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Abstract. We study an adiabatic invariant for the time-dependent Schrfdinger 
equation which gives the transition probability across a gap from time t' to time 
t. When the hamiltonian depends analytically on time, and t' = - oo, t = + oo we 
give sufficient conditions so that this adiabatic invariant tends to zero exponentially 
fast in the adiabatic limit. 

I. Introduction 

Let H(t), t e R ,  be a self-adjoint operator on a Hilbert space AP. We study the 
time-dependent Schr6dinger equation in the adiabatic limit, i.e. 

8 
ie~q>(t)= H(t)qa(t), teP,. (1.1) 

when e--+ 0. The self-adjoint operator H(t) satisfies three conditions. 

I. Self-Adjointness and Analyticity. There exists a band Sa in the complex plane, 
Sa = {t + is:lsl < a}, and a dense domain D c ~ such that for each zeSa, H(z) is 
a closed operator defined on D,H(z)rp is holomorphic on S~ for each tp~D and 
H(z)* = H(~). Moreover we suppose that H(t) is bounded from below for t e R .  

II. Behaviour at Infinity. There exist two self-adjoint operators H + and H - ,  
bounded from below and defined on D, two positive constants C and ~ such that 
for all rp~D and Itl large enough 

C 
sup II(H(t+is)-g+)gol[ < tl)x+~(llgol[ + [IH+~ol[), t > 0  
Isl <a = (1 + 

* Supported by Fonds National Suisse de la Recherche, Grant 2000-5.600 



16 A. Joye and Ch.-Ed. Pfister 

and 
C 

sup II(H(t+is)-H-)~oll < +~(l[r + IIH-~ol[), t < 0 .  
isE<a =(1 +l t l )  1 

111. Separation o f  the Spectrum. There exist two Cl-functions el( t  ) and e2(t) and 
a positive constant 6* such that for all t~P.., e2(t ) - el(t ) __> 6* and the closed interval 
[el(t) ,e2(t)] belongs to the resolvent set of H(t). We also suppose that 
lim ei(t) = ei ~, i = 1, 2 and It[ 1 +~lei(t) - e/+- 1, I tl 1 +~le'i(t) l, for i = 1, 2 are uniformly 

t ~ + ~  

bounded on R.  
Condition III implies that the spectrum a(t) of H(t) is separated into two parts 

at(t) and tr2(t) such that al(t) c ( -  ~ ,  el( t))  and a2(t ) c (e2(t), 0o). By choosing the 
width of the band small enough, we can assume that the spectrum of H(z) is also 
separated into al (z  ) and a2(z) ,al(z  ) being a bounded subset. Let Px(z) and P2(z) 
be the corresponding spectral projectors. These projectors provide a smooth 
decomposition of the Hilbert space 

;ff  = P,(z)of  '~ @ Pz(z)~f  "~ - 9~ 1 (z) @ ~2(z) (1.2) 

(ovga(z) is not orthogonal to Ygz(z) if zCF,,). 
If we put t = es then Eq. (1.1) is equivalent to 

O 
i ~s s ~h(s) = H(es)~(s), (1.3) 

and thus we are considering a time-dependent Quantum Mechanical system with 
a slowly varying Hamiltonian. A very simple but important example is a spin-l/2 
in a slowly varying time-dependent magnetic field. In that case H(s) is simply a 
2 • 2 self-adjoint traceless matrix. Condition III means here that the two eigenvalues 
of H(s) do not cross. We can also think of the family H ( t ) , t ~ R  as a smooth 
interpolating family of Hamiltonians between H ( - )  and H(+).  For example 
H ( - ) = H o ,  a self-adjoint operator, and H ( + ) = H o +  V with V a symmetric 
operator which is Ho-bounded with Ho-bound smaller than 1. In this case we can 
choose 

H(t) = H o + �89 t + 1)V. (1.4) 

The main purpose of the paper is to study the following problem. Let g0~(t) be 
a normalized solution of 

ie ffttqg(t ) = H(t)q~(t), tp(t') = q~*~D. (1.5) 

We choose the initial condition q~*~Dc~W~(t') and we estimate the probability 
[I P2(t)q~(t)II 2 to find the system in the spectral subspace ~ z ( t )  by a measurement 
made at time t. It is convenient to introduce 

~21 (t, t') = sup { If P2(t)qg~(t)]121 tP~(") is a solution of (1.1) 

with [1 ~p~(t')11 = 1 and II P~(t')tp~(t')l] = 1}. (1.6) 

The Adiabatic Theorem of Quantum Mechanics implies that 

~21(t, t') = O(e z) (1.7) 
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uniformly in t and t' (see Theorem (3.1)). (To prove this result it is sufficient that 
d k 

H(t) is strongly C 2 on D and that ~tkH(t) tends to zero at infinity as in condition 

III for k = 1,2.) Result (1.7) shows that ~21(t,t') is an adiabatic invariant for the 
Eq. (1.1). If H(t) is analytic we can prove a much stronger result when we take 
the limits t' ~ - 09 and t ~ ~ .  Let 

~21( - '~ -  O(D, - -  O0) = sup ~lim [I P2(t)q~,(t)ll2l~p~(") is a solution of (1.1) 
[ t ~ 0 t 3  

II ~0~(t)ll = 1 and lim IIPa(t)~o~(t)ll = 1~. with (1.8) 
t---~ --  oO ) 

Theorem 1.1. Let H(z) be an operator satisfying conditions I, II  and III. Then there 
exist positive constants K and M such that for small enough e 

~ 2 1 ( ' - I - 0 ( 3 , - - 0 0 )  < e 2 M e x p ( 2 1 r 1 7 6 1 7 6  ) .  

A similar result holds if we exchange the role of P1 and P2: 

( 2x (e2(~) - -e l (~ ) ) )  
~ 1 2 ( + ~ ,  - - ~ ) < ~ 2 M e x p  -- 

Remarks. 
i) The constant x depends in particular on the choice of the functions ei(t). 

The distance between el(t ) and trl(t ) is larger than some positive 6" for all t. 
Similarly e2(t) is at a distance at least 62* from a2(t). If we decrease 6* and 62., then 
we can increase e 2 ( ~ ) -  e l (~) .  However x decreases. 

ii) It is essential that we take the limits t ~ + ~ ,  otherwise the theorem is not 
true. The analyticity property is also essential, at least in our proof, since we use 
a complex time. Notice that all derivatives of Pk(t) vanish at infinity as a 
consequence of the analyticity and decay conditions. 

iii) In Classical Mechanics there is a well-known problem which is to estimate 
the variation of the adiabatic invariant d I =  I( + oo) - I ( -  oo) of an oscillator 

d 2 
d~ x(t) = - o92(et)x(t) (1.9) 

when 09(- ~ )  = o9_ and o9( + ~ )  = o9 +. If o9 is an analytic function which is strictly 
positive on the real axis and behaves reasonably at infinity then AI is exponentially 
small in e (see [1] Sect. 20). This problem and our problem for the case where 
H(t) is a 2 x 2 matrix are very similar. In particular the positivity of o9 corresponds 
to our condition III. 

iv) There are many papers treating the case of a spin-l/2 in a time-dependent 
magnetic field since it is a case of considerable interest in physics. However there 
are very few mathematical results. It is indeed notoriously difficult to prove the 
validity of such exponentially small corrections in singular perturbation problems. 
An important paper in this direction is [-2]. Only recently a proof of Theorem 
(1.1) has been given for the case of n x n matrices [3] and [4]. After the completion 
of this work we received a paper on the same subject [5]. The results are weaker. 
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Essentially only bounded operators with discrete spectrum are treated whereas we 
have no condition on the nature of the spectra a,(t) and a2(t). Moreover the 
authors must introduce a very strong condition in order to obtain an exponential 
bound as in Theorem (1.1), so that their results do not even cover the case of 2 x 2 
matrices. The reason for that is that they do not have our notion of dissipative 
paths (see below). 

The paper is organized as follows. We prove the theorem for bounded operators 
in Sect. (4) by taking a complex time, and then for unbounded operators in 
Sect. (6) by approximating the unbounded operators by bounded ones. In the 
proof of Sect. (4) we introduce the notion of dissipative paths in the complex plane. 
Only along such paths we can get useful bounds for the evolution. The existence 
of such dissipative paths is discussed in Sect. (5) and the ideas of this section may 
be interesting in a broader "context. It is crucial that all bounds depend only on 
the parameters appearing in conditions II and III and in particular the results of 
Sects. (4) and (5) must be independent of the norms of the operators. We have 
collected some basic estimates in Sect. (2) and recalled the notion of adiabatic 
evolution in Sect. (3). 

2. Basic Estimates 

Throughout this paper ~z  is the real part of z, ~z is the imaginary part of z and 
t denotes the identity operator. 

Let zeSa. If 2ep(z), the resolvent set of n(z), then R(z ,2 )=(H(z ) -2 )  -1. 
Similarly we define R( +,  2)= (H + - 2 ) - *  and R ( - ,  2)= (H- - 2 ) - * .  Since H(z) is 
closed, the domain D with the the norm 

II~ollz = 11 ~0 II + [In(zk0 [I (2.1) 

is a Banach space. The same is true for the norms 

[l~0[I + = II ~o II + I[n• (2.2) 

By the dosed graph theorem any two of these norms are equivalent. Let X z, 
respectively X• be the Banach space D with the norm I[" Nz, respectively I1"11 +. 
The function z~--~H(z) is a holomorphic m a p  on Sa with values in s ~r or 
s176 • J'f~). The norms in these spaces are denoted by IIl'lllz o r  II1"111 +_. For any ~oeD 
we define the operator H(")(z) by 

d(,) 
H~")~o: = d~ 3 (H(z)q~). (2.3) 

When zeF. this operator is symmetric. We can express H (n), n >= 0, by the Cauchy 
formula 

H(,)_ n! , H(z')dz' , 
- 27t~ ! ( 7 :  z ~  -1 (2.4) 

where 7 is a simple closed path in Sa around z. The orientation of 7 is 
counterclockwise. All closed paths in the paper will have this orientation. 

Let zeSa and O be a convex compact subset in Sa. Then there exists a constant 
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M(z)  such that for any q~eD and z' in /2 ,  

fl n'(z')q~ fl < M(z)[I ~o I1.. (2.5) 

Therefore, if z 1 and Zz~/2, 

t l (n ( z l )  - n (zz ) )q;  II < M ( z ) l z l  - z2[ II q~ IIz. (2.6) 

Let us choose z = z 1. Then  for any z2~/2 such that ]z 2 - z a l  is small enough,  

1 1 
II ~0 II,, _-< I1 ~0 lie, < 11 tp II,,. (2.7) 

1 + M ( z l ) l z  1 - Zzl 1 - M(za ) l z  I - z2l 

From (2.7) we prove that  II1"111. is cont inuous in z. Indeed, if AeZr  d,~g) then 

IIa~oll <lllalll,,ll~Ollz,<lllallIz,(l + M(zOIza--zz l ) l l~Ollz , .  (2.8) 

Thus we get from (2.8) an upper bound for IIIAIII,,. In a similar way we derive a 
lower bound. We have 

IIIhlllz.(1 -M(zOIza -z21)< IIIAIII.~ < IIIalllz,(1 +M(zOIzl -zzl).  (2.9) 

Using the estimate (2.9) we prove that the function (z, z')~--~lll n(z)lflz, is continuous. 
L e t / 2  be any compact  subset of S,. Then 

II H(Zx )q~ II sup  sup  - sup  I[In(zOIIIz,<K< oo (2.10) 

and 

[l~[Iz, = < ( K +  1)l[~orl~2, zx,zz~/2, (2.11) 

On the other  hand, using condit ion II, we can compare  any norm [I q~ II, with IJ ~0 II + 
or  II ~0 I[- when 10~zl is large enough. Thus for any r ,0 < r < a, there exist constants 
M1 and M 2 such that  

Mlllq~rl+ < ll~oll.< MzH~orl+, l~zl <r. 

The opera tor  H ( z ) e ~ ( X + , ~ )  has limits when [9~zl 
r, 0 < r < a, there exists a constant  M + such that 

(2.12) 

diverges. For  any 

IIIn(z)lll+ ~ M+,  I~zl ~ r + (a - r)) (2.13) 
2 

Using Cauchy formula and (2.13) we have 

l[ n ' ( t  + is)q~ II _-< M'+ II ~o If +, Is[ < r. (2.14) 

On the other  hand, if ft] is large enough, we can use condit ion II instead of 
(2.13), and apply Cauchy formula to the applications (H(z) - H § or (H(z) - H-)q~ 
as above. We get for f tl large enough 

C 
! 

I1H'(t + is)q~ 1[ < (1 + Itl) 1 § II ~o II +, Isl ~ r (2.15) 
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C! 
[IH'(t+is)q>l[ ~(1 +lt l)  1+=1[ ~~ [s[<r. (2.16) 

In (2.14), (2.15) and (2.16) the constants depend on r only. Since we can compare 
any norm with II q~ II + by (2.12), we have the following lemma. 

Lemma 2.1. I f  H(z) satisfies conditions 1 and 11 and if 0 < r < a, then there exists 
a positive integrablefunction c(t) (which behaves like [tJ -(1 +') at infinity) such that 
for all t6~-~ and [sl < r and all z', 

II n ' ( t  + is)~o II <_- c(t)11 ~o IIz,. 

From Lemma (2.1) and for Is] < r we immediately have the estimate 

II (n( t  + is) - H(t) )tp [I < Nc( t )  II ~o I[, (2.17) 

with c(t) an integrable function. Let 2~p(t). The operator  H(t)R(t, 2) is a bounded 
operator and (2.17) implies 

[1 (n( t  + is) - n( t ) )R( t ,  2)I[ < [sic(t)( I[ R(t, 2)II + II H(t)R(t,  2)II) 

[slc(t)d(t,2). (2.18) 

When ]stc(t)d(t, 2)<  1, 2 belongs also to the resolvent set p(t + is) and we have 

I slc(t)d(t, 2) 
11R(t + is, 2) - R(t, 2)I1 < II R(t, 2)[I 1 - I slc(t)d(t, 2)" (2.19) 

In particular i f2ep(H +) then 2~p(t  + is) for t large enough and for any fl < 1 + ~, 

lim I t l a sup II R(t + is, 4) -- R ( + ,  4) I[ = 0. (2.20) 
t--+ oo Isl<a 

By choosing the width of the band small enough the spectrum a(z) is separated 
into two parts al(z  ) and az(z ) and we can find a path/ -"  encircling the bounded 
set al(z) so that the spectral projector P~(z) can be written 

1 ~R(z ,2)d2.  (2.21) 
Pl(z) = - 2rc~ r 

From (2.21) and (2.20) we get Lemma (2.2). 

Lemma 2.2. I f  the width of  S, is small enough then 
P z ( Z ) = ~ - - P I ( z )  are holomorphic on S a and have limits 
I ~Rzl ~ oo. Moreover, for any ~ < 1 + c~, 

lim It[ p sup IIPk(t + i s ) - P k ( + ) l l  --0 
t ~  [sl<a 

and for any r, 0 < r < a and any integer n 

lim I tl a sup I1P~)(t + is)It = O. 

Similar statements hold for t ~ - ~ .  

the projectors Px(z) and 
Pk(++-), k = 1, 2 when 
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Lemma 2.3. Let 0 < r < a. Let 2~p(z) for all z in the band, with [~z[ < r (e.g. 2 is 
negative and 12r large enough). Then for all z with I~zl < r H'(z)R(z,  2) is a bounded 
holomorphic operator. Moreover, there exists a constant N such that 

IIa'(z)R(z,2)N < Nc(t), I~z I < r. 

Proof. We decompose the operator as 

H'(z)R(z, 4) = H'(z)R(O, 2)(H(0) - 2)R(z, 4). (2.22) 

The factor H'(z)R(O, 4) is a bounded holomorphic operator by condition I and 
Lemma (2.1). The other factor (H(0)-2)R(z,2) is a bounded operator, locally 
uniformly bounded in z. Since (H(0)-  2)R(z, 4) is the inverse of the operator 
( H ( z ) -  2)R(0,2) which is a holomorphic bounded operator, (H(0)-  2)R(z, 4) is 
itself a holomorphic bounded operator. From Lemma (2.1) we have 

1[ H'(z)R(z, 2)q~ 11 < c(t)[1R(z, 2)tp ][z 

< c(t)(llR(z,2)l[ + 1 + 121 IIR(z, 2)ll)ll ~o11. (2.23) 

The lemma follows therefore from (2.23) and (2.19). [] 

3. Adiabatic Evolution 

In this section we follow mainly [7], Chaps. II and IV. Let ~p(t) be the solution of 
the Schr6dinger equation 

ie~q~(t) = H(t)tp(t), tp(t')= q~*eD. (3.1) 

Our conditions on H imply the existence of a unitary operator U(t, t') defined for 
all real t and t', strongly continuous in t and t', which leaves the domain D invariant. 
For all t l , t2 , t  3 we have 

U(tl,  t2)U(t2, t3)  = U(tl, t3), U(tl,  tl) = 4. (3.2) 

On D, U is strongly differentiable in t and t', 

and 

8 
ie--  U(t, t') = H(t)U(t,  t') (3.3) 

8t 

i e ~  U(t, t') = -- U(t, t')H(t'). (3.4) 

The solution of (3.1) is given by ~o(t)= U(t,t')qg*. The second evolution is the 
adiabatic evolution. It is the evolution V(t, t') related to the equation 

0 
ie ~t ~b(t) = (H(t) + ie[e' l(t), P:(t)])r  ~,(t') = r (3.5) 

This evolution has the same general properties as the evolution U(t, t'). 
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Lemma 3.1. The evolution V(t, t') is compatible with the decomposition of  the Hilbert 
space ~ into ~r and ~2(t): 

Pk(t)V(t , t ' )= V(t,t')Pk(t'), k =  1,2. 

The proof is given in [7], Chap. 4. The two evolutions U(t, t') and V(t, t') depend 
on e. However we do not write this dependence explicitly. The next result describes 
the adiabatic limit e--*0 for Eq. (3.1). 

Theorem 3.1. Under the conditions I, I I  and III ,  there exists a constant M such 
that for all t ' eR ,  

sup II U(t, t') -- V(t, t')l[ ~ Me. 
teR 

Remark. This theorem is valid under weaker hypothesis (see Sect. (1)). From it we 
have immediately that ~21(t, t') = O(e 2) uniformly in t and t'. Theorem (3.1) is not 
new (see e.g. [7, 6]). Some ideas of the proof are used later on. 

Sketch of  the Proof. Let t' = 0  and U(t)= U(t,O), V(t)= V(t,O). For any ~oeD we 
define 

x(t) = V(t)-  1 U(t)cp. (3.6) 

The function x(t) satisfies the equation 

x'(t) = - V(t)-  1 [P'l (t), P1 (t) ] V(t)x(t) 

= K(t)x(t). (3.7) 

The operator K(t) is a bounded, anti-self-adjoint operator. It is strongly continuous 
in t and II K(t)I[ is integrable on the real axis (Lemma (2.2)) uniformly in e since 
for t e R  V(t) is unitary. Equation (3.7) is equivalent to the Volterra equation 

x(t) = X(to) + i K(u)x(u)du. (3.8) 
to 

From Lemma (3.1) we have 

and 

Pl(O)K(s) = K(s)P2(O) 

P2 (O)K(s) = K(s)Px(O). 

(3.9) 

(3.1o) 

Using (3.9) and (3.10) we can express Eq. (3.8) as a system of two equations. Let 
xk(t) = Pk(O)x(t), k = 1, 2. Then 

t 

xl(t)  = xl(to) + ~ K12(u)x2(u)du (3.11) 
to 

and 

x2(t) = x2(to) + j K:l(u)xl(u)du, 
tO 

where we have (by Lemma (3.1)) 

K12 (s) ~- P1 (0) V - 1 (s)PI 1 (s) V(s)P2(0 ) 

(3.12) 

(3.13) 
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and 

K 21 ( s )  = - -  P2 (0)V - t (s)e' 1 (s) V(s)P1 (0). (3.14) 

The next step is to perform an integration by parts in both (3.11) and (3.12). F rom 
the result we get immediately 

II (U(t, O) - V(t, O))r II = If V(t, O)x(t) -- V(t, O)r II 

< II~olIEM. [ ]  (3.15) 

Lemma 3.2 (Integration by parts formula). Let B(t) be a bounded operator, strongly 
C 1 and let x(t)ED Vt and be C 1. We define 

B(t'-~) = ~ ~ R(t, 2)B(t)R(t, 2)d2, 
L T ~ l  F 

where 1-" is a path surrounding the bounded part of the spectrum aa(t ). Then 

1. B(t) is strongly C 1 and maps ~" into D. Moreover 

Pk(t)B(t)Pk(t) = O, k = 1, 2. 

. 
t 

P1 (0) V(s)-1B(s) V(s)P2 (O)x(s)ds = - ieP 1 (0) V(s)- ' ff~) V(s)Pz(O)x(s)l~, 
t '  

. t  / d~- .~ ' x  
+ 

' ~ - -  d 
+ ie ~ P, (0) V(s) - '  B(s) V(s)P z (0) dss x(s)ds. 

t" 

t 

3. An analogous formula holds for S Pe(O)V(s)-IB(s)V(s)Pl(O)x(s)ds. It is obtained 
t '  

by exchanging PI(O) and Pz(O) and changing the sign on the right-hand side in the 
above formula. 

Remark. This lemma is proved in [6] except part  1) which simplifies the formula. 

4. B o u n d e d  O p e r a t o r s  

We prove in this section our  result for bounded operators.  Let  us suppose that 
H(z) is a bounded opera tor  which satisfies conditions I, II, and III and that all 
conclusions of Lemmas (2.1) to (2.3) are valid. As in Sect. (3) we choose t' = 0 and 
put  U(t)= U(t, O) V(t)= V(t, 0). Let 

A(t) = V -  l(t)U(t). (4. l) 

This opera tor  satisfies the equation 

A'(t) = K(t)A(t), A(0) = ~. (4.2) 
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We now take complex time, i.e. we take t = zeS ,  and we consider Eq. (4.2) on S, 

A'(z) = d z A(z) = K(z)A(z), A(0) = t .  (4.3) 

The operator K(z) is holomorphic on S, because the operator V(z) has an analytic 
extension on S,. Indeed, we can define for zeSa, 

V(z) = 1 + i ( - i e -  1H(z') + [P'I (z'), Pl(z')])V(z')dz'. (4.4) 
0 

The path of integration in (4.4) is any path in S, from 0 to z. By choosing suitably 
the path of integration we obtain immediately from (4.4), 

r sup IIH(z)]l) 

tl V(z) i1 < Const ex p ~:l-~zl _-<, , 13zl < r, (4.5) 
e 

where 0 < r < a. From (4.5) and Lemma (2.2) it follows that II K(z)II is integrable 
+oo 

sup ~ II K(t + is)II dt < oo. (4.6) 
Isl__<r - ~  

Equation (4.3) is equivalent to a Volterra equation and can be solved iteratively. 
Thus its solution A(z) is holomorphic in S, and by the integrability condition (4.6) 
A(z) has limits A(+) and A ( - )  when 19/zl-~ c~, 

lim sup II A(t + is) -- A(+)II = 0. (4.7) 
t ~ _ + o o  Isl__<r 

The operators A(+) and A ( - )  are unitary since on the real axis K(t) is anti self- 
adjoint. 

Lemma 4.1. Let r be a solution of the schr6dinger equation with r r 
and such that 

lim II ez(t)cp(t)II -- 0. 

Then there exists a unique ff*e~l(O) such that ~o*= A ( - ) - I I ~  *. 

Proof. We can write the solution q)(t) as 

99(0 = V(t)A(t)q)*.  (4.8) 

By Lemma (3.1) 

[I P2(t)V(t)A(t)~ o* II = II V(t)P2(O)A(t)q~* II = tl P2(O)A(t)~o* II. (4.9) 

By hypothesis we have 

lim II P2(O)A(t)q ~* II = II P2(O)A(-)cP* II = 0 (4.10) 
t ~ - ~  

and therefore ~9*=A(-)~0*eJf,(0). [] 

We can give a convenient expression for the adiabatic invariant ~zl(oo, -oo).  
By Lemma (4.1) any solution q~(t) of the Schr6dinger equation, which is normalized 
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and satisfies the bounda ry  condit ion 

lim II Pz(t)q)(t)II = 0 (4.11) 
t - *  - o o  

can be writ ten 

q)(t) = U ( t ) a ( - ) -  l~b*, ]1 q,* II = 1. (4.12) 

By a computa t ion  similar to that  of the p roof  of  L e m m a  (4.1) we get 

lim 11P2(t)(p(t)11 = l[ P2(O)A(+ ) A ( - ) -  1pl(0)qJ* [I. (4.13) 

Therefore  we have 

~21(~ - oo) = l[ P2(0)A(+ ) a ( - ) -  1p1(0)[1 z. (4.14) 

Remark .  The solution A(t) of (4.2) is normal ized at t = 0. Since we have the 
integrabili ty condit ion (4.6) we can work  with a solution A(t, - o o )  normal ized at 
t = - ~ .  By definition A(t, - oo) is a solution of (4.2) with lim A(t, - ~ )  = 1, and 

t ~ - - c ~  
we can express (4.14) as 

~ ' 2 1 ( ~ ,  - ~ )  = II PE(0)A( ~ - ctZ)Pl(0)II 2. (4.15) 

Not ice  that  this formula  is also true in the unbounded  case, since we are on the 
real axis._ 

The next l emma is the general izat ion of L e m m a  (3.1) in the complex plane. 
The p roof  is the same. 

L e m m a  4.2. For  all z ~ S  a we have 

Pk(Z)V(z) = V(Z)PR(O), k = 1, 2. 

Proof  o f  Theorem l .1. W e must  estimate the norm of the operator P E (O) A ( oo, - oo ) P l (O ). 
The opera to r  A(t, - oo) is solution of the equat ion 

A(t, - ~ )  = 1 + i K(u)A(u,  - oo)du. (4.16) 
- o o  

This opera to r  has an analytic extension on S a since A ( t , - o o ) = A ( t ) A ( - )  -1 
Moreover ,  by (4.7) we know that  

lim A(y(z), - oo) = A(oo, - ~ )  (4.17) 

if 7(z) = 71(z) + i72(Z)  is a smooth  pa th  in S a, parametr ized  by z, such that  

71(17)  = "IS, ~)2('C) > 0, lim 72('t') -->/t; > 0. (4.18) 
~--~ -F oo 

Therefore  we consider A(7(z), -- oo) as a function of z. This is the solution of the 
equat ion 

A(),(T), - oo) = 1 + i K(v(u))A(v(u), -- oo)~(u)du, (4.19) 
- o o  

d 
where ~(z) = ~ (71(z) + i y2 (Z) )  �9 Let x(z) be the solution of (4.3) with initial condit ion 
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x(O) = A ( - - ) - i x * ,  x*~'~l(O) and I] x* II = 1. Then we have 

x(~,(z)) = A(~(z), - oo)x*, (4.20) 

and we must estimate (see (4.15)) Ilx2(7(z))ll as z-~ oo. 
In order to do that we introduce new quantities 0k(z). Let 2(z) be the function 

defined by 

2(t + is) = isel(t), (4.21) 

where el(t) is the function of condition III. We define 

Ok(Z ) = exp(ie- 12(z))V(z)xk(z), k = 1, 2. (4.22) 

Lemma4.3 .  There exist a path 7 satisfying conditions (4.18), in particular 
lim 7z(z) = ~ > O, and a constant M such that 
~--~ cO 

II01(e(T))ll < M ,  IlOz(e(O)ll < e M ,  zEP,. 

for e small enough. 

We first finish the proof of the theorem and then prove Lemma (4.3). Let V(z, z') 
be the solution of the equation 

d 
dz V (z, z') = ( - i e -  i H(z) + [P'l(z), P l (z) ] ) V (z, z') (4.23) 

with initial condition V(z ' ,z ' )= 1. For  z = r + i?2(z) we have 

V(z) -1 = V(z + i72(z), 0)- 1 = V('c, 0)- ~ V(z + i72(z),z) -1. (4.24) 

The operator V(T + iu, z)-  1 is solution of the equation 

d 
du V(z + iu, ~)- 1 = _ V(z + iu, r)-  l(e- 1H( z + iu) + i[P'I(T + iu), Pl (z  + iu)]) (4.25) 

on the interval r0, 72(z)3, with initial condition at u = 0 V(T, z )=  :1. By Lemmas 
(4.2) and (4.3), formula (4.24) and II V(z, 0)-111 = 1, 

[I x2(7(z))I[ = exp (72(z)e- 1el(z))II V(~(~))- ~02(~(~))II 
= exp ('~2(17)g- tel(z))11 v(~(~))- 1p2(7('C))02(7(T))II 
< eM exp (72(z)e- tel(z))II V(?(z), z)- 1Pz(7(z))II. (4.26) 

Using the differential equation (4.25), and Lemma (2.2) we get from (4.26), 

lim II xz(~,(z))II < ~M exp (72(~)e- Xel(~))II exp ( - 72(~)~- 1H( + )P2( + ))II 

< eM exp ( -  e- 1 x(e2(~) - e l(~))) ,  (4.27) 

since we have with H2(z ) = H(z)P2(z ) for any z~R,  

I lexp(-Y~(z)e-lH2(z))l l  < e x p (  - 7~(~)~- ~ I1~,11 = ~inf,~,~) (q~lHE(~)q~)). (4.28) 

[] 

Proof of  Lemma 4.3. Let us consider the quantities Xk(7(Z)) along a path Y- They 
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satisfy the equation (see (3.11) to (3.14)) 

Xx(~(T)) = x* + I Kxz(~(u))x2(~(u))~(u)du 
- - o f )  

and 

27 

(4.29) 

with 

+ ie ~ Q(z)Q-X(u)P2(u)(P'I(u))'Px(u)OI(U)~(u)du 

+ ie ~ Q(z)Q- '(u)P2(u)P'l(u)P,(u)P'x(u)P2(u)O2(u)~(u)du. 
- - o 0  

Equation (4.29) becomes 

0x(Z)= Q(~)x* + Q(z)Q- X(u)P I (u)P'I (u)P2(u)O2(u)7(u)du. 
- - o o  

On the path ~ the operator Q(t) = Q(y(z)) Satisfies the equation 

d 
~Q(z)=D(z)Q(z)  

d 
O(z) = --ie-IH(7(z))~(T ) + ie- '  d~ 2(7(z))1 + [P'x(?('c)),Px(),(z))]~(.c). (4.36) 

The operator Q(z)Q(u)- xP2(u) is a solution of (4.35) with initial condition at z = u 
given by P2(u). By Lemma (4.2) we have 

Q(z)Q(u)- 1P2(u ) = P2(z)Q(z)Q(u)- 1P2(u). (4.37) 

(4.33) 

(4.34) 

(4.35) 

the result using Ok of (4.22) and Q defined by 

Q(z) = exp (ie- 12(z)) V(z), 

We get 

02(z ) = --ieP2(z)P'I(z)PI(z)OI(Z ) 

z~S,.  (4.32) 

xz(7(z))= ~ Kzl(7(u))xl(7(u))}(u)du (4.30) 
- - o 0  

since x*E~f'l(O). We perform an integration by parts in (4.30) (see Lemma (3.2)) 
and we write xk(u) for Xk(7(U)) etc. We get 

X 2 (Z) = -- ie V -  I(z)P2(z)P'7"fz)P 1 (z) V(z)x, (z) 

+ ie ~ V -  I(u)P2(u)(~I(u))'Px(u)V(u)x,(u)~(u)du 
- -  c t 3  

+ ie ~ V-I(u)PE(u)P'I(u)PI(u)P'I(u)P2(u)V(u)x2(u)~(u)du. (4.31) 
- - o 0  

(In (4.31)' denotes the derivative with respect to the complex variable z.) We write 
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Therefore Q('r)Q(u)- 1p2(u ) is a solution of the simpler equation 

d(Q(JQ(u)  P2(u)) = 2(J(Q(r)Q(u) P2(u)) 1 1 D 

with 

Dz(J = D2(7(~)) =/9(7(J)Pz(7(J). 

Similarly Q(JQ(u)- ~P~(u) is solution of the simpler equation 

d 
( Q(.c)Q(u)- 1 p l (U) ) = O 1('c)( Q( JQ(u)-  1p l (U) ) 

with 

(4.38) 

(4.39) 

(4.40) 

J '~(0,  - ~ < 27 < z l  ~(~) (4.47) 
(~)(Z1) - -  i(27 - -  Z1) , Z 1 < 27 ~ Z 1 J- (~2(Z1) - -  Z2) 

1 

We prove (Lemma (5.5)) that ~ is dissipative for Eq. (4.34) and ~ is dissipative for 
Eq. (4.33). The fact that ~ is dissipative for 27 < z~ is trivial since for these values 
of T the operator/9 is anti self-adjoint. 

and 

DI(J  = DI(7(T)) = D(7(J)Pa(7(27)). (4.41) 

The main problem is to control the norms of the operators Q(r)Q(u)-~Pk(U), 
k = 1, 2. We say that a path 7 is dissipative for Eq. (4.33) if there exists a constant 
C o independent of s such that 

[I Q(v)Q(u)- 1 p z ( U  ) II ~ Co ,  V-c ~ u. (4.42) 

Similarly, ? is dissipative for Eq. (4.34) if along ), 

II Q(JQ(u)- 1Pl(u ) II < Co, ~'27 > u. (4.43) 

One natural way to find a path 7 which is dissipative for (4.33) would be to require 
that 

~.l~<qgJD2(27)r.p> _< 0, V ipe r ,  (4.44) 

since this condition would imply (4.42) with Co = 1. However such a condition 
cannot be verified for all ~0e~, but we show in Sect. (5) that a related condition 
to (4.44) implies (4.42) with Co 4:1 usually. Moreover there is another difficulty. 
We cannot find a single path which is dissipative for both Eqs. (4.33) and (4.34). 
We proceed as follows. In Sect. (5) we show that there is a path 7 which is dissipative 
for (4.33) and which satisfies the conditions (4.18), provided the width of the band 
is small enough (Lemma (5.6)). Let A be the region of the complex plane between 
the real axis and 7: 

A = {t + is; tell{, 0 < s < ~2(t)}. (4.45) 

Let z = z I + i z  2 be a point in A. We introduce two paths ~ and ~7 (see Fig. (1)) 

1"27' - oo < 27 < zl (4.46) ~(27) 
( z l + i ( z - z O ,  z l < z < z ~ + z 2  
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~(~) 
D, 

Fig. 1. The paths ~ and ff in A 

We can now finish the proof. Let 

III 0kill = sup II 0k(z)II, k = 1, 2. (4.48) 
zEA 

Using the fact that ~7 is dissipative we have for ~ = zl + Zz, 

I102(z) I1 < eM'([[[01 I[[ + 11102111). (4.49) 

If we use the path ~ in (4.34) we get for z = zl + z2, 

I[ 01(z)II < M" + M'II102 III. (4.50) 

Indeed we can write 

Q(T)X* = Q('C)Q(Z1)- I~(Z1)X* 

= Q(r)Q(zl)-  1pl(z i)Q(zl)x* (4.51) 

since x * e ~ i ( 0  ). But IIQ(zl)ll=l.  Thus [I Q(r)x* L[ < M", using the fact that 
[I x* [I = 1. The constants M' and M" are independent of ~ and can be chosen 
independently of the paths ~ and 9, i.e. they do not depend on z s A .  Therefore we 
can take the supremum over A on the right-hand side of (4.49) and (4.50). [] 

Remark. There is an analogous result for ~12(~ ,  - ~ ) .  In that case we perform 
an integration by parts in Eq. (4.34) and we use a dissipative path 7 for Eq. (3.34); 

satisfies instead of (4.18): 

h ( r ) = T ,  ~2(~)<0, lim ~)2(r)~___--K'<0. (4.52) 

5. Dissipative Paths 

We come to the crucial point of the proof of Theorem (1.1), the existence of 
dissipative paths for Eqs. (4.33) and (4.34). We first establish a sufficient condition 
for a path ~ to be dissipative. 
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Let H(z) be a bounded operator satisfying conditions I, and II and III. Let 
v~V(v) = ~I(T)+ i~:(z) be some path inside Sa, parametrized by ~. We consider 
Eq. (4.35) 

d 
r = O(z)r (5.1) 

with 

d 
O(z) = - i e -  1H(7(z))}(z ) + ie- 1 -~ 2(~(z))t + [P'l(~(z)), Px(~(z))]~(z). (5.2) 

We are interested in the solutions r ) of (5.1) with initial conditions at u, 
edu,  u) = Pk(7(U)). With the notations of Sect. (4) they can be written as 

(9k(Z, U) = Q(T)Q(u)- I Pk(7(U) ). (5.3) 

An important property of these solutions is that 

ek(~'(z))r u) = e,(z, U)Pk(?(U)). (5.4) 

We use this fact as follows ([7],Chap. IV). Let W(z,z') be the solution of the 
equation 

d 
dz W(z, z') = [P', (z), P1 (z)] W(z, z') (5.5) 

with initial condition W(z', z') = 1. By Lemma (2.2) W(z, z') is holomorphic on Sa, 
uniformly bounded on Sa, 

sup II W(z, z')11 < M (5.6) 
Z,Z' ESa 

(provided the width of the band is small enough) and W(z, z')-1 = W(z',z). We 
also have 

Pk(z)W(z, z') = W(z, z')Pk(Z'), k = 1, 2. (5.7) 

Lemma 5.1. The operator W(z, z') leaves the domain of the operator H(z) invariant. 
Let/4(z):= W(O,z)H(z)W(z,O) be defined on D. Let 0 < r < a. Then there exists an 
integrable function d(t) such that 

I[(H(t + is)-- H(t))q~[[ < [sl~(t)(llI4(t)q~[[ + [[q~[[), tpeD, (5.8) 

provided Is[ __< r 
Moreover, ~q(tko is holomorphic for each qgeD. 

The first part of the proof of Lemma (5.1) is essentially given in [7] p. 308. 

Proof. We prove the lemma for z' -- 0. By Lemmas (2.2) and (2.3) the operator 

G(z) = [P',(z), Pl(z)] + Pl(z)n'(z)R(z, ~.)PI (z) + P2(z)H'(z)R(z, 2)Pz(z) (5.9) 

is a bounded holomorphic operator, provided that 2 is negative and ]21 is large 
enough. Moreover, there exists a constant N' so that for Is[ < r, 

II G(t + is)II < N'c(t) (5.10) 
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with c(t) the integrable function of Lemma (2.1). Therefore we can define S(z) by 

S'(z) = G(z)S(z), S(O) = t .  (5.11) 

The solution S(z) is holomorphic. Besides S(z) we also introduce the operator 

F(z) = R(z, 2)S(z). (5.12) 

Let us compute the derivative of F(z), 

F'(z) = R'(z, 2)S(z) + R(z, 2) G(z)S(z). (5.13) 

We know that 

Pk(z)R(z, 2) = R(z, 2)Pk(z), k = 1, 2. (5.14) 

By differentiating this identity we get 
t p ~  Pk(z)R(z, 2) + Pk(Z)R'(z, 2) = R'(z, 2)Pk(Z ) + R(z, 2) k(Z). (5.15) 

Now, using (5.14), (5.15) and R'(z, 2)=  - R ( z ,  2)H'(z)R(z, 2), we have 

R(z, 2)P'~(z) + R(z, 2)P~(z)n'(z)R(z, 4) = R(z, 2 ) P ~ ( z )  - P~(z)R'(z, 4) 

= P'k(z)R(z, 4) - R'(z, ).)Pk(Z). (5.16) 

Hence we can write 

R(z, 2)G(z) = R(z, (z)P~(z) + P~(z)n (z)R(z, 2)P~(z 
k 

2 

= Z P'~(z)P~(z)R(z, 2 ) -  R'(z, a). (5.17) 
k = l  

Therefore the operator F(z) satisfies the differential equation 

F'(z)=(k~IP'k(Z)Pk(z))F(z)=[P' ,(z) ,PI(z)]F(z) .  (5.18) 

At z = 0 we have F(0)= R(0, 2) and by the uniqueness of the solution of (5.18) we 
have 

f (z)  = W(z, 0)R(0, 2) = g(z, 2)S(z). (5.19) 

Therefore W(z, 0) leaves the domain D invariant. 
By definition 

$ 

S(t + is) - S(t) = i S G(t + iu)S(t + iu)du. (5.20) 
0 

Iterating this equality we have 

y n -  1 

S(t + i s ) -  S(t) = ~ (i)" i dyl"-" S dy.G(t + iYx)"" G(t + iy.)S(t), (5.21) 
n > l  0 0 

and by (5.10) 

II (S(t + is) - S(t))tp I[ < IslN'c(t)exp(IslN'c(t))I[ S(t)tp II. (5.22) 
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Using (5.19) we have 

II (/~(t + is) - / ] ( t ) ) R ( 0 ,  2)tp II = II (W(O, t + is)S(t + is) - W(O, t)S(t))tp [[ 

< II W(0, t + is) - W(0, t)II II S(t)tp [I 

+ II W(O, t + is)I[ II (S(t + is) - S(t))q9 [I. (5.23) 

Since we can write 
S 

W(O, t + is) -- W(O, t) = - i S dy W(O, t + iy)[P'l(t  + iy), P~ (t + iy)], (5.24) 
o 

we have by Lemma (2.2) and estimate (5.22) the existence of a constant  N" such that 

II (I?t( t + is) - ~l(t))R(O, ~)9  II < l s lc( t )N" II S(t)q~ II 

= Islc(t)N" II (n ( t )  - 2)R(t, 2)S(t)tp II 

= I s lc( t )N" II (n ( t )  - 2) W(t ,  0)R(0, 2)~ II 

= Is[c(t)N" II W(t,  0)(/t(t) - 2)R(0, 2)cp II 

< [slc(t)N"(ll H(t)R(O, 2 ) ,  11 

+ 121 II R(0, 2)~o II ). (5.25) 

Finally, if ~o~D, 

I~(z)~o = W(O, z)S(z)d/ + W(O, z)2R(z,  2)S(z)$ (5.26) 

for a $ ~ ,  and this application is holomorphic  because W(O,z), S(z) and R(z, 2) 
are bounded,  holomorphic  operators.  [ ]  

Let us introduce a new operator  Qo(z) by putting 

Qo(r) = W(0, 7(*))Q(0. (5.27) 

The solution ~bk(Z, u) (see (5.3)) now r e a d s  

49k(Z, U) = W(?(Z), O)ao(z)Qo(u ) -  x W(O, 7(u))Pk(?(u)) 

= W(7(z) ' O)Oo(z)Oo(u)- 1P,(O) W(0, ~(u)). (5.28) 

In order to prove that II ~(m, u)II is uniformly bounded for all z > u it is necessary 
and sufficient to prove that II Qo(z)Qo(u)-  1P,(O)II is uniformly bounded for all z > u. 
The operator  Qo(u) is solution of the equat ion 

d 
dz O~ = - W(0, 7(z)) [e', (z), PI  (z)]p(z)O(z) + W(O, y(z))O(z)Q(z) 

- -- ie-1 T(z)Qo(z),  (5.29) 

where (see (5.2)) 

7"(z) = W(0, 7(r)) T(z) W(~(z), 0) (5.30) 

and 

T(r) = H(7(z) )~(z ) - d z 2(7(z))1 

= H(7(z))($I(z) + i~2(z)) -- ie'l(71(z))72(z)$l(z) - iel(Tl(z))$z(z). (5.31) 
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Since we are interested only in the solutions Qo(z)Qo(u)-ipk(0 ) of (5.29) we can 
also consider them as solutions of the simpler equation 

d Qo(z) ie- i ~F(Z)Pk(O)Qo(z). (5.32) 

These solutions can therefore be considered as solutions of Eq. (5.32) in the fixed 
Hilbert s p a ~  Aek(0 ) = Pk(O)Jf with initial condition t ~kto)" It is therefore sufficient 
that  - ie- ~ T(z)Pk(O ), considered as an operator on ~vfk(0 ), be dissipative in order 
to have 

II Qo(z)Qo(u) - 1ek(0) ll _-< 1, W > u. (5.33) 

We summarize these results in Lemma (5.2) 

d 
Lemma 5.2. Let T(z )= n(7(z) )~(z) -  ~2(7(z) )J  and let W(O, 7(z)) be the operator 

defined by Eq. (5.5). A sufficient condition for a path 7 to be dissipative for Eqs. (4.33) 
and (4.34) is that for all ~Pe~k(0), all z 

3 (tpl W(0, 7(z))T(z) W(7(z), 0)tp5 < 0 

for k = 2 resp. k = 1. 

We now apply this lemma to prove the existence of dissipative paths. We first 
consider a descending vertical path 7, i.e. a path of the type 

z~--~7(z) = z* -- iz, z ~= O, g* = Z~ § i g ~ S  a. (5.34) 

Since here ~i(z)= 0 and ~2(z)= - 1, we must show (see (5.31)) in order that 7 be 
dissipative for (4.33) that  

9t(gol(/ t(7(z))-  el(z*))~o) _-> 0, tpegf~2(0). (5.35) 

This follows from Lemma (5.3). 

Lemma 5.3. There exists a function g2(t), given by (5.42) such that for all @ e~Vf2(0) 

9t (tpl(/t(t + is) - el(t))~o ) => (~p I(/t(t) - e~(t))~p>(1 -[slg2(t)) ,  

and 

[~ (~pl(/4(t + is)go)I < Islg2(t)(gol(ffI(t)- el(t))go), 

provided that the width of the band S~ is small enough. 

Proof. We have for goeA~2(0 ), 

~R ((p[(H(t + is) - ei(t))~p) 

= �89 + is) + ffI(t + is)* - 2el(t))~p> 

= (~ol(/t(t) - el(t))q~) + �89 + is) - H(t)) + (H(t - is) - /~( t ) ) ) tp )  (5.36) 

since W(z,0)* = W(0,5). By Lemma (5.1), 

[I (It(t + is) --/l(t))~p II < I sl d(t)( II/~(t)~p II + II ~o II) 

<lsl~(O(ll(H(t)-el(t))~oll +(1  + lex(t)l)ll ~o I I ) .  (5.37) 
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By condition III the operator  (/t(t) - el(t)) is positive on d/f2(0 ). Thus 

II(FI(t+is)-FI(t))~oll <=xf2ls ld( t ) l l (H(t)-ei( t )+ 1 + [el(t)l)~oll. (5.38) 

At that point  we use the following theorem (Theorem V.4.12. [8]) 

Theorem. Let A1 be self -adjoint and non-negative. Let A2 be symmetric with domain 
D(A2) ~ D(A1) and 1[ A2r p II --< II AicP II, Vcp~D(A,). Then 

[(r < (r r 

We apply this theorem with A 2 = �89 + i s )  + I ] ( t  - -  i s )  - -  2/-I(t)) and 
A i = x/~l sld(t)(/-t(t) - el(t) + 1 + lex(t) l), considered as operators  on ~2(0). We get 

9t(~ol(H(t + is) -- edt))~o> 

>_- <~ol(n(t) - e~(t))cp>(1 - x/~lslO(t)) -- x/~lsl~(t)(1 + lel(t)l)II ~o II 2. (5.39) 

Since on ~tf2(0 ) 

we have 

with 

IO(t) - el(t) >-_ e2(t) - el(t), (5.40) 

01 (r + is) - el(t))~o> => (~ol(H(t) - e~(t))tp>(1 - Is lg2( t ) )  (5.41) 

( 02(0 = x/~d(t) 1 + e2(t) - el( t)]  (5.42) 

The second statement follows from the identity 

I~<r + is)cp>[ = �89162 + is) - ff'l(t)) - (t?I(t - is) - / t ( t ) ) ) cp)  I. (5.43) 
[]  

Lemma 5.4. There exists a function 91(0, 9iven by (5.46) so that for all r  

9t (r - / ~ ( t  + is))rp> > (r -/~(t))cp>(1 - [ s l e l ( t ) )  

provided that the width of the band S, is small enough. 

Proof. The proof  is analogous to the proof  of Lemma (5.3). The only difference 
is in the lower bound (5.40) which is now replaced by 

el(t) - / t ( t )  >__ 6" (5.44) 

if el(t) - Hi(t)  is considered as an operator  on ~"1(0). The positive constant 6* is 
given by 

inf dist (0- l(t), el(t)). (5.45) 
t 

Therefore the function #i(t) is given by 

1 + lei(t)l~. 
01(0 = x/~8(t) 1 -t 6* ] []  (5.46) 

From Lemmas (5.3) and (5.4) we immediately have 
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Lemma 5.5. Vertical descending paths are dissipative for Eq. (4.33) and vertical 
ascending paths are dissipative for Eq. (4.34) provided the width of the band S a is 
small enough. 

We now consider a path ~(z) such that 

yl(z) = z, 72(z) > 0. (5.47) 

Lemma 5.6. l f  the width of the band Sa is small enough, there exist paths ~ satisfying 
(5.47) which are dissipative for Eq. (4.33)for all z 6 R  and such that 

lira y2(z) = ~2(~) > 0. 
~--* go 

Proof. From Lemma (5.2) and from (5.31) we must have for ~o~,ug2(0), 

(~ol W(0, y(z))T(z)W(7(z ), 0)~o ) = 9t (q~l (H(z + iy2(z)) - e x (z))q~)~2(z) 

+ ~(tp[(/~(z + i72(z))- ie'l(z)72(z))q9 ) <= O. 
(5.48) 

We can choose the width of the band so that  the factor in front of ~2(z) is strictly 
positive (Lemma (5.3)). Thus (5.47) is now equivalent to 

))2(Z) < ~ (~OI(/~(Z + i]~2(Z)) -- ie'l(z)])2(z))~O) (5.49) 
91 (~0l(/4(z + iy2(z)) -- ex(z))q~ ) 

Condit ion (5.49) is certainly fulfilled for all q~sscg2(0 ), II ~o II = 1 if 

~2(z) < - sup I.~ (q,l(/~(z -I-iT2(z))q)) I -I-le'l(z)l~2(z) (5.50) 
~oJe~r 91(~01(/7(T + i~:(z))- e,(z))~o) 

By Lemma (5.3) we have 

I~(q,l(n(z + i72(z))qg)l + le'a(z)lT2(z) 
sup 

~av~(o):u~ll =1 91 ((0 [(iQ(z + iy2(z)) - el(z))q~) 
t 21ex(z)l , ,  

< 02(z)2Y2(z)-t ( z~-e l (  ~2(z1 (5.51) 
-- e 2 z) 

provided we choose the width of the band so small that for all z~R ,  

age(z) <= �89 (5.52) 

Therefore it is sufficient to choose y(z)= z + i~2(z) with ~z(Z) solution of the 
differential equation 

/ 

le'l (z) l 
N 

~2(z) = - ?2(z)2( gz(z) + ~ (5.53) 
\ e2(z) - ex(z)J 

with ~2(0) > 0. Indeed, Eq. (5.53) can be solved explicitly, 

'2(z) = 72(0)exp ( - - 2  i (g2(u) + ! -e-'1 (u) I )du) ,  (5.54, 
o ez(u)-e~(u)/  J 

and since (O2(U)+ le'~(u)l "] is integrable we can choose ~z(0) so that 
\ ez(u) - e~(u)/ 

0 < ~ z ( -  ~ )  < a and ~2(oc) > 0. Therefore condition (5.49) is fulfilled. [] 
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Remarks. 

1. It is clear from the above results that we can prove the existence of a 
dissipative path for Eq. (4.34) so that V ( z ) = z + i y 2 ( z )  with y2(z)<0 and 
lim V2(T) < 0. 
t~o~ 

2. The functions el(t) and e2(t ) do not play the same role because we have 
defined 2 ( t+ i s )= i se l ( t ) .  We could work with 2 ( t + i s ) = i s e 2 ( t  ) or with 
2(t + is) = is �89 + e2(t)) which is more symmetrical. 

3. We can remark that the results of this section are valid for unbounded 
operators. The existence of the dissipative path 7 of Lemma (5.6) is based only on 
the estimate of Lemma (5.1). In particular the value of V2(co) depends only on 
~(t),et(t),e2(t ) and [e'l(t)l. Moreover ~(t) depends only on the basic estimates of 
Sect. (2). 

6. Unbounded Operators 

Let H(z), H + and H -  be unbounded operators which satisfy the conditions I, II 
and III. It is not possible to use the same strategy as before by making the time 
complex. We prove our main result by approximating the operators by bounded 
operators. The operators H(t) are uniformly bounded from below for teP,. Without 
restricting the generality we suppose in this section that they are bounded from 
below by ~ for all t. We approximate H(z) and H • by 

H.(z) = nH(z)R(z,  - n) 

and 

Lemma 6.1. 
hold 

(6.1) 

H + = n H  + R(+_, -- n). (6.2) 

There exists a constant a', 0 < a' < a, such that the followin 9 statements 

1. For any n, H.(z) is a bounded operator, holomorphic on S. , ,H.(z)* = H.(i) 
and Oep(H.(z)). 

2. There exists a constant C' independent o f  n, such that 

and 

Cr 
sup II (H.(t  + is) - H.+)~oll =(1< +l t l )  ~ + ~ ([I ~o ][ + II H~ ~o II), t > 0 

C 
! 

I~lsup<~' [[ (H.( t+is ) -H~)~o[[  =< (1 + It]) x+~([[~p[[ + [[H~-~o [I), t<O. 

3. H,(z) converges strongly to H(z) on D, uniformly on S,,. 
4. The operator U.(t, s), solution o f  

8 
ie~- U,(t,s) = H,(t)U,(t ,s) ,  U.(s,s) = t 

ot 

converges strongly to U(t, s), uniformly in t and s belonging to a compact interval o f  
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lR and V.(t, s) defined by the equation 

0 
ie - -  V.(t, s) = (H.(t) + ie[P'l(t), Pl( t)])V,( t ,  s), 

Ot 
V.(s, s) = 1 

converges strongly, uniformly in t and s belonging to a compact interval of  F,~ to the 
adiabatic evolution V(t, s). 

5. I f  H(t) satisfies condition 111, then H.(t) satisfies the same conditions for n 
large enough, and the spectral projectors Pl(t), P2(t) are also spectral projectors for 
H.(t).  

Proof. 

1. If - nEp(z), then clearly 

H,(z) = n t  - nZ R(z, - n), (6.3) 

and therefore H.(z) is holomorphic, H, (z )*=  H.(~). If Oep(z), then H,(z)- I  = 
1 
- (H(z)  + n)H(z)-  1. It remains to show that  - nep(z) if [~zl is small enough�9 This 
n 
follows from (2.18), since for all n and t e N ,  

1 
I[ R(t, - n)I[ < - - ~ ,  (6.4) 

n +  

and therefore it is sufficient to take I,~z[ < a', with a' such that  

a' sup c(t)3 = a ' m '  < 1. (6�9 
t 

2. We have the estimates 

II (H,(z) - H + ) R . ( + ,  0)~ II = [I (H, (z )R . (+,  O) - 1 )~  l[ 

= II (n(z)R(z, - n)(H + + n)R(+,  0) - l)~b II 

= II (n(z)R(z, - n)(n(z) + n + H + - H(z ) )R(+.  0 ) -  t)qs II 

= II ( H ( z ) R ( + ,  O) + n ( z )R( z ,  - n ) ( t  - n ( z ) R (  + ,  0 ) ) -  t)qJ II 

'.(sup sup II . (z)R(z , -n)[1+1/~11 (H(z)R(+,  0 ) -  l)qJ II. __< 
n 

For any z we have 

N H(z)R(z, - n)[I < 1 + [I nR(z, - n)I[ 

and from (2.19). with z = t + is, 

n[I R(z. - n)II < n II R(t, -- n)I[ 
1 - a ' M '  

1 
< 

= 1 -- a 'M' 
<_'  provided Is[ _ a .  Therefore 

sup s u p , , H ( z ) R ( z . - n ) l , + l ) < 2 + - -  
z:lsl<-a" n 1 - -  a ' M '  

(6.6) 

(6.7) 

(6.8) 

(6.9) 
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Considering ff = H~ + ~o, we see from (6.6), (6.9) and condit ion II that  we can take 
for C' ( 1) 

C ' = C  2q 1 - a ' M '  ' (6.10) 

where C is the constant  of condit ion II. 
3. Let ~k~D. Then 

II nR(z,  - n)~ - ~ II = II R(z, - n)n(z)~b II 

=~ tl R(z,  - n)I[ II n(z)d/I[.  (6.11) 

By condit ion II, if z = t + is, 

sup Iln(z)~'ll < ~ .  (6.12) 
z:lsl<=a ' 

From (6.11), (6.12) and (6.8) we see that  nR(z,  - n) converges strongly to the identity 
on a dense subset D, uniformly in z~Sa,. Since the norm of nR(z, - n )  is bounded 
uniformly in z~S , , ,  we can find, for any ~ e J f  and any e > 0, a vector ff~D such that  

I l n R ( z , -  n)~o- ~o II < I I ( n R ( z , -  n ) - ~ ) ( q ~ - ~ ' ) l l  + I I ( n R ( z , -  n ) -  1)~11 (6.13) 

and 

II (ng(z ,  - n) - t)(tp - ~k)II _-< ~ Vn large enough. (6.14) 

Therefore nR(z,  - n) converges strongly to the identity on ~,~, uniformly in z~Sa,. 
The map zw-~H(z)~o, for any fixed q~D,  is holomorphic  and has well-defined limits 
when t-~ _+ ~ :  there exist ~b + and ~k- such that  

lim sup [ [ H ( t + i s ) ~ o - ~  +- II = 0 .  (6.15) 
t ~ •  isl<_a , 

Consequently the set {H(z )q~; lS z l<a ' }  is a compact  subset of ~ and thus 
H.(z)tp -- nR(z,  - n)H(z)q~ converges to H(z)tp uniformly on Sa,. Indeed, nR(z,  - n) 
converges strongly to the identity uniformly on any compact  subset of ~ .  

4. Let q~(t) be a solution of the Schr6dinger equat ion (1.1) with initial condit ion 
q~(s) -- ~o* ~D. We have 

ie ~t q~(t) = H,(t)q~(t) + (H (t) - H. ( t )  )qg(t), (6.16) 

and we can write 
t 

q~(t) = U.(t ,  s)~o* + S U.(t,  u)(H(u) - H.(u))q~(u)du. (6.17) 

For  any fixed T > Isl, the function (H(u) - H.(u))q~(u) converges to zero uniformly 
on [ -  T, T].  Thus U.(t,  s)tp* converges uniformly in t and s t [ -  T, T]  to U(t, s)~o*. 
Since D is dense the result follows. The proof  of the second statement is the same. 

5. The last s tatement follows easily from the spectral theorem since 

n x  

H , ( t ) = f . ( H ( t ) ) ,  with f . ( x )  x + n "  [] (6.18) 
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Remark .  It is essential that the constant C' depends only on the constant C of 
condition II and on M' of (6.5), which is independent of n. 

P r o o f  o f  Theorem 1.1. Let A ( t ) =  V - l ( t ) U ( t ) ,  where V(t) is the adiabatic evolution. 
We approximate H by H.  given in (6.1) and we define A.(t)= v ~ l ( t ) U . ( t ) .  The 
operators A(t), respectively A.( t )  are solutions of the equation 

A'(t)  = - V -  ~(t)[e' l( t  ), Pl(t)] V(t)A(t) ,  A(0) = t ,  (6.19) 

respectively 

A'.(t) = -- V n ~(t)[P'.,,(t), P.,l(t)] V.(t)A.(t) ,  A.(0) = t .  (6.20) 

Assuming that n is large enough we have by Lemma (6.1) that P.,a(t)= P~(t). 
Therefore we can assume that 

, - 1  ' t A,( t )  = - V .  (t)[Px(),Pl(t)] V.(t)A.(t) ,  A.(0)= 1. (6.21) 

With the notation of (3.7) we can write 

t 

A(t)  = A. ( t )  + ~ A.( t ,  u)(K(u)  - K . (u) )A(u)du ,  (6.22) 
0 

where A,(t ,  u) is solution of (6.21) with A.(u, u) = 1. Let e > 0. By Lemma (2.2) there 
exists T = T(e) such that 

- T  oo 

I[ K(u)  - gn(u)II du + ~ IL K(u)  - Kn(u)II du < ~. (6.23) 
- -o0  T 

By Lemma (6.1) we conclude that An(t ) converges strongly to A(t), uniformly in 
t eA,  i.e. 

lira sup II (A(t)  - A.(t))tp ]l = 0. (6.24) 
n ~ O 0  t 

We must estimate ~21(oo, -  oo). We have for n large enough by Lemma (6.1), 
point 5, 

11Pz(O)A(+)A(-)- ~ P, (O)(p [1 < I[ P2(O)A.( + ) A . ( - ) -  1p1 (O)(p I] 

+ ]l Pz(O)(A( + )A(  - ) -  1 _ A . (  + ) A . ( -  ) -  x)P ~ (0) q~ [I. 

(6.25) 

We see that we can prove the theorem by proving it for Hn, provided that the 
constant x = ~2(oo) is independent of n and that the constant M of Lemma (4.3) 
is also independent of n (n large enough). Indeed the last term disappears as n -~ oo. 
We already know that H.  satisfies conditions I, II and III on S a, with constants 
~, C' and 6" independent of n (n large enough). We now prove the basic estimate 
of Lemma (2.1) with an integrable function independent of n. The bounded operator 
H , ( z ) H . ( z ' ) -  ~ is by definition 

H . ( z ) H , ( z ' ) -  i = H(z )R(z ,  - n)(H(z ' )  + n)R(z' ,  O) 

= H(z )R(z ,  -- n)(H(z)  + n + H(z ' )  - H(z ) )R(z ' ,  O) 

= H(z )R(z ' ,  O) + H(z )R(z ,  - n)(H(z ' )  - H(z ) )R(z ' ,  0). (6.26) 
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Therefore 

II H . ( z ) H . ( z ' ) - a  II < II H(z)R(z ' ,  O)II 

+ IIH(z)g(z ,  - n)ll(1 + IIH(z)g(z' ,O)ll).  (6.27) 

By (6.9) we have a constant  N 1 independent  of n and z such that  

II H(z )R(z ,  - n)H < N1.  (6.28) 

On the other  hand by (2.12) there exists a constant  N 2 such that  

II H(z)g(z' ,O)q9 II -<_ II R(z',O)q~ IIz 
< N2 II R(z', 0)~o IIz, 
_-< 32 (  II R(z', 0)II + 1)II ~o 11. (6.29) 

Since R(z',  0) is a bounded,  holomorphic  opera tor  admitt ing R ( + ,  0) and R ( - ,  0) 
as limits at infinity, it is uniformly bounded on Sa,. Therefore there exists a constant  
N 3 such that for all z and z' in Sa,, 

II n . ( z ) n , ( z ' ) -  1 II _-< N3, (6.30) 

and thus 

II n , ( z ) tp  I1__< N 3 II n,(z')q~ II. (6.31) 

F rom this result and Lemma (6.1) we can prove exactly as in Sect. (2) that there 
exists an integrable function c(t), independent  of n, such that for all 
z = t  + is, lsl < r  < a  ', all z'~Sa,, 

II n'.(z)q~ II < c(t)( II ~0 II + II n,(z ')q9 IJ ). (6.32) 

The estimate (6.32) corresponds to Lemma (2.1). For  the existence of the dissipative 
path we need Lemma (5.1). The integrable function d must  be independent  of n 
and we must prove the estimate of Lemma (2.3) with a constant  N independent 
of n. We take in our  present case 2 = 0. We have from (6.32) 

If n ' . ( z ) n . ( z )  - 1  tp II --< c(t)( II n . ( z ) -  I ~o II + I[ n n ( z ) n . ( z )  - x q~ II) 

IJ( ' )H) <__ c(t)II ~0 1 + - + II R(z,  0 . (6.33) 
n 

Therefore there exists a constant  N independent  of n so that 

II n ' . ( z ) n , ( z ) -  1 tp II _-< Nc(t)II ~o II. (6.34) 

F rom this estimate and Lemma (2.2) we get the existence of an integrable function 
d(t) independent  of n such that 

II (/4,(t + is) - H.(t))q~ II < Isle(t)( 11H,(t)~0 II + I[ ~0 [I) (6.35) 

(see proof  of Lemma (5.1)). Thus there exists a dissipative path ~ as in Lemma 
(5.6) which is independent  of n. It remains to show that the constant  M of Lemma 
(4.3) is also independent  of n. This is not  immediate but  the verification of this 
statement does not  present particular difficulties. [ ]  
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