subset of Z¢

Qs ={ieA A+ AL (9.8
The following properties are obvious from the definition:
FaA
| ”\::m <1,ACZ, (9.9)
. OaA.
wmw_ M,\u _ =0,4C 2% (9.10)
We have
_WMU&?;Mf._ = | TS A, Lg
P 411(9.11
F€A, ACA, _ :um?. Azj 4] Q.Mm,u >me 4t m :
ACA,
— 1
< 3> il eal
J€A. A3j |4
AZ Ay
1
< M_m>>u_ﬂ\mt__ﬁ0>_m.
A30
Since | .
1Padad 1 1
il ®all £ iRl
T TeAl < ppleal (912)
and
1
> E:.f: = || ®]la < oo, (9.13)
A30
it follows from the Bounded Convergence Theorem that
. 1 1 Galnl 1
lim M |%u.\@ - M Isiﬂ..» < lim Eim $ 9.1
n < — .14
_*um?, Va ACA,, Vi w_ e Va _\:m A ﬁ v
[0ad,l 1

il

Mm.am.,ail|_me>w_nc.
430 Vo 14
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A similar estimate can be derived for {S7} or {85} instead of {S,} when the
interaction is absolutely summable because

Sl < 3 3 Ieall (6.15)
e ity
< Y 18adal 1R all-
AD0
As above, we have
i Y 18aAnl 1€ 4ll/Va = 0. (9.16)

A0
The next lemma follows directly from these estimates.

Lemma 9.1. Let 8 € ?ﬁfm be weakly dependent and ® be an R*-valued
interaction.

a) If |||l < co, then the RL-function of ({# o §.1%,1{V,.}) exists and is equal
to the RL-function p of ({8 o Ty 1}, {Va}) with Th = Anfe.

b) If ||®|| < oo, then the RL-functions of {{f o Sr-11 V1) and ({B o §eiy
{V..}) exist and are equal to the RL-function g of ({BoT, 1}, {V,}) withT, =
Anfe.

The above shows that the RL-function determined by Fyioc yields the RL-
functions for potentials. For the R* valued f € Fa,., one defines the absolutely
convergent potential $7 by

8. f, if &A= A,
=4 . 9.17
By = ﬁc, otherwise, ( )
Using (9.4) to define fpr, we compute
for = A f; (9.18)
thus the RL-funetion determined by fes coincides with that determined by f

and p(fes | 8) = p(f | B) for all weakly dependent § € M. More generally,

for f € Fyloe there exists a sequence {f;} in Foe 50 that f H.Mu fand 3 Uf50 <
oo. Define f = ¥ ®,, where &y, is given by {9.17} with m” the mE%mmﬂ
positive integer for which f; € Fa,,.. Then 974 < oo and fyr determines
the same RL-function as that determined by f.

Henceforth in this Section, P denotes a given translation invariant proba-
bility measure which is the product of its marginals Py, 7 € 7% Let T be a

real-valued absolutely summable interaction. For finite A C Z¢, define

ra(w) = elal)FWals) {9.19)

F
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smmwﬂms w..x& Wa given by {9.5) with ¥ instead of ®. For each finite subset A
of Z%, we introduce a probability kernel v : F x 0 — [0, oo} given by

.\. q?w&ﬂvﬁ/ (Pawr)Px, (dn)
Q

F,w) o= , (9.20)

\ rA(mawr)P £, (dn)
f

where 1z is the indicator function of F e F.
Definition 9.1. Let ¥ be a real-valued absolutely summable interaction. Let

Pe \Su;m be the product of its marginals Pri.je€ 7¢ A probability measure
Aon (0, F) is a (¥, P)-CGibbs state if and only if

mwyﬁ.fq _ M.uNaf.LTtv = SL.M&FQ A a.s. A@.MS

for each finite subset A of %% and each F € F.
It is known that a trapslation invariant probability measure A is a (fy, P)-

equilibrium state if and only if X is a (¥, P)-Gibbs state. For a proof, see [Ru2]
or [G2]. Notice that a Gibbs state is not necessarily transiation invariant.

Lemma 9.2, Let ¥ be a real-valued, absolutely sunmable interaction. Any
{¥,P)-Gibbs state is a weakly dependent probability measure with

a(A) 4> 19ahn ¥ Al (9.22)
) A30
Proof. Detine
w(n) =Y |Baha] [ ¥all. (9.23)
A0
We have
ey (wa w5 ) < rafwa.wg ) < ey (wang, ) (9.24)
If f € Fee is positive, then
[l = [ (fomos (9.25)
Y A TC N AL
- Jra(wh ng )P 7, [dw'] A
Integrating this inequality with respect to A[dn], we get
\ f@)Ad] < et \ F@hwx Nz, [dol, | ® N, [dog ) (9.26)
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A similar lower bound can be proved; this shows that c,{A) < 4w({n). O
Theorem 9.1 is a more claborate version of Theorem 5.2 of {LPS1}; see also
[LPS2]. . .

Theorem 9.1. Let ¥ be an absolutely swmmable real-valued interaction and
# a translation invariant (¥, P)-Gibbs state on (£}, F). Let & be an absolutely
summable R*-valued interaction, and C C R a closed convex subset sz.H that
p is finite at an interior point of C, where p is the common RIL-function of
Lemna 9.1. Then

a) Each of the sequences
,ﬂ.\&zmm ) “ Sn € Q:‘ 3 *..L.:.mm . M m“w € Q:v or ﬁnﬁ«ﬁ.ﬁﬁ - _ »m«._m € Q:J mwwﬂv

has at least one limit point.

by There exists &' € R* such that any limit point of the sequences (9.27) is an
({z', ®) + &, P)-Gibbs state.

c) The generalized chemical potential x' is a subgradient of —p for any point of
the non-empty compact set No = {z € R*: u(x) = Supyec #(¥)}-

d) If i®}l¢ < oo instead of {|@|| < oo, then any limit point of the sequence
{A B - | Sn€C]}isan (f2', B)-equilibrium state, with f§ = (z', fg)-

Proof. The theorem is essentially a corollary of Theorem 8.4. Any limit point
A of the sequences (9.27} is an (f§ , B)-equilibrium state:

\ 13 (WINdw] = p(fZ | ) +h(A | B). (9.28)
Q
1t is not difficult to show that

pUZ 18y =p(fE + fu | P) - p(fu | P}, (9.29)

and, from Lemma 10.1 {see also {G2]}, that

R(M 8) = h(A| P) - \ fo(w)Pldw] + p(fu | P). (9.30)
9]

From these identities, we conclude that .

\ (12 )+ ful) PNl = pUZ + o |B) AN [P, (9.31)
(¥}

that is, A is an { .ﬁw, + fg, P)-equilibrium state, and therefore also an ({z', &} +
T, P)-Gibbs state. O
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Remark. Convexity is used to prove LD-regularity and the existence of &' equiv-
alence of ensembles can be proved in special cases without assuming convexity
of the conditioning set. Equivalence of ensembles for the empirical measure can
be proved in the case of absolutely convergent potentials in essentially the samé
way a5 was done with Fgioc. Instead of 7, one embeds M7 in the norm unit
ball of the Banach space dual of the space of absolutely convergent. interactions.

10. Information gain and specific information gain
10.1. Information gain

Let (£2, F) be a measurable space. Let A and  be two probability measures
on (€, 7). The information gain H(A | B} of A with respect to 8 is defined by

| \ fin flw)Bld), i Ndo] = f(w)Bldw],
HO B =1 4 (10.1)

400, otherwise,
with 0In0:= 0. I B is a sub-g-algebra of 7, then

He(A | B) =H(Np | Bin), (10.2)
where A and fig denote the restrictions of the measures to B.
Proposition 10.1. For probability measures X and 8 on the measurable space
{2, F), we have
H(A|B) = 0. (10.3)
If By, By are sub-o-algebras of 7 and By < Ba, then

Hp (A1) < Hp, (A] B). {10.4)

There exists a sequence {Fa } of finite sub-o-algebras of F such that

:@wxf..isﬂx;_s. E.e
Proof. With (f) = flInff+1 wehavep(f) > Oand [ flnfdf = Jw{fydp
when f > 0 and [ fdf = 1, which proves (10.3). Since ¢ is convex, (10.4)
follows from Jensen's inequality. For (10.5), if X is not absolutely continuous
with respect to 3, take F,, to be the o-algebra generated by any set A € F with
A{A] > 0 and B{A] = 0. Otherwise, let f denote a Radon-Nikodym derivative
of A with respect to 8. Define B, to be the o-algebra of subsets of the real line
generated by sets of the form

{zeR:E/2" <z < (k+1)/2"} for k=0,...,4™ {10.6)
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Let F, = f71B,. Let f, be the f-conditional expectation of f with respect
to Fn. Then limy,.yoo fn = f, f-almost surely. If H(X | §) < oo, the Lebesgue
Dominated Convergence Theorem implies the convergence of {#x, (A | )} to
H{A | 8). Conversely, if {Hz, (A ] 81} is bounded above, H(A | B) is finite. =

Elementary considerations yield the following.

Lemma 10.1. If X = ff3, g is X integrable and [ e df = 1, then
HiA | e?B) + \vm&» = H(A| 3). {10.7)

Proposition 10.2. For probability measures A and 3 on the measurable space
{Q, F), we have

H(A[B) = sup \ gdh—In \ e? dg, {10.8)

#EFu

where Fy, denotes the set of bounded, F measurable, real valued functions.

Proof. If H(A | B} < co, we have

mcv \.maylg\ae u\mﬂm:% \.@a\/ Hm:vi?_mv!ﬁ@_mnmv
9€F 9&Fy gEFs
.Tn dg=1 %%&wnu

: (10.9)
from (10.7). This shows that H(A | £} is an upper bound for the right hand
side of {10.8). To show that it is the supremum, we first remark that if A is
not absolutely continuous with respect to 8, we can select 4 with Al4] > 0 and
BiA] = 0. Define

gelw) = 0, otherwise. (10.10)

ﬁnﬁ ifee A,

The supremum over {g.} gives an infinite value to the right hand side of (10.8).
If A== f3, define
Inf, if{ln f] < n,

nsign(f), otherwise. (10.11)

gnlw) =
Then lim, oo f €9 df = 1 and limn oo [ g dX = H(X | 8), which shows that
the right hand side of {10.8) can be no less than H{)\ | f). ]

Lemma 10.2. Let ({4, 7)) and {§)2, 72) be measurable spaces. Let ) = )y x
Oy with F the corresponding product o-algebra. Let A and B be probability
measures on {2, F} with Ay, As and B, B2 denoting the restrictions to Fp,F,
considered as sub-c-algebras of F. Assume = ) @ 2. Then we have

HAB) =HA A @A)+ H(M | 1) + H(Aa [ Ba) (10.12)
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Proof. It H(X | B) < oo, we have H(A1 | Bi) < co and H(A; | B2} < o0
from(10.4). If we write A = f(w;,w;)f and Ay = Filw)Br, Az = fy(w)Bs, the
relation (10.12) is a formal equality involving integrals. Since three of the four
terms are finite, the fourth must be finite and equality obtains. Similariy, if the
terms on the tight hand side of (10.12) are finite, one can deduce the remaining
Radon-Nikodym derivative and equality obtains. a

Lemma 10.3. For j = 1,...,m, let a; > 4§, MMz a; = 1, and let X; be a
probability measure with H{A; | 8) < co. Then

DO 1)+ D eslnoy S H( Y aid |B) € 3 esH(A | ). (10.13)
1 1 1 i

Proof. Tet X == ooy On {1,... m} %, define the probability measures X*

and A* so that A*[{j} x B] = a;A[B] and X{{j} x B] = a; A[B). A straightfor-
ward calculation similar to that of the previous lemma shows that

Rifl

Do HOG 1) = H(D e 1 8) =HO' [T). (1014)
1

1

This proves the second inequality of {10.13); the first, follows by noting that, for
fixed j, the Radon-Nikodyrm derivative-of A* with respect to A* is equal to or
greater than 1/a; so that

*lm_s %,s
xD_\/ ?NU&EMWHMM&E\&. CQ.E
£

Proposition 10.3. For probability measures X and /3 on the measurable space
(2, 7), we have

A - BllfEy < 2H(X| 8), (10.16)

where the norm is the total variation norm.

Proof. H(A | B) = oo, there is nothing to prove.: Otherwise, let A = f3. Let
A= {w: flw) 2 1}. Let Fu denote the (finite) o-algebra generated by 4. With
t = A[A] and y = P[A], we have

1A= Bliry =20z —y). (10.17)
fzrz=0ory=0o0rz=1ory=1,then A = 3. Otherwise, we have

l—x
I~y

He (M| B) = imm +(1-2)ln (10.18)

33708
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Since H(A | B) = Hr, (A B), it suffices to show that

: l1—-x
d b (10.19)
. NAHISMMHFWE_;C!@? —
But this is a consequence of the fact that the convex function
20
w(r) = glnz + (1 -2} In(l —z) — 227 {(10.20)

i < 1.
satisfies u(x) — u(y) > (z —p)u'(y) when 0 <x < land 0 <y

10.2. Specific information gain | |
We prove Theorem 8.1 and Lemma 8.1. ‘The setting and the notations are
e .
those of Section 8.1.

L a10.4. Let B € .\S.H?m with ¢m{#) < oo. Then, for n > m, the restric-
min 4. Le Then
E.Mb of Bix, tothe g-algebra Fy, and the probability measure

A

; 0.21
Q 8:Bixn,. © BiFaoe am (10.21)

i€Antm

mutually absolutely continuous. The absolute value of the Emm&%ﬁ of the
WM&%-Z%Q&\E derivative is bounded almost surely by g(n | mYen(5).

Proof. Consider the analog of Aw.m‘w Ewam .\%ﬂﬂ?@ WMMMS%MEH m_MwﬁMvgh@om,ﬂmE
s " is finite, BF, = !

b%w%wum Mw M mfmwwmzwmﬁmw em () for the absolute value of the logarithm of the

i 5.

5 ; - subsets of An \ Am.
Radon-Nikodym derivative. One repeats the argument for sul &

] heorem B.1. . o
Wﬁwwgm MM, Mw.mm,qon n > m, we have from Lemmas 10.1, 10.2, 10.4 and translation
T . F ,

invariance the inequality
Hra, (N1 8) 2 gl {m) (A, (1] B) = enB)). (10:22)

We have cm(8)/Vim ~+ 0 as m — oo, and gin | m)Vy/Vy, - 1 asn - o0,

Therefore we have

i B BB Han, O _<E —em(f) (10.23)
n Va "

o .| B) and (10.23)
Now take lim sup over m. The lower semicontinuity of Hz,, (15 ( !

imply that A(- | B) is lower semicontinuous. Indeed, fet {As} be a net in M|
converging to A; we have

Hery,, (A | B) - cm{B) - Hor,,, (A B) - ns%mvw
xww inf h{Ap | B) 2> :E»Em V- > v

(10.24)

-

Conditional limit theorems 383

hence we have lim infy, h(A; | B) > k(A ] 8). The affine character of h{A | B) is
a cousequence of Lemma 10.3. For the proof of b), see for example [G2]. 0

Proof of Lemma 8.1, Fix the integer m > Q. For %> m we have

Ti=24 (n-m)div(2m + 1) implies A, c S ¢ ama1)5 (Fidkm 10.25
{2m+1);

JEA.

for any i € A,,,. Then, with 4 € V,,,, (10.12), (10.7} and Lemma 10.4 vield
Horn, BPuX | B) Vi (Hoyz,, (0] B) + en(8)), (10.26)

because Hg,», (A | ) = Ho, 7., (0:PmA | B). From translation invariance, we

deduce that He, r (A} 8) = Hry, (A B). From (10.26) and Lemma 10.3, we
then have

Hry (AnPrA | ) <V, ?3: (Al B)+ ma@v. (10.27)

We divide by V,, and use i, V,./V, = V,,. The other bound follows from
{10.23) applied to A,, P, A and Lemma 10.3, (B
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Abstract. We show how the variational principle for Gibbs States {which says
that for the d-dimensional cubic lattice, the set of translation invariant Gibbs
States is the same as the set of translation invariant measures which maximize
entropy minus energy and moreover that this quantity corresponds to the pres-
sure) fails for nearest neighbour finite state statistical mechanical systems on
the homogeneous 3-ary tree. Given an interaction there is a unique measure 1
maximizing entropy minus energy, and we give necessary and sufficient condi-
tions so that it is a Gibbs State for that interaction, and that the maximum is
equal to the pressure. In the case of a 2-state system, these conditions define a
2-dimensional manifold of the natural 3-dimensional parameter space of inter-
actions, so that generically in the interactions the entropy minus energy for y is
strictly less than the pressure and 15 not a Gibbs State {for those parameter
values).

KEYWORDS: trees, Gibbs States, variational principle

AMS SuBJECT CLASSIFICATION: Primary 600360; secondary 82820, 82826

1. Introduction

In this paper, we consider nearest neighbour statistical mechanical systems
on ET where T is the 3-ary homogeneous tree and B an arbitrary fnite set,
T is therefore the unique connected graph which has countably infinitely many
vertices, contains no loops, and in which every vertex is adjacent to exactly 3
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