
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

acceptée sur proposition du jury:

Lausanne, EPFL
2009

Prof. A. Martinoli, président du jury
Prof. P. Thiran , directeur de thèse

Prof. P. Frossard, rapporteur
Prof. A. Jajszczyk, rapporteur

Prof. A. Markopoulou, rapporteur

Robustness to Failures in Two-Layer Communication
Networks

Maciej Kurant

THÈSE NO 4295 (2009)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 27 février 2009

À LA FACULTé INFORMATIQUE ET COMMUNICATIONS

Laboratoire pour les communications informatiques et leurs applications 3

SECTION DES SYSTÈMES DE COMMUNICATION

To my wife Rybcia,
who pushed me towards this adventure.

4

“Layers! Onions have layers. Ogres have layers. Onions have
layers...you get it. We both have layers.”

Shrek to Donkey, in ‘Shrek’, 2001

“If it turns out there is a simple ultimate law which explains
everything, so be it – that would be very nice to discover. If it
turns out it’s like an onion with millions of layers... then that’s
the way it is.”

Richard Feynman, 1918-1988

6

Abstract (English)

A close look at many existing systems reveals their two- or multi-layer nature,
where a number of coexisting networks interact and depend on each other.
For instance, in the Internet, any application-level graph (such as a peer-
to-peer network) is mapped on the underlying IP network that, in turn,
is mapped on a mesh of optical fibers. This layered view sheds new light
on the tolerance to errors and attacks of many complex systems. What is
observed at a single layer does not necessarily reflect well the state of the
entire system. On the contrary, a tiny, seemingly harmless disruption of
one layer, may destroy a substantial or essential part of another layer, thus
making the whole system useless in practice.

In this thesis we consider such two-layer systems. We model them by
two graphs at two different layers, where the upper-layer (or logical) graph
is mapped onto the lower-layer (physical) graph. Our main goals are the
following. First, we study the robustness to failures of existing large-scale
two-layer systems. This brings us some valuable insights into the problem,
e.g., by identifying common weak points in such systems. Fortunately, these
two-layer problems can often be effectively alleviated by a careful system
design. Therefore, our second major goal is to propose new designs that
increase the robustness of two-layer systems.

This thesis is organized in three main parts, where we focus on different
examples and aspects of the two-layer system.

In the first part, we turn our attention to the existing large-scale two-layer
systems, such as peer-to-peer networks, railway networks and the human
brain. Our main goal is to study the vulnerability of these systems to random
errors and targeted attacks. Our simulations show that (i) two-layer systems
are much more vulnerable to errors and attacks than they appear from a
single layer perspective, and (ii) attacks are much more harmful than errors,
especially when the logical topology is heterogeneous. These results hold
across all studied systems.

A natural next step consists in improving the failure robustness of two-
layer systems. In particular, in the second part of this thesis, we consider the

7

8

IP/WDM optical networks, where an IP backbone network is mapped on a
mesh of optical fibers. The problem lies in designing a survivable mapping,
such that no single physical failure disconnects the logical topology. This is
an NP-complete problem. We introduce a new concept of piecewise surviv-
ability, which makes the problem much easier in practice. This leads us to an
efficient and scalable algorithm called SMART, which finds a survivable map-
ping much faster (often by orders of magnitude) than the other approaches
proposed to date. Moreover, the formal analysis of SMART allows us to
prove that a given survivable mapping does or does not exist. Finally, this
approach helps us to find vulnerable areas in the system, and to effectively
reinforce them, e.g., by adding new links.

In the third part of this thesis, we shift our attention one layer higher,
to the application-over-IP setting. In particular, we consider the design of
Application-Level Multicast (ALM) for interactive applications, where a sin-
gle source sends a delay-constrained data stream to a number of destina-
tions. Interactive ALM should (i) respect stringent delay requirements, and
(ii) proactively protect the system against overlay node failures and against
(iii) the packet losses at the IP layer. We propose a two-layer-aware approach
to this problem. First, we prove that the average packet loss rate observed
at the destinations can be effectively approximated by a purely topological
metric that, in turn, drops with the amount of IP-level and overlay-level
path diversity available in the system. Therefore, we propose a framework
that accommodates and generalizes various techniques to increase the path
diversity in the system. Within this framework we optimize the structure of
ALM. As a result, we reduce the effective loss rate of real Internet topologies
by typically 30%-70%, compared to the state of the art.

Finally, in addition to the three main parts of the thesis, we also present
a set of results inspired by the study of ALM systems, but not directly
related to the ‘two-layer’ paradigm (and thus moved to the Appendix). In
particular, we consider a transmission of a delay-sensitive data stream from
a single source to a single destination, where the data packets are protected
by a Forward Error Correction (FEC) code and sent over multiple paths. We
show that the performance of such a scheme can often be further improved.
Our key observation is that the propagation times on the available paths
often significantly differ, typically by 10-100ms. We propose to exploit these
differences by appropriate packet scheduling, which results in a two- to five-
fold improvement (reduction) in the effective loss rate.

Keywords: Two-layer networks, robustness to errors and attacks, com-
plex networks, IP/WDM, overlay networks, multipath transmission.

Abstract (Rumantsch)

Cur chi’s guarda ils sistems chi existan da maniera plü precisa, lura as
s’accorscha ch’els han plüssas stresas, e cha diversas raits interagischan e
dependan l’üna da l’otra. Per exaimpel ill’internet, üna rait da la stresa
d’applicaziun (per exaimpel üna rait da “Peer-to-Peer”) po esser transpon-
ada illa rait dad IP chi as chatta suotvart, e quella rait es danouvamaing
transponada in üna rait da fibras opticas. Quista perspectiva illümina la
resistenza cunter sbagls ed attachs in sistems cumplichads dad üna nouva
maniera. Quai chi’s observa in üna singula stresa nun sto esser ün bun
purtret da tuot il sistem. Anzi, ün’interrupziun pitschnischma in üna stresa
po devastar üna gronda part dad ün’otra stresa, ed uschenas render tuot il
sistem indouvrabel.

In quista dissertaziun, nus contemplain sistems avec duos stresas. Nus
tils modellain cun duos grafs sün duos nivels differents. Il graf chi’s chatta
sü’l nivel sura (il graf logic) es transponà i’l graph chi’s chatta sü’l nivel suot
(il graf fisic). Nos böts sun ils seguaints. Il prüm, nus stübgian la robustezza
cunter sbagls da gronds sistems cun duos stresas chi existan fingià. Quist
maina üna preziusa invista aint in quist problem. Per furtüna, id es suvent
pussibel da levgiar quistas manatschas tras ün design prudent dal sistem.
Nos seguond böt es da proponer nouvs designs chi augmentan la robustezza
da sistems cun duos stresas.

Quista dissertaziun es organisada in trais parts prinzipalas. Minchüna
focussa sün differents exaimpels ed aspects dal sistem cun duos stresas.

Illa prüma part, nus guardain gronds sistems cun duos stresas chi existan
fingià, per exaimpel raits da “Peer-to-Peer”, raits da tren obain il tschervé
dals umans. Nos böt prinzipal es da stübgiar la sensibilità da quists sistems
cunter sbagls casuals ed attachs intenziunads. Nossas simulaziuns muossan
cha (i) sistems cun duos stresas sun plü sensibels cunter sbagls ed attachs
co chi’s pudess crajer dad üna perspectiva chi guarda be ün nivel, e (ii)
attachs fan ün donn plü grond co sbagls, spezialmaing cur cha la topologia
es eterogena. Quists resultats sun vairs per tuot ils sistems cha nus vain
stübgiads.

9

10

Ün prossem pass chi’d es natüral es da megldrar la robustezza cunter
sbagls in sistems cun duos stresas. Particularamaing illa seguonda part da
quista dissertaziun nus guardain raits opticas dad IP/WDM. Il problem es
da skizzar üna transponaziun survivainta, chi riva da surviver sbagls fisics.
Quist problem es NP-cumplet. Ma nus preschentain ün nouv concept da
capazità da surviver toc per toc, ed ans chattain cun ün problem plü simpel.
Nus preschentain ün algoritmus effizient nomnà SMART. Quist algoritmus
chatta üna transponaziun survivainta in damain temp co otras soluziuns
existentas. Cull’analisa formella da SMART pudain nus cumprovar ch’üna
transponaziun survivainta exista o na. Finalmaing, cun quista tecnica nus
pudain chattar regiuns sensiblas dad ün sistem e tillas render plü robustas.

Finalmaing, illa terza part da quista dissertaziun, nus guardain amo üna
stresa plü ot, nempe la situaziun dad applicaziuns sur IP. Nus guardain
particularamaing la construcziun dad “Application-Layer Multicast” (ALM)
per applicaziuns interactivas. Qua, üna funtana trametta ün fluss da datas
a plüssas destinaziuns. Il ALM interactiv stess (i) respectar restricziuns da
retard, e proteger il sistem cunter (ii) sbagls dad apparats e (iii) perditas illa
stresa dad IP. Nus proponain üna soluziun chi guarda tuottas duos stresas.
Nus muossain ch’is po approximar la frequenza da perdita da pakets per
las destinaziuns cun üna metrica topologica chi dependa da la spessezza
da sendas aint il sistem. Pervi da quai, nus proponain üna soluziun chi
douvra diversas tecnicas per agrondir la diversità da sendas aint il sistem.
Uschenas pudain nus megldrar la structura dad ALM. Cun quai, nus eschan
capabels da reducir la frequenza da sbagls in topologias dad internet da 30
a 70 pertschient.

Nus agiunschain a quistas trais parts insaquants results inspirats dal studi
da sistems dad ALM chi nu sun directamaing in relaziun cun architecturas
cun duos stresas. Quists reslutats as chattan i’l Appendix. Nus guardain la
transmissiun da datas urgentas dad üna funtana ad üna singula destinaziun,
e nus protegain ils pakets cun “Forward Error Correction” (FEC) per tils
trametter sün differentas sendas. Nus muossain cha’ls temps da transmissiun
pon esser fich differents per differentas sendas, normalmaing da 10 a 100 ms.
Nus proponain dad utilisar quistas differenzas cun üna planisaziun adattada
chi maina ad üna meglieraziun da la frequenza da sbagls da tschinch jadas.

Pled-clavs: Raits cun duos stresas, robustezza cunter sbagls ed attachs,
raits cumplexas, IP/WDM, raits dad overlay, transmissiun sur plüssas sendas.

Acknowledgements

First of all, great thanks to Patrick Thiran, my supervisor, and a genuine
scientist. He taught me how to do serious and rigorous research. He was also
very tolerant and forgiving, when necessary.

I would also like to thank all the other members of my lab. For moral
support, fruitful discussions, feedback on my work, a couple of parties, and
common lunches and coffees.

Many thanks to all my friends, including the doctoral school folks, base-
ment republic guys, the autobusiukas team, my office mate, the Polish com-
munity, all my friends back in Poland and scattered around the world,
the PRO soccer team, Graduate Student Association (GSA), and all my
moto/mountain/windsurfing/bridge buddies. Allow me not to give the con-
crete names and face the sensitive ‘whom-to-enlist’ dilemma. With one excep-
tion, Etienne Perron, who actually wrote a part of this thesis by translating
the abstract to one of the four national languages of Switzerland.

Last, but not least, I would like to thank my family, especially my parents
(“When are you finally going to graduate?!”), my grandmother (“It’s all nice,
but when will you find a real job?”), my younger sister (“Maybe I should
study a bit longer too?”) and my lovely wife (“Go for it!”).

11

12

Contents

1 Introduction 19
1.1 Motivations and Goals . 19
1.2 Dissertation Outline and Contributions 21
1.3 Related Work . 25

2 General Two-Layer Systems 27
2.1 Two-Layer Structure . 27

2.1.1 Physical Graph Gφ = (V φ, Eφ) 27
2.1.2 Logical Graph Gλ = (V λ, Eλ) 27
2.1.3 Mapping M . 28

2.2 Failures . 29
2.2.1 Edge Failures vs. Node Failures 29
2.2.2 Logical Failures vs. Physical Failures (and failure prop-

agation) . 29
2.2.3 Single vs. Multiple Failures 30
2.2.4 Errors vs. Attacks . 30

2.3 Failure Protection Mechanisms 31
2.3.1 Proactive vs Reactive 31
2.3.2 Physical Layer vs. Logical Layer 31

2.4 The Notion of Vulnerability 31
2.5 Two-Layer Systems Addressed in This Thesis 33

3 Vulnerability of Existing Large-Scale Two-Layer Systems 35
3.1 Introduction . 35

3.1.1 Errors vs Attacks . 35
3.1.2 Error and Attack Tolerance of Single-Layer Systems . . 36
3.1.3 Many complex systems are layered 36
3.1.4 Our Objective and Achievements 36
3.1.5 Organization of this Chapter 37

3.2 Data Sets and Models . 37
3.2.1 Railway . 38

13

14 CONTENTS

3.2.2 Gnutella . 39
3.2.3 Brain . 40
3.2.4 ‘ER on ER’ and ‘BA on ER’ 41

3.3 Failures, Protection Techniques, and Vulnerability 42
3.3.1 Failures . 42
3.3.2 Protection Mechanisms 43
3.3.3 Vulnerability Metric 43

3.4 Edge Load Distribution . 44
3.5 Simulation Results . 45
3.6 Conclusion: Single-Layer vs. Two-Layer View 47
APPENDIX . 49
3.A Trainspotting: Extraction of Transportation Network Topolo-

gies from Timetables . 49
3.B From Diffusion MRI to a Brain Network 54

4 Survivability in IP/WDM Networks 57
4.1 Introduction . 58
4.2 IP/WDM as a Two-Layer System 59

4.2.1 Physical Layer, Logical Layer and the Mapping in IP/WDM
Networks . 59

4.2.2 Failures in IP/WDM Networks 60
4.2.3 Failure Protection Mechanisms in IP/WDM Networks . 61

4.3 Our Objectives and Achievements 62
4.3.1 We Address the IP Restoration Problem 62
4.3.2 Vulnerability W and Survivability 62
4.3.3 Related Work . 62
4.3.4 Our Contributions . 64
4.3.5 We use the general two-layer model terminology 65

4.4 Additional Notation . 65
4.4.1 Combining two mappings 66
4.4.2 Contraction and Origin 67
4.4.3 Survivability and Piecewise Survivability 68

4.5 Fundamental properties of survivable and 70
4.5.1 The Expansion of Survivability 70
4.5.2 Invariance of Survivability Under Contraction 71
4.5.3 The Existence of a Survivable Mapping 71

4.6 The SMART algorithm . 72
4.6.1 The pseudo-code of SMART 72
4.6.2 SMART illustration . 73
4.6.3 The Correctness of the SMART Algorithm 74
4.6.4 The Order of a Sequence of Subgraphs 74

CONTENTS 15

4.7 Implementation - SMART-H 75

4.7.1 Which theoretical results hold for SMART-H? 75

4.7.2 DisjointMap - a heuristic for Step 2 of SMART-H . . 76

4.8 SMART-H Applications . 78

4.8.1 Application1: Formal Verification of the Existence of
a Survivable Mapping (ExSearch and SepPath) 79

4.8.2 Application 2: A Tool Tracing and Repairing the Vul-
nerable Areas of the Network 80

4.8.3 Application 3: A Fast Heuristic 80

4.9 Simulation Results . 80

4.9.1 Physical and Logical Topologies 80

4.9.2 ExSearch and SepPath Efficiency, and ‘Unknown Area’ 81

4.9.3 Results for Application 1 84

4.9.4 Results for Application 2 84

4.9.5 Results for Application 3 85

4.10 Extension 1: Span failures . 89

4.10.1 Changes: SMART-Span 89

4.10.2 Results . 90

4.11 Extension 2: Node failures . 91

4.11.1 Changes: SMART-Node 91

4.11.2 Results . 91

4.12 Extension 3: Double-link failures 91

4.12.1 Changes: SMART-2Link 92

4.12.2 Results . 92

4.13 Extension 4: Capacity constraints 93

4.13.1 Which theoretical results hold? 94

4.13.2 SMART-C . 95

4.13.3 Results . 95

4.14 Conclusion . 96

APPENDIX . 97

4.A Proofs . 97

4.A.1 Proof of Theorem 1 . 98

4.A.2 Proof of Theorem 2 . 100

4.A.3 Proof of Theorem 3 . 101

4.A.4 Proof of Theorem 4 . 101

4.A.5 Proof of Corollary 1 102

4.A.6 Proof of Theorem 5 . 103

16 CONTENTS

5 Maximal Path Diversity in Overlay/IP Networks 105
5.1 Introduction . 105
5.2 Overlay as a Two-Layer System 106

5.2.1 The Physical Layer, Logical Layer and the Mapping in
Overlay/IP Networks 107

5.2.2 Failures in Overlay/IP Networks 107
5.2.3 Failure Protection Mechanisms in Overlay/IP Networks 108

5.3 Application-Level Multicast (ALM) 108
5.3.1 Regular ALM . 109
5.3.2 Interactive ALM . 109
5.3.3 Design Goals in Interactive ALM 110

5.4 Our Objectives and Achievements 111
5.4.1 We consider the Interactive ALM 111
5.4.2 Vulnerability W . 111
5.4.3 Related work . 111
5.4.4 Our Contributions . 112

5.5 Additional notation and problem formulation 113
5.5.1 Overlay layer and capacity constraints 113
5.5.2 IP layer . 114
5.5.3 Packet losses . 114
5.5.4 Maximal allowed time tmax(v) and average loss rate r̄ . 115
5.5.5 General problem formulation: Problem P1 115

5.6 Topology-based formulation: Problem P2 115
5.6.1 Critical components Cλ(v) and Cφ(v) 116
5.6.2 Vulnerability W,Wλ and Wφ 116
5.6.3 Problem P2 . 117
5.6.4 Equivalence of P1 and P2 117

5.7 Protection techniques . 118
5.7.1 SingleTree (Fig. 5.4a) 118
5.7.2 SingleGraph (Fig. 5.4b) 120
5.7.3 MultiTree (Fig. 5.4c) 120
5.7.4 MultiGraph (Fig. 5.4d) 120
5.7.5 A common framework Gλ 121

5.8 Objective functions . 122
5.8.1 RAND (reference point) 122
5.8.2 1-LAYER (state of the art) 122
5.8.3 2-LAYER (our proposal) 123

5.9 Constructing a good topology Gλ 123
5.9.1 Lower-bounds on Wλ and Wφ 124

5.10 Simulation results . 125
5.10.1 Data sets . 125

CONTENTS 17

5.10.2 Setting tmax . 125
5.10.3 Vulnerability W(η) and topology Gλ as a function of η. 125
5.10.4 Detailed results for 0<η<1 126

5.11 Conclusion . 129
APPENDIX . 130
5.A Proofs . 130

5.A.1 Proof of Theorem 6 [Equivalence of P1 and P2] 130
5.A.2 Proof of Observation 1 132

5.B Lower bounds . 133
5.B.1 Simple lower-bound on Wφ 133
5.B.2 CompleteGraph lower-bound on Wφ 134
5.B.3 SingleGraph (and SingleTree) lower-bound on Wφ . . 134
5.B.4 MultiT ree lower-bound on Wφ 135
5.B.5 SingleGraph (and SingleTree) lower-bound on Wλ . . 136

5.C Speeding-up the heuristic . 137
5.C.1 Computation of critical elements for Gλ

i ∈ Gλ 137
5.C.2 Useful theoretical result 139

6 Conclusion 141

APPENDIX 144

A Exploiting Path Propagation Time Differences in Multipath
Transmission with FEC 147
A.1 Introduction . 147

A.1.1 Propagation times on direct and indirect paths may
differ significantly . 148

A.1.2 The differences in propagation times can be exploited
by a multipath FEC system 151

A.1.3 Organization of this chapter 152
A.2 Model and problem statement 152

A.2.1 Path losses . 152
A.2.2 Multipath FEC . 153
A.2.3 Packet scheduling . 154
A.2.4 Effective loss rate π∗

B and problem statement 155
A.3 Exact analytical derivation of loss rate π∗

B 155
A.3.1 The effective loss rate π∗

B for an arbitrary schedule . . 155
A.3.2 The effective loss rate π∗

B for even spacing on paths . . 157
A.4 The design of the schedule S 160

A.4.1 ‘Immediate’ packet scheduling Simm - state of the art . 161
A.4.2 ‘Spread’ packet scheduling Sspr - our proposal 162

18 CONTENTS

A.4.3 Comparison of Simm and Sspr: Optimal schedules Simm
opt

and Sspr
opt , and loss rate improvement γ. 163

A.4.4 Capacity constraints 164
A.5 Performance evaluation . 164

A.5.1 Simulation results . 164
A.5.2 Trace-driven PlanetLab evaluation 169

A.6 Related work . 172
A.7 Conclusion . 173

Bibliography 174

Publications 187

Curriculum Vitae 189

Chapter 1

Introduction

1.1 Motivations and Goals

Two-Layer Systems

Many technological, social, transportation or biological systems can be nat-
urally described in terms of graphs. However, a closer look at some of these
systems reveals their two- or multi-layer nature, where a number of coexist-
ing networks interact and depend on each other. For instance, the IP graph
of the Internet and the network formed by a Peer To Peer (P2P) application,
although usually studied separately, are closely related. Indeed, each P2P
link virtually connects two IP nodes. These two IP nodes are usually distant
in the underlying IP topology, and the virtual connection is realized as a
path found by IP routers. In other words, the graph formed by an applica-
tion is mapped on the underlying IP network. Moreover, the IP links are in
turn mapped on the physical layer that consists of a mesh of optical fibers
usually buried in the ground along roads, rails, or power lines. The resulting
topologies at the three layers (application, IP, physical) are very different
from each other.

Another good example of a layered system is transportation networks.
Indeed, many real-life transportation systems can be interpreted as a net-
work of traffic flows mapped on top of the graph representing the physical
infrastructure (roads, railways, power lines).

This thesis is about such multi-layer systems. We focus mainly on two-
layer systems and describe them by two graphs at two different layers, where
the upper-layer (logical) graph is mapped onto the lower-layer (physical)
graph. We give a simple example of a two-layer network in Fig. 1.1.

19

20 CHAPTER 1. INTRODUCTION

Log
ica

l

Ph
ys

ica
l

Map
pin

g

eλ
1

eλ
2

eφ
1

eφ
2

Figure 1.1: Two-layer network - the main object of study in this thesis. Every
edge in the logical graph is mapped onto the physical graph. For instance, the
logical edge eλ

1 is mapped as a physical path 〈eφ
1 , eφ

2 〉.

What Changes Under Two-Layers?

The layered view sheds new light on the tolerance to errors and attacks of
many complex systems. What is observed at a single layer does not necessar-
ily reflect well the state of the entire system. This is because a single physical
component can carry multiple logical connections. For instance, one optical
fiber often carries tens of IP links, one IP link can carry many application
level connections, and one railway segment typically serves many trains. As
a result, a tiny, seemingly harmless (from a single-layer perspective) disrup-
tion of the physical graph, may destroy a substantial or essential part of the
logical graph, thus making the whole system useless in practice.

For example, in Fig. 1.1, the physical edge eφ
2 carries two logical links,

eλ
1 and eλ

2 , and thus its single failure propagates to the logical layer and
multiplies, bringing down both links.

Goals

To the best of our knowledge, the fragile nature of two-layer systems has not
been comprehensively studied to date. We set the two main goals of this
thesis, as follows.

First, we want to study the robustness to failures of existing two-layer
systems. This should bring us some valuable insight into the problem, e.g.,
by identifying common weak points in such systems.

1.2. DISSERTATION OUTLINE AND CONTRIBUTIONS 21

Fortunately, these two-layer problems may often be effectively alleviated
by a careful system design. Therefore, our second major goal is to propose
new designs that increase the robustness of two-layer systems.

1.2 Dissertation Outline and Contributions

General two-layer model (Chapter 2)

We begin by giving a general model of a two-layer system in Chapter 2.
We discuss some of its universal aspects, such as types of failures or failure
protection techniques. This chapter serves as common reference point that
spans the entire thesis.

Study of Existing Large-Scale Systems (Chapter 3)

Our goal in Chapter 3 is to gain more understanding of the problem of failure
propagation and multiplication by studying the existing large-scale two-layer
systems. We do not constrain this study to communication networks only.
On the contrary, we consider examples in fields as different as the Internet
(Gnutella), transportation (railway networks) and biology (human brain).

In order to conduct this study, we first have to obtain appropriate data
sets describing two-layer systems. This necessary step turned out to be rel-
atively challenging and involved a significant data-mining effort. Indeed,
although there are plenty of one-layer complex network data freely available,
the resources are very sparse when it comes to two-layer systems. This is not
surprising, as the two-layer paradigm has been little studied to date. As a
result, in many cases we had to develop a dedicated methodology just to get
the data to our study. To this end, we have made the following contributions.

• We propose an algorithm that constructs the topology of the physi-
cal infrastructure of a public transportation system based only on its
timetables [1,2]. This is a topic on its own, and there exists at least
one PhD thesis entirely devoted to it [3].

• We develop a novel methodology to infer a network of long distance
cortex-to-cortex connections in the human brain, based on a diffusion
MRI data [4].

• We aggregate at the Autonomous System (AS) granularity a snapshot
of the Gnutella file sharing network, and we map the resulting weighted
graph onto a known AS-level Internet topology.

22 CHAPTER 1. INTRODUCTION

It should be stressed that obtaining real data sets that cover both layers is
crucial for our study. Indeed, it is tempting to try to generate one layer
based on the information available in the other layer. However, we showed
in [2] that the results of such attempts significantly differ from the real-world
patterns.

Once the two-layer data sets are prepared, we can study their vulnerabil-
ity to various failures. We simulate two types of physical failures: errors -
failures of randomly chosen components, and attacks - failures of components
that play a vital role in the system. Moreover, in order to cover the whole
range of features specific to these systems, we focus on two extreme policies
of system’s response to failures, (i) no rerouting and (ii) full rerouting. Our
main findings, common to all data sets are [5]:

• Attacks are much more harmful than errors. For example, in Gnutella
with no rerouting, half of the logical topology is erased after 22% phys-
ical errors, or after only 0.04% attacks.

• When the system is attacked, the logical graph is usually affected much
faster than the physical graph. For instance, in Gnutella, an attack
on 5% of the physical edges hardly affects the physical graph, but
deletes more than 95% of logical edges. This result underlines the
fundamental difference between the single-layer (physical layer) view
typically considered in the previous studies, and the two-layer view
advocated in this thesis.

• A heterogeneous logical topology makes the system more vulnerable
to attacks. We reach this conclusion based on two artificial two-layer
system models that we included in our study.

IP/WDM Design (Chapter 4)

The study of existing large-scale systems in Chapter 3 confirms that two-
layer systems are much more vulnerable to errors and intentional attacks
than they appear from a single layer perspective. This raises a natural ques-
tion: Can we increase the robustness of a two-layer system by its appropriate
design? Fortunately, in most cases it is possible. However, two-layer systems
come in a wide range of variations. Depending on a setting, we may face
different degrees of freedom (some parameters may be fixed in some sce-
narios, and free to change in other scenarios), types of failures (edge/node,
physical/logical), constraints (delay, capacity, technology) and performance
metrics. Consequently, there is no ‘one-fits-all’ two-layer design solution.

1.2. DISSERTATION OUTLINE AND CONTRIBUTIONS 23

For this reason, we consider the design problem in the context of two specific
two-layer systems. We address them in Chapter 4 and 5, respectively.

In Chapter 4, we consider IP/WDM networks. The IP/WDM technology
allows the owner to set up an IP backbone network on top of a mesh of
physical fibers spanning some geographical region. Such a system is typically
owned by a single ISP (Internet Service Provider) and consists of 10-100
nodes. As the physical network is composed of the existing fibers, and the
logical graph is closely related to the traffic demands, these two layers are
often considered given and fixed. Then the problem boils down to designing
an appropriate mapping, called a survivable mapping.

Finding a survivable mapping is known to be NP-complete, making it
impossible in practice to assess the existence or absence of such a mapping
for large networks. We propose a novel approach to this problem, which
results in the following contributions:

• We introduce a new concept of piecewise survivability, which makes the
problem much easier in practice (although still NP-complete).

• Through a graph-theoretic analysis we demonstrate a number of prop-
erties of a piecewise survivable mapping. This allows us to formally
prove that a given survivable mapping does or does not exist [6,7]. A
crucial feature of our approach is that it does not have to backtrack
and exhaustively search the solution space, which results in a great
scalability.

• We provide a technique that finds vulnerable areas in the system, and
that helps to effectively strengthen them, e.g., by adding new links. As
a result, we enable a survivable mapping in systems for which such a
mapping originally does not exist.

• We give an efficient and scalable algorithm that finds a survivable
mapping much faster (often by orders of magnitude) than the other
approaches proposed to date [8].

• Our approach covers the types of various physical components, such as
links, nodes, spans, or double-failures [9].

Overlay/IP Design (Chapter 5)

An Overlay/IP system is an application-level network (typically spanning a
number of end-hosts running the application) built on top of the Internet. As
the logical links are virtual, we are free to construct and change the logical

24 CHAPTER 1. INTRODUCTION

layer. In contrast, as regular Internet users (and not an ISP), we have no
direct control over the physical (IP) network nor over the mapping (IP paths
are determined by IP routers).

In particular, we consider the Application-Level Multicast (ALM) for in-
teractive applications, where a single source sends a delay constrained data
stream to a number of destinations. Such a system should (i) respect strin-
gent delay requirements, and (ii) proactively protect the system against over-
lay node failures and against (iii) the packet losses at the IP layer. We propose
a two-layer-aware approach to this problem, which results in the following
contributions [10]:

• We define a metric called VulnerabilityW, based purely on the topology
of the ALM system. We prove that, under some assumptions, W is
equivalent to the average packet loss rate observed at the destinations.
This crucial observation allows us to focus directly on minimizing W,
which significantly simplifies the problem.

• We note that W drops with the amount of IP-level and overlay-level
path diversity available in the system. Therefore, we consider various
techniques to create a number of alternative paths in ALM, such as
adding redundant cross-links, or using a set of multiple distribution
trees. We propose a framework that accommodates and generalizes
these approaches.

• Within this framework, we optimize the structure of ALM. As a result,
we reduce the Vulnerability W (and thus the effective loss rate) of real
Internet topologies by typically 30%-70%, compared to the state of the
art.

• Moreover, we develop a set of lower-bounds on W and show that our
approach is nearly optimal.

• Finally, we study factors that naturally limit the available IP-path
diversity, such as the system size and maximal allowed delay.

Finally, in Chapter 6 we conclude the thesis.

Multipath Transmission with FEC (Abstract A)

There are many side products of this thesis, but one is especially worth men-
tioning. It is a set of results related to ‘Multipath Transmission with FEC’.
Although our work on this topic was originally inspired by the Overlay/IP

1.3. RELATED WORK 25

design problem described in Chapter 5, it does not fall in the ‘two-layer’ core
of this thesis. For this reason, we moved this part to the Appendix.

By ‘Multipath Transmission with FEC’ we mean the transmission of a
delay-sensitive data stream from a single source to a single destination, where
the data packets are protected by Forward Error Correction (FEC) code and
sent over multiple paths. It has been shown before that such an approach
improves the transmission’s robustness to bursty packet losses - the predom-
inant type of failures in today’s Internet.

We show that the performance of such a multipath FEC scheme can often
be further improved. In particular, we make the following contributions [11]:

• First, based on real-life data, we observe that the propagation times on
the available paths often significantly differ, typically by 10-100ms.

• We propose to exploit these differences by appropriate packet schedul-
ing that we call ‘Spread’.

• We evaluate our solution with a precise, analytical formulation, and by
trace-driven simulations. Our studies show that Spread substantially
outperforms state-of-the-art solutions. It typically achieves a two- to
five-fold improvement (reduction) in the effective loss rate.

• Or conversely, keeping the same level of effective loss rate, Spread signif-
icantly decreases the observed delays and helps fight against the delay
jitter.

1.3 Related Work

Two-layer structures (as defined above) may arise in various scenarios, rang-
ing from a number of Internet aspects (optical networks, P2P streaming)
to transportation and biology. One of the challenges of this thesis is to go
across these scenarios and research communities built around them, using
the two-layer model as a spanning factor. To the best of our knowledge, to
date nobody has ever done this. Consequently, there is no related work that
speaks about two-layer systems in general.

In contrast, each of these specific fields is covered by a fair amount work,
that, sometimes, explicitly or implicitly, speaks about two layers. Due to its
content-specific nature, we review the related work in each chapter separately.

26 CHAPTER 1. INTRODUCTION

Chapter 2

General Two-Layer Systems

In this chapter we give a general description of a two-layer system. This is a
common reference point that spans all chapters of this thesis.

2.1 Two-Layer Structure

A two-layer system consists of two distinct layers, each containing a different
graph. The logical graph at the logical layer is mapped onto the physical
graph at the physical layer. We explain these terms below. Please refer to
Fig. 2.1 for illustration, and to Table 2.1 for a summary of notation.

2.1.1 Physical Graph Gφ = (V φ, Eφ)

The physical graph Gφ = (V φ, Eφ) is the transportation network that ac-
tually carries the traffic. We use the superscript φ to denote components
that belong to the physical layer. The physical graph can be directed or
undirected, depending on the application.

2.1.2 Logical Graph Gλ = (V λ, Eλ)

The logical graph Gλ = (V λ, Eλ) is a network built on top of the physical
graph. Its typical purpose is to simplify the management of the system or to
enable services that are not directly available at the physical layer. We use
the superscript λ to denote components that belong to the logical layer.

There are at most |V λ| ≤ |V φ| logical nodes. Every logical node vλ ∈ V λ

has its unique physical counterpart vφ ∈ V φ. To simplify the notation we
will sometimes (where it is obvious from the context) use vφ to denote the
physical node associated with vλ; consequently, we can write that V λ ⊆ V φ.

27

28 CHAPTER 2. GENERAL TWO-LAYER SYSTEMS

Log
ica

l

Ph
ys

ica
l

Map
pin

g

replacemen

Gφ

Gλ

MEλ

vλ
1

vλ
2 vλ

3

vλ
4

vφ
1

vφ
2 vφ

3

vφ
4

vφ
5

vφ
6

eλ

Figure 2.1: From top to bottom: the logical graph Gλ = (V λ, Eλ), the mapping
MEλ , and the physical graph Gφ = (V φ, Eφ). The logical nodes are a subset of
physical nodes V λ ⊆ V φ.

In contrast to logical nodes, the logical edges Eλ can be (and usually are)
completely different from the physical edges Eφ.

Finally, the logical graph can be directed or undirected, depending on the
application.

2.1.3 Mapping M

Let pv,u denote a path from vertex v to vertex u. Let P φ be a set of all paths
in the physical graph Gφ. We say that the logical graph is mapped onto the
physical graph. In its widest sense, a mapping M : {〈uλ, vλ〉 : uλ 6= vλ} 7→ P φ

associates with every ordered pair 〈uλ, vλ〉 of logical nodes a physical path
M(〈uλ, vλ〉) = pφ

uλ,vλ going from uλ to vλ in Gφ. (To stress that the mapping
M is defined for all pairs of logical nodes, we will sometimes denote it by a
more explicit term Mall.) If the node pair is actually some existing logical
edge eλ = 〈uλ, vλ〉, then we can write M(〈uλ, vλ〉) = M(eλ) = pφ

uλ,vλ . For

example, in Fig. 2.1 we have M(eλ) = M(〈vλ
1 , vλ

4 〉) = 〈vφ
1 , vφ

5 , vφ
4 〉.

However, in some applications we will be interested not in all possible
node pairs, but only in some subset A ⊂ {〈uλ, vλ〉 : uλ 6= vλ} of them. This
is denoted as MA : A 7→ P φ. For arguments beyond A, MA is not defined.
In particular, we often speak of a mapping MEλ : Eλ 7→ P φ of the set Eλ of
existing logical edges. The example in Fig. 2.1 actually presents MEλ , and
not Mall.

2.2. FAILURES 29

G = (V,E) graph G with a set of nodes V and edges E
φ upper index denoting the physical layer
λ upper index denoting the logical layer
Gφ = (V φ, Eφ) physical graph
Gλ = (V λ, Eλ) logical graph
vλ ∈ V λ a logical node; sometimes used to refer to the underlying

(and always unique) physical node
pu,v path from node u to v

M(〈uλ, vλ〉) mapping of a node pair 〈uλ, vλ〉, i.e., a physical path pφ
uλ,vλ

P φ all paths in the physical graph Gφ

M,Mall mapping of all node pairs, M : {〈vλ, uλ〉 : vλ 6= uλ} 7→ P φ

MA restricted mapping MA : A 7→ P φ

Table 2.1: General notation used in this thesis.

2.2 Failures

There are many types of potential failures in a two-layer system. Not all of
them are equally important. For example, a given failure may be common in
one application, and irrelevant in another one. For every two-layer scenario
considered in this thesis, we address different types of failures (see Table 2.2
at the end of this chapter).

Below, we discuss the types of potential failures with respect to three
different aspects. Please, refer to Fig. 2.2 for an illustration.

2.2.1 Edge Failures vs. Node Failures

First, there are two basic elements that can fail in a graph: edges and nodes.
In practice, the failure of a node is equivalent to the failure of all edges
adjacent to it. For instance, in Fig. 2.2a, the failure of vλ

1 deletes its two
neighboring edges and reduces the logical topology to a triangle.

2.2.2 Logical Failures vs. Physical Failures (and failure
propagation)

Second, the failures may occur at the logical and/or at the physical layer.
Logical failures affect the logical layer only, and are transparent to the phys-
ical layer, as presented in Fig. 2.2a and Fig. 2.2b, respectively.

In contrast, physical failures affect not only the physical layer, but also
propagate to the logical layer and possibly multiply. For example, in Fig. 2.2b,

30 CHAPTER 2. GENERAL TWO-LAYER SYSTEMS

Log
ica

l

Ph
ys

ica
l

Map
pin

g

Log
ica

l

Ph
ys

ica
l

Map
pin

g

replacemen

GφGφ

GλGλ

MM

a) b)

vλ
1vλ

1

vλ
2vλ

2 vλ
3vλ

3

vλ
4vλ

4

vφ
1vφ

1

vφ
2vφ

2 vφ
3vφ

3

vφ
4vφ

4
vφ
5vφ

5

vφ
6vφ

6

Figure 2.2: A failure of a logical node (a) and of a physical link (b).

the failure of a single physical link 〈vφ
5 , vφ

4 〉 brings down two logical links,
〈vλ

1 , vλ
4 〉 and 〈vλ

2 , vλ
4 〉.

2.2.3 Single vs. Multiple Failures

Third, we distinguish single and multiple failures. The ‘single failure’ cate-
gory is important, because the failure probability is often very small, making
multiple failures very rare (and possibly negligible) events, especially in small
systems. In contrast, considering multiple failures allows us to study the be-
havior of large systems under typical or high stress.

2.2.4 Errors vs. Attacks

Finally, we distinguish errors and attacks. Errors are failures of randomly
chosen components in the system. This is our basic (and default) category,
because errors are a part of the regular operation of every system.

In contrast, attacks are failures of components that play a vital role in the
system. This scenario assumes the presence of some adversary that knows
the weak points of the system. For instance, the physical edge 〈vφ

4 , vφ
5 〉 in

Fig. 2.2 is a good target for an attack, because it is the only physical edge
that carries more than one logical edge.

2.3. FAILURE PROTECTION MECHANISMS 31

2.3 Failure Protection Mechanisms

In the previous section we described the types of failures that we may en-
counter in a two-layer system. Here we overview the general techniques to
make the system more robust to such failures.

2.3.1 Proactive vs Reactive

First, we distinguish proactive and reactive techniques. Proactive failure
protection mechanisms constantly keep the system prepared for failures, be-
fore they actually occur. Typically, this is achieved by keeping a set of
pre–computed backup paths, or by applying some redundant coding.

In contrast, reactive mechanisms are activated only after a failure occurs
and is detected. Usually they trigger a retransmission of the lost data (for
short-lived failures), or they dynamically search for a new path (for long-lived
failures).

As a result, proactive techniques are less resource efficient (resources are
committed without prior knowledge of the next failure) but fast, whereas
reactive techniques are more resource efficient and slower.

2.3.2 Physical Layer vs. Logical Layer

Failure protection mechanisms can be provided at different layers. Logical
layer mechanisms can handle failures that occur at both layers, contrary to
physical layer mechanisms that are transparent to the logical topology.

In Fig. 2.3 and Fig. 2.4 we illustrate the failure protection mechanisms at
the physical and logical layer, respectively.

2.4 The Notion of Vulnerability

Although in this thesis we consider a number of very different two-layer sys-
tems, in all cases the high-level goal and performance metric can be defined
as follows:

Vulnerability W is a metric that reflects the level of service degrada-
tion under the presence of typical failures in the system. Our main
goal is to study W and minimize it by an appropriate system design.

This sentence captures only a very general intuition behind the Vulner-
ability metric. The specific and rigorous definition depends on the context

32 CHAPTER 2. GENERAL TWO-LAYER SYSTEMS

Log
ica

l

Ph
ys

ica
l

Map
pin

g

Log
ica

l

Ph
ys

ica
l

Map
pin

g

GφGφ

GλGλ

MM

vλ
1 vλ

1

vλ
2 vλ

2vλ
3 vλ

3

vλ
4 vλ

4

vφ
1 vφ

1

vφ
2 vφ

2vφ
3 vφ

3

vφ
4 vφ

4
vφ
5 vφ

5

vφ
6 vφ

6

Figure 2.3: Failure protection mechanisms at the physical layer. A physical failure
is detected directly at the physical layer. The affected paths are changed (to avoid
the failing link) by (i) replacing by precomputed paths (proactive technique) or
(ii) rerouting on the fly (reactive technique). This is in general transparent to the
logical layer.

Log
ica

l

Ph
ys

ica
l

Map
pin

g

Log
ica

l

Ph
ys

ica
l

Map
pin

g

Gφ Gφ

Gλ Gλ

M M

vλ
1 vλ

1

vλ
2 vλ

2vλ
3 vλ

3

vλ
4 vλ

4

vφ
1 vφ

1

vφ
2 vφ

2vφ
3 vφ

3

vφ
4 vφ

4
vφ
5 vφ

5

vφ
6 vφ

6

Figure 2.4: Reactive failure protection at the logical layer. A physical failure
propagates to the logical layer where it is detected. The logical nodes recalculate
the routes in the logical topology to avoid the failing logical link(s). For example,
when vλ

1 learns about the failure of the logical edge {vλ
1 , vλ

4 }, it updates its routing
table and starts sending the packets destined to vλ

4 via vλ
2 rather than directly.

This is in general transparent to the physical layer.

2.5. TWO-LAYER SYSTEMS ADDRESSED IN THIS THESIS 33

Large-scale IP/WDM Overlay/IP

Chapter 3 4 5

input

Log
ica

l

Ph
ys

ica
l

Map
pin

g

given

given

given Log
ica

l

Ph
ys

ica
l

Map
pin

g

given

given

to find

Log
ica

l

Ph
ys

ica
l

Map
pin

g

to find

given

given

mapping domain MEλ MEλ Mall

failures
multiple failures of

physical links

single or multiple
failures of physical

links and nodes

single failures of
logical nodes and

physical links

errors or attacks? errors and attacks errors and attacks errors only
failure protecion reactive, physical reactive, logical proactive, logical

Vulnerability W
number of logical

links brought down,
W ∈ {0, . . . , |Eλ|}

indication of a
partition of the
logical graph,
W ∈ {0, 1}

number of missed
destinations,

W ∈ {0, .., |V λ|−1}

goal

Given Gφ, Gλ and
MEλ , study W of
existing large-scale

systems

Given Gφ and Gλ,
find MEλ that
minimizes W.

Given Gφ and Mall,
find Gλ that
minimizes W.

Table 2.2: Various aspects of the two-layer system under the three main settings
considered in this thesis.

(network setting, application) and will be given in each of the following chap-
ters.

2.5 Two-Layer Systems Addressed in This The-

sis

In Chapter 1 we described three types of two-layer systems that we consider
in this thesis. Table 2.2 positions these systems with respect to all the two-
layer aspects discussed above. We hope it will serve as a quick and useful
reference for the reader.

34 CHAPTER 2. GENERAL TWO-LAYER SYSTEMS

Chapter 3

Vulnerability of Existing
Large-Scale Two-Layer Systems

In this chapter we study the vulnerability of existing large-scale two-layer
systems. Our goal is to gain a better understanding of the problem of failure
propagation and multiplication. We focus on large-scale systems that count
thousands of nodes. Moreover, we do not constrain our studies to the field of
communication only - we consider examples from transportation and biology,
as well as some artificial models based on classic and power-law random
graphs.

3.1 Introduction

In the last decade, the growing popularity of the Internet has made many
interesting data sets easily accessible. As a result, numerous large-scale
complex systems have been described in terms of graphs for the first time.
The examples range from the Internet [12] and World Wide Web [13] to so-
cial [14,15], transportation [16] and biological networks. Due to the large size
and nontrivial connectivity patterns of these graphs, they are often referred
to as complex networks [17].

3.1.1 Errors vs Attacks

A natural step in the study of complex networks is to test their robustness,
i.e., their behavior under stress. We distinguish two general categories of
such stress, often referred to as errors and attacks. An error is the failure
of a randomly chosen component in the system. In contrast, an attack is
the failure of a component selected by an adversary, which usually plays a

35

36 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

vital role in the system (see for example the recent attacks on TGV railway
lines [18]).

3.1.2 Error and Attack Tolerance of Single-Layer Sys-
tems

Complex networks may greatly differ in their response to failures. Con-
sider for instance ‘scale-free’ networks, i.e., networks whose node degree dis-
tribution is heavy-tailed [15]. This property was found in numerous real-
life systems, such as the World Wide Web, Internet, protein networks, so-
cial networks or cellular networks. Interestingly, the scale-free networks ex-
hibit remarkable robustness to errors, but at the same time, they are very
vulnerable to attacks such as the removal of the most highly connected
nodes [19–22]. Subsequent work studied other attack strategies [23,24], cas-
cading failures [25,26], defensive strategies [25,27–30], and vulnerability of
weighted networks [31]. These findings give us valuable insights into the
robustness of complex networks treated as distinct objects.

3.1.3 Many complex systems are layered

However, as we point out in this thesis, many complex networks are only a
part of larger systems, where a number of coexisting topologies interact and
depend on each other. We have introduced this concept in the context of
complex networks in [2]. An obvious example is the Internet, where a graph
formed by an application (such as WWW or Peer-To-Peer) is mapped onto
the IP network that, in turn, is mapped onto a physical mesh of cables and
optical fibers. The topology at each layer is often very different. However,
there exist examples beyond communication networks too. For instance, it
is convenient to view a transportation network as a two-layer system, with a
network of traffic demands mapped onto the physical infrastructure.

3.1.4 Our Objective and Achievements

This layered view sheds new light on the tolerance to errors and attacks of
many complex systems. Recall from Section 2.2, that one of the basic features
(and problems) of a two-layer system is that the failures at the physical layer
propagate to the logical layer and multiply. Therefore, the response of a
layered system to failures is much more complex than what is observed at a
single layer.

Our goal in this chapter is to gain insight into this phenomenon. We
achieve this by simulating physical errors and attacks in five examples of two-

3.2. DATA SETS AND MODELS 37

layer complex systems: three real-life data sets in the fields of communication
(the Internet), transportation (the European railway system) and biology
(the human brain), and two artificial models based on random graphs.

We show that what is observed at a single layer does not necessarily reflect
well the state of the entire system. For example, a tiny, seemingly harmless
(from one-layer perspective) disruption of the lower layer graph can destroy
a substantial part of the logical graph making the whole system useless in
practice.

3.1.5 Organization of this Chapter

In Section 3.2, we describe the real-life data sets and artificial models that we
study in this chapter (the data mining details are moved to the Appendix).
In Section 3.3, we specify the types of failures and protection techniques
that we consider, as well as our main performance metrics. In Section 3.4,
we study the distribution of load in our data sets, which gives us the first
clues about the system robustness. In Section 3.5, we verify these hints by
simulating directly the effect of errors and attacks on the system. Finally,
we conclude the chapter in Section 3.6.

3.2 Data Sets and Models

In this section we describe the studied data sets (one per page). We also
overview the data-mining techniques we used to collect some of these data
sets.

38 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

3.2.1 Railway

Trai
ns

Rail
tra

ck
s

Itin
era

rie
s

P
h

y
si

ca
l

M

ap
p

in
g

L
o

g
ic

al

P
h

y
si

ca
l

 L
o

g
ic

al
.

1-3
4-10
10-30
30-80
80+

Logical edge
weights:

Gφ

Gλ

M

end station

intermediate
station only

train itinerary

any station

rail track

train

Figure 3.1: An illustration of two layers in ‘Railway’. This data set contains the
entire railway network of Europe; we present its Swiss part on the right.

In [1] we have proposed an algorithm for extracting both the real physical
topology and the network of traffic flows from timetables of public mass
transportation systems. The algorithm consists of three phases. First, it
creates the initial version of the physical topology Gφ

0 . Typically, Gφ
0 contains

not only the existing physical links, but also some virtual shortcut links that
result from e.g., express trains that do not stop at every station. Next, the
physical graph is iteratively refined by detecting and erasing the shortcut
links. Finally, we group the vehicles with identical routes, and obtain a
weighted logical graph reflecting the traffic flows in the system. We give
more details on this algorithm in the Appendix 3.A.

Interestingly, the problem of extracting the physical topology from timeta-
bles is non-trivial and this sole problem was the topic of another Ph.D. the-
sis [3]. The heuristic approach we proposed in [1] is based on simple obser-
vations that were omitted in [3], and turned out to be a much simpler and
more effective algorithm.

We apply our technique to timetables of 60’775 trains in central Europe.
The resulting physical graph reflects the real infrastructure that consists
of 4’853 nodes (stations) and 5’765 edges (rail tracks). The logical graph
contains 7’038 edges, each connecting the first and the last station of a train.
The logical edge weight is the number of trains following the same route.
The route itself is the mapping of this edge on the physical graph. We refer
to this data set as ‘Railway’.

3.2. DATA SETS AND MODELS 39

3.2.2 Gnutella

P
h

y
si

ca
l

M

ap
p

in
g

L
o

g
ic

al

Gnu
tel

la

AS gra
ph

AS rou
te

P
h

y
si

ca
l

 L
o

g
ic

al
.

Gφ

Gλ

M

AS populated by
Gnutella nodes

other AS nodes

AS route

AS node

AS link

P2P link

Figure 3.2: An illustration of two layers in the Gnutella data set. AS - Autonomous
System

The second data set, called ‘Gnutella’, is an example of a large Peer-To-
Peer (P2P) application in the Internet. In a P2P system, the links between
users are virtual and are usually created independently of the underlying In-
ternet structure, thus forming a very different topology. Due to its immense
size and dynamics, the existing maps of the Internet at the IP level (i.e.,
where the nodes and IP routers and hosts) are very incomplete. Therefore
we focus on its aggregated version, where each node is an Autonomous Sys-
tem (AS - usually an Internet Service Provider), and where edges reflect the
connections between the ASes. The topology of the AS-level Internet is well
known thanks to numerous Internet mapping projects such as DIMES [32] or
CAIDA [33]. For our physical graph we take the 09/2004 topology provided
by CAIDA, which consists of 16’911 nodes and 37’849 edges. For the logical
graph we take a snapshot of the Gnutella P2P network collected in Septem-
ber 2004 by the crawler developed in [34]. It consists of around 1 million
users, connected by several million links. In order to obtain the AS-level
version of this network, we translated the IP addresses of the users into the
corresponding AS numbers. All users with the same AS number are grouped
in a single node of the logical graph, and all links connecting the same pair of
ASes become one logical edge of weight equal to the number of contributing
links. As a result, we obtain an AS-level logical graph of Gnutella with 1’214
nodes and 31’193 edges. The mapping of each logical edge is defined by the
shortest path in the physical graph connecting its end-nodes.

40 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

3.2.3 Brain

GM
-G

M
 lin

ks

ROIs

Fibe
r tra

cts

P
h

y
si

ca
l

M

ap
p

in
g

L
o

g
ic

al

P
h

y
si

ca
l

 L
o

g
ic

al
.

Gφ

Gλ

M

GM ROI

WM ROI

Fiber tract

GM or WM ROIs

The ROIs are physically
neighboring

GM-GM long
distance connection

Figure 3.3: An illustration of two layers in the Brain setting. WM - White Matter,
the interior part of the brain. GM - Gray Matter, the exterior part of the brain,
i.e., the brain cortex. ROI - Region Of Interest, small and compact part of GM or
WM.

Our third data set, called ‘Brain’, is a millimetric scale map of the struc-
tural connectivity of the entire human brain. It was inferred from a diffusion
MRI scan with the approach that we developed in [4]. This methodology
partitions the brain gray matter (GM) and white matter (WM) into a set
of compact regions of comparable size, called ROIs (‘Regions Of Interest’).
There are 1’013 ROIs in the gray matter and 3’432 ROIs in the white mat-
ter. Every (GM or WM) ROI becomes a node in the physical graph (i.e.,
|V φ| = 4445) and every GM ROI becomes a node in the logical graph. The
logical edges Eλ in this data set reflect the existing fiber tracts (bundles of
axons) connecting different gray matter regions. Each such tract eλ traverses
the white matter; the sequence of white matter ROIs on its path defines
the mapping M(eλ). At the physical layer, two nodes are connected by a
physical edge eφ if they appear to be directly connected (i.e., they are con-
secutive in the sequence M(eλ) of ROIs) in at least one mapping M(eλ). By
this procedure, we obtain a two-layer structure, where the logical graph con-
sists of the long-range GM-to-GM connections in the brain and is mapped
on the physical layer that reflects the ‘axonal wiring’ used to establish these
connections.

We give more details on inferring the brain topology from the diffusion
MRI data in in the Appendix 3.B.

3.2. DATA SETS AND MODELS 41

3.2.4 ‘ER on ER’ and ‘BA on ER’

ER or
 B

A

Erdo
s-R

en
yi

Sho
rte

st
Path

P
h

y
si

ca
l

M

ap
p

in
g

L
o

g
ic

al

P
h

y
si

ca
l

 L
o

g
ic

al
.

ER

BA

Gφ

Gλ

M

Figure 3.4: Two layers constructed by two artificial graph models: ER - classic
Erdös-Rényi random graph; BA - Barabási-Albert random graph where the node
degree distribution follows a power-law. We use a shortest path mapping.

Finally, as a reference point, we also study two artificial systems. ‘ER
on ER’ is the classic unweighted Erdös-Rényi (ER) random graph on top
of another ER graph of the same number of nodes. We consider only the
largest connected component of these graphs. The nodes in the logical and
the physical layer are randomly paired. ‘BA on ER’ is constructed in the
same way, except that the logical graph is now the Barabási-Albert (BA)
power-law random graph [15].

In Table 3.1 (below) we present an overview of the systems we study.

Data set |V φ| |Eφ| 〈l〉 |V λ| |Eλ| 〈m〉
Railway 4’853 5’765 53.8 2’509 7’038 9.9
Gnutella 16’911 37’849 3.7 1’214 31’193 2.8
Brain 4’445 20’967 9.1 1’013 15’369 10.3
ER on ER 2’000 4’000 5.7 2’000 10’000 5.7
BA on ER 2’000 4’000 5.7 2’000 10’000 5.7

Table 3.1: The overview of the two-layer data sets studied in this chapter. 〈l〉 is
the average shortest path length; 〈m〉 is the average mapping length.

42 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

3.3 Failures, Protection Techniques, and Vul-

nerability

In this section we specify the types of failures and protection techniques that
we consider. We also define the Vulnerability metric W. Please, refer to
Chapter 2 for a general overview.

3.3.1 Failures

We consider failures of physical edges. To study the whole spectrum of stress
strength applied to the system, we allow for multiple failures. To simplify the
interpretation, we speak about the failing fraction of physical edges rather
than their absolute number.

Errors

Simulating errors is straightforward - the failing physical links are chosen at
random.

Attacks

However, it is not obvious how to select the targets of an attack. Our ap-
proach is based on the intuitive notion of load. The load l of the physical
edge eφ is the sum of weights w of all the logical edges whose mappings
traverse eφ [2]:

l(eφ) =
∑

eλ: eφ∈M(eλ)

w(eλ). (3.1)

In our scenario, the adversary selects the failing physical edges one by one,
removing the most loaded one at each iteration.

It is worth mentioning that there have been also various attempts to
predict the load under the limited information, e.g., based purely on the
topology of the physical graph. Classical load estimators are node degree
and betweenness [23,25,26,35–37]. However, we have shown in [2] that the
patterns formed by the distributions of the real load, node degree and be-
tweenness significantly differ. We explained this by recasting these metrics
in a two-layer perspective, which revealed some fundamental differences be-
tween them. We concluded that it is in general impossible to predict the real
load based purely on the topology of the physical graph.

3.3. FAILURES, PROTECTION TECHNIQUES, AND VULNERABILITY43

3.3.2 Protection Mechanisms

Many real-life systems have mechanisms to partially or fully recover from fail-
ures. In order to capture the whole spectrum of failure protection techniques,
we study two extreme policies: no rerouting and full rerouting.

Under no rerouting we make no failure recovery attempt - we delete im-
mediately all logical edges affected by a physical failure. This is close to what
we could expect in railway networks. Indeed, when a railtrack fails it may
be difficult to find an appropriate detour, because for a train its entire path
is important, not only its end-points. Although it is sometimes possible to
slightly change the itinerary of the train or to organize alternative means of
transportation (e.g., a bus) around the failing section, the common practice
is to halt all the trains that use it [18].

In contrast, full rerouting is equivalent to the physical-level failure restora-
tion described in Chapter 2. We delete an affected logical edge eλ only when
there is no path in the physical graph Gφ between the end-nodes of eλ, i.e.,
when the end-nodes of eλ belong to different components of Gφ. Otherwise,
the logical edge eλ remains in the graph, and its mapping is updated by the
shortest path in Gφ, with the failing physical edge removed.

By studying the two extreme policies, no rerouting and full rerouting, we
also capture the specific features of our three real-life data sets. For instance,
in the Gnutella data set, the AS graph routing depends on the internal policy
of involved ASes and peering relationships established between the ASes [38].
This results in routes that are not necessarily the shortest possible and makes
some of the routes invalid. These additional constraints naturally limit the
Gnutella performance below the ‘full rerouting’ level. The brain also has some
ability to reroute around broken connections by activating parallel pathways;
this is called plasticity. For example, after a stroke in primary or secondary
motor cortices some limb functions can be recovered in the animal as well
as in the human by recruiting alternative pathways. These processes take,
however, substantial time. Therefore, the brain response can be described
as moving from the no rerouting policy just after the insult, to a partial
rerouting policy during the recovery process.

In other words, all responses of real systems to physical failures are located
somewhere between the no rerouting and the full rerouting policy.

3.3.3 Vulnerability Metric

What ultimately counts in a two-layer system is the logical layer. Indeed, it
directly reflects the service provided by the system to its users, such as trains,
P2P application and the long distance connections in the brain. Therefore,

44 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

our primary goal is to study how the physical edge failures affect the logical
layer. We capture it by observing the total weight of the remaining logical
edges in the logical graph affected by the failures.

In the other words, to put in in the terminology of Chapter 2, we define
the Vulnerability W as the total weight of logical edges that were brought
down by the failures.

For a comparison, we will also study the largest connected component
in the physical graph Gφ, which is a classic error tolerance metric used in
one-layer complex networks [19].

3.4 Edge Load Distribution

Load l Load l

Load l Load l

Load l

P
(l

)

P
(l

)

Railway BrainGnutella

ER on ER BA on ER

Figure 3.5: Edge load distribution in the five studied systems. The main plots are
in log10− log10 scale (log10-binned); the insets present the same distributions in
log10-lin scale (lin-binned).

Before we simulate the effect of failures on our systems directly, we try to
predict the results by studying the load distribution in our data sets. It is a
very important parameter for a system under stress. Clearly, the higher the
load of a failing physical component, the more it perturbs the logical layer.

3.5. SIMULATION RESULTS 45

If the load is distributed evenly in the physical graph, a random failure
will not be very different from an intentional attack. Conversely, if the load
distribution is very uneven, the highly loaded parts become an obvious target
for an efficient attack.

In Fig. 3.5 we present the load distribution in the layered systems we
study. In each case the distribution is broad and heavily right-skewed (maybe
except ‘ER on ER’). This means that there is a significant number of physical
links that carry a lot more traffic than the other links. Consequently, we can
anticipate that an attack targeted on the most loaded links will harm the
system much more importantly than a random error.

3.5 Simulation Results

In this section we simulate the error and attack scenarios on the five studied
systems. The results are presented in Fig. 3.6. Although the system responses
differ in all five cases, they share a number of common features that lead us
to the following conclusions:

Attacks are much more harmful than errors

Consider, for instance, the Gnutella network. Under ‘no rerouting’, half
of the logical mass (total edge weight) is erased after 22% physical edges
randomly fail, or after only 0.04% most loaded edges are attacked. Although
under the ‘full rerouting’ policy this difference is smaller, we still need about
60 times more random failures than attacks to achieve the same goal.

When the system is attacked, the logical graph is usually affected
much faster than the physical graph

For instance, in Gnutella, an attack (with or without rerouting) on 5% of
the physical edges hardly affects the physical graph - the largest connected
physical component covers almost the entire original graph. At the same
time, this seemingly unharmful attack deletes more than 95% of logical edges!
We obtain similar results when we consider the size of the largest connected
component in the logical graph as the measure of robustness. (These results
are not shown in Fig. 3.6 for better readability.)

46
C

H
A

P
T

E
R

3.
V

U
L
N

E
R

A
B

IL
IT

Y
O

F
E

X
IS

T
IN

G
S
Y

S
T

E
M

S

Figure3.6:Errorandattacktoleranceoffivelayeredsystems(rows).Firstthreearereal-lifedatasets;thelasttwoare

basedonclassicERandpower-lawBAgraphs.Ateachiterationweremoveonephysicaledgee
φ
deleitheratrandom(‘error

tolerance’,bottomrow),orbychoosingthemostloadedone(‘attacktolerance’,toprow).Inbothcasesweobservethesize
ofthelargestconnectedcomponentinthephysicalgraphGφ(triangles)andthetotalweightoftheremaininglogicaledges

(circles).Everylogicaledgeeλwhosemappingcontainse
φ
delisdeletedeitherdirectly(‘norerouting’,unfilledsymbols),or

onlywhenthereisnopathinGφbetweentheend-nodesofeλ(‘fullrerouting’,filledsymbols).Theresultsfor‘ERonER’
and‘BAonER’areaveragedover10realizations.Notethatinthecaseofrandomerrors,thelargestconnectedphysical
componentisnotaffectedbytheadoptedpolicy(no-reroutingorfull-rerouting).Thereforethe‘filled-’and‘empty-triangle’
curvescoincideforallfiguresintheleftcolumn.Wedrawonlythe‘empty-triangle’curvesforclarity.

3.6. CONCLUSION: SINGLE-LAYER VS. TWO-LAYER VIEW 47

The attack under the full rerouting policy affects the physical graph
more than under no rerouting

When rerouting is allowed, the logical edges are deleted only when the phys-
ical graph gets partitioned. This, in turn, effectively reduces the size of the
largest connected physical component.

Rerouting does not always help much

This observation is expressed by the proximity of the filled and unfilled circles
under attack in Fig. 3.6 (see e.g., Railway and Gnutella). As any real-life
failure recovery policy falls between these two extremes (no rerouting and
full rerouting), such systems are especially vulnerable to attacks.

A heterogeneous logical topology makes the system more vulnera-
ble to attacks

This can be observed in the two random-graph-based examples. As the node
degree distribution of the BA graph follows a power-law, there is no typical
node (or ‘scale’), and hence ‘BA on ER’ is a system with a heterogeneous
logical topology. In other words, there is a non-negligible probability of
existence of hubs (nodes of a very high degree) in the BA graph. As we
assume no correlation between the logical and physical node degrees, in the
vicinity of such logical hubs the load of physical edges is usually high. This
makes the ‘BA on ER’ system vulnerable to attacks, which is reflected by
the fast initial drop of both circle curves in the last subfigure in Fig. 3.6. In
contrast, the degree distribution of the ER graph is concentrated around the
average value making it much more homogeneous. So there are no hubs in
the logical graph of ‘ER on ER’ and the load is distributed more evenly. This
can be observed in Fig. 3.5 - with the same number of nodes and edges, the
maximal load in ‘BA on ER’ is roughly three times higher than in ‘ER on
ER’. Consequently, ‘ER on ER’ is more robust to attacks than ‘BA on ER’.

3.6 Conclusion: Single-Layer vs. Two-Layer

View

The one-layer analysis, as typically done to date [19], is often insufficient
to capture all the crucial features of a system, such as the end-to-end traffic
patterns or recovery schemes. As a result, it may often lead to biased conclu-
sions. In contrast, the two-layer view offers much better modeling capabilities
and more insight into the system.

48 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

As a takeaway example of this difference between the single-layer and the
two-layer framework, recall that even a tiny disruption of the physical graph
can destroy a substantial part of the logical graph. This effect would be
completely unnoticed within the single-layer physical graph framework. For-
tunately, the two-layer approach directly captures the changes in the logical
graph. This is very important, because what ultimately counts in a two-
layer system is the logical layer; it directly reflects the service provided by
the system to its users, such as trains, P2P application, and the long distance
connections in the brain.

3.. TRAINSPOTTING . . . 49

APPENDIX

3.A Trainspotting: Extraction ofTransporta-

tionNetworkTopologies fromTimetables

In this section we give more details of our algorithm to extract the physi-
cal and logical network data from timetables. We used it to construct the
‘Railway’ data set. The full description can be found in [1].

Spaces

In order to position our contribution in the range of works in the field, we
begin with a systematic definition of the topology of transportation systems.
The set of nodes is defined by the set of all stations (train stations, bus
stops, etc). It is not obvious, however, what should be interpreted as an
edge. Its choice depends on what we want to be reflected by the topology of
the physical graph. In the literature there are essentially three approaches
that define three different ‘spaces’: here we call them ‘space–of–changes’,
‘space–of–stops’ and ‘space–of–stations’.

In space–of–changes, two stations are considered to be connected by
a link when there is at least one vehicle that stops at both stations. In
other words, all stations used by a single vehicle are fully interconnected
and form a clique. This approach neglects the physical distance between the
stations. Instead, in the resulting topology, the length of a shortest path
between two arbitrary stations A and B is the number of changes of mean
of transportation one needs to get from A to B. This approach was used
in [39–41]; in the latter the authors used the term space P.

In space–of–stops, two stations are connected if they are two consec-
utive stops on a route of at least one vehicle [41]. Here the length of a
shortest path between two stations is the minimal number of stops one needs
to make. Note that the number of stations traversed on the way might be
larger, because the vehicles do not necessary stop on all of them.

In space–of–stations, two stations are connected only if they are phys-
ically directly connected (with no station in between). This reflects the
topology of the real-life infrastructure. Here, the length of a shortest path
between two stations is the minimal number of stations one has to traverse
(stopping or not). This approach was used in [42–45].

In Fig. 3.7 we give an illustration of the three spaces. It is easy to see that
the graph in space–of–stations is a subgraph of the graph in space–of–stops,
which in turn is a subgraph of the graph in space–of–changes.

50 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

A
B

C

D

E

F

G

H

Line 1

Line 2 (express)
Line 3

(a) Three train lines

A

B

C

D

E

F G

H

(b) space–of–changes

o

A
B

C

D

E

F

G

H
shortcut

(c) space–of–stops

A
B

C

D

E

F

G

H

(d) space–of–stations

Figure 3.7: (Color online) An illustration of the transportation network topology
in three spaces. (a) The routes of three vehicles. The route of Line 2 passes
through node C on the way from B to D, but the vehicle does not stop there.
(b) The topology in space–of–changes. Each route results in a clique. An edge is
indicated by two colors, when it originates from two routes, but is merged into a
single link. (c) The topology in space–of–stops. The “shortcut” B-D is a legitimate
edge in this space. (d) The topology in space–of–stations. This graph reflects the
topology of the real-life infrastructure.

The Difficulty of the Problem

The topologies in space–of–changes and space–of–stops can be directly ob-
tained from timetables. In space–of–changes, for each vehicle, we fully con-
nect all stations it stops at. Then we simplify the resulting graph by delet-
ing multi-edges. In space–of–stops, we connect every two consecutive stops
in routes of vehicles. As shown in Fig. 3.7c, the topology in space–of–
stops can have shortcut links that do not exist in the real-life infrastruc-
ture. These shortcuts should be eliminated in the space–of–stations topology,
which makes it more challenging to obtain. To the best of our knowledge, the
only work on extracting the real physical structure (the topology in space–of-
–stations) from timetables was done in the context of railway networks in the
PhD dissertation of Annegret Lebers [3]. The proposed solution first obtains
the physical graph in space–of–stops. Next, specific structures in the ini-
tial physical graph, called edge bundles, are detected. The Hamilton paths1

within these bundles should indicate the real (non-shortcut) edges. Unfortu-
nately, the bundle recognition problem turned out to be NP-complete. The
heuristics proposed in [3] result in a correct real/shortcut classification of
80% of edges in the studied graphs. The approach we propose in this paper
is based on simple observations that were omitted in [3]. This results in a
much simpler and more effective algorithm.

1Hamilton path is a path that passes through every vertex of a graph exactly once

3.A. TRAINSPOTTING . . . 51

Timetable Data

We take a list of all vehicles departing in the system within some period (e.g.,
one weekday). Denote by R = {ri}i=1..|R| the list of routes followed by these
vehicles, where |R| is the total number of vehicles. A route ri of ith vehicle
is defined by the list of nodes it traverses. Note that since there are usually
more vehicles (than one) following the same path on one day, some of the
routes may be identical.

Algorithm

The algorithm consists of four phases, as follows:

Phase 1 - Initialization

In this phase we interpret every two consecutive nodes in any route ri ∈ R
as directly connected. Consequently, we connect these nodes with a link,
which can be written as Eφ

stop =
⋃

i=1..|R| E(ri), where E(ri) is the set of all

pairs of adjacent nodes in ri (i.e., all edges in ri). This results in the physical
topology Gφ

stop = (V φ, Eφ
stop) in space–of–stops.

Phase 2 - Deleting shortcuts

In this phase, at each iteration, we detect a shortcut in the set of physical
edges, delete it, and update all routes ri that use this shortcut. Denote by
eφ
(1), e

φ
(2) the two end-nodes of eφ, and by Rev(Peφ) the reversed version of

Peφ (the sequence from the last node to the first one). The algorithm is as
follows:

1. Eφ
stat := Eφ

stop

2. Find a tuple (eφ, ri) such that eφ is a shortcut for ri:
eφ
(1) ∈ ri and eφ

(2) ∈ ri and eφ /∈ E(ri).

3. IF no (eφ, ri) found THEN RETURN Eφ
stat and R.

4. Peφ := subpath of ri from eφ
(1) to eφ

(2)

5. FOR all rj ∈ R DO:

• If (eφ
(1), e

φ
(2)) ∈ rj THEN replace it with Peφ

• If (eφ
(2), e

φ
(1)) ∈ rj THEN replace it with Rev(Peφ)

6. Eφ
stat := Eφ

stat \ {e
φ}

7. GOTO 2

52 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

In Step 2, we look for a physical link that is a shortcut. We declare
a physical link eφ to be a shortcut, if there exists a route ri ∈ R, such
that eφ connects two nonconsecutive nodes in ri. For example, in Fig. 3.7c,
eφ = {B, D} is a shortcut because it connects two not neighboring nodes in
the route r1 of Line 1. If no physical edge can be declared a shortcut, the
algorithm quits in Step 3, returning Eφ

stat and R. Otherwise, in Step 4, we
find the path Peφ that this shortcut should take. In Fig. 3.7c this path is
Peφ = (B, C, D). In Step 5, we update the set of routes R by replacing every
shortcut link eφ in every route using it with the corresponding path Peφ.
In our example, the updated route of Line 2 becomes r2 = (A, B, C, D, E).
It is thus identical to the route of Line 1. Finally, in Step 6 we delete the
shortcut eφ from the physical graph. We iterate these steps until no shortcut
is found (Step 2). The resulting physical graph Gφ

stat = (V φ, Eφ
stat) ⊂ Gφ

stop,
is a graph in space–of–stations.

Phase 3 - Grouping the same routes together

Finally, based on the list R of routes updated in phase 2, we find groups of
vehicles that follow the same path (in any direction). Each such group defines
one edge eλ in the logical graph; eλ connects the first and the last node of the
route, omitting all the intermediate stations. The number of vehicles that
follow this route becomes the weight w(eλ) of the logical edge eλ; the route
itself becomes the mapping M(eλ) of eλ on the physical graph.
Denote by ri(first), ri(last) the first and the last nodes in ri, and by E(M(eλ))
the set of all physical edges in the mapping of eλ. Now, Phase 3 can be stated
as follows:

1. Eλ = ∅, M = ∅

2. FOR i = 1 TO |R| DO:
• eλ

i = {ri(first), ri(last)}
• IF eλ

i ∈ Eλ THEN w(eλ
i) := w(eλ

i) + 1
ELSE Eλ =Eλ

⋃
{eλ

i }, M(eλ
i)=ri, w(eλ

i)=1

3. Eφ
stat =

⋃
eλ∈Eλ E(M(eλ))

In the example in Fig. 3.7, after phase 2 the routes of Line 1 and Line 2
become identical; therefore in phase 3 they are grouped together defining
a logical edge eλ

1 = {A, E} with the weight w(eλ
1) = 2 and the mapping

M(eλ
1) = (A, B, C, D, E). A second logical edge is eλ

2 = {F, H} with w(eλ
2) =

1 and M(eλ
2) = (F, B, G, H).

We present an example output of our algorithm for real input data in Fig. 3.8.

3.A. TRAINSPOTTING . . . 53

(a) Graph Gφ
change in space–of–changes (b) Graph Gφ

stop in space–of–stops

(c) Graph Gφ
stat in space–of–stations (d) Real physical map

(e) Logical graph

Figure 3.8: (Color online) The railway network in Switzerland (CH). (a) Physical
graph in space–of–changes. (b) Physical graph in space–of–stops, returned by
Phase 1 of our algorithm. (c) Physical graph in space–of–stations, returned by
Phase 2 of our algorithm. (d) The real map of the rail tracks in Switzerland.
Note the similarity with (c), which confirms the effectiveness of the algorithm.
(e) The logical graph returned in Phase 3. Every edge connects the first and the
last station of a particular train route; its weight reflects the number of trains
following this route in any direction.

54 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

3.B From Diffusion MRI to a Brain Network

Figure 3.9: Mapping the network of brain structural connectivity with diffusion
MRI is a process made of four steps. First, Diffusion Spectrum MRI (DSI)
is performed on a subject or sample. This acquisition provides a 3D diffusion
function at every location in the brain. This data set is called a diffusion map.
It is shaped by the local tissue characteristics, in particular by the orientation of
axonal bundles existing in the brain. Second, based on this map we generate a
number of 3D curves (called fibers) that follow the path laid by the white matter
axonal bundles. Third, independently from the previous step, we use a heuristic
that partitions the brain white matter-gray matter interface into small areas of
equal surface (called Regions Of Interest-ROIs) covering the whole cortex and deep
cerebral nuclei boundaries. Finally, in the fourth step, we combine the output of
steps two and three: the ROIs become nodes and the fibers are transformed into
edges in the resulting graph. This graph estimates the density of white matter
connections between any two regions of gray matter.

3.B. FROM DIFFUSION MRI TO A BRAIN NETWORK 55

In this section we give more details on the methodology that we developed
to create the ‘Brain’ data set. An exhaustive description with some analysis
can be found in [4].

The path from diffusion MRI to a graph mapping brain connectivity is
a four step process. We present a general scheme of our methodology in
Fig. 3.9, and we describe in more details each step below.

Step 1: MRI acquisition

We use Diffusion Spectrum Imaging (DSI). It is a diffusion MRI method that
images the 3-dimensional diffusion function in every brain voxel (a cube of
size 2 × 2 × 3 mm3) and results in a 6-dimensional image called a diffusion
map. This new method has, contrary to Diffusion Tensor MRI (DTI), suffi-
cient angular resolution to map accurately the diffusion with a non-Gaussian
behavior. Accordingly, it can see intra-voxel diffusion heterogeneity caused
by crossing neuronal tracts, which is essential for an accurate mapping of
axonal trajectories.

Step 2: White matter tractography

Tractography is a post-processing method that based on the diffusion map,
constructs 3-dimensional curves of maximal diffusion coherence. These curves,
called fibers, are the estimates of the real white matter axonal bundle trajec-
tories. We use a tractography algorithm specifically designed for DSI data
to create a set of such fibers for the whole brain, which is summarized below:

First, at each voxel, we detect a set of directions of maximum diffusion.
Next, we initiate the same number of fibers for every direction of maximum
diffusion in every white matter voxel. The starting points are chosen at
random within the voxel. From each such point we begin growing a fiber in
two opposite directions with a fixed step of 1 mm. On entering a new voxel,
the fiber growth continues along the direction of the vector whose orientation
is the closest to the current direction of the fiber. If this results in a change
of direction sharper than 15◦/mm, the fiber is stopped. The growth process
of a valid fiber finishes when both its ends leave the white matter.

In each data set we use about 3 million initialization points, which results
in about 2 million successful fibers. For a graph of 1’000 nodes they translate
into about 50’000 edges. The number of edges in the final network depends
on the number of initialized fibers. To investigate network properties over
a wider range of connection densities we devised two ways to filter edges.
The first approach varies the number of initialized fibers, whereas the second
approach keeps only the top-weight edges.

56 CHAPTER 3. VULNERABILITY OF EXISTING SYSTEMS

Step 3: White matter-gray matter (WGM) boundary partition into
ROIs

The goal of the third step is to partition the WGM interface in a number of
areas that we call Regions Of Interest (ROIs). In this step we use exclusively
the 3D mask of the brain WGM interface (i.e., the cortex and the thalamus
for simplicity). The ROIs should be compact and of similar surface (counted
in the number of voxels), which is a non-trivial task to achieve for the com-
plex, strongly folded shape of the brain. We have developed a two-phase
partitioning heuristic, as follows. First, we choose a WGM interface voxel at
random and iteratively connect it to the neighboring WGM interface voxels
until it reaches the desired size; this structure becomes our first ROI. Sim-
ilarly, we grow other ROIs, one by one, always starting near the ones that
have already been created. We repeat this procedure until all the WGM
interface is covered with ROIs. This gives us already quite a good partition,
however, it can be easily further improved. Therefore, in the second phase of
our heuristic we restart the ROI growth process. This time we grow all the
ROIs simultaneously, starting from the centers of gravity of the ROIs found
in the first phase. This results in a much better compactness of the ROIs
with surface variations of less than 10%. An example of the final result is
shown in step 3 of Fig. 3.9.

Step 4: Network construction

Finally, in the fourth step, we combine the output of steps two and three
and create the graph of brain connectivity. Every ROI constructed in step
three becomes a node in the graph. We denote by ROI(v) the ROI that
is associated with the node v. Two nodes v and u are connected with an
edge e = (v, u) if there exists at least one fiber f with end-points in ROI(v)
and ROI(u). For each edge e we define its length l(e) and weight w(e), as
follows. Denote by Fe the set of all fibers connecting ROI(v) and ROI(u) and
hence contributing to the edge e. The length l(e) of the edge e is the average
over the lengths of all fibers in Fe. The weight w(e) captures the connection
density (number of connections per unit surface) between the end-nodes of
the edge e, and is defined as w(e) =

∑
f∈Fe

1/l(f). The correction term
l(f) in the denominator is needed to eliminate the linear bias towards longer
fibers introduced by the tractography algorithm.

Chapter 4

Survivability in IP/WDM
Networks

Log
ica

l

Ph
ys

ica
l

Map
pin

g

IP

W
DM

Ligh
tpa

ths

GφGφ

GλGλ

MM

WDM switch with
IP router on top

WDM switch with
no IP router on top

lightpath

WDM switch

optical fiber

IP link

Figure 4.1: An illustration of two layers in the IP/WDM setting.

The study of existing large-scale systems in Chapter 3 confirms that two-
layer systems are much more vulnerable to errors and intentional attacks than
they appear from a single layer perspective. This raises an obvious question:
Can we increase the robustness of a two-layer system by an appropriate
design? In this chapter we address this question in the context of IP/WDM
networks.

57

58 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

4.1 Introduction

An IP-over-fiber network is a typical building block of the Internet’s back-
bone. It usually belongs to a single Internet Service Provider (ISP) and is
centrally monitored and managed. The physical infrastructure of an IP-over-
fiber network consists of a mesh of optical fibers usually put in the ground
along roads, rails, or power-lines. Currently, with the help of the Wave-
length Division Multiplexing (WDM) technique, a single optical fiber can
carry many signals independently, each using a different wavelength (color).
The IP links are realized as end-to-end connections routed on this physical
mesh. The topology formed by the IP links is a result of a centralized op-
timization process and reflects the user demands. This stack is called an
IP-over-WDM network, or shortly ‘IP/WDM’ for short.

Traffic engineering in such a two-layer system is an important yet chal-
lenging task [46]. Indeed, as under the WDM technology every fiber poten-
tially carries many signals, a single failure of a physical fiber might have very
significant consequences on the network and should be carefully handled.
This can be achieved by an appropriate design of the IP/WDM network,
which is the topic of this chapter. In particular, we are interested in finding
a survivable mapping, where the logical graph remains connected after any
single physical link failure. We introduce a novel approach to the problem and
prove some of its properties. This leads us to an algorithm called SMART.
Its three major applications are: (i) formal verification of the existence of
a survivable mapping, (ii) a tool tracing and repairing vulnerable areas in
the system, and (iii) efficient and scalable heuristic that finds a survivable
mapping.

Organization of this Chapter

We proceed as follows. First in Sections 4.2 and 4.3 we present a high-level
introduction to the IP/WDM setting and the problems that we address.
In particular, in Section 4.2 we describe the two layers, mapping, types of
failures and failure protection mechanisms in the IP/WDM context. Next,
in Section 4.3 we overview our objectives, contributions and related work.

In the remaining sections we rigorously address the specific problem, as
follows. In Section 4.4, we introduce the additional notation and formalize
the basic version of the problem. In Section 4.5, we give three core theo-
rems that SMART builds on. For better readability all proofs are moved to
the Appendix at the end of this chapter. In Section 4.6, we introduce the
SMART algorithm and discuss its properties. In Section 4.7, we describe our
implementation of SMART. In Section 4.8, we discuss a number of possible

4.2. IP/WDM AS A TWO-LAYER SYSTEM 59

applications of SMART. In Section 4.9, we present the simulation results.
Next, we extend the analysis and simulation results to more elaborate types
of failures (Sections 4.10-4.12) and to capacity constraints (Section 4.13).
Finally, in Section 4.14 we conclude the chapter.

4.2 IP/WDM as a Two-Layer System

In this section we describe how the IP/WDM system corresponds to the
general two-layer setting introduced in Chapter 2. We consider all aspects,
from the specification of the two layers and their mapping, to common failures
and typical ways of handling them.

4.2.1 Physical Layer, Logical Layer and the Mapping

in IP/WDM Networks

In what follows, please refer to Fig. 4.1.

Physical Layer Gφ

The physical layer Gφ = (V φ, Eφ) is a set of optical switches (nodes) and
optical fibers (links) interconnecting them.

The simplest type of physical node is an optical crossconnect (OXC). It
switches the optical signal from an input port to the output port with no
wavelength conversion, leading to the wavelength continuity constraint [47].
Physical nodes can be also equipped with wavelength converters to alleviate
this constraint: some can offer a full conversion capability (that is, any wave-
length can be converted to any other wavelength), others only offer limited
conversion capability (that is, a wavelength can only be converted to the
neighboring wavelengths on the spectrum). In this chapter, we assume that
the full wavelength conversion at every node is available.

In our basic analysis, we also assume infinite capacities of optical fibers,
meaning unlimited number of wavelengths per fiber. We introduce the ca-
pacity constraints to the analysis in Section 4.13.

The physical network Gφ is composed of the existing infrastructure and
is thus considered given and fixed.

Logical Layer Gλ

The logical layer Gλ = (V λ, Eλ) consists of a set of IP routers (nodes)
spanned by IP links. Not every physical node has an IP routing capabil-
ity, which implies V λ ⊆ V φ. All the results in this chapter hold for V λ ⊆ V φ,

60 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

however, for the sake of simplicity we have chosen to keep V φ and V λ iden-
tical, i.e., V φ ≡ V λ ≡ V .

The logical graph is closely related to the external traffic demands and
thus is considered given and fixed.

Mapping M

Each logical link eλ ∈ Eλ is mapped on the physical topology Gφ as a physical
path M(eλ), which is called a lightpath in the IP/WDM setting. The mapping
is defined only for the existing logical links Eλ, thus we denote it by MEλ.

Recall that in an IP/WDM system, the physical and logical layers are
fixed. However, we are free to design the mapping MEλ .

4.2.2 Failures in IP/WDM Networks

Here we overview the typical failures that may be encountered in IP/WDM
networks. The approach we introduce later in this chapter is suitable to deal
with each of them.

Single-Link Failures

The most common is a single physical link failure. This can be caused by a
fiber (physical link) cut, a fault of a single interface card in an optical switch,
or a fault of an optical amplifier.

Single physical link failure is the basic error type addressed in this chapter;
all the remaining types (see below) are considered only in Sections 4.10-4.12.

Span Failures

If we allow for the physical location of the fibers, we will extend single link
failures to single span failures [48]. A span is a collection of all fibers co-
located in the same conduit, between two consecutive points of access (such
as a manhole or an amplifier site). To limit costs, different physical links are
sometimes put in the same span (e.g., along railway and electricity lines);
consequently, a single cut can break all of them at once. So a span failure
can be either a failure of a single physical link or simultaneous failure of all
physical links that are put in the same span.

Node Failures

We can also encounter node failures; they are the consequence of a failure of
equipment at nodes, such as switches.

4.2. IP/WDM AS A TWO-LAYER SYSTEM 61

Double-Link Failures

Finally, we consider the double–link failures, i.e., independent failures of any
two physical links. Usually such a situation takes place when the second
failure occurs before the first one is repaired. This is not very common, but
possible. For example, in the Sprint network, the time between two successive
optical failures ranges from 5.5 sec to 7.5 days with a mean of 12 hours [49].
Most of them are repaired automatically within several minutes, but those
requiring human intervention (e.g., after a fiber cut) may last hours or days.
It is quite probable that during this period another physical failure occurs.

4.2.3 Failure Protection Mechanisms in IP/WDM Net-
works

In Section 2.3, we reviewed the failure protection techniques in two-layer
systems. IP/WDM networks employ both the proactive and the reactive
approaches [50]. Following the commonly used terminology, we will refer
to them as ‘protection’ and ‘restoration’, respectively. Protection uses pre-
–computed backup paths applied in the case of a failure. Restoration finds
dynamically a new path, once a failure has occurred. Protection is less
resource efficient (the resources are committed without prior knowledge of
the next failure) but fast, whereas restoration is more resource efficient and
slow.

Protection and restoration mechanisms can be provided at different layers.
IP layer (i.e., logical layer) survivability mechanisms can handle failures that
occur at both layers, contrary to WDM layer (i.e., physical layer) mechanisms
that are transparent to the IP topology. In practice, we usually speak of
either the protection at the physical layer (‘WDM protection’), or restoration
at the logical layer (‘IP restoration’).

Under WDM protection, the failures are detected at the physical layer
and the traffic is automatically switched to pre–computed backup paths.

In contrast, under IP restoration, a physical failure propagates to the
logical layer (possibly as multiple logical failures), where it is detected; next
the alternative routes in the logical topology are found. We review these
techniques in more details in [51].

62 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

4.3 Our Objectives and Achievements

4.3.1 We Address the IP Restoration Problem

It is not obvious which failure management technique (WDM protection or
IP restoration) is better; each has pros and cons [50,52]. IP restoration is
more resource efficient. Unfortunately it is also inherently slow due to the
long failure detection time at the IP layer. Still, many real network operators
choose to deploy only IP restoration and find it an effective and cost–efficient
solution (see e.g., Sprint network [53]). Moreover, IP restoration captures
directly the interaction between two-layers, which is the main object of study
in this thesis. For these reasons, we address the IP restoration problem in
this chapter.

4.3.2 Vulnerability W and Survivability

In order to enable IP restoration, two requirements must be met. First, the
links cannot be fully utilized at the IP layer, in order to be able to absorb
the additional traffic rerouted after a failure. This is called overprovisioning.
Second, a single physical failure cannot cut the connectivity at the IP layer.
This may be guaranteed by an appropriate mapping of logical links on the
physical topology. Finding such a mapping is our main goal.

More precisely, following [54] we say that a tuple [eλ, eφ] is a broken pair,
if a single failure of eφ partitions the logical graph Gλ in such a way that the
end-nodes of eλ belong to two different components of Gλ. Now, we define
our basic Vulnerability metric W (see Section 2.4) as the number of broken
pairs in the system.

In particular, we are mainly concerned about two cases. If W = 0, i.e., if
the logical topology remains connected after any single physical link failure,
then the underlying mapping is called a survivable mapping (see Fig. 4.2a).
Otherwise, if W > 0, then the mapping is not survivable, as presented in
Fig. 4.2b.

To summarize, given a fixed logical graph Gλ and physical graph Gφ, our
goal is to find a survivable mapping M .

4.3.3 Related Work

The problem of survivable mapping is NP-complete [55], and has drawn
much attention. It was first identified by Crochat et.al. [54], and named
“design protection”. Since then, many algorithms solving this problem (with
different variations) have been proposed. In general, the previous approaches

4.3. OUR OBJECTIVES AND ACHIEVEMENTS 63

Log
ica

l

Ph
ys

ica
l

Map
pin

g

Log
ica

l

Ph
ys

ica
l

Map
pin

g

b) Not survivable mappinga) Survivable mapping

GφGφ

GλGλ

MEλMEλ

Figure 4.2: (a) Survivable mapping: the logical topology Gλ remains connected
after any single physical link failure. (b) Not survivable mapping: Gλ gets parti-
tioned after the single physical failure shown in the figure.

can be divided into two groups: (i) exact algorithms based on Integer Linear
Programming (ILP) and (ii) pure heuristics.

ILP The ILP solutions can be found, for example, in [50,55,56]. The au-
thors of [55] observe that a mapping is survivable if and only if no physical
link is shared by all logical links belonging to a cut-set of the logical graph.1

This observation is used in [55] to formulate an ILP model for the survivable
mapping problem: For each logical link and for each cut-set of the logical
graph, a constraint is added to the ILP. This leads to exact solutions, but also
to excessive run-times ([57]) for networks of a non-trivially small size (few
tens of nodes). To overcome this difficulty the authors of [55] propose two
relaxations to their ILP, in which they include only cut-sets of small sizes.
This considerably speeds up the algorithm, but can easily lead to subopti-
mal solutions. Facing the same time-complexity problem of ILP, the authors
of [50] and [56] try a heuristic approach.

1A cut-set of a network is defined by a cut of the network: A cut is a partition of the
set of nodes V into two sets S and V − S, and the cut-set defined by this cut is the set of
edges which have one endpoint in S and one in V − S.

64 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

Heuristics Despite many differences, the heuristics used to solve the sur-
vivable mapping problem share the same general methodology. They start
with some initial mapping (e.g., shortest path) and try to improve it at sub-
sequent iterations. Probably the most often used heuristic is Tabu Search. It
is a version of a steepest descent search algorithm which stores a list (called
a Tabu List) of recent moves in order to avoid them. This allows Tabu
Search to escape the local minima. For more details refer to [58]. Tabu
Search is used with success to solve the survivability problem in many set-
tings, e.g., without capacity constraints [54], with capacity constraints [59,60]
or additionally meeting maximum delay requirements [56]. Another general
heuristic applied to solve the survivable mapping problem is Simulated An-
nealing in [52]. There is also a number of heuristics developed specifically to
solve this problem, e.g., in [50] and [61]. The FastSurv algorithm introduced
recently in [61], exploits the observation already mentioned in the ILP para-
graph, which takes use of cut-sets in the logical topology. However, unlike
in [55], the FastSurv algorithm systematically and indirectly learns about the
importance of particular cut-sets and focuses only on the most relevant ones.
This approach results in efficiency and scalability much better than those of
other heuristics.

4.3.4 Our Contributions

We propose a new approach to the problem of survivable mapping, called
‘SMART’ (“Survivable Mapping Algorithm by Ring Trimming” [6,7]). SMART
does not fall in any of the two groups above. It is based on a breakdown
of the problem into a set of independent smaller problems that are easy to
solve. Each of them is solved separately, and then the solutions are combined
to obtain a survivable mapping of the entire topology. This novel approach
not only leads to the fastest and scalable heuristic to date, but also exhibits
a number of provable and useful properties. As a result, we propose three
important applications of SMART, as follows.

Application 1: Formal verification of the existence of a survivable
mapping. First, we are interested in the existence of a survivable mapping
for a given pair of logical and physical topologies. There is some work on the
topic in the literature, but it assumes ring topologies at the physical [62,63]
or the logical [55,64] layer. We study the existence of a survivable mapping
for general mesh topologies at both layers, which is foreseen to be the main
future topology. To date, the only general method verifying the existence of a
survivable mapping is an exhaustive search (or equivalent) run for the entire
topology. Due to NP-completeness of the survivable mapping problem [55],

4.4. ADDITIONAL NOTATION 65

the exhaustive approach is not realizable in practice for the topologies larger
than a few nodes. To bypass this difficulty, we introduce a new type of
mapping that preserves the survivability of some subgraphs (‘pieces’) of the
logical topology; we call it a piecewise survivable mapping. The formal anal-
ysis of the piecewise survivable mapping shows that a survivable mapping of
the logical topology on the physical topology exists if and only if there ex-
ists a survivable mapping for a contracted logical topology, that is, a logical
topology where a specified subset of edges is contracted (contraction of an
edge amounts to removing it and merging its end-nodes). This new result
substantially simplifies the verification of the existence of a survivable map-
ping. Of course, the problem remains NP-complete, but this simplification
allows us, for the first time, to solve many instances of moderate and large
topology size (say, 15 or more nodes), which makes it applicable in practice.

Application 2: A tool to trace and repair the vulnerable areas of the
network. A second application of a piecewise survivable mapping is tracing
the vulnerable areas in the network and pointing where new link(s) should
be added to enable a survivable mapping. To the best of our knowledge, this
is also a novel functionality.

Application 3: A fast heuristic Finally, SMART finds a survivable map-
ping much faster (often by orders of magnitude) then the ILP and heuristic
techniques proposed to date.

4.3.5 We use the general two-layer model terminology

In Chapter 2 we defined the general components of the two-layer system.
In Section 4.2 we described how the IP/WDM network fits in the two-layer
model. In the remainder of this chapter we obtain results that, although
inspired by IP/WDM, are rather general and not necessarily restricted to
optical networks. Therefore, hereafter we intentionally drop the IP/WDM-
specific terminology and use only the terms directly related to the two-layer
model.

4.4 Additional Notation

In this section we introduce a number of definitions that are essential to the
approach we propose.

66 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

Log
ica

l

Ph
ys

ica
l

Map
pin

g

Con
tra

cte
d

aλ aλaλ

bλ bλbλ

cλ cλcλ

dλ

dλ dλdλ

eλ

eλ eλeλ

fλ fλfλ
gλ gλgλ

hλ hλhλ

aφ aφaφ

bφ bφbφ

cφ cφcφ

dφ dφdφ
eφ eφeφ

fφ fφfφ

gφ gφgφ

uβ vβ

GλGλGλ

GφGφGφ

Gβ=Gλ↓A

MA MB MEλ

(a) Mapping of the set
A = {aλ, bλ, cλ, fλ, gλ, hλ}

(b) Mapping of the set
B = {dλ, eλ}

(c) Full mapping
Eλ =A

⋃
B

Figure 4.3: Three mapping examples. We have four layers, from bottom to top:
the physical topology Gφ, the mapping M , the logical topology Gλ and the con-
tracted logical topology Gβ (only in (a)). In (a) the pairs

[
Gλ

{aλ,bλ,cλ}
,MA

]
and[

Gλ
{fλ,gλ,hλ}

,MA

]
are survivable, and therefore the pair

[
Gλ,MA

]
is piecewise sur-

vivable. In (b) the mapping MB maps edge-disjointly the set B = {dλ, eλ} of two
logical links. The contracted topology Gβ in (a) is composed of these two links.
Taking Gβ and MB together, we obtain the pair

[
Gβ,MB

]
, which is survivable. In

(c) the pair
[
Gλ,MEλ

]
is survivable, that is MEλ is a survivable mapping of the

entire logical topology.

4.4.1 Combining two mappings

We allow putting a set of logical links Asub ⊂ A as an argument, which results
in a set of paths MA(Asub) ⊂ P φ. Similarly, we also define a mapping of a
logical path pλ. If all logical edges in pλ belong to A ∈ Eλ, then MA(pλ)
is the concatenation of mappings of all consecutive pairs of vertices in pλ.
Consequently, M(pλ) is also a path in Gφ, but some edges and nodes may be
repeated.

4.4. ADDITIONAL NOTATION 67

a

b

c

d

d

e

e

ff

g

h
h

u

v

w x

y

z
uβ

vβ

wβ

G Gβ = G↓A

A = {a, b, c, g}

Contraction

Origin(e) = e

Origin(vβ) = ({u, v, w}, {a, b, c})

Origin(uβ) = ({y, z}, g)

Origin(wβ) = x

Origin
(

({uβ, wβ}, {f, h})
)

= ({x, y, z}, {f, g, h})

Figure 4.4: Contraction of a graph G on a set of edges A = {a, b, c, g}. The origins
of some elements of Gβ = G↓A are also shown (bottom).

Example 1 Fig. 4.3 illustrates the definitions given above. In Fig. 4.3a the
mapping MA is defined for the subset A of logical links (marked in bold in
the logical topology). For example, we have MA(fλ) = 〈dφ, bφ, gφ〉, which
means that the lightpath assigned for the logical edge fλ consists of three
physical links. Fig. 4.3b presents a mapping defined for the subset B, whereas
the mapping MEλ in Fig. 4.3c is defined for all links of the logical topology
Eλ = A ∪ B.

We will often deal with mappings of different subsets of logical edges. Let
A1, A2 ⊂ Eλ. For consistency, we always require that:

for every eλ ∈ A1 ∩A2 : MA1(eλ) = MA2(eλ). (4.1)

The mappings MA1 and MA2 can be merged, resulting in a mapping MA3

defined as follows

A3 = A1 ∪A2 (4.2)

MA3(A3) = MA1(A1) ∪MA2(A2). (4.3)

For convenience of notation, we will write (4.2) and (4.3) as MA3 = MA1∪
MA2 .

4.4.2 Contraction and Origin

In the chapter we will often use the graph operator of contraction, which is
illustrated in Fig. 4.4 and is defined as follows:

68 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

Definition 1 (Contraction [65]) Contracting an edge e ∈ E of a graph
G = (V, E) consists in deleting that edge and merging its end–nodes into a
single node. The result is called the contraction of a graph G on an edge e
(or simply a contracted graph), and is denoted by Gβ = G↓e.

By extension, we also allow contracting a set of edges A ⊂ E, resulting in a
contracted graph Gβ = G↓A, obtained by successively contracting the graph
G on every edge of A. It is easy to show that the order in which the edges
of A are taken to contraction, does not affect the final result.

Let G = (V, E), A ⊂ E and Gβ = (V β , Eβ) = G↓A. Note that by con-
struction Eβ = E \A. Therefore each edge of Gβ can be found in G, as
depicted in Fig. 4.4. This is not always true for vertices. A vertex of V β may
either ‘originate’ from a single vertex in G (like wβ in Fig. 4.4), or from a
connected subgraph of G (like vβ and uβ). We call this relation an Origin(·).

Definition 2 (Origin) Let Gβ = G ↓A. Now take a subgraph Gβ
sub ⊆ Gβ.

We say that Gsub = Origin(Gβ
sub), if Gsub is the maximal subgraph of G that

was transformed into Gβ
sub by the contraction of A in G.

According to this definition, the result of the Origin(·) function is the max-
imal subgraph transformed in its argument. For example, we could say that
in Fig. 4.4, the vertex z ∈ G was transformed into the vertex uβ ∈ Gβ, how-
ever z 6= Origin(uβ) because it is not the only element that was transformed
into uβ by contraction. The maximal subgraph in this case is ({y, z}, g) =
Origin(uβ).

4.4.3 Survivability and Piecewise Survivability

Let MEλ be a mapping of the logical topology Gλ on the physical topology
Gφ. Assume that a physical link eφ fails. Each logical link in Gλ using eφ in
its mapping (lightpath) will then be cut. This may cause a disconnection of
Gλ. If, after any single physical link failure, the graph Gλ remains connected,
then the pair

[
Gλ, MEλ

]
is declared survivable. We extend this property to

a family of graphs constructed from the logical topology in the following
definition:

Definition 3 (Survivability) Let Gλ = (V, Eλ), A ⊂ Eλ and Gβ = (V β , Eβ) =
Gλ ↓A. Take any connected subgraph Gβ

sub = (V β
sub, B) of the contracted topol-

ogy Gβ, and let MB be a mapping of the set B of logical links. The pair[
Gβ

sub, MB

]
is survivable if the failure of any single physical link eφ does not

disconnect the graph Gβ
sub.

4.4. ADDITIONAL NOTATION 69

A direct consequence of Definition 3 is that if
[
Gβ

sub, MB

]
is survivable,

then
[
Gβ

sub, MB′

]
is also survivable, for any B ⊂ B′ ⊆ Eλ.

In Definition 3, Gβ
sub represents a large family of graphs obtained from the

logical topology. If A = ∅, then Gβ = Gλ and Gβ
sub is any connected subgraph

of Gλ (including Gλ itself). If A 6= ∅, then Gβ
sub is any connected subgraph

of Gλ↓A. The different instances of Gβ
sub and survivable pairs are given in

Fig. 4.3 and described in the following three examples:

Example 2 It is easy to check that in Fig. 4.3c the pair
[
Gλ, MEλ

]
is sur-

vivable.

Example 3 In Fig. 4.3a, let Gλ
{aλ,bλ,cλ} be the subgraph of Gλ defined by the

edges aλ, bλ, cλ and their end-vertices. The pair
[
Gλ

{aλ,bλ,cλ}
, MA

]
is surviv-

able, because the failure of any physical link does not disconnect Gλ
{aλ,bλ,cλ}.

Similarly, the pair
[
Gλ

{fλ,gλ,hλ}, MA

]
is also survivable.

Example 4 In Fig. 4.3a, the contracted topology Gβ is the result of the
contraction of the logical topology on the set A, i.e., Gβ = Gλ↓A. Take Gβ

sub =
Gβ. It consists of two logical links, dλ and eλ. A possible mapping of the
set B = {dλ, eλ} is the mapping MB shown in Fig 4.3b. Consider the pair[
Gβ, MB

]
; it is survivable, because a single physical link failure cannot bring

down both dλ and eλ at the same time, hence Gβ remains connected.

Definition 4 (Piecewise Survivability) Let MA be a mapping of a set
A ⊂ Eλ on the physical topology. The pair

[
Gλ, MA

]
is piecewise surviv-

able if, for every vertex vβ of the contracted logical topology Gλ↓A, the pair[
Origin(vβ), MA

]
is survivable.

In contrast to survivability, piecewise survivability is defined only for the
entire logical topology Gλ. We will say that a mapping MA is (piecewise)
survivable, if the pair

[
Gλ, MA

]
is (piecewise) survivable (i.e., we take Gλ as

the default topology).

Example 5 In Fig. 4.3a, the pair
[
Gλ, MA

]
is piecewise survivable. To

prove it, we have to show that for vertices uβ and vβ of Gλ↓A, the pairs[
Origin(uβ), MA

]
and

[
Origin(vβ), MA

]
are survivable. Here we have Origin(uβ) =

Gλ
{aλ,bλ,cλ} and Origin(vβ) = Gλ

{fλ,gλ,hλ}. We have shown in Example 3 that
each of these two graphs forms a survivable pair with MA.

70 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

4.5 Fundamental properties of survivable and

piecewise survivable mappings

In this section we prove three general properties of survivable and piecewise
survivable mappings. They hold independently of what is fixed in the two-
layer structure. We will often use these results in the following sections.

4.5.1 The Expansion of Survivability

Given a piecewise survivable mapping, the logical topology can be viewed as
a set of survivable ‘pieces’. This is a general property of a piecewise surviv-
able mapping. (For instance in Example 5, given the piecewise survivable
mapping MA, there are two survivable ‘pieces’ of Gλ: Gλ

{aλ,bλ,cλ} ⊂ Gλ and

Gλ
{fλ,gλ,hλ}

⊂ Gλ.) The following theorem enables us to merge some of these
pieces, resulting in a single large survivable piece.

Theorem 1 (Expansion of Survivability)
Let MA be a mapping of a set of logical edges A ⊂ Eλ on the physical topology
Gφ, such that the pair

[
Gλ, MA

]
is piecewise survivable. Let Gβ = Gλ↓A.

Take any subgraph of Gβ, call it Gβ
sub = (V β

sub, B). Let MB be a mapping of

the set B of edges of Gβ
sub on Gφ. If the pair

[
Gβ

sub, MB

]
is survivable then the

pair
[
Origin(Gβ

sub), MA ∪MB

]
is also survivable.

Proof 1 See Appendix.

The following example illustrates this theorem.

Example 6 In Example 5 we have shown that in Fig. 4.3a, the pair
[
Gλ, MA

]

is piecewise survivable. Take Gβ
sub = Gβ = Gλ↓A and take MB as in Fig. 4.3b.

From Example 4, we know that the pair
[
Gβ, MB

]
is survivable. Now, by

Theorem 1, the pair
[
Origin(Gβ), MA∪MB

]
=
[
Gλ, MA∪MB

]
is survivable.

So beginning from the piecewise survivable mapping MA and adding the map-
ping MB, we merged the two survivable pieces Gλ

{aλ,bλ,cλ} and Gλ
{fλ,gλ,hλ} into

a single, large, survivable piece. In this example the resulting survivable piece
is the entire logical topology Gλ. The full mapping MA∪MB = MEλ is shown
in Fig. 4.3c.

4.5. FUNDAMENTAL PROPERTIES OF SURVIVABLE AND . . . 71

4.5.2 Invariance of Survivability Under Contraction

Theorem 2 (Invariance of Survivability Under Contraction)
Let Gβ

sub = (V β
sub, B) be a subgraph of some contracted topology Gβ. If MB is a

mapping such that the pair
[
Gβ

sub, MB

]
is survivable, then for any set A ⊂ B

of logical links the pair
[
Gβ

sub↓A, MB

]
is also survivable.

Proof 2 See Appendix.

In other words, Theorem 2 says that if we can map in a survivable way some
subgraph Gβ

sub of the logical or contracted logical topology, then the subgraph
obtained by contracting some additional set A of edges can always be mapped
in a survivable way, whatever the choice of A.

Example 7 Take Gβ
sub = Gλ and MB = MEλ as in Fig. 4.3c. We know that

the pair
[
Gλ, MEλ

]
is survivable. Theorem 2 implies that for any set of logical

edges A ⊂ Eλ the pair
[
Gλ↓A, MEλ

]
is also survivable. In particular, for the

set A as defined in Fig. 4.3a,
[
Gλ↓A, MEλ

]
is survivable, which was shown

in Example 4 (MB ⊂MEλ).

Note that we do not impose any requirements (such as e.g., preserving piece-
wise survivability) on the contracted edges A. Moreover, we do not have any
restrictions on what happens with the rest of the contracted topology, i.e.,
in Gβ \Gβ

sub.

4.5.3 The Existence of a Survivable Mapping

In general, for a given pair of physical and logical topologies, it is very diffi-
cult to verify the existence of a survivable mapping. A heuristic approach, if
it fails, does not give any answer. The ILP approach or an exhaustive search
could provide us with the answer, but due to their high computational com-
plexity their application is limited to the topologies of several nodes. The
following theorem shows how this verification problem can be substantially
reduced:

Theorem 3 (Existence of a survivable mapping)
Let MA be a mapping of a set of logical edges A ⊂ Eλ, such that the pair[
Gλ, MA

]
is piecewise survivable. A survivable mapping Msurv

Eλ of Gλ on Gφ

exists if and only if there exists a mapping Msurv
Eλ\A of the set of logical links

Eλ\A on Gφ, such that the pair
[
Gλ↓A, Msurv

Eλ\A

]
is survivable.

Proof 3 See Appendix. The proof uses Theorems 1 and 2.

72 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

The following example illustrates this theorem.

Example 8 In Fig. 4.3 delete edge bφ from the physical topology Gφ. Now,
for the logical topology Gλ and the physical topology Gφ\{bφ}, a survivable
mapping does not exist. To prove it, note that we can still find a mapping
MA of Gλ on Gφ \{bφ} that is piecewise survivable. For instance, we can
take MA defined as follows: aλ 7→ (cφ), bλ 7→ (aφ), cλ 7→ (dφ, eφ, fφ, gφ), fλ 7→
(dφ, cφ, aφ, gφ), gλ 7→ (fφ) and hλ 7→ (eφ). However, the remaining two logical
links dλ and eλ cannot be mapped edge-disjointly on Gφ \{bφ}. Therefore
no survivable mapping M{dλ,eλ} of the contracted logical topology Gλ↓A on
Gφ \{bφ} exists. Consequently, by Theorem 3 we know that no survivable
mapping of Gλ on Gφ \{bφ} exists, which was to be proved. Note that to
prove it, we only considered the two-edge topology Gλ↓A instead of the entire
Gλ, which greatly simplified the problem. Clearly, the larger the set A, the
more we benefit from Theorem 3.

4.6 The SMART algorithm

In this section we present an algorithm that searches for a survivable map-
ping, which we call SMART. It maps the topology part by part, gradually
converging to a final solution. By formal graph theoretic analysis, we prove
that if SMART converges completely, a survivable mapping is found. Oth-
erwise, when the algorithm terminates before its complete convergence, the
returned mapping is piecewise survivable and no survivable solution exists.

4.6.1 The pseudo-code of SMART

SMART :

1. Gβ ← Gλ, MA = ∅, A = ∅

2. Take some subgraph Gβ
sub = (V β

sub, B) of Gβ and find a mapping MB,

such that the pair
[
Gβ

sub, MB

]
is survivable. if no such pair exists, then

return MA and Gβ = Gλ↓A, end.
3. Update the mapping by merging MA and MB, i.e., MA ←MA ∪MB.
4. Contract Gβ on B, i.e., Gβ ← Gβ↓B.
5. if Gβ is a single node, then return MA, end.
6. goto Step 2.

4.6. THE SMART ALGORITHM 73

Log
ica

l

Ph
ys

ica
l

Map
pin

g

Con
tra

cte
d

ITERATION 1: END:ITERATION 3:ITERATION 2:

aλ

aλ

aλaλaλ

bλ

bλ

bλbλbλ

cλ

cλ

cλcλcλ

dλdλ

dλ

dλ

dλdλdλ

eλeλ

eλ

eλ

eλeλeλ

fλ

fλ

fλ

fλfλfλ

gλ

gλ

gλ

gλgλgλ

hλ

hλ

hλ

hλhλhλ

hλ
hλ

hλ

hλ

hλ hλ hλ

aφ

bφ

cφ

dφ

eφ

fφ

gφ

GλGλGλGλ

GφGφGφGφ

GβGβGβGβ

Gβ
sub

MAMAMAMA

MB

Figure 4.5: Illustration of the SMART algorithm (4.6.1). During a run of the
SMART algorithm only the contracted topology and the mapping change from
one iteration to the next one. The logical and physical topologies are included
only for the context.

4.6.2 SMART illustration

An illustration of a run of SMART is presented in Fig. 4.5. Initially, the
mapping MA is empty, and the contracted topology Gβ is identical with
the logical topology Gλ. In Step 2 of Iteration 1, SMART picks in Gβ a
subgraph Gβ

sub - the triangle set in bold. The logical edges composing it are
B = {aλ, bλ, cλ}. Next, SMART finds a mapping MB of edges in B such that
the pair

[
Gβ

sub, MB

]
is survivable; MB is set in bold at the mapping layer. In

Step 3 this mapping is added to MA. In Step 4 we contract Gβ
sub in Gλ, which

results in a smaller contracted topology that is used as a starting point of
Iteration 2. In this example, after three iterations the graph Gβ converges
to a single node and SMART terminates in Step 5.

Note that at Iteration 1 and 2 the subgraph Gβ
sub is a cycle. It requires the

mapping MB to be link-disjoint. In contrast, at Iteration 3 the subgraph Gβ
sub

has a different structure for which a non-link-disjoint mapping MB is enough
to form a survivable pair

[
Gβ

sub, MB

]
.

74 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

4.6.3 The Correctness of the SMART Algorithm

We declare that SMART converges if the contracted topology Gβ converges to
a single node. We prove later in Corollary 1, that the mapping MA returned
in Step 5 is then a survivable solution.

In contrast, we say that SMART does not converge if SMART terminates
before Gβ converges to a single node, i.e., in Step 2. We prove below in
Theorem 4 that the mapping MA returned in Step 2 piecewise survivable.
Moreover, we show in Corollary 1 that in this case a survivable solution does
not exist. The graph Gβ = Gλ↓ A (also returned in Step 2) is called the
remaining contracted logical topology as it consists of unmapped logical links
Eλ\A.

Theorem 4 (SMART’s piecewise survivability)
After each iteration of the SMART algorithm, the pair

[
Gλ, MA

]
is piecewise

survivable.

Proof 4 See Appendix.

Theorem 4 leads us to the following important property of the SMART pro-
cedure:

Corollary 1 (SMART’s Convergence)
The SMART algorithm returns a single node contracted topology Gβ, if and
only if there exists a survivable mapping of the logical graph Gλ on the physical
graph Gφ. In this case the returned mapping MA is survivable.

Proof 5 See Appendix.

Gβ may converge to a single node topology with self-loops ; they form a set of
remaining unmapped logical links Eλ\A. However, this does not affect the
result, because the links of Eλ\A may be mapped in any way (e.g. shortest
path) to obtain a full survivable mapping MEλ .

4.6.4 The Order of a Sequence of Subgraphs

Recall that in Step 2 of the SMART algorithm we take some subgraph Gβ
sub =

(V β
sub, B) of the contracted topology Gβ. We do not specify which subgraph

to take; if there are more candidates Gβ
sub that meet the condition given in

Step 2 (which is usually the case), we are free to choose any of them. This
raises a natural question:2 How does the choice of Gβ

sub affect the convergence

2I was asked this question several times when presenting SMART.

4.7. IMPLEMENTATION - SMART-H 75

of the SMART algorithm? In the following theorem we show that this choice
does not affect the outcome of the SMART algorithm.

Theorem 5 (SMART’s Uniqueness)
The contracted topology Gβ

min (excluding self-loops) returned by SMART is
unique.

Proof 6 See Appendix.

A direct consequence of Theorem 5 is that the order in which we take the
subgraphs Gβ

sub in the SMART algorithm does not affect the final result.

4.7 Implementation - SMART-H

In the previous section we have proposed a general procedure, called SMART,
for which we have proved a number of important properties. In practice,
however, an exact implementation of SMART (as described by the pseudo-
code in Section 4.6.1) is not feasible, because Step 2 is in general an NP-
complete problem. For this reason, for large topologies we use a heuristic to
solve Step 2. We will refer to the SMART procedure that takes use of any
heuristic in Step 2 as “SMART-H.” In this section we first discuss which
theoretical results carry over from SMART to SMART-H. Next, we give a
simple and effective example of a heuristic for solving Step 2.

4.7.1 Which theoretical results hold for SMART-H?

With a heuristic used to solve Step 2, SMART-H can terminate in Step 2 not
only if a pair

[
Gβ

sub, MB

]
does not exist, but also if our heuristic was not able

to find one. However, most of the theoretical results obtained for SMART
in Section 4.6 carry over to SMART-H and can be successfully applied as we
show in Sections 4.8 and 4.9. In particular:

• Theorem 4 holds.

• Corollary 1 holds only in one direction: If SMART-H converges, then
the returned mapping is survivable (see Proof of Corollary 1). Other-
wise, the returned mapping is piecewise survivable (by Theorem 4), but
a survivable solution might still exist. However, the piecewise surviv-
ability of the returned mapping can be effectively exploited to verify the
existence of a survivable solution, as we demonstrate in Section 4.8.1.

76 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

• Theorem 5 does no longer hold. In practice, however, it is highly prob-
able that if our heuristic for Step 2 can find a survivable mapping of
some Gβ

sub then it will also find a survivable mapping of its contracted

version Gβ
sub↓A. (For instance, it is harder to map disjointly all edges

of a cycle, than only a subset of them.) With this property, distinct
runs of SMART-H converge to the same contracted topology. We have
found an excellent confirmation of this claim in simulations. We have
tested many pairs of physical and logical topologies for which a surviv-
able mapping does not exist (so Gβ

min is always larger than a one-node
topology). To ensure a variety of sequences of cycles considered in
Step 2 of SMART-H, we randomly permute every time the list of can-
didates. Even with this approach, for a given pair of topologies, more
than 99% of distinct runs of SMART-H resulted in the same contracted
topology.

4.7.2 DisjointMap - a heuristic for Step 2 of SMART-H

In our implementation of Step 2 of SMART-H we take the graph Gβ
sub in the

form of a cycle. Thus we will systematically contract cycles (or ‘rings’) found
in the contracted logical topology, which explains the name of the algorithm
(“Survivable Mapping Algorithm by Ring Trimming”). Gβ

sub in the form of
a cycle requires the mapping MB (Step 2) to be edge-disjoint. (Otherwise,
if the same physical link eφ is used by two or more logical links in Gβ

sub, a

failure of eφ will bring these links down, disconnecting the cycle Gβ
sub.) Since

finding it is equivalent to the NP-complete edge-disjoint paths problem [66],
we applied a simple heuristic that we call DisjointMap, as follows.

Let Gφ = (V, Eφ) be the physical graph, Gλ = (V, Eλ), and C be a cycle
in the contracted graph. Note that the cycle C consists of logical edges only,
i.e., C ⊂ Eλ. The DisjointMap heuristic attempts to map the set of logical
edges C on the physical graph in an edge disjoint way. Its pseudocode is as
follows:

DisjointMap:

4.7. IMPLEMENTATION - SMART-H 77

1. for every eφ ∈ Eφ do weight(eφ) ← Ismall

2. M ← ∅
3. for every eλ ∈ C do

M(eλ)← shortest path in Gφ from eλ
(1) to eλ

(2)

for every eφ ∈M(eλ) do
weight(eφ) ← weight(eφ) + Ibig.

4. if no physical edge is used more than once in M then
return . (M is a disjoint mapping)

5. for every occurrence of any physical edge eφ ∈M do
weight(eφ) ← weight(eφ) - Ibig (to restore the state from before step 2)

6. for every eφ ∈ Eφ that is used more than once in M do
weight(eφ) ← weight(eφ) + Ismall.

7. if number of iterations > 10 then
return . (no mapping found)

8. goto 2

In this algorithm, eλ
(1) and eλ

(2) are the end-nodes of the edge eλ. The choice
of the parameters Ismall and Ibig affects the convergence; we used Ismall = 1
and Ibig = 1000.

It is worth noting, that even with a perfect disjoint-map algorithm (such
as exhaustive search), its failure for every existing cycle does not imply the
non-existence of a survivable mapping. We show an appropriate counterex-
ample in Fig. 4.6. However, in practice this ‘cycle-based’ approach proved to
be very efficient.

Logical Graph Survivable Mapping Physical Graph

cut cut

Figure 4.6: An example of topology, for which a survivable mapping exists although
it is not possible to disjointly map any of the cycles found in logical topology. The
only cycles one can find in the logical topology are three cycles of length four.
Since the logical topology is a bipartite graph, each cycle traverses four times the
cut indicated on the picture. The same cut traverses three physical links in the
physical topology, which implies that at least one of those physical links must be
used twice when mapping a cycle. So it is impossible to disjointly map any cycle;
at the same time a survivable mapping exists as shown in the picture in the middle.

78 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

4.8 SMART-H Applications

We can apply the SMART-H algorithm in a number of ways. The general
scheme can be found in Fig. 4.7. The option we choose depends on the nature
of the results we want to obtain. Specifically we can distinguish three types
of applications, as follows.

SMART-H
- physical topology

- logical topology

Survivable

mapping

Survivable mapping

not possible (proof)

Piecewise survivable

mapping

SMART-H

converges

Do you

need a proof of

impossibility?
NoYes

ExSearch
and/or

SepPath
Survivable

mapping

found

SMART-H does

not converge

Survivable

mapping

not found

Piecewise survivable
mapping

+
Remaining contracted

logical topology

Repair the vulnerable areas of

the network by adding a link(s)

Application 2

Application 3

Application 1

Figure 4.7: Applications of the SMART-H algorithm.

4.8. SMART-H APPLICATIONS 79

4.8.1 Application1: Formal Verification of the Exis-

tence of a Survivable Mapping (ExSearch and
SepPath)

Run SMART-H to map a logical topology Gλ on the physical topology Gφ.
If SMART-H converges, a survivable mapping exists and is returned (see the
comment on Corollary 1 in 4.7.1). If SMART-H does not converge, it returns
a mapping MA and a remaining contracted logical topology Gλ↓A. What
makes SMART-H very different from other heuristics is that, by Theorem 4,
the returned mapping MA is piecewise survivable. This allows us to apply
Theorem 3, which reduces the task of verifying the existence of a survivable
mapping for the entire Gλ, to the same verification for Gλ↓A. This property
is a key feature of SMART-H: if there is a survivable mapping of Gλ on Gφ,
then SMART-H will never miss it, because the set of the remaining logical
links Eλ\A can be still mapped in a way that preserves the survivability of
Gλ↓A (and hence of Gλ). In other words, no backtracking is needed in order
to assess if there exists a survivable mapping for Gλ; we obtain exactly the
same answer by studying Gλ↓A. Although this verification is NP-complete
for both Gλ and Gλ↓A, in practice the size of Gλ↓A is often very small, which
makes the verification feasible. We use two methods to verify the existence
of a survivable mapping for Gλ↓A, ExSearch and SepPath, as follows.

ExSearch uses exhaustive search to find a survivable mapping of the
contracted logical topology Gλ↓A. In order to further reduce the cost of
this search we applied Theorem 1 from [55]. It binds the cut-sets in the
logical topology Gλ with the mapping M and survivability, which allows us
for substantial pruning during the exhaustive search.

SepPath, or ‘Separated Path check’, is defined as follows. If the con-
tracted logical topology Gλ↓A contains a path pβ such that all nodes on pβ

but the first and the last ones, are of degree two, then clearly all the logical
links in pβ must be mapped edge-disjointly to enable survivability. Therefore
the failure of an exhaustive search for an edge-disjoint mapping of pβ will
prove impossibility. (Otherwise, nothing can be concluded.) Compared to
an unrestricted exhaustive search, the exhaustive search respecting the edge-
disjointness constraint is relatively easy, although still NP-complete. For this
reason SepPath is better suited to larger topologies than ExSearch.

The implementations that first use SMART-H, and then apply ExSearch
or SepPath to the returned contracted topology Gλ↓A, will be called
SMART-H + ExSearch and SMART-H + SepPath, respectively. We test the
efficiency of these approaches in Section 4.9.2; we apply them to verify the
existence of a survivable mapping for various topologies in Section 4.9.3.

80 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

4.8.2 Application 2: A Tool Tracing and Repairing the

Vulnerable Areas of the Network

We have developed two methods to verify the existence of a survivable map-
ping: ExSearch and SepPath. Once we know that a particular pair of physical
and logical topologies cannot be mapped in a survivable way, a natural ques-
tion is to modify the topologies to enable such a mapping. Where should
a new link be added? The SMART-H algorithm helps us in answering this
question. Run SMART-H and wait until it terminates. The remaining con-
tracted logical topology Gλ↓A and the piecewise-survivable mapping MA are
returned. Choose at random two nodes uβ, vβ in Gλ↓A and pick any two
nodes u, v in Gλ, such that u ∈ Origin(uβ) and v ∈ Origin(vβ). Now con-
nect u and v with an additional logical/physical link (remember that we
assume identical vertices at both layers). If this link already exists, repeat
the procedure.

The simulation results in Section 4.9.4 discuss the efficiency of this ap-
proach.

4.8.3 Application 3: A Fast Heuristic

With SMART-H, a survivable mapping is found orders of magnitude more
rapidly and usually more often than with other approaches proposed to date.
We gave an overview of these techniques in Section 4.3.3, and we compare
them with SMART-H in simulation results in Section 4.9.5.

4.9 Simulation Results

In this section we evaluate by simulations the three applications of SMART-H.

4.9.1 Physical and Logical Topologies

In the simulations we use various topologies. A relatively small physical
topology is NSFNET (14 vertices, 21 edges) presented in Fig. 4.8a. To imitate
larger real-life physical topologies, we also generate square lattices in which a
fraction f of edges is deleted, as shown in Fig. 4.8b; we call them f -lattices.
The parameter f is often fixed to f = 0.3, which resulted in an f -lattice
with an average vertex degree slightly smaller than that of NSFNET. As
the IP graph is less regular (for instance, there is no reason why it should
be planar), the logical topologies are 2-edge-connected random graphs of
various average vertex degree. (Clearly, 2-edge-connectivity of both physical

4.9. SIMULATION RESULTS 81

b) f-lattice (2-node-connected) a) NSFNET

1

2

4 7

8

3 6

5

9

11

10 14

13

12

Figure 4.8: Physical topologies used in simulations. (a) NSFNET; (b) f –lattice
constructed from full square lattice by deleting fraction f of links, while preserving
2–node–connectivity (here f ≃ 0.25).

and logical topologies is a necessary condition for the existence of a survivable
mapping.)

4.9.2 ExSearch and SepPath Efficiency, and ‘Unknown
Area’

In Section 4.8.1 we defined two methods of verification of the existence of a
survivable mapping, ExSearch and SepPath. In this section we examine the
benefits of these approaches.

The physical topology is an f -lattice with the parameter f = 0.3. The
logical topology is a random graph with average vertex degree 〈kλ〉 = 4. For
each number of nodes N , we generate a number of physical/logical topol-
ogy pairs, and keep the first 1000 for which SMART-H does not converge.
In Fig. 4.9a, we present the cumulative distribution function (CDF) of the
number of logical links in the remaining contracted logical topology Gλ↓A
returned by the algorithm. We can see that, if SMART-H does not con-
verge, the size of Gλ↓A is usually relatively small. For instance, for N = 36,
SMART-H leaves six or fewer logical links out of the total number of 72, in
about 80% of cases. Moreover, this property seems to depend only slightly
on the topology size.

Now we apply EsSearch and SepPath to the contracted Gλ↓A returned
by SMART-H. The distribution of run-times of SMART-H + ExSearch is
plotted in Fig. 4.9d. For N = 16, about 90% of topologies need less than
0.001 sec to run SMART-H + ExSearch.3 Only very few need more than

3We implemented all the algorithms in C++ and ran them on a Pentium 4 machine.

82 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

0.1 sec. For comparison purposes, we also ran a complete exhaustive search
ExSearch without prior contraction by SMART-H for N = 16. We observe
the difference in run-times of at least 7 orders of magnitude. Most of the
runs of the fully exhaustive search last more than 10000 seconds (∼ 3 hours),
the maximal time allowed in the simulations. This limits the application of
the full exhaustive search to the topologies of a very small size.

1 minute stopping time Fig. 4.9d also exemplifies the tradeoff we faced
in simulations. On one hand, the SMART-H + ExSearch runs quickly for
the majority of the topologies, but on the other hand, the remaining few
topologies take orders of magnitude more time. We observed the same
phenomenon when applying the SMART-H + SepPath verification method.
Therefore we have decided to use a strict, one minute stopping time. If neither
SMART-H + ExSearch nor SMART-H + SepPath finishes the computation
within 60 seconds, the question of the existence of a survivable mapping is left
unanswered. As the result, the figures in the following sections display two
curves: the lower one is the percentage of survivable mappings found within
1 minute, the upper one is the percentage of logical topologies proved to be
unmappable in a survivable way within 1 minute. The curves are separated
by an ‘unknown area’ set in gray.

4.9. SIMULATION RESULTS 83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti
o
n

Number of remaining logical links

(a) Size of remaining contracted topology

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

N=16, ExSearch

C
u
m

u
la

ti
v
e

d
is

tr
ib

u
ti
o
n

Time [s]

(b) Run-times of ExSearch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.3 2.4 2.5 2.5 2.7 2.8 2.9

Unknown

F
ra

ct
io

n
o
f
m

a
p
p
ed

to
p
o
lo

g
ie

s

Average node degree 〈kλ〉

(c) Random graph on NFSNET

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Unknown
F
ra

ct
io

n
o
f
m

a
p
p
ed

to
p
o
lo

g
ie

s

f - parameter of f -lattice

(d) Random graph on f -lattice, N = 49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

Unknown

F
ra

ct
io

n
o
f
m

a
p
p
ed

to
p
o
lo

g
ie

s

N - number of nodes

(e) Random graph on f -lattice, f = 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70

F
ra

ct
io

n
o
f
m

a
p
p
ed

to
p
o
lo

g
ie

s

N - number of nodes

(f) Introduction of a new link

Figure 4.9: Survivability under various scenarios. Parameters: N–number of
nodes; f–parameter of the f -lattice physical topology; 〈kλ〉–average node de-
gree of the logical topology. (a) CDF of the number of logical links in the
remaining contracted logical topology. f = 0.3, N = 16 . . . 100; (b) CDF of
ExSearch times with and without prior contraction by SMART-H. f = 0.3,
N = 16 . . . 100. (c) Random graph logical topologies mapped on NSFNET.
N = 14, 〈kλ〉 = 2.3 . . . 2.9; (d) Random graph logical topologies mapped on
f -lattices. N =49, f =0 . . . 0.35, 〈kλ〉=4; (e) Random graph logical topologies
mapped on f -lattices. N =16 . . . 100, f =0.3, 〈kλ〉=4; (f) Enabling survivability
by introducing an additional link. Random graph logical topologies mapped on
f -lattices. N =16 . . . 100, f =0.3, 〈kλ〉=4.

84 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

4.9.3 Results for Application 1

It is interesting to see what fraction of randomly chosen topologies can/cannot
be mapped in a survivable way. To the best of our knowledge, this is the
first time these results can be obtained in a reasonable time for moderate
and large topologies.

For a particular pair of physical and logical topologies, we first apply the
SMART-H algorithm. If SMART-H does not converge, we try ExSearch and
SepPath to verify the existence of a survivable solution. Their run-times are
restricted to the ‘one minute bound’, as explained in Section 4.9.2.

In Fig. 4.9c we present the results of the mapping of random graph logical
topologies on NSFNET. We vary the average vertex degree 〈kλ〉 of the logical
graph; for each value of 〈kλ〉 we generate 1000 topologies. Observe that the
results strongly depend on 〈kλ〉.

In order to examine a larger spectrum of physical topologies and topol-
ogy sizes, in Figs. 4.9de we map a random graph logical topology on the
f -lattice physical topology. This time we fix the average vertex degree of the
logical topology 〈kλ〉 = 4 and we vary the parameter f of the physical topol-
ogy (Fig. 4.9d) or the number of nodes N (Fig. 4.9e). We generated 1000
topologies for each parameter. Fig. 4.9d shows that the fraction of topologies
mappable in a survivable way decreases with growing f . This was expected,
because it is more difficult to map the logical topology on a sparser physical
graph. In Fig. 4.9e, the ‘unknown area’ quickly widens for N > 80 because
of the ‘one minute bound’.

The dashed curves in Figs. 4.9cde show the fraction of topologies mapped
in a survivable way by SMART-H alone, without being followed by ExSearch
or SepPath. The distances between these curves and the mapping-impossible
areas are relatively small, which confirms the high efficiency of SMART-H as
a heuristic.

4.9.4 Results for Application 2

Another property of the SMART-H algorithm is the ability to trace and
repair the vulnerable areas of the network. In particular, in Section 4.8.2 we
described a way to introduce an additional logical link to enable a survivable
mapping. In this section we verify the efficiency of that approach.

We map random graph logical topologies on f -lattices and vary N . For
each N , we generate 1000 pairs of physical and logical topologies, such that
for each pair separately, a survivable mapping does not exist. For each topol-
ogy pair, we add one logical or physical link with the help of SMART-H, as
described in Section 4.8.2. Next, the existence of a survivable mapping is

4.9. SIMULATION RESULTS 85

verified again, for this extended pair of topologies. For comparison purposes
we also simulate a completely random placement of an additional link.

The results are shown in Fig. 4.9f. For better readability, we do not
include the ‘unknown area’, which lies above each curve. The application
of SMART-H enables a very efficient placement of an additional logical link,
which helps in 70% to 95% of cases (depending on N). In contrast, the
completely random placement helps far less, and only for small topologies -
for larger N its efficiency becomes insignificant. This is because only new
logical links connecting different nodes in Gλ↓A (i.e., different survivable
pieces in Gλ) may help; the larger the topology, the lower the probability of
achieving it with a completely random placement.

The efficiency of the placement of a new physical link has a more random
nature. Again, the SMART-H approach helps, but its effect is not as signif-
icant nor dependent on N , as in the case of logical links. This is because
the introduction of a new physical link within the same survivable piece may
also help. For instance, in Example 8, for the logical topology Gλ and the
physical topology Gφ\{bφ}, the piecewise survivable mapping MA consists of
two survivable pieces {aλ, bλ, cλ} and {fλ, gλ, hλ}. We have shown that for
this pair of topologies a survivable mapping does not exist. But it is enough
to add the physical link bφ to make a survivable mapping possible, as shown
in Fig. 4.3c. Note that the link bφ lies within the survivable piece {aλ, bλ, cλ}.

4.9.5 Results for Application 3

Many approaches to the survivable mapping problem can be found in the lit-
erature [54–56,60,67]. In contrast to our basic technique, many of them take
some additional constraints into account, such as capacity, delays, number
and localization of wavelength converters. For the comparison purposes we
have chosen three proposals, that focus exclusively on the survivability issue.
The first one is based on Integer Linear Programming (ILP). The other two,
Tabu Search and Simple Layout Algorithm, are heuristics.

ILP approach

In [55] the authors specify the necessary and sufficient conditions for a map-
ping to be survivable. These conditions are injected into the Integer Linear
Programming (ILP) formulation, that is used to find a survivable mapping.
Then a simple relaxation (ILP-Relax) for the ILP is introduced, which sub-
stantially reduces the processing time.

We ran the SMART algorithm for exactly the same topologies as in [55],
namely NSFNET as the physical topology and the same 300 random graphs

86 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

of degree d̄ = 3, 4 and 5 as those in [55] for the logical topologies. A surviv-
able mapping was found in all runs when using ILP, ILP-Relax and SMART
approaches. Therefore it is interesting to compare the run–times of the al-
gorithms. The machines were not the same, yet comparable (Sun Sparc
Ultra-10 vs. Pentium 500). However, we have to stress that SMART was im-
plemented in pure C++ whereas ILP required a dedicated program (CPLEX)
that could significantly affect the results.

The run-times from [55] are reprinted in Table 4.1; the last column shows
the results of the SMART algorithm. The SMART algorithm is several or-
ders of magnitude faster then pure ILP, and about 3 orders of magnitude
faster than the relaxed version of ILP. Note that the degree of the logical
topology practically does not affect the run-time of SMART. This is because
most of the processing time is consumed in the search of a survivable map-
ping (convergence of the contracted logical topology to a single node); the
remaining logical links are mapped by the shortest path Dijkstra algorithm,
which takes negligible time.

Average degree d̄ ILP ILP-Relax SMART-H

3 8.3 sec 1.3 sec 0.0028 sec

4 2 min 53 sec 1.5 sec 0.0028 sec

5 19 min 17 sec 2.0 sec 0.0029 sec

Table 4.1: Run-times of ILP and SMART-H

Tabu Search and large topologies

One of the most efficient and widely used techniques to solve a survivable
mapping problem is Tabu Search. Our implementation of Tabu Search follows
the one in [54]; we will refer to it as Tabu97. Since Tabu Search turned out to
be substantially faster than the ILP approach (described in previous section),
we carried out the simulations for relatively large graphs and studied Tabu
Search and SMART scalability.

The physical topology is an f-lattice (Fig. 4.8b) with the fraction of deleted
edges f ranging from 0 to 0.35. The maximal value 0.35 was chosen in such
a way that even the smallest topologies could be 2–edge–connected.4 The
logical topology was a 2–edge–connected random graph of the average vertex
degree d̄ = 4. In Fig. 4.10 we present the results obtained in simulations

4A full lattice of 16 nodes has 24 edges. So for f = 0.35, the corresponding f–lattice will
have 24(1−0.35) ≃ 16 edges, which is the smallest value still enabling 2–edge–connectivity
(a cycle topology).

4.9. SIMULATION RESULTS 87

(c) Run-times

0.001

0.01

0.1

1

10

100

1000

10000

100000

10 100 1000

N - number of vertices

T
im

e
[s

]

Tabu97

SMART

O (N3.5)

O (N2.4)

11 hours

25 sec

(a) Fraction of mapped topologies. N=49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3

f

M
ap

pe
d

to
po

lo
gi

es

Tabu97

SMART

Topologies mapped by SMART
Topologies mapped by Tabu97

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 20 40 60 80 100

N - number of vertices

Y

(b) Y =

Tabu97 run-time
SMART run-time

1

10

100

1000

10000

10 100 1000

N - number of vertices

Y

(d) Y =

Figure 4.10: SMART-H vs. Tabu97. Random graph logical topology of average
node degree d̄ = 4 mapped on f -lattice physical topology of N nodes, f=0...0.35,
N=16...900. A pair of topologies is declared to be ‘mapped,’ if it is mapped in a
survivable way.

on a Pentium 4 machine. We investigate the topologies with a number of
vertices ranging from 16 to 900. Figs. 4.10a,b are related to the efficiency
of algorithms, i.e., their ability to find a survivable mapping. In Fig. 4.10a
the fraction of successfully mapped topologies is drawn against the fraction
of deleted edges f for a constant number of nodes N = 49. We observe that
the fraction of mapped topologies is substantially higher for SMART that
for Tabu97. Fig. 4.10a also confirms that, in general, it is more difficult to
map the same logical topology on a sparser physical topology.

Fig. 4.10b depicts the dependence of the efficiency on the size of topolo-
gies. The advantage of SMART grows with N ; for N = 16 it is negligible but
for N = 100 it already reaches 30%. Again, this is because SMART divides
the whole task into tiny subtasks. For a small N there is not much to divide
and SMART cannot take advantage of this property.

It is interesting to investigate the run–times of the algorithms. Since
Tabu97 was integrated with our implementation of SMART (both in C++,

88 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

using the same structures and functions), it is reasonable to compare their
real processing times. They are given in Fig. 4.10c in log-log scale. The
curves are almost linear, hence the observed complexities of the algorithms
are polynomial, with O(N3.5) for Tabu97 and O(N2.4) for SMART. Both
values fit in the theoretical maximal bounds, which are O(N4) [54] and
O(N3), respectively. Note that Tabu97 took about 11 hours when solv-
ing 900 node problem, which is a lot more than the 25 seconds measured
for SMART. Fig. 4.10d is a direct comparison of run–times of the two algo-
rithms. SMART converged orders of magnitude faster than Tabu97; again
the difference strongly depends on N .

Simple Layout Algorithm

The Simple Layout Algorithm by Sasaki et al. [67], similarly to SMART,
breaks down the survivable mapping problem into a set of small and easy
to solve subproblems. Therefore we expected it to be as fast as SMART.
We implemented the version of the Simple Layout Algorithm with multiple
link computation, DEGR node ordering and EL–M link cost (the detailed
description can be found in [67]). The authors reported this set of param-
eters to be the most efficient. The physical and logical topologies were the
same as described in the previous subsection (Tabu Search). The run–times
of the Simple Layout Algorithm were about three times shorter than those
of SMART. However, as illustrated in Fig. 4.11, the fraction of topologies
mapped (in a survivable way) by Simple Layout Algorithm is dramatically
smaller than the fraction mapped by SMART. Although for N = 16 the re-
sults are comparable, the N = 64 already yields a forty times difference. The
reason for the poor efficiency of the Simple Layout Algorithm and its strong
dependence on the size of topologies is the following. By construction, the
Simple Layout Algorithm prevents only single nodes from being separated
in the case of a fiber failure. Since in small graphs (authors used six–node
topologies for simulations) a separation of a single node is the most common
type of loss of connectivity, the Simple Layout Algorithm approach is effi-
cient. But for large graphs there are substantially more possibilities for the
separation of larger (than a single node) subgraphs. The Simple Layout Al-
gorithm does not take them into account, which results in a dramatic fall in
its efficiency. This is yet another evidence that the survivability is a complex
problem and has to be carefully addressed.

4.10. EXTENSION 1: SPAN FAILURES 89

Topologies mapped by SMART
Topologies mapped by Simple Layout Algorithm

1

6

11

16

21

26

31

36

41

15 25 35 45 55 65

N - number of vertices

Y

(b) Y =(a) Fraction of mapped topologies. N=49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3

f

M
ap

pe
d

to
po

lo
gi

es

SMART

Simple Layout Algorithm

Figure 4.11: SMART vs. Simple Layout Algorithm. A pair of topologies is declared
to be ‘mapped,’ if it is mapped in a survivable way.

4.10 Extension 1: Span failures

So far we have only considered single physical link failures. In the following
three sections we briefly describe the extensions of SMART-H to deal with
failure scenarios more sophisticated than a single physical link failure. The
main idea is always the same - at each iteration we find a survivable mapping
of some subgraph of the contracted logical topology and then contract this
subgraph into one node. For more detailed information, please refer to [6,8,9].

We begin with span failures described in 4.2.2. So far, span failures were
addressed mainly by physical layer protection [48,68]. In contrast, we use
the IP restoration approach [8].

4.10.1 Changes: SMART-Span

A mapping is declared span-survivable if it preserves the connectivity of the
logical graph after any single cut of a fiber or of a multi-link span. The
SMART approach requires only a minor upgrade of the DisjointMap function
to be adapted to span-survivability. Assume for instance that in the physical
topology in Fig. 4.5 the fibers aφ and cφ are laid partially in the same span.
Then, the mapping MB shown at Iteration 1 is not survivable and must
be rejected by the SMART-Span algorithm. However, assigning MB(cλ) =
{eφ, gφ, fφ, dφ} instead of MB(cλ) = {cφ} solves the problem. A modification
of SMART taking into account span failures will be referred to as SMART-
Span.

90 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

a) ARPA2

1

2

4

7

8

3 6

5

9

11

10
14

1312

15

16 18 20

17 19

21 1

2

4

7

8

3 6

5

9

11

10
14

1312

15

16 18 20

17 19

21

multi-link span

b) ARPA2_span

multi-link span

Figure 4.12: Physical topologies used for simulations of span failures: a) ARPA2;
b) ARPA2 with two multi-link spans (spans with multiple physical links).

4.10.2 Results

For the illustration of a SMART-Span version of our algorithm we modi-
fied the ARPA2 network by assuming two multi-link spans as depicted in
Fig. 4.12b. The logical topologies were 2–edge–connected random graphs
of average node degree d̄ =3. . . 6. We generated 1000 logical topologies for
each d̄.

As this is the first time the span-survivability is addressed by the IP
restoration approach, we have no benchmark against which we can compare
our algorithm. Therefore the only comparison is made with the standard ver-
sion of SMART.5 The results are presented in Table 4.2. The Shortest Path
algorithm and SMART (with no span protection) are added for reference.
The results show that even very few multi-link spans may result in a loss of
survivability when the mapping does not take them into account. However,
SMART-Span enables an efficient protection. The run–times of SMART and
SMART-Span (not shown here) are comparable.

Average degree d̄ Shortest Path SMART-H SMART-Span

3 999 681 183
4 994 373 64
5 965 177 8
6 867 129 1

Table 4.2: Number of topologies failed to be mapped in a span-survivable way
(out of 1000).

5This is also the case for the other types of failures addressed in the following two
sections.

4.11. EXTENSION 2: NODE FAILURES 91

4.11 Extension 2: Node failures

A single node failure is another typical problem in IP/WDM networks, as
described in 4.2.2 and in [69]. We have addressed it by a heuristic in [8] and
by formal analysis in [6].

4.11.1 Changes: SMART-Node

Clearly, after a failure of a vertex v ∈ V , the logical topology is disconnected
- at least the vertex v is always separated. The best we can do is to keep
connected the remaining part of the logical topology. Therefore a mapping
is declared node-survivable if, after any single failure of vertex v ∈ V , the
logical topology Gλ\{v} remains connected.

Node-survivability is a significantly more difficult problem than surviv-
ability. However, the SMART approach efficiently solves this problem as well.
We need only the DisjointMap function to search for node–disjoint mappings
instead of link–disjoint ones. Then no single node failure can disconnect the
mapped ring. We will refer to this version of our algorithm as SMART-Node.

4.11.2 Results

SMART-Node was tested in the same setting as SMART-Span in previous
section, except that the physical topology was the ARPA2 network with no
modifications, as in Fig. 4.12a. The results of the simulations are presented
in Table 4.3. SMART-Node performs fairly well and its run–time (not shown
here) is only slightly higher than that of ‘pure’ SMART.

Average degree d̄ Shortest Path SMART-H SMART-Node

3 999 903 428
4 995 717 204
5 963 410 23
6 859 228 3

Table 4.3: Number of topologies failed to be mapped in a node-survivable way
(out of 1000).

4.12 Extension 3: Double-link failures

Finally, we consider the double-link failures. As we argued in 4.2.2, they
are less frequent than single link failures, but still possible. In the literature,

92 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

double-link failures were addressed mainly at the physical layer [70–72]. In [8,
9] we propose and analyze an IP restoration approach, based on the following
extension of SMART.

4.12.1 Changes: SMART-2Link

 Structure 1 Structure 2 Structure 3

Figure 4.13: Subgraphs of the contracted logical topology attempted to be mapped
to obtain 2Link-survivability.

If the logical topology remains connected after any two single link failures,
then the mapping is declared 2Link-survivable.

To obtain a 2Link-survivable mapping we use the basic idea of SMART:
at each iteration we find a 2Link-survivable mapping of some subgraph of
the contracted logical topology Gβ and then contract this subgraph into one
node. However, the subgraph we find will differ. Before, in the case of
single-link failures, the simplest subgraph we could search for was a cycle;
the disjoint mapping of this cycle ensured survivability. In the case of double-
link failures, the subgraphs are more complex as they must be at least 3–
edge–connected. Fig. 4.13 presents the three structures we used. Note that
only the first one is a simple graph, i.e., it has no multi-edges. In fact it
is the smallest possible 3–edge–connected simple graph. Since the logical
topology is also a simple graph, only the Structure 1 may be found at the
first iteration of the algorithm. However, at subsequent iterations we work
on the contracted logical topology, that may have multi-edges and self-loops.
Then Structures 2 and 3 will become useful. The extension of our algorithm
searching for a 2Link-survivable mapping is called SMART-2Link.

4.12.2 Results

Since the necessary condition for 2Link–survivability is the 3–edge connect-
edness of the physical and logical topologies, we used NSFNET3EC presented
in Fig. 4.14b as the physical topology and 3–edge–connected random graph

4.13. EXTENSION 4: CAPACITY CONSTRAINTS 93

1

2

4 7

8

3 6

5

9

11

10 14

13

12

a) NSFNET

1

2

4 7

8

3 6

5

9

11

10 14

13

12

b) NSFNET3EC

Figure 4.14: Physical topologies used for simulations of double-links failures: a)
NSFNET; b) NSFNET with two additional links to obtain 3–edge–connectedness
(3EC).

of average vertex degree d̄ = 5 . . . 7 as the logical topology. Note that the
degree is larger than in previous examples, because 2Link-survivability nat-
urally requires the topologies to be connected more strongly.

Table 4.4 presents the results. Clearly ‘pure’ SMART is completely inef-
ficient when dealing with double–link failures, whereas, SMART-2Link per-
forms a lot better. The run–time of SMART-2Link (not shown here) was
three times longer than that of SMART.

Average degree d̄ Shortest Path SMART-H SMART-DF

5 1000 998 422
6 992 971 36
7 950 924 3

Table 4.4: Number of topologies failed to be mapped in a 2Link–survivable way
(out of 1000).

4.13 Extension 4: Capacity constraints

The SMART approach described in this chapter is a powerful tool for study-
ing the survivability of two-layer systems (such as IP-over-WDM) from a
topological perspective. Therefore, as in the approaches in [54,55], we have
assumed infinite capacities (number of wavelengths) on each physical fiber.
This has pros and cons. On the one hand, this makes ‘negative results’ more
general: if we prove that a survivable mapping does not exist for a particular
pair of physical and logical topologies with infinite physical capacities, then
this proof holds for any combination of finite capacities. On the other hand,

94 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

dλ

eλ

bφ bφbφ

GλGλGλ

GφGφGφ

MA MB MEλ

(a) (b) (c)

Figure 4.15: An illustration of invalidness of Theorem 3 [Existence of a survivable
mapping] in the presence of capacities - a counterexample. Assume that all physical
links have very big (or infinite) capacities except the link bφ that has got a capacity
equal to 2. The mapping MA presented in (a) is piecewise-survivable and respects
the capacity constraints. MA uses bφ two times, which means that no more paths
can be routed on bφ. But it is easy to see that every survivable mapping MB of
the logical links dλ and eλ must use bφ; an example of MB is shown in (b). If
Theorem 3 held in the presence of capacities, we could conclude that there does
not exist a survivable mapping of Gφ on Gλ respecting the capacity constraints.
However, such a mapping exists and is shown in (c).

a ‘positive result’ (i.e., a survivable mapping) found for infinite capacities is
not necessarily applicable to a scenario with given capacity constraints.

In this section we show that SMART, although primarily devised to tackle
purely topological aspects of the survivability problem, can also incorporate
some additional real-life constraints, which makes our approach an interesting
alternative for the heuristics available in the literature.

4.13.1 Which theoretical results hold?

We first review the theorems given in this chapter. Assume that the capacity
constraints are respected at every moment. This means, for example, that
in Step 2 of the SMART algorithm the pair

[
Gβ

sub, MB

]
must be not only

survivable, but that the resulting mapping MA ∪ MB (Step 3) should not
exceed the capacity of any physical link.

With this assumption it is easy to see that Theorems 1 and 4 hold. In
contrast, Corollary 1 holds only in one direction, i.e., if the contracted topol-

4.13. EXTENSION 4: CAPACITY CONSTRAINTS 95

ogy Gβ converges to a single node then the underlying mapping is survivable
and capacity constraints are not violated.

Unfortunately, Theorems 2, 3, and 5 do not hold, because their proofs
implicitly require unlimited capacities of physical links. To better understand
this, we present a counterexample for Theorem 3 in Fig. 4.15.

As a result, the SMART algorithm cannot be used to verify the existence
of a survivable mapping respecting capacity constraints. Thus the function-
ality of SMART is reduced to that of a pure heuristic. In the reminder of
this section we evaluate the effectiveness and speed of this heuristic.

4.13.2 SMART-C

In the implementation of the SMART algorithm with the capacity constraints
(called “SMART-C”) we have exploited the following idea. First, we con-
struct a “light” survivable mapping that uses relatively few logical links.
This is achieved by accepting in Step 2 only the mappings that are not sig-
nificantly longer than their shortest path counterpart. Next, we map the
remaining logical links trying to satisfy the capacity constraints, instead of
applying the shortest path mapping suggested in Section 4.6.

4.13.3 Results

As a benchmark, we take one of the most efficient and widely used heuristic
to solve a survivable mapping problem, Tabu Search [54,56,59,60]. We have
followed the implementation given in [59]; it is a version of [54] that takes
the capacity constraints into account. We refer to this algorithm as Tabu98.

We compare SMART-C with Tabu98 in Fig. 4.16. On one hand, Tabu98
always finds slightly better solutions than SMART-C - on average Tabu98
needs several percent smaller physical link capacities to succeed (see Fig. 4.16b).
On the other hand, the comparison of the run–times of the examined algo-
rithms (see Fig. 4.16a) reveals a big difference that grows with the network
size to several orders of magnitude.

These results are not surprising. At every iteration, Tabu98 examines the
mapping of the entire logical topology, whereas SMART-C processes only a
small portion of it. This gives Tabu98 a global view and results in a slightly
better routing of lightpaths, but at the very significant cost of speed and
scalability. Therefore, with finite link capacities, the two approaches are
complementary.

96 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

1

10

100

1000

10 100

M
ed

ia
n

N - number of nodes

(a) Time ratio (Ttabu

Tsmart
)

0.99

1.01

1.03

1.05

1.07

1.09

1.11

10 100

M
ed

ia
n

N - number of nodes

(b) Capacity ratio (Csmart

Ctabu

)

Figure 4.16: Survivability with capacity constraints: SMART-C vs. Tabu98. Two-
–edge–connected random logical topologies of average node degree 〈kλ〉 = 4 are
mapped on the f -lattice physical topology, with f = 0.3. The size of topologies
ranges from N = 16 to 100. For each value of N we generate 500 topology pairs and
run SMART-C and Tabu98 until they succeed (i.e., find a survivable mapping that
meets the capacity constraints) or the maximum number of iterations is reached.
For the plots we took only the cases where both SMART-C and Tabu98 succeeded
(Tabu98 succeeded less often then SMART-C). All fibers in physical topology have
the same capacity, chosen separately for every pair of topologies. For every pair of
topologies we compare SMART-C and Tabu98 with respect to two metrics: (a)
(log-log) Comparison of run-times Tsmart of SMART-C with run-times Ttabu of
Tabu98. We fix the capacities of the physical links to the lowest value Csmart for
which SMART-C succeeds. Tabu98 is run using the same capacity Csmart. (b)
(log-lin) Comparison of minimal capacities. We compare the value Csmart with
the minimal value Ctabu of capacities for which Tabu98 succeeds. In (b) the run-
times are ignored. In both figures, all points are the medians over all topology
pairs taken into account; the confidence interval for medians are computed at 0.95
confidence level.

4.14 Conclusion

In this chapter we studied the IP restoration in IP/WDM networks, as an
example of two-layer systems. In this setting, the physical and the logical
graphs are considered fixed. The goal is to find a survivable mapping, i.e., a
mapping that keeps the logical graph connected in the presence of the most
common physical failures.

In order to achieve this, we defined a piecewise survivable mapping which
preserves the survivability of some subgraphs of the logical topology. The
formal analysis of the piecewise survivable mapping enabled us to specify the

4.A. PROOFS 97

Functionality SMART ILP Tabu
fast and scalable XX × ×

capacity and other constraints X X X

verification of a solution existence X X ×
node failures X ? ?
span failures X ? ?

multiple failures X ? ?
tracing and repairing the vulnerable areas X × ×

Table 4.5: Comparison of efficiency and functionalities of SMART, FastSurv, ILP
and Tabu97. The question mark “?” means that the option might be possible to
realize, but, to the best of our knowledge, nobody did it to date.

necessary and sufficient conditions for the existence of a survivable mapping.
This has led us to the SMART algorithm that is guaranteed to converge to
a survivable mapping if and only if it exists. As one iteration of SMART is
an NP-complete problem, we adapted it by using a heuristic, which results
in the SMART-H algorithm. Most of the theoretical results obtained for
SMART carry over to SMART-H, which makes the latter a practical tool
that substantially simplifies the verification of the existence of a survivable
mapping. A second application of SMART-H is tracing vulnerable areas
in the network and pointing where new link(s) should be added to enable a
survivable mapping. Finally, SMART-H can serve as an efficient and scalable
heuristic that searches for a survivable mapping.

Many features and applications of SMART were not available under pre-
vious approaches. We have also extended SMART to a number of common
types of failures that were not addressed to date by IP restoration techniques.
We summarize it in Table 4.5.

To conclude, the formal analysis of the piecewise survivable mapping gives
us a powerful tool to designing, diagnosing and upgrading the topologies in
IP/WDM networks.

APPENDIX

4.A Proofs

In this section we prove all Theorems introduced before. For this purpose we
use the following definition of survivability, equivalent to Definition 3.

98 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

Definition 5 (Survivability) Let Gλ = (V, Eλ), A ⊂ Eλ and Gβ = (V β , Eβ) =
Gλ ↓A. Take any connected subgraph Gβ

sub = (V β
sub, B), B ⊆ Eβ, of the con-

tracted topology Gβ, and let MB be a mapping of the set B of logical links.
The pair

[
Gβ

sub, MB

]
is survivable if for any physical link eφ and for any two

vertices u, v ∈ V β
sub, there exists a path pβ

u,v in Gβ
sub between vertices u and v,

such that eφ /∈MB(pβ
u,v).

(Note that every path in the contracted topology, e.g., pβ
u,v, actually consists

of logical links.)

uC

wC

vC

u

Origin(uβ)

Origin(wβ)

v=Origin(vβ)

Gλ

Gλ
sub

Gβ

Gβ
sub

pβ
uβ ,vβ

path

pλ
u,v

Figure 4.17: Illustration of proof of Theorem 1. A first portion of the path pλ
u,v

is the path pβ
uβ ,vβ found in Gβ

sub. Next it is completed, where necessary, with the

patches found in origins of the nodes of pβ
uβ ,vβ .

4.A.1 Proof of Theorem 1

(Please refer to Fig. 4.17.)
First note that since Gβ = Gλ ↓ A, no logical edge from the set A can be
found in Gβ , which implies that A∩B = ∅. Therefore the operation MA∪MB

is always well defined, as in (4.2) and (4.3).
Let MA∪B = MA∪MB and Gλ

sub = Origin(Gβ
sub). We have to prove that the

4.A. PROOFS 99

pair
[
Gλ

sub, MA∪B

]
is survivable. Take any single physical link eφ and two ver-

tices u, v ∈ Gλ
sub. According to Definition 5 we have to show that there exists

a path pλ
u,v in Gλ

sub such that eφ /∈ MA∪B(pλ
u,v). The path pλ

u,v is constructed
in two steps, (i) and (ii).
(i) A first portion of pλ

u,v is found in the contracted graph Gβ (recall that

Gβ consists of logical edges), as follows. Call uβ, vβ ∈ V β
sub the vertices in

Gβ
sub = (V β

sub, B) whose origins contain u and v, respectively, i.e., such that

u ∈ Origin(uβ) and v ∈ Origin(vβ). Find a path pβ
uβ ,vβ in Gβ

sub, such that

eφ /∈ MB(pβ
uβ ,vβ). This is always possible since the pair

[
Gβ

sub, MB

]
is surviv-

able. We take pβ
uβ ,vβ as the first portion of pλ

u,v.

(ii) We now turn our attention to the origins of vertices in the path pβ
uβ ,vβ .

Take any two consecutive edges aλ and bλ of pβ
uβ ,vβ , and let wβ be their com-

mon end–node in Gβ
sub. If Origin(wβ) is not a single node in Gλ

sub, then aλ and
bλ might not have a common end–node in Gλ

sub. However, by piecewise sur-
vivability of

[
Gλ, MA

]
, the pair

[
Origin(wβ), MA

]
is survivable. Therefore,

if we denote respectively by va, vb ∈ Origin(wβ) the end–nodes of aλ and bλ,
that belong to Origin(wβ), we can find a logical path pλ

va,vb
in Origin(wβ)

connecting va and vb, such that eφ /∈MA(pλ
va,vb

). We call this path a patch of
wβ and denote it by patch(wβ). If for a given wβ, the edges aλ and bλ have
a common end–node vλ in Gλ

sub then patch(wβ) = vλ.
For every vertex wβ ∈ pβ

uβ ,vβ , find patch(wβ). If wβ=uβ then patch(uβ) will
connect the logical vertex u with an end–node of the first logical edge in
pβ

uβ ,vβ , instead of connecting two end–nodes. The same holds for wβ=vβ.

To summarize, in step (i) we have found the path pβ
uβ ,vβ in the contracted

subgraph Gβ
sub. Next, in step (ii), we have constructed a set of patches for

each vertex of this path. Now we combine steps (i) and (ii) to obtain the full
path pλ

u,v:

pλ
u,v = pβ

uβ ,vβ ∪
{ ⋃

wβ∈pβ

uc,vc

patch(wβ)
}

. (4.4)

The logical path pλ
u,v connects the vertices u and v and has been constructed

in such a way, that

eφ /∈ MB(pβ
uβ ,vβ) (4.5)

eφ /∈ MA(patch(wβ)) for every wβ∈pβ
uβ ,vβ . (4.6)

100 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

Since MA ∪MB = MA∪B and A ∩ B = ∅, we can rewrite (4.5) and (4.6) as

eφ /∈ MA∪B(pβ
uβ ,vβ) (4.7)

eφ /∈ MA∪B(patch(wβ)) for every wβ∈pβ
uβ ,vβ . (4.8)

Combining (4.4), (4.7) and (4.8) yields finally that eφ /∈ MA∪B(pβ
u,v), which

proves the claim.

�

4.A.2 Proof of Theorem 2

uC

wC

yC

vC

uC

∗

vC

∗

wC

∗

Gβ Gβ
later

Gβ
sub↓A

Origin(uβ)

Origin(wβ)

Origin(yβ), Origin(vβ)

⊂ Origin(uβ
∗)

⊂ Origin(wβ
∗)

⊂ Origin(vβ
∗)

A = {cλ}

aL aL
bL bLcL

a) b)

Figure 4.18: Illustration of the proof of Theorem 2. (a) The original subgraph

Gβ
sub and a path pβ

uβ,vβ that avoids eφ in its mapping. (b) The subgraph Gβ
sub

contracted on the set A = {cλ} of logical edges; the resulting subgraph is denoted

by Gβ
sub↓A. The path pβ

uβ
∗,v

β
∗

originates from pβ
uβ,vβ , hence it also avoids eφ in its

mapping.

(Please refer to Fig. 4.18)
Take any single physical link eφ ∈ Eφ and two vertices uβ

∗ , v
β
∗ ∈ Gβ

sub ↓A.

According to Definition 5 we have to show that there exists a path pβ

uβ
∗,v

β
∗

in

Gβ
sub↓A such that eφ /∈MB(pβ

uβ
∗,v

β
∗

).

First, find in Gβ
sub two vertices uβ, vβ ∈ V β

sub, such that

Origin(uβ) ⊆ Origin(uβ
∗), and (4.9)

Origin(vβ) ⊆ Origin(vβ
∗). (4.10)

4.A. PROOFS 101

Note that since Gβ
sub↓A is created by contracting some edges in Gβ

sub, vertices
uβ and vβ always exist (they are not necessarily unique). Since the pair[
Gβ

sub, MB

]
is survivable, there exists a path pβ

uβ ,vβ in Gβ
sub such that eφ /∈

MB(pβ
uβ ,vβ). Define a sequence of logical edges pβ

∗ by contracting in pβ
uβ ,vβ all

edges that exist also in A, i.e.,

pβ
∗ = pβ

uβ ,vβ ↓ (A ∩ pβ
uβ ,vβ). (4.11)

Since pβ
uβ ,vβ is a path in Gβ

sub, and since the contraction an edge merges its

two end-nodes and thus preserves its continuity, pβ
∗ is a path in Gβ

sub ↓A.
Moreover, relations (4.9,4.10) imply that the path pβ

∗ connects uβ
∗ and vβ

∗

in Gβ
sub ↓A. Finally, eφ /∈ MB(pβ

uβ ,vβ) and (4.11) yields that eφ /∈ MB(pβ
∗).

Therefore pβ
∗ is the path pβ

uβ
∗,v

β
∗

that we are searching for.

�

4.A.3 Proof of Theorem 3

⇐ We know that the pair
[
Gλ, MA

]
is piecewise survivable. Suppose that

there exists a mapping Msurv
Eλ\A, such that the pair

[
Gλ↓A, Msurv

Eλ\A

]
is sur-

vivable. Then, by Theorem 1, the pair
[
Origin(Gλ↓A), MA∪Msurv

Eλ\A

]
=[

Gλ, MA∪Msurv
Eλ\A

]
is also survivable. So the mapping Msurv

Eλ = MA ∪Msurv
Eλ\A

is

a survivable mapping of Gλ on Gφ.
⇒ Assume that a survivable mapping of Gλ on Gφ exists, call it Msurv

Eλ .

Now, by taking Gβ
sub:=Gλ and MB:=Msurv

Eλ , Theorem 2 yields that
[
Gλ↓A, Msurv

Eλ

]

is survivable. Consequently, the pair
[
Gλ↓A, Msurv

Eλ\A

]
is also survivable.

�

4.A.4 Proof of Theorem 4

(By induction)
INITIALIZATION:
Initially Gβ = Gλ. Therefore the origin of any vertex vβ ∈ V β is a single
node in Gλ, and it cannot be disconnected. Hence for every vβ ∈ V β, the
pair

[
Origin(vβ), MA

]
is survivable and consequently the pair

[
Gλ, MA

]
is

piecewise survivable.
INDUCTION:
Assume that after some iteration the pair

[
Gλ, MA

]
is piecewise survivable.

We have to prove that after the next iteration of the algorithm, the updated

102 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

mapping M̂A will still form a piecewise survivable pair
[
Gλ, M̂A

]
.

One iteration of the SMART algorithm consists of Steps 2, 3 and 4, which
we recall here:
2. Find Gβ

sub = (V β
sub, B) and MB, such that the pair

[
Gβ

sub, MB

]
is survivable.

3. M̂A := MA ∪MB

4. ĜC := Gβ ↓ B
(For clarity we indicated the updated MA and Gβ by a hat: ‘̂’)
The updated contracted topology Ĝβ = (V̂ β, Êβ) was created from Gβ by
replacing Gβ

sub = (V β
sub, B) by a single node, which we call v̂β

sub; the remaining

nodes stayed unchanged. So V̂ β = {v̂β
sub} ∪ V β\V β

sub. Take any v̂β ∈ V̂ β ; we
have two possibilities:
(i) v̂β = v̂β

sub: Since Gβ
sub = (V β

sub, B) was contracted into v̂β
sub, their ori-

gins coincide: Origin(Gβ
sub) = Origin(v̂β

sub). Since M̂A = MA ∪MB, the pair[
Origin(v̂β

sub), M̂A

]
=
[
Origin(Gβ

sub), MA ∪MB

]
is survivable by Theorem 1.

(ii) v̂β 6= v̂β
sub: In this case v̂β ∈ V β \V β

sub, so v̂β = vβ. By piecewise surviv-
ability of the pair

[
Gλ, MA

]
, the pair

[
Origin(vβ = v̂β), MA

]
is survivable.

Since M̂A = MA ∪MB , the pair
[
Origin(v̂β), M̂A

]
is survivable as well.

Combining (i) and (ii), we have proven that for every v̂β ∈ V̂ β, the pair[
Origin(v̂β), M̂A

]
is survivable. So, by Definition 4, the pair

[
Gλ, M̂A

]
is

piecewise survivable.

�

4.A.5 Proof of Corollary 1

⇒ We have to show that if there is only one vertex in Gβ then
[
Gλ, MA

]
is

survivable.
We have two observations: (i) By Theorem 4, the pair

[
Gλ, MA

]
is piecewise

survivable. This means that for every vertex vβ ∈ Gβ the pair
[
Origin(vβ), MA

]

is survivable. (ii) There is only one vertex in Gβ (i.e., Gβ = {vβ}), and
therefore Origin(vβ) = Gλ. Combining (i) and (ii), we have that

[
Gλ, MA

]

is survivable.

⇐ We have to show that if the contracted topology Gβ has more than one
node then a survivable mapping of Gλ on Gφ does not exist.
By Theorem 4, the pair

[
Gλ, MA

]
is piecewise survivable. Since the algo-

rithm has terminated before converging to a single node (i.e., in Step 2),
there exists no pair

[
Gβ

sub, MB

]
that is survivable. In particular, if we take

Gβ
sub = Gβ = Gλ↓A, there exists no pair

[
Gλ↓A, M∗

]
that is survivable. Now,

by Theorem 3 there exists no survivable mapping of Gλ on Gφ.

�

4.A. PROOFS 103

4.A.6 Proof of Theorem 5

vβ
∗

Gβ
1 = Gλ↓A Gβ

2 = Gλ↓B

Gλ

Origin(vβ
∗)

Origin(vβ
∗)↓B

eλ
∗

eλ
∗

Figure 4.19: Illustration of proof of Theorem 5. We start with an edge eλ
∗ that is in

Gβ
2 , but not in Gβ

1 . Next, we choose a vertex vβ
∗ ∈ Gβ

1 such that eλ
∗ ∈ Origin(vβ

∗).

In the topology Gβ
2 , Origin(vβ

∗) is contracted to Origin(vβ
∗)↓B that contains at

least eλ
∗ . This nonempty subgraph Origin(vβ

∗)↓B can be mapped in a survivable
way using the mapping MA, which leads to contradiction.

(By contradiction, Please refer to Fig. 4.19.)
Let us assume that two different runs of SMART converge to two different
contracted topologies Gβ

1 = Gλ↓A and Gβ
2 = Gλ↓B, and the mappings MA

and MB, respectively. The SMART algorithm terminated in Step 2, which
implies that no subgraph Gβ

sub1 of Gβ
1 can be mapped in a survivable way; sim-

ilarly, no subgraph Gβ
sub2 of Gβ

2 can be mapped in a survivable way. Assume,

without loss of generality, that there exists an edge eλ
∗ such that eλ

∗ ∈ Gβ
2

and eλ
∗ /∈ Gβ

1 . (If such an edge does not exist, an edge satisfying a converse
condition must exist, because Gβ

1 6= Gβ
2 .) Since eλ

∗ /∈ Gβ
1 , there exists vβ

∗ ∈ Gβ
1

such that eλ
∗ ∈ Origin(vβ

∗). By Theorem 4, the pair
[
Gβ

1 , MA

]
is piecewise

survivable, which implies that
[
Origin(vβ

∗), MA

]
is survivable. Now, by The-

orem 2, the pair
[
Origin(vβ

∗)↓B, MA

]
is also survivable. By construction the

subgraph Origin(vβ
∗)↓B contains at least the edge eλ

∗ . Therefore, there exists

104 CHAPTER 4. SURVIVABILITY IN IP/WDM NETWORKS

a non-empty subgraph Gβ
sub = Origin(vβ

∗)↓B of Gβ
2 that can be mapped in

a survivable way (using the mapping MA), which is impossible because no
subgraph Gβ

sub2 of Gβ
2 can be mapped in a survivable way.

�

Chapter 5

Maximal Path Diversity in
Overlay/IP Networks

Log
ica

l

Ph
ys

ica
l

Map
pin

g

Ove
rla

y

IP

IP
rou

tes

GφGφ

GλGλ

MM

IP node con-
trolled by the
overlay

IP node not con-
trolled by the overlay

IP route

IP node

IP link

overlay link

Figure 5.1: An illustration of two layers in the Overlay/IP setting.

In Chapter 4, we address the problem of appropriate design (i.e., robust to
typical failures) of two-layer systems, in the context of IP/WDM networks.
In this chapter we tackle the same problem, but in the context of overlay
multicast networks.

5.1 Introduction

An overlay network is a virtual network of nodes and logical links that is built
on top of an existing network with the purpose of implementing a network

105

106 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

service that is not available in the existing network [73]. Every logical link
corresponds to a physical path in the underlying network.

More particularly, in this chapter we focus on application-layer overlay
networks that are built on top of the Internet. We refer to this scenario as
‘Overlay/IP’ and illustrate it in Fig. 5.1.

Overlay/IP systems have numerous applications. Probably the best known
example is the P2P (peer-to-peer) file sharing systems where the peers are
organized in a (structured or random) overlay network, which enables them
to efficiently find other peers with the desired content.

Another good example of overlay application is multicast, i.e., one-to-
many or many-to-many communication. In this case the nodes are organized
in a data distribution overlay network (typically a tree) and cooperate by
forwarding the traffic to other nodes. Many applications, e.g., audio/video
conferencing or online gaming, additionally impose strict requirements on the
resulting delays. This, in turn, makes the system very vulnerable to overlay
node and IP link failures. The goal of this chapter is to construct an overlay
multicast system that is robust to such failures.

In this chapter we first present in Sections 5.2-5.4 a high-level introduction
to the Overlay/IP setting and the problems that we address. In particular, in
Section 5.2 we describe the two layers, mapping, types of failures and failure
protection mechanisms in the Overlay/IP context. Next, in Section 5.3 we
specify the particular type of overlay applications that we focus on. Finally,
in Section 5.4 we overview our objectives, contributions and related work.

In contrast, the remaining sections rigorously address a specific problem.
First, we formulate precisely the problem in Section 5.5. Next, in Section 5.6
we present a simple topology-based version of this problem, and prove that
under some conditions the two formulations are equivalent. In Sections 5.7-
5.9, we discuss the techniques, objective functions and heuristics that intro-
duce path diversity and redundancy in the system, leading to good solutions
of our problem. We evaluate our approach on real-life Internet topologies in
Section 5.10. Finally, in Section 5.11 we conclude the chapter.

5.2 Overlay as a Two-Layer System

In this section we describe how the Overlay/IP system corresponds to the
general two-layer setting introduced in Chapter 2. We consider all aspects,
from the specification of the two layers and their mapping, to potential fail-
ures and typical ways of handling them.

5.2. OVERLAY AS A TWO-LAYER SYSTEM 107

5.2.1 The Physical Layer, Logical Layer and the Map-

ping in Overlay/IP Networks

Physical Layer Gφ

The physical layer Gφ = (V φ, Eφ) consists of IP nodes and IP links. It is
given and we have no control over it.

Logical Layer Gλ

The logical layer Gλ = (V λ, Eλ) represents the overlay system. The logical
nodes V λ ⊆ V φ are those IP hosts that run the overlay application. The
logical links are virtual, established at the level of the application. Therefore
we are free to construct and change the logical layer.

Mapping M

The IP layer provides a routing service, meaning that it can transport an IP
packet from any IP node to any other IP node. Therefore, the mapping M
is defined for any pair 〈vλ, uλ〉 of logical nodes, and M(〈vλ, uλ〉) = pφ

vλ,uλ is
the IP path followed by the IP packets. It can be discovered by running the
traceroute tool. We have no control over M and assume it as fixed.1

5.2.2 Failures in Overlay/IP Networks

There are two major types of failures that may be encountered in the Over-
lay/IP setting: overlay node failures and IP link losses.

Overlay Node Failures

In many overlay systems nodes participate on voluntary basis and may leave
(e.g., by closing the application) at any time. This changes the structure of
the overlay network, which may even result in its partition. Therefore, the
main concern in many applications are overlay node failures due to the node
departures, which is also called ‘node churn’.

IP Link Losses

Another potential source of failures are the packet losses at the IP layer.
This is usually caused by congestions at the routers, resulting in drops of
individual IP packets.

1In reality the routes may change or alternate due to routing updates or load balancing.

108 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

5.2.3 Failure Protection Mechanisms in Overlay/IP Net-

works

The techniques used to increase the system’s robustness strongly depend on
the application of the overlay. In this section we briefly overview the general
approaches. We make it more specific in the following sections, where we
work on a concrete type of application.

Reactive

A simple and resource-efficient way of addressing the failures in the Over-
lay/IP setting is by using a reactive approach. For example, when an overlay
node leaves, its absence is usually detected by missing keep-alive messages.
This, in turn, triggers some (usually local) connectivity restoration mech-
anisms that may establish new overlay links between the remaining peers.
Similarly, the IP link losses can be addressed by using some ARQ (Automatic
Repeat-reQuest) techniques, as implemented in TCP, for example.

Proactive

The reactive solutions based on detection and restoration inherently intro-
duce additional delays in the transmission, which may be unacceptable for
low-delay (e.g., interactive) applications. In such cases the failures must be
taken care of separately. This may be achieved by introducing some sort of
redundancy in the system, e.g., through forward error correction coding or
by adding some redundant active links in the topology of the overlay.

5.3 Application-Level Multicast (ALM)

Our main point of interest is the Application-Level Multicast (ALM). Its goal
is to enable a transmission from one or more sources to many destinations.
Indeed, for typical data streams (e.g., audio, video) the uplink bandwidth of
the source is often not sufficient to serve directly all destinations. In ALM
this problem is solved by streaming from the source to a limited number of
peers that in turn forward the traffic to other peers, and so on. This results
in a data distribution overlay network, typically a tree rooted at the source.

ALM is a feasible alternative for IP Multicast that is a technique not
yet (and might never be) widely deployed in the Internet [74]. Therefore,
it has been a hot topic in the last decade, which has resulted in numerous
protocols and systems, e.g., Chaining [75], Narada [74], Nice [76], HMTP [77],

5.3. APPLICATION-LEVEL MULTICAST (ALM) 109

Ove
rla

y

IP
lay

er

Map
pin

g

‘Design an interactive ALM
system that is proactively
protected against overlay
node and IP link failures,
and satisfies strict delay
requirements and capacity
constraints.’

M

Gλ

Gφ

Source s
Destination v ∈ V λ

IP node vφ

Failure types:
overlay node
IP link

Figure 5.2: General problem illustration in Interactive Application-Level Multi-
cast.

SplitStream [78], ZigZag [79], OMNI [80], CoopNet [81,82], Promise [83],
CoolStreaming [84], Active [85], AnySee [86], Prime [87], PPLive [88].

These solutions can be roughly divided into two groups: regular ALMs
and interactive ALMs. We describe them below.

5.3.1 Regular ALM

Regular ALM, or P2P streaming, focuses on the delivery of a high-quality
data stream (e.g., a TV channel) from a single source to a large number of
destinations. As this typically involves a one-way communication, the accept-
able time lag is in the order of seconds or even minutes [87,88]. Consequently,
when a node leaves the system, all nodes connected to it have enough time
to find another peer with the context, without delaying the stream playout.

In other words, regular ALM can be effectively protected by reactive
failure recovery techniques [79,89]. Moreover, some systems rely on pull-
based techniques also during the regular dissemination of the stream [84,87,
88], which is a scalable and resource-efficient approach [90].

5.3.2 Interactive ALM

In contrast, interactive ALM addresses applications such as tele- and video-
conference [85,89] or network multiplayer games [91,92]. These settings have

110 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

specific features, requirements and design challenges [89] very different from
those of regular ALM, as follows.

First, interactive ALM has very strict delay requirements, typically not
exceeding a few hundreds of milliseconds. Therefore, it cannot rely on pull-
based data distribution mechanisms, as they result in unacceptable delays.
Instead, the stream should be quickly pushed through an organized structure
such as a delay-optimized tree [80,89,93,94] for an overview).

Second, even if the total number of participants of a teleconference is
large, usually only a small group of them interact directly [85,89,95] Similarly,
in network multiplayer games, the players can be organized into small groups
of interacting users who are close to each other in the virtual world [91].
Therefore, interactive applications are typically of a limited size, ranging
from a few to several tens of nodes.

Third, reactive failure recovery schemes usually take too much time to
meet the target delay requirements of interactive applications [96]. Instead,
we should use proactive failure protection techniques that guarantee timely
data delivery in the presence of most common failures.

Finally, the main concern in regular ALM are overlay node failures due
to the node departures (i.e., ‘node churn’). In interactive ALM, however,
this problem is naturally limited, due to the small number of peers and their
commitment to the application. In contrast, what can become a serious
impediment are packet losses at the IP layer. Indeed, a lost IP packet can be
easily and automatically retransmitted at the cost of larger delays allowed in
regular ALM, but it must be taken care of separately under the low-latency
constraint.

5.3.3 Design Goals in Interactive ALM

To conclude, an interactive ALM system should:

1. push the data stream through a delay-constrained structure,

2. proactively protect the system against overlay node failures, and

3. proactively protect the system against IP link losses.

We illustrate these three design goals in Fig. 5.2.

5.4. OUR OBJECTIVES AND ACHIEVEMENTS 111

c

a

b
P

ro
ac

ti
ve

p
ro

te
ct

io
n

to
ov

er
la

y
n

o
d

e
fa

il
u

re
s

Proactive protection to IP
link losses

Im
porta

nce
of dela

y

constr
aints

Figure 5.3: Existing ALM approaches (a,b) and the goal of this work (c) with
respect to three factors critical in interactive ALM.

5.4 Our Objectives and Achievements

5.4.1 We consider the Interactive ALM

Note that in contrast to regular ALM, interactive ALM directly involves both
the IP layer and the overlay. This coincides well with the main topic of this
thesis (i.e., the existence and interactions between two layers), and therefore
the main focus of this chapter is the interactive ALM.

5.4.2 Vulnerability W

In Chapter 2.4 we introduced the general notion of Vulnerability W. In this
chapter we specifyW as the expected fraction of packets not delivered on time
at the destinations under the presence of overlay node failures and IP link
losses. Such a definition captures well the design goals (1-3) in Section 5.3.3.

To summarize, given Gφ and M , our goal is to design the logical layer Gλ

in such a way that W is minimized.

5.4.3 Related work

The problem of constructing an interactive ALM system has been only par-
tially addressed to date. In Fig. 5.3 we position the existing work and our
approach with respect to the three design goals (1-3) listed in Section 5.3.3.

For example, minimizing delays is the main goal in [80,85,89,93]. As

112 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

these solutions typically use failure protection that is reactive, they fall in
the category (a) in Fig. 5.3.

Another group of approaches, indicated by (b) in Fig. 5.3, is the ALM sys-
tems that exploit the overlay path diversity combined with some redundancy
codings [78,82,97]. This results in a good protection to overlay node failures
and some (limited) protection to IP losses, but the strict delay constraint is
not among the primary concerns.

Our objective is to satisfy simultaneously all three goals (1-3), which
places us in the region (c) in Fig. 5.3. In order to achieve this, we leverage
not only on the overlay path diversity, but also on the IP path diversity.
Indeed, the existence of multiple IP paths was successfully exploited to fight
IP losses in the context of the unicast delay-constrained connection [98–100].

Taking the topology of the underlying IP layer into account proved to be
effective also in related scenarios, such as placing new overlay nodes within
an ISP [101], choosing a good overlay backup path [102–104], streaming from
several sources (peers) to one receiver [83], or overlay routing [105,106].

5.4.4 Our Contributions

We contribute to the state of the art in several aspects:
First, we define a metric called Vulnerability W, based purely on the

topology of the ALM system. We prove that, under some assumptions, W is
equivalent to the average packet loss rate observed at the destinations. This
crucial observation allows us to focus directly on minimizing W, which sig-
nificantly simplifies the problem.

Second, we note that W drops with the amount of IP-level and overlay-
level path diversity available in the system. Therefore, we consider typical
techniques to create a number of alternative paths in ALM, such as adding re-
dundant cross-links, or using a set of multiple distribution trees. We propose
a framework that accommodates and generalizes these approaches.

Third, within this framework we optimize the structure of ALM. In simu-
lations on real Internet topologies, we find that maximizing the overlay-path
diversity (that roughly represents the state of the art) may result in a poor
IP-path diversity. Therefore, we propose to include the IP topology in the
objective function and to maximize both the overlay-level and IP-level path
diversity at the same time. As a result, we proactively protect the ALM
system against overlay node failures and IP losses, reducing its Vulnerability
W (and thus the effective loss rate) by typically 30%-70%. Moreover, we
develop a set of lower-bounds on W and show that our approach is nearly
optimal. Finally, we study factors that naturally limit the available IP-path
diversity, such as the system size and maximal allowed redundancy.

5.5. ADDITIONAL NOTATION AND PROBLEM FORMULATION 113

ALM Application-Layer Multicast
s, V λ source node, destination nodes
Gλ =(V λ∪{s},Eλ) directed overlay graph with all possible overlay edges Eλ

γmax ≥ 0 maximal redundancy
tmax(v) maximal allowed delivery time
bmax(v) maximal uplink bandwidth ratio
r(v) source packet loss rate observed at node v
r̄ r(v) averaged over all destinations
Cλ(v), Cφ(v) set of critical overlay nodes / IP links of node v
Wλ,Wφ logical and physical vulnerability
W(η) = ηWλ + η̄Wφ total vulnerability
P, E probability, expected value

Table 5.1: Additional/specific notation used in this chapter.

Finally, it should be stressed that our solution respects the strict delay
constraints and uses only the available resources (i.e., nodes participating in
the application, and no ‘exterior’ relay nodes) and protocols (i.e., no source
routing).

5.5 Additional notation and problem formu-

lation

We assume that there is one stream source, e.g., a lecturer. The other nodes,
called destinations, should get the stream reliably and within the delay dead-
line. The existence of one main source of stream is typical of many interactive
applications such as a teleconference [89]. This scenario can also be consid-
ered as a basic building block of a reliable all-to-all multicast system.

5.5.1 Overlay layer and capacity constraints

Let s be the traffic source node and let V λ be a set of destination nodes,
illustrated in Fig. 5.2. The source s generates source packets destined to all
nodes in V λ. The source s can send the packets to any destination node(s)
that may forward them to any other destination node(s); each such commu-
nication link is interpreted as a directed overlay edge eλ ∈ Eλ. Denote by
Gλ = (V λ∪{s}, Eλ) the directed graph with all possible overlay edges Eλ,
|Eλ| = |V λ| + |V λ|(|V λ| − 1) = |V λ|2. (Note that compared to our basic
definition of Gλ in Section 2.1, we count the source s separately in the set of
nodes of Gλ, i.e., we use V λ∪{s} instead of V λ. Moreover, we exclude from
the logical edges Eλ the edges incoming to s, as they do not make any sense
in the studies ALM application.)

114 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

In practice, we cannot usually use all the edges in Eλ at the same time
because of the following capacity constraints. First, every node v has lim-
ited downlink and uplink capacities. The latter is a critical factor in the
construction of ALM [107]. Therefore, we denote by bmax(v) the maximal
outgoing bandwidth of node v normalized by the data stream rate. For ex-
ample, bmax(v)=2.5 when the uplink capacity of v is 1Mbit/s and the stream
rate is 0.4Mbit/s.2 We refer to this system-specific feature as local capacity
constraint.

Second, global capacity constraint γmax is the maximal amount of re-
dundancy we are allowed to introduce in the entire system. For example,
γmax = 0.2 means that we can add up to 20% of redundant traffic on top of
the primary traffic (equal to |V λ| · stream rate). This constraint is set (or
relaxed) by the application. Fixing γmax allows us to make a fair comparison
between various protection schemes.

5.5.2 IP layer

The overlay is built on top of the underlying IP layer (see Fig. 5.2). As
described in Section 5.2, every overlay edge eλ is mapped on the physical
graph Gφ as a physical path M(eλ) = 〈eφ

1 , e
φ
2 , . . .〉. Recall also, that, we have

no control over the IP layer topology Gφ and over the mapping M , which we
therefore consider as fixed and given. In contrast, we have full control over
the overlay layer.

5.5.3 Packet losses

We consider overlay node failures and IP link failures. An overlay node failure
is usually a departure of a node v ∈ V λ from the application, with no prior
notification. Clearly all packets that were scheduled to be forwarded by v
are lost until the system adapts to the new situation.

An IP link failure is usually caused by traffic congestion, which results in
the loss of one or a burst of packets [108]. As these problems are typically
short-lived, they are often classified as ‘soft failures’, to stress the difference
from ‘hard failures’ (e.g., a cut of the IP link); we use the single-word term
‘failure’ for simplicity.

2We assume here a Constant Bit Rate (CBR) stream; non-CBR streams are not con-
sidered here.

5.6. TOPOLOGY-BASED FORMULATION: PROBLEM P2 115

5.5.4 Maximal allowed time tmax(v) and average loss

rate r̄

We say that a source packet i is delivered at a destination v when i (or
its copy) reaches v or i is reconstructed at v from other packets that were
successfully delivered. Let tmax(v) be the maximal delay acceptable (by the
application) between the creation of a source packet and its delivery at node
v ∈ V λ. This delay is composed purely of the propagation times at the IP
layer - the processing delays at the overlay nodes are ignored as they are
very small (less than 1ms) for non-overloaded nodes and when high priority
forwarding is used [109]. tmax(v) may be the same for all nodes, or not.
Denote by r(v) the source packet loss rate observed at node v, i.e., the
probability that a source packet is not delivered at v within time tmax(v).
Finally, r̄ = 1

|V λ|

∑
v∈V λ r(v) is the source packet loss rate averaged over all

traffic destinations.

5.5.5 General problem formulation: Problem P1

Now we can state the general problem as follows:

P1: Given capacity and delay constraints {bmax(v), γ, tmax(v)} for v ∈ V∪{s},
design an ALM system that minimizes the average source packet loss rate r̄
under the presence of overlay node failures and IP link losses.

In other words, we maximize the robustness of ALM to overlay node and
IP link failures, while satisfying strict delay requirements and capacity con-
straints (see Fig. 5.2).

5.6 Topology-based formulation: Problem P2

Our primary goal is to solve P1. However, to evaluate the average source
packet loss rate r̄, we have to specify not only the capacity and delay con-
straints, but also the packet loss model together with all loss parameters
for every overlay node and IP link. This quickly gets very complicated and
dependent on a myriad of heterogenous elements.

For this reason, in this section we define a problem P2 that is based purely
on the topological aspects of the system. P2 unifies all these elements under
one homogenous framework, making it much easier to handle. Moreover, we
formally link the two problems - we show that, under some conditions, P1
and P2 are equivalent.

116 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

5.6.1 Critical components Cλ(v) and Cφ(v)

Let us begin with the following definition:

Definition 6 (Critical components Cλ(v) and Cφ(v)) We say that a net-
work component x ∈ Eφ

⋃
V λ\{v} is critical for an overlay node v ∈ V λ,

if during a single and permanent failure of x, the source packets are not de-
livered at v within time tmax(v). Denote by Cλ(v) ⊂ V λ\{v} the set of all
critical overlay nodes of v, and by Cφ(v) ⊆ Eφ the set of all critical IP links
of v.

Consider the example in Fig. 5.4a. The sets of critical nodes of v and
u are, respectively, Cλ(v) = {u} and Cλ(u) = ∅, respectively. (Note that by
definition, source s is not included in these sets.) Similarly, the sets of critical
IP links of these nodes are Cφ(v)={aφ, bφ, cφ, dφ, eφ} and Cφ(u)={aφ, bφ, cφ},
respectively. However, adding one more active link to the overlay topology
as shown in Fig. 5.4b greatly changes the situation of node v. Indeed, now
no single overlay node failure or physical link failure can disconnect v from
s and thus Cλ(v)=Cφ(v)=∅.

5.6.2 Vulnerability W ,Wλ and Wφ

We can now define the metric that captures the system vulnerability to single
physical and overlay failures.

Definition 7 (Vulnerability Wλ, Wφ and W) We define the logical Vul-
nerability Wλ (to overlay node failures) and the physical Vulnerability Wφ

(to IP link failures) as

Wλ =
1

|V λ|

∑

v∈V λ

|Cλ(v)|, Wφ =
1

|V λ|

∑

v∈V λ

|Cφ(v)|.

We average these two vulnerabilities in a single metric W,

W(η) = η · Wλ + (1− η) · Wφ, (5.1)

for some averaging coefficient 0 ≤ η ≤ 1 that weights the relative contribu-
tions of Wλ and Wφ.

Vulnerabilities Wλ and Wφ are determined by the topology of the ALM.
For example, in Fig. 5.4a, we have Wλ = 1/|V λ| (contributed by node v)
and Wφ = (3 + 3 + 5)/|V λ| = 11/|V λ|. Adding one active overlay link (as
in Fig. 5.4b) creates an alternative path between s and v, which decreases

5.6. TOPOLOGY-BASED FORMULATION: PROBLEM P2 117

vulnerabilities to Wλ =0 and Wφ =6/|V λ|, respectively. This also hints that
Wλ and Wφ are not independent.

Vulnerability metrics capture the path diversity in the system, which can
be interpreted as follows:

Small Wλ ⇔ High overlay-path diversity.
Small Wφ ⇔ High IP-path diversity.

5.6.3 Problem P2

Vulnerability W(η) is designed to jointly capture the IP losses and overlay
node failures, by weighting Wλ and Wφ with a parameter η. Therefore, we
define the Problem P2 as follows:

P2: Given capacity and delay constraints {bmax(v), γ, tmax(v)} for v ∈ V∪{s},
design an ALM system that minimizes Vulnerability W(η) for a given pa-
rameter η.

5.6.4 Equivalence of P1 and P2

In order to link P1 and P2, we make two assumptions on the loss model, A1
and A2. They can be considered as first order approximations of the reality.
First, as we have no prior knowledge of the failure probabilities of particular
components, we assume that

A1: Every overlay node v ∈ V λ fails with the same probability 0≤ pλ < 1,
independently of other elements. Every IP link eφ ∈Eφ fails with the same
probability 0≤pφ <1, independently of other network components.

Second, we assume that

A2: Failures are persistent, i.e., a source packet i and all its duplicates and
derivatives observe the same state of every network component.

This is a natural assumption for overlay node failures, as they are typically
long-lasting (e.g., leaving the system). Moreover, A2 roughly captures the
bursty nature of losses at IP links in today’s Internet [108]. Indeed, A2
assumes ideal, ‘all or none’ type of bursts. This simplifies the aspects of time
variability and allows us to focus explicitly on achieving high path diversity,
which is our main goal.

Now we can state the following theorem:

Theorem 6 (Equivalence of P1 and P2)
Given Assumptions A1-A2, we have that

r̄ = α · W(η) + O
(
(pφ|Eφ|)2 + (pλ|V λ|)2

)
, (5.2)

118 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

for a system-specific constant

α = (pλ + pφ − 2pλpφ) · (1− pλ)|V
λ|−1(1− pφ)|E

φ|−1

and the parameter η equal to

η =
pλ(1−pφ)

pλ + pφ − 2pλpφ
. (5.3)

Proof : See Appendix.

As the overall failure probability in the Internet is very low (implying
small pφ) and the interactive ALMs are usually small, stable systems (imply-
ing small |Eφ|, |Eλ| and pλ), the term O

(
(pφ|Eφ|)2 + (pλ|V λ|)2

)
is negligible

in practice. Indeed, this term captures the probability of having multiple
failures; if we additionally assume that at most one failure occurs at a time,
then (5.2) boils down to precisely r̄ = α′ · W.

An immediate corollary of Theorem 6 is that, given A1-A2, minimizing
the average loss rate r̄ is (almost) equivalent to minimizing Vulnerability
W(η) with η set as shown in (5.3). Therefore, from now on we focus explicitly
on Vulnerability and on solving P2 rather than P1.

5.7 Protection techniques

So far we have defined a meaningful metric W(η) that we want to minimize,
but we have not said how to achieve this in practice. In this section we discuss
four protection techniques that allow us to introduce the path diversity and
redundancy in the system, and, as a result, to optimize W(η). Please refer
to Fig. 5.4 for examples of each technique.

5.7.1 SingleTree (Fig. 5.4a)

The first technique is only used as a reference point with strictly no re-
dundancy (γ = 0), i.e., a directed tree Gλ

1 = (V λ∪{s}, Eλ
1 ⊆ Eλ), |Eλ

1 | =
|V λ|, rooted at the source s. This straightforward ALM solution was used
e.g., in [74,76,77,79,80,85,89,93]. Check [94] for a review and comparison.
Most of these papers propose some heuristics to minimize the average or
maximal end-to-end propagation time, as this problem is in general NP-
complete [80,93]. We refer to this basic technique as SingleTree.

5.7.
P

R
O

T
E

C
T

IO
N

T
E

C
H

N
IQ

U
E

S
119

Ove
rla

y

IP
lay

er

Map
pin

g

a) SingleTree b) SingleGraph c) MultiTree d) MultiGraph

M MMM

Gλ GλGλGλ

GφGφ GφGφ

Source s Destination v ∈ V λ IP node vφ three different distribution graphs Gλ
1 , G

λ
2 , G

λ
3

aφ

bφ

cφcφ

dφ

eφ

w u

u

u

u

vs

redundancy
link

redundancy
link

Figure 5.4: An illustration of four protection techniques in a system with one source and |V λ|=3 destinations. To simplify
the presentation we set tmax =∞. (a) SingleTree: γ = 0 (no redundancy, reference point) andWλ = 1

|V λ|
andWφ = 11

|V λ|
.

(b) SingleGraph: γ = (4 − 3)/3 = 1/3 (R = 1 redundancy link), Wλ =0 and Wφ = 6
|V λ|

. (c) MultiT ree with FEC(3,2):

γ = (3 − 2)/2 = 1/2 (only FEC redundancy), Wλ = 0 and Wφ = 5
|V λ|

. (d) MultiGraph with FEC(3,2): γ = 1/2 + 1/9

(FEC redundancy plus R = 1 redundancy link in one distribution graph), Wλ =0 and Wφ = 3
|V λ|

.

120 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

5.7.2 SingleGraph (Fig. 5.4b)

The obvious problem with SingleTree is that it does not provide any proac-
tive protection - any single failure always affects all nodes located downstream
of the failing element. One way of increasing its resilience is to use a distri-
bution graph Gλ

1 = (V λ∪{s}, Eλ
1 ⊆Eλ) with more edges than necessary, i.e.,

with |Eλ
1 | > |V

λ|. All edges Eλ
1 actively forward all the packets resulting in

a number of alternative paths leading to destination nodes. The redundancy
of this system is γ = (|Eλ

1 | − |V
λ|)/|V λ| = R/|V λ|, where R = |Eλ

1 |−|V
λ| is

the number of redundancy edges, i.e., the maximal number of edges without
which the necessary traffic can be still delivered.

How can we construct a good graph Gλ
1? One method is an incremental

design starting from a SingleTree topology, to which a number of ‘cross-
edges’ are added, as e.g., in PRM [97], TMesh [110], HBM [111] and in [112].
Instead, we propose to construct Gλ

1 starting from scratch, which clearly gives
us more freedom and potentially leads to a better performance. We call this
general approach SingleGraph.

5.7.3 MultiTree (Fig. 5.4c)

Another technique to introduce redundancy in the system is coding. In
particular, we consider a non-systematic Forward Error Correction FEC(n, k)
scheme where each source packet is encoded as one FEC block of n packets,
called FEC packets. The total size of the FEC block is n/k times larger than
the original source packet, so the introduced redundancy is γ = (n − k)/k.
If k or more FEC packets are received within time tmax(v) at destination v,
then the original source packet is reconstructed and delivered; otherwise it
is lost. In order to benefit from the available path diversity, we construct a
set {Gλ

1 , . . . , G
λ
n} of n trees, and disseminate the ith FEC packet over the ith

tree Gλ
i . We refer to this technique as MultiT ree.

Multiple trees were first used together in ALM systems such as Coop-
Net [81,82] and SplitStream [78]. These systems use Multiple Description
Coding (MDC) instead of FEC. But they share the same general principle
- exploiting path diversity by disseminating encoded packets over different
trees.

5.7.4 MultiGraph (Fig. 5.4d)

Finally, we propose to combine MultiT ree and SingleGraph by making
at least one of the distribution graphs denser than a tree, i.e., n > 1 and

5.7. PROTECTION TECHNIQUES 121

|Eλ
i | > |V λ| for at least one i, 1 ≤ i ≤ n.3 Under this technique, called

MultiGraph, the number of edges needed to carry the necessary traffic (with
no redundancy) is equal to k · |V λ| (k trees). So every edge in the system car-
ries fraction 1/(k · |V λ|) of the necessary traffic. Thus the system redundancy
γ is

γ =

∑n
i=1 |E

λ
i |

k · |V λ|
− 1 =

n− k

k
+

R

k · |V λ|
,

where R is the total number of redundancy edges in all distribution graphs,
R =

∑n
i=1(|E

λ
i |−|V

λ|).

To the best of our knowledge, no technique equivalent to MultiGraph
has been studied to date. In the Appendix we demonstrate on a concrete
example the following:

Observation 1 (Each protection technique may be best) Consider a
source s, a set V λ of destinations and some fixed redundancy γmax > 0. De-
pending on the underlying IP topology, each of the three protection techniques
(SingleGraph, MultiT ree and MultiGraph) may alone lead to the smallest
vulnerability Wφ.

5.7.5 A common framework Gλ

Let us now introduce a common notation that accommodates all the above
redundancy techniques. By convention, we say that our system always uses
FEC(n, k) with n ≥ k ≥ 1. Denote by Gλ = {Gλ

1 , . . . , G
λ
n} a set of n

dissemination overlay graphs Gλ
i = (V λ∪{s}, Eλ

i ⊆ Eλ), |Eλ
i | ≥ |V

λ| for
every 1 ≤ i ≤ n. We show in Table 5.2 that all four protection techniques
described above are some special cases of the general framework Gλ.

Feasibility. We say that the set Gλ is feasible if both local and global
capacity constraints are satisfied, and if in every graph Gλ

i , every node v ∈
V λ is reachable from s within time tmax(v). Naturally, for every protection
technique we require that it yields a feasible topology Gλ.

Critical components. In order to evaluate Vulnerability W(η), we
need a way to assess if a network component is critical in the system (see
Def. 6,7). In our framework Gλ, it is simple and well defined. To achieve
this, we will say that a network component x (overlay node or IP link) is
critical for a node v ∈ V λ in a separate distribution graph Gλ

i ∈ Gλ if every
path from s to v in Gλ

i shorter than tmax(v) traverses x. Now, a network
component x is critical for v ∈ V λ in the entire system Gλ if x is critical for

3Note that according to this definition neither SingleGraph nor MultiT ree is a
MultiGraph.

122 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

Technique n and k number of edges redundancy γ
SingleTreee n=k=1 |Eλ

1 | = |V
λ| 0

SingleGraph n=k=1 |Eλ
1 | > |V

λ|
|Eλ

1 |−|V λ|

|V λ|

MultiT ree n>k≥1 |Eλ
i |= |V

λ| for all 1≤ i≤n n−k
k

MultiGraph n>k≥1 |Eλ
i |> |V

λ| for at least one i
∑n

i=1 |E
λ
i |

k·|V λ|
−1

Table 5.2: Four protection techniques within the Gλ framework.

v in more than n−k distribution graphs Gλ
i . Indeed, during the failure of

such a component x, more than n−k FEC packets do not reach v making
the FEC recovery impossible.

For example, in Fig. 5.4c, the IP link cφ is critical for node u in two
distribution graphs: Gλ

1 (plain lines) and Gλ
2 (dotted lines). As 2 > n−k = 1,

we know that cφ is critical for u in the entire system Gλ, i.e., cφ ∈ Cφ(u).

5.8 Objective functions

Recall that our goal is solving the problem P2, i.e., finding a feasible topology
Gλ that minimizes the vulnerability W(η). To the best of our knowledge,
this general problem has not been addressed to date. Therefore, there is no
prior work that we can directly compare with. However, many works address
simplified versions of P2, which amount to replace W(η) by another func-
tion X. We distinguish three general categories of these objective functions:
RAND, 1-LAYER and 2-LAYER, as follows.

5.8.1 RAND (reference point)

Under RAND, we select the topology of Gλ at random, only guaranteeing its
feasibility. Other than that, no effort is made to minimizeW(η). This simple
approach was used together with SingleGraph e.g., in PRM [97] where the
additional cross-links were randomly added to the distribution tree. In the
context of MultiT ree the examples are CoopNet [81], and the RMF scheme
in [113]. RAND also serves as a reference point for other solutions.

5.8.2 1-LAYER (state of the art)

In contrast, 1-LAYER optimizes the overlay topology Gλ, but ignores the
knowledge of the underlying IP layer. Therefore, under 1-LAYER we directly
minimize the logical vulnerability Wλ only. This should result in some level

5.9. CONSTRUCTING A GOOD TOPOLOGY Gλ 123

of IP path diversity too, but we have no direct control over the physical
vulnerability Wφ. The 1-LAYER objective function captures many existing
solutions. Under SingleGraph, maximizing the overlay path diversity is
one of the main goals in [111,112,114]. Similarly, for MultiT ree a set of
node-disjoint trees is constructed in SplitStream [78], and in [82,113]. Thus
1-LAYER corresponds to the state of the art, with the addition of a strict
delay constraint that we consider here, contrary to the works mentioned
above.

5.8.3 2-LAYER (our proposal)

Finally, under 2-LAYER we propose to take both the overlay and the IP layer
into account. This additional information allows us to directly minimize the
entire Vulnerability W(η) for any 0≤η≤1. To the best of our knowledge no
ALM technique that falls in this category has been proposed to date. One
of the goals of this chapter is to study the gain of 2-LAYER over 1-LAYER.

To conclude, within a given protection technique (SingleGraph, MultiT ree,
MultiGraph), we minimize

X =






0 under RAND
Wλ under 1-LAYER
W under 2-LAYER

, (5.4)

subject to the feasibility of Gλ.

5.9 Constructing a good topology Gλ

In the previous two sections we specified our protection techniques and objec-
tive functions. The last step is to find the actual topology Gλ that minimizes
the objective function (5.4) under one of the protection techniques described
in Section 5.7. Unfortunately, finding the optimal Gλ is an NP-complete
problem. Indeed, already finding a feasible topology Gλ with n=k=1, γ =0
and fixed bmax(v) for some tmax is equivalent to the ‘minimum maximum-
latency degree-bounded directed spanning tree problem’ [80,115] shown to
be NP-complete.

The problem complexity makes the computation of the optimal solutions
untractable for more than a few nodes. Therefore, we use a simulated an-
nealing heuristic to optimize the topology of Gλ. The input data are the
full graph Gλ = (V λ∪{s}, Eλ) with propagation delays for every link, the
mapping M , FEC parameters n, k, local and global capacity constraints and

124 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

maximal delays tmax(v). As the initial topology of Gλ we take a set of n
different connected random graphs with the total number of edges equal to

n∑

i=1

|Eλ
i | =

⌊
|V λ| · (1 + γmax −

n− k

k
)
⌋
. (5.5)

This guarantees that the global capacity constraint γmax is satisfied and
maximally exploited. At every iteration we add, delete or rewire one or
more edges, always preserving (5.5). In particular, we allow for the following
topology change operations on Gλ:

1. ‘Rewire source’: in one of the distribution graphs Gλ
i change a randomly

chosen overlay edge eλ = (v1, w) into eλ ← (v2, w), where v2 is picked
at random.

2. ‘Rewire target’: like ‘Rewire Source’, but changes eλ = (v, w1) into
eλ ← (v, w2).

3. ‘Rewire pair’: change a randomly chosen overlay pair of edges eλ
1 =

(v1, w1) and eλ
2 = (v2, w2) into eλ

1 ← (v1, w2) and eλ
2 ← (v2, v1).

The heuristic minimizes the value of X (defined in (5.4)) and returns the
topology Gλ corresponding to the smallest found X.

In the Appendix we describe two techniques we used to significantly
speed-up the heuristic. First, we propose a Bellman-Ford-based algorithm
that efficiently finds the critical components and calculates Vulnerability W.
Second, we give a useful theorem that allows us to evaluate the effect of a
topology change without actually recalculating W.

5.9.1 Lower-bounds on Wλ and Wφ

In order to evaluate the performance of this heuristic and get some insight
into the problem, we derive a number of lower-bounds on vulnerabilities Wλ

and Wφ. The first one is called CompleteGraph; it is a simple, general
and rather conservative lower-bound on Wφ. The remaining bounds are
specifically dedicated to given protection techniques. In particular, we derive
SingleGraph/SingleTree lower-bounds on Wλ and Wφ, and a MultiT ree
lower-bound on Wφ.

As these lower bounds are tedious to derive, we moved their presentation
to the Appendix. However, they lead us to important observations that we
describe in the next section.

5.10. SIMULATION RESULTS 125

5.10 Simulation results

5.10.1 Data sets

We collected the all-to-all traceroutes between 800 nodes participating in
the DIMES project [32]. These nodes are private users scattered around the
world, who voluntarily run the DIMES measurement software in the back-
ground. In order to obtain a dense and representative data set, we kept only
those nodes that were active throughout the entire experiment and have dif-
ferent geographical locations. We also discarded the unsuccessful traceroutes
(that did not reach the destination or have some unknown hops) and ex-
cluded the access links from the remaining traceroutes. The resulting data
set consists of 107 nodes and about 90% of all 107×106 possible traceroutes.

5.10.2 Setting tmax

The minimal propagation delays that the system can achieve strongly depend
on the choice of source s and destinations V λ. Therefore, fixing tmax across all
simulation runs would be difficult to interpret. Instead, we decided to choose
tmax for every set V λ∪{s} separately, by allowing for slightly more time than
strictly necessary. In particular, we use the CPT centralized heuristic [93] to
find the (approximated) propagation delay tmin to the farthest destination
in the delay optimized SingleTree. If not stated otherwise, we set tmax(v) =
tmin+50ms for every destination v.

5.10.3 Vulnerability W(η) and topology Gλ as a func-

tion of η.

Our first goal is to understand how different values of the weighting parame-
ter η affect the optimized topology Gλ. This study does not concern RAND
and 1-LAYER, because, according to (5.4), these two objective functions are
independent of η. In contrast, under 2-LAYER, the objective is to minimize
the vulnerability W(η)=ηWλ+(1−η)Wφ, which clearly depends on η.

In Fig. 5.5 we study W(η) minimized by our heuristic, as a function of η.
We also present the vulnerabilitiesWφ andWλ of the resulting topology Gλ,
which leads us to the first conclusion C1:

C1: For a wide range 0 < η < 1 (but not for η = 0 nor η = 1) under
2-LAYER, both Wλ and Wφ are minimized at the same time.
To support C1, we consider three cases: η = 0, η = 1 and 0 < η < 1. For
η=0, the equation (5.1) boils down to W=Wφ, meaning that we maximize
the IP path diversity only. Naturally, this results in the smallest value of

126 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

0.5 100.5 1
0

0.5

1

0 0.5 10

0.5 100.5 1
0

5

10

0 0.5 10

0

0.5

1

0

0.5

1

0

5

10

0

5

10

0.5 100.5 1
0

5

10

0 0.5 10
0

5

10

0

5

10
SingleGraph MultiT ree MultiGraph

ηη η

W
W

λ
W

φ

Figure 5.5: Vulnerability W(η) under 2-LAYER, as a function of the weight-
ing parameter η (top). Below we show physical Vulnerability Wφ (middle) and
overlay Vulnerability Wλ (bottom) of the resulting topology Gλ. We simulated
η ∈ {0, 0.05, 0.95, 1}, averaged over 1000 random subsets of the DIMES data set
with |V λ|=10, γmax =0.5 and bmax(v)=2.

the physical vulnerability Wφ. However, the overlay path diversity is not
optimized: the overlay vulnerability Wλ is significantly larger for η=0 than
for η>0. Analogously, for η=1 we haveW=Wλ, which results in minimal
Wλ, but clearly suboptimal Wφ.

In contrast, for a wide range 0 <η < 1, we observe a plateau of minimal
values of both Wλ and Wφ. This means that the algorithm usually finds a
topology Gλ that minimizes both Wλ and Wφ at the same time, and thus
suits any choice of η.

This is important, because in practice, we always have some non-zero
probability of a node failure pλ > 0 or IP loss pφ > 0, which, combined
with (5.3), places us in the regime 0<η<1. Moreover, the exact value of η
(which might be difficult to estimate in practice) does not affect the resulting
topology Gλ. For these reasons, in the remainder of this chapter we present
results obtained for η=0.5, which represents well the entire range 0<η<1.

5.10.4 Detailed results for 0<η<1

We present two types of results. First, in Fig. 5.6, under each of the four
protection techniques we compare the vulnerabilities yielded by the heuristic,
lower-bounds, and the optimal topology Gλ. We find the optimal topology

5.10. SIMULATION RESULTS 127

5

10

15

20

0.5

0

0

SingleTree SingleGraph MultiT ree MultiGraph

SingleG
r.

MultiGr.

MultiT
ree

W
φ

W
λ

RAND
1-LAYER
2-LAYER
Optimal
Lower-bound

Figure 5.6: Vulnerability Wφ (top) and Wλ (bottom) under each of the four
protection techniques, in a small system with 0<η <1. We compare the optimal
topology (‘Optimal’) with heuristic-based solutions (RAND, 1- and 2-LAYER) and
the lower-bounds. We randomly choose |V λ ∪ {s}| = 6 nodes in the DIMES data
set, and set γ = 0.5, bmax = 2. We use FEC(3,2) in MultiT ree and FEC(4,3) in
MultiGraph. The results are averaged over 200 different sets of nodes. The
pie-chart shows how often a given protection technique results in the smallest Wφ

(out of all techniques). We discard here the cases where more than one technique
leads to minimal Wφ.

by running an exhaustive search with some obvious and more sophisticated
pruning, which allowed us to fully study the overlays of up to 6 nodes in a
reasonable time. Next, in Fig. 5.7 we present the heuristic results obtained
for larger systems. We draw the following conclusions C2-C6.

C2: 1-LAYER outperforms RAND.

Recall that 1-LAYER directly minimizes the overlay vulnerabilityWλ, whereas
RAND guarantees the feasibility of Gλ only. Therefore, it is not surprising
that 1-LAYER results in values of Wλ significantly smaller than RAND. In
particular, under MultiT ree we achieve Wλ ≃ 0. Interestingly, the physical
vulnerability Wφ also benefits under 1-LAYER, resulting in a decrease of
10%-50% (depending on the protection technique).

C3: 2-LAYER outperforms 1-LAYER.

More importantly, when moving from 1-LAYER to 2-LAYER we observe
a further substantial decrease in Wφ, ranging from 30% to 70%. This is

128 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

especially well pronounced in larger systems (see Fig. 5.7). In contrast, Wλ

remains practically unchanged. This is not surprising, because minimizing
Wλ is exactly the objective of 1-LAYER.

C4: MultiT ree is in general the best protection technique.
Consider first the overlay vulnerabilityWλ. We observe that MultiT ree and
MultiGraph usually lead toWλ =0 (with a slight advantage of MultiT ree).
Indeed, to achieve this, it is enough to guarantee that every destination serves
as a relay in at most n−k distribution graphs.

Moreover, according to the pie-chart in Fig. 5.6, MultiT ree usually achieves
the smallest physical vulnerabilityWφ out of all three protection techniques.
To conclude, 2-LAYER MultiT ree is a good and practical choice for pro-
tecting an interactive ALM.

C5: Nearly optimal results can be achieved already by a simple heuristic.

Recall that in Fig. 5.6 we show (among others) the optimal results. Inter-
estingly, for all protection techniques the results obtained by our heuristic
under 2-LAYER are nearly optimal. Similarly, in Fig. 5.7, most 2-LAYER
results closely approach the corresponding lower-bounds. This means that we
do not need any sophisticated and dedicated techniques to find a very good
topology Gλ. On the contrary, a simple general-purpose heuristic (simulated
annealing in our case) is sufficient.

C6: The IP-path diversity is limited by the system size |V λ| and redundancy
γmax.
It is relatively easy to achieve a very high overlay-level path diversity. In
particular, MultiT ree usually reaches a zero logical vulnerability Wλ = 0
(see the discussion in C4).

In contrast, there exist a number of factors that prevent us from achiev-
ing a high IP-level path diversity, i.e., that lower-bound the physical vul-
nerability Wφ. First, Wφ decreases with increasing system size |V λ|. This
is clearly visible in Fig. 5.8. We can also observe this tendency in more
constrained settings - e.g., in Fig. 5.7 the curves decline with growing |V λ|
(except SingleGraph). This phenomenon can be easily explained. With one
source and one destination (|V λ|=1) we have no choice but to send the traffic
directly to this destination, resulting in virtually no path diversity. But with
growing |V λ|, we obtain more and more means to exploit the underlying IP
path diversity.

Second, the effective IP-level path diversity is limited by the maximal
redundancy γmax. In Fig. 5.8 we show MultiT ree lower-bounds for three
different values of γmax. For example, for γ = 0.2 we have Wφ ≃ 4 even for
large |V λ|, which is much more than roughly Wφ ≃ 0 for the same setting
with γ =∞.

5.11. CONCLUSION 129

0

2

4

6

8

10 15 20

0

0.5

1.0

5 10 15 205 10 15 205

SingleGraph MultiT ree MultiGraph

SingleGraph lower-bound MultiT ree lower-bound

2-LAYER

2-LAYER2-LAYER

1-LAYER 1-LAYER

1-LAYER

1-LAYER ≃ 2-LAYER1-LAYER ≃ 2-LAYER

1-LAYER ≃ 2-LAYER

W
φ

W
λ

Destinations |V λ|Destinations |V λ|Destinations |V λ|

Figure 5.7: Vulnerability Wφ and Wλ in different settings for varying number of
destination nodes |V λ| = 5 . . . 20. We fix γmax = 0.5, bmax = 2 and the regime
0 < η < 1. We use three protection techniques: SingleGraph, MultiT ree with
FEC(3, 2), and MultiGraph with FEC(4, 3). For clarity, we do not show the
SingleTree results, as they do not fit in the current scale. For the same reasons
we do not show the RAND results for any of the techniques. The results are
averaged over 1000 different sets of |V λ ∪ {s}| nodes chosen at random from the
DIMES data set.

1 10 20 30 40 50 60
0

2

4

6

8

10

12

V
u

ln
er

ab
il

it
y
W

φ

Destinations |V λ|

γmax = 0.2
γmax = 0.33

γmax = 0.5
γmax =∞ (≥|V λ|)

Figure 5.8: Minimal Vulnerability Wφ as a function of system size |V λ|, assuming
bmax = ∞ (≥ |V λ|) and tmax = ∞. The dashed curve is the CompleteGraph
lower bound, i.e., a fully connected SingleGraph where all destinations actively
forward the source packets to all other destinations. The remaining (plain) curves
are MultiT ree lower bounds for three different values of γmax. The results are
averaged over 1000 sets of overlay nodes.

5.11 Conclusion

In this chapter we studied the interactive single-source application-level mul-
ticast, as an example of a two-layer system. We found, that given the strin-

130 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

gent delay requirements and capacity constraints of the interactive ALM, it
is (usually) still possible to create a system with a high path diversity at both
the overlay and the IP layer. This results in a good protection against over-
lay node failures and IP losses. However, such a system should be carefully
designed. It is not sufficient to maximize the overlay path diversity, as it does
not automatically optimize the IP layer. Therefore, we should take into ac-
count not only the overlay-level information, but also the actual mapping of
the overlay links on the IP layer. As a result, for real Internet topologies we
reduce the system’s physical Vulnerability Wφ by typically 30%-70%, while
keeping the logical Vulnerability Wλ unchanged. Moreover, with the help
of a set of lower-bounds, we showed that our results are nearly optimal. In
a more general context, we have demonstrated that system size and maxi-
mal allowed redundancy are two important factors that naturally limit the
available IP-path diversity. Last but not least, we have introduced a novel
topology-based metric of Vulnerability W, that not only captures the sys-
tem’s path diversity in a simple and meaningful way, but also can be formally
linked with the average packet loss rate observed at the destinations.

APPENDIX

5.A Proofs

5.A.1 Proof of Theorem 6 [Equivalence of P1 and P2]

Denote by P(Y) the probability that all components (IP links and overlay
nodes) in a set Y ⊆ V λ∪Eφ fail, and no other component fails. Recall that
each overlay node fails independently with probability pλ and each IP link
fails independently with probability pφ. Thus the probability of no failure is

P(Y =∅) = (1−pλ)|V
λ|(1−pφ)|E

φ| = (1−pλ)(1−pφ)β,

where β = (1−pλ)|V
λ|−1(1−pφ)|E

φ|−1. The probabilities of a single failure of an
overlay node v′ and of an IP link eφ are

P({v′}) = pλ(1−pφ)β and P({eφ}) = pλ(1−pλ)β.

Hence the probability P(|Y |=1) of exactly one failure is

P(|Y |=1) = β
(
|V λ|pλ(1−pφ) + |Eφ|pφ(1−pλ)

)
.

Let Fv(Y) be the indicator function returning 1 when a source packet is not
delivered at node v within tmax(v) due to the failure of Y , and 0 otherwise.

5.A. PROOFS 131

For instance, if exactly one IP link eφ fails then Fv({eφ}) = 1{eφ∈Cφ(v)}. Now
we can write

r(v) = P
(
packet is not delivered at v within tmax(v)

)
=

=
∑

all Y ⊆V λ∪Eφ

Fv(Y)P(Y) =
∑

{Y : |Y |=1}

Fv(Y)P(Y) + Rv =

=
∑

v′∈V λ

Fv({v′})P({v′}) +
∑

eφ∈Eφ

Fv({eφ})P({eφ}) + Rv =

= pλ(1−pφ)β
∑

v′∈V λ

Fv({v′}) + pφ(1−pλ)β
∑

eφ∈Eφ

Fv({eφ}) + Rv =

= pλ(1−pφ)β · |Cλ(v)| + pφ(1−pλ)β · |Cφ(v)| + Rv =

= α
(
η · |Cλ(v)|+ (1−η) · |Cφ(v)|

)
+ Rv, (5.6)

where α = (pλ+pφ−2pλpφ)β and η = pλ(1−pφ)
pλ+pφ−2pλpφ .

The remainder Rv in (5.6) can be upper-bounded as follows:

Rv =
∑

{Y : |Y |>1}

Fv(Y)P(Y) ≤
∑

{Y : |Y |>1}

P(Y) = 1− P(|Y | ≤ 1) =

= 1− β
(

(1−pλ)(1−pφ) + |V λ|pλ(1−pφ) + |Eφ|pφ(1−pλ)
)

=

= 1− β
(

1 + pφ(|Eφ|−1) + pλ(|V λ|−1)− pφpλ(|V λ|+ |Eφ|−1)
)
≤

≤ 1− β
(

1 + pφ(|Eφ|−1) + pλ(|V λ|−1)− pφpλ(|V λ|−1)(|Eφ|−1)
)

=

= 1−β(1+Z) ≤ 1−(1−Z)(1+Z) = Z2 = O
(

(pφ|Eφ|)2 + (pλ|V λ|)2
)
,(5.7)

where

Z = pφ(|Eφ|−1) + pλ(|V λ|−1)− pφpλ(|V λ|−1)(|Eφ|−1),

and where we used (1− p)x ≥ 1− px to lower-bound β by

β ≥ (1−pλ(|V λ|−1))(1−pφ(|Eφ|−1)) = 1−Z.

Finally, combining (5.6) and (5.7) we obtain

r̄ =
1

|V λ|

∑

v∈V λ

r(v) =

=
α

|V λ|

(
η
∑

v∈V λ

|Cλ(v)|+ (1−η)
∑

v∈V λ

|Cφ(v)|
)

+
1

|V λ|

∑

v∈V λ

Rv =

= α · W + O
(

(pφ|Eφ|)2 + (pλ|V λ|)2
)
.

�

132 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

Ove
rla

y

IP
lay

er

Map
pin

g

c) SingleGrapha) MultiTree b) MultiGraph

M MM

Gλ GλGλ

Gφ Gφ

source s destination v ∈ V λ IP node vφ

u

u

u

four different distribution graphs Gλ
1 , Gλ

2 , Gλ
3 , Gλ

4

Figure 5.9: The absolute and relative effectiveness of the SingleGraph, MultiT ree
and MultiGraph strongly depends on the underlying IP topology. In this toy
example we have one source s and |V λ| = 4 destinations. For each of the three
possible underlying IP topologies we find the optimal protection technique and
topology Gλ, assuming γ = 0.5, no local capacity constraints and tmax = ∞.
These techniques are MultiT ree, MultiGraph and SingleGraph for (a), (b) and
(c), respectively.

5.A.2 Proof of Observation 1

First note that γ = 0.5 and |V λ| = 4 allow us to use (i) SingleGraph with
|Eλ

1 | = 6 edges (i.e., 2 redundancy edges), (ii) MultiT ree with FEC(3,2) or
(iii) MultiGraph with FEC(4,3) and 2 redundancy edges. Values of n higher
than 4 do not make sense because |V λ| = 4.

Consider now the setting presented in Fig. 5.9. We will show that the
three possible underlying IP topologies in (a), (b) and (c), the unique op-
timal protection techniques are MultiT ree, MultiGraph and SingleGraph,
respectively

For the IP topology as shown in Fig. 5.9a, MultiT ree with FEC(3,2)
and topology Gλ as shown achieves Wφ = 0. In contrast, SingleGraph
with two redundancy edges must leave two destinations unprotected (with
in-degree equal to 1) resulting in Wφ > 0. Finally, under MultiGraph with
FEC(4,3) every overlay node contributes to Wφ with Wφ(v) > 0. With only

5.B. LOWER BOUNDS 133

two redundancy links at our disposal we must leave at least two destinations
with Wφ(v) > 0, resulting in Wφ > 0

Let us now move to Fig. 5.9b. For this IP topology MultiGraph with
FEC(4,3) achieves Wφ =0 with the presented topology (note two redundant
edges in two of the trees). As before, SingleGraph is limited to Wφ > 0.
And clearly, under MultiT ree with FEC(3,2) we always have Wφ(u) > 0
and thus Wφ > 0.

Finally, in Fig. 5.9c, SingleGraph achieves Wφ = 2 with the presented
Gλ. In contrast, for every destination under MultiT ree with FEC(3,2) we
have Wφ(v) = 2 and thus Wφ = 8. MultiGraph with FEC(4,3) every
destination v must contribute at least Wφ(v) ≥ 1, unless reinforced with
2 or more redundancy edges. As we have only 2 redundancy edges at our
disposal, MultiGraph results in Wφ ≥ 3.

�

5.B Lower bounds

In this section we derive a number of lower-bounds on Vulnerability Wφ.

5.B.1 Simple lower-bound on Wφ

Denote by Ein(v) ⊆ Eλ (resp., and Eout(v) ⊆ Eλ) the sets of all edges
incoming to (resp., outgoing from) node v ∈ V λ ∪ {s} in the complete graph
Gλ. Our basic component in the construction of a lower-bound is the set
Eφ

acc(v) ⊆ Eφ of effective access links of node v, defined as

Eφ
acc(v) =






⋂

eλ∈Eout(v)

M(eλ) for v = s

⋂

eλ∈Ein(v)

M(eλ) for v ∈ V λ

In other words, Eφ
acc(v) is the set of IP links that are traversed by every IP

path incoming to v (or outgoing from s if v = s). The sets Eφ
acc(v) depend

on the choice of V λ ∪ {s}.
As any path from s to v ∈ V λ must always traverse all the effective access

links of s and v, the minimal contributionWφ(v) to vulnerabilityWφ of each
destination node v is

Wφ(v) ≥ |Eφ
acc(s)|+ |Eφ

acc(v)|, (5.8)

134 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

which gives us the following simple lower-bound on Vulnerability Wφ:

Wφ ≥ |V λ| · |Eφ
acc(s)| +

∑

v∈V λ

|Eφ
acc(v)|. (5.9)

5.B.2 CompleteGraph lower-bound on Wφ

Another approach is to relax all capacity constraints, set tmax = ∞, and
compute Vulnerability Wφ under SingleGraph with Gλ

1 = Gλ, i.e., the dis-
tribution (complete) graph that contains all the possible edges. Clearly, this
globally lower-bounds Wφ; we refer to this as CompleteGraph lower-bound.

5.B.3 SingleGraph (and SingleTree) lower-bound onWφ

The bounds given above are general, but usually poor. In contrast, it is pos-
sible to derive bounds that are better, but restricted to the chosen protection
technique. For SingleGraph we can prove the following:

Theorem 7 (SingleGraph lower-bound for Wφ) For SingleGraph pro-
tection technique we have

Wφ ≥ |V λ| · |Eφ
acc(s)| +

∑

v∈V λ
a

|Eφ
acc(v)| +

+
∑

v∈V λ\V λ
a

min
eλ∈Ein(v)

∣∣M(eλ) \ Eφ
acc(s)

∣∣, (5.10)

where V λ
a ⊆ V λ is the set of a = ⌊γ · |V λ|⌋ destinations with the smallest

gains g(v) = mineλ∈Ein(v)

∣∣M(eλ) \ Eφ
acc(s)

∣∣ − |Eφ
acc(v)|.

Proof of Theorem 7 [SingleGraph lower-bound for Wφ]:
Let Gλ = {Gλ

1}, Gλ
1 = (V λ∪{s}, Eλ

1 ⊆ Eλ), |Eλ
1 | > |V

λ| be a system that
uses the SingleGraph technique. Consider the minimal contribution Wφ(v)
of each destination node v ∈ V λ when the protection is provided by allowing
for additional links. It depends on the in-degree indeg1(v) of v in Gλ

1 . If
indeg1(v) ≥ 2 then we reuse the bound (5.8). In contrast, if indeg1(v) = 1
then we know that any path from s to v must always traverse all the effective
access links of s and all IP links in the mapping of its incoming overlay edge
eλ. We can thus lower-bound Wφ(v) by taking the edge eλ with the shortest
mapping M(eλ), i.e., if indeg1(v) = 1 then

Wφ(v) ≥ |Eφ
acc(s)|+ min

eλ∈Ein(v)

∣∣M(eλ) \ Eφ
acc(s)

∣∣. (5.11)

5.B. LOWER BOUNDS 135

(Note that we exclude Eφ
acc(s) from M(eλ) to avoid a potential double count-

ing of the effective access links of s.) The bound (5.11) is equal or higher
than that in (5.8). Therefore, in order to find the minimal Wφ we must
consider the maximal possible number a of nodes with indeg1(v) > 1. By
the global constraint, there are at most ⌊γ · |V λ|⌋ redundancy edges in the
system. As each of them increases the in-degree of one destination by 1, the
maximal number of destinations with indeg1(v) > 1 is a = ⌊γ · |V λ|⌋.

Which a destination nodes should we assign with indeg1(v) > 1? Again,
as we minimize Wφ, we must match indeg1(v) > 1 with a set V λ

a ⊆ V λ of a
destinations with the smallest gains

g(v) = min
eλ∈Ein(v)

∣∣M(eλ) \ Eφ
acc(s)

∣∣ − |Eφ
acc(v)|

due to the existence of more than one incoming edge.
To conclude, for the nodes in V λ

a we use the bound (5.8) and for all other
destinations we use (5.11); this results in the final formula (5.10) for the
lower-bound on Wφ given in Theorem 7 that we were to prove.

�

5.B.4 MultiTree lower-bound on Wφ

Consider now MultiT ree. This scenario has also some specific features that
can be exploited when lower-bounding Wφ. For example, in Fig. 5.4a (bot-
tom), the set of effective access links of destination u is empty Eφ

acc(u) = ∅.
However, under MultiT ree with FEC(3,2), for any topology Gλ either eφ or
fφ must be a critical IP link of u. Therefore in this caseWφ(u) ≥ |Eφ

acc(s)|+1,
which improves by 1 the bound in (5.8).

More generally, for each destination node v consider all the IP paths
{M(eλ) : eλ ∈ Ein(v)}, i.e., mappings of all incoming overlay edges of v. De-
note by q(v, i) the total number of different IP links on these paths exactly i
hops away from v. By convention, if i exceeds the length mineλ∈Ein(v) |M(eλ)|
of the shortest of the paths then q(v, i) = ∞. In Fig. 5.4 we have q(u, 1) =
|{eφ, fφ}| = 2 and q(u, 2) = 3. For source s the term q(s, i) is defined anal-
ogously, except that now we consider Eout(s), i.e., all overlay edges in Eλ

outgoing from s. Now we can state the following.

Theorem 8 (MultiT ree lower-bound for Wφ) For MultiT ree protection
technique with FEC(n,k) we have

Wφ ≥
∑

v∈V λ

⌊ 1
2
|M(s,v)|⌋∑

i=1

1{⌈n/q(s,i)⌉>n−k} + 1{⌈n/q(v,i)⌉>n−k}. (5.12)

136 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

Proof of Theorem 8 [MultiT ree lower-bound for Wφ]:
Let Gλ = {Gλ

1 , . . . , G
λ
n}, Gλ

i = (V λ∪{s}, Eλ
i), |Eλ

i | = |V λ| be a system that
uses the MultiT ree redundancy technique. There are q(v, i) different IP
links on all the |V λ| IP paths incoming to v and i hops away from v. At the
same time, there are exactly n overlay edges in the system Gλ that lead to
v. Therefore, at least one IP link eφ of the q(v, i) links must be traversed
by at least ⌈ n

q(v,i)
⌉ of these overlay edges. Thus a single failure of eφ results

in a loss of at least ⌈ n
q(v,i)
⌉ FEC packets. So if ⌈ n

q(v,i)
⌉ > n − k then the

original source packet cannot be recovered and this ith hop becomes critical
for v and Wφ(v) is incremented by 1. Therefore, Wφ(v) is not smaller than∑∞

i=1 1{⌈n/q(v,i)⌉>n−k}. At the same time all critical elements of the source s
are also critical for v, so Wφ(v) ≥

∑∞
i=1 1{⌈n/q(s,i)⌉>n−k}. These two sums can

be combined, but we need to guarantee that no critical element is counted
twice - on the sides of both v and s. We achieve this by running these sums up
to at most half of the length of the direct path M(s, v), i.e., to ⌊1

2
|M(s, v)|⌋.

This, together with the convention that q(v, i) =∞ for all i larger than the
shortest route incoming to v, allows us to write

Wφ(v) ≥

⌊ 1
2
|M(s,v)|⌋∑

i=1

1{⌈n/q(s,i)⌉>n−k} + 1{⌈n/q(v,i)⌉>n−k} (5.13)

We obtain (5.12) by summing (5.13) for all destination nodes v ∈ V λ, which
finishes the prove of Theorem 8.

�

5.B.5 SingleGraph (and SingleTree) lower-bound onWλ

Let us now consider the lower-bound on logical Vulnerability Wλ. Inter-
estingly, it is relatively easy to achieve Wλ = 0; this is straightforward for
MultiT ree with tmax = ∞. This implies that there exist no simple general
lower-bound onWλ. However, the SingleGraph (and SingleTree) technique
is less effective and usually results in Wλ > 0 that can be lower-bounded as
follows:

Theorem 9 (SingleGraph lower-bound for Wλ) For SingleGraph we have

Wλ ≥
1

|V |
(|V | − ⌊γmax|V |⌋ − ⌊bmax(s)⌋). (5.14)

Proof
There are at least |V |−⌊γmax|V |⌋ destinations with only one incoming overlay
link in Gλ

1 . For each of these destinations its direct parent is a critical node,

5.C. SPEEDING-UP THE HEURISTIC 137

unless this parent is the source s itself. As s can have at most ⌊bmax(s)⌋
children, there are at least (|V | − ⌊γmax|V |⌋ − ⌊bmax(s)⌋) destinations with
|Cλ(v)| ≥ 1. This implies (5.14).

�

Obviously, Theorem 9 holds also for γmax = 0, i.e., for the SingleTree
technique.

5.C Speeding-up the heuristic

In this section we describe two techniques we used to significantly speed-
up the heuristic. First, we propose a Bellman-Ford-based algorithm that
efficiently finds the critical components and calculates Vulnerability Wφ.
Second, we give a useful theorem that allows us to evaluate the effect of
a topology change without actually recalculating Wφ.

5.C.1 Computation of critical elements for Gλ
i ∈ Gλ

A naive approach to find the critical IP links in Gλ
i ⊆ Gλ is to consider

each IP link eφ ∈ Eφ (separately), hide all the overlay edges using eφ and
run Dijkstra on the resulting graph. This amounts to running Dijkstra |Eφ|
times for every Gλ

i ⊆ Gλ. Typically |Eφ| is large and this approach is quite
costly, because the heuristic involves numerous evaluations of the objective
function (i.e., vulnerability).

Fortunately, there exist better solutions. We propose an algorithm that
computes all critical elements in a given distribution graph Gλ

i = (V λ ∪
{s}, Eλ

i) ∈ Gλ. It is inspired by the Bellman-Ford distance vector routing
protocol, but there are three main differences. First, we consider one traffic
source s only and many destinations V λ. Second, every node v ∈ V λ learns
the minimal distance from s to v, not from v to s. Third, and most important,
our algorithm investigates some additional properties of the discovered paths,
i.e., the network elements that these paths avoid. Clearly, if no path from s
to v shorter than tmax avoids an IP link eφ then eφ is a critical element of v.

Basic version

Every logical node v ∈ V λ ∪ {s} stores a function tv : Eφ 7→ R defined for
all IP links eφ ∈ Eφ. tv(eφ) is the delay on the (so far) shortest path pλ

s,v

that avoids eφ. If no such path exists (or was found so far) then tv(eφ) =∞.
Initially tv(eφ) = ∞ for all eφ ∈ Eφ and v ∈ V λ. In contrast ts(e

φ) = 0 for
every eφ. There are |V λ| iterations. At every iteration, for every overlay edge

138 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

e = (v, w) ∈ Eλ
i we update update the function tw for target node w. This

means that at jth iteration we find all paths that use j hops. The very basic
algorithm is as follows:

1 forall eφ ∈ Eφ do
2 forall v ∈ V λ do
3 tv(eφ)←∞
4 ts(e

φ) = 0
5 for j ← 1 to |V λ| do
6 forall e = (v, w) ∈ Eλ

i do
7 forall eφ /∈M(e) do
8 if tw(eφ) > tv(eφ)+delay(e) then
9 tw(eφ)← tv(eφ)+delay(e)

More efficient implementation

In practice there are many possible improvements. First, nodes do not have
to store full tables. Let initially the domain DOM(tv) of tv be empty and
change dynamically as follows. Let tv(eφ) ← tnew add eφ to DOM(tv) (if it
was not there yet) and set tv(eφ) to value tnew. Let undefine(tv(eφ)) delete eφ

from DOM(tv). Finally, let ‘∗’ be a default element that covers all elements
currently not in DOM(tv), i.e., tv(eφ) returns tv(∗) for all eφ /∈ DOM(tv).
Second, in line 6 we may take only those edges whose source nodes were
updated at the previous iteration. Moreover, if there are no such edges then
we can terminate the algorithm. Third, every value of delay larger than
tmax can be interpreted as∞. With these three improvements the algorithm
performs much faster and can be stated as follows:

5.C. SPEEDING-UP THE HEURISTIC 139

forall v ∈ V λ do
tv(∗)←∞

j ← 0, ts(∗)← 0 {Iteration j = 0}
for j ← 1 to |V λ| do

E ′
i ← {(v, w) ∈ Eλ

i : v was updated at iteration j−1}
if E ′

i = ∅ then return
forall e = (v, w) ∈ E ′

i do
if tw(eφ) ≤ tv(eφ)+delay(e) forall eφ ∈ DOM(tw)

then continue {Speed-up}
forall eφ ∈M(e) do

tw(eφ)← tw(eφ)
forall eφ ∈ DOM(tv) ∪DOM(tw) \M(e) \ {∗}

do tw(eφ)← min(tw(eφ), tv(eφ)+delay(e))
tw(∗)← min(tw(∗), tv(∗)+delay(e))
forall eφ ∈ DOM(tw) do

if tw(eφ) = tw(∗) then undefine(tw(eφ))

5.C.2 Useful theoretical result

Second, based on the knowledge of the critical element in the current dis-
tribution graph Gλ

i , it is often possible to evaluate the effect of a topology
change without actually recalculating vulnerability, as follows. Denote by
tv(eφ) the delay on the shortest path in Gλ

i from s to v that avoids eφ. If no
such path exists then tv(eφ) = ∞. (Finding tv(eφ) does not introduce any
overhead because it must be implicitly computed during the computation of
Wφ.) We can prove that:

Theorem 10 (Effects of edge change on critical elements)
Deleting an overlay link eλ = (v, w) ∈ Eλ

i will not change the configuration
of critical elements in Gλ

i if for all eφ 6∈M(v, w) we have tv(eφ)+teλ > tw(eφ)
or tv(eφ) =∞. And conversely, adding a new overlay link eλ = (v, w) 6∈ Eλ

i

may decrease the number of critical elements in Gλ
i only if there exists eφ 6∈

M(v, w) such that tv(eφ) + teλ < tw(eφ).

Proof of Theorem 10 [Effects of edge change on critical elements]:
First we prove the part of this theorem that speaks about deleting the edge
e = (v, w). Assume that for all eφ 6∈ M(v, w) we have tv(eφ) + te > tw(eφ)
or tv(eφ) = ∞. Consider the shortest-delay overlay path SP (s, w, eφ) from
source s to w that avoids eφ in its mapping. For every eφ ∈ Eφ we will show
that e 6∈ SP (s, w, eφ). We can distinguish three cases:

140 CHAPTER 5. MAXIMAL PATH DIVERSITY IN OVERLAY/IP . . .

1. eφ ∈ M(e). Then trivially e 6∈ SP (s, w, eφ), because by definition
SP (s, w, eφ) avoids eφ.

2. eφ 6∈ M(e) and tv(eφ) = ∞. The latter says that every path from s
to v traverses eφ. So every overlay path that contains e = (v, w) must
traverse eφ too, yielding e 6∈ SP (s, w, eφ) again.

3. eφ 6∈M(e) and tv(eφ)+ te > tw(eφ). In this case there exists paths from
s to w that contain e and avoid eφ. But, because tv(eφ) + te > tw(eφ),
none of these paths can be shortest, and thus e 6∈ SP (s, w, eφ).

As for every eφ we have shown that e 6∈ SP (s, w, eφ), the deletion of e will not
change the shortest paths from s to w avoiding eφ. So the critical elements
of w do not change. This can be easily extended to every other node u ∈ V λ,
because if e belonged to SP (s, v, eφ) then just after e the path SP (s, v, eφ)
would traverse node w. But we know that e 6∈ SP (s, w, eφ), which leads to
contradiction.

The second part of this theorem (adding an edge) we can easily prove by
contradiction, reusing the arguments above.

�

Chapter 6

Conclusion

Two-layer networks are a challenging environment for the enforcement of an
effective failure protection. This is because a single failure at the physical
layer propagates to the logical layer where it may result in multiple logical
failures. In this thesis, we have found a confirmation of this problem by
studying real-life two-layer systems.

Fortunately, often a careful system design can minimize this problem. We
have demonstrated it on the example of IP/WDM networks and interactive
ALM systems. Although these two settings have very different objectives,
constraints and requirements, in both cases we were able to significantly
improve their protection to typical failures. In order to achieve this, we have
proposed dedicated algorithms and techniques that lead to a failure-proof
design of mapping (under IP/WDM), or of the logical layer (under ALM).

Please, refer to Table 6.1 for a more detailed summary of contributions
made in this thesis.

Future Work

The work in this thesis can be a basis for a number of research directions.
We classify these directions in two groups, as follows.

Specific problems

First, we have addressed in this thesis many specific problems in concrete
settings. The dedicated solutions that we propose can probably be further
improved, or extended.

For example, the SMART algorithm as presented in Chapter 4 addresses
only the basic version of the routing and wavelength assignment problem in
the IP/WDM setting. There are numerous real-life constraints that should be

141

142
C

H
A

P
T

E
R

6.
C

O
N

C
L
U

S
IO

N
PictogramObjectandgoalofstudyAchievementsandconclusions

Large-scale,
real-life

Logical

Physical

Mapping

given

given

given

InChapter3westudyexisting
large-scalesystems,suchas:
•Railwaynetworks,
•Gnutella(Internet),
•Thehumanbraintopology.

Ourgoalistogainmoreunder-
standingoftheproblemoffail-
urepropagationandmultiplica-
tion.

Wedeveloptechniquestoconstructtwo-layerdatasets:
•Analgorithmtoinferthephysicalinfrastructureofapublictrans-
portationsystembasedonlyonitstimetables(Railway),
•Amethodologytocreateanetworkoflongdistanceconnectionsin
thehumanbrain,basedonadiffusionMRIdata.

Wedrawthefollowingconclusions:
•Attacksaremuchmoreharmfulthanerrors.
•Thelogicalgraphisaffectedmuchfasterthanthephysicalgraph.
•Aheterogeneoustopologygraphdecreasessystem’srobustness.

IP/WDM

Logical

Physical

Mapping

given

given

to find

InChapter4,weconsiderthe
IP/WDMnetworks,wherea
fixedIPgraphismappedonto
afixedmeshofphysicalfibers.
Ourgoalistodesignasurvivable

mapping,i.e.,suchthatthelog-
icaltopologyremainsconnected
afteranysinglephysicalfailure.

•Weintroduceanewconceptofpiecewisesurvivability,andshowa
numberofpropertiesofapiecewisesurvivablemapping.
•WeproposetheSMARTalgorithm,whichallowsustoformally
provethatasurvivablemappingdoesordoesnotexist.
•SMARThelpsusfindandstrengthenvulnerableareasinthesystem.
•Moreover,SMARTfindsasurvivablemappingmuchfaster(often
byordersofmagnitude)thantheotherapproaches.
•Wecoverthefailuresoflinks,nodes,spansanddouble-links.

ALM/IP

Logical

Physical

Mapping

to find

given

given

InChapter5,weconsider
delay-constrainedApplication-
LevelMulticast(ALM)systems,
wheretheALMgraphismapped
ontotheIPtopology.Ourgoal
istoproactivelyprotectthesys-
temagainstoverlaynodefailures
andagainstIPpacketlosses.

•Wedefineatopology-basedVulnerabilitymetricW,andprovethat
Wisequivalenttotheaveragepacketlossrate.
•AsWdropswiththeamountofIP-andapplication-levelpathdiver-
sity,weproposeaframeworktoincreasethisdiversityinthesystem.
•Withinthisframework,weoptimizethestructureofALM,which
reducestheeffectivelossrateofrealInternettopologiesbytypically
30%-70%.Wealsoshowthatourapproachisnearlyoptimal.
•Finally,westudyfactorsthatnaturallylimittheavailableIP-path
diversity,suchasthesystemsizeandmaximalalloweddelay.

Table6.1:Summaryofcontributionsofthisthesis.

143

additionally taken into account, such as propagation delays or the availability
and performance of wavelength converters at the nodes. SMART is an elegant
and powerful technique, and thus it can become a basic building block of
more sophisticated solutions that address these real-life constraints. Indeed,
SMART became a starting point for the works in [116–118].

Similarly, our interactive ALM framework, although quite general, does
not cover all possible proactive failure protection techniques. One of the
potentially attractive alternatives to adding new links and using FEC is
network coding.

Another interesting problem, yet not addressed in this thesis, might be
the study of vulnerability of the entire Internet. Indeed, it seems reasonable
to view the Internet as a global mesh of application links mapped onto the
IP layer, that in turn, is mapped onto the global network of optical fibers.
This may lead us to very interesting and possibly scary conclusions. For
example, there are only a few tens of submarine fibers spanning Europe and
North America, with even fewer landing points (physical locations where
cables enter the ocean). Consequently, relatively few fiber cuts (attack) may
disconnect the two continents, causing a great damage to the global Internet.

General results

At a more general level, this thesis can be an inspiration for any other field
where the two-layer issues arise. For example, our theoretical results, such
as the three core theorems of Chapter 4, are relatively general and can be
freely applied elsewhere.

This is a good motivation for additional theoretical studies to further
improve our understanding of two-layer systems. Indeed, in Chapter 3 we
studied experimentally the robustness of a system where the topologies at
the two layers are generated with some well-known generators (see ‘ER on
ER’ and ‘BA on ER’ data sets). It would be very interesting to rigorously
bind the parameters of these topologies with the robustness of the resulting
system.

144 CHAPTER 6. CONCLUSION

Appendices

145

Appendix A

Exploiting Path Propagation
Time Differences in Multipath
Transmission with FEC

“And Now for Something Completely Different”
The best of Monty Python’s Flying Circus, 1971

In this chapter we present one of (numerous) side products of this the-
sis. It is a set of results related to ‘Multipath Transmission with FEC’.
Although our work on this topic was originally inspired by the Overlay/IP
design problem, it does not fall in the ‘two-layer’ core of this thesis, and is
therefore presented in the Appendix.

A.1 Introduction

We consider a transmission of a delay-sensitive data stream from a single
source to a single destination. How to improve the reliability of this trans-
mission? Traditional ARQ (Automatic Repeat-reQuest) mechanisms often
cannot be used, as they impose additional and usually unacceptable de-
lays of at least one RTT (Round Trip Time). A more applicable technique
is to introduce some type of redundancy, e.g., Forward Error Correction
(FEC). Clearly, due to the delay constraints, a FEC block must be of lim-
ited length [119]. This, in turn, makes it inefficient against bursty packet
losses [119] - the predominant type of losses in today’s Internet [108]. A
good solution to this problem is to assign the FEC packets to multiple paths
spanning the source and the destination [99,100,120–125]. An illustration of
a multipath FEC system is presented in Fig. A.1. Theoretically, the multiple

147

148 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

P1, t1

P
2 , t

2

P3,
t3

source s

relay node

destination d

n1

n2

n
3

n FEC packets

k data packetsn−k redundancy packets

FEC(n, k)

Figure A.1: Illustration of a multipath system with R = 3 paths P1, P2, P3 be-
tween source s and destination d. t1, t2, t3 are the corresponding path propagation
times. k data packets are complimented with n − k redundancy packets, and the
resulting n FEC packets are split onto the three paths using the rates n1, n2 and
n3, respectively.

paths could be constructed with the help of source routing, but this tech-
nique is not yet fully available in the Internet. A more practical alternative
is the usage of overlay relay nodes that forward the traffic (as in Fig. A.1).
If the resulting paths are statistically independent, which is especially likely
for multi-homed hosts, then the loss bursts get averaged out and FEC re-
gains effectiveness. Similar performance benefits due to multipath were also
observed in the context of Multiple Description Coding [98].

When designing a system that splits a FEC block across multiple paths,
we have to (1) select some paths out of all candidates, (2) assign the trans-
mission rates to these paths, and (3) schedule the packets. The previous
studies proposed techniques to solve (1-3) as a function of the statistical loss
properties of the paths [99,100,121].

However, there are other important parameters affecting the performance
of the multipath FEC system. In particular, in this chapter we show that the
propagation times on the available multiple paths often significantly differ.
These differences, in turn, can be exploited to improve the system reliability.
Below, we explain and motivate our approach on concrete examples and
measurements.

A.1.1 Propagation times on direct and indirect paths
may differ significantly

In Fig. A.2 we study the path propagation time differences in the real-life
Internet. The measurements were collected by running all-to-all traceroutes
between 326 nodes in DIMES [32]. These nodes are usually private hosts
located at different sites around the world. (We obtained similar results for

A.1. INTRODUCTION 149

0 50 100 150
0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

p
df

p
df

t2 − t1 max(t2, t3)−t1

R = 2 paths R = 3 paths

C=1 C=5 C=50
R = 2 t2 − t1 [ms] 43 37 18
R = 3 max(t2, t3)−t1 N/A 69 39

Figure A.2: The difference between propagation times on the direct path P1 and
the best indirect paths P2 and P3. We present the results for R = 2 (two paths: one
direct and one indirect) and R = 3 (the direct path and two indirect paths). The
histograms (top) show the distribution of propagation time differences for C = 5
available candidate indirect paths. The table (bottom) shows the medians of these
distributions for C = 1, 5 and 50. The averages (not shown) are systematically
higher than the medians.

measurements on PlanetLab [126].)

For each source-destination pair we construct a set of R paths. We always
include the direct path P1 with propagation time t1. Each of the remaining
R − 1 paths is indirect, i.e., it uses some overlay relay node to forward the
traffic. We choose uniformly at random a number C of candidate relay nodes
among the remaining 324 DIMES nodes. This results in C candidate indirect
paths. From them we select the R − 1 indirect paths following the intuitive
selection procedure given in [99]. For R = 2 paths we choose the indirect
candidate path that is the most disjoint (in terms of IP links) with the direct
path P1. Clearly, this minimizes the loss correlation between P1 and P2. If
there are more paths that achieve the minimal IP overlap, then the one with
the smallest propagation time is kept. For R > 2 we proceed similarly, except
that now we consider the aggregated values of IP overlap and propagation
time, i.e., summed over all R(R− 1)/2 possible path pairs.

According to Fig. A.2, for R = 2, the best indirect path P2 has propaga-
tion times larger by typically 0 . . . 75ms than the direct path P1 (see t2−t1
in top-left histogram). This difference gets larger for a smaller number of
candidates C (table at the bottom).

Moreover, the path propagation time differences grow significantly with
the number of paths R used in the system. As shown in Fig. A.2, already
for R=3 the medians of the distributions are roughly doubled compared to

150 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

START

P1
P2

A) delays

B) no FEC

C) Simm
(6,0)

D) Simm
(3,3)

E) Sspr
(3,3)

F) Sspr
(4,2)

π∗
B = 1.00%

π∗
B = 0.553%

π∗
B = 0.148%

(state of the art)

π∗
B = 0.113%

π∗
B = 0.016%

(proposed solution)

∆t = 50ms

∆t = 50ms

Figure A.3: Illustration of various packet schedules and their performance mea-
sured in the effective loss rate π∗

B . We use two independent paths P1 and P2

with identical failure distributions. The data packets are generated at the source
every T = 5ms and coded with FEC(6,4). (A) The path propagation time t2
on path P2 is ∆t = t2− t1 = 50ms larger than the path propagation time t1 on
path P1. (B) No FEC, single path, the packets are sent at times 0, 5, 10, 15ms.
(C) FEC on P1 only, packets are sent as soon as they are generated, i.e., we use
the ‘Immediate’ schedule Simm. (D) Packets alternate between P1 and P2 with
equal rates rates n1 =n2 =3, as in [99,100]. The total FEC block delay resulting
from this scheme serves as a maximal FEC block delay in the following scenarios.
(E) Packets alternate between P1 and P2 with equal rates, but the three packets
sent on P1 are maximally spread. (F) Packets are split between P1 and P2 with
optimal rates n1 = 4, n2 = 2, maximally spread.

R=2, and typically P1 is faster than the slower of the two indirect paths by
max(t2, t3)−t1 ≃ 0 . . . 150ms.

We conclude that in the real-life Internet the propagation time differences
on multiple paths between a source-destination pair are significant, typically
reaching several tens of milliseconds.

A.1. INTRODUCTION 151

A.1.2 The differences in propagation times can be ex-

ploited by a multipath FEC system

We propose to exploit these path propagation time differences when designing
a multipath FEC system. Our solution is easy to implement and can bring
significant performance gains. Let us take a concrete example described
in Fig. A.3. Assume that there exist two paths between the source and the
destination, the direct path P1, and an indirect path P2 created by employing
another peer that works as a relay. Let t1 = 100ms and t2 = 150ms be the
propagation delays on P1 and P2, respectively. So the path propagation
time difference is ∆t = 50ms (Fig. A.3A). Let the two paths be lossy with
the same loss rate 1% and the same average loss burst length of 10ms, but
independent. The data packets are generated at the source every T = 5ms. If
no form of packet protection is used, then the data packet loss rate observed
at the destination, or the effective loss rate, is π∗

B = 1% (B). Assume now
that we use FEC(6,4) to protect the packets. If we send all packets on P1

with inter-packet times T , then the effective loss rate after FEC decoding is
π∗

B =0.553% (C). Following [99,100], we now split the packets equally between
P1 and P2, which decreases π∗

B to 0.148% (D). This solution represents the
state of the art in minimizing π∗

B. Note that now the last FEC packet on
path P2 reaches the destination tFEC = t2+4 · T =170 milliseconds after the
generation of the first FEC packet at source. In other words, in this case the
application using multipath FEC must accept the (maximal) delay equal to
tFEC. However, we can achieve far better results still respecting this delay
constraint. For instance, we can appropriately increase the packet-spacing
on P1 and achieve π∗

B = 0.113% (E). Finally, we get even more significant
improvement by sending 4 packets on P1 and 2 packets P2, i.e., by applying
unequal rates on the paths (F). This results in π∗

B =0.016%, which is almost
one order of magnitude smaller than (D).

In other words, we exploit the differences in path propagation times by
spreading the packets in time, such that the maximal allowed delay is re-
spected. The gain over the state of the art measured in the effective loss rate
π∗

B may be very significant (here 0.016% vs 0.148%, i.e., almost ten-fold).
Moreover, some results may seem counterintuitive. For instance, it may be
better to use only one path than to use two (un-spaced) paths. It also turns
out that even if the loss distributions on the paths are the same, the optimal
rates assigned to these paths are not necessarily equal.

152 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

A.1.3 Organization of this chapter

The remainder of this chapter is organized as follows. In Section A.2 we
fully specify our model, which allows us to precisely state the problem we
are solving. Next, in Section A.3 we derive exact analytical expressions for
the effective loss rate π∗

B under multipath FEC and an arbitrary schedule. In
Section A.4 we describe the ‘Immediate’ schedule representing the state of
the art, and propose a ‘Spread’ schedule that exploits the differences in path
propagation times. In Section A.5 we evaluate our solution analytically, by
simulations and by trace-driven simulations fed with real-life Internet traces.
In Section A.6 we discuss the related work. Finally we conclude the chapter.

A.2 Model and problem statement

The packets, called data packets, are generated at source s, with constant
inter-arrival time T . There exist R paths between sender s and destination
d, with the propagation delays t1, . . . , tR, respectively.

A.2.1 Path losses

The paths are assumed to be independent. We model bursty losses on each
path by the popular two-state Gilbert model. Its basic version is a Dis-
crete Time Markov Chain (DTMC), and captures the loss correlations due
to queuing on bottleneck links, when the path is sampled at some constant
rate (e.g., 1/T). However, as we vary the sampling rates, DTMC is not suf-
ficient. Indeed, on the same path we experience much higher loss burstiness
under the packet interval of T = 5ms than of T = 100ms [119]. For this
reason we use the continuous-time version of the Gilbert model [96,121] that
naturally accommodates different sampling rates. It is a two-state stationary
Continuous Time Markov Chain (CTMC) {Xr(t)}. The state Xr(t) at time
t assumes one of the two values: G (‘good’) or B (‘bad’). If a packet is sent
at time t and Xr(t) = G then the packet is transmitted; if Xr(t) = B then
the packet is lost.

We denote by π
(r)
G and π

(r)
B the stationary probabilities that the rth path

is good or bad, respectively. Similarly, let µ
(r)
G and µ

(r)
B be the transition

rates from G to B and from B to G, respectively. In this chapter we use two
meaningful, system-dependent parameters to specify the CTMC packet loss
model:

• the average loss rate π
(r)
B , and

• the average loss burst length (in seconds) 1/µ
(r)
B .

A.2. MODEL AND PROBLEM STATEMENT 153

P, E probability, expected value
s source node
d destination node
T (constant) interval between two consecutive data packets at source

s
R number of independent paths between source s and destination d
Pr rth path
tr propagation delay on Pr

π
(r)
B , 1/µ

(r)
B the average loss rate and loss burst length on path Pr

n, k, (n−k) the number of FEC, data, and redundancy packets in a FEC block,
respectively

nr number of FEC packets assigned to Pr (rate of path Pr)
kr number of data packets assigned to path Pr

Tr (constant) spacing of the nr packets on path Pr

F, D number of lost FEC and data packets before FEC recovery
π∗

B effective loss rate, i.e., the expected fraction of lost data packets at
the destination after the FEC recovery

tFEC FEC block transmission time, i.e., the time between the generation
of the first FEC packet at source s and the scheduled delivery of
the latest FEC packet at destination d

S=(T ,R) packet scheduling: The ith packet in a FEC block is sent at time
T (i) over path R(i)

Table A.1: Basic notation used in this chapter.

All other parameters can be easily derived from these two, because

π
(r)
G =

µ
(r)
B

µ
(r)
G + µ

(r)
B

and π
(r)
B =

µ
(r)
G

µ
(r)
G + µ

(r)
B

. (A.1)

A.2.2 Multipath FEC

We use a FEC(n, k) scheme to protect the data packets against losses (see
Fig. A.1). This means that k data packets (not necessarily consecutive) are
encoded as one FEC block of n packets, called FEC packets. In particular,
as in [100,121,122,127,128], we consider a systematic1 FEC, i.e., a scheme
where the first k packets are the k data packets (unchanged). The remaining
n−k packets, called redundancy packets, carry the redundancy information.
The destination uses the redundancy packets to recover some of the lost data
packets as follows. Let F be the number of lost FEC packets and let D be the
number of lost data packets of a FEC block, both before the FEC recovery

1The non-systematic FEC is easier to handle, but also less efficient. We show its
analysis in [11].

154 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

4

56

4 3 2 1

2

13

T
(1
)=

0

T
(2
)=

T
T
(3
)

T
(4
)

T
(5
)

T
(6
)

T
(6
)

T
Data packets
generated at the
source

P1

P2

Schedule S = (T ,R),
R = (2, 1, 1, 2, 1, 1)

Time FEC(6,4)
n1 =4, k1 =2
n2 =2, k2 =2

Figure A.4: An illustration of a schedule S = (T ,R) on R=2 paths with FEC(6,4).
Four data packets numbered 1-4 are generated at the source at equal intervals T ;
the first one specifies time t = 0. The n−k = 2 redundancy packets are numbered
5 and 6. According to the schedule S = (T ,R), the ith FEC packet is sent at time
T (i) ≥ 0 over path R(i).

(note that D contributes to F). If F ≤ n − k then all the n FEC packets
and hence all the k data packets are recovered. In contrast, if F > n − k,
then no FEC recovery is possible and D data packets are lost.

A.2.3 Packet scheduling

Finally, the packets are sent according to some schedule that defines when
and on which path each FEC packet is sent. More precisely, we denote by
S = (T ,R) the schedule of packets in a FEC block, where T and R are
vectors of length n. The ith FEC packet is sent at time T (i) over path
R(i), as shown in Fig. A.4. The time is counted from the generation (at
the source) of the first data packet of the FEC block. Denote by tFEC the
FEC block transmission time, i.e., the time between the generation of the
first FEC packet at source s and the scheduled delivery of the latest FEC
packet at destination d. Given a schedule S, tFEC can be easily computed as

tFEC = max
1≤i≤n

(
T (i) + tR(i)

)
. (A.2)

For a given schedule, tFEC can be interpreted as the total delay imposed by
the multipath FEC system on the delay-sensitive application using it. Indeed,
if the first packet of a FEC block is lost and needs to be reconstructed by
FEC, then we have to wait up to tFEC until the destination is reached by
the other FEC packets necessary for the reconstruction of the lost packet. In
practice, however, a constraint is likely to come from the delay-constrained
application itself, as the maximal acceptable delay tFEC. In this case our goal

A.3. EXACT ANALYTICAL DERIVATION OF LOSS RATE π∗
B 155

is to design a good schedule respecting this constraint, which is the approach
used in this chapter.

The schedule also implicitly defines the rate nr of path Pr, i.e., the number
of FEC packets sent on Pr. Similarly, let kr be the number of data packets
among the nr packets sent on Pr. Clearly,

∑
r nr = n and

∑
r kr = k.

A.2.4 Effective loss rate π∗B and problem statement

Our ultimate goal is to send a stream of data packets over (possibly multiple)
lossy channels in a way that minimizes the losses observed at the destination,
given a maximal value for tFEC. Therefore, we adopt a natural performance
metric called effective loss rate π∗

B. It is defined as the expected fraction
of lost data packets observed at the destination d after an attempt of FEC
decoding. Now the problem can be stated as follows:

Given the path loss properties (π
(r)
B , 1/µ

(r)
B and tr for every path Pr), the

FEC parameters (n and k) and maximal FEC block transmission time tFEC,
find the schedule S that minimizes the effective loss rate π∗

B.
We approach this problem in two steps. First, in Section A.3 we derive an

exact analytical formula for the effective loss rate π∗
B for a given schedule S.

Second, in Section A.4 we introduce a schedule that exploits the differences
in path propagation times and outperforms the schedules proposed to date.

A.3 Exact analytical derivation of the effec-

tive loss rate π∗B

In order to design a good schedule we must be able to evaluate it. In this
section we derive the exact analytical expression for the effective loss rate π∗

B

for a given schedule S. We consider two cases. First, we derive π∗
B for an

arbitrary schedule S. The resulting formula is simple but computationally
expensive and untractable for larger sizes n of the FEC block. Next, we derive
π∗

B assuming that on each path separately the packets are evenly spaced. This
constraint is compatible with the schedule we propose later and results in a
computationally lighter formula for π∗

B.

A.3.1 The effective loss rate π∗B for an arbitrary sched-
ule

Let c be a n-tuple representing a particular failure configuration; ci, 1≤ i≤n,
takes the value G (resp., B) if ith FEC packet is transmitted (resp., lost). By

156 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

considering all possible failure configurations c we can compute the effective
loss rate π∗

B for a given schedule S as follows:

π∗
B =

1

k

∑

all c

D(c) · P(c), (A.3)

where D(c) is the number of lost data packets (after the FEC recovery) for
a given failure configuration c. For a systematic FEC(n, k) we have

D(c) =

{
0 if

∑n
i=1 1{ci=B} ≤ n− k∑k

i=1 1{ci=B} otherwise.

In order to compute the probability P(c) of a failure configuration c, we con-
sider the R paths separately, as follows. Denote by T (r) the vector of length
nr with departure times of packets scheduled by S on path Pr. Similarly, let
c(r) be an nr-element vector with the failure configuration on path Pr defined
by c. As the R paths are independent, the probability P(c) is

P(c) =
R∏

r=1

P(c(r)), (A.4)

where P(c(r)) is the probability of a failure configuration c(r) on path Pr. The
derivation of P(c(r)) for the Continuous Time Markov Chain loss model is

straightforward. Indeed, denote by p
(r)
i,j (τ) the probability of transition from

state i to state j on path Pr in time τ , i.e.,

p
(r)
i,j (τ) = P[Xr(τ) = j|Xr(0) = i].

From classical Markov Chain analysis we have:

p
(r)
G,G(τ) = π

(r)
G + π

(r)
B · α

p
(r)
G,B(τ) = π

(r)
B − π

(r)
B · α

p
(r)
B,G(τ) = π

(r)
G − π

(r)
G · α

p
(r)
B,B(τ) = π

(r)
B + π

(r)
G · α

(A.5)

where α = exp
(
− (µ

(r)
G + µ

(r)
B)τ

)
. Now P(c(r)) can be easily computed. For

example, for c(r) =GBB we have

P(c(r) =GBB) = π
(r)
G · p

(r)
G,B(τ1) · p

(r)
B,B(τ2),

where τi is the time interval between the ith and (i+1)th FEC packet sched-

uled by S on path Pr, i.e, τi = T
(r)

i+1 − T
(r)

i . More generally,

P(c(r)) = π
(r)

c
(r)
1

nr−1∏

i=1

p
(r)

c
(r)
i ,c

(r)
i+1

(T
(r)

i+1 − T
(r)

i). (A.6)

A.3. EXACT ANALYTICAL DERIVATION OF LOSS RATE π∗
B 157

8 10 12 14 16 18 20
100

101

102

103

ti
m

e
ra

ti
o

n - size of a FEC block

Figure A.5: The time complexity of the effective loss rate π∗
B under an arbitrary

schedule (A.3.1) vs. the even-spaced schedule (A.3.2): time ratio is the runtime
of Eq. (A.7) divided by the runtime of Eq. (A.11). Here we use FEC(n, 0.7n) on
two identical paths.

Finally, we plug (A.6) and (A.4) to (A.3), to obtain

π∗
B =

1

k

∑

all c

D(c)

R∏

r=1

π
(r)

c
(r)
1

nr−1∏

i=1

p
(r)

c
(r)
i ,c

(r)
i+1

(T
(r)

i+1 − T
(r)

i). (A.7)

A.3.2 The effective loss rate π∗B for even spacing on
paths

Equation (A.7) allows us to compute the effective loss rate π∗
B for any sched-

ule S. However, evaluating (A.7) is computationally expensive because the
main sum is over all 2n failure configurations. Thus it can be applied to
relatively small n only. Fortunately, we can significantly reduce the compu-
tation complexity by assuming that on each path Pr separately the packets
are evenly spaced, i.e., for all 1≤ i≤ nr−1 the intervals T

(r)
i+1 − T

(r)
i are the

same and equal to a constant that we denote by Tr. Indeed, this constraint
leads us to a formulation of π∗

B (below) that may take orders of magnitude
less time to solve than (A.7), as shown in Fig. A.5.

In order to compute π∗
B under the even-spacing case, we look closer at

the packets lost on every path separately. Denote by Fr and Dr the number
of FEC and data packets lost on path Pr, respectively (both before FEC
recovery). Now we can rewrite the total number of lost FEC packets as
F =

∑
r Fr and the total number of lost data packets as D =

∑
r Dr. This

decomposition leads us to the following derivation of π∗
B:

158 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

π∗
B =

1

k

n∑

j=n−k+1

P(F = j) · E[D|F = j] =

=
1

k

n∑

j=n−k+1

∑

0 ≤ j1, .., jR ≤ j
j1 + .. + jR = j

P(F1=j1, .., FR=jR) · E[D|F1=j1, .., FR=jR] =

=
1

k

n∑

j=n−k+1

∑

0 ≤ j1, .., jR ≤ j
j1 + .. + jR = j

(
R∏

r=1

P(Fr = jr) ·
R∑

r=1

E[Dr|Fr = jr]

)
(A.8)

According to Equation (A.8), in order to evaluate π∗
B, for every path Pr

separately we need to calculate two components: (i) the probability P(Fr =jr)
that jr FEC packets are lost, and (ii) the expected number E[Dr|Fr = jr] of
lost data packets given that jr FEC packets were lost. We achieve this by
applying an approach similar to the one used in [127] in the context of a
single path FEC, as follows.

Let us first derive P(Fr = jr). We consider a path Pr and a set of all
nr FEC packets sent on Pr with equal packet interval Tr. Denote by [a

b
]

the event that any b out of a consecutive packets are lost.2 We allow for
concatenation of events, e.g., G[a

b
] (resp., [a

b
]B) means that any b out of

a block of a consecutive packets are lost and that this block is preceded
by a good packet (resp., followed by a bad packet). We can now compute
P(Fr = jr) by conditioning on the state of the first packet that conforms the
packet loss stationary distribution:

P(Fr = jr) = P(G [nr−1
jr

]) + P(B [nr−1
jr−1

]) =

= π
(r)
G · P([nr−1

jr
] | G) + π

(r)
B · P([nr−1

jr−1
] | B), (A.9)

where P([a
b
] |q), q ∈ {G, B}, is the probability that any b out of a consecutive

packets are lost given that this block is preceded by a packet in state q.
Although no general closed form of P([a

b
] |q) is known, it can be calculated by

the recursive approach first proposed in [129] and extended e.g. in [121,127].
Indeed,

P([a
b
] |B) = R(b + 1, a + 1)

P([a
b
] |G) = S(b + 1, b− a + 1),

2The form of [a
b
] is inspired by the similarity with the binomial coefficient.

A.3. EXACT ANALYTICAL DERIVATION OF LOSS RATE π∗
B 159

where functions R(m, n) and S(m, n) can be calculated as follows [127]:

R(m, n) =

{
P (n) for m=1 and n≥1∑n−m+1

i=1 p(i)R(m−1, n−i) for 2 ≤ m ≤ n

S(m, n) =

{
Q(n) for m=1 and n≥1∑n−m+1

i=1 q(i)S(m−1, n−i) for 2 ≤ m ≤ n

where

p(i) =

{
1− q if i = 1
q(1− p)i−2p otherwise

P (i) =

{
1 if i = 1
q(1− p)i−2 otherwise

q(i) =

{
1− p if i = 1
p(1− q)i−2q otherwise

Q(i) =

{
1 if i = 1
p(1− q)i−2 otherwise

p = p
(r)
G,B(Tr) - given by (A.5)

q = p
(r)
B,G(Tr) - given by (A.5).

Let us now derive the second building block of Equation (A.8), i.e.,
E[Dr|Fr = jr]. To achieve this, we first calculate P(Dr = i, Fr = jr). Let
us consider the kr data packets and the nr−kr redundancy packets sepa-
rately, and additionally condition on the state of the last data packet as
follows.

P(Dr = i, Fr = jr) =

= P([kr−1
i

]G) · P([nr−kr

jr−i
] |G) + P([kr−1

i−1
] B) · P([nr−kr

jr−i
] |B) =

= P(G [kr−1
i

]) · P([nr−kr

jr−i
] |G) + P(B [kr−1

i−1
]) · P([nr−kr

jr−i
] |B) =

= π
(r)
G P([kr−1

i
] |G)P([nr−kr

jr−i
] |G) + π

(r)
B P([kr−1

i−1
] |B)P([nr−kr

jr−i
] |B).

The first equality uses the Markov property of the loss model:

P(Dr = i, Fr = jr | last data packet is q) =

= P(Dr = i | last data packet is q) · P(Fr =jr | last data packet is q),

where q ∈ {G, B}. Now it is easy to calculate E[Dr|Fr = jr], because

E[Dr|Fr = jr] =

kr∑

i=0

i ·
P(Dr = i, Fr = jr)

P(Fr = jr)
. (A.10)

160 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

Ẽ
[D

r
|F

r
=

j r
]

E
[D

r
|F

r
=

j r
](

a
p
p
ro

x
.

ex
a
ct

)

j

Figure A.6: Approximations of E[Dr|Fr = jr] normalized by the correct value

given by (A.10). Here nr = 10, kr = 8, π
(r)
B = 0.01 and 1/µ

(r)
B = 2.

We plug (A.9) and (A.10) into (A.8) and obtain a complete formula for the
effective loss rate π∗

B:

π∗
B =

1

k

n∑

j=n−k+1

∑

0 ≤ j1, .., jR ≤ j

j1 + .. + jR = j

(
R∏

r=1

(
π

(r)
G · P([nr−1

jr
] |G) + π

(r)
B · P([nr−1

jr−1] |B)
))

·

·

(
R∑

r=1

kr∑

i=0

i ·
π

(r)
G · P([kr−1

i
] |G) · P([nr−kr

jr−i
] |G) + π

(r)
B · P([kr−1

i−1] |B) · P([nr−kr

jr−i
] |B)

π
(r)
G · P([nr−1

jr
] |G) + π

(r)
B · P([nr−1

jr−1] |B)

)
,

(A.11)

To the best of our knowledge, Equation (A.11) is the first exact solu-
tion of this model. Indeed, all previous works used some approximations of
E[Dr|Fr = jr]. In [121] the authors approximate E[Dr|Fr = jr] by assuming
that any configuration of j losses among the n FEC packets is equally likely;
we call this approach ‘Golubchik’. In [122,128] the authors use an intuitive
linear formula, i.e., E(Dr|Fr = jr) = kr

nr
jr. Although not mentioned in the

papers this is only an approximation that is exact only when kr, nr → ∞;
we refer to it as ‘Proportional’. We illustrate the differences between these
approximations and the real values in Fig. A.6.

A.4 The design of the schedule S

In the previous section we derived an exact analytical formula for the effective
loss rate π∗

B under a given schedule S. Here we focus on the design of a good
schedule that results in small π∗

B.

A.4. THE DESIGN OF THE SCHEDULE S 161

Not all schedules are applicable in practice. Indeed, both (i) the maximal
allowed FEC block transmission time tFEC and (ii) the packet interval T at
the source impose important scheduling constraints. We say that a schedule
is feasible if all the three following conditions are satisfied:

C1 T (i) ≥ (i − 1) · T for 1≤ i≤ k, i.e., no data packet is sent before it is
generated at the source.

C2 T (i) ≥ (k−1) ·T for k<i≤n, i.e., no redundancy packet is sent before
all data packets have been generated (we need to collect all data packets in
order to create the redundancy packets).

C3 T (i) + tR(i) ≤ tFEC for 1≤ i≤n, i.e., all FEC packets should arrive at
the destination before the deadline.

We assume that the path rates n1, . . . , nR are fixed. There are usually a
variety of feasible schedules. Below we discuss two classes of schedules we
use in this chapter. The first one, called Immediate, reflects the state of the
art, whereas the second one, Spread, is our proposal.

A.4.1 ‘Immediate’ packet scheduling Simm - state of the
art

We denote by Immediate the schedule Simm = (T imm,Rimm) that represents
the approach used in [99,100,121–123,125]. As the name suggests, Immedi-
ate sends the data packets as soon as they are generated, i.e., every time
interval T . The redundancy packets use the same spacing T . So in general

T imm(i) = (i− 1) · T for 1 ≤ i ≤ n. (A.12)

This specifies when the FEC packets are sent, but not on which path. A
good and commonly used guideline for Rimm is to spread the packets on
each path separately with (roughly) even spacing [100]. When the rates are
equal, i.e., n1 =n2 = . . .=nR, then this boils down to a simple round-robin
schedule applied in [121–123,125]. In contrast, when the rates differ, a more
elaborate approach should be used. For this purpose we adopt the credit-
based technique proposed in [100], as follows. Each path is associated with
a credit initially equal to 0. Before each FEC packet transmission the credit
of every path Pr is increased by nr/n. Next, the path with the largest credit
is selected to transmit this packet; the credit of this path is decreased by 1.
This scheme is iterated until all n FEC packets are sent.

The Immediate schedule can be interpreted as the following function:

Simm = Immediate(n1 . . . nR, T)

162 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

Two examples of Immediate schedules Simm are given in Fig. A.3: (C) is
a single-path schedule, i.e., with n1 = 6 and n2 = 0, whereas in (D) we use
two paths and n1 = n2 = 3.

A.4.2 ‘Spread’ packet scheduling Sspr - our proposal

Under Immediate, all packets are sent as soon as they are generated, i.e., ac-
cording to (A.12). Instead, we propose to spread the packets evenly in all the
available time on each path. We call this schedule Spread Sspr = (T spr,Rspr).
Compared with Immediate, Spread additionally takes the path propagation
times t1 . . . tR and the maximal FEC block delay tspr

FEC as parameters, i.e.,

Sspr = Spread(n1 . . . nR, T, t1 . . . tR, tspr
FEC).

The design of Spread is not straightforward. Indeed, as the k data packets
are generated at the source with spacing T , the paths are inter-dependent,
which may easily lead to the violation of the constraint C1. For example,
if we schedule packet 1 on P1 at time T (1) = 0 (and k > 1), then no other
packet on any path can be scheduled before time t = T .

We guarantee the feasibility of Spread as follows. First, we order the paths
according to their rates, starting from the path with the highest rate. (When
two paths have the same rate, we take the one with a higher path propagation
time first.) We consider the paths one by one following this order. For each
path Pr we spread the packets evenly on time interval [t(r), tspr

FEC−tr], where
t(r) takes the smallest possible value that satisfies the feasibility condition.
(The value of t(r) usually grows with the number of paths processed.) We
iterate this algorithm until all paths have been scheduled.

We present two examples of Spread schedules Sspr in Fig. A.3. We use
tspr
FEC = 170ms and two different sets of rates: n1 = n2 = 3 in (E) and n1 = 4,

n2 =2 in (F).
Spread is very effective. Indeed, we can prove that

Theorem 11 The Spread schedule is optimal for the repetition code FEC(n, 1).

Proof Under FEC(n, 1) every data packet is replicated and sent in n
copies; the reception of at least one such copy leads to a success. As there is
only one data packet, all the redundancy packets (i.e., the duplicates of the
data packet) can be generated already at time t=0. This eliminates all the
time dependencies between the paths. Therefore, every path Pr separately
must maximize the probability of at least one successful transmission. It is
achieved by even spreading on the maximal allowed time interval [0, tspr

FEC−tr].
(The proof for the under repetition code on a single path can be found in [96].)
This, in turn, is exactly what Spread returns under FEC(n, 1). �

A.4. THE DESIGN OF THE SCHEDULE S 163

Spread builds on even packet spreading - a simple and widely accepted
guideline that is often thought of as leading to the optimal solution. In-
deed, its optimality was proven for some particular cases [96]. But, sur-
prisingly, this is not a general result. Consider for example FEC(4,3) on a

single path (i.e., R = (1, 1, 1, 1)) with loss rate π
(1)
B = 1% and average loss

burst length 1/µ
(1)
B = 5ms, and available time interval equal to 15ms. The

even spreading schedule S1 = ((0, 5, 10, 15),R) yields π∗
B = 0.53%. But the

optimal schedule (found with optimization tools of Mathematica [130]) is
S1 = ((0, 7.16, 12.51, 15),R) and yields π∗

B = 0.50%.

This means that Spread does not guarantee optimality in the general
FEC(n, k) case. However, we show later in simulations that it usually leads
to almost-optimal solutions and is thus an effective and practical rule of
thumb.

A.4.3 Comparison of Simm and Sspr: Optimal schedules
Simm

opt and Sspr
opt , and loss rate improvement γ.

It was shown in previous studies that Immediate multipath is better than a
single path communication. The main point we make here is that once we
allow for multipath, the Spread schedule Sspr that we propose in this chapter
is significantly better than the Immediate schedule Simm representing the
state of the art.

In order to demonstrate this, we compare the performance of Simm and
Sspr in terms of their effective loss rates. What rates n1 . . . nR and what
FEC block transmission time tFEC should we use to make this comparison
meaningful and fair? We should allow Immediate and Spread to optimize
their rates n1 . . . nR independently, given that they impose identical FEC
block transmission times timm

FEC = tspr
FEC. More precisely, we assume that the

FEC parameters n and k are fixed, and we proceed in two steps. First, we
optimize the rates n1 . . . nR of Immediate, such that the effective loss rate π∗

B

is minimized. It results in the optimal Immediate schedule Simm
opt . This, in

turn, specifies timm
FEC as shown in (A.2). In the second step, we set tspr

FEC = timm
FEC

and optimize the rates n1 . . . nR of Spread, resulting in the optimal Spread
schedule Sspr

opt .3

Finally, we define the relative effective loss rate improvement γ as the
relative gain in π∗

B due to the usage of optimal Spread instead of optimal

3Note that Simm
opt and Sspr

opt are optimal subject to their construction constraints pre-
sented in A.4.1 and A.4.2, respectively.

164 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

Immediate, i.e.,

γ =
π∗

B(Simm
opt)

π∗
B(Sspr

opt)
. (A.13)

The metric γ can be precisely evaluated by formulas (A.7) and (A.11). The
values of γ can be easily interpreted; for example, γ > 1 means that Spread
performs better than Immediate.

A.4.4 Capacity constraints

So far we have considered the case where every path Pr can be assigned
with any rate 0≤ nr ≤ n. In practice, however, Pr may have a relatively
limited capacity, which would impose a direct constraint on nr. Fortunately,
integrating these constraints in our model is straightforward. Indeed, it is
enough to respect them when computing the rates n1 . . . nR in Sspr

opt and Sspr
imm

in A.4.3.

A.5 Performance evaluation

In this section we evaluate our approach first in simulations and next on
real-life traces.

A.5.1 Simulation results

The goal of simulations is twofold. First, we verify the correctness of our ana-
lytical results. Second, we can test our idea in a fully controlled environment
and study the effect of various parameters on the results.

Default values of parameters

If not stated otherwise, in our simulations we use the following default values.
The data packets are generated at the source with interval T = 5ms. Next
they are encoded by systematic FEC(10, 8) and sent over R independent
paths. For the sake of simplicity we speak mainly of systems with R =
2 paths: P1 and P2. It allows us to describe the path propagation time
differences by a single parameter ∆t = t2−t1 that takes the default value
∆t = 100ms. Finally, the paths P1 and P2 have the same average failure rate
π1 = 0.01 and the average loss burst length equal to 1/µ1 = 10ms.

A.5. PERFORMANCE EVALUATION 165

0 25 50 75 100 125 150

10-4

10-3

10-2

5 6 7 8 9

0.001

0.002

E
ff

ec
ti

ve
lo

ss
ra

te
π
∗ B

π
∗ B

n1 - rate on P1

∆t = 50ms

Propagation time difference ∆t

Single path Immediate Simm
(10,0)

Immediate optimal Simm
opt =Simm

(5,5) (state of the art)

Spread optimal S spr
opt

Spread Sspr
(5,5)

simulation
analytical

optimal

Figure A.7: The effective loss rate π∗
B as a function of path propagation time dif-

ference ∆t. We use FEC(10, 8) on two independent paths, P1 and P2, with data
packet spacing T = 5 at the source. The losses on P1 and P2 are modeled by
continuous time Gilbert model with the same average failure rate πB = 0.01 and
the average burst length equal 1/µB = 10ms. Four schedules are used: • Simm

(10,0) -

all packets are sent on a single path P1 with interval T , • Simm
(5,5) - Immediate with

optimal rates n1 = n2 = 5, • Sspr
(5,5) - Spread with n1 = n2 = 5, • Sspr

opt - Spread
with the rates n1, n2 chosen optimally based on the value of ∆t. Additionally,
the dashed curve shows the effective loss rate of the optimal schedule, where pack-
ets are not restricted to even spacing on each path, as described in Section A.4.
The optimal schedule was found with numerical optimization tools of Mathemat-
ica [130]. Inset: π∗

B as a function of rate n1 on path P1 for ∆t = 50ms under
Spread. In both figures the plain lines are the theoretical values according to
formula (A.11), whereas the circles are the results obtained in a simulation of the
model. The size of confidence intervals (not shown) is comparable with the size of
the circles.

The effective loss rate π∗
B as a function of ∆t

In Fig. A.7 we plot the effective loss rate π∗
B as a function of ∆t for four

different schedules. Our first observation is that the results obtained in a
simulation of the model (circles) fit precisely the analytical curves (plain
lines).

Next, we compare the performance of various schedules. As the loss
properties of the two paths are identical, the previous techniques described

166 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

in [99,100,121] split the FEC packets equally between P1 and P2. This results
in the optimal Immediate schedule Simm

opt = Simm
(5,5) , i.e., with n1 = n2 = 5. As

this schedule uses multipath transmission, it is not surprising that Simm
opt

significantly outperforms the single path Immediate schedule Simm
(10,0). Note

also that, by construction, ∆t does not affect the performance of any of
them.

In contrast, in Spread Sspr
(5,5) we use the same rates as in Simm

opt , but we

spread the packets uniformly within the time budget timm
FEC set by Simm

(5,5) (sim-

ilar schedule is shown in Fig. A.3E). It results in a further decrease of the
effective loss rate π∗

B. This difference moderately grows with ∆t. How-
ever, for larger ∆t the rates (5, 5) become suboptimal under Spread. For
instance, in the inset in Fig. A.7 we show the performance of Spread under
various rate configurations (n1, n−n1); the minimum is reached for (7, 3).
As descried in A.4.3, allowing for this rate optimization leads to the optimal
Spread schedule Sspr

opt . Its advantage over Simm
(5,5) grows roughly exponentially

with ∆t.

Finally, we observe that the performance of the optimal Spread schedule
Sspr

opt is very close to the global optimum (dashed curve) where packets are
not necessarily evenly-spaced, as described in Section A.4. This confirms the
usefulness of the even-spread guideline that we follow in Spread.

Loss rate improvement γ as a function of various parameters

Clearly, there are many parameters that affect the performance of the sched-
ules. We study the effect of some of them on the relative loss rate improve-
ment γ in Fig. A.8.

First, plot (A) confirms that the advantage of Spread over Immediate
grows with the path propagation time difference ∆t.

Second, with growing packet interval T at the source, the fixed ∆t be-
comes a smaller fraction of the entire FEC block transmission time tFEC.
As a consequence, there is relatively less to exploit and γ drops with T , see
plot (B). A similar phenomenon can be observed in plot (C), where tFEC

grows due to an increase of the number n of FEC packets.

Finally, in Fig. A.8D we vary the loss rate π
(2)
B of path P2. The difference

between path loss rates is a crucial parameter affecting the performance gain
of Immediate multipath over the single path transmission. Indeed, if out of
two paths one is very lossy and the other one is very good, then the optimal
Immediate multipath schedule Simm

opt uses mainly (or only) the better path,
which substantially limits the gain of multipath [99,123]. This is illustrated
in plot (D) by the dashed curve; the ratio π∗

B(Simm
(10,0))/π

∗
B(Simm

opt) is the largest

A.5. PERFORMANCE EVALUATION 167

(A) (B) (C) (D)

Im
p
ro

ve
m

en
t

γ

Im
p
ro

ve
m

en
t

γ

Im
p
ro

ve
m

en
t

γ

γ

∆t T π
(2)
B

π
(1)
B =0.01n

π∗
B (S imm

(10,0))/π∗
B (S imm

opt)

Figure A.8: Relative loss rate improvement γ due to usage of Spread instead of
Immediate as a function of four parameters: (A) path propagation time difference
∆t, (B) packet generation interval T at the source, (C) the size n of a FEC

block, (D) loss rate π
(2)
B of path P2. We consider a system with R = 2 paths

and the following default parameters: FEC(10,8), ∆t = 100ms, T = 5ms, π
(r)
B =

1%, 1/µ
(r)
B = 10ms, k = n − 2. All results shown here are analytical. The

irregular shapes of the curves in this and other figures are expected, because the
computation of γ involves the rates optimization (see A.4.3). For instance, in figure
(D), going from left to right, the optimal Immediate and Spread rates (n1, n2)
change gradually (and separately) from (5, 5) to (10, 0); every such rate transition
may introduce irregularities in the shape of the curves.

when the paths have identical loss properties, and quickly diminishes with
growing difference between π

(1)
B and π

(2)
B .

We could expect a similar diminishing effect for the advantage γ =
π∗

B(Simm
opt)/π∗

B(Sspr
opt) of Spread over Immediate. Surprisingly, this is not the

case; γ remains relatively stable (3 < γ < 6) for a wide range of values of

π
(2)
B . For π

(2)
B ≈ 0.25 the path P2 becomes too lossy, and both Immediate

and Spread send all packets on P1 only and thus become equivalent.

Minimizing tFEC - decreasing delays and fighting jitter

So far we used Spread to minimize the effective loss rate π∗
B while keeping

the FEC block transmission time tspr
FEC not larger than that of Immediate

schedule timm
FEC . Let us now reverse the problem: Let us minimize the FEC

block transmission time tspr
FEC of Spread, while keeping its effective loss rate

not larger than that of Immediate, i.e., subject to π∗
B(Sspr

opt) ≤ π∗
B(Simm

opt).

We plot the results in Fig. A.9. The gain timm
FEC− tspr

FEC in FEC block
transmission time is significant and grows roughly linearly with ∆t, as timm

FEC−
tspr
FEC ≃ ∆t/2. The reduction of tFEC brings obvious advantages to delay-

constrained applications using the multipath FEC system. First, the effective
end-to-end delays get smaller which allows us to reduce the playout time at

168 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

tim
m

F
E

C
−

tsp
r

F
E

C
[m

s]

Propagation time difference ∆t [ms]

Figure A.9: The gain in FEC block transmission time tFEC by the usage of Spread

instead of Immediate. Parameters: FEC(10,8), π
(1)
B = π

(2)
B = 0.01, 1/µ

(1)
B =

1/µ
(2)
B =10ms, T = 5ms. For these parameters, the optimal Immediate rates are

n1 =n2 =5, which results in the effective loss rate π∗
B(Simm

(5,5))=0.24%. For Spread

we choose the minimal FEC block transmission time tspr
FEC such that π∗

B(Sspr
opt) ≤

π∗
B(Simm

(5,5)).

the destination, keeping the same level of the effective loss rate.
Another important interpretation is related to the delay jitter, i.e., vari-

ations of path propagation times. Indeed, in this work, as in most previous
works on multipath FEC, we consider the path propagation times constant
and focus on (correlated) packet losses only. However, as Spread results in a
smaller delay tFEC, it also leaves more space to accommodate potential jitter,
naturally making Spread more robust to jitter than Immediate.

Other FEC parameters n, k

So far we assumed that Immediate and Spread use the same general FEC
parameters n and k; only the rates on particular paths could be optimized.
However, in some cases the optimal choice of n and k under Spread may
differ from that of Immediate, given the same redundancy k/n.

For example, according to our additional simulations (not shown here),
for the setting in Fig. A.7 and ∆t > 220ms, the Spread schedule using
FEC(15,12) would outperform Spread with FEC(10,8). Similarly, FEC(12,6)
would be better for Spread than FEC(10,5) for ∆t > 140ms. Note, however,
that this phenomenon can be observed only for relatively large values of ∆t
that rarely occur in reality.

To conclude, the loss rate improvement γ can be manyfold, but its exact

A.5. PERFORMANCE EVALUATION 169

value strongly depends on various parameters. First, the advantage of Spread
over Immediate grows with path propagation time differences ∆t, but drops
with the data packet generation interval T and FEC block size n. Second,
the optimal Immediate rates are not always optimal under Spread; usually
optimal Spread sends more packets on faster paths. Third, although the
advantage of Immediate over a single path transmission quickly diminishes
with growing differences between the loss rates of the paths, the advantage of
Spread over Immediate is relatively stable. Finally, Spread can also achieve
FEC block transmission times much smaller than Immediate, still guarante-
ing the same or better performance in terms of the effective loss rate. This
results not only in smaller effective delays, but also in a higher robustness to
delay jitter.

A.5.2 Trace-driven PlanetLab evaluation

In the previous section we presented analytical and simulation results where
the packet losses were modeled by the Continuous Time Gilbert Model. As
any model, it is only an approximation of reality. In this section we feed our
simulations with real-life packet loss traces collected in Internet experiments.

Data sets

The traces come from two different PlanetLab (PL) [126] experiments. On
every path the packets are sent with time-interval T , i.e., with the generation
rate at the source. Every trace is a sequence composed of symbols G (packet
not lost) and B (packet lost).

Every time-constrained experiment on PlanetLab should be designed and
interpreted carefully. This is because at any point in time most of PlanetLab
nodes are overloaded. Not only their CPU utilization is at 100%, but more
importantly the queueing delays experienced by the running processes can
be very significant - even up to several seconds between two consecutive
accesses to CPU. This results in incorrect propagation time measurements
and packet dropping due to incoming buffer overflow at the destination [109,
131]. Moreover, the situation changes dynamically. We minimize the effects
of these problems by introducing periodic pauses in packet generation and
avoiding the highly loaded PlanetLab nodes.

We use the following two data sets.

‘Relays’ - PlanetLab with relays In this experiment every trace is col-
lected on a two-hop overlay path between three PlanetLab nodes: source,
relay and destination. The UDP packets at the source are generated every

170 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

T = 5ms and sent immediately to the relay that forwards them to the des-
tination. After every one-second-long packet generation period we introduce
one second of idle time in order to avoid dropping packets at PlanetLab hosts
when the probing traffic is too bursty. We collected more than 5’000 traces,
each covering 100 seconds of packet generation time.

In order to further reduce the effect of overloaded PL nodes on the results,
for every experiment separately we select the source, relay and destination
randomly from 50 currently least loaded PL nodes. As the load estimate we
use the number of processes queueing for the CPU and I/O devices; it can be
obtained by parsing the file /proc/stat that stores the information about
kernel activity.

‘Web sites’ - PlanetLab to popular web sites This data set consists of
2’839 traces used in [100]. They were collected by sending 16-byte ICMP echo
packets from 57 PlanetLab hosts to 55 popular web sites selected from [132].
Next, the ICMP echo-reply packets were captured by Tcpdump, resulting in
traces where packets travel from a PlanetLab node to a web site and back
to the original PlanetLab node. The packets were sent every T = 2ms. As
above, every one-second packet generation time was followed by one-second
idle time. Each measurement lasted at least 800 seconds. As in [100], we
split it into 40-second long intervals that we call chunks.

Despite the measures we took, in both data sets we find traces with
numerous long (100ms and more) blocks of consecutive losses. As this is not
caused by network losses, but rather by buffer overflow at the nodes due to
CPU queueing, we exclude these traces from our simulations.

Simulation setting

In a simulation of a R-path scenario we use R traces (one per path) randomly
chosen from the pool of all available traces. Thus, by construction, the R
traces are independent (typically generated at different times and places in
the Internet). For the sake of simplicity, we restrict the presentation to the
case R = 2.

Our basic metric is loss rate improvement γ. As described in Section A.4.3,
it optimizes the rates of Immediate and Spread. This optimization is based
on the observed traces. One approach to do this is to infer for every path
its loss rate π

(r)
B and the average loss burst length 1/µ

(r)
B , feed them into the

model and optimize the rates as in section A.5.1. However, this technique
has two drawbacks: it introduces errors when measuring the path properties,
and assumes a particular packet loss model. We avoid these problems by

A.5. PERFORMANCE EVALUATION 171

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Oracle
Prediction

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Oracle
Prediction

C
D

F
C

D
F

Loss rate improvement γ

Loss rate improvement γ

‘Relays’

‘Web sites’

∆t = 10ms

∆t = 10ms

∆t = 50ms

∆t = 50ms

Figure A.10: The effective loss rate improvement γ (by using Spread instead of
Immediate) in trace-driven simulations under FEC(10, 8). We use R = 2 inde-
pendent paths with real-life loss traces; their propagation times differ by ∆t. We
consider two data sets: ‘Relays’ (top) and ‘Web sites’ (bottom).

working directly on the traces - the optimal rates in Simm
opt and Sspr

opt are those
that perform best on a given chunk.

We present two types of results. In Oracle we choose the optimal rates
for the currently evaluated chunk. In contrast, in Prediction we use the
optimal rates of the preceding chunk to evaluate the current chunk. Thus
Oracle shows the best achievable results for Immediate and Spread with no
prediction errors, whereas Prediction is a practical implementation.

Results

In Fig. A.10 we present the results for FEC(10, 8). The figure presents the
cumulative distribution of the relative loss rate improvement γ for ∆t=10ms
and ∆t = 50ms. We consider the cases where optimal Immediate uses both
paths (i.e., n1 6= 0 and n1 6= 10) and there is a space for improvement (i.e.,
π∗

B(Simm
opt) > 0). In about 90% of cases we observe an advantage of Spread

over Immediate. For instance, for both data sets under Oracle with ∆t =
50ms, in 50% of cases the loss rate drops by a factor of 3 or more when
we use Spread instead of Immediate. For smaller ∆t the advantage is less
pronounced, which is in agreement with the results presented in the previous
section.

172 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

Surprisingly, in roughly 10% of cases Spread performs slightly worse than
Immediate. A possible explanation is that in some traces we can find loss
patterns that are periodic, presumably due to other applications running on
PlanetLab nodes. If such an unnatural loss pattern gets aligned with the
packets scheduled by Spread on one or more paths, then the performance of
Spread may drop below Immediate.

Finally, we find our simple prediction method satisfactory, as the Predic-
tion curve is always close to Oracle.

A.6 Related work

The performance of FEC on a single path with correlated loss failures was
studied e.g., in [96,119,127]. One common conclusion is that the FEC effi-
ciency drops with growing burstiness of packet losses.

Multipath transmission as a way of de-correlating the packet losses and
increasing the performance of FEC was first proposed in [120]. It got more
attention recently, e.g., in [99,100,121–123,125]. Multipath was also studied
in the context of Multiple Description Coding [98].

In [99] the authors study a multipath FEC system by simulations only,
on artificially generated graphs. They also give a heuristic to select from a
number of candidate paths a set of highly disjoint paths with relatively small
propagation delays.

There are a number of approaches to evaluate analytically the perfor-
mance of multipath FEC with independent paths and bursty path losses.
For instance, [121–123] and [100] give four different derivations of the effec-
tive loss rate π∗

B (or related metrics) in such a setting. However, in all four
cases the resulting formula is only an approximation of the complete solution
due to (sometimes very significant) model simplifications. First, [122] [123]
use a discrete Gilbert model. Thus two consecutive packets on one path are
equally correlated irrespectively of the time intervals between them, which
makes the models inherently unable to capture any aspects of varying packet
spacing. [100] also uses the a discrete Gilbert model, but adapts the tran-
sition matrix appropriately. Second approximation comes when computing
the number of lost data packets given that a FEC block cannot be entirely
recovered: [121] and [122] use approximations described at the end of sec-
tion A.3.2, [123] simplifies the model by assuming that in such a case all
data packets are lost, and [100] assumes that the numbers of lost data pack-
ets and redundancy packets are not correlated. Third, [122] considers only a
scenario with identical loss statistics on every path. Finally, [100] assumes a
large number of active paths R≫ 1 and small individual path rates nr ≪ n.

A.7. CONCLUSION 173

This allows the authors to apply the central limit theorem and approximate
the joint distribution of the number of lost data and redundancy packets by
a bivariate normal distribution.

To the best of our knowledge, we are the first ones to give an exact
analytical formula for the effective loss rate π∗

B of FEC protection scheme on
multiple independent paths with path losses modeled by the Gilbert model.

As in most other approaches, we assume that the background cross-traffic
is much larger than our own, and thus the load we impose on a path does
not affect its loss statistics. Scenarios where this assumption does not hold
were studied in [128] in the context of a single path FEC, and in [133] for
multipath FEC.

As in [100,121,125,133] we assume the paths to be independent. This can
be achieved by detecting correlated paths in end-to-end measurements [134]
and treating them as one. Another approach is to find paths that are IP link
disjoint, which should be possible if the site is multi-homed. Finally, even
if all the available paths are to some extent correlated we can still get some
performance benefits [99,122,124,135], though limited [136,137].

Finally and most importantly, to the best of our knowledge no attempt
has been made to exploit the path propagation time differences in multipath
FEC. Indeed, all the works listed above use some variant of the Immediate
schedule, where packets are sent as soon as they arrive at the source. In con-
trast, we have proposed the Spread schedule that exploits these propagation
time differences and significantly improves the performance.

A.7 Conclusion

In this chapter we presented some interesting side results of the thesis. In
particular, we considered the multipath transmission with FEC. We started
from the observation that the propagation times on multiple paths between
a pair of nodes may significantly differ. We proposed to exploit these differ-
ences in the context of delay-constrained multipath systems using FEC, by
applying the Spread schedule. We have evaluated our solution by a precise
analytical approach, and simulations based on both the model and real-life
Internet traces. Our studies show that Spread substantially outperforms
previous solutions. It achieves a several-fold improvement (reduction) of the
effective loss rate. Or conversely, keeping the same level of effective loss rate
Spread significantly decreases the FEC block transmission time, which limits
the observed delays and helps fighting the delay jitter.

174 APPENDIX A. EXPLOITING PATH PROPAGATION TIME . . .

Bibliography

[1] M. Kurant and P. Thiran, “Trainspotting: Extraction and analysis
of traffic and topologies of transportation networks,” Phys. Rev. E,
vol. 74, p. 036114, 2006.

[2] ——, “Layered complex networks,” Phys. Rev. Lett., vol. 96, no. 13, p.
138701, April 2006.

[3] A. Liebers, “Analyzing train time table graphs,” Ph.D. dissertation,
University of Konstanz, Department of Computer and Information Sci-
ence, 2001.

[4] P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. Wedeen, R. Meuli,
and J. Thiran, “Mapping brain networks of structural connectivity with
MRI tractography,” Manuscript in preparation, 2006.

[5] M. Kurant, P. Hagmann, and P. Thiran, “Error and attack tolerance
of layered complex networks,” Phys. Rev. E, vol. 76, p. 026103, 2007.

[6] M. Kurant and P. Thiran, “On Survivable Routing of Mesh Topologies
in IP-over-WDM Networks,” Proc. of Infocom, 2005.

[7] ——, “Survivable routing of mesh topologies in ip-over-wdm networks
by recursive graph contraction,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 5, pp. 922–933, June 2007.

[8] ——, “Survivable Mapping Algorithm by Ring Trimming (SMART)
for large IP-over-WDM networks,” Proc. of BroadNets, 2004.

[9] ——, “Survivable Routing in IP-over-WDM Networks in the Presence
of Multiple Failures,” http://arxiv.org/abs/cs.NI/0604053, 2006.

[10] ——, “Achieving maximal path diversity in low-delay application-level
multicast,” Submitted to Infocom 2009, 2008.

175

176 BIBLIOGRAPHY

[11] M. Kurant, “Exploiting the path propagation time differences in mul-
tipath transmission with fec,” Infocom, 2009.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” Proc. of ACM SIGCOMM, 1999.

[13] R. Albert, H. Jeong, and A.-L. Barabási, “Diameter of the world wide
web,” Nature, vol. 401, pp. 130–131, 1999.

[14] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world”
networks,” Nature, vol. 393, pp. 440–442, 1998.

[15] A. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, pp. 509–512, 1999.

[16] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks,” Proc. Natl. Acad.
Sci. USA, vol. 101, no. 11, p. 3747, 2004.

[17] M. Newman, A.-L. Barabasi, and D. J. Watts, The Structure and Dy-
namics of Networks. Princeton University Press, 2006.

[18] Recent attacks on TVG: http://tinyurl.com/5mnt5v,
http://tinyurl.com/5mnt5v.

[19] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance
of complex networks,” Nature, vol. 406, p. 378, 2000.

[20] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, “Resilience of the
internet to random breakdowns,” Phys. Rev. Lett., vol. 85, p. 4626,
2000.

[21] ——, “Breakdown of the internet under intentional attack,” Phys. Rev.
Lett., vol. 86, p. 3682, 2001.

[22] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts,
“Network robustness and fragility: Percolation on random graphs,”
Phys. Rev. Lett., vol. 85, p. 5468, 2000.

[23] P. Holme and B. J. Kim, “Vertex overload breakdown in evolving net-
works,” Phys. Rev. E, vol. 65, p. 066109, 2002.

[24] L. K. Gallos, R. Cohen, P. Argyrakis, A. Bunde, and S. Havlin, “Sta-
bility and topology of scale-free networks under attack and defense
strategies,” Phys. Rev. Lett., vol. 94, p. 188701, 2005.

BIBLIOGRAPHY 177

[25] A. E. Motter, “Cascade control and defence in complex networks,”
Phys. Rev. Lett., vol. 93, no. 9, p. 098701, 2004.

[26] L. Zhao, K. Park, and Y.-C. Lai, “Attack vulnerability of scale-free
networks due to cascading breakdown,” Phys. Rev. E, vol. 70, p.
035101(R), 2004.

[27] L. da Fontoura Costa, “Reinforcing the resilience of complex networks,”
Phys. Rev. E, vol. 69, p. 066127, 2004.

[28] T. Tanizawa, G. Paul, R. Cohen, S. Havlin, and H. E. Stanley, “Op-
timization of network robustness to waves of targeted and random at-
tacks,” Phys. Rev. E, vol. 71, p. 047101, 2005.

[29] V. Latora and M. Marchiori, “Vulnerability and protection of infras-
tructure networks,” Phys. Rev. E, vol. 71, p. 015103(R), 2005.

[30] M. Schäfer, J. Scholz, and M. Greiner, “Proactive robustness control of
heterogeneously loaded networks,” Phys. Rev. Lett., vol. 96, p. 108701,
2006.

[31] L. DallAsta, A. Barrat, M. Barthélemy, and A. Vespignani, “Vulnera-
bility of weighted networks,” physics/0603163, 2006.

[32] “Dimes,” http://www.netdimes.org.

[33] http://www.caida.org/.

[34] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstructured
overlay topologies in modern p2p file-sharing systems,” Proc. of
IMC’05, 2005.

[35] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, p. 35, 1977.

[36] K.-I. Goh, B. Kahng, and D. Kim, “Universal behavior of load dis-
tribution in scale-free networks,” Phys. Rev. Lett., vol. 87, no. 27, p.
278701, Dec. 2001.

[37] B. Bollobás and O. Riordan, “Shortest paths and load scaling in scale-
free trees,” Phys. Rev. E, vol. 69, no. 3, p. 036114, Mar. 2004.

[38] L. Gao, “On inferring autonomous system relationships in the inter-
net.” IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 733–
745, 2001.

178 BIBLIOGRAPHY

[39] P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and
S. S. Manna, “Small-world properties of the Indian railway network,”
Phys. Rev. E, vol. 67, p. 036106, 2003.

[40] K. A. Seaton and L. M. Hackett, “Stations, trains and small-world
networks,” Physica A, vol. 339, p. 635, 2004.

[41] J. Sienkiewicz and J. A. Ho lyst, “Statistical analysis of 22 public trans-
port networks in Poland,” Phys. Rev. E, vol. 72, p. 046127, 2005.

[42] V. Latora and M. Marchiori, “Efficient behavior of small-world net-
works,” Phys. Rev. Lett., vol. 87, p. 198701, 2001.

[43] ——, “Is the boston subway a small-world network?” Physica A, vol.
314, p. 109, 2002.

[44] M. T. Gastner and M. E. J. Newman, “Shape and efficiency in spatial
distribution networks,” J. Stat. Mech., no. P01015, January 2006.

[45] I. Vragović, E. Louis, and A. Diaz-Guilera, “Efficiency of informational
transfer in regular and complex networks,” Phys. Rev. E, vol. 71, p.
036122, 2005.

[46] J. A., M. B., S. R., and X. X., “Guest editorial: Traffic engineering for
multi-layer networks,” IEEE Journal on Selected Areas in Communi-
cations, vol. 25, no. 5, pp. 865–867, June 2007.

[47] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wave-
length assignment approaches for wavelength-routed optical wdm net-
works,” SPIE Optical Networks Magazine, vol. 1, no. 1, pp. 47–60,
2000.

[48] G. Li, B. Doverspike, and C. Kalmanek, “Fiber Span Failure Protection
in Mesh Optical Networks,” Optical Networks Magazine, vol. 3, no. 3,
pp. 21–31, May/June 2002.

[49] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of Failures in an IP Backbone,” Proc. of
IEEE INFOCOM’04, 2004.

[50] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault manage-
ment in IP-Over-WDM Networks: WDM Protection vs. IP Restora-
tion,” IEEE Journal on Selected Areas in Communications, vol. 20,
no. 1, January 2002.

BIBLIOGRAPHY 179

[51] M. Kurant, H. X. Nguyen, and P. Thiran, Dependable Systems: Soft-
ware, Computing, Networks. Springer Lecture Notes in Computer
Science, 2006, ch. Survey on Dependable Networks.

[52] A. Fumagalli and L. Valcarenghi, “IP Restoration vs. WDM Protection:
Is There an Optimal Choice?” IEEE Network, Nov/Dec 2000.

[53] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibil-
ity of IP restoration in a tier-1 backbone,” Sprint ATL Research Report
Nr. RR03-ATL-030666, 2003.

[54] J. Armitage, O. Crochat, and J. Y. L. Boudec, “Design of a Survivable
WDM Photonic Network,” Proceedings of IEEE INFOCOM 97, April
1997.

[55] E. Modiano and A. Narula-Tam, “Survivable lightpath routing: a new
approach to the design of WDM-based networks,” IEEE Journal on
Selected Areas in Communications, vol. 20, no. 4, pp. 800–809, May
2002.

[56] F. Giroire, A. Nucci, N. Taft, and C. Diot, “Increasing the Robustness
of IP Backbones in the Absence of Optical Level Protection,” Proc. of
IEEE INFOCOM 2003, 2003.

[57] E. Leonardi, M. Mellia, and M. A. Marsan, “Algorithms for the Logical
Topology Design in WDM All-Optical Networks,” Optical Networks
Magazine, January 2000.

[58] F. Glover, E. Taillard, and D. Werra, “A user’s guide for tabu search,”
Annals of Operations Research, no. 41, pp. 3–28, 1993.

[59] O. Crochat and J. Y. L. Boudec, “Design Protection for WDM Optical
Networks,” IEEE Journal of Selected Areas in Communication, vol. 16,
no. 7, pp. 1158–1165, September 1998.

[60] A. Nucci, B. Sansò, T. Crainic, E. Leonardi, and M. A. Marsan, “De-
sign of Fault-Tolerant Logical Topologies in Wavelength-Routed Opti-
cal IP Networks,” Proc. of IEEE Globecom 2001, 2001.

[61] F. Ducatelle and L. Gambardella, “Survivable routing in IP-over-WDM
networks: An efficient and scalable local search algorithm,” Optical
Switching and Networking, vol. 2, no. 2, pp. 86–99, September 2005.

180 BIBLIOGRAPHY

[62] L.-W. Chen and E. Modiano, “Efficient Routing and Wavelength As-
signment for Reconfigurable WDM Networks with Wavelength Con-
verters,” Proc. of IEEE INFOCOM 2003, 2003.

[63] H. Lee, H. Choi, S. Subramaniam, and H.-A. Choi, “Survival Em-
bedding of Logical Topology in WDM Ring Networks,” Information
Sciences : An International Journal, Special Issue on Photonics, Net-
working and Computing, 2002.

[64] A. Sen, B. Hao, B. Shen, and G. Lin, “Survivable routing in WDM
networks logical ring in arbitrary physical topology,” Proceedings of
the IEEE International Communication Conference ICC02, 2002.

[65] J. Gross and J. Yellen, Graph Theory and its Applications. CRC Press,
1999.

[66] A. Frank, Packing paths, circuits and cuts - a survey (in Paths, Flows
and VLSI-Layout). Springer, Berlin, 1990.

[67] G. H. Sasaki, C.-F. Su, and D. Blight, “Simple layout algorithms to
maintain network connectivity under faults,” In Proceedings of the 2000
Annual Allerton Conference, 2000.

[68] H. Zang, C. Ou, and B. Mukherjee, “Path-protection routing and
wavelength-assignment (rwa) in wdm mesh networks under duct-layer
constraints,” IEEE/ACM Transactions on Networking, vol. 11, no. 2,
pp. 248–258, 2003.

[69] S. Kim and S. Lumetta, “Addressing node failures in all-optical net-
works,” Journal of Optical Networking, vol. 1, no. 4, pp. 154–163, April
2002.

[70] H. Choi, S. Subramaniam, and H.-A. Choi, “On Double-Link Failure
Recovery in WDM Optical Networks,” Proc. of IEEE INFOCOM’02,
2002.

[71] W. He, M. Sridharan, and A. K. Somani, “Capacity Optimization for
Surviving Double-Link Failures in Mesh-Restorable Optical Networks,”
Proc. of OptiComm’02, 2002.

[72] M. Clouqueur and W. D. Grover, “Mesh-restorable Networks with
Complete Dual-failure Restorability and with Selectively Enhanced
Dual-failure Restorability Properties,,” Proc. of OptiComm’02, 2002.

BIBLIOGRAPHY 181

[73] I. Stoica, “Lecture notes on overlay networks.”

[74] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,”
Sigmetrics, 2000.

[75] S. Sheu, K. A. Hua, and W. Tavanapong, “Chaining: A generalized
batching technique for video-on-demand systems,” ICMCS ’97: Pro-
ceedings of the 1997 International Conference on Multimedia Comput-
ing and Systems (ICMCS ’97), 1997.

[76] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable appli-
cation layer multicast,” Sigcomm, 2002.

[77] B. Zhang, S. Jamin, and L. Zhang, “Host multicast: A framework for
delivering multicast to end users,” Infocom, 2002.

[78] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” SOSP’03, 2003.

[79] D. Tran, K. Hua, and T. Do, “Zigzag: An efficient peer-to-peer scheme
for media streaming,” Proc. of Infocom, 2003.

[80] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and
S. Khuller, “Construction of an efficient overlay multicast infrastruc-
ture for real-time applications,” IEEE Infocom, 2003.

[81] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
“Distributing streaming media content using cooperative networking,”
ACM NOSSDAV, 2002.

[82] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient peer-to-
peer streaming,” ICNP ’03: Proceedings of the 11th IEEE International
Conference on Network Protocols, 2003.

[83] M. Hefeeda, A. Habib, B. Boyan, D. Xu, and B. Bhargava, “PROMISE:
peer-to-peer media streaming using CollectCast,” ACM Multimedia
Conference MM’03, 2003.

[84] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet: A
data-driven overlay network for peer-to-peer live media streaming,” In
Proceedings of IEEE INFOCOM, 2005.

182 BIBLIOGRAPHY

[85] R. Zimmermann and L.S.Liu, “Active: Adaptive low-latency peer-to-
peer streaming,” SPIE/ACM Multimedia Computing and Networking,
2005.

[86] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “Anysee: Peer-to-peer
live streaming,” Proc. of Infocom, 2006.

[87] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-
based streaming,” Proc. of Infocom, 2007.

[88] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study
of a large-scale p2p iptv system,” IEEE Transactions on Multimedia,
vol. 9, no. 8, 2007.

[89] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang, “Enabling confer-
encing applications on the internet using an overlay multicast architec-
ture,” Sigcomm, 2001.

[90] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A com-
parative study of live p2p streaming approaches,” Proc. of Infocom,
2007.

[91] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support
for massively multiplayer games,” IEEE Infocom, 2004.

[92] C. Neumann, N. Prigent, M. Varvello, and K. Suh, “Challenges in peer-
to-peer gaming,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 1,
pp. 79–82, 2007.

[93] S.-W. Tan, A.G.Waters, and J. Crawford, “Meshtree: A Delay opti-
mised Overlay Multicast Tree Building Protocol,” ICPADS, 2005.

[94] S.-W. Tan, G. Waters, and J. Crawford, “A performance comparison
of self-organising application layer multicast overlay construction tech-
niques,” Computer Communications, vol. 29, no. 12, 2006.

[95] R. Zimmermann, B. Seo, L. S. Liu, R. S. Hampole, and B. Nash, “Au-
diopeer: A collaborative distributed audio chat system,” Distributed
Multimedia Systems (DMS 2004), 2004.

[96] J.-C. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive fec-based error
control for internet telephony,” IEEE Infocom, 1999.

[97] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient
multicast using overlays,” In SIGMETRICS, 2003.

BIBLIOGRAPHY 183

[98] J. Apostolopoulos, “Reliable video communication over lossy packet
networks using multiple state encoding and path diversity,” Proc. Vi-
sual Communication and Image Processing, VCIP, 2001.

[99] T. Nguyen and A. Zakhor, “Path diversity with forward error correction
(pdf) system for packet switched networks,” Proc. of Infocom, 2003.

[100] Y. Li, Y. Zhang, L. Qiu, and S. Lam, “Smarttunnel: Achieving relia-
bility in the internet,” Proc. of Infocom’07, 2007.

[101] J. Han, D. Watson, and F. Jahanian, “Topology aware overlay net-
works,” Proc. of Infocom’05, 2005.

[102] W. Cui, I. Stoica, and R. Katz, “Backup path allocation based on a
correlated link failure probability model in overlay networks,” ICNP,
2002.

[103] C. Tang and P. McKinley, “Improving multipath reliability in topology-
aware overlay networks,” Fourth International Workshop on Assurance
in Distributed Systems and Networks (ADSN) (ICDCSW’05), 2005.

[104] T. Fei, S. Tao, L. Gao, and R. Guérin, “How to select a good alternate
path in large peer-to-peer systems?” IEEE Infocom, 2006.

[105] Z. Li and P. Mohapatra, “The impact of topology on overlay routing,”
Proc. of Infocom’04, 2004.

[106] H. Zhang, J. Kurose, and D. Towsley, “Can an overlay compensate for
a careless underlay?” In Proceedings of IEEE Infocom, 2006.

[107] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The feasibil-
ity of supporting large-scale live streaming applications with dynamic
application end-points,” In Proc. of ACM SIGCOMM, 2004.

[108] Y. Zhang, N. Duffield, V.Paxson, and S. Shenker, “On the constancy
of internet path properties,” ACM SIGCOMM Internet Measurement
Workshop, 2001.

[109] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis, “An over-
lay architecture for high quality voip streams,” IEEE Transactions on
Multimedia, vol. 8, no. 6, pp. 1250 – 1262, 2006.

[110] W. Wang, D. A. Helder, S. Jamin, and L. Zhang, “Overlay optimiza-
tions for end-host multicast,” Workshop on Networked Group Commu-
nications (NGC), 2002.

184 BIBLIOGRAPHY

[111] A. El-Sayed and V. Roca, “On robustness in application-level multi-
cast: the case of hbm,” IEEE Symposium on Computers and Commu-
nications, 2004.

[112] J. Silber, S. Sahu, J. P. Singh, and Z. Liu, “Augmenting overlay trees
for failure resiliency,” Proc. of Globecom, 2004.

[113] R. Tian, Q. Zhang, Z. Xiang, Y. Xiong, X. Li, and W. Zhu, “Robust and
efficient path diversity in application-layer multicast for video stream-
ing,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 15, no. 8, 2005.

[114] X. Hoang and Y. Lee, “Dual parent multicast graph for failure resilient
peer-to-peer multimedia streaming,” CCNC, 2006.

[115] S. Y. Shi, J. S. Turner, and M. Waldvogel, “Dimensioning server access
bandwidth and multicast routing in overlay networks,” NOSSDAV ’01,
2001.

[116] M. Javed, K. Thulasiraman, and G. Xue, “Survivability aware rout-
ing of logical topologies: On thiran-kurant approach, evaluation and
enhancements,” IEEE Globecom, 2006.

[117] ——, “Lightpaths routing for single link failure survivability in ip-over-
wdm networks,” Journal Of Communication and Networks.

[118] ——, “Logical topology design for ip-over-wdm networks: A hybrid
approach for minimum protection capacity,” ICCCN, 2008.

[119] W. Jiang and H. Schulzrinne, “Perceived quality of packet audio under
bursty losses,” Proc. of Infocom, 2002.

[120] N. F. Maxemchuk, “Dispersity routing in store and forward networks,”
Ph.D Dissertation, University of Pennsylvania, 1975.

[121] L. Golubchik, J. Lui, T. Tung, A. Chow, W. Lee, G. Franceschinis,
and C. Anglano, “Multi-path continuous media streaming. what are
the benefits?” Performance Evaluation Journal, vol. 39, 2002.

[122] X. Yu, J. Modestino, and I. V. Bajic, “Modeling and analysis of multi-
path video transport over lossy networks using packet-level fec,” Proc.
of Distributed Multimedia Systems (DMS), 2005.

BIBLIOGRAPHY 185

[123] E. Vergetis, R. Guérin, and S. Sarkar, “Realizing the benefits of user-
level channel diversity,” SIGCOMM Comput. Commun. Rev., vol. 35,
no. 5, pp. 15–28, 2005.

[124] B. Ribeiro, E. de Souza e Silva, and D. Towsley, “On the efficiency
of path diversity for continuous media applications,” Technical Report:
UM-CS-2005-019, 2005.

[125] H. Levy and H. Zlatokrilov, “The effect of packet dispersion on voice
applications in ip networks,” IEEE/ACM Trans. on Netw., vol. 14,
no. 2, pp. 277–288, 2006.

[126] “Planetlab,” http://www.planet-lab.org/.

[127] P. Frossard, “Fec performances in multimedia streaming,” IEEE Com-
munications Letters, vol. 5, no. 3, p. 122, 2001.

[128] X. Yu, J. Modestino, and X. Tian, “The accuracy of gilbert mod-
els in predicting packet-loss statistics for a single-multiplexer network
model,” Infocom, 2005.

[129] E. O. Elliott, “A model of the switched telephone network for data
communications,” Bell System Technical Journal, vol. 44, no. 1, p. 89,
1965.

[130] “Mathematica,” http://www.wolfram.com/.

[131] J. Sommers and P. Barford, “An active measurement system for shared
environments,” Internet Measurement Conference, 2007.

[132] “100hotsites,” http://www.100hotsites.com.

[133] A. L. H. Chow, L. Golubchik, J. C. S. Lui, and W.-J. Lee, “Multi-path
streaming: optimization of load distribution,” Perform. Eval., vol. 62,
no. 1-4, pp. 417–438, 2005.

[134] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting shared conges-
tion of flows via end-to-end measurement,” IEEE/ACM Trans. Netw.,
vol. 10, no. 3, pp. 381–395, 2002.

[135] D. Jurca and P. Frossard, “Media-specific rate allocation in multipath
networks,” IEEE Transactions on Multimedia, vol. 9, no. 6, pp. 1227–
1240, October 2007.

186 BIBLIOGRAPHY

[136] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path vs.
multi-path overlay routing,” Proc. of IMC’03, 2003.

[137] S. Tao, K. Xu, Y. Xu, T. Fei, L. Gao, R. Guerin, J. Kurose, D. Towsley,
and Z.-L. Zhang, “Exploring the performance benefits of end-to-end
path switching,” in IEEE ICNP, 2004.

Publications

The study presented in this Ph.D. dissertation led us to the following publi-
cations:

Journal papers

• X. Gigandet, P. Hagmann, M. Kurant et. al. “Estimating the confi-
dence level of white matter connections obtained with MRI tractogra-
phy.” PLoS ONE, 3(12): e4006, December 2008.

• M. Kurant, P. Hagmann and P. Thiran. “Error and Attack Tolerance
of Layered Complex Networks.” Phys. Rev. E 76, 026103, 2007.

• P. Hagmann, M. Kurant et. al. “Mapping human whole-brain struc-
tural networks with diffusion MRI.” PLoS ONE, 4(2):e597, July 2007.

• M. Kurant and P. Thiran. “Survivable Routing of Mesh Topologies
in IP-over-WDM Networks by Recursive Graph Contraction.” IEEE
Journal on Selected Areas in Communications, Volume 25, Issue 5,
June 2007.

• M. Kurant and P. Thiran. “Trainspotting: Extraction and Analysis of
Traffic and Topologies of Transportation Networks.” Phys. Rev. E 74,
036114, September 2006.

• M. Kurant and P. Thiran. “Layered Complex Networks.” Phys. Rev.
Lett. 96, 138701, April 2006.

• M. Kurant, H. X. Nguyen and P. Thiran. “Survey on Dependable IP-
over-Fiber Networks.” In Springer Lecture Notes in Computer Science
(LNCS) 4028 : ‘Dependable Systems: Software, Computing, Networks’
p. 55-81, 2006.

• F. Ducatelle, L. M. Gambardella, M. Kurant, H. X. Nguyen and Patrick
Thiran. “Algorithms for Failure Protection in Large IP-over-Fiber and

187

188 BIBLIOGRAPHY

Wireless Ad Hoc Networks.” In Springer Lecture Notes in Computer
Science (LNCS) 4028 : ‘Dependable Systems: Software, Computing,
Networks’, p.231-259, 2006.

Conference papers

• M. Kurant and P. Thiran. “Achieving Maximal IP Path Diversity in
Low-Delay Application-Level Multicast.” In preparation.

• M. Kurant. “Exploiting the Path Propagation Time in Multipath
Transmission with FEC.” Infocom 2009.

• M. Kurant and P. Thiran. “Survivable Routing in IP-over-WDM Net-
works in the Presence of Multiple Failures.” EuroNGI Workshop on
Traffic Engineering, Protection and Restoration for NGI, May 4-5,
2006, AGH, Kraków, Poland.

• P. Hagmann, M. Kurant et. al. “Imaging the brain neuronal network
with diffusion MRI: a way to understand its global architecture.” Proc.
Intl. Soc. Magn. Res. Med., 2006.

• M. Kurant and P. Thiran. “On Survivable Routing of Mesh Topologies
in IP-over-WDM Networks.” Infocom 2005.

• M. Kurant and P. Thiran. “Survivable MApping Algorithm by Ring
Trimming (SMART) for large IP-over-WDM networks.” Poceedings of
BroadNets 2004, 25-29 October, San Jose, California, USA.

CURRICULUM VITAE 189

Maciej KURANT

I am a communicative, energetic and flexible researcher,
always full of fresh ideas and ready to turn them into
reality. I enjoy taking a risk and discovering new fields.

Contact:

Av. du 1er Mai 6B, 1020, Renens, Switzerland
maciej.kurant@epfl.ch
Tel. +41 764023377

Education:

2003 – 2009: Ph.D. studies at EPFL, Lausanne, Switzerland.

 15 publications, including prestigious conferences and journals.

 Network Science Workshop and Conference (NetSci’06) stipend, May 2006.

2002 – 2003: Graduate School in Communication Sciences, EPFL, Switzerland.

 GPA: 5.75 out of 6 (top 5 out of 30)

1997 – 2002: M.Sc. in Telecommunication, Gda sk University of Technology, Poland.

 With Honors.

 GPA: 4.89 out of 5.0 - the best student on the year (out of ~100)

 Scholarship of The Minister of National Education of Poland.

 Scholarship of The President of Gdansk for results in studies (twice).

 Award of the Dean for exceptional achievements.

before 2002: Four awards in Olympiads in Physics and Mathematics.

Main areas of interest:

 Various aspects of multilayer systems (survivability in optical networks, IP path
diversity in P2P networks),

 Multipath routing with FEC,

 Analysis of large-scale real-life complex networks,

 Human Brain Topology Mapping (based on fMRI data),

 Graph Theory.

Work experience:

Oct 2003–now: Ph.D. studies on “Survivability in Multilayer Networks”, EPFL.

In the theoretical part of my PhD I conducted rigorous and insightful mathematical
analysis of various communication systems such as optical networks, multipath
transmission and P2P live streaming.

190 CURRICULUM VITAE

In the practical part of this work I implemented a measurement system working
concurrently on about 500 computers distributed around the world (in PlanetLab) and
communicating over the Internet.

I was also the leading teaching assistant at the “Introduction to Communication
Systems” course for 4 semesters. I was the main coordinator between 3 professors,
9 assistants and 150 students. Additionally, I supervised 5 individual student
semester projects.

2005-2007: Side project on Human Brain Topology Mapping.

I co-developed a method to infer the network of long range structural connections in
the human brain, based on the large amount of Magnetic Resonance Imaging (MRI)
data. It resulted in this article. The follow-up work (without me on board) got a press
coverage e.g., in The New York Times, Telegraph, and The Scientist.

2006-2007: Starting the at www.acronymcreator.net.

Acronym CrEator is a unique tool to create catchy names that form meaningful
acronyms. I invented and developed it independently from my Ph.D., just because I
wanted to try out my idea. Roughly 3’000 distinct visitors generate about 20’000
queries to ACE each month.

Professional skills:

 Good programming skills (C++, Python, Mathematica, Matlab, TCP/IP)

 Data mining, processing and analyzing large-scale complex graphs.

 Creativity, diversity, flexibility, efficiency. Good communication skills.

Languages:

English (fluent), French (fair), German (basic), Russian (basic), Polish (mother tongue).

Selected publications (out of the total of 15 publications):
M. Kurant
Exploiting the Path Propagation Time in Multipath Transmission with FEC
INFOCOM 2009

M. Kurant, P. Hagmann and P. Thiran
Error and Attack Tolerance of Layered Complex Networks
Phys. Rev. E 76, 026103, 2007

P. Hagmann, M. Kurant, et. al.
Mapping human whole-brain structural networks with diffusion MRI
PLoS ONE, 4;2:e597, July 2007.

M. Kurant and P. Thiran
On Survivable Routing of Mesh Topologies in IP-over-WDM Network
IEEE JSAC, Volume 25, Issue 5, June 2007 (earlier version presented at INFOCOM 2005)

M. Kurant and P. Thiran
Layered Complex Networks
Phys. Rev. Lett. 96, 138701, April 2006

CURRICULUM VITAE 191

Organization skills.

I like organizing various events and being responsible for them. I hold (or held) the
following functions:

 Co-founder of the Graduate Student Organization at EPFL-IC (2005 – now). I
organize numerous cyclic and ad-hoc events such as scientific seminaries, mass
brainstorming and student integration.

 Chairman of Academic Sport Association in Gdansk (2001-2002). I founded the
official Academic Bridge Club at the university. I popularized this intellectual card
game by organizing regular trainings and more than 20 tournaments with the
average turnout of 60 students.

 Organizer of a student expedition to Mongolia (2001). I found the sponsors,
organized the press and radio coverage and led a group of 15 students for 2
months on a route of about 25’000 kilometers. Details at
http://mongolia2001.webpark.pl

Extra-professional activities.

I am an active person and I feel well in a competitive and challenging environment.
Some examples include travelling (South America, Africa, Asia, Europe), skiing (11th in
Academic Championship of Poland, 2001), sailing (5th place in International Micro Cup,
Poland, 2000), bridge (2nd in Academic Championship of Poland, 2001), mountaineering
(Huayna Potosi 6088m, Mount Blanc 4810m), photography (1st place in an academic
contest in Gdansk), hitchhiking (1st in an international competition).

