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Abstract

The economic growth inherent to our nowadays society pushes the in-
dustries toward better performances. In the mechatronic context, the
increasing competition results in more and more stringent specifica-
tions. Thus, the multiple objectives to track become hard to achieve
without compromises. A potential interesting solution to this prob-
lematic is overactuation, in the sense that, the considered system
has more actuated degrees of freedom than the minimal number re-
quired to realize a task. Indeed, overactuation enables flexible and
efficient responses to a high variety of tasks. Moreover, the coordi-
nated combination of different subsystems enables both to combine
their advantages and to cancel their disadvantages.

However, the successful coordination of the supplementary de-
grees of freedom at our disposal, thanks to overactuation, is not triv-
ial. As a matter of fact, the problem of unpredictable response of
overactuated systems to a periodic excitation can be particularly
critical. Furthermore, the flexibility brought by the overactuation is
to be used efficiently in order to justify its corresponding complexity
and higher costs. In this sense, the tracking of multiple simultaneous
objectives are clearly enabled by the overactuation and thus consti-
tutes a clear motivation for such a solution.

As a consequence, the constructive coordination of overactuated
systems, which can be very difficult, is very important to achieve
stringent objectives. This thesis aims at contributing to the improve-
ment of the coordination of such systems. In this context, three axis
of research are considered: differential geometry, potential functions
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and closed-loop control. Each of these axis is to be taken as a separate
insight on the overall coordination of overactuated systems.

On the one hand, the formalism of differential geometry enables a
solution to the unpredictability problem raised here above. An intelli-
gent parameterization of the solution space to a periodic task enforces
the predictability of the subsystem responses. Indeed, the periodicity
of the task is transferred to the latter subsystem responses, thanks
to an adequate coordination scheme.

On the second hand, potential functions enable the coordination of
multiple simultaneous objectives to track. A clear hierarchy in the
tasks priority is achieved through their successive projections into
reduced orthogonal subspaces. Moreover, the previously mentioned
predictability problem is also re-examined in this context.

Finally, in the frame of an international project in collaboration
with the European Southern Observatory (ESO), an opto-mecatronic
overactuated system, called Differential Delay Line, enables the con-
sideration of closed-loop coordination. The successful coordination of
the subsystems of the Differential Delay Line, combining their intrin-
sic advantages, is the key control-element ensuring the achievement
of the stringent requirements.

This thesis demonstrates that a constructive coordination of the
supplementary degrees of freedom of overactuated systems enables
to achieve, at least partly, the stringent requirements of nowadays
mechatronics.

Keywords:

Nonlinear Control, Redundancy, Overactuation, Coordination, Tra-
jectory Planification, Optical Delay Line.



Résumé

La croissance continue propre & notre société de consommation
d’aujourd’hui ameéne les industries & étre de plus en plus performantes
pour rester compétitives. Dans le contexte de la mécatronique, cette
compétitivité croissante débouche sur des spécifications de plus en
plus aigués. Les multiples objectifs & réaliser deviennent difficiles &
atteindre sans compromis. Une solution potentielle & cette probléma-
tique réside dans le suractionnement, compris dans le sens ot le sys-
téme considéré posséde plus de degrés de liberté (d’actionneurs) que
cela est strictement nécessaire a la réalisation de sa tache. Le surac-
tionnement permet alors une réponse flexible et performante a toutes
sortes de taches. De méme, la combinaison coordonnée d’actionneurs
de types différents permet a la fois de cumuler leurs avantages re-
spectifs et d’annuler leurs désavantages.

Toutefois, la problématique de la coordination des degrés de lib-
erté supplémentaires liée au suractionnement se pose. Par exemple, le
probléme de 'imprévisibilité des réponses des systémes suractionnés
soumis & des taches périodiques peut étre particuliérement critique.
De plus, un systéme avec plus d’actionneurs que strictement néces-
saire se doit d’exploiter au mieux ces derniers pour justifier sa plus
grande complexité et son cotit supérieur. La poursuite simultanée de
multiples objectifs et la flexibilité du type de réponse, amenées par
le suractionnement, en sont les motivations principales.

Par conséquent, la coordination constructive des systémes surac-
tionnés, qui peut étre particuliérement ardue, est primordiale pour
atteindre les objectifs. Cette thése vise ainsi a contribuer a I'amé-
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lioration de la coordination de tels systémes. Pour ce faire, trois
axes de développement sont considérés: la géométrie différentielle,
les fonctions potentielles et la boucle fermée. Chacun de ces do-
maines pris indépendamment contribue & augmenter notre connais-
sance globale de la coordination des systémes suractionnés.

D’une part, le formalisme de la géométrie différentielle nous per-
met de répondre a la problématique critique de I'imprévisibilité
des réponses des systémes suractionnés soumis & une excitation
périodique. En effet, la paramétrisation coordonnée de ’ensemble
des réponses d’un manipulateur a une tache périodique renforce sa
prévisibilité par une répartition, elle-méme périodique, de la tache
sur chacun des sous-systémes.

D’autre part, les fonctions potentielles nous permettent de mettre
en place un schéma de coordination flexible & objectifs multiples.
Une hiérarchie claire des priorités des taches est mise en place par
leur projection dans des espaces orthogonaux restreints. La problé-
matique de la prédictivité de la réponse du manipulateur est aussi
examinée dans ce contexte.

Finalement, un projet international en collaboration avec 1’obser-
vatoire européen de I’hémisphére sud (ESO) nous permet de con-
sidérer les problémes de coordination liés a la boucle fermée. En ef-
fet, une ligne a retard différentiel est réalisée par un systéme opto-
meécatronique suractionné. La coordination fructueuse entre les sous-
systémes de la ligne a retard différentiel combine avantageusement
leurs caractéristiques intrinséques et, de ce fait, est le garant de
l'adéquation entre les performances réelles et les spécifications de-
mandées.

Cette thése démontre qu'une coordination constructive des de-
grés de liberté supplémentaires des systémes suractionnés permet de
répondre, au moins en partie, aux attentes de plus en plus pointus
de la mécatronique.

Mots-clés:

Controéle Non-linéaire, Redondance, Suractionnement, Coordination,
Planification de Trajectoire, Ligne & Retard Optique.
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Introduction

Nowadays necessity of high performances en-
forces the antagonism of objectives: the classical
control trade-off. "Have your cake and eat it too".

1.1 Motivation

Nowadays, the society is pushing toward performances. In our daily
lives, success is intimately linked to competition and therefore one
should strive for best possible performances under all circumstances.
In industries, increasing output productivity, reducing costs or re-
ducing the error margin are essential in order to remain competitive
on the market.

However, the desired performances are often hard to be simultane-
ously reached. For example, one needs to be efficient at microscopic
scale and simultaneously, these performances are requested over a
large operating area (macroscopic scale). Moreover, on one side, flez-
ibility is enhanced as a great advantage in the sense that it allows
adapting to each problem specifically, and, on the other side, the
overall concerted action should be harmonious. The resulting oppo-
sition in objectives to reach is representative of the problem one has
to solve in our every day life. There is a nice sentence expressing
this: "Have your cake and eat it too". From the control engineering
point of view, this antagonism corresponds to the traditional trade-
off between performances (fast responses, high gains) and robustness
(stability).
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Solutions to overcome these limitations are twofold. First, one can
improve the concerned actors capabilities. Increasing the actuator
bandwidth and precision for example will push the limit further away.
However, this limit will still be present and one can think that, later
on, it will re-appear with the next increase in specifications. Second,
combining multiple actors with different capabilities is another so-
lution. In our common lives, team force is being widely used with
more or less success. Team sports are a clear example of a trial of
constructive cooperation between people to achieve common goals,
which would not be possible otherwise. From an engineering point
of view, overactuation, or redundancy, in the sense of having more
actuators than the minimal number required to realize a task, is an
attempt to transfer this 'team spirit’ to the technical field. There-
fore, overactuation is a potential solution to our high performances
demand. It enables to combine together fine micro-actuators with
large macro-actuators or to combine fast and strong actuators to
achieve multiple objectives simultaneously. In this sense, flexibility
can be achieved throughout the combination of multiple subsystems,
while an intelligent control coordinating the individual subparts en-
ables predictability and repeatability.

Coordination etymologically means harmonious functioning of parts
for effective results. In this sense, the constructive coordination of
the subsystems is the key element, from the control point of view,
enhancing the overall performances. A well-known example of suc-
cessful coordination appears in biology: the human motor coordina-
tion. This extremely complex system is incredibly well-coordinated
in order to enable, on one side, gross motor skills (walking, running,
jumping, ...), and on the other side fine motor skills (manipulation of
small objects using small muscle movement). In particular, the fine
motor skills principally concern the arms and fingers coordination.
These fine motions are often using feedback information to re-fine
the movement: visual contact is used to close the loop. Fingers are
also a specially nice example of a coordinated-overactuated system.
The role of the thumb (which is primordial to enable grasping for
example) lies apart from the remaining of the fingers (which are in
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some way redundant).

Moreover, the humans, as one of the most complex coordinated
overactuated-system, are realizing multiple tasks simultaneously with
different level of attention. For example, in order to carry an object
(possibly a cup full of liquid) to a specified place, a human will usually
use his two hands simultaneously to be more stable (overactuation).
If this task request a displacement of the entire body (to be reached),
this will be done while ensuring a safe posture and avoiding obstacle:
this is an obvious coordinated multi-tasking scheme (see Figure 1.1).
However, all these tasks do not have the same priority. A human

Fig. 1.1. Multiple tasks: a human-body versus an overactuated manipula-
tor. Task 1: end-effector (hand) positioning. Task 2: posture optimization.
Task 3: limits (obstacle) avoidance.

will first handle its posture in order not to fall, then concentrate on
the obstacle avoidance for finally realizing its carrying task. A ma-
nipulator, which is working in a closed and safe environment, will
put more emphasis on the realization of the task than on its own
posture. Furthermore, these simultaneous goals are not necessarily
easily decoupled: the realization of a task could prevent the success-
ful realization of other tasks. Avoiding brusquely an obstacle in order
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to remain in a safe posture could cause the carried-object to fall on
the ground or to empty its load. Thus, a constructive coordination
of the overall system (human body or manipulator) will consider all
these objectives together with their level of priority (see Figure 1.1).
With this nice example, we can feel that overactuation and coor-
dination are intimately linked to the particular functioning of each
subsystem. There is a clear classification of the individual subparts
concerning their redundancy and the role they play to realize the
tasks.

To sum up, in this thesis, I will focus on the constructive coor-
dination of overactuated systems as a response to more and more
stringent specifications and multi-tasking scheme. A particular ap-
plication concerning the control of an optical Differential Delay Line,
as a specific overactuated system, will also be detailed.

1.2 State of the art

Now that the substantial matter of this thesis has been introduced,
the underlying problematic is highlighted through the different re-
search axis found in the literature.

From an application point of view, redundant systems (i.e. sys-
tems having more actuated degrees of freedom than necessary for
a given output task) show superior flexibility over classical systems
insofar as they can accommodate not only for the main task but
also for a possible secondary objective. The redundancy can be put
to good effect to maximize efficiency (torque) resulting in substan-
tial energy savings [4, 43|, to optimize the time response resulting
in fast responses [17,75], to improve the accuracy of a positioning
output [6, 53, 65,69, 70,84, 96, 105], to increase the reliability of a
critical functionality [57,99,108] and/or to combine multiple objec-
tives [39,45,54,104].

Nevertheless, the augmented number of choices that is at the con-
troller designer disposal makes the control design difficult so as to
meet simultaneously all of these objectives. In this context, several
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methods have been proposed to take advantage of these multiple
possibilities. The generalized pseudo-inverse of the jacobian matrix
(which corresponds to the partial differential matrix of the output
with respect to the joints) first introduced by [103] to solve the re-
dundancy, has been shown to minimize locally the kinetic energy
necessary to realize the main task, while its null space is at our dis-
posal to optimize any secondary objective [55,56,64]. Note that, in
this thesis, the term joint designates an articulation of a manipulator
which is actively-controlled with an actuator.

A repeatability problem was raised by [56] where several simula-
tion experiments were run, using the Moore-Penrose pseudo-inverse
control. They found that this control was not repeatable, but in
some cases they observed limit cycles that did preserve repeatabil-
ity. [8,14,42] also mentioned this repeatability problem. Since the
mapping from the actuators space to the output space is a submer-
sion (surjective map), an infinite number of different solutions exist
to the coordination problem which consists in allocating the correct
"amount of output" to each actuator. In particular, the differential
geometry integrability condition has been shown (see [36,37,88,91])
to be primordial in order to obtain repeatable solution in the joint
space when realizing a periodic task at the output. In this con-
text, [91] developed an integrability condition based on a Lie bracket
test. This condition together with simple connectedness hypothesis
ensures repeatable joint trajectories when tracking a closed trajec-
tory with a redundant system. The proposed geometric reasoning,
analyzes the joint space structure induced by the control strategy.
Repeatability is equivalent to the existence of surfaces that are sta-
ble under the control, and for which the kinematic function is one to
one. This yields the condition involving Lie brackets.

Baillieul [8,9] tackled the inverse kinematic repeatability problem
from another side. He proposed to extend the jacobian matrix in
order to obtain a single possible solution to its inversion problem.
This extension will impose an additional arbitrary relation between
joints in order to obtain a square jacobian matrix to inverse. However,
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this technique never ensures to avoid singularities in the inversion
matrix problem along the trajectory path.

Gu [35,36] introduced a configuration manifold embedding model
to study especially redundant robot. The ultimate objective of this
model development is to explicitly show the fact that for a redun-
dant robot, a subtask decision represented by a certain kinematic null
solution is technically equivalent to the configuration manifold embe-
dization in its dynamic modeling. In other words, once the minimum
embeddable C-manifold, as the smallest dynamic model, is achieved,
a one-to-one kinematic output of the redundant robot can also be
determined accordingly in terms of a given main task as well as a
desired subtask specification.

Topological tools have been introduced in the context of robotics
in order to obtain an insight into engineering problems [15, 16, 34].
Through topology, efforts have been put on global solutions to the
inverse kinematic problem.

In the context of studying the humanoid robots coordination and
control, Khatib research group developed many concepts which are
relevant to our research work. They developed an operational space
coordination frame [51], enabling the dynamic description of all mo-
tions and tasks. Moreover, they used artificial potential functions
to enable simultaneous multi-tasking (posture optimization, obsta-
cle avoidance [50], joint limits avoidance...), enforcing prioritization
of the tasks and subtasks through successive projections into tasks-
nullspaces [52,89,90].

I do not have the presumption to have made a complete overview
of the concerning literature, however these are some of the relevant
ideas regarding the presented research.

1.3 Objectives and organization of the thesis
This thesis aims at exploring the coordination of overactuated sys-

tems. After the definition of what are the properties of an over-
actuated system and what is meant as coordination in Chapter 2,
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Chapter 3 introduces the necessary concepts to the development of
this thesis.

Afterwards, three axis of research are developed thoroughly con-

cerning the coordination of overactuated systems, each one of them
should be taken as a separate insight on the general coordination
goal. First, in Chapter 4, some properties of differential geometry
are demonstrated to be essential for our coordination objective. Un-
der this scope, a constructive coordination is obtained whenever a
particular involutive parameterization of the solution space ensures
a periodic response of the joints to a periodic end-effector task.
Second, Chapter 5 explores the coordination of overactuated systems
under the scope of potential functions and multi-tasking schemes. In
this context, constructive coordination is obtained whenever multiple
tasks are tracked simultaneously successfully. Moreover, a hierarchi-
cal separation of the tasks and a topological optimal solution are
examined particularly.
Third, the Chapter 6 examines a particular overactuated system (the
Differential Delay Line, DDL) under the scope of closed-loop coordi-
nation. In this context, constructive coordination is obtained when-
ever the performance-specifications are obtained and saturation of
the fine stage is avoided. Furthermore, a particular overactuation
scheme enforcing the coordination of multiple DDLs is also detailed.
These three chapters represent respectively three different insights
on the main matter of this thesis.

Finally, Chapter 7 concludes the undertaken research and high-
lights some future research potentialities.

As recapitulation, in this thesis, I principally aim at contributing
to the optimal exploitation of the supplementary degrees of freedom
of overactuated systems. This objective is realized through the three
main chapters (Chapters 4, 5 and 6), where three different original
insights are proposed.






2

Coordination of overactuated systems

Overactuation increases flexibility to the cost of
a large increase in complexity. The coordination
of overactuated systems includes four character-
istics: infinite set of solutions, differentiation of
the solutions, coordination to obtain the desired
choice and antagonistic objectives.

As introduced in Chapter 1, overactuation is a solution to nowadays
demand for extreme performances. Thus, in combining the respec-
tive advantages of subsystems, we tend to reach better performances.
However, the appropriate combination of subsystems is not trivial
and necessitates deep coordination in order to balance adequately
the inherent antagonism of the objectives.

In this chapter, I introduce the four major characteristics of the
overactuated-system-coordination problematic (illustrated in Fig-
ure 2.1): 1) infinite set of solutions, 2) differentiation of the solu-
tions, 3) constructive coordination, 4) antagonistic objectives. All
these concepts are re-examined specifically under the scope of each
next chapter (Chapters 4, 5 and 6).

2.1 Overactuation: an infinite set of solutions

An overactuated system, as considered in this thesis, is defined such
that there exists infinite different solutions to a pre-defined task.
The infinite dimension of the solution set implies simultaneously the
possibility to modify continuously the configuration of the system in
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navigating within the set. Notice that emphasis is put on the link
between the system and a predefined task. The caracteristic of a
system to be overactuated is only defined with respect to its task.

The existence of infinite different solutions implies a decision pro-
cess realizing the appropriate choice in order to solve the overactu-
ation problem. Having more possibilities than strictly necessary to
realize a given task induces either an optimality problem, for ex-
ample in term of energy, posture, or a multi-task problem. In this
sense, any secondary objective can be added to the main task of the
system. Flexibility is enhanced through the multiple choices at our
disposal, to the cost of a higher degree of complexity. Particularly,
the counterpart of flexibility consists in an indetermination problem.
In the sense that for a given task, the response of a system is not
always strictly identical, depending on the initial conditions.

2.2 Differentiation of the solutions

The implicit choice procedure related to the overactuation resolution
necessitates a clear differentiation of the solutions. The latter have
to be separated in order to enable a correct evaluation of the differ-
ent possibilities. This separation process includes, first, an intrinsic
characterization of the subsystems (corresponding to the particular
capacities of each subsystem) and, second, a clear classification of
the objectives in term of priority.

Firstly, separation includes for example bandwidth, accuracy, resolu-
tion, torque characteristics. These concepts are subsystem oriented,
in the sense that they describe the intrinsic behavior of the consti-
tuting elements. Secondly, separation includes tasks and objectives
orientated evaluation. In the sense that some objectives are prior to
others. These concepts are eventually system oriented.
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Stringent
specifications Coordination: 1) Multi-objectives
I 2) Complex solution

’\__‘ 3) Enhanced performances

Oweractuation

Set of solutions

Fig. 2.1. Coordination of overactuated systems as a solution to stringent
specifications and complex systems. Overactuation implies an infinite set
of solutions to the same task, which have to be differentiated in order
to evaluate their respective interest. Finally, a constructive coordination
scheme is to be developed in order to take advantage of the flexibility at
the disposal of the controller designer.

2.3 Constructive coordination

As a result of the infinity of different alternatives, a coordination
strategy enhancing mutual advantages of each subsystem is to be se-
lected. The coordination enables the constructive tracking of multiple
objectives, while avoiding any type of singularities. The obtained so-
lution should maintain the flexibility brought by overactuation while
ensuring non-versatility. Notice that, in this thesis, versatility is un-
derstood as an unpredictable joint response, entirely dependent on
the initial conditions.

2.4 Antagonistic objectives

The well-known classical control trade-off between robustness and
performances find its equivalent when addressing the coordination
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problem of overactuated systems. The combination of a priori antag-
onistic (meaning either opposed or competitive) objectives can often
only be featured by overactuated systems in the sense developed in
this thesis. Microscopic positioning accuracy (nm) over macroscopic
area (several mm), as requested for the DDL opto-mechatronic sys-
tem (see Chapter 6), is a clear example of one of these antagonisms.
Some of the antagonisms which are relevant to our study are listed
hereafter.

e  Flexibility, which is often desired, is counterbalanced by versatil-
ity, Chapter 4.

o Accessibility singularities (corresponding to limitations of the
workspace) are dual to the integration singularities (coming from
the direct/inverse kinematics), Chapter 4 and 5.

e The complexity caused by the tracking of multiple objectives is
clearly antagonistic to the simplicity of a single objective track-
ing, Chapter 5.

e Redundancy (overactuation) is opposed to the unicity of solutions
for fully-actuated system, Chapters 4, 5 and 6.

e Open-loop coordination (handling absolute signals) and closed-
loop coordination (handling relative error signals) are intrinsically
different, Chapter 6.

e Finally, in terms of performance and specification, this antago-
nism is clearly visible in Chapter 6. An obvious example concerns
the ratio between the requested resolution (nanometer resolution)
and the requested working stroke (over several millimeters).

In Chapter 2, I introduced the major concepts linked to the prob-
lematic of overactuated system coordination. Note that each of the
Sections 2.1 to 2.4 will be re-examined under the scope of Chapters 4,
5 and 6.

In the forthcoming chapter (Chapter 3), some of the mathemat-
ical tools which are needed in order to understand the future devel-
opments are reminded.
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Preliminaries

Some concepts which are useful to the presenta-
tion of the following chapters are clarified here-
after.

In the forthcoming sections, some of the most important mathemat-
ical tools regarding this thesis are recalled. Almost all of them can
be found in a close-form in the literature. Thus, most of my work
herein concerns the re-formulation of these tools in the context of
overactuated systems coordination.

Moreover, the two main examples that I use to illustrate the concepts
in the following chapters (the 5R3D manipulator and the 3R2D ma-
nipulator) are introduced.

3.1 Open kinematic chain

In this section some definitions and concepts which are useful to our
presentation are detailed. Moreover, (and without loss of general-
ity), two particular manipulators are detailed: either a five rotary-
serially-linked (5R) robot in 3D space, or a 3 rotary-serially-linked
(3R) manipulator in a 2D plane. Additionally, an example of an out-
put trajectory is chosen for comparison purposes.

Definition 3.1 (Open Kinematic Chain) An open kinematic chain
is a n-serial link manipulator arm, whose end-effector, attached to
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the last link, performs a task in R3. The end-effector position Y (t)
is described with a function of the joints angle (for rotary joint) and
length (for prismatic joint). Using the joint-configuration (angle and
length) coordinates (q1, ..., qn) € Q,q; € R, we have

Y = (2(9) y(g) 2(q))" (3.1)

which for notational purposes will be written Y = ((q).

Notice that, in this thesis, the term joint designates an articulation
of a manipulator which is actively-controlled with an actuator. So
that the joint configurations correspond to a general representation
of the manipulator with the individual position of each articulation
as coordinates. Note also that end-effector designates the extremity
of a manipulator, usually holding a tool (like a pincer for example),
the position of which is to be controlled.

Definition 3.2 (Working Space) The working space I'™ C R™ of a
n-joints manipulator arm described by its joint configurations Y =
Clqry e qn) € R™, (g1, ..., qn) € Q,q; € R, corresponds to the end-
effector bounded accessibility area in R™.

= {Y eR™: IHaq,...,qn} € Q,

Y:C(ql,-..,qn)}

The working space I'™ of a manipulator denotes the ambient space
in which the end-effector of a manipulator acts. The nature of the
working space depends on the type of manipulator and task consid-
ered:

R: linear manipulator (m = 1)

R?: planar manipulator without orientation (m = 2)

R? x SO(2): planar manipulator with orientation (m = 3)
R3: spatial positioning manipulator (m = 3)

R3 x SO(3): spatial manipulator with orientation (m = 6)
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where m denotes the number of independent parameters necessary
to specify the location of the end-effector frame in its ambient space.

Definition 3.3 (Redundant Robot) A manipulator made of n joints
is said to be redundant, when, for a fized end-effector position Y,
there exist infinite different joint configurations (qu, ..., qn). Let T, g,z €

R be a given end-effector position Y = (:E E)T € R3.

]
‘Qq = {(QIa 7qn) S Qvfh eR: C(QD 7qn) - Y}

The redundant manifold {2 is the manifold collecting the subspaces
2, C Q for all possible Y € R3.

0= 2

Y ER3

Note that the term self-motion is dedicated to a motion of the ma-
nipulator strictly in the redundant manifold {2, (i.e.: a joint motion
which does not have any impact on the end-effector position).

Remark 3.1 An obvious particularity of redundant systems is that
they cannot be specified uniquely by a set of parameters that only de-
scribes the end-effector position or orientation. An independent set of
end-effector configuration parameters, therefore, does not constitute
a generalized coordinate frame for the whole system [51].

3.1.1 5R Robot in 3D space

For any robot, each possible configurations of the joints defines a
unique position and orientation of its end-effector. Mathematically,
this characteristic is defined through a unique map ¢ from the inputs,
the joint coordinates (¢;(t)), to the output, the cartesian position and
the orientation (y(t)) of the end-effector.

y(t) = C(ar(t), g2(1), -, gn (1) (3.2)

Thus a 5R-manipulator in 3D space corresponds to an open kine-
matic chain constituted of five serially linked rotary joints (5R). For
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our study, this particular manipulator will realize a periodic posi-
tioning task Y'(¢) in R3, see Figure 3.1.

Fig. 3.1. Five rotary (5R) joints (q1 to gs) serially linked (lo to l5) ma-
nipulator arm in R®.

3.1.2 3R Robot in 2D space

The 3R serial manipulator in 2D space is defined with the particu-
larity that all its three rotation axis are parallel and perpendicular
to the output space R2, see Figure 3.2. This particular manipulator
thus enables a motion of its end-effector in a two-dimensional plane.
As for the preceding manipulator, essentially the positioning of its
end-effector (not the orientation) is considered. Considering absolute
joint angles (meaning angle with respect to a fixed referential), the
end-effector position (z,y) is defined as follow.

x = cos(q1) + cos(gz2) + cos(qs)
y = sin(q1) + sin(gz) + sin(gs)
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Y

g3
q1

T

Fig. 3.2. 3R2D serial-planar manipulator with absolute angular joints
q1,q2 and gs.

3.1.3 Example of a main-task design

Only end-effector trajectories that can be embedded in a smooth
manifold S are considered. As the main task, the end-effector tra-
jectory in R? is parameterized with time. The manipulator output
manifold S, containing the end-effector trajectory, is selected to be
a sphere. The tangent bundle (T'S) associated with the output man-
ifold contains the velocity-vector of displacement dY/dt = Y (t).

As an example, a Lissajou curve parameterized by the following
equations is selected as the main positioning task of the manipulator
arm.

xp(t) = Acos(wt + ¢)
yp(t) = Acos(2wt + ¢)
Using the rotation matrices R;(a), Ry (b), R.(c) defined by [33] (pp.

146-147 and 608), the planar curve is mapped onto the output man-
ifold (sphere) through the local diffeomorphism defined by:

x(t) rcos(zp) cos(yp)
y(t) | = Rx(a)Ry(b)R.(c) | rcos(xp)sin(yp)
2(t) rsin(xy)
+ C: (33)
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where c;, ¢y, ¢, represent the sphere center coordinates and 7 its
radius.

The velocity reference dY/dt is obtained through the time deriva-
tive of Equation 3.3.

3.2 Closed trajectories and repeatability

A closed end-effector trajectory is defined such that the end-effector
follows a periodic path in the operational coordinate frame. Thus, it
passes periodically through the same coordinate point.

Definition 3.4 (closed trajectory) A closed trajectory o(t) € R™ is
a periodic trajectory.

ot) =t +T) (3.4)
where T represents its time period.

The repeatability problem introduced previously (see Section 1.2) de-
scribes the fact that, despite the tracking of a closed trajectory with
the end-effector of a redundant manipulator, the joints are not neces-
sary following a closed path in the joints coordinate-frame. Therefore,
the motion of the manipulator arm is not always predictable, which
is not acceptable in most industrial environment.

3.3 The Poincaré map

The Poincaré map is defined as the intersection of an orbit in the
state space of a continuous dynamical system with a certain lower
dimensional subspace, called the Poincaré section, transversal to the
flow of the system. The transversality of the Poincaré section basi-
cally means that orbits starting on the subspace flow through the
subspace itself and not parallel to it (see Figure 3.3).
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Definition 3.5 Let (R, X, ®) be a global dynamical system, with R
the real numbers, X the state space and @ the evolution function
(integral solution to @ = f(x)). Let v be an orbit through a point p
and S be a local differentiable and transversal section of @ through
p, called Poincaré section through p.

Given an open and connected neighbourhood U of p, a function

P:U—S

is called Poincaré map for orbit v on the Poincaré section S through
point p if:
e P(p)=p
P(U) is a neighbourhood of p and P : U — P(U) is a diffeomor-
phism.

<

Limit cycle v

Fig. 3.3. Poincaré map: the convergence of a system (& = f(x)) to a limit
cycle v happens when the discrete series {p1,p2, .., pn} resulting from the
intersection of the evolution function @ with the Poincaré section converges
to a fixed point py,.

A Poincaré map can be interpreted as a discrete dynamical sys-
tems with a state space that is one dimension smaller than the orig-
inal continuous dynamical system. Because it preserves many prop-
erties of periodic and quasiperiodic orbits of the original system and
has a lower dimensional state space it is often used for analyzing the
original system.
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Theorem 3.1 Defining (Z,U, P) as the corresponding discrete dy-
namical system with state space U and evolution function P : Z x
U — U, we have either:

e the periodic orbit vy of the continuous dynamical system is stable
if and only if the fixed point p of the discrete dynamical system is
stable, or

e the periodic orbit v of the continuous dynamical system is asymp-
totically stable if and only if the fized point p of the discrete dy-
namical system is asymptotically stable.

The interested reader will find a proof of Theorem 3.1 in [25].

Remark 3.2 A linear system when driven by an external periodic
force will try to follow the applied force and hence oscillate with the
applied frequency (after a short transient behavior). The situation
is quite different for a monlinear system. Here, depending on the
strength of nonlinearity, the system shows periodic or quasi periodic
or chaotic behavior. We expect that in the periodic regime the period
of system should be related to the period of external force. If T is
the period of external force then system period will be nT’, where n
is an integer. In the chaotic regime (no periodicity) n tends to infin-
ity. Thus, the number of distinct points (over a long period of time)
plotted on the Poincaré map indicates the period of the system.

3.4 Direct and inverse kinematic problem

Definition 3.6 (forward or direct kinematic) Consider a serial ma-
nipulator made of n independent joints qi, ...q, € R. The direct kine-
matic problem concerns the definition of the map Y (q) = ((q) from
the joint space Q to the end-effector space S C R3.

C:qe@Q —-SCR?

Yo =1y | =< (3.5)
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The map ((q) defines a single position/orientation of the output (end-
effector position and or orientation) from the joint coordinates.

Remark 3.3 For redundant systems, this direct map is surjective.
By its surjective nature, there are many different joint configurations
linked to the same end-effector position (an infinity for redundant
systems).

Remark 3.4 There is an equivalent surjective direct map ¢(q) link-
ing the velocities of the joints ¢ to the motion of the end-effector Y .
This velocity map is perfectly defined by the partial differentiation of
the function ((q).

o

Definition 3.7 (inverse kinematic) The inverse kinematic concerns

the reverse map (=1 from the end-effector position Y = (x,y,2)T to
the joint configurations (qi, ..., qn), ¢ € R.

Cl:ScR*=Q

Y = ¢(q)d (3.6)

q1 x
g=1 .. |=¢ty (3.7)
An z

Concerning redundant systems, this inverse map can only be analyt-
ically obtained for a very reduced class of manipulators [5].

Remark 3.5 The inverse kinematic problem at velocity level for re-
dundant manipulators, which attempts to determine the joint dis-
placements ¢ needed in order to realize a predefined motion with the
end-effector Y, is very complez in the sense that an infinity of dif-
ferent solutions exist. _
g=¢"'(Y)

It is therefore not possible to obtain an analytical solution to this
problem, except for particular manipulators.

The mapping ¢, (™1, ¢ and ¢! introduced in this section are
illustrated in Figure 4.1.
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3.5 General inversion of the jacobian

3.5.1 Jacobian definition

Definition 3.8 (Jacobian) The jacobian matriz J of an open kine-
matic chain is defined as the partial derivative of its end-effector
cartesian position Y = ((q) with respect to the joints q;.
9¢(q)
J=V,Y(q) = —= 3.8
RO (39)
The jacobian matrix J defines the velocity map ¢(q) (see Re-
mark 3.4) from the joint-velocity space ¢ to the end-effector-velocity
space Y.

Y =(q)q=Jg (3.9)

3.5.2 The pseudo-inverse as a velocity backward map

The velocity map, see Remark 3.5 using the jacobian matrix (differ-
ential map between the tangent spaces of the operational and joint
spaces), is one solution through integration to the inverse kinematic
problem.

Considering the injective nature of the inverse kinematic problem
defined by the reverse equation

.o\
Q<a—q> Y

(from Equations 3.8 and 3.9), there exists an infinity of different
solutions to this problem. Among all solutions, a reasonable choice
could be the local minimization of the joint velocities in order to
realize the desired end-effector motion.

Theorem 3.2 The classical Moore-Penrose pseudo-inverse of the
jacobian matriz J* = JT(JJT)™1 is one solution to the inverse
kinematic problem. Moreover, the pseudo-inverse solution tends to
minimize locally the joint variations in order to realize a predefined
trajectory Y (t).
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Proof: Defining the cost function
G(¢) =4q"Wq

with W, a nxn positive definite weighting matrix, we try to minimize
the joint variations. Using the Lagrange multipliers method to ensure
the tracking of the trajectory (the direct kinematic Equation 3.9),
we obtain the following formulation.

G(g,\) =¢"Wq—A"(Jg-Y) (3.10)

The necessary condition of optimality are two folds: first % =0,
which induces 2W¢—J7 X = 0 or equivalently ¢ = %W‘lJT/\ and sec-
ond % = 0 which corresponds to J¢ = Y. Eliminating the Lagrange
multipliers and substituting into (3.10), we obtain finally (see [5] for
details).

Gg=wtgTgw-tyhH)-ly (3.11)
Notice that, considering the jacobian matrix J to be full row-rank,
(JW=1JT) is a full-rank square matrix, which is thus invertible.
Finally, if the weighting matrix W is taken as the identity matrix, we
find that one solution, which satisfies the local necessary conditions
of optimality, is the Moore-Penrose pseudo-inverse.

Gg=JJIN) Y = JTY (3.12)

3.6 1-forms, involutivity and integrability

Some useful concepts of differential geometry are recalled hereafter.

Definition 3.9 (manifold) A manifold M™ is a topological space in
R™ which is locally Fuclidean. In other words, it is a space where,
around every point p € M™, there is a small neighborhood U that is
topologically equivalent to an open unit ball in R™.
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Definition 3.10 (homeomorphism) A homeomorphism, also called
a continuous transformation, is an equivalence relation and one-to-
one correspondence between points in two geometric figures or topo-
logical spaces that is continuous in both directions. Two objects are
said to be homeomorphic if they can be deformed into each other by a
continuous, invertible mapping. Moreover, if this continuous mapping
and its inverse are differentiable, the map is called a diffeornorphism.

Definition 3.11 (compactness) A topological space M is compact if
every open cover of M also has a finite subcover. Le. if U; is an
open subset of M, U; C M, and the union of arbitrary open subsets
covers M, UjeaU; = M, then there must be a finite number of open
subsets, ji,...,Jn € A such that Uj,,...,U;, = M.

The configuration space of a revolute-jointed manipulator is compact,
since the product of compact manifolds is also compact. Figure 3.4
represents the compact configuration space of a single revolute joint.
Note that, for revolute joints, a topological problem, which we will

Fig. 3.4. Single revolute-joint configuration space: S'. Identification of
+.

have to take care of, results from the identification of the two distinct
joint angles 4+ in the configuration space @ (two distinct joint values
have the same image in the configuration space).

The configuration space of an idealized prismatic joint ¢; is not
compact: the domain of its joint variable is the real line R, which is
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not a compact manifold. However, a prismatic joint has motion limits
which limits the domain of ¢; to an interval of the real line I = [a, b],
which is a compact manifold. Hence any serial manipulator built up
from revolute and prismatic joints is consequently compact.

Definition 3.12 (1-form) A 1-form w(q) is a covector field, which
belongs to the dual space of the tangent bundle, T*Q called the cotan-
gent bundle.

n
W(Q) = ZcidQ7 ¢ € ]Ra qc Q
i=1
An exact 1-form is directly obtained by the derivation of a function
h(q) so that w = dh. Thus, the exact 1-form of a function corresponds
to the gradient of the same function. An integrable 1-form becomes
exact after multiplication with an arbitrary function.

A 1-form can also be seen as an application 1) mapping any vector
fields f C R™ to R.

Y:fCR* =R
The notation < -, > can be used to feature the application ¢ such
that: <, f >=r € R. Moreover, if the vector field f belongs to the
tangent bundle of an integral manifold M™ C R™, the application 1
maps the vector field f to 0.

Definition 3.13 (involutivity) A distribution of vector fields
{f1, f2,...fn} is said to be involutive when:

vfi; f]yzh] = 1, ...n
[fi, f;] € span{ f1, fa, ... fn}

where [fi, f;] corresponds to the Lie bracket operator.

Definition 3.14 (integrability) A distribution of n vector fields { f1,
foy.fn} is integrable, if this distribution defines the tangent space
of an unique hyper-surface of dimension n. Equivalently, a system of
integrable 1-forms w; exists and represents the normals to the hyper-
surface.
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Theorem 3.3 A collection of n vector fields { f1, f2, ...fn} defines an
integrable distribution, if and only if the distribution is involutive.

The interested reader will find a proof of Theorem 3.3 in [73].

Remark 3.6 The jacobian matriz (see Definition 3.8) of a n-link
open kinematic chain manipulator can be expressed using the three
exact 1-forms w;(q) = dz, wy(q) = dy and w,(¢) = dz.

Wy
J=V,Y(q) = | w, (3.13)

Wy

Theorem 3.4 Bendixon-Poincaré

If a state trajectory remains in a closed simply-connected set of a two
dimensional submanifold X, then one of the three following proposi-
tions is true:

e The trajectory converges to an equilibrium.
e The trajectory converges asymptotically to a limit cycle.
e The trajectory is itself a limit cycle.

For a proof of Theorem 3.4, the interested reader can refer to [25]
or [38].

In Chapter 3, some of the mathematical tools which are used
in the following chapters are recalled. In particular, the Bendizon-
Poincaré theorem (Theorem 3.4), the meaning of a I-form (see Def-
inition 3.12) and the concepts of involutivity and integrability (Defi-
nitions 3.13 and 3.14) are very useful for the next chapter.

In the forthcoming chapter (Chapter 4), in the context of solving
the inverse kinematic problem (see Definition 3.7) for a serial manip-
ulator, a constructive open-loop coordination scheme is developped.
The pre-cited differential geometry properties are used in order to
derive a condition ensuring repeatable joint responses to a periodic
excitation.
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Differential geometry for coordination

In this chapter, the coordination of an overactu-
ated serial manipulator is understood as an ap-
propriate repartition of the end-effector position-
reference through all joints (open-loop control)
under the scope of differential geometry. A con-
structive coordination is obtained whenever re-
peatable (meaning periodic) joint responses are
obtained to periodic excitation of the end-effector,
while keeping the initial flexibility brought by
overactuation.

Overactuation, as defined in this thesis, implies the existence of sup-
plementary degrees of freedom with respect to the main task to be
realized. These supplementary degrees of freedom increase the flex-
ibility of the system’s response. In this context, the repeatability of
the joint responses to a periodic excitation becomes uncertain when
solving the inverse kinematic problem (see Definition 3.7). This chap-
ter attempts to develop some differential-geometry properties in or-
der to overcome this predictability issue.

4.1 Introduction

The present chapter considers as an output task the positioning of
the end-effector of an overactuated serial manipulator (constituted
of n serially-connected rotary joints) so as to track a closed orbit
on a working surface in the three dimensional space (3D). Ouly the
position is considered, the orientation is left unspecified.
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In the sequel, a set of vector fields (defining velocities in the joints

configuration manifold) is shown to play a key role when using the
pseudo-inverse of the jacobian of the forward kinematics in achieving
a periodic movement of all joints while realizing the periodic output
task. Using the pseudo-inverse of the jacobian of the forward kine-
matics is not new. [103] suggested first the use of the pseudo-inverse
of the jacobian to solve the redundancy, he also first stated the link
between the redundancy property and the output task. [64] extended
the pseudo-inverse approach to include self-motions using the null
space of the jacobian matrix. Recently, [76] focuses on a recursive al-
gorithm to obtain the inverse kinematic of redundant manipulators
for which the joint motions are shown (experimentally) to become
periodic after convergence.
[36,37,88,91] developed an integrability condition based on a Lie
bracket test which has been shown to be primordial in order to ob-
tain repeatable solution in the joint space when realizing a periodic
task at the output. This condition together with simple connected-
ness hypothesis ensures repeatable joint trajectories when tracking
a closed trajectory. However, this reasoning is not constructive. It is
more an analytical tool in order to inspect whether or not the vector
fields used to parametrize the displacement are involutive (see Theo-
rem 3.3 to recall the link between involutivity and integrability). The
way these vector fields are obtained is still unspecified and remain
mainly a trial and error process.

As the main contribution in this chapter, a constructive coordi-
nation strategy is developped based on differential geometry proper-
ties (the proposed method constructs the involutive basis introduced
here above). The latter coordination scheme ensures a periodic (re-
peatable) response of the joints while keeping the initial flexibility
brought by the overactuation.

4.1.1 Overactuation VS redundancy

Importance is put on the difference between redundancy and over-
actuation through the notion of an output manifold. Definitions 4.1,
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and 4.2 are new and specific to the work undertaken. They are espe-
cially useful for the results derived in Sections 4.3.2 to 4.3.4.

Definition 4.1 (Output Manifold) The smooth manifold S contain-
ing the end-effector trajectories Y (t), is called the output manifold.

The overactuation property of a manipulator is intimately linked
to the end-effector task. This observation motivates the following
extension of the redundancy definition, so as to include the output
manifold.

Definition 4.2 (Overactuation) A redundant manipulator is said
to be overactuated, when its number of internal degrees of freedom
(@1, qn) € Q,q;: € Rji=1,...,5, is larger than its end-effector mo-
tion capabilities (x,y,2)T C R3, on a predefined output manifold S.

VY(t) €S C I3 at least q(t) and G(t),q(t) # q(t) :
Y(t) = ¢(q(t) = <(q(®))

Whenever the robot is redundant, the jacobian matrix J that realizes
the map ¢ between the tangent spaces has not full-column rank and
therefore can not be exactly inverted. For every trajectory of the end-
effector in the working space of the redundant robot, there exists an
infinite number of corresponding joint motions. Figure 4.1 illustrates
the main symbols and terminology. The output manifold is called S
and embedded in R3. At a given point of S, the tangent space is
labelled T,S. Here s is a point of S. The corresponding point in R?
is also labelled s and corresponds to (x,%,2)7. The context should
clarify which of the two is considered. The configuration manifold
is noted () with the tangent space at the configuration ¢ written
T,Q. ¢(.) is a submersion for which ¢ is the corresponding surjective
map from the tangent space T,Q to the tangent space TS, where
C(q) = s. TS and TQ are the respective tangent bundles.
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Q SCR?

N\ =R 7 _ 3 /

TQQ§ _]R/ Wﬂs\s C ]R/ .
Fig. 4.1. Direct (inverse) kinematic map ¢, ((™!) between end-effector
position and its corresponding joints configuration. Identically, direct (in-

verse) kinematic map ¢, (¢~ ') between end-effector velocity and its cor-
responding joints motion.

4.2 Coordination through differential geometry
properties

The 3D positioning of a 5R serial-manipulator end-effector is consid-
ered (see Section 3.1.1). Achieving a constructive coordination of the
constitutive joints in order to fulfill the positioning task is the aim
of this chapter.

4.2.1 Overactuation: an infinite set of solutions

The considered manipulator has 5 internal degrees of freedom, since
it has 5 independent rotary joints. As we consider the positioning
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of the end-effector in the 3D space (orientation is left unspecified),
the manipulator is clearly overactuated (5 — 3 = 2 degrees of redun-
dancy).

Dim(2) =2

where (2 is the redundant manifold as introduced in Definition 3.3.
The configuration manifold

Stx St xSt x 8t xst=0

where S! corresponds to the manifold of a single rotary joint and,
thus, @ is compact by definition.

The working manifold, defined by the space in which the end-
effector is moving, corresponds to R x R x R = R3. Moreover, the
output manifold S, as introduced in Definition 4.1, is included in the
working manifold.

SCR?

Therefore, there exists an infinite number of different configurations
corresponding to the same position and/or trajectory in the output
manifold.

4.2.2 Differentiation of the solutions

Navigating within the set of acceptable solutions to a fixed end-
effector position (or predefined trajectory) within the redundant
manifold (2 enables to modify freely the configuration of the manipu-
lator. Thus, flexibility is enhanced by the infinite number of different
configurations at our disposal.

However, with the flexibility, versatility (see Section 2.3) of the ob-
tained responses to an identical excitation is also enforced. From the
infinite different choices at our disposal, the difficulty of determin-
ing efficiently the adequate configuration increases a lot. Within all
solutions, there is a particular parameterization (2 involutive vector
fields, see Definition 3.13) which forces some kind of foliation of the
solution space. This foliation is directly linked to the involutivity of
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our parameterization and induces repetitive (meaning identical) re-
sponses of the joints to a periodic excitation of the end-effector. A
repeatable (periodic) motion of the robot in its coordinate frame is
highly desirable, while realizing the main task, since the repeatabil-
ity induces also predictability, [37,76,91]. Repeatability means here
the possibility of realizing a periodic motion of all joints (closed tra-
jectories) while not “blocking” specific joints.

4.2.3 Constructive coordination

The first coordination task means adequate repartition of the dis-
placement trough all joints in order to realize a specified trajectory
with the end-effector. In other words, see Figure 4.1, the submersion
map ¢! from the tangent space T'S of the output manifold S to the
tangent space T'Q) of the configuration manifold @ is to be defined
correctly in order to fulfill the positioning task of the end-effector
Y (t).

The second coordination task is defined such that a periodic excita-
tion of the end-effector induces closed joint trajectories. Focus is put
on realizing a periodic movement of the end-effector in the output
manifold S while trying as best as possible to also achieve periodic
movements of all joints in Q.

To meet both objectives, without loosing the redundant property (i.e.
keeping n > 3), is not a trivial matter and need good coordination
throughout all joints.

4.2.4 Antagonistic objectives

The incredible flexibility brought by the overactuation of the manip-
ulator (oo different configurations corresponding to same end-effector
output) has a clear counterpart in versatility of joint responses. This
versatility means mainly unpredictability of the joint configurations,
which is not acceptable for most of the applications.
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The latter consideration enforces our design in pushing toward con-
structive coordination so as to obtain closed joint trajectories for
periodic end-effector tasks.

4.3 Coordination to achieve periodicity

In this section, we are concerned with the constructive coordination
of a 5R serial manipulator (¢1,...qg5s) € @ such that a periodic posi-
tioning end-effector task Y(t) € R? is realized, while periodic joint
trajectories are enforced.

4.3.1 Direct Jacobian Inversion

The pseudo-inverse of the jacobian (see Section 3.5.2) of the forward
kinematics (see Definition 3.6) J* = (JJT)~1JT can be used to ex-
press one choice of joints velocity dg associated with a given velocity
of the end-effector dY/dt (see Figure 4.2). Recall from Section 3.1.3,

that the desired end-effector velocity Y = dY/dt is obtained from
the time derivative of Equation 3.3.

dg/dt = J*dy/dt (4.1)

7

Fig. 4.2. The inverse map based on J7T selects locally one of the existing
tangent planes T,X;.
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Example 4.1 As an example of this map based on the pseudo-
inverse of the jacobian, the results of integrating Equation (4.1) for
the SR3D serial manipulator (introduced in Section 3.1.1) are shown
in Figure 4.3. The following parameter were used:

e Joints initial conditions: ¢1(0) = 0.298, ¢2(0) = 0.165, ¢3(0) =
0.260, q4(0) = 1.24, ¢5(0) = 4.37;
Output manifold, sphere: R =1.5, ¢; =0, ¢, = —0.5, c; =0.2;
Manipulator arms length: lo =11 =l =13 =14, =1, 5 = 0.5;
Task parameters: w =04, A=0.6,¢p=7,a=7,b=7,c=0.

Realizing the submersion (map from T3S to T,X) with the
pseudo-inverse of the jacobian matrix J* as proposed herein presents
one clear advantage (see Section 3.5.2): the local norm of the joint ve-
locities (||(¢1, g2, .., ¢n)||) is minimized in order to realize the desired
displacement of the end-effector Y (t) (see Theorem 3.2).

Even though the robot performs perfectly the first coordination
task (see Figure 4.3(a)), the displacement along the Lissajou curve
induces a completely chaotic and unpredictable motion in the joint
space (see Figure 4.3(b)).

The choice of joints velocity is fortunately not unique for a pre-
scribed motion of the end effector (thanks to redundancy). The next
section explores another possibility which takes advantage of the dis-
tinction between overactuation and redundancy (that is, by explicitly
using the defining equations of the output manifold).

4.3.2 Improving the Periodicity
In order to improve the periodicity of joint movements, I propose
to use the structure of the output manifold (see Definition 4.1) for
constructing the displacement vector dY/dt.

Consider the exact 1-form wy (see Definition 3.12) associated with
the spherical output manifold S through the gradient of its equation
h(z,y,2) = (¥ — cz)? 4+ (y — ¢y)* + (2 — ¢)? — R?, that is

wp = dh
=2(x — cp)dz + 2(y — ¢y)dy + 2(z — ¢.)dz.
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510 15 20 25 30 35 40 45 50
Time [s]

(a) Output evolution through time: the pe-
riodic Lissajou is perfectly realized.

8 T T T T T T T

Time [s]

(b) Joints evolution through time.

Fig. 4.3. Direct pseudo-inversion of the velocity vector leads to an erratic
unpredictable behavior of the joints, even if the Lissajou periodic task is
perfectly realized (reference and real positions are perfectly superimposed).
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Proposition 4.1 Except for the points on the equatorial line (y —
cy)? 4 (2 — ¢2)? = R? and © = c,, the vector fields

—(z—c.) —(y—cy)
v = 0 , U2 = (xicx)
(x —cp) 0

(i) span a two dimensional subspace and (ii) are involutive. Therefore
except on this line, they locally define an integrable distribution.

Proof:  The only way for vi(s) and vs(s) (with s = (zy z)T)
not to span a two dimensional subspace is that x = ¢,. Using the
defining equation for S gives (y—c, )%+ (2 —z.)? = R? which gives an
equatorial line. By construction < wy;v; > =0 and < wy;v > =0
(see Definition 3.12). Because dw; = 0 by exactness, Formula (1.25)
of [77] yields

0=< dwl;’l)l,’l)g >
=vy <wyjup > —vp < wp U > — < wi; v, va] >

= — <wi; v, v2] >.

so that the bracket [v1,vs], being annhilated by the same 1-form wy
as for v; and v, belongs to the span of v; and vo, which means that
vy and vg are involutive vector fields whose distribution is locally
integrable. [

Remark 4.1 The Euler characteristic of S is an obstruction in find-
ing global expressions for vy andve (see [27]). The best one can obtain
are smooth vector fields that only vanish at a single point (instead of
the whole equatorial line).

As long as the above singular points can be avoided, which is
the case for the chosen output task, the end-effector motion dY/dt,
defined by the time derivative of equation (3.3), is then expressed in
this involutive basis using the two scalars o and 3.
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dY
T avy + Buo (4.2)
Finally, the joint motions are obtained through the local inverse map
from TS to T, based on the pseudo-inverse of the jacobian matrix
JT (Figure 4.1). With f; = JTv; and fo = JT vy the joints velocity
becomes

dg

= 4.3

T afi+Bfe (4.3)
Example 4.2 A simulation, using Equations 4.2 and 4.3 with the
SR3D serial manipulator realizing a Lissajou curve on the sphere S
is undertaken (see Figure 4.4). The same simulation parameters as
those introduced in Example 4.1 are used.

Joints evolution through time

L
o 5 10 15 20 25 30 3 40 45 50
Time [s]

-6 I I ;

Fig. 4.4. An involutive basis of the output manifold helps in reducing the
unpredictable behavior. (Since the Lissajou task is perfectly realized, as
in Figure 4.3(a), it is not shown again here.)
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The displayed trajectories still fail to be periodic. The results are
nevertheless better than those obtained using the first method, since
the resulting trajectories are closer to periodicity than with the direct
Jacobian inversion of the tangent vector of the Lissajou curve (that
is, introducing an involutive basis of the tangent bundle TS helps in
reducing the erratic and unpredictable characteristics of the motion
in the joint space).

However, since exact joints periodicity is not achieved yet, the
next section aims at developing a sufficient condition ensuring its
full realization.

4.3.3 A Sufficient Condition for Joints Periodicity

In the proof of the following theorem, the Poincaré-Bendixon the-
orem (see Theorem 3.4) is used to derive a sufficient condition for
periodicity.

Theorem 4.1 Let fi and fo be two involutive vector fields such that
fi(q) and f2(q) belong to T,Q for all q. Moreover, assume that for
all g, vi = J(q) f1(q) and va = J(q) f2(q) are independent vectors in
Te(q)S- Now, if the following two conditions hold, namely:

e The integral manifold of fi1 and fo is simply connected and com-
pact.
e The end-effector movement Y (t) is periodic.

then the joints motion obtained after decomposing (4.2) and integrat-
ing (4.3) is also periodic or converges to a limit cycle.

Proof: Because by hypothesis (f; and f; are involutive), the in-
tegral manifold of f; and fy exists. Therefore, ¢(t) is confined to a
2-dimensional submanifold of (). Because this submanifold is also as-
sumed to be simply connected, the hypotheses of Poincaré-Bendixson
theorem (Theorem 3.4) are satisfied. The result then follows after
noticing that, by hypothesis (the end-effector trajectory is periodic
and f; and fo are in correspondence with v1 and vy), convergence
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to an equilibrium point is excluded. Moreover, divergence of ¢(t) to
infinity as t — oo is prohibited since the manifold is assumed to be
compact (i.e. closed and bounded). =

In Section 4.3.2, although the basis of the tangent bundle T'S
is ensured by involutive vector fields v; and wve, the vector fields f;
and fo could very well not be involutive. It is known that, whenever
z = ¢(x) is a diffeomorphism, then the bracket commutes with the
push forward:

(9201 067(2),

12067 (2)] = Solon, vl 0 97 (2)

However, when ¢ is a submersion, as it is the case here (the jacobian
is a surjective map; it has a non trivial kernel), then the Lie-bracket
does not necessarily commute with the pseudo-inverse.

Lemma 4.1 Whenever ¢ is a submersion, then ¢ [vq,vs] is not nec-
essarily equal to [pT vy, T vs].

Proof: If both expressions in the lemma were equal then the
involutivity of v; and vy would imply the one of ¢twv; and ¢Tvo
(by linearity of the pseudo-inverse). However, this is not necessar-
ily the case as the following example testifies. Consider the sub-
mersion ¢ : ¢ — x from R3 to R? defined by 21 = ¢ and
To = q2 + q1q3. Let v1 = (1 O)T and vy = (0 1)T define two triv-
ially involutive vector fields. Now, f; = ¢Tv; = (1 +43 g3 143 )T
T

and fo=¢Tvy = (32+ @G +@3) 1+ai+ a3 a(1+qf+43))

are not involutive since

det[flvf?a [fla f2]] = 7(]— + Q%)Q # 0.

The Example 4.3 illustrates the loss of involutivity through the
pseudo-inverse of the jacobian map (see Lemma 4.1) with a planar
3R2D manipulator.
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Example 4.3 Consider the 3R serial-planar manipulator defined
in Figure 4.5 with equally-lengthed arms (I = 1). The output end-
effector position is considered.

< g (z,y)

g3
q1

T

Fig. 4.5. 3R serial-planar manipulator with absolute angular joints g1, g2
and ¢s3.

x = cos(q1) + cos(qz) + cos(gs3) (4.4)
y = sin(q1) + sin(gz) + sin(gs) (4.5)

The associated jacobian matrix is obtained through partial differenti-
ation of the equations 4.4 and 4.5.

g ( sin(q1) —sin(gz) —sin(gs) )

cos(q1) cos(qa) cos(gs)

Consider the two trivially-involutive vector fields vi = (1,0)T and
vo = (0,1)T, spanning the entire plane (x,y). Their image f1 = J v,
and fo = JTvy through the pseudo-inverse of the jacobian J+ =
JT(JJT)=Y map does not form an involutive basis of the configura-
tion space, (the determinant of the matriz {fl,fg, [fl fg}} s not
null).
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2sin(q1) + sin(q1 — 2¢2) + sin(q1 — 2gs3)
—sin(2g1 — ¢2) + 2sin(q2) +sin(g2 — 2¢3) | - 1/a  (4.6)
sin(2q1 — ¢3) + sin(2¢2 — g3) — 2sin(qs)
—2cos(q1) + cos(q1 — 2¢2) + cos(q1 — 2q3)
fo=1 cos(2q1 — q2) —2cos(q2) + cos(q2 —2¢3) | -1/a (4.7)
cos(2q1 — ¢3) + cos(2g2 — q3) — 2 cos(gs3)
a = (=34 cos(2¢1 — 2¢2) + cos(2q1 — 2q3) + cos(2g2 — 2q3))
Det {f1, fo, [ f1 f2]} #0 (4.8)

Because the trajectories displayed in Figure 4.4 are not periodic

in the joint space ¢, the vector fields f; and fo are either: (i) not
involutive or (ii) involutive and the underlying submanifold X' is not
simply connected (Theorem 4.1) or (iii) involutive and the underlying
submanifold ¥ is not compact (Theorem 4.1) or (iv) the convergence
of the joint trajectories to their periodicities is not completed yet, in
the sense that the integration time considered is too short.
Notice that this is not a numerical inaccuracy in computing the
pseudo-inverse as one might initially suspect, but it is a inherent
limitation of pulling back the involutive vector fields v; and v along
a submersion.

Now, based on the sufficient condition I developed in Theo-
rem 4.1, an involutive basis of the tangent bundle T'Q) for the 5R3D
manipulator is built in the next section. The aim is to finally en-
force periodic joint responses whenever the excitation (end-effector
positioning task to be realized) is periodic.

h

4.3.4 Involutive basis of the 5D tangent bundle TQ

Because a submersion has a kernel, there exist many different f; and
f2 that map to a basis of S in the working space, most of which
are not involutive. By preventing the usage of certain directions of
the kernel while constructing f; and fs, involutivity is guaranteed.
The following theorem constructs first fi; and fo in this way, before
computing v; and vs.
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Theorem 4.2

1. Define w, = dx, wy = dy, w, = dz where x, y, z are the end-
effector positions.

2. Let wy and ws be complementary integrable 1-forms in the sense
that Wy, wy, W, wa, and ws span the cotangent bundle T*Q).

3. Define f1, fo as the dual vector fields to the three 1-forms wq,
wy, and ws, that is,

w1

wi | (f1f2) =0,

Wws

where wy is the 1-form associated with the output manifold S.

Under these assumptions, f1 and fo are involutive and vy = %fl o
¢ Hz) and va = g—gfg o (~1(x) constitute a basis for TS.

Proof: First notice that wy, wy, and ws are always independent
since w; is a linear combination of w;, wy, and w,, which are, in
turn, independent from ws and ws (by construction). This means
that f; and fy are well defined (no rank loss in the defining 1-forms).
Involutivity follows by construction since w; is exact and w, and
ws are integrable. The only subtle point is that v; and vy do never
cancel and span T'S. On this purpose, notice that f; and fy cannot
be mapped to a zero vector through g—g, for if this was the case (say

Coqfr = 0), then this would mean that

Wy
Wy f1 =0.

Wy

Noticing that wysfi = 0 and w5 f1 = 0 as well, together with the fact
that wy, wy, w., wys, and ws are independent would lead to f; = 0,
which is a contradiction. u
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Remark 4.2 Finding the two integrable complementary 1-forms wy
and ws can either be done by inspection or in a more systematic
way using Cartan’s equivalence method (see [T7]) which generalizes
the canonical form of Darbouzr to more than a single 1-form. This
gives all possible choices of wy and ws. This step does not require the
knowledge of the output manifold S, but depends only on the type of
redundant robot used through the specific Lie group structure of the
robot.

Lemma 4.2 The induced hyper-surface X can be modified through
the redundant basis R; € T§2 C R™ to keep the flexibility of the
redundant manipulator.

Proof: To prove this, it is sufficient to demonstrate that all non-
null redundant vector fields R € T'{2 do not belong to T'X. By this
way, R forces the manipulator to quit the present hyper-surface X,
relaxing the complementary constraints. Without loss of generality,
we will restrict the proof to the case with n = 5 joints.

Wy
ReT?®:|w, | R=0 4.9
Yy

Wz

w1
ReTX%:|ws|-R=0 (4.10)
ws

Since wg, wy, w., w4, ws are independent by construction and w;
is a linear combination of the three first 1-forms, the only possible
vector in R® satisfying the two equations (4.9 and 4.10) (representing
six constraints) simultaneously is R = 0. ]

With Lemma 4.2, the manipulator has been shown not to be
constrained in a unique periodic solution. Through the redundant
basis R;, the latter solution can be modified freely, ensuring the initial
flexibility of the manipulator.

The following example applies Theorem 4.2 to the 5R3D manipulator
in order to enforce a periodic joints response.
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Example 4.4 Consider the 5R serial-link manipulator and a spheric
output manifold S, 2 arbitrary additional (complementary) 1-forms
wy and wy are added to the initial 1-form wy representing the sphere

S.

h(2(g) — ex)® + (y(q) — ¢y)® + (2(q) — c.)? = R?
w1 = Vgh

wi=1[10001]

ws=1[01010]

Based on these 1-forms, Theorem 4.2 gives the 5-dimensional invo-
lutive basis { f1, f2} of the tangent bundle TX™. Using the direct map
¢ based on the well-defined jacobian J, the local image of the hyper-
surface TX = span{f1, f2} C R™ into R? is built, see Figure 4.1.

v=Jfi va=Jfs

The joint trajectories of the SR serial manipulator realizing a Lis-
sajou curve on the sphere S, using the same simulation parameters
as in Example 4.1, are illustrated in Figure 4.6.

The constant complementary 1-forms wy and ws, introduced via
Theorem 4.2, limit the possible configurations of the manipulator.
They define a foliation of the hyper-surface X, on which the system
remains, ensuring a periodic joints response.

This last example illustrates that the integration, using a combi-
nation of 1-forms, enforces involutivity: the robot joint motions are
completely predictable (periodic) and remain in a reduced hyper-
plane (foliation) of the configuration space. The manipulator joint
configurations are constrained and periodic, while realizing perfectly
the Lissajou main task. See Appendix E for a link to an illustrative
movie.

Constructive coordination of the joints is achieved so as to fulfill
both objectives defined in Section 4.2.3. The periodic task of the
end-effector is perfectly realized while closed joint trajectories are
enforced.
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Joints evolution through time

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Time [s]
Fig. 4.6. Periodic motion of the joints. The vector fields fi1 and f2 are

involutive. (Since the Lissajou task is perfectly realized, as in Figure 4.3(a),
it is not shown again here.)

Future research should address the particular construction of this
simply connected integral manifold for redundant robots, and espe-
cially the choice of ws and ws so as to guarantee both simple con-
nectedness (using for instance de Rham cohomology (see [27])) and
compacity (using Riemanian geometry) of the integral manifold of f;
and fy. In this context, an interesting research-guess could use Lie
Groups and Lie Algebra as in [72,87].

Remark 4.3 A particular constructive method to obtain the comple-
mentary 1-form for a 3R2D serial manipulator, enforcing compliance
and flexibility, is detailed in Section 5.5.

In this section, I developed a particular parameterization of the
solution space through the use of an involutive basis of vector fields
(see Theorem 4.2). This basis, built from the constructive combina~
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tion of 1-forms, ensures a periodic response of the joints (see Figure
4.6) to a periodic positioning task: constructive coordination (see
Section 4.2.3) is achieved.

4.3.5 Convergence to a limit cycle

Remark 4.4 Long-term integration of the pseudo-inverse pulled-up
velocity (as proposed in Section 4.3.1, Equation 4.1), over several
periods of the end-effector task, tend to be periodic (for the 5R3D
manipulator), see Figure 4.7. But the obtained joints period is a high
multiple of the task period and thus is not reducing the unpredictabil-
ity of the manipulator.

-
R
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(a) Long term evolution of the (b) Poincaré Map projection (qi

joints: closed trajectory over sev- and g2): the joint trajectories are

eral initial periods. periodic. The Poincaré discrete
series converges to a cycle: there
is a limited number of different
points on the map.

Fig. 4.7. A long term integration, over several period of the main task,
shows that the joints trajectory is finally closed but over a very high multi-
ple of the initial period. This kind of periodicity is certainly not increasing
the predictability of the manipulator.
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Remark 4.4 tends to illustrate the complexity of the underlying

problematic. On one hand, in order to ensure the periodicity of the
joints, we enforced some kind of foliation of the solution-space (inte-
gral manifold X') using the involutivity property of our vector fields
parameterization (see Section 4.3.4). This foliation (which is clearly
a limitation of the whole solution space) was demonstrated to be
closely related to the joints periodicity (see Theorem 4.1). Moreover
the obtained periodicity is directly of the same order than the end-
effector task.
On the second hand, the pseudo-inverse of the jacobian, which does
not ensure the existence of any integral manifold, tends also to a
periodic solution for some tasks and manipulators, even if this pe-
riodicity is several order of magnitude larger than the end-efffector
excitation (see Figure 4.7).

Conjecture 4.1 When considering the pseudo-inverse pulled-up ve-
locity dg = JTdY, together with a manipulator made of serially-
connected rotary joints, the dimension of the redundant manifold
0 = Dim(£2) (i.e. the number of supplementary actuators with re-
spect to a given task) is closely linked to the convergence to a limit
cycle of the joints for a closed-trajectory of the end-effector.

o If is larger than 2: the joints trajectory is neither periodic, nor
converges to a limit cycle.

e Ifo =1 or2 : the joints trajectory converges to a periodic limit
cycle (faster for 6 =1).

o Ifd = 0:the system is not redundant and thus a single (eventually
periodic) solution exists.

Some elements of proof are pointed out hereafter. In some way, the
redundant manifold 2 (which contains all possible self-motions of
the manipulator generated by the realization of the main periodic
task) is linked to the task. At every point of the end-effector task, a
manifold (2, exists and represents all possible configuration which are
accessible from the given output position (see Definition 3.3). The
degree of redundancy § defines the dimension of this local (linked to
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a fixed end-effector position) manifold (2, as well as the dimension
of {2, the redundancy manifold corresponding to the collection of all
local manifolds (2,.

If the dimension ¢ is null, the system is fully-actuated and the joint
responses are directly periodic. If § = 1, the redundant manifold
is homemorphic to a closed-interval of the real line or to a circle:
I c R! or S*. And if § = 2, the redundant manifold is homemorphic
to a limited plane, a sphere or a torus: 12 C R? or S2. Thus, be-
cause the redundancy manifold (2 is compact over the full periodic
task, any induced self-motion (by the realization of the main task)
is enclosed in it. Moreover, if {2 is simply connected, all hypothesis
of Bendixon-Poincaré Theorem (3.4) are satisfied, ensuring a conver-
gence either to an equilibrium point, or to a limit cycle (compactness
excludes divergences) of any induced self-motion. If § > 2, any in-
duced self-motion is living in an, at least, 3D space: no convergence
is guaranteed.

If the induced self-motion of the manipulator (caused by the ex-

ecution of the main periodic task) is converging to a fixed-point on
(2, the overall joints motion converges to a periodic cycle.
If the induced self-motion of the manipulator is converging to a limit
cycle on (2, it is reasonable to think that its period is a multiple of
the end-effector period. If this hypothesis is true, the overall joints
motion converges also to a periodic cycle.

Remark 4.5 The simply-connected hypothesis of the underlying in-
tegral manifold is only specified in order to exclude the trajectories
with irrational period-ratio (see Figure 4.8). As long as this singular
case is not appearing, this hypothesis can be relaxed.

4.4 Conclusion

The following original contributions have been detailed in this chap-
ter. First, the definition of the output manifold enabled the exten-
sion of the pure redundancy concept to overactuation (Definitions
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—

7: period-ratio.

Fig. 4.8. Self-motion trajectory on the redundant manifold 2. 7 represent
the period-ratio on this manifold homeomorphic to a torus (S* x S*).

4.1 and 4.2). Second, constructive coordination through differential
geometry properties using the 1-form formalism enabled adequate
repartition of the joint trajectories in order to obtain a repeatable
response to a periodic excitation. In particular, a sufficient condition
for joints periodicity has been established (Theorem 4.1) and a clear
method, using the 1-form formalism, ensured the involutivity of the
vector fields parameterization of the solution space (Theorem 4.2).
The proposed constructive coordination, which enforced a foliation
of the configuration space, ensured repeatable joint responses (see
Figure 4.6 of Example 4.4).

In the forthcoming chapter (Chapter 5), the stringent mathemat-
ical constraint (through the complementary 1-forms) ensuring a rig-
orously periodic response of the joints is partly released. Still in the
scope of solving the inverse kinematic problem (see Definition 3.7)
as for Chapter 4, a smoother method using the gradient of potential
functions is proposed. I will demonstrate that the latter method en-
forces a convergence of the joints trajectory to a limit cycle instead
of being immediately periodic. Moreover, the coordination-scheme
based on potential functions will enable the flexible tracking of mul-
tiple objectives.






5)

Potential functions for coordination

In this chapter, coordination of an overactu-
ated manipulator is understood as an appropri-
ate repartition of the end-effector position refer-
ence through all joints (open-loop control). Con-
structive coordination is obtained whenever hier-
archized multi-tasking is achieved. Furthermore,
repeatability issues (as defined in the preceding
chapter) are examined under this scope. Finally,
a particular solution using the Hessian matriz of
the main task is examined.

Overactuation implies the existence of supplementary degrees of free-
dom with respect to the main task to be realized. These supplemen-
tary degrees of freedom give some free room either for an optimiza-
tion of the task, or directly for multi-tasking, when solving the in-
verse kinematic problem (see Definition 3.7). The flexibility brought
by the overactuation is to be used efficiently in order to justify its
corresponding complexity and higher costs. In this sense, the track-
ing of multiple simultaneous objectives are clearly enabled by the
overactuation. One solution to the coordination of this multi-tasking
scheme is obtained through the use of potential functions.

5.1 Introduction
Recall the example of the human-body multi-tasking scheme illus-

trated in Figure 1.1. One of the solution to enable coupled multi-
tasking is the use of potential functions in order to dispatch the
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different goals over different potential functions (see [51,52,89,90]).
Each objective is linked to a potential function with its global max-
imum (or minimum) at the place where the task is to be achieved.
The task achievement becomes thus equivalent to a dynamic extrema
research.

As presented in the preceding chapter, repeatability, meaning
closed-trajectories of the joints for periodic tasks, is always desir-
able in the sense that predictability is an advantage. The latter is
examined under the scope of potential functions and multi-tasking.
However, the predictability objective should not prevent the flexibil-
ity brought by overactuation.

In this chapter, the application of potential functions to the multi-
tasking scheme of overactuated manipulator is considered. Some con-
siderations about closed-joint-trajectory responses to a periodic ex-
citation and hierarchical secondary objectives are made. Moreover, a
particular solution to the inverse kinematic problem using the Hes-
sian matrix of the task is examined.

When not specified differently, we will consider a planar (2D)
3R manipulator (with equally length arms [y = Iy = I3 = 1), simi-
lar to the one depicted in Figure 3.2, tracking a circular trajectory
h(q(t)) with its end-effector.

h(q) = (y1(q) — c1)” + (y2(q) — c2)* = R® (5.1)

This manipulator will be labelled 3R2D manipulator in order to em-
phasis its structure made of three rotary joints and to emphasis its
two-dimensional working space.

5.1.1 Task manifold

The concept of task manifold is introduced hereafter in order to
differentiate it from the output manifold defined in the preceding
chapter (Definition 4.1).

Definition 5.1 (Task manifold) Consider a manipulator configura-
tion manifold @ together with its coordinate frame qi, ..., qy, (the ma-
nipulator joint angles). The submanifold T C @Q which contains the
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predefined positioning task h(q) (Equation 5.1) and all self-motion
paths (Definition 3.3) of the manipulator is called task manifold.

Remark 5.1 The task manifold Y contains the collection of all fibers
Sk(q) of the redundant space 2 associated to the main task trajec-
tory h(q) (see Equation 5.1).

The task manifold 7" describes all possible responses of a manipula-
tor to a periodic task h(q). As long as the joint trajectories belong
to this manifold, the manipulator is always compatible with its main
positioning task: either the motion of its end-effector is along the ref-
erence trajectory or it is fixed and the elbow moves in the redundant
space.

An example of a task manifold 7" for a 3R2D manipulator realizing
a circular task h (Equation 5.1) is illustrated in Figure 5.1.

5.2 Coordination through potential functions

5.2.1 Overactuation: an infinite set of solutions

The 3R compact configuration manifold 7" (task manifold) corre-
sponding to the realization of a circle on a 2D plane is homeomorphic
(see Definition 3.10) to the torus S* x St (see Figure 5.1). The shape
of the torus and the existence or not of the hole depends on the task
h (Equation 5.1) to be realized. For example, the positioning of the
task ¢, and ¢, is one of the elements influencing the shape of the
manifold. Roughly speaking, the fact that two different configura-
tions can be joined by two different self-motions through rotations
of the elbow (not straightly) suggests the existence of a hole in the
task manifold.

The task manifold 7" considered is compact and continuous by con-
struction. Its continuity implies the existence of an infinite set of
different solutions corresponding to the same end-effector position.
In Figure 5.1, all trajectories in blue correspond to self-motions of
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Fig. 5.1. Task manifold 7" of the 3R2D manipulator tracking a circle as
main task: a torus S* x S* (task manifold). In blue, the purely redundant
self-motions and, in red, one choice of realization of the task through the
pseudo-inverse of the jacobian (two and a half period of it).

the manipulator and thus, correspond to the same end-effector po-
sition. This illustrates clearly the infinite dimension of the solution
space.

5.2.2 Differentiation of the solutions

Navigating within the redundant manifold of the manipulator en-
ables to modify freely its configuration. The flexibility brought by
the overactuation enables the tracking of multiple objectives as long
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as the secondary objectives do not interact with the main task. Thus,
the tracking of a second objective (or several) in the redundant man-
ifold, simultaneously to the realization of the primary task enable
multiple task realization. Moreover, the enforcement of a prioritized
hierarchy of all tasks establishes a clear differentiation between the
solutions through the level of priority linked to each task.
Furthermore, within all potential solution to a periodic positioning
task of the end-effector, repeatable joint motions are highly desirable
in the sense that it enforces the predictability of the manipulator.
Finally, the set of solutions of the manipulator to a predefined task
(task manifold), represented in Figure 5.1 for a particular choice of
parameters, through its asymmetric shape, does illustrate clearly the
inequivalences between the potential solutions. As an example, the
closed-trajectory realizing the main task successfully along the short-
est joint path is interesting. With respect to Figure 5.1, the shortest
closed-transversal-trajectory (in red) to the torus would correspond
to this choice.

5.2.3 Constructive coordination

Constructive coordination in this context means successful realiza-
tion of the different tasks and convergence to a limit cycle of the
joints trajectory for repeatability. The main task corresponds to the
periodic positioning of the end-effector. The secondary tasks are de-
fined as gradient of potential functions projected onto the tangent
of the manipulator redundant-manifold. A prioritized hierarchy of
the task and subtasks is to be established in order to enforce their
decoupling.

Predictability of the joint motions is obtained through periodic joint
trajectories whenever the end-effector task is closed. Constraints on
the potential function scheme in order to ensure the convergence of
the joints trajectory to a predictable limit-cycle will be stated.
Finally, a constructive solution minimizing the joint displacements
along the whole task could be particularly interesting. This solution
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corresponds to the shortest closed integral-curve on the task mani-
fold realizing the positioning task.

5.2.4 Antagonistic objectives

The first clear antagonism concerns the multiple-task scheme which
clearly differ from a unique task realization. Moreover, antagonism
between the simultaneous objectives is obvious in the sense that
they are tracked at the same time. Finally, algorithmic singularities
(induced by the particular algorithmic solution to the inverse kine-
matic problem) and manipulator-configuration singularities (accessi-
bility limitations or rank loss in the jacobian matrix) are antagonist
(meaning different) because, even if they both induce the trajectory
planning algorithm to fail, they have different causes.

The solution to the inverse kinematic problem I propose in the
next section (Section 5.3.3) overcomes the algorithmic singularities.

5.3 Soft extension of the jacobian

In the aim of coordinating multiple-tasks together through the use of
potential functions, the null-space of the jacobian matrix (see Defini-
tion 3.8) plays a key role. In this sense, rigid (Section 5.3.2) and soft
extension of the jacobian (Section 5.3.3) are introduced hereafter.

5.3.1 Null space of the jacobian

The null space N of a matrix J (which is row deficient) is defined as
the set of all vectors & that are orthogonal to the matrix.

Ji=0
NNT&: = (I —J ) (5.2)
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where J* = JT(JJT)~! is the pseudo-inverse of the matrix and
(I — J*J) the projection-operator of the vector & into the null space
of J.

When considering a manipulator with jacobian J together with its
main positioning task &, the null space of the jacobian N = {&|J& =
0} represents the orthogonal space to the tangent of the manipulator
workspace. Therefore a state’s change along one of the null space’s di-
rections has no influence on the end-effector position. In other words,
we do influence the robot configuration (the elbows are moving), but
the end-effector position is fixed.

Any displacement exclusively along the null space of the jacobian
is thus a self-motion, as defined in Definition 3.3 and has no impact
on the main task (end-effector positioning). Considering Figure 5.1,
displacement along the null space directions corresponds to the blue
trajectories, while the realization of the circular positioning task is
along its perpendicular direction (red).

Therefore, as introduced by [67], one general solution to the
inverse kinematic problem for redundant manipulators can be de-
scribed by

g=J e+ I —-J D)o (5.3)

where & is the velocity reference corresponding to the positioning
task, ¢ is an arbitrary secondary differential relation projected into
the null space of the jacobian.

5.3.2 Rigid extension of jacobian

Considering the inverse kinematic problem and the repeatability
problem already raised in the preceding chapter, Bailleul [8,9] pro-
posed to extend the jacobian matrix J in order to build a full row-
rank matrix, which is thus invertible by construction (see Definition
5.2). The extended jacobian thus includes secondary differential re-
lations G which are satisfied by the manipulator, simultaneously to
the real positioning task.



58 5 Potential functions for coordination

Definition 5.2 (Rigid extended jacobian) Originally introduced by
[8, 9]. Consider the jacobian J(q) of an overactuated manipulator,
which is not full row-rank. The extended jacobian is a construction
made from the initial jacobian to which we append one or more ad-
ditional differential relations G(q), independent of the rows of J(q).

J (q)}
Jex = 5.4
= [ 240 (5.0
The extended jacobian Jeu+(q) is thus full rank by construction and
its inverse does exist and is unique. This solution will be labelled
extended jacobian in this thesis. It fives rigidly and a priori the ex-
tension of the jacobian.

Through the extended jacobian method, as long as the row-
independence between GG and J is maintained over the entire tra-
jectory, the inverse kinematic problem is entirely defined and has a
unique solution corresponding to ngi.

_1 | dx

Since the inverse solution is unique, the response to a closed-trajectory
excitation (the end-effector realizes a periodic task) is also periodic
with the same period than the task. This solution enhances pre-
dictability through a unique solution to the inverse kinematic prob-
lem.

The rigid extension imposes an arbitrary relation G(q) between
joints in order to obtain a square jacobian matrix to inverse. However,
it is not explained how to guarantee the row-independence of G(q)
with respect to J(q) over the full trajectory path in the joint space.
Along this path, the differential relation G(g) could become linearly
dependent to the initial jacobian J(g) and thus the inversion of the
matrix .J,} would not exist anymore (algorithmic singularity). The
obtention of G is more like a trial and error process along a realization
of the task. If one period is fully accomplished without algorithmic
singularities, then the solution is validated.
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Finally, this solution fixes a priori completely the manipulator
responses to any excitation: no free space is let to flexibility. A fixed,
unique solution and configuration corresponds to the initial excita-
tion (see [8,9,68]).

5.3.3 Soft extension of the jacobian

In order to release the rigidity of the extended jacobian solution in-
troduced in Section 5.3.2 and retain the initial flexibility of overactu-
ated manipulator, a softly augmented jacobian based on the general
solution formulation (see Equation 5.3) introduced by [67,103], is
proposed. This softly-augmented jacobian should avoid algorithmic
singularities. The repeatability of the system response is still desired.

Definition 5.3 (Softly-augmented jacobian) Originally introduced
by [67,103]. The solution to the inverse kinematic problem based on
the direct pseudo-inverse of the desired motion J*dx combined with
the gradient of positive definite potential functions g projected into
the null space of the jacobian N is called softly-augmented jacobian
solution.

dg = Jtde + NNT [-V,9]" g.

The proposed softly-augmented jacobian method uses gradients
of potential functions as additional differential relations @ (see Equa-
tion 5.3), in order to define completely the map between the end-
effetor desired displacement and the joint trajectories.

¢ = [_vqg]T g

This softly-augmented map is more flexible than the rigid-extension
solution in the sense that the obtained-solution can converge to a
limit cycle, while the previous rigid extension of the jacobian is en-
tirely fixed by its initial conditions and the additional differential
relation G. The convergence rate and trajectory depends on the ini-
tial conditions.

Through the use of a pseudo-inverse map (not a full matrix inver-
sion) for the main task (J*dz) combined with projected-gradient
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onto the null space of the jacobian (NNT [~V ,g]") for the secondary
tasks, the algorithmic singularities (coming from the matrix-inversion
singularities along the path) do not exist. Furthermore, if the used
potential-functions correspond to secondary tasks, this scheme en-
ables multiple tasks to be tracked simultaneously. However, the track-
ing of the secondary objectives is made in a soft manner regarding
the main task. The main task is exactly realized through the pseudo-
inverse map, and the secondary tasks are tracked softly in the sense
that the manipulator tends towards there realization, without any
guarantee of success. In particular, the successful realization of the
secondary tasks is highly dependent on the main task and on the
dimension of the redundant space. The larger the redundant space
is, the more chances the manipulator fulfill its secondary tasks.

The use of potential functions, even if it does not ensure the suc-
cess of the secondary tasks, has been widely used in the literature
in order to complete the differential map between end-effector and
joints (see [50,52,68,89,90] for examples). However, their relations
to predictive response is not well-established and will be further de-
veloped hereafter.

Convergence to a fixed point for a fixed end-effector
position

This section tends to examine the self-motion of the manipulator on
its own, when driven by potential functions. Without loss of gener-
ality, the 3R2D manipulator is considered.

Proposition 5.1 Consider the SR2D manipulator (with the joints
q1, g2 and qs defining the absolute angles) together with a fized end-
effector position. The self-motion induced by the inverse kinematic
based on the softly-augmented jacobian (as defined in Definition 5.3)
with a convex potential function g(q) > 0 Vq (with a global mini-
mum) converges to a fized point.

Proof: The end-effector fixed position implies dz = 0 which in
turns means that (see Definition 5.3)
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T
dg=NN"[-Vy9]" g (5.5)

where N designs the null space of the jacobian matrix J of the manip-
ulator. The [3 x 3] matrix NN is positive definite by definition and
of rank 1 (the rank corresponds to the dimension of the redundant
manifold). Consider the semi-definite positive Lyapunov candidate
function V' = g > 0. We have:

dq
. oV
q dgs

Combining Equations 5.5 and 5.6, we obtain:
V=- V4] NNT [ng]T ) (5.7)

Calling P the scalar product between the gradient of the potential-
function [V,g¢] and the null space N, we obtain finally:

P =[Vyg N (5.8)
V=-PPTg<0

At this stage, two possibilities can happen: either the scalar product
P is null or not.

If P = 0, this means that, at this particular point ¢, no existing
self-motion of the manipulator can influence further the potential
function g. Moreover, from Equations 5.5, 5.8 and 5.9, we have V =
dq = 0. Thus, the manipulator stabilizes itself at this fixed point.

If P # 0, we have V < 0. Thus, the Lyapunov function V establishes
clearly that the self-motion induced by the initial state converges
toward an equilibrium point whenever the end-effector is fixed. m

Proposition 5.1 establishes that the manipulator, when not dis-
turbed by the end-effector main task, converges toward an equilib-
rium point. This equilibrium corresponds either to the minimum of
the potential function g (if accessible in the redundant space) which
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realizes completely the secondary task or, to its closest projection
(best approximation) onto the redundant space of the manipulator.

Finally, considering again the main positioning task, the limit cy-
cle (obtained after convergence, see Figure 5.2) and its corresponding
self-motion in the redundant manifold can be interpreted as two mov-
ing attractive points for the manipulator. The first attractive point
in the working space drives the motion of the end-effector toward the
reference trajectory (J*dx) and the second attractive point in the
redundant space (NNT [qug]T g) drives the self-motion toward the
secondary objectives.

Convergence to a limit cycle: predictable response

In this section, it is demonstrated that through the soft-extended
jacobian coordination scheme (see Definition 5.3), under particular
conditions on the potential functions, the joint responses of the 3R2D
manipulator converge toward a limit cycle. Notice that, once the
limit cycle is obtained (after convergence), any initial conditions that
matches exactly a point on the cycle, will keep the manipulator on
the same trajectory. Thus, the obtention of the corresponding cycle
is interesting to our purpose of predictability.

Also the following theorem is demonstrated for a particular po-
tential function g and a particular task h, the result can be easily
generalized.

Theorem 5.1 Consider the SR2D manipulator together with its pe-
riodic circular task S = h = (y1 — c1)? + (ya — c2)? — R%. Consider
also, without loss of generality, that the desired end-effector velocity
dx € TS is constant such that the period of the task T is constant.
The inverse-kinematic solution based on the softly-augmented jaco-
bian (see Definition 5.3)

dg = Jde — (NN") [Vl g

with the quadratic potential function g = a(q — 7/2)%, a € RY,
converges to a limit cycle of same period T'.
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TR EMORINOAAY <= 1

(a) Convergence to a closed-trajectory; (b) Joint convergences toward
(red) main task; (black) trajectory of periodic responses.

first elbow; (green) periodic trajectory

of second elbow.

Fig. 5.2. 3R manipulator convergence to a limit cycle through the use of
a secondary potential function: predictability is obtained.

Proof: The task manifold 7" corresponding to this particular 3SR2D
manipulator and task is homeomorphic to a torus (see Figure 5.3 for
a schematic view of it). Notice that this manifold is compact by def-
inition.

The inverse-kinematic solution based on the softly-augmented ja-
cobian can be divided into two parts: the first part realizing the
main task through the pseudo-inverse map Jdz and the second part
tracking a secondary objective defined as the gradient of a potential
function g projected into the redundant space —(NN7T) [ng]T g.

The norm of the pseudo-inverse map (J*dz), as long as singular
points (loss of rank in the jacobian J) are avoided, is limited by the
reference-trajectory realized with the end-effector of the manipulator
and thus is bounded.

|7 da]| < [[7F][de] < A € RY (5.10)
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Task Manifold 7 C Q

x f(q)*

g
NNT [-Vq9" g \ T/NNT [-Va9" g
I

Fig. 5.3. Subpart of the task manifold x C 7" (cylinder) of the 3R2D
manipulator tracking a circle h as main task on which the joints trajectory
Y,(t) is constrained by the potential function g. The realization of the
periodic task ensures that the joints trajectory crosses periodically (every
T periods) the same redundancy fiber Sy.

Consider the Lyapunov candidate function V' = g(q) > 0, we
have:
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.oV
= [Vag] (J+de = (NNT) [V,9]" g)
= [Vag] JTda — [Veg] NNT [V o] g. (5.11)

In order to obtain V < 0 at the border of the submanifold &
(corresponding to the 2D cylinder represented in Figure 5.3)), which
enforces the cylinder (k) to be an invariant set, consider together
Equations 5.10 and 5.11. The following condition can be formulated.

0 <[ [Vagl 7+ da|l < [ [Vag) NN [Vg]" llg
= S| S X INIPN Vgl llg

A
= == <g|Vyll (5.12)
V]2 !
Equation 5.12 imposes conditions on the choice of the potential func-
tion. For our particular choice g = a(q; — m/2)?, the latter can be
reformulated:

A
V]2

T A T
N Y — < — = 5.13
« 2 2a2||N||? N 2 ( )

These conditions define the bounds of the invariant set . This means
that every joint trajectories passing at some point in the submanifold
K will never leave it. As a consequence, the maximal drift along the
redundancy-fiber Sy, in the submanifold x, caused by the pseudo-
inverse map (see Remark 5.2) is always compensated by the gradient
of the potential function g (see Figure 5.3). Thus, the joints trajectory
is constrained on a 2D compact surface.

Since the cylinder x has been shown to be an invariant set, the
realization of the periodic task h of period T" ensures that the joints
trajectory Y;(t) crosses periodically (every T periods) the same re-
dundancy fiber 3y (see Remark 5.1 and Figure 5.3)

<202 |qp — /23
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KNS = S

Therefore, let i designate the point Yy (tg + k1) (S corresponding
to the intersection of the joints trajectory with the redundancy fiber
in k. The periodic task yields a sequence of points g, that can be
mapped on the closed interval [0,1]. Moreover, the gx sequence is
ordered: either

k1 2 Qka 2 - 2 Qiy---

or
k1 < Gro < oo < Qieye--

Indeed, if this is not the case, this would mean that the joints tra-
jectory Y, (t) would self intersect in &, which is not possible.

The ordered sequence of intersection points ¢ in the invariant set
k can either converge to a fixed value ¢ € [0,1] or be such that
Qk; = Qrip1 = 4, Vi > 0. In the first case, the joints trajectory Yy (t)
converge to a T-periodic trajectory. In the second case, the joints
trajectory is directly T-periodic. ™

Remark 5.2 Taken on its own (without additional potential func-
tion), the pseudo-inverse map (see Section 4.3.1) will introduce drift
along the redundancy axis (consequence of its local properties) pre-
venting the joints trajectory to be periodic of period T'.

Remark 5.3 The potential function acts as a spring pulling the
joints trajectory toward the center of the invariant set. The parame-
ter a of the particular potential function g modulates the strength of
this virtual spring and also enables to modify the size of the invariant
set K.

5.3.4 Extension to 5R-3D manipulators

Consider the 5R serial manipulator defined in Section 3.1.1, realizing
the periodic Lissajou positioning task on a spherical output manifold.
The latter method, adding secondary potential function in the null
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Joints evolution: convergence to a limit cycle
35 T T T T T T T

25 30

Cycle of end-effector

Fig. 5.4. Extension of the potential approach to a 5R3D manipulator.
Convergence to a limit cycle is obtained through the use of 2 secondary
potential functions.

space of the jacobian, enforces periodicity of the joints (see Figure
5.4).

Conjecture 5.1 Theorem 5.1 is valid for any redundant serially-
linked manipulator, also in the 3D space, as long as enough additional
potential functions are added to compensate for the dimension of the
redundancy manifold.

5.3.5 Hierarchical adjunction of potential functions

As introduced previously, some kind of hierarchy in the objectives is
desirable in the sense that tasks priority define the relation between
them. This hierarchy is introduced through successive projections of
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the gradients (defining the secondary tasks) into reduced null spaces
[50,52,68,89,90].

Definition 5.4 (prioritized tasks and reduced null spaces) Origi-
nally introduced by [89]. Hierarchy in the different tasks I; to be
realized by a manipulator is obtained through prioritized projection
onto reduced null spaces N;. The reduced null spaces are defined with
respect to the preceding tasks in the hierarchy

N,L' = Np-Ns- N3 : ---Ni—l-

Thus, the reduced null space of a task is defined as the space of motion
with no impact on any of the higher priority tasks.
The prioritized combination of the tasks is obtained through:

I'=T)+ N{(Io+ N3 (I's + N5 (...)))
where I' corresponds to the combined overall task.

The usage of reduced null spaces reduces the redundant space with
each new task and enforces the decoupling of the low-level task with
respect to higher priority tasks.
For example, to prevent the manipulator from violating a constraint,
the latter is expressed as a high-priority subtask. Any other task is
then tracked in the null space of the previous constraint.
Considering together Definition 5.3 and 5.4, a prioritized softly-
augmented multi-tasking scheme is defined such as:

dg = JTdz + NiNT [-V,01]" g1 + NoNJ [=Vg2)" g2 + ...

The latter scheme not only enforces the decoupling between the tasks
in introducing a clear hierarchy between them (1. End-effector mo-
tion (dz) 2. g1 3. g2 ...), but also avoids any algorithmic singularities
such as the one potentially-obtained with the rigid extension of the
jacobian (see Section 5.3.2).
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5.4 The Hessian as coordination solution

The particular closed-solution minimizing the joint displacements
along the full task is another desirable solution. The latter corre-
sponds to the shortest closed integral-curve on the task manifold
realizing the positioning task, see Figure 5.1 and 5.5.
Thus, the combination of several objectives is considered: the mini-
mization of the joint displacements while still realizing successfully
the main positioning task h together with a closed-response to a pe-
riodic excitation.
The following paragraphs describe an algorithm solving locally the
inverse-kinematic problem toward the objectives described above.
Indeed, the algorithm uses local information about the task acceler-
ation to tend toward the shortest joints trajectory realizing the main
positioning task (see Remark 5.4).

Recall that, in our 3R2D serial-manipulator context, we consider
a circular positioning task

h= (yl - 61)2 + (yg — 62)2 — R? (514)

Oh  Oh
Oq1 """ Oqn
by definition of the 1-form, wj, is orthogonal to the considered
positioning-task h in the 2D working manifold, any displacement
in the latter manifold, orthogonal to wy, is along the reference trajec-
tory. In order to consider the manipulators task entire output space,
we construct the following set of vector field k € T7:

with its corresponding 1-form wy, = V4(h) = ] Since,

wp-k=0 (5.15)

which, by construction, spans all motion along the reference tra-
jectory. The s integral manifold corresponds to the Torus S! x S*
represented in Figure 5.5. This topological representation of the ma-
nipulator task manifold is now to be used in order to achieve our
multiple objectives.

The end-effector acceleration corresponding to the task h, repre-
sented in the configuration space @, is defined as the Hessian-matrix
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(second derivative) of the task with respect to the joints.
H = V,(V,(h) (5.16)

H is a symmetric n X n dimension matrix where n is the number
of joints. Notice that the diagonal elements of H correspond to the
second derivative of the task with respect to each joint g%.

An eigenvector decomposition A [.] of the projection of the Hessian
matrix on the x integral manifold is considered.

V:A[/@T-H-/@]

From this decomposition V' = [V} V5...V;], only the eigenvector cor-
responding to the maximal eigenvalue (absolute value), is considered.
This corresponds to the local maximal-curvature direction on the
task manifold. Note that the dimension of the latter decomposition
V is defined by the number of joints n and the dimension of the task
in the working space d:

i=n—d.

In the context of the 3R2D manipulator (n = 3 and d = 1), the
obtained 2D-vector corresponds to the direction of the local max-
imal curvature of the task manifold realizing the task h. In other
term, following at each instant this direction tends to ensure that
the obtained-integral path will be the shortest to realize the task (as
long as the task manifold is smooth and simple, see Remark 5.4).

Expressing back the latter identified vector in the full configura-
tion space (joint space) f1 = k- Vi, the optimal direction (maximal
curvature of the manifold) from the Hessian of the task is obtained.
The correct scaling of the vector fi in order to realize the task cor-
rectly with respect to the reference v,y (also in time) is obtained
through the direct kinematic of the manipulator.

v =J-fi
Urep = do = avy (5.17)
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Finally, the manipulator joint motions are obtained through the map
of Equation 5.18.
dg = af; (5.18)

The results from this procedure are illustrated in Figure 5.5 and 5.6.

45

qs3

35

q2

Fig. 5.5. Projection on the g2, g3 plane of the task manifold 7" of the 3R
manipulator tracking a circle as main task (blue). Convergence (red) to
the Hessian best solution (black) to realize the task.

Two very interesting considerations are to be underlined consid-
ering the latter method:

e The system tends locally toward the hessian-optimal solution (red
path in Figure 5.5): topological optimal repartition of joint dis-
placements.
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q2 |

Fig. 5.6. Convergence of the joints trajectory to the Hessian local best
solution.

e The joints trajectory converges to a limit cycle and remains on it
(black path in Figure 5.5): periodic response to a periodic exci-
tation.

Notice finally that this method mathematically excludes algorith-
mic singularities. In fact, an alignment of the vector f; with a purely
redundant direction (algorithmic singularity) is not possible by con-
struction. Indeed, the proposed-algorithm tracks locally (along the
entire integral-path on the task manifold) the most sensitive direc-
tion of the acceleration with respect to the joints (through the max-
imal singular value). This ensures that if a non-redundant direction
exists, which by definition is always the case on the task manifold
(manipulator-singularities are excluded), the most reactive direction
with respect to the task is tracked.

Remark 5.4 The smoothness of the task manifold is necessary for
this algorithm to converge to the hessian optimal solution, since it
tracks locally the highest curvature of it. If the manifold has a com-
plex shape with a spring-like mazimal curvature all around it, the
algorithm could remain indefinitely therein and mever converge to
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the shortest path.
Hopefully, the shape of the task manifold is usually smooth, at least
for simple end-effector trajectories.

5.5 Flexibility, compliance and repeatability

A parameterization of the complementary 1-form w,. (introduced in
Section 4.3.4) ensuring compliance and flexibility of the 3R2D ma-
nipulator, while keeping the predictability of its joints response, is
proposed hereafter (see Figure 5.7 and 5.8).

Consider the task manifold 7" (see Definition 5.1) associated to
h(q) = (y1(q) —c1)? + (y2(q) — c2)? — R? its positioning task equation.
Recall that this task manifold is homeomorphic to a torus, see Section
5.2.1. Define the following items (illustrated in Figure 5.7):

e ), the redundancy fiber corresponding to the initial conditions
of the manipulator ¢, and T'S,, its associated tangent bundle,

e ( as the center of the smallest ball in @ C R3 containing the
entire redundancy fiber <,

e the exact 1-form wy, = V h corresponding to the gradient of the
positioning task,

o Y,(t) the joints trajectory on the task-manifold 1" realizing the
main positioning task h,

o 7 =Y,(t)NS,, as the intersection of the joints trajectory with the
redundancy fiber S, (all these variables are illustrated in Figure
5.7).

Choose any vector v # 0, such that v € T;3,,, where 153, cor-
responds to the subspace of tangent vectors to the fiber S, at the
point q.

Now, let us choose the complementary 1-form w. with constant co-

efficients, i.e.:
3

We = Z cidg;,, ¢ €R (5.19)

i=1
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q1

Fig. 5.7. Parameterization of the complementary 1-form w. through the
center of the torus C' and the intersection ¢ of the joints trajectory Yy(t)
with the master redundancy fiber S,.

¢
such that | c2 | = v € T5S,,. Because the coefficients are constant,
c3

we is integrable and its integral manifold is the plane P. The plane
P containing the center of the redundancy fiber C' is necessarily
intersecting the task manifold 7. The latter intersection between P
and 1" defines a set of points in the joint-coordinate space @ which
realizes the main positioning task.

PNY ={Y,(t),t € R"} (5.20)

Let us consider now, that {Yg(t),t € R} is a manifold, which will
be ). Extending Theorem 4.2 to our 3R2D manipulator, we can now
define the vector field f; dual to w. and wy,
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(Zﬁ) f1=0 (5.21)

such that span{ fi1} = T'Y. Defining the weighting «, such that :

_ s

STt

= aJf (5.22)

Y(t)

the desired velocity of the end-effector is obtained.
Figure 5.9 illustrates the perfectly-periodic joint responses corre-
sponding to the realization of the task h over several periods T.

A g, Bl
=<
\
\
C qo
N/
=7 Po
y/ql
- ~
_ -~
) 7 P1

Fig. 5.8. A) The compliance of the manipulator is obtained through the
free choice of the intersection point ¢ on the redundancy fiber . A
different, but still periodic, response is obtained for each choice of q.

B) Tlustration of a characteristic non-periodic response of the joints: the
joints trajectory is drifting along 7" and is not closed on itself.

Indeed, the f; parameterization of the solution to the inverse kine-
matic problem for the 3R2D manipulator ensures repeatability of the
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joint responses (see Figure 5.8 and 5.9). By construction, the joints
trajectory is constrained in the manifold ) = PN7T", whose dimension
is one. This ensures a closed-trajectory. Furthermore, flexibility and
arm-compliance of the manipulator is obtained through the flexible
obtention of w.(7), (see Figure 5.8). Indeed, any motion along the

YA\ VAKX
N/ N/

q3

“Time [s]
Fig. 5.9. Perfectly-periodic joint responses to the circular positioning-
task h of period T. For this simulation, the following parameters were
used: Iy = lp =1ls =1, ¢, =15, ¢, =0, R= 105 (¢t = 0) =0,
@2(t=0)=7/3,¢3(t =0) = —7/3, T = .

redundancy fiber is compliant with respect to the main task, since it
has no impact with it. Thus, the intersection point ¢ = Y, (¢) N 3y,
can be modified freely. A different limit cycle corresponds to each
intersection point.
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5.6 Conclusion

5.6.1 Link to the preceding chapter

The present chapter, using gradient of potential functions to en-
force the coordination of the multi-tasking scheme can be, in some
way, interpreted as a relaxation of the stringent condition of exact-
periodicity introduced in Chapter 4. Indeed, through the potential
functions coordination scheme, the joints response is not directly
constrained on an arbitrary planar parameterization of the solution
(through the complementary 1-forms) as for the preceding chapter.
But it slowly converges to a local parameterization (not necessarily
planar) inducing the desired predictable limit-cycle.

5.6.2 Contributions

The following four original contributions have been detailed in this
chapter. First, the task-manifold concept has been introduced to de-
scribe all solutions to a predefined task, including the self-motion
of the manipulator (Definition 5.1 and Figure 5.1). Second, in Sec-
tion 5.3.3, the potential functions together with the soft-extension
of the jacobian as defined in this thesis have been demonstrated to
enable a constructive coordination for the main positioning-task and
for multi-tasking. It has been demonstrated that toward the use of
potential functions, the 3R2D manipulator joints trajectory converge
to a limit cycle for a periodic excitation (Proposition 5.1 and Theo-
rem 5.1). Third, an interesting solution (minimal joints closed-path
solution) was tracked through the task Hessian-matrix eigenvector-
decomposition (Section 5.4). And fourth, based on the task-manifold,
a flexible, compliant and predictable parameterization of the solution
space for the 3R2D manipulator was finally developped (Section 5.5).






6

Closed-loop control for coordination

In this chapter, a dedicated controller including
a closed-loop coordinator for a dual-stage opto-
mechatronic system is detailed. The successful co-
ordination of the dual-stage is the key element
enabling the desired performances. Moreover, a
higher level of coordination implying simultane-
ously 2 DDLs is introduced in order to enhance
further the performances.

The third axis of research on coordination, detailed in this chapter,
handles the closed-loop control-scheme of a particular overactuated
application. The entire argumentation concerning the closed-loop co-
ordination leans on the PRIMA-DDL project. Contrarily to the two
preceding chapters, where the discussed theoretical elements were il-
lustrated through simulations, this chapter builds the coordination
concepts in the project context.

Another major difference with the preceding chapters consists of the
closed-loop control scheme (only open-loop schemes were previously
considered). Instead of working with absolute signals as for the open-
loop schemes, the entire coordination is based on relative signals,
corresponding to tracking errors.
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6.1 Introduction

6.1.1 Project context

The Very Large Telescope (VLT) is an European Southern Obser-
vatory (ESO) operated observatory on Cerro Paranal in Chile. It
consists of four 8m-telescopes, the Unit Telescopes (UTs), and an
optical interferometer, the VLTI. The VLTI allows to combine the
four UTs and four movable 1.8m-telescopes, the Auxiliary Telescopes
(ATs) [32].

Astrometry measures the angular position of stars. The precision
of this basic method depends on the aperture size. In optical inter-
ferometry the angular resolution is increased by combining the light
from multiple telescopes. Herein, the resolution parameter equivalent
to the aperture size is the maximum distance between the combined
telescopes, the baseline. When two light beams coming from the same
source are being picked up at two different positions on earth, they
follow different path lengths. The combination of the received light
beams interfere. When they arrive in phase they superimpose and
produce bright fringes (white-light-fringes), and when they arrive
out of phase they cancel each other out. The main aim of optical
interferometry is to find the white-light-fringes of the observed ob-
ject. They provide information about the distance, the angular size
and the angular separation of the observed objects. According to the
difference in the baseline, the rotation of the earth and atmospheric
disturbance the beams’ paths are not of equal length. This differ-
ence in length has to be altered in order to produce the required
interference pattern. Therefore, the optical path difference (OPD)
between the two beams of light can be varied by internal delay lines
to produce these fringes [74].

Figure 6.1 shows the light beams originating from the same
source, travel through the focus of the telescopes, pass the delay
lines and their final combination in the interferometry lab in order
to produce interferometry fringes [32].
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1

Telescope 1 / Telescope 2

Nasmyth Focus Nasmyth Focus

Coudeé Focus | ‘

’ | Coudé Focus

Interferometry Fringes

Fig. 6.1. The optical layout of the VLTT with two telescopes. Notice that
the 4 DDLs are not represented and will be placed on each of the optical
beam before they interfere (Figure source: ESO [32]).

The VLTI contains many different subsystems, a short overview
of these systems is given in [32]. The Phase-Referenced Imaging and
Micro-arcsecond Astrometric facility (PRIMA) expands the VLTI by
the possibility to observe two stars simultaneously, a so called dual
feed capability. This enhancement allows to observe fainter objects
and achieve higher resolutions on the other VLTI instruments. Fur-
thermore PRIMA’s key objective is to expand the search for extra-
solar planets and their birth environment. In addition to that, the
high precision astrometry will increase the reach of the VLTI [22].

The principle of phase referenced imaging and micro-arcsecond
astrometery with an interferometer is shown in Figure 6.2. A bright
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R
Faint Science Object Bright Guide Star
8 < 30 arcsec
OPD(t)
-OPD(t) = const
_.: L

%

Fig. 6.2. Basic scheme of PRIMA (Figure source: ESO [32]).

star and a reference object are observed simultaneously in one tele-
scope. One star is focused and therefore the fringe motion is to be
the motion of the other object. The differential delay between these
two beams of light has to be equalized to observe the fringe motion.
This variation of the differential length of the two paths is simul-
taneous to the compensation of the OPD described before. As the
angle between the two stars in one telescope is smaller than the angle
between the two objects in different telescopes, the atmospheric dis-
turbance has less impact on the wave front of the light and therefore
a higher precision is achievable. For best performance the internal
delay, the length of the baseline vector and the measurement of the
fringe phase have to be known very precisely (nanometer accuracy
~ 1/100 radian accuracy) and the light paths throughout the system
should be closely matched [60].

PRIMA requires four subsystems to commit its tasks: star separa-
tors, DDLs, two fringe sensors/trackers and a high accuracy metrol-
ogy. This chapter provides a control algorithm for the DDLs, so only
the DDL is briefly explained in the following paragraph. The other
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systems are well described in [21]. The star separator splits the light
beams of one telescope in the beam of the faint science object and
the bright guide stars beam. These beams are fed through the large
VLTI delay lines. Simultaneously to the main delay lines canceling
the OPD, the DDL’s task is to alter the path length between the two
beams to cancel out the differential delay. A total differential optical
path difference of up to 70 mm has to be compensated by the DDL
within a 5 nm tracking accuracy. PRIMA could be operated without
the DDLs - then the delay would have to be compensated by the
VLTI delay lines - but a much lesser resolution would be achieved as
the bandwidth of the delay lines is a lot smaller than the bandwidth
of the DDL and the positioning in the delay line not as accurate [22].
A further objective of the DDL is the atmospheric disturbance com-
pensation. Usually the atmospheric disturbances have a frequency
content of up to 300 Hz. Using the DDL’s high-bandwidth will im-
prove the performance of the VLTI instruments in compensating for
these perturbations.

6.1.2 ESO-Specifications

The atmospheric disturbance to be compensated can be well de-
scribed by a Kolmogorov signal. The Kolmogorov signal describes
the perturbation of the wave front arriving at the telescope in terms
of a stochastic model. This signal has a frequency content of up to
250H z, wherein small amplitudes (|z| < 1pum) come along with high
frequencies (f > 50Hz) and large amplitudes with low frequencies.
The residual tracking error is to be under 70nm root mean squared
(RMS). Further the system is operated under vacuum. Therefore the
power dissipation of the DDL is required to stay under 5W. In addi-
tion, according to the observation duration over a whole night, the
system is in need of a full stroke of 70mm [70].
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6.1.3 Proposed mechatronic solution

In order to achieve this high accuracy (nanometer) a system separat-
ing the requirements of a coarse stroke and high nanometer accuracy
was proposed (see [85,95]). A piezoelectric stack actuator (S-325
from PI) provides the nm-accuracy at a short stroke with a high
bandwidth. And a coarse actuator (NEMA 23 from Ultramotion)
provides the large stroke at a low bandwidth. So a combination of
the actuators joins the advantages of each actuator and eliminates
their disadvantages. Altering the length of the OPD, in terms of large
pm-scale- and very accurate nm-scale strokes, yields, that both ac-
tuators have to act on the same output, the length of the light path.
This light beam is reflected through the optics into a cat’s eye which
reflects the light further on its path. Changing the light beams length,
by moving the cat’s eye or altering the path difference in the cat’s
eye, varies the OPD. The coarse actuator, a permanent-magnet (PM)
stepper motor, moves, over a leadscrew, a blade-guiding structure (a
double parallelogram flexure with notch hinges, [82]) on which the
cat’s eye is mounted (see Appendix B). The mirror in the center of
the cat’s eye is attached to the top of a tripod piezoelectric and is
able to be positioned at nanometer scale.

Figure 6.3 shows the simplified structure of the DDL. The light
beam enters the cat’s eye on the top left, is reflected in the cat’s eye,
passes the mirror mounted on top of the piezoelectric and leaves the
cat’s eye on the bottom beam. One can easily see that changing the
expansion of the fine stage or moving the whole blade-guiding-system
by the action of the coarse stage alters the light beams path length.

6.1.4 DISO Dual-Stage state of the art

The dual-stage concept as found in the DDL has been applied in
the control of Hard-disk drives (HDD). The disk drive read/write
head is positioned over a track within pm accuracy. The two stages
are the arm, onto which the head is mounted and which is driven
by a voice-coil motor for the coarse movement, and a microactuator
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Fig. 6.3. Schematic representation of the DDL including the double par-
allelogram flexure with notch hinges (see Appendix B).

that is used to precisely position the head over the reference track.
According to the increasing growth of the HDD market in the end of
the 1990s and the rising accuracy requirements of data density many
approaches have been taken to control this special DISO structure.
These approaches include SISO- and MIMO - control structures. A
very important point is the distribution of the tracking signal on the
two stages. [3]

The SISO control approaches either regard the dual stage sys-
tem as a sequence of SISO systems and design a controller by fre-
quency shaping techniques, or decouple the two stages and regard
them as two independent systems [3]. Modern multivariable con-
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trol approaches have also been applied in order to increase stability
margins, gain robustness towards parameter variations, enhance the
tracking performance and raise the systems bandwidth. Most optimal
control approaches are based on p-synthesis and H.-control which
include uncertainties on modeling, and lead to increased track follow,
very fast track seek and improved settling performance [63]. Further,
the LQG controller was applied to the dual-stage design. Because
of missing robustness guarantee and stability margins, Loop Trans-
fer Recovery (LTR) was used, as it can be found in [44] and [101].
The desired frequency characteristics of the tracking performance is
formulated according to the target feedback loop and is achieved by
choosing the process noise and measurement noise covariance ma-
trices of the Kalman filter. The LTR procedure recovers this design
at the output of the plant by designing a linear quadratic regulator.
The big advantage of this method is the avoidance of trial-and-error
pole placement procedures [101]. The disadvantage of the optimal
controllers are two folds: first the high order of the obtained con-
trollers makes it difficult to implement in practice [3], [63]; second
they present a very high sensitivity to model and identification errors.

Notice that, in HDD application the coarse stage actuator is
the main tracking actuator. Therefore the voice-coil actuator usu-
ally tracks the reference while the microactuator is tracking an es-
timate of the relative position error between coarse and fine stage,
e.g. [62], [98].

When multivariable state feedback controllers are applied a term
is needed to split the one dimensional reference signal between the
two stages. In [98] a command matrix is proposed to split the signal.
Further, when the plant is regarded as a multivariable plant, rather
than two single stages, output feedback is applied. Basically, two pos-
sibilities of feeding the tracking signal to the loop have been applied.
The most common approach is to subtract the feedback signal from
the tracking signal and feed the resulting state error to the controller.
Another possibility is to feedforward the reference to the controller’s
voltage output in terms of a feedforward gain. [63] states that the
feedforward term on the voltage output of the piezoelectric actuator
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increases the error tracking performance with respect to satisfactory
time and frequency responses.

6.1.5 DDL control problem

The small mass ratio that exists between the fine and the coarse
stage highlights the uncoupled nature of the DDL system (see Section
6.1.3). Furthermore, a bandwidth decoupling also exists between the
stages. The stacked piezoelectric device can indeed react much faster
than the PM stepper motor. Moreover, the stochastic reference signal
to be tracked by the DDL follows a Kolmogorov distribution (see
Section 6.1.2). It varies slowly over large amplitudes and rapidly
over small amplitudes. This structural information is perfectly in
line with the bandwidth specifications of the actuators. A dedicated
closed-loop coordinator is designed (see Section 6.2) to handle the
interactions in-between the stages of the DDL, see Figure 6.4.

Fine-stage - .
~ | Controller ine-stage
—
Coordinator + Combined
Optics pos.
\_/
Coarse-stage
] Coarse-stage

Controller

Fig. 6.4. DDL coordination problem.
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In the next subsections (sections 6.1.6 and 6.1.7), the two in-
dividual controllers of the constitutive stages of the DDL (for the
piezoelectric stack actuator and for the permanent magnet stepper
motor) are detailed.

6.1.6 The piezoelectric as a fast and precise actuator

Nanometer positioning systems are generally using piezoelectric actu-
ators as they are friction-free and present fast responses. In this con-
text, the main concerns regarding piezoelectric-stack-actuators con-
trol are their well-known hysteresis and resonant frequencies which
deteriorates their precision in positioning. Feed-forward model inver-
sion [19,23,24,31,102], closed-loop high gains [47,70,83] and robust
control [46] are the main control solutions to these two problems.
Another major concern using the piezoelectric-stack actuators, is
their short stroke. The usage of some kind of flexure lever to enlarge
the output stroke [47,107], or the combination of the piezoelectric
actuators with other macro-actuator [7, 66, 70,96] are some of the
solutions which can be found in the literature.

Stack piezoelectric controller

According to the hardware solution (from a control design point of
view), the coarse stage deviation acts as a disturbance (see Figure
6.10) on the fine stage loop. Unfortunately, the latter deviation is due
to a stochastic reference signal that is a priori unknown. Nevertheless,
it is possible to reject the mean value reference position of the PM
stepper motor, as long as a convenient model of the disturbance
is included in the fine stage controller (due to the internal model
principle [26]). A simple model of this perturbation is an integrator
which adjusts itself according to the low-frequency content of the
stochastic signal. Thus, the controller has to include an integral term.
As the piezoelectric device is used far below its resonant mode, there
are no particular difficulties to control it with a classical Proportional
Integral (PI) controller (see Figure 6.6).
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Fig. 6.5. Fine stage control structure.

Bode Diagram

Amplitude (dB)

—40 L L I

10 10 10° 10°
Frequency (Hz)

Fig. 6.6. Identified model of the piezoelectric stack actuator S-325 de-
vice (solid line), with its second-order approximation (dashed line). The
estimated bandwidth is approximately 300 Hz and the static gain is ap-
proximately 3 (corresponding to a 10 V input to 30 pum output scaling).

Furthermore, in the context of nano-positioning, the hysteresis of
stack piezoelectric actuators remains a major limitation to their pre-
cision. Such a degradation of the performance cannot be tolerated in
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applications such as atomic-force microscopes [61], or high-accuracy
optical systems [70].

The hysteresis of the piezoelectric device is partly rejected through
the integral term of the controller. Since, an external metrology mea-
sures the real optical-path length, the hysteresis of the stacked piezo-
electric device is seen through the feedback as a perturbation and is
rejected by the integrator of the controller. Another option is to add
a model-based feed-forward prediction of the hysteresis in parallel
to the control scheme. In this context, different methods have been
proposed to model the hysteresis appearing in piezoelectric actua-
tors, but the most popular one remains the classical Preisach model.
However, the basic method is not really suitable for a real-time com-
pensation of a stochastic signal as it is required for the above setup
in Chile. In addition, in the case of the atmospheric disturbances, no
information is given at the beginning of the compensation about the
future piezo expansion. Since very few studies have investigated such
a problem [94], a method in order to invert the classical Preisach
model has been developed (some details are discussed in Appendix
C). The obtained pre-compensator can be added in parallel to the
closed-loop scheme.

6.1.7 The permanent magnet stepper motor as coarse
actuator enabling the complete stroke

Classical control approaches for PM stepper motors use the Park
transformation to modify the considered referential [2,11,12,18,109].
Hoo control with a simplified model [18], state feedback linearization
[11,12], or passivity and flatness-based controllers [92] are the main
modern control methodologies used.

PM stepper controller

The proposed control law for the PM stepper motor is based on a
direct sine/cosine control of the stator generated magnetic field (see
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[70,96] for a detailed description of this approach). Indeed, the system
is intrinsically stable for small angle (between the magnetic field
generated at the stator and the rotor) and low frequency excitations.
Under these conditions, if the load is neglected, the rotor always
aligns itself with the magnetic field generated by the stator [49].
Thus, as long as the excitation is restricted to small angles with low
frequency content, a simple integral controller summing continuously
the position error automatically drives the PM stepper motor to the
correct position.

Consequently, the following controller is proposed:

Ipear sin(a(k))
Tpear cos(a(k))
= Tc(k) —ge(k)
ei(k —1)+ K;(h/T;)ec(k)
if(e;(k) > Max) = e;(k) = Max
if(e;(k) < Min) = e;(k) = Min
alk) = alk —1) + e;(k) (6.1)

where « is the controlled phase of the stator magnetic field; i the
sampling period; I,cqk is the peak current applied to the coils of the
motor; Max and Min are the rate-limits of the PM stepper; e, is the
coarse stage tracking error, i.e. the difference between the estimated
position of the PM stepper motor g. and the low-pass filtered refer-
ence 1. of the DDL fed to the coarse stage.
The feedback information for this closed-loop scheme is provided
through the coordinator, which estimates the coarse stage position
(9c) based on the fine stage model (see subsection 6.2.3). A slow
time constant T; is chosen for the controller to avoid exciting the
approximatively identified resonant mode w (see Figure 6.7) and for
ensuring a sufficient bandwidth difference between the stages.

This simple slow integral controller also has the advantage of be-
ing very robust to load variations, such as the ones caused by the
double-parallelogram flexure with notch hinges (see Appendix B).
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Bode Diagram
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Fig. 6.7. Identified harmonic transfer function of the permanent magnet
PM stepper motor coupled to the flexures. The electromechanical resonant
mode can be clearly identified at 120 Hz.

So as to avoid any de-synchronization between the rotor and the gen-
erated magnetic field, on which the rotor tends to align, the variation
of the controlled angle « is limited (see Equation 6.1). This limitation
ensures that the acceleration is not above the physical limitations of
the PM stepper motor coupled to the flexure. Moreover, this limita-
tion ensures also the restriction of the excitation to small angles, for
which the model and the controller are valid.

6.2 Coordination of the overactuated DDL

The successful constructive-coordination of the constituting stages of
the DDL is the key element enabling the desired performances. Taken
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Fig. 6.8. Coarse stage control structure.

apart from the other, neither stage is able to fulfill the stringent re-
quirements on its own. Overactuation and closed-loop coordination,
as proposed in this thesis, are the only solutions to fully reach the
objectives.

6.2.1 Overactuation: an infinite set of solutions

Not considering the limitation of each actuator, a single positioning
task is performed by two fully independent actuators which thus
provide two degrees of freedom.
The main output task y (dynamic control of the differential optical
path length realized through the physical positioning of a reflective
mirror) features a single translation axis realized either by the fine
stage yy or by the coarse stage y.. The presence of these two stages
acting similarly (at least theoretically) on the single output enables
an infinity of different possible configurations corresponding to the
same output position.

Yr =Ye t Y5 (6.2)

This extra degree of freedom is thus enabling an infinity of different
choices: any combination of y. and y; satisfying the constraint (6.2)
is a solution to the positioning problem (see Figure 6.9(a)).

The configuration manifold of a 2 dof overactuated manipulator,
combining prismatic joints, corresponds to the 2D plane generated
by R x R.
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Fig. 6.9. Overactuated DDL: intrinsic characterization of the solutions.
Quantification as stated herein features the less accurate coarse stage,
acting at a macroscopic level.

6.2.2 Differentiation of the solutions

Of course, the two stages are not identical and we do combine them in
order to take advantage of their own characteristics. In this context,
some solutions are not even feasible regarding the intrinsic charac-
teristics of each stage.

On the one hand, bandwidth, accuracy, repeatability, dry friction
or saturation limits are intrinsic characteristics of the stages that
distort the considered space of configuration.

Concerning the DDL, the saturation limits of the fine stage are very
restrictive: the limited stroke is cutting down the complete configura-
tion space to a short band along the y. axis (see Figure 6.9(b)). These
strong stroke-limitations of the fine stage justify directly its coordina-
tion with a coarse stage in order to enlarge the DDL working-space.
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Moreover, the less-accurate (because of dry friction) and slower
(lower bandwidth) coarse-stage of the DDL is not sufficient to en-
sure the desired performances and thus, necessitates its combination
with a second actuator.

On the second hand, some solutions to Equation (6.2) are prefer-

able than others. Considering the DDL in particular, two objectives
can be underlined (a multi-tasking scheme as introduced in Sec-
tion 5.2). Of course, the main task (goal 1) remains the realization
of the positioning of the output y (as in Sections 4.2.3 and 5.2.3).
However, in the complete configuration space satisfying the position
constraint (position reference), a subpart of the existing solutions
is preferable. The more distant the fine stage (with a very limited
stroke) is from its saturation limits, the better it is (goal 2).
This second objective can be easily justified by the fact that the
only actuator enabling the bandwidth and the accuracy which are
required is the fine one. Thus, if it reaches one of its stroke limi-
tations, it looses locally its ability to move toward this direction,
resulting in not realizing fully the first objective.

To sum up: two simultaneous objectives are tracked. Firstly, the
best-positioning possible of the DDL regarding its reference is to
be achieved. This objective is mainly realized by the fine stage (the
coarse stage being only used to enlarge the working space). Secondly,
the distance to fine-stage saturation-limits is to be maximized. This
second objectives is optimal when the fine stage remains in the center
of its own working space (the coarse stage realizing the tracking).

6.2.3 Constructive coordination

The constructive coordination of both stages of the DDL in or-
der to track the objectives successfully is the key control element.
As detailed in the preceding section, among the infinity of differ-
ent solutions, some are preferable regarding the objectives to be
tracked and the intrinsic characteristics of the subsystems. The
closed-loop coordination-scheme detailed hereafter enforces their suc-
cessful tracking.
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Global coordination scheme

The proposed parallel control structure with two SISO control loops
(see Figure 6.10) enforces both the mass and the bandwidth decou-
pling of the DDL (see Section 6.1.5). The coarse stage handles the
large amplitude component of the reference signal in the low frequen-
cies, while the fine stage handles the small amplitude over the full
bandwidth. The fine-stage loop (which is the main stage of the DDL,
providing accuracy and bandwidth) is intentionally closed on the
combined contributions of both stages, in order to ensure an efficient
tracking of the optics position. Neither a model nor an observer is
placed in the loop (see Figure 6.10) for avoiding any model-mismatch
error. Moreover, to efficiently orchestrate the relative and absolute
displacements of the two stages, the control structure integrates a
dedicated coordinator.

The main advantage of this structure is that the stages can be consid-
ered independently for designing the controller, which makes it more
intuitive by far. This is not the case when a multivariable design ap-
proach [41,44,62,81] or a traditional PQ one [69,80,86] is considered.
In the latter, an abstract representation of the dual-stage system is
constructed.

Traditionally in dual-stage systems and especially in hard disc drives
(HDD), the fine stage is only added to the coarse one for reducing the
high-frequency tracking error. Thus, the main actuator is the coarse
one and is essential to the functioning of the HDD [53,58, 78, 79].
The bandwidth is usually decoupled through high-pass filtering at
the fine stage level, letting the coarse stage handle the remainder of
the excitation. However, in the context of the DDL, the system is not
operable uniquely with the coarse stage, since the nanometer accu-
racy and the bandwidth, which are needed for astrometry purposes,
are exclusively provided by the fine stage. The fine stage cannot deal
exclusively with the high frequency content, since it provides the
accuracy and rejects the coarse stage deviation (which is by design
low-frequency). Hence, it is proposed rather to enforce the bandwidth
difference using a low-pass filter at the coarse stage level. The fine
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Fig. 6.10. Control structure with =, rc, uy, ug, tc, Yr, Ye, Y and y cor-
responding to reference signal, filtered reference signal, fine stage input
voltage (stacked piezoelectric device), feed-forward fine stage input, coarse
stage control signal (PM stepper motor), fine stage position, coarse stage
position, estimated coarse stage position and optics output position, re-
spectively. The global control structure illustrated here groups a low-pass
filter, the fine stage controller, the coarse stage controller, and the stages’
coordinator.

stage covers the full bandwidth, including the low-frequency part,
in order to ensure an accurate tracking of the reference and also an
efficient rejection of the coarse stage deviation. Here, the fine stage
can be considered as the main stage.

The successful coordination of this dual-stage opto-mechatronic
system necessitates three tasks: the repartition of the different in-
formation signals (feedback and reference) to the 2 subsystems, the
adaptation of these signals to our purpose (filtering) and, finally, the
enforcement of the cooperation between stages (pre-compensation)
and between DDLs. These tasks are detailed in the following para-
graphs.
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Repartition of signals between stages

The reference signal (current desired-position to be) which is pro-
vided to the DDL system has to be divided into the subsystems (see
Figure 6.10). This repartition need to ensure not only the track-
ing of the desired position (main objective) but also the secondary
objective, which is the fine-stage distance to stroke-limitations max-
imization.

One particularity of the coordinator of the DDL is its closed-loop
structure. In fact, closing the loop improves the accuracy of the track-
ing in providing additional informations to the system through the
coordinator. The feedback information (position read by the sensor),
together with the reference signal need to be adapted and distributed
to the two stages. The feedback information is divided into two parts.
One part, which is fed back to the fine stage, corresponds to the DDL
combined output position. This crucial information is not modified
by any model neither any filter in order to avoid any model mismatch.
The second part is transformed to estimate the coarse stage position.
This adaptation is realized with a filter representing a model of the
coarse stage position, see [70] for more details.

Filtering of the coarse-stage reference

The reference signal fed to the coarse stage is modified in order to en-
force the bandwidth separation between the stages (see Figure 6.10).
The coarse-stage reference r. (which is fed to the coarse-stage con-
troller) is filtered with a third order Butterworth low-pass filter at
10 Hz, so as to keep only the low-frequency content while avoiding
any excitation of high frequency resonant modes (see Figure 6.8).
This frequency separation is useful to decrease the perturbation by
the coarse-stage motion on the combined output. Any motion real-
ized by the coarse stage is seen as a perturbation by the DDL. Thus,
enforcing a low frequency behavior (meaning slow) of the latter will
help the compensation of its motion by the fine stage.
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Pre-compensation of coarse stage motion

Taking into account, as explained here above, that any motion of
the coarse stage is seen as a perturbation on the complete system
position, a feed-forward prediction of the coarse stage movement will
help compensating it. Hence, accuracy of the overall DDL is im-
proved through a pre-compensation of the coarse stage movement
(see Figure 6.10). Since the feedback information enforce the track-
ing accuracy of both stages (direct feedback for the fine stage and
coordinator-adapted feedback for the coarse stage), meaning that
their real positions are close to what is desired, the compensation is
realized directly from the filtered reference of the coarse stage. This
signal is transformed into fine-stage voltage (simple second order
model) and fed directly to its input.

Enhancing advantages of each subsystem

Now that the global coordination strategy has been detailed, a partic-
ular problem, the dual-stage destructive interference that may occur
between the stages (the two stages fighting against each other up to
canceling their respective contribution) is studied. This is a major
concern in HDD literature [53,69,80,86]. See Figure 6.11 for a graph-
ical illustration of what is destructive interference. This interference
is not intrinsically a problem for the accuracy of the DDL, since the
overall position is directly controlled. However, uncontrolled oppo-
site displacements of the stages could inject undesired vibrations and
resonances into the system (see the specifications detailed in Section
6.1.2).

The classical PQ method (for Hard Disk Drives dual stages)
mainly deals with this destructive interference between the two
stages: the controller is designed in order to avoid the conditions caus-
ing these interferences (a phase difference of 180° between the two
stages and, simultaneously, two identical static gains, see [63,80,86]).
However, in our case, this potential problem is intrinsically dealt with
the bandwidth difference imposed on our two stage system by design.
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Fig. 6.11. Illustration of a dual-stage destructive interference. The two
stages are moving in opposite directions, thus having no effect on the
output. The two destructive-interference conditions (7 phase difference
between the two stages and identical gain) are met.

Through the low-pass filtered reference fed to the stepper (see Figure
6.8) and through the low-bandwidth of the stepper controller itself,
a large bandwidth difference is imposed between the two stages (at
least a factor ten). Therefore, since the piezoelectric device is at least
ten times faster than the stepper motor and its controller, its dynam-
ics are too fast by far to generate any uncontrolled oscillation between
the two stages. The two destructive-interference conditions are never
met, since the piezoelectric device, through its large bandwidth, still
has a static gain of one when the coarse stage reaches its 180° phase
with a static gain far less than one. Thus, the phase margin between
the two stages is intrinsically above 60°, which ensures, by design,
constructive interference.

6.2.4 Antagonistic objectives

Two antagonistic objectives are tracked.

e Dynamic positioning of the output of the DDL. This objective
is mainly accessible by the active tracking of the fine stage. This
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fine stage is enabling the fast and accurate realization of the main
objective. Thus, the realization of objective one is enforcing the
activity of the fine stage while the coarse stage is a source of
perturbations.

e FEnlargement of the working area of the DDL and fine-stage sat-
uration limits avoidance. These objectives are realized by the
coarse stage which maximize the distance to fine-stage-saturation
and enlarge the complete stroke of the DDL. Thus, objective two
is optimal when the fine stage remains in the center of its stroke.

The antagonism of the objectives for the DDL is directly visible
through the activity of the two stages. Objective one is enforcing
activity of the fine stage and minimizing activity of the coarse stage,
while objective two is enforcing the contrary.

6.3 Simultaneous coordination of 2 DDLs

One particular configuration of the DDLs optical-system in Paranal
foresees the use of a single active DDL to compensate the atmospheric
turbulence, while the others are fixed (see Figure 6.12). This solution
is easier to implement, but suboptimal in term of performance for
stabilizing the light beams.

A higher level of coordination of each DDL on the controlled op-
tical path enhances the overall performance in combining their effect
two by two. This new degree of overactuation reduces the overall
tracking error in combining their atmospheric rejection ratio.
Thanks to the proposed controller-structure (see Section 6.2.3),
which relies on the fine stage as the main actuator, the DDL dual-
stage system can be seen as a second-order system with the fine
stage’s characteristics, whenever it is not saturating. In fact, the
coarse stage acts only to keep the fine stage within its stroke limits,
while the accuracy is ensured by the latter. Calling respectively F}
and F5 the dynamic models of the two DDLs in closed-loop config-
uration (note that F; and Fs should be identical by design), these
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Fig. 6.12. The DDL global control structure (represented symbolically
here) relies on a single DDL to track the reference, rejecting the atmo-
spheric turbulence (here T represents the first telescope). The controlled
output is composed of the differential optical path between the two stars,
with the same potential effect of each DDL on the optical path length.

are combined optimally without changing their respective controllers
(see Figure 6.13). As can be seen in Figure 6.13, the two DDLs keep
their own closed-loop controllers and structure. Note in the same Fig-
ure, that the two DDLs have their own decoupled feedback sensors,
ensuring their respective stability.

The tracking error of the first DDL (F}) is injected as a refer-
ence signal for the second DDL (F3). In doing so, the second DDL
will react and try to cancel the remaining error. In order to avoid
an exaggerated response of the combined DDLs to the same track-
ing error, producing large overshoots, a prediction of the first DDL
response to this reference (Pyy;) is added. This predictor has the
dimension of a derivative. Thus a derivative of y; is subtracted from
the tracking error fed to the second stage as a reference signal (see
Figure 6.13). Under the initial hypothesis that both DDLs are similar
(Fy = Fy, = F) the following global transfer functions are obtained:
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Fig. 6.13. The proposed multi-DDL control strategy relying on the two
DDLs enables a more efficient reference tracking. F; and F> represent the
two DDLs in closed-loop configurations. C; and C32 are the controllers of
the DDLs, each combining the effect of a fine and coarse stage. P; is the
predictor of the first DDL response, it has a derivative structure.

Y = R(2F — F?) — kF?Rs
Y
= 2F — F? — Py
Using the following decomposition F' = gg;;, we get:

Y 2DN — N2(1 +s)

R D?

The pole placement clearly does not change, when using this control
scheme. However, its multiplicity is doubled and the zeros are mod-
ified. The predictive term, coming from P;, also introduces a new
Zero.

The results of this proposed control scheme using multi-DDL
overactuation look very similar to the linear gain change of the con-
trollers. The main difference is that a clear bandwidth enhancement
by a factor of nearly 1.6 (visible in Figure 6.14(a)) is obtained through
the overactuation characteristic of our complete system. The ade-
quate coordination of the two DDLs results in this performance while
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no controller gain has changed. Thus, this result is obtained without
encountering the risk of saturating the fine stage, which is clearly
the case with high-gain controllers. Moreover, there are no stability
issues since each DDL controller is designed individually, the two
DDLs being combined uniquely through their references.

The simulations in Figure 6.14(b) illustrate clearly the faster re-
sponse of this new scheme with respect to the classical one using
only one DDL. In particular, the time constant comparison of the
step responses is very conclusive.

6.4 DDL prototype performances

6.4.1 Experimental setup
DDL prototype and laser metrology

The DDL prototype available at the EPFL is built from a PM stepper
motor NEMA 23 from “Ultramotion", combined with a lead-screw

Fig. 6.15. Experimental setup: 1) Stepper motor, driving the coarse stage;
2) Piezoelectric actuator, driving the fine stage; 3) Double parallelogram
flexure with notch-hinges; 4) Laser metrology with sub-nanometer resolu-
tion
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which covers a full stroke of 70 mm. The motor is powered by a cur-
rent amplifier developed by the PRIMA consortium. Also, the blade
guiding system is a tailor-made product. The piezoelectric S-325 is
from PI with a course of 30 um and a bandwidth of approximately
300 Hz. A laser interferometer (Agilent 10897B) with 1.25 nm reso-
lution is used to measure the displacement of the actuators which is
provided to the VME rack. In Fig. 6.15 a schematic representation
of the complete installation is given.

Data acquisition hardware

e VME rack: Two cards are installed into the VME rack to get
access to the laser metrology: the Agilent 10897B laser board,
which gives the position measured with sub-nanometer resolution,
and the NI VME-MXI-2 board. The VME rack interfaces the
memories of both boards, so that the measurements are available
to a PC.

e NI PCI-MXI-2: This board is connected to the NI VME-MXI-2
board, so as to access the position measurement and to establish
the real time control loop.

e NI PCI-6025E and NI PCI-6251: These cards provide the
3 analog outputs to control the piezoelectric actuator and the
stepper motor. One of them is also used as timing source to syn-
chronize the measurement and the excitation of the actuators.

Software

The EPFL prototype uses LabView 8.2 to implement the controllers.
In a timed loop all the necessary operations are executed, where the
loop is timed with the clock of one of the NI DAQ boards. To achieve
good closed-loop performance, the sampling rate is selected to be
5kHz.

The final system installed at Paranal runs under VxWorks in an ESO-
compatible environment which ensures the stability of the sampling
(no jitter in the timing). The sampling rate will be 8kHz.
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6.4.2 DDL overall performances

In pure tracking mode, a realization of a stochastic Kolmogorov pro-
cess (with a frequency content up to 250 Hz) is used as a reference.
This signal is representative of the atmospheric disturbances encoun-
tered. In reality, the reference is not a pure Kolmogorov signal. From
time to time, there is a brusque change in position or even a switch
in stroke from one end to the other. The behavior of the system
in such cases can be tested through performing step responses with
displacements of different amplitudes.

The controllers need to track the reference with less than 70 nm
RMS error, in pure tracking, and cover the whole bandwidth of 250
Hz. In addition, they need to be robust all over the stroke range and
for all the different kind of references.

As the controller of the piezoelectric stack actuator is fairly sim-
ple (hysteresis being compensated by internal electronics), the results
presented hereafter are mainly discussing the PM (Permanent Mag-
net) stepper motor controller performances and their influence on
the overall tracking performances.

Kolmogorov tracking

To analyze the quality of the tracking performance, several charac-
teristics are evaluated.

e The root mean square error

(6.3)

where n is the number of samples.
e The maximal absolute error

le|maz = max |e;]. (6.4)
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e The mean absolute error

e =

n
=1

where n is the number of samples.
e The power dissipation

PRMS =2R (iiRNIS + Z%RJ\/IS) ? <6'6)

3|

with R = 0.5 (2.

Final decoupled parallel SISO control scheme

The proposed global control structure based on a single metrology to
close both loops combines optimally both stages. The global control
structure (including the coarse stage feedback based on the coordi-
nator) has been validated. No special unwanted oscillations between
the two stages and no time-drift behavior due to the coordinator have
been observed: this validates our closed-loop control structure. More-
over, thanks to the proposed double-stage coordination, the piezo-
electric stack actuator never reaches its saturation limits while the
complete system is working (see Figure 6.16).

The control approach, which relies on direct coil-current control
of the PM stepper motor, results in very good tracking performances:
the rms residual tracking error is as low as the measurement noise
(E < 8 nm rms) and the movement of the coarse stage does not result
in any visible tracking error of the overall system. The coordinator
based control structure is the leading element that gives these out-
standing results in stochastic trajectory tracking.

The interested reader will find more details in [70].

Comparison of obtained performances with respect to
standard approaches

In order to validate the proposed coordination design (labeled di-
rect coil control in this section), the performances of the prototype
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Fig. 6.16. The piezoelectric actuator controlled output never reaches its
saturation limits during Kolmogorov-trajectory tracking.

are compared to standard dual-stage /multi-variable control schemes
(LQR, PQ, Pl-linearized, Flatness-based).

Kolmogorov tracking: Kolmogorov-signal tracking was executed
over 10 seconds. In Figure 6.18, only a detail is given in order to
make differences visible. The tracking performance is evaluated with
the same relationships as in section 6.4.2.

In Fig. 6.18(b) one can see that all the controllers guarantee that
the coarse stage keeps the fine one within its saturation limits, which

Table 6.1. Tracking results in implementation: comparison of the control
scheme I propose (Direct Coil) with respect to classical methods

RMSE [nm]||e|maz [nm]|€ [nm]||{P [W]
Direct Coil 25 308 19.6 | 2.25
Flatness based 26.6 147.5 20.7 10.016
Pl-linearized 22.8 133 17.7 10.017
PQ 40 270 31 [0.012
LQR 44.8 640 30.7 |0.015
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Fig. 6.17. System response to the same realization of the stochastic Kol-
mogorov process with a frequency content of up to 200 Hz. Results ob-
tained with the direct coil-voltage control of the PM stepper motor and
the integral controller, giving a residual rms error less than 8 nm rms and
a maximum instantaneous error of 30 nm.
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Fig. 6.18. Kolmogorov-signal tracking: comparison of different control-
laws’ performances.
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is necessary for the functionality of the system. In case of the PQ
controller the coarse-stage action is quite at the limit of what is
allowed (Fig. 6.18(b)); nevertheless the performance is similar to the
one of the LQR controller in terms of RMS and mean error (Table
6.1 column 1 and 3). Furthermore, the three controllers based on the
decoupled SISO design (direct coil, flatness based and Pl-linearized)
have similar RMS and mean errors (Table 6.1 column 1 and 3). Since
they all use the same fine-stage controller, which gives the precision
to the system, this is not surprising. In Fig. 6.18(a) the LQR shows
a sort of oscillatory behavior and bigger deviation from the reference
than the rest of the controllers. Checking the maximal error of the
controllers (Table 6.1 column 2), one can see that just the LQR
controller has the largest maximal error. Whereas for the direct coil
and PQ controller the deviation peaks are less marked (Fig. 6.18(a)),
also the maximal error of these controllers is smaller than for the
LQR (Table 6.1 column 2). The PI-linearized controller does not
show any oscillations around the reference (Fig. 6.18(a)), which is
also confirmed by the smallest maximal error of all controllers (Table
6.1 column 2). In case of the PQ controller, one can also clearly see
the effects of static friction on the coarse stage action (Fig. 6.18(b)),
which leads to a sort of stepping behavior. The other controllers
show a smoother coarse-stage movement especially the direct-coil
controller (Fig. 6.18(b)). This controller also injects constantly a lot
of energy into the system and thus the static friction does not affect
the coarse-stage movement. Column 4 in Table 6.1 shows that all the
controllers based on exact feedback linearization dissipate much less
power in tracking than the direct-coil controller.

Based on the tracking performance in Table 6.1 the Pl-linearized
controller is rated best, since it has lowest values in RMS, absolute
and maximal error and additionally the power dissipation is much
less than for the direct-coil controller.

5000 pum step response: To test the system for sudden large dis-
placements in the reference, step displacements of 5000 pm are ap-
plied to the DDL. One experience is done in the center of the stroke,
where no force is applied to the blades (Fig. 6.19(a)), and another
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(b) DDL output position for a 5000 pm step
displacement towards the extremity of the
stroke

Fig. 6.19. Tests of sudden large displacements in the tracking reference.

towards the end of the stroke, where a big reaction force acts on the
coarse-stage actuator (Fig. 6.19(b)).
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In order to obtain the results illustrated in Fig. 6.19, strict rate lim-
itations for speed have been introduced, for the controllers based on
the decoupled SISO structure, as mentioned in [70]. With these mea-
surements, taken the system with direct-coil control performed best,
since it allows the highest speed without destabilizing the system
(Fig. 6.19(a)). In case of the LQR controller, no such speed limita-
tion can be introduced, which leeds to a random behavior caused by
de-synchronization between rotor and the generated magnetic field
(Fig. 6.19(a)). Similar behavior was also observed for the other meth-
ods based on exact feedback linearization depending on position and
moving direction of the coarse stage. Towards the extremities of the
stroke they also have problems to follow the reference. As one can
see in Fig. 6.19(b), if the system is driven by a controller based on
linearization, the DDL suddenly stops to move. The controllers do
not allow the motor to generate enough torque to make the table
move. With the direct coil controller, the system has no problems to
follow the reference (Fig. 6.19(a)), because as soon as the difference
between the reference and the real position increases a bigger torque
is generated due to the particular structure of the controller. The
input saturation is present by imposing a ramp instead of the true
step reference. In case of a controller based on feedback linearization,
this is different. The input I already saturates at the beginning of the
ramp in order to follow it. When the tracking error starts to increase
there is no more room to generate more torque, since the input is
already saturated (Fig. 6.20).

The interested reader will find more details in [96].

Based on these comparisons (summarized in Table 6.2), the
closed-loop coordination scheme using the direct-coil-control of the
PM stepper motor I proposed is undoubtedly validated. The princi-
ples of this control scheme were implemented at the final installation
of the DDLs, in Paranal, in August 2008.
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Fig. 6.20. Inputs ¢, and i of the flatness-based controller during a 5000
1 step displacement towards the extremity of the stroke

Table 6.2. Qualitative PM-stepper-motor controller comparison

Decoupled SISO structure

| Global structure

Amplitude = fixed

Amplitude = controlled

Phase = controlled Phase = fixed

Direct coil Pl-linearized |Flatness| LQR |PQ
RMS error ++++ A+ A | ++
emax +++ F+++ -+ |+ +++
Power - o+t ettt [
dissipation
Step response|+-+-+ + _ - _ -
Robustness |++-++ - - - - -

6.5 Conclusion

6.5.1 Link to preceding chapters

Close-loop coordination can be easily interpreted as a potential func-
tion scheme (see Chapter 5). Indeed, the closed-loop coordinator as
main objective tends to minimize a potential function corresponding
to the tracking error. Furthermore, the second objective (maximiz-
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ing the distance to saturation for the fine stage) is also directly in-
terpretable as a potential function to minimize. The links between
these two chapters are thus obvious.

Moreover, the DDL underlying structure made from the combi-
nation of two collinear prismatic joints is very simple. Indeed, the
DDL configuration space R x R is obviously simply connected and
compact (from the saturation limits of the actuators). However, any
more complex adaptative-optics (even so it doesn’t exist now) includ-
ing rotative joints could encounter some of the topological difficulties
described in Chapter 4.

6.5.2 Contributions

The following four original contributions have been detailed in this
chapter. First, in Section 6.2.3, the closed-loop scheme enabled a con-
structive coordination of the dual-stage mechatronic system (Figure
6.10). Saturation of the fine stage has been avoided and feedback
signals have been distributed adequately. Second, all specifications
were achieved successfully through the overactuation coordination
scheme (Section 6.4.2). Third, a particular overactuation scheme us-
ing simultaneously several DDLs to track the same reference has
been proposed (Section 6.3). This scheme would use the intrinsic
characteristics of the piezoelectric more efficiently to even improve
the overall performances. Fourth, the proposed closed-loop coordina-
tion scheme was successfully implemented on the DDLs, in Paranal,
Chile, in August 2008 (see a selection of pictures in Appendix D).
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Conclusions and perspectives

In this thesis, the coordination of overactuated systems has been
investigated under the three following scopes: differential geometry,
potential functions and closed-loop control. These three different in-
sights were shown to be closely linked together through their coordi-
nation scheme introduced in Chapter 2. Each of these research axes
brought a new insight on the general-coordination matter.

First, in Chapter 4, some differential geometry properties have
been shown to be of great interest in order to enforce the repeatabil-
ity and predictability of the responses to the inverse kinematic prob-
lem. Particularly, the involutivity of a vector-field-parameterization
of the solution set was shown to enable closed responses of the joints
whenever a periodic task was to be realized by the end-effector. In
this context, a constructive method enforcing a foliation of the so-
lution set using complementary 1-forms and involutive vector fields
was proposed (Sections 4.3.3 and 4.3.4).

Second, in Chapter 5, a simultaneous multiple objectives coordi-
nation scheme using gradient of potential functions was proposed. In
this context, secondary objectives were expressed by potential func-
tions, the gradient of which were tracked in the null space of the
main task. The proposed scheme, called soft extension of the jaco-
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bian, enabled a full decoupling of the main task with any secondary
one (Section 5.3.3). Furthermore, it was clearly demonstrated that
the soft extension of the jacobian with potential functions, under
certain conditions, drives the joints response toward a periodic cy-
cle, when realizing a periodic task with the end-effector (Theorem
5.1). Moreover, a clear hierarchy of the different objectives was ob-
tained through successive projections into reduced null spaces (Sec-
tion 5.3.5). And finally, in Section 5.5, a compliant, flexible and pe-
riodic coordination scheme was obtained through the combination
of the complementary 1-form (introduced in Section 4.3.4) with the
task manifold (introduced in Section 5.1.1).

Third, in Chapter 6, the PRIMA-DDL project provided a very
interesting application to our research. The success of the project
(in term of tracking performances) entirely depended on the pro-
posed closed-loop coordination scheme (Section 6.2). A particular
high-level of overactuation using actively multiple DDLs to track the
position reference was proposed (Section 6.3). The dual-stage opto-
mechatronic system with its overactuated closed-loop coordination
was successfully implemented in Paranal, Chile, at the ESO facility.

The concepts underlying the coordination of overactuated sys-
tems introduced in this thesis can be extended to any redundant
system. As a matter of fact, a similar coordination scheme was ap-
plied to the model of a human-shoulder interpreted as an overactu-
ated bio-mecanical system (see Appendix A).

This thesis intended to link together complex mathematical tools
(differential geometry and topology) with robotics in its general ex-
pression. The mathematical tools such as topology and differential
geometry request deep abstraction capabilities and, thus, they gain
largely in clarity when they can be applied to a concrete field such as
robotics. The latter in turns, gain in understanding of their underly-
ing group structure. The author is convinced that, a global optimized
joints trajectory is only possible when considering the topology of the
concerned manipulator. The Hessian-like proposed algorithm is one
attempt in this direction. The gap between the practical aspects of
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robotics and the mathematical developments at our disposal is one
of the main open research-area.

Concerning the PRIMA-DDL project, from the control point of
view, a promising further development concerns the implementa-
tion of the high-level coordination scheme implying several DDLs
simultaneously (Section 6.3). This scheme would clearly enlarge the
bandwidth-response of the overall system. Moreover, another further
development could take advantage of a combination of 1 PM step-
per motor with several piezoelectric actuators. This potential new
hardware scheme would take advantage of the optical nature of the
output to improve the response of the DDL.






A

Shoulder coordination

A particular coordination scheme has been ap-
plied to the dynamical model of a human shoul-
der. The latter is indeed a highly overactuated
system through its more than twenty muscles act-
ing on the 6 degrees of freedom articulation. Con-
structive coordination, in this case, is achieved
when the activation of the different muscles en-
ables to follow a predefined motion with realistic
forces.

A.1 The shoulder as an overactuated system

The shoulder is a very complex biomechanical system of four articu-
lations, actuated by more than twenty muscles. Hence, the system is
highly overactuated and there is an infinite number of possible mus-
cle force combinations realizing the same task (see [1]). The muscle-
forces have a direct impact on the joint reaction force and the design
of shoulder implants is highly influenced by the prevailing contact
forces.

The shoulder is conceived as a dynamical system with input
(neural excitation), states and output (humerus 3D position). In-
stead of using complex geometries, as it is done in FEM, simple,
biomechanical concepts are considered. A physically comprehensible
macroscopic model of the shoulder is obtained.

In order to solve the indetermination of the muscle-force distribu-
tion, as for redundant robots, the immersion map of the muscle forces
(considered as actuators of the system) to the generalized forces (re-
alizing the desired movement in space) has to be inverted. In this
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context, the matrix of moment arms serves as immersion map. This
matrix depends highly on the wrapping of the muscles around the
glenohumeral joint.

The model is to be able to reproduce a predefined movement
(parametrized in time), and to calculate the corresponding contact
force in the glenohumeral joint. The humeral position is chosen as
system output. The neural excitation of the muscles takes the role of
the system input.

Fig. A.1. Simplified geometries: The glenohumeral joint is modeled by a
spherical joint allowing three rotations: 0: abduction/adduction, ¢: flex-
ion/extension, ¥: rotation. A coordinate system is attached to the humerus
which has its origin in the center of the glenohumeral joint. Eleven muscles
actuate the humerus.

The glenohumeral joint (GHJ) is modeled by a spherical joint
allowing three rotations but no translations (Figure A.1). The ro-
tations are the Euler angles (XZY sequence): 6 around the x-axis
of the humerus (abduction/adduction), ¢ around the z-axis (flex-
ion/extension) and 1, rotation around the y-axis. The humerus em-
bedded coordinate system is chosen according to the recommenda-
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tions of [106] with its origin coincident with the rotation center of the
GHJ. All the anthropometric data used in this model are provided
by the ISG [13]. Furthermore, in this model, we consider the simple
hypothesis that the position of the scapula is fixed on the thorax.

In the next section, a dynamical model of the shoulder is derived
using the Lagrangian formalism.

A.2 Shoulder equation of motion
According to [10] the angular velocity W is defined as:

w = faj + ¢al + Pay (A1)

rotated humerus

Fig. A.2. Rotation sequence XZY: The initial coordinate system {a} is
turned into {b} through 3 rotations around eg = a1, e = a3 and ey = aj
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As the three axis are not perpendicular, @ is expressed in the
humeral coordinate system:

@ = (fcos() cos(@) — dsin()) - b
+(—fsin(g) +¢) - by B (A.2)
+(0sin() cos() + cos(¢)¢) - bs
Considering the humerus as an infinite rigid body moving in 3D
space, its kinetic energy is only due to rotation:

T= 'Iérm'(w%_‘_w%)_‘_%'lclzrm'w%
(£ - | (0 cos(p) cos(@) — dsin(v))?
+ (0sin(¥) cos(9) + cos()3)?]

+ Itlzrm ’ (*HSIH(QZS) + 1/))2>

SIS

(A.3)

where It ~and I are the transversal and longitudinal moment

of inertia of the arm. Its potential energy V is due to gravity:
V' =Marm - g Larm - [L — cos(¢) cos(0)] (A4)
Using the Lagrangian approach we have:
L=T-V (A.5)

Considering qg1 = ¢, g2 = 0 and g3 = 1) as the generalized coordi-

nates, we have:

d (0L oL

— (=) -==0; i =1,2,3. A.
dt <3di> =@ ' ’ (4.6)

where @); are the generalized forces corresponding to the generalized
coordinates. Virtual work has the form:

SW = M. 50 (A7)

N
with 060 the virtual rotation which can be expressed in function of
the generalized coordinates:
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56=Y" a‘f’_ 5q;. (A.8)

Substituting (A.8) into (A.7) gives:

3 —
oW =" Qibg; = 2ot . g—;éqi. (A.9)

i=1 v
Therefore, the generalized forces correspond to the projections of the

—
resulting angular moment M®°* on the axes about which the Euler-
angle rotations have been performed. Defining (see Figure A.2 )

— — —
a=-L_ g a-Y_d a-Z_a (@
00 0¢ oY
it follows
Qo = e - M""(¢,0,)
e
Qo = & M (6,0,9) (A11)
—_—
Q'L/} = €y - MtOt(¢a 9; 7/1)
which reformulated in matrix form gives:
QB . 6—9>T M;Ot
Q¢ _ [B]Mtot — e—¢>T . M?jot
. ar] \arte
—sin(y)) 0 cos(¥) (A.12)
= | cos(6) cos(ss) —sin(6) cos(6) sin(¥) '
0 1 0
Mtot
MéOt
MiOt

The following eleven muscles are included in the model: Deltoidus
(divided into a posterior, medial and anterior part), coracobrachialis,
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infraspinatus, teres minor, teres major, supraspinatus, subscapularis,
latissimus dorsi and pectoralis major. In the work of Breteler [13],
every muscle is divided into 2-11 fibers. In order to simplify the dy-
namical model, one resulting fiber per muscle is considered. There-
fore, the fibers are summed up and weighted by their Physiological
Cross-Sectional Area (PCSA). Moreover, the muscle force is modeled
using a linear law (see Equation A.13) with respect to the muscle ac-
tivity a. This allows to easily find the mapping between the muscle
force and the muscle activity.

Fy =a- Fmee (A.13)

The maximal muscle force F'%* is obtained from the PCSA and is
supposed to be:

Fraw = POSA - 40 [%} (A.14)
cm

The factor of 40 [Cz 2} is very controversial in the literature. It has
been chosen according to [71]. a is called the activity of the muscle.
It corresponds to the internal state of the muscle and its very fast

dynamics is neglected with respect to the neural excitation s.
ars (A.15)

where s is the neural excitation (0 < s < 1) and 7 (40[us|) its small
time constant (see [97] for a similar simplification). s is the input
variable of the dynamical system.

To sum up, there are eleven inputs (the neural excitations), 17
states (11 corresponding to the activities of the muscles and 6 corre-
sponding to the generalized coordinates with their time derivatives)
and 3 outputs (the 3D position of the humerus extremity).

Now that the dynamical model of the shoulder has been estab-
lished with its corresponding states, inputs and outputs, a muscle-
coordination scheme based on the pseudo-inverse map (introduced in
Section 4.3.1) is developed in the next section. The aim is to coordi-
nate the muscle acting on the shoulder in order to realize a predefined
positioning task of the humerus.
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A.3 Muscles coordination

A.3.1 The matrix of moment-arms

The total muscle moment of force:

—_— — —
Mo = ZMj = Zr—; x dj - Fi, (A.16)
J J

can be written as a matrix multiplication [48], [59]:

— —
M 3y1) = [Bzx11) F i1 (A.17)
Where
Fa,
-
Bl = |7 xdy- iy xdn| et F=| (A.18)
FM11

Applying the projection matrix P we find the mapping between the
— —

muscle forces F' and the generalized forces ) that we call the matrix

of moment-arms [WW]3x117:

— — —
Qax1) = [P][SXB] [B][lel] Frixay = [W][lel] Frixa (A.19)

[W] can be thought of an immersion map from a 11 dimensional
space to a 3 dimensional one. This map allows to find directly the
generalized forces corresponding to the muscle forces. Thus, deter-
mining the individual forces of each muscles in order to realize a
predefined movement (parametrized by the generalized forces) corre-
sponds to the problem of inverting this map. However, as we consider
a positioning task in the 3D space of the extremity of the humerus
together with 11 muscles, the system is overactuated by a degree of
8 and therefore not uniquely invertible.
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A.3.2 Pseudo-inverse map: 1°¢ coordination

In order to find a reasonable distribution of the muscle forces for a
given set of generalized forces, an optimization problem is formulated
with the following cost function:

min G1(F, X) (A.20)
(F,X)
with
Gi(F,X\)=FT[E]F - \T ([W] F - 6) . (A.21)

[E][11><11] is a diagonal weighting matrix. This cost function allows
us to find

Fop = (B W17 (W] W) G = (W] @ (A22)
where [W] is the pseudo-inverse of [W]. [Elj1x11) allows both to
balance the muscle forces and to modify the cost function. Whenever
the sum of the square muscles forces is minimized, [F] is equal to the
identity matrix and the pseudo-inverse has the classic Moore-Penrose
form [W+] = [W]" (W] [W]")~ (see [59]). Van der Helm [100] has
shown that the the results correspond best to the EMG (electromyo-
gram) measures if the distribution is obtained by minimizing the sum
of the square muscle stresses min(}_ o?). In this case, the diagonal

elements e; of [E] are:
1

- PCSA?
Where PCSA is the physiological cross sectional area of the muscle.
In this paper, the latter form of [E] has been chosen in order to
compare the results to those found in literature. Equation (A.22)
allows to find a set of Fyy, called effective forces ?eﬁr. They can be
positive or negative. A negative muscle force makes physically no
sense, as it would correspond to a muscle which pushes. Therefore
Fp, must verify

(A.23)

€

fin < Fun, < Fhnax (a.21)
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A.3.3 Nullspace constraints: 2™ coordination

N
A possibility to modify the muscle force vector F' without any impact

on the generalized forces 5 is to consider the null space of [W].
Here, null(W) is a matrix [N]{11xs with 8 column vectors n; which
are linearly independent. A linear combination of 7; has to be found
which verifies (A.24).

F < S+ g < O
, (A.25)

S < fﬁffJr npiape + o Fnpysps < X
where p; are the unknown multipliers. Reformulated in matrix form:

Fmin < fv’eﬂ’_‘_ N[ < Fmax (A.26)

— — —
FIN and FI8X are obtained by evaluating the symbolic vector F
with the muscle activities a; = 0 et a; = 1 considering the linear
muscle model (see Equation A.13). Formally, the complete muscle
forces, verifying all the constraints while realizing the positioning
task, are:

F =Feft { [N)p = Feff . Foull (A.27)

In order to find the unknown multipliers y;, a new optimization prob-
lem can be defined taking into consideration the constraints on the
muscle forces. This second optimization problem has been solved
using quadratic programming. To this end, a new cost function is
formulated:

subject to: [A]- 1 <

N

[Acg] - T = b eq
t

The following manipulations allow to formulate our optimization
problem in the form demanded in (A.28)

(A.28)

e

e Calculation of Gipter (1) = %?T[E] F
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203
e Calculation of the matrix [H]: h; ; = O Ginter
OO,

The matrix [A] and the vector b of the inequalities (A.28) are ob-
tained as follows:

flmaz _ fleff

H1 :
[N |Ohuxs] | . | | o= Al (A.29)
Ohuxs| =INT L = ) 7 | —mim s i
K16 .
A
. - .o, .
the matrix [Ae,] and the vector b .4 of the equalities:
11 0
[[Msxs|—sxs] | = | =1 (A.30)
16 0
F= Ve == realized
predefined 7 a ? s movc‘mcnt
m(;l:/eT —> ;b Optimization 117’ i 74;7@5,9,@
w+ 3 contact —»
[ ][11><.&] force l

Fig. A.3. Overview of the proposed alogrithm. y,: predefined movement,
qr: generalized coordinates, Q.,: generalized forces, [W T]: pseudo-inverse
of the moment arm matrix, F: muscle forces, s: neural excitations (system
input), y: realized movement.

N

Once the muscle force vector F' is known, the corresponding neu-
ral excitations are calculated using the mapping between the muscle-
force and the muscle activity a. Thanks to the linear force law, the



mapping is simply the Jacobian matrix [J] obtained from equation
(A.13). As [J] is square and positive definite, it is invertible:

—

-
Frixy = pixig @pixy = @ = [J'F (A.31)

As the dynamics of the muscle activity are very fast compared to
the realized movements, the muscle activity a is supposed to be ap-
proximately equal to the neural excitation s for the mapping. Hence
5~ [JF.

A.4 Conclusion

A particular open-loop coordination scheme was applied to the dy-
namical model of a human shoulder, which was considered as a
highly overactuated system. Constructive coordination was achieved
with the correct activation of the different muscles in order to real-
ize a predefined motion with realistic forces. The successful muscle-
coordination results are illustrated in movies (see Appendix E).
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Blade guiding analysis

A detailed description of the model of the double
parallelogram flexure with notch hinges used to
constrain the rectilinear movement of the DDL
is made (see [82]). A particular focus on its first
resonant mode and its dependancy with respect to
position is made.

Conceptually, the blade guiding support of the DDL can be schema-
tized by two rigid bodies, with respective masses M and m, inter-
connected by two sets of blades, the main ones with rigidity k1, and
the auxiliary ones with rigidity kq,. The auxiliary blades guarantee
the horizontal displacement of the main mass M. The parasitic ver-
tical deflexion of the main set of blades is exactly compensated by
the auxiliary one, since the blade length is equivalent. The mass M
remains indeed perfectly horizontal (see Figure B.1). Ouly m, the
intermediate platform, adapts its height accordingly. x1 is the hori-
zontal displacement of M and x5 is the horizontal movement of the
small mass m. x3 is the corresponding deflection of the small mass
m.

The coordinates x1, x2 and x3 are not free, but linked by geo-
metrical constraints:

Cl = 2.132 — T = 0 (Bl)
Cy = a3 +322/5/1=0 (B.2)
(4 results from a mechanical lever (not represented in Figure B.1),

constraining the horizontal displacement of the two masses, while Cy
indeed results from the blade mechanical coupling (see [40]).
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Fig. B.1. Schematic representation of the blade guiding support with its
coordinates and parameters. The dashed lines correspond to the vertical
deflection of the intermediate mass m and the horizontal motion of the
main mass M.

Using the Lagrangian formalism, the system can be described as
follow:

L= (]\/[33% + m(x% + Jﬁg) — kl,,ajg — k?l(.]?g — 371)2)

N =

d (oL\ OC 2. 0C; .
E( ) _Fi—; Aj, fori=1,2,3

. oC oC
Mz =u+ k?l(.]?g — 331) — 8711)\1 — a712/\2
. oC ocC
mxo = —k1p$2 - k1(332 - 331) - 8—:521 1— 3—:522/\2
. 00y 0C;
s = 6373 >\1 8:53 >\2

The control variable u (which delivers the force F') acts directly on
the first dynamical equation related to x1, which reflects the impact



of the PM stepper motor directly on the coarse stage output (see
Figure B.1).

The small-signal linearization of the above equations gives for the
operating point Zi:

Sz = Adx + Béu
0 1 0 000

~10a 0 103 000
0 0 0 100

4 “5a 0 =58 000
0 0 0 001
—32La 03213000
0
1007
0
B=29 501
0
30x;
o = 5]€11(5

B = 5(k1 — k1,)l8
5 — l
~ 25012(m + 4M) + Imz?

The 6 states are not independent since the conditions C; = 0, Cy = 0,
Cy = 0 and C, = 0 should be satisfied at any time.

This full six-order state-space model becomes controllable once
the constraints (B.1) and (B.2) (together with their time derivatives)
are taken into account. This leads to the following equivalent second-
order state-space realization:

T, = Ay, + Bru



where x, = (:Cl a'cl)T and

|01 10 2
A, = Lg 0} , B, = [10015] ,  wy = 10a — 50.

As foreseen, this simplified model corresponds to an ideal spring
behavior. However, the main resonant frequency of the equivalent
spring model (Figure B.2) changes with respect to position (wp is a
function of 7). Thus, this resonant mode cannot be directly canceled

25

I3
T

Resonant Frequency [Hz]
T

0.5

40

X1b: linearization point [mm]

Fig. B.2. Evolution of the main resonant frequency of the blade guiding
support with respect to its position within the full stroke.

by pole-zero placement in the controller, since its frequency evolves.

Moreover, the second conclusion from this analysis is that the
load of the coarse stage actuator changes drastically with position
(the force varies from minus 150 N to 150 N). These two character-
istics drive the design of the coarse stage controller, which should
be robust enough to handle this load and resonant-frequency change
throughout the full stroke.
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Piezoelectric hysteresis compensation

In the context of compensating the hysteresis
of the stack piezoelectric actuator, an hysteresis
compensation-method based on a Preisach model
is described in this appendiz.

The Preisach-based model of the piezoelectric hysteresis has been
adapted using electromagnetism theory by Ge and Jouaneh [28].
Some improvements of this method have also been proposed, such as
the generalized Preisach model, which relaxes the congruency prop-
erty [30]. Ge and Jouaneh developed a compensation method based
on the Preisach model [29]

C.1 Preisach model of hysteresis

The basic idea of the Preisach model lies in the description of the
hysteresis through an infinite number of operators vaglu(t)] (Fig.
C.1a). For piezoelectric actuators, yoz[u(t)] is set to +1 if the input
u(t) exceeds the switching value a or to 0 if the input u(t) is below
the switching value 3. The operators are multiplied by a weight-
ing function p(a,3) and connected in parallel (Fig. C.1b). Such a
representation takes into account the fact that the hysteresis is a
nonlinearity with nonlocal memory effect, which means that the cur-
rent displacement of the actuator, namely z(t), depends upon the
history of the input voltage u(t). The classical Preisach model can
then be mathematically written as:



/ / B)vaslu(t)) da dg (1)

a>f

This equation can be interpreted thanks to a limiting triangle Tj,
also called a— ( diagram. It is defined in such a way that ., > @ >
B > Umin, Where Upq, and U,;, are the limiting values of the input
voltage u(t). The surface ST, which corresponds to the operators
Yaplu(t)] set to +1, grows from bottom to top when the hysteresis is
in an ascending loop and decreases from right to left in a descending
loop (Fig. C.2). Since the operator vag[u(t)] is equal to 0 out of the
surface ST, Equation (C.1) can be written as:

// 3) dodf (C.2)

So as to both simplify the calculation and suppress the double
integration, the Preisach function is defined as follows:

.X’(()/7 ﬂ’) =To — T (C?))

where z,/ is the piezoelectric expansion on the major ascending
branch for an input voltage o, and x,p is the piezoelectric ex-
pansion on the first order reversal curve for an input voltage 5’ (Fig.

Yapu(t)]
1 < Yaslu(t)] pla, B)
:}—O\
r u(t) x(t)
0 ‘Jﬂ @ :)—O/

Fig. C.1. (a) Hysteresis operator vog[u(t)]. (b) Block diagram of the
Preisach model.
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(a)

Fig. C.2. Limiting triangle Ty for (a) an ascending loop and (b) a de-
scending loop.

Xt

TalB

Fig. C.3. (a) Expansion of the actuator for a input voltage increasing
until o’ and then decreasing until #’. (b) Limiting triangle Ty related to

(a)-

C.3). o' and ' represent the maxima, resp. the minima, of the in-
put voltage u(t). Figure C.3b shows that Equation (C.3) can also be
written as:

X', 0) = [[ wle.5)dads (C.4)



If the hysteresis loop contains several extrema, the surface S
is composed of several trapezoidal regions Sy (Fig. C.4). All the
extrema o) and 3}, that depend on the past values of the input
voltage u(t) are stored in the history. For the region S, the following
equation is deduced:

// p)dadb = X(ai, ) — X (a3, B1) (C.5)

The other regions are calculated in the same way. Because the
integration on the surface ST is the sum of the integrations on all
the surfaces Sk, the total piezoelectric expansion z(t) for an input
voltage u(t) is determined thanks to (C.2), depending on the current
slope of u(t):

u(t) >0
N
Z (0 Br—1) — X(ag, By)]
X(u(t), By) (C.6)
u(t) <0
N-1
() = Y [X(ak, Biy) — X (s, )]
k=1
+X (aly, By 1) — X(aly, u(t)) (C.7)

where NV is the number of maxima «j, and minima ), that are stored.

So as to compute the values X (o', 3), a mesh of o and [ is
created within Ty. The reference values X («, 3) are measured on
the piezoelectric actuator for all @ and 8 of the mesh and stored at
each corresponding node (Fig. C.5). Once the cell in which a given
pair (o/,3') lies is determined, the corresponding value X (o, 3}) is
computed using a bilinear-spline interpolation:

X (o', 0') = ago + ar0e + ap1f’ + anad' (C.8)
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Fig. C.4. (a) Hysteresis loop with several extrema o’ and 3’. (b) Limiting

triangle To related to (a).

For every X (o, (), the interpolation coefficients ago, a10, ao1
and a1, are obtained through the same spline interpolation based on

A T,
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(e5] C( ol Al
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P
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~—L~
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Bo B B
Fig. C.5. Division of the limiting triangle Ty into a finite number of

rectangles and triangles.



the values of the nodes surrounding the cell X (o, 5;), X (o, Bj+1),
X(aiq1,05) and X (i1, Bj4+1) (Fig. C.5). The expansion is deter-
mined using either (C.6) or (C.7).

To work properly, the Preisach model still needs an additional
property, namely the wipe-out property. It allows to erase the pair
(y, Biy_1) from the history once u(t) exceeds o/y,. Similarly, the pair
(oy, By) can be erased from the history once u(t) becomes smaller
than §%,. This avoids the excessive growing of the stored values.

C.2 Hysteresis compensation

So as to compensate the hysteresis of the actuator, the Preisach
model (Appendix C) has to be inverted. In other words, the voltage
u(t) that produces the desired expansion z(t) must be determined,
based on the model. This inversion is complicated by the fact that the
hysteresis is a nonlinearity with a nonlocal memory. The inversion of
the hysteresis model is achieved by modifying Equations (C.6) and
(C.7) so as to express the voltage u(t) as a function of the desired
expansion z(t). The history of the hysteresis must however be care-
fully taken into account. The cases of either ascending or descending
branches are treated separately.

e u(t)>0

If ¢y is defined as the time at which the input voltage reaches a local
minimum, the expansion is:

N

x(to) = Y_[X(a}, Bioy) — X (0}, 7)) (C.9)

k=1

where all values X (o, 5;,_;) and X (o}, 5;,) are already stored in
the history. As the voltage grows, the expansion is obtained with
(C.6). Combining this result together with (C.9), the following rela-
tion holds:
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Fig. C.6. Inverse Preisach model principle when u(t) > 0.

X(u(t), By) = x(t) — z(to) (C.10)
Equations (C.8) and (C.10) lead to the voltage

- :E(t) — ﬂf(to) — amﬂj\, — aopo
u(t) = P—s (C.11)

The only remaining problem is that the interpolation coefficients,
aoo, @10, ao1 and aj1, depend on the cell which contains the value
X (u(t), Bly)- Nevertheless, it can be solved by reasoning in the o — 3
diagram, as illustrated in Fig. C.6. When the voltage is at his local
minimum, the value X (u(t), 87 ) is located on the straight line a = 3
and is equal to zero. As the voltage grows, the point that contains
X (u(t), By) moves up on the vertical line § = 4. By calculating
the values X (o, B)y) that lies at the intersection of the line 5 = 3y
with the horizontal lines of the mesh, the cell which should contain
the value X (u(t), By) can be determined. As the interpolation coeffi-
cients are known for each cell, the voltage u(t) is the only remaining
unknown value and is obtained thanks to (C.11). As for the classical
Preisach model, the wipe-out property can be used to simplify the
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Fig. C.7. Open-looped tracking of a 1 Hz sinusoidal reference (dotted line)

with and without the compensation algorithm (continuous and dashed
line).

storage of the extrema.
The case @(t) < 0 is quite similar to the above one. The interested
reader will find the details of this approach in [102].

C.3 Implementation results

The hysteresis compensation algorithm is validated on the real sys-
tem (piezoelectric only) with different input signals. All the experi-
mentations are realized in open loop. Comparisons are done between
the system controlled with and without the compensation of the hys-
teresis.

For a low frequency input signal, Figures C.7 and C.8 show a large
improvement by using the compensation algorithm. The error de-
creases from 902 nm rms to approximatively 79 nm rms. The maxi-
mum error is about 150 nm, which is only 1.1% of the total stroke.
The major part of the error comes from the modeling and not from
the inversion. With input signals of higher frequency, the sampling
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Fig. C.8. Tracking error for a 1 Hz sinusoidal reference with and without

the compensation algorithm (continuous and dashed line).

period necessary for the inversion involves a higher error, which is
also increased by the dynamics of the piezoelectric actuator. Never-
theless, the compensation algorithm still provides far better results
than a simple open-loop control.

The response to a stochastic signal plotted in Figure C.9 also
shows a great improvement obtained by the addition of the compen-
sation algorithm. An error of 44 nm rms can be seen in Figure C.10
instead of 134 nm rms for a simple open-loop control, that means a
diminution of approximatively 67%. The maximum error is about
120 nm, which is 6% of the maximal stroke of 2 pum. In fact the
results are promising even if the stochastic signal contains high fre-
quencies that cannot be represented optimally with the model built
at low frequency. However, as the amplitude of the input signal di-
minishes, the dynamics of the piezoelectric are less visible than with
a high-amplitude sinusoidal signal. As the effect of the hysteresis
slowly decreases with an increasing frequency [20], a dynamic model
could be implemented to improve the performances [93]. Since both
the signal is stochastic and the future values are unknown, the de-
termination of the frequency or of the current slope can however be
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Fig. C.9. Open-looped tracking of a stochastic signal (dotted line) with
and without the compensation algorithm (continuous and dashed line).
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Fig. C.10. Tracking error for a stochastic reference with and without the
compensation algorithm (continuous and dashed line).

particularly tricky.
The interested reader will find the details in [102].



D

Illustrations of the Differential Delay Line

In this appendiz, a selection of pictures and draw-
ing of the DDL system is presented. These pic-
tures are not commented and are integrate to the
present work as illustrations of the final system
implemented in Paranal, August 2008.



(a) VLTI at Paranal: main telescopes

(c) VLTI at Paranal: auxiliary telescopes

Fig. D.1. ESO Very Large Telescope Interferometer (VLTI) infrastructure
in Paranal, Chile.



(c) DDL prototype with the dummy cat’s eye
mounted on the top of the blade guiding structure.

Fig. D.2. Differential Delay Line (DDL) prototype with its dedicated
optics (cat’s eye).



(b) DDL: complete system front side view

Fig. D.3. Differential Delay Line (DDL) final testing before packing to
Chile.



(b) VLTI

Fig. D.4. VLTI & DDL: in Paranal on Monte Cerro, Chile






E

Links to illustrative movies

In the context of overactuation, where the number
of degrees of freedom is usually large, movies are
very useful to illustrate the concepts successfully.

e 5R3D manipulator:
-http://lawww.epfl.ch/page24555.html

e Shoulder coordination:
-http://lawww.epfl.ch/Jahia/site/la/op/edit/pid/29277

e Differential Delay Line coordination:
-http://lawww.epfl.ch/Jahia/site/la/op/edit/pid/25947
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exact, 25
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accessibility area, 14
antagonism, 11, 32, 56, 100
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blade-guiding structure, 84

cat’s eye, 84
closed trajectory, 18, 32, 62
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compliance, 72, 75, 77
condition
connexity, 28, 45
integrability, 28
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cotangent bundle, 25, 42
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delay line, 80

destructive interference, 99

diffeomorphism, 17, 24, 39

differential delay line, 4, 79

differential geometry, 27
integrability condition, 5
Lie bracket, 5, 28
simply connected, 5

differentiation, 10, 31, 94

DISO, 85

double parallelogram flexure with

notch hinges, 85, 91
dual feed, 81
dual space, 25

eigenvalue, 70



eigenvector, 70, 77
end-effector, 13
ESO, 80

feed-forward, 88, 99

feedback, 86, 98

flatness, 90
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foliation, 31, 44

fringes, 80
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hyper-surface, 25, 43
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Preisach model, 90

integrability, 25

integrable distribution, 36

interferometry, 80

internal model principle, 88

intrinsic characterization, 10, 94

invariant set, 65, 66

involutive, 25, 28, 31, 36, 39, 42
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jacobian, 22, 33, 44, 56
matrix, 5, 29
rigid extension, 5, 57, 58, 68
soft extension, 59, 60, 62, 68, 77
joint
configuration, 15, 29
coordinate, 21

motion, 29
prismatic, 93
space, b

kernel, 41
kinematic, 5
direct problem, 20, 70
inverse problem, 21, 27, 51, 57,
60, 62, 69, 75
open chain, 13, 15
kolmogorov, 83, 87

Lagrange multipliers, 23

Lie bracket, 25, 36, 39

Lie group, 43
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convergence, 71

Lissajou, 17, 34, 37, 44, 66

loop transfer recovery, 86
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manifold, 17
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map, 15
surjective, 21
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null space, 56, 61
jacobian, 56, 59, 66



reduced, 67, 68

obstacle avoidance, 3

OPD, 80

operational space, 6

optical path difference, 80

output manifold, 29
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Park transformation, 90
piezoelectric, 84, 88
PM stepper motor, 84, 88, 90
Poincaré

Bendixon, 38
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section, 18
potential function, 51, 62, 65
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predictability, 62, 72, 77
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prioritization, 6, 68
pseudo-inverse, 5, 22, 28, 33, 37,
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map, 66
Moore-Penrose, 5, 23

redundancy, 4, 15
fiber, 53, 63, 65, 73
repeatability, 18, 51, 55, 57, 75

self-motion, 15, 53, 57, 60, 62, 77

simply connected, 38

singularities
accessibility, 12, 56
algorithmic, 56, 58, 59, 68, 71
integration, 12
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submanifold, 38

submersion, 5, 29, 32, 34, 39
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vector fields, 28
distribution, 25
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Glossary

AT : Auxiliary Telescopes

DDL : Differential Delay Line

DISO : Dual Input Single Output

DOF : Degree Of Freedom

dOPD : Differential Optical Path Difference
ESO : European Souther Observatory

FEM : Finite Element Model

GHJ : Glenohumeral Joint

HDD : Hard Disk Drive

ISG : International Shoulder Group

LQR : Linear-Quadratic Regulator

LQG : Linear-Quadratic Gaussian Regulator
MIMO : Multi-Input Multi-Output

NI DAQ : National Instrument Digital Acquisition board
OG : Observatoire de Genéve

OPD : Optical Path Difference

PCSA : Physiological Cross-Sectional Area
PID : Proportional Integral Derivative

Pinv : Pseudo-Inverse

PM : Permanent Magnet



PRIMA : Phased-Referenced Imaging and Microarcsecond Astrom-
etry

PZT : Piezoelectric stack actuator

RMS : Root Mean Squared

SISO : Single Input Single Output

UT : Unit Telescope

VLTT : Very Large Telescope Interferometer
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