Nowadays digital signal processing systems used for radar applications, communication systems or RF measurement equipments, require very high sample-rates. Sometimes these sample-rates are beyond the possibilities offered by conventional ADCs. To overcome these limits parallel architectures have been developed. The most commonly used it the one called "time-interleaved" conversion. This technique allows to achieve very-high sample-rates with circuits working at a lower frequency. The accuracy of "time-interleaved" systems is sensitive to sample-time errors. Some calibration techniques have been developed to reduce this sensitivity. They involve very sophisticated digital signal processing and, in most of the cases, they are not directly implemented on silicon but applied on measurement results in software. The goal of this thesis is to study the feasibility of a new parallel architecture for analog-to-digital conversion. This architecture must present a higher robustness to sample-time errors. The first part of this work is dedicated to time-interleaved converter. An analysis of their sensitivity to several imperfections, such as mismatches and systematic and random sample-time error is presented. This analysis is followed by a description of time-interleaved converter evolution, since the first implemented prototype to the current state of the art of the domain. The second part of this thesis focuses on the development of the new conversion technique called "frequency-interleaved". Two different approaches are studied: the first one is based on a Fourier series decomposition of the signal to convert and the second one is based on a Walsh series decomposition. During this study, theoretical and practical aspects are faced the one with the other, to combine signal processing and microelectronics together. It appears that the Fourier series approach offers modest performances and presents serious problems of implementation. Based on this study, the design of functional blocks of a Walsh series based system is proposed.