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ABSTRACT 
 

 

Thermonuclear fusion of light atoms is considered since decades as an unlimited, safe and 
reliable source of energy that could eventually replace classical sources based on fossile fuel 
or nuclear fuel. Fusion reactor technology and materials studies are important parts of the 
fusion energy development program. For the time being, the most promising materials for 
structural applications in the future fusion power reactors are the Reduced Activation 
Ferritic/Martensitic (RAFM) steels for which the greatest technology maturity has been 
achieved, i.e., qualified fabrication routes, welding technology and a general industrial 
experience are almost available. The most important issues concerning the future use of 
RAFM steels in fusion power reactors are derived from their irradiation by 14 MeV neutrons 
that are the product, together with 3.5 MeV helium ions, of the envisaged fusion reactions 
between deuterium and tritium nuclei. Indeed, exposure of metallic materials to intense 
fluxes of 14 MeV neutrons will result in the formation of severe displacement damage (about 
20-30 dpa per year) and high amounts of helium, which are at the origin of significant 
changes in the physical and mechanical of materials, such as hardening and embrittlement 
effects, for instance. 

This PhD Thesis work was aimed at investigating how far the Small Angle Neutron 
Scattering (SANS) technique could be used for detecting and characterizing nano-sized 
irradiation-induced defects in RAFM steels. Indeed, the resolution limit of Transmission 
Electron Microscopy (TEM) is about 1 nm in weak beam TEM imaging, and it is usually 
thought that a large number of irradiation-induced effects have a size below 1 nm in RAFM 
steels and that these very small defects actually contribute to the irradiation-induced 
hardening and embrittlement of RAFM steels occurring at irradiation temperatures below 
about 400°C. 

The aim of this work was achieved by combing SANS experiments on unirradiated and 
irradiated specimens of RAFM steels with Molecular Dynamics (MD) simulations of main 
expected nano-sized defects in irradiated pure Fe and Fe-He alloys, as model materials for 
RAFM steels, and simulations of their corresponding TEM images and SANS signals. In 
particular, the SANS signal of various types of defects was simulated for the first time. 

The methodology used in this work was the following: 

• SANS experiments were performed by applying a strong saturating magnetic field to 
unirradiated and irradiated specimens of three types of RAFM steels, namely the 
European EUROFER 97, the Japanese F82H and the Swiss OPTIMAX A steels. The 
available irradiated specimens included specimens which had been irradiated with 
590 MeV protons in the Proton IRradiation EXperiment (PIREX) facility at the Paul 
Scherrer Institute (PSI) at temperatures in the range of 50-350°C to doses in the range of 
0.3-2.0 dpa. SANS spectra as well as values of the so-called A ratio, which represents the 
ratio of the total scattered intensity to the nuclear scattered intensity, were obtained for 
the various irradiation doses and temperatures investigated. 
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• MD simulations of atomic displacement cascades in pure Fe and in Fe-He alloys were 
performed using Embedded Atom Method (EAM) many-body interatomic potentials. The 
main nano-sized defects that should be produced in RAFM steels under irradiation were 
created by means of MD in pure Fe. These included dislocation loops of various types, 
voids, helium bubbles with various He concentration and Cr precipitates. 

• TEM images of cascade damage and all the defects created by MD were simulated in the 
dark field/weak beam imaging modes by using the Electron Microscopy Software (EMS) 
developed by P.A. Stadelmann (EPFL) and analyzed in terms of variations of contrast 
intensities versus depth inside the specimen. 

• The SANS signal provided by cascade damage and all the defects created by MD was 
simulated by using a slightly modified version of EMS, accounting for neutrons instead 
of electrons. 

The SANS technique has been proven in this work to be a very powerful tool for detecting 
nano-sized irradiation-induced defects and a tool well complementary to TEM for 
characterizing such very small irradiation-induced defects. Indeed, TEM appears most 
adapted to investigate structural defects, such as dislocation loops and helium bubbles with 
high helium concentration, which yield significant lattice deformation of the surrounding 
matrix, while SANS is most adapted to investigate phase defects, such as voids, helium 
bubbles with low helium concentration and Cr precipitates. By combining the results of 
SANS experiments with those of MD simulations, TEM image simulations and SANS signal 
simulations, the nano-sized irradiation-induced defects were tentatively identified as small 
helium bubbles. While the radiation hardening measured for RAFM steels cannot be 
explained by accounting only for the defects observed in TEM, it could be successfully 
modeled by accounting also for a reasonable number density of the nano-sized defects 
evidenced using the SANS technique. 

 

Keywords: RAFM steels, radiation damage, small angle neutron scattering, molecular 
dynamics simulations, transmission electron microscopy image simulations. 
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RÉSUMÉ 
 

 

La fusion thermonucléaire d’atomes légers est considérée depuis plusieurs décennies comme 
une source d’énergie sûre et illimitée, qui pourrait éventuellement remplacer le combustible 
fossile ou nucléaire. La technologie et les matériaux pour les futurs réacteurs de fusion 
thermonucléaire constituent des points importants du programme de développement de 
l’énergie de fusion. A l’heure actuelle, les aciers ferritiques/martensitiques à activation 
réduite (aciers RAFM) sont les principaux matériaux candidats à des applications structurales 
dans les futurs réacteurs de fusion, leur méthode de fabrication et technologie de soudage au 
niveau industriel étant relativement bien avancées. Les incertitudes les plus importantes 
relatives à la future utilisation des aciers RAFM dans les réacteurs de fusion est reliée à leur 
irradiation par les neutrons de 14 MeV, qui seront le produit des réactions de fusion entre un 
ion de deutérium et un ion de tritium, en plus d’un ion d’hélium de 3.5 MeV. En effet, 
l’exposition de matériaux métalliques à un flux élevé de neutrons de 14 MeV résultera en la 
formation d’un endommagement microstructural important (de l’ordre de 20 à 30 dpa par 
année) ainsi que d’une concentration élevé d’hélium, qui sont à l’origine de modifications 
significatives des propriétés physiques et mécaniques des matériaux concernés, comme par 
exemple des effets de durcissement et de fragilisation. 

Le but de cette thèse de doctorat était d’étudier s’il est possible, et jusqu’à quel point  il est 
possible, d’utiliser la technique de diffusion neutronique à petits angles (SANS) afin de 
détecter et de caractériser les défauts de taille nanométrique produits sous irradiation par les 
neutrons de 14 MeV dans les aciers RAFM. En effet, la résolution de la technique de 
microscopie électronique en transmission (MET) est limitée à environ 1 nm en utilisant la 
technique dite des ‘faisceaux faibles’. Néanmoins, il est généralement estimé que, en réalité, 
il existe de nombreux petits défauts produits par irradiation qui présentent une taille 
inférieure au nanomètre et qui sont donc invisibles en MET, mais qui contribuent malgré tout 
de façon importante aux phénomènes de durcissement et de fragilisation observés pour des 
températures d’irradiation inférieures à environ 400°C. 
Le but de cette thèse a été atteint en effectuant des expériences de SANS sur des échantillons 
non irradiés et irradiés d’aciers RAFM, combinées à des simulations en dynamique 
moléculaire de défauts de taille nanométrique dans le Fer pur et des alliages Fe-He, comme 
matériaux modèles pour les aciers RAFM, ainsi qu’à des simulations de leurs images en MET 
et de leurs signaux correspondant en SANS. En particulier, la simulation du signal SANS 
émis par les différents défauts créés en dynamique moléculaire fut réalisée pour la toute 
première fois. La méthodologie qui fut utilisée dans le cadre de ce travail est la suivante: 

• Les expériences de SANS furent effectuées en appliquant un champ magnétique intense à 
des échantillons non irradiés et irradiés de trois types d’aciers RAFM: l’acier européen 
EUROFER 97, l’acier japonais F82H et l’acier suisse OPTIMAX A. Les échantillons 
irradiés disponibles comprenaient des échantillons qui furent irradiés par des protons de 
590 MeV au moyen de l’installation PIREX (Proton IRradiation EXperiment) située à 
l’Institut Paul Scherrer (PSI) à des températures comprises entre 50 et 350°C et des doses 
comprises entre 0.3 et 2.0 dpa. Des spectres SANS furent ainsi obtenus, de même que des 
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valeurs du fameux coefficient A, qui représente le rapport de l’intensité diffusée totale à 
l’intensité diffusée de type purement nucléaire, pour les différentes conditions de dose et 
de température étudiées. 

• Des simulations en dynamique moléculaire de cascades de déplacements atomiques dans 
le Fer pur et différents alliages Fe-He ont été réalisées au moyen de potentiels 
interatomiques à plusieurs corps basés sur la méthode de l’atome encastré. Les principaux 
défauts de taille nanométrique qui devraient être produits sous irradiation dans les aciers 
RAFM ont été créés par dynamique moléculaire dans le Fer pur. Les défauts créés 
comprenaient des boucles de dislocation de différents types, des vides, des bulles 
d’hélium à différentes concentrations d’hélium et des précipités de chrome. 

• Des simulations d’images en MET des résidus de cascades de déplacements atomiques et 
de tous les défauts créés par dynamique moléculaire ont été réalisées en conditions de 
diffraction du type champ sombre ou faisceaux faibles au moyen du programme EMS 
développé par P.A. Stadelmann (EPFL) et analysées en termes de variations d’intensité 
du contraste en fonction de la profondeur. 

• Des simulations du signal SANS émis par les résidus de cascades de déplacements 
atomiques et de tous les défauts créés par MD ont été réalisées en utilisant une version 
légèrement modifiés du programme EMS, tenant compte des neutrons en lieu et place des 
électrons. 

Il a été démontré dans cette étude que la technique de diffusion neutronique à petits angles est 
un outil très utile à la détection de tout petits défauts produits sous irradiations ainsi qu’un 
outil complémentaire à la microscopie électronique en transmission en ce qui concerne la 
caractérisation de ces tout petits défauts. En effet, la microscopie électronique en 
transmission semble bien adaptée à l’étude de défauts structuraux du type boucles de 
dislocation et bulles d’hélium à forte concentration d’hélium, qui induisent une déformation 
de réseau de la matrice environnante, alors que la technique de diffusion neutronique à petits 
angles semble mieux adaptée à l’étude de défauts de phase, tels les vides, les bulles d’hélium 
à faible concentration d’hélium et les précipités de chrome. En combinant les résultats des 
expériences de diffusion neutronique à petits angles et des simulations en dynamique 
moléculaire, ainsi que des simulations d’images de microscopie électronique en transmission 
et du signal de diffusion neutronique à petits angles, les petits défauts de taille nanométrique 
ont été identifiés comme devant être des petites bulles d’hélium. Bien que le durcissement 
des aciers RAFM sous irradiation ne puisse être expliqué en ne tenant compte que des défauts 
visibles en microscopie électronique en transmission, il a été modélisé avec succès en tenant 
compte également d’une densité raisonnable des tout petits défauts de taille nanométrique 
détectés en utilisant la technique de diffusion neutronique à petits angles. 
 

Mots clés: Aciers ferritiques/martensitiques à activation réduite, dégâts d’irradiation, 
diffusion neutronique à petits angles, simulations en dynamique moléculaire, simulations 
d’images en microscopie électronique en transmission. 
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INTRODUCTION 
 

 

This PhD Thesis work was aimed at investigating how far the Small Angle Neutron 
Scattering (SANS) technique can be used for detecting and characterizing nano-sized 
irradiation-induced defects in Reduced Activation Ferritic/Martensitic (RAFM) steels for 
structural application in the future fusion reactors. Indeed, the resolution limit of 
Transmission Electron Microscopy (TEM) is about 1 nm in weak beam TEM imaging, and it 
is usually thought that a large number of irradiation-induced effects in RAFM steels have a 
size below 1 nm and that these very small defects actually contribute to the irradiation-
induced hardening and embrittlement of RAFM steels occurring at irradiation temperatures 
below about 400°C. 

The aim of this work was achieved by combing SANS experiments on unirradiated and 
irradiated specimens of RAFM steels with Molecular Dynamics (MD) simulations of main 
expected nano-sized defects in irradiated pure Fe and Fe-He alloys, as model materials for 
RAFM steels, and simulations of their corresponding TEM images and SANS signals. 
This manuscript is divided into five chapters. 

• Chapter 1 contains an introduction to RAFM steels for fusion power reactors, to the 
theory of neutron scattering and to the bases of the simulation tools that were used in this 
work. It also presents the motivation of this work. 

• Chapter 2 contains a description of the RAFM steels investigated, the irradiation facility 
and conditions, the SANS facility and conditions, and the simulation tools and conditions, 
with an emphasis on the description of the main defects expected to be produced by 
irradiation in pure Fe and Fe-He materials. 

• Chapter 3 presents the results obtained by means of SANS experiments on unirradiated 
and irradiated specimens of RAFM steels, and MD simulations, TEM image simulations 
and SANS signal simulations of all the defects described under chapter 2. 

• Chapter 4 discusses the main results obtained under chapter 3, with an emphasis on the 
identification of nano-sized irradiation-induced defects and their impact on the radiation 
hardening of RAFM steels. 

• Chapter 5 presents the main conclusion of this work and a few perspectives for further 
possible activities. 
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CHAPTER 1: LITERATURE SURVEY 
 

 

1.1 Introduction to reduced activation ferritic/martensitic steels 
 

Fusion reactor technology and materials studies are important parts of the fusion energy 
development program. Austenitic stainless steels have been selected as first wall and 
breeding blanket structural materials for the International Thermonuclear Experimental 
Reactor (ITER) that should become operational around 2018. The development of 
ferritic/martensitic steels for structural application in the future fusion power reactors 
emanates from the limitations of the austenitic stainless steels and the promising high dose 
experience with ferritic/martensitic steel fuel cladding in liquid metal cooled fast reactors. 

The austenitic steels suffer from severe helium embrittlement at elevated temperatures and 
swell to a degree not acceptable for fusion reactor components. The ferritic/martensitic steels 
exhibit superior performance to austenitic steels in both swelling and helium embrittlement 
resistance. At a temperature of about 300°C the swelling rate of ferritic/martensitic steels is 
about 1 vol.% after 100 dpa, while it is about 1 vol.% after 10 dpa for typical austenitic 
steels. Ferritic/martensitic steels also exhibit a better surface heat capability than austenitic 
steels (5.4 kW/m at 400°C, i.e., about three times that of austenitic steels) [1], favorable cost, 
availability and service experience, and their good compatibility with aqueous, gaseous, and 
liquid metal coolants permits a range of design options. At the same time ferritic/martensitic 
steels with alloying elements such as chromium, some tungsten, vanadium and tantalum 
activate little compared to conventional austenitic stainless steels with nickel and 
molybdenum. In addition, manganese-stabilized austenitic stainless steels are not attractive 
due to high decay heat (safety) concerns. In Europe, Japan and Russia it has been 
demonstrated that it is now feasible to produce Reduced Activation Ferritic/Martensitic 
(RAFM) steels on an industrial scale with sufficiently low impurity levels, e.g. [2-8]. Industry 
has also shown to be able to reproduce the required quality. The promise remains to produce 
low activation varieties that allow recycling within a century [9, 10]. The production of 
RAFM steels with even stricter impurity control is technically feasible, but requires 
fabrication equipment used for clean steels only [11]. Main RAFM steels that are being 
investigated include the Chinese Low Activation Martensitic (CLAM) steel, the European 
EUROFER 97 alloy, the Japanese F82H and JLF-1 alloys, and the Russian RUSFER-EK-181 
alloy. Their composition lies in the following range: Fe-(7.5-12)Cr-(1.1-2)W-(0.15-0.25)V, in 
weight percent. 

The most important issues concerning the future use of RAFM steels in fusion power reactors 
are derived from their irradiation by 14 MeV neutrons that are the product, together with 
energy and helium ions, of the envisaged fusion reactions between deuterium and tritium 
nuclei. Indeed, exposure of metallic materials to intense neutron fluxes results in the 
formation of severe displacement damage (about 20-30 dpa per year) and significant amounts 
of helium, which are at the origin of significant changes in the physical and mechanical of 
materials, such as hardening and embrittlement effects, for instance. To date, many research 
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activities, scientific papers and international workshops have been devoted to these steels 
regarding their development and characterization of their microstructure and 
mechanical/physical properties before and after irradiation, e.g. [12-18]. 

 

 

1.2 Fundamentals of radiation damage and effects 
 

1.2.1 Introduction to the interaction between particles and atoms 
Radiation damage relates to the initial disturbance of a material under irradiation and arises 
from the interaction of incident beam particles with the atoms (electrons and nuclei) of a 
target material. The interaction depends on the mass, electrical charge and energy of the 
incident particles, as well as on the features of the target material. In general, three types of 
interaction between the incident beam particles and the target material atoms may take place 
[19]: 

1) Elastic interaction between the particles and the target material atoms; 
2) Inelastic interaction between the particles and the target material electrons; 
3) Inelastic interaction between the particles and the target material nuclei. 

As a result of these interactions, the following phenomena may take place [19, 20]: 

i) Atomic displacements or atomic displacement cascades; 
ii) Excitation of electrons; 
iii) Introduction of foreign atoms, either by nuclear transmutation reactions or by the 

impinging particles stopping in the solid. 

These three phenomena are described in detail just below. 

i) During the elastic collision between a particle and an atom, the transferred energy can be 
sufficient, i.e., above a certain threshold energy Td that is dependent on the material and the 
temperature, to move the atom out of its lattice site, creating a Frenkel pair (vacancy-
interstitial pair). The initial collision is called the primary collision and the first displaced 
atom is called the Primary Knock-on Atom (PKA). 

The sequence of basic events resulting from the interaction of an incident high-energy 
particle with lattice atoms and leading to the formation of defects and defect clusters is 
illustrated in Figure 1.2.1.1 and can be described as follows [21-23]. Within less than 1 fs, the 
primary knock-on event takes place, and a PKA with a recoil energy T is created. At the same 
time, transmutation of the knocked-on atom can occur and result in the formation of an 
impurity, such as a He or a H gas atom or a heavier element. Here, we are interested in lattice 
defect production. If its energy is high enough, the PKA can engender other atomic 
displacements via collision cascades [24]. A collision cascade takes place after a very short 
period of time, about 0.2 ps, and results in a large number of displaced atoms. Then, in about 
3 ps, the energy inside the cascade is released to the surroundings and yields the so-called 
thermal spike, which refers to the volume inside the cascade that has a very high temperature, 
usually much higher than the melting point. In another 7 ps, the cascade cools down to form a 
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vacancy-rich zone, while an interstitial shell appears around this depleted zone. Afterwards, a 
fraction of the interstitials and vacancies, which is temperature dependent and of about 70-
90%, annihilates by thermal intra-cascade recombination. The surviving vacancies and 
interstitials agglomerate to form small clusters, or annihilate at sinks (e.g. dislocations, grain 
boundaries, interfaces), or move as free point defects. Table 1.2.1.1 gives a summary of the 
time evolution of a displacement cascade. The size and lifetime of the cascade increase with 
the PKA energy. If it is above about 20 keV in copper, for instance, the cascade subdivides 
into sub-cascades. 

 
 
Figure 1.2.1.1: Conceptual representation of events occurring during collision of a neutron with metal 
lattice atoms [20]. 
 
Duration (ps) Event Result 

10-3 Transfer of recoil energy from the 
impinging particle PKA 

10-3~0.2 
Slowing down of the PKA by the 
generation of a collision cascade: 

binary collisional phase 

Vacancies and low-energy recoil collisions, 
sub-cascades 

0.2~0.3 Thermal spike: equipartition of the 
energy in the cascade volume 

Low energy density, hot molten droplet, 
propagation of a shock wave front in the 

matrix 

0.33 Interstitial ejection, transition from 
heated to undercooled liquid core Stable interstitials, atomic mixing 

3~10 Cascade core solidification and 
cooling to ambient temperature 

Depleted zone, disordered zone, amorphous 
zone, vacancy collapse 

10 or more 
Thermal intra-cascade recombination, 

thermal escape of self-interstitial 
atoms (SIAs) 

Surviving defects (SD), escaping 
interstitials (EI), escaping vacancies (EV), 

stationary fluxes of EI and EV, 
growth/shrinkage of SIA or vacancy 

clusters, solute segregation 
 

Table 1.2.1.1: Time evolution of atomic displacement cascades in metals [19]. 
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During the collision between a particle with a mass m and an energy E and a PKA with a 
mass M, the maximum recoil energy Tmax that can be transferred is given by [25, 26]: 

 

  

T
max

=
4 mM( )

m + M( )
2

E  (1.2.1.1). 

Therefore, the energy of the PKA lies in the range 0 ≤ T ≤ Tmax and can be described by a 
recoil energy spectrum. A number of codes, e.g. HETC [27] and SPECTER [28], which were 
developed on the basis of the nuclear reaction theory, can be used to calculate recoil energy 
spectra and other parameters such as the displacement damage cross section and the 
production of transmutation elements. 

Kinchin and Pease (1955) [29] were the first ones to affirm that when a lattice atom receives 
a recoil energy larger than a threshold displacement energy, Td, it will be displaced from its 
lattice position. However, if T < Td, the atom will return rapidly to its initial position after a 
short displacement. Td is therefore the energy above which a stable Frenkel pair is created. 
Table 1.2.1.2 gives examples of Td values for different metals.  
 

Metal Al Fe Ni Cu Ag Nb Ta 

Td (eV) 22 24 24 22 28 36 32 

 
Table 1.2.1.2: Examples of Td values for different metals, as measured at 20 K [30, 31]. 

 
Kinchin and Pease gave the number of displaced atoms produced by a PKA of energy T as: 

 
  
N

d
T( ) = T 2T

d
 (1.2.1.2). 

In order to account for the electronic stopping power, Lindhard et al (1963) [32] studied the 
process of slowing down of an energetic PKA by using the Thomas-Fermi atomic theory and 
proposed the well-known Lindhard-Scharff-SchiØtt (LSS) theory, which demonstrates that 
the damage energy (Td) for displacing lattice atoms is a function of the PKA energy (T), the 
mass and atomic number of the PKA (m1;Z1) and of the lattice atoms (m2;Z2): 

 
  
T

d
= f T ;m

1
;Z

1
;m

2
;Z

2( )  (1.2.1.3). 

Norgett, Robinson and Torrens (NRT) (1974) [33] then modified the Kinchin-Pease model by 
taking the electronic stopping power into account and obtained the following equations: 

 

  

N
d
=

0, for T < T
d

1, for T
d
< T < 2.5T

d

0.8T
D

2T
d

, for T > 2.5T
d

!

"
#

$
#

 (1.2.1.4). 

This is the widely used NRT approximation for the calculation of displacement damage, 
quoted in dpa (number of displacements per atom), which is currently used as the irradiation 
dose unit. The NRT value refers to the number of displacements produced in the collisional 
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phase. Experimental results [34, 35] as well as Molecular Dynamics (MD) simulations [36, 
37] have shown that the number of defects surviving at the end of the cascade evolution is 
only a small fraction (about 10-30%, temperature dependent) of the number of atomic 
displacements given by the NRT approximation. 

By considering the number of Frenkel pairs generated in several metals, Bacon et al. (1995) 
[38] have shown that a new empirical relationship between Nd and T fits well the MD 
simulation results for PKA energies between 5 and 10 keV: 

 
 
N

d
= A T( )

m

 (1.2.1.5), 

where A and m are constants that depend on the material and the irradiation temperature. For 
the aluminum at 10 K, Almazouzi (1999) [39] has found A = 7.85 and m = 0.733. The 
obtained data indicate that the differences in Nd values for different metals are due mainly to 
their atomic mass, Nd decreasing with the increasing mass of the target atoms. As one cascade 
produces fewer defects in average than those produced by two separate cascades of the same 
total energy, sub-cascade formation leads to an increase in the number of the Frenkel pairs 
produced. 

Fundamental findings of MD simulations of atomic displacement cascades are that the core 
region undergoes a local melting that has a strong influence on the number of displaced 
atoms in the cascade and on the primary state of damage. The observation of local melting, 
with its attendant features of high pressure, liquid-like diffusion, and re-solidification, 
provides the basis for understanding many aspects of cascade damage. In most materials the 
high pressure developed in cascades does not cause plastic deformation. This is largely 
because the spherical stress state created by a cascade is nearly hydrostatic. 

ii) Inelastic interaction between the particles and the electrons of the solid leads to excitation 
of electrons. In metallic materials under consideration here, all electronic excitations are 
quickly thermalized and do not, in general, lead to radiation damage. 

iii) Inelastic interaction between the particles and the nuclei of the target leads to the 
production of transmutation products. Nuclear reactions where gaseous elements are 
generated are very important because gases, particularly helium, are known to affect 
materials properties already at very low concentrations. Transmutation helium can affect the 
behavior of irradiated metallic materials (e.g. steels) in three ways. First, helium stabilizes 
vacancy clusters, which, in turn, cause an increase in the number of interstitial clusters (i.e., 
helium ties up vacancies and reduces interstitial-vacancy recombination). Interstitial clusters 
can then grow into dislocation loops and increase the strength of materials. Secondly, helium 
stabilizes the clusters up to higher temperatures than in the absence of helium. The third 
effect involves the migration of helium to grain boundaries during irradiation, causing 
intergranular brittle failure under load, a phenomenon referred to as helium embrittlement. 
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1.2.2 Introduction to radiation damage 

It is well known that changes in mechanical, physical and dimensional properties of 
irradiated materials, such as steels, result directly from the production and evolution of the 
damage microstructure. Although the features of the damage microstructure depend on the 
type of steel investigated, the kinds of defects that evolve and the processes involved are 
common to a wide range of steels. These defects and processes include: 

• Perfect dislocation loops and network dislocations: perfect dislocation loops can move on 
their glide cylinders and continue to expand by net self-interstitial absorption. These 
large, perfect loops ultimately become indistinguishable from the network dislocations 
originally present in the materials. Network dislocations and large loops can climb and 
glide into lower energy configurations or annihilate with neighboring dislocation 
segments of opposite type (recovery) [40, 41]. 

• Frank loops: self-interstitial clustering leads initially to the formation of what is referred 
to as ‘black dot’ damage in conventional transmission electron microscopy (TEM). 
However, high resolution TEM techniques allow identifying these small defect clusters as 
faulted, interstitial-type dislocation loops [42]. Once nucleated, they continue to grow by 
net self-interstitial absorption and are clearly distinguishable at larger sizes as Frank 
loops. Their growth continues until they become unstable and unfault into perfect loops 
or until they interact with network dislocations to be directly incorporated [43]. 

• Bubbles: bubbles are primarily helium-gas filled cavities in irradiated materials. Helium 
is produced by endothermic (n,α) reactions in virtually all of the major constituents of 
steels by neutrons with energies in the MeV range and, hence, will be produced in large 
quantities in the fusion reactor environment. As an insoluble species, helium combines 
with vacancies to form bubbles. Once nucleated, the bubbles grow by a combination of 
helium and net vacancy absorption to maintain a mechanical equilibrium between their 
internal pressure and the sintering stress given by 2γ/r, where γ is the surface energy and r 
is the bubble radius [40]. 

• Voids: it is believed that beyond a certain critical radius, helium bubbles become unstable 
and grow as voids by net vacancy absorption without the need to maintain mechanical 
equilibrium, because of the lowest free energy of cleavage system [44]. Hence, a cavity 
population with a bimodal size distribution develops, which includes small sub-critical 
sized helium bubbles and large voids. 

• Stacking fault tetrahedra (SFTs): they are the most stable defect clusters of vacancy type 
observed in low stacking fault energy fcc metals and alloys like Cu, Au, austenitic 
stainless steels, etc. A commonly accepted mechanism for SFT formation considers the 
expansion of partial dislocations from a faulted Frank vacancy loop. SFTs can also form 
directly from cascade collapse. Some works showed that voids nucleate preferentially at 
SFTs and that bubbles could also grow at the expense of SFTs [45]. 

• Precipitates: a variety of second phases form as a result of thermally induced precipitation 
and irradiation-induced segregation. These include M6C and M23C6 carbides, Ni3Si (γ), 
Fe2Mo (Laves) and Ti6Ni16Si7 (G) phases. The propensity to form these phases depends 
strongly on the material composition and environment [46]. 
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Irradiation-induced dislocation loops in Fe-base materials with a bcc crystalline structure 
have at small sizes a Burgers vector of 1/2 a0 <111> [47-50] and occasionally a0 <100>, as 
reported in [48]. At larger sizes, beyond about 5 nm, they may present both 1/2 a0 <111> and 
a0 <100> Burgers vectors [49, 50]. It should be noted that a0 <100> loops are more 
frequently observed in Fe as compared to other bcc metals. Using e.g. the inside-outside 
contrast technique in TEM the a0 <100> loops reveal an interstitial nature [49]. At high doses 
the ferritic/martensitic steels develop a network of dislocations with both 1/2 a0 <111>, 
which is favored in the bcc structure [51], and a0 <100> Burgers vectors, the latter being 
predominant when the Cr content is below 6 wt.% [52]. Irradiation-induced a0 <100> 
dislocations arise from the growth of 1/2 a0 <111> interstitial loops [50, 52, 53]. The Burgers 
vector of irradiation-induced dislocation loops depends also on irradiation temperature; in Fe 
at 60°C it is 1/2 a0 <111>, while at 550°C it is a0 <100> [54]. With increasing the irradiation 
temperature, but below 300°C, the dislocation loop structure slightly coarsens; in e.g. the 
F82H RAFM steel the loop number density decreases and the loop size increases [55]. From 
about 300°C [50] to 350°C [55-57] this coarsening becomes more significant. 

In ferritic/martensitic steels, irradiation-induced precipitation of secondary phase precipitates 
is often observed [58]. One of the most detrimental precipitation expected in steels containing 
more than about 10 wt.% Cr, the composition beyond which the enthalpy of mixing of Fe and 
Cr becomes positive [59], is the formation of α’ precipitates (Cr-rich). This was observed in 
TEM a long time ago following thermal ageing [60] and leads to the so-called 475°C 
embrittlement [61]. There have been several studies of Cr-Mo steels irradiated in fast reactors 
or mixed-spectrum reactors in the temperature range from 300 to 650°C up to 70 dpa. These 
studies revealed the formation of irradiation-induced precipitates already below about 450°C. 
The identified precipitates include M6C carbides, G-phase, α’-phase and Chi-phase 
(compound with a complex cubic structure, like Fe36Cr12Mo10) precipitates. This kind of 
precipitation superimposes on the as-tempered precipitates and the tempered martensite 
microstructure, which generally remains stable, although the 9Cr-1MoVNb steel substructure 
was observed to coarsen as a result from irradiation at 300 to 500°C to 37-39 dpa. Laves 
phases may also form during thermal aging at 400 to 600°C [62-65]. 

Amorphization of M23C6 precipitates was first observed [66] in the ferritic/martensitic steel 
DIN 1.4926 irradiated with 800 MeV protons at temperatures up to 230°C. Amorphization 
was initially observed at a dose of 0.39 dpa, the amorphous structure coexisting with a 
crystalline structure in the same precipitate, and appeared to be complete at 3.4 dpa, as a 
result from segregation processes enhanced by irradiation. 

The presence of solute gas atoms, such as O and He [67-69], plays an important role in the 
nucleation of voids, as they stabilize the 3-dimensional geometry for a small vacancy cluster, 
which is actually less stable than the platelet geometry [70]. There have been a number of 
studies regarding helium effects on the microstructural evolution of ferritic/martensitic steels 
using ‘single beam’ He implantation experiments or the so-called ‘dual-beam’ experiments, 
whereby He is injected while the specimen is being simultaneously irradiated with Fe ions, 
for instance, in order to create displacement damage. The latter experiments allow adjusting 
the He/dpa ratio to a chosen value [71-74]. For example, ion implantation of He to 
5000 appm into the EM10 and 9Cr-1Mo ferritic/martensitic steels at 250 and 550°C [75] 
produces cavities that are visible only at 550°C using TEM [76]. Note that this implantation 
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corresponds to an irradiation dose and a dose rate of 0.8 dpa and 2.5×10-6 dpa·s-1, respectively 
[75]. In this case there is clear evidence of cavities at the grain boundaries [76]. Increasing 
the He injection rate at a given temperature and total He content, or decreasing the 
implantation temperature with the implantation rate and the accumulated He amount kept 
constant, results in a decrease of the mean He bubble size and in an increase in the bubble 
number density. At higher He implantation temperatures, typically above 0.4 Tm, where Tm is 
the melting temperature, bubble nucleation in ferritic/martensitic steels occurs preferentially 
at dislocations, martensitic laths, grain boundaries and precipitates. Bubbles tend to be 
elongated and strongly faceted [71, 76, 77], with facets parallel to {100} planes. At lower 
temperatures and/or high implantation rates the tiny nanometric bubbles that are created 
appear spherical when characterized by means of conventional TEM techniques. However, a 
recent study revealed, using holography in a TEM, that these small bubbles may be actually 
facetted, as well [78]. Some attempts have also been made to evaluate the He content inside 
bubbles using techniques such as SANS [76, 79] and electron energy loss spectroscopy 
(EELS) [80]. However, they simultaneously sample a number of bubbles that may exhibit 
various sizes, He contents and pressures. Furthermore, following dual-beam irradiation, a 
bimodal cavity size distribution can be seen in a given temperature range that depends on the 
irradiation conditions (see for instance [73, 74]). The larger cavities contain a He pressure 
below the equilibrium pressure. Such voids appear when a helium bubble reaches a critical 
size/gas content beyond which the cavity begins to grow more quickly as a result of an excess 
flux of vacancies over interstitials, due to a bias in the point defect elimination at sinks [81]. 

 

1.2.3 Introduction to radiation effects 
The irradiation-induced microstructure may strongly affect the materials properties. Changes 
of the physical properties may include a decrease of electrical conductivity (especially at low 
temperatures) and/or of thermal conductivity (especially for ceramic materials). Changes of 
the mechanical properties may include hardening (referred to as ‘radiation hardening’), 
embrittlement effects and/or a loss of creep strength. Embrittlement effects include a loss of 
ductility in tensile tests, a loss of fracture toughness, and an increase in the ductile-to-brittle 
transition temperature associated with a decrease in the upper shelf energy. Void formation 
may engender a macroscopic increase in the volume of the irradiated material, a phenomenon 
referred to as ‘void swelling’, favored by the presence of He, leading to a loss of dimensional 
stability. Irradiation creep and irradiation growth may also occur, as well as irradiation-
assisted stress corrosion cracking. In addition, irradiated materials may become radioactive, 
due to the formation of radioactive impurities by nuclear transmutation reactions. 
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1.3 Fundamentals of Small Angle Neutron Scattering (SANS) 
 
1.3.1 Small angle scattering methods 
Scattering methods are commonly used for the analysis of nano-sized objects such as clusters 
and precipitates. They relate to the analysis of the pattern generated when a planar wave hits 
a scattering system composed of any number of scattering centers or objects. 

Due to the reverse relationship between the real and reciprocal lattices, information on large 
distances in the real space is confined to small scattering vectors (q) in the reciprocal space, 
i.e., to small scattering angles. For larger q values, one distinguishes three regimes of small 
angle scattering: the Guinier regime, the fractal regime and the Porod regime. The Guinier 
regime provides information about the average size of isolated diffracting objects, when these 
objects are small in comparison to the size of the incident beam. The fractal regime provides 
information about the fractal dimension (d) of these objects. In this regime, the scattered 
intensity varies as q-d. The Porod regime provides information about the shape of the smaller 
entities composing the investigated objects. For still larger q values, one has access to the 
Bragg regime and therefore to the interatomic distances. 

Small angle scattering (SAS) is the collective name given to the techniques of Small Angle 
Neutron Scattering (SANS), Small Angle X-ray Scattering (SAXS) and (Small Angle) Light 
Scattering (LS or SALS). In each of these techniques a radiation is elastically scattered by a 
sample, and the resulting scattering pattern may provide information about the nature, size, 
shape, orientation and number density of certain components of the sample. 

LS cannot be used to study optically opaque samples and SAXS cannot be employed to study 
thick samples or samples requiring complex containers, while SANS (and SAXS) probe 
different length scales than LS. Thus, these techniques are complementary to a large extent. 
They do, however, also share several similarities. The most important of these is the fact that, 
with minor adjustments to account for the different types of radiation, the same basic 
equations and laws (for example, those proposed by Guinier, Zimm, Kratky or Porod) may be 
used to analyze data obtained by means of any of these three techniques. 

Figure 1.3.1.1 illustrates the various interaction mechanisms occurring between a beam of 
neutrons, X-rays or electrons and a material. X-rays (red) and electron beams (green) both 
interact with electrons in the material; with X-rays the interaction is electromagnetic, whereas 
with electrons it is electrostatic. Both of these interactions are strong, and none of these two 
beams penetrates the matter very deeply. Neutrons (blue) interact with atomic nuclei via the 
very short-range strong nuclear force and thus penetrate the matter much more deeply than 
X-rays or electrons. If there are unpaired electrons in the material, neutrons may also interact 
with them by a second mechanism: a dipole-dipole interaction between the magnetic moment 
of the neutron and the magnetic moment of the unpaired electron [82]. 
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Figure 1.3.1.1: Beams of neutrons, X-rays and electrons interacting with a material by different 
mechanisms [82]. 
 
Neutrons have particular advantages over X-rays [12]: 

1) The energy of a neutron with a short wavelength is six orders less than that of X-rays. 
The energy of a 0.15 nm X-ray photon is about 8.2 keV. Deposition of such an amount of 
energy in a sample can yield serious molecular degradation in biological materials and 
polymers, for instance; 

2) In the case of X-rays, the scattering cross-section increases with Z, while the magnitude 
of the neutron-nucleus interaction varies non-monotonously with Z. As the nuclei of all 
atoms are compact and of comparable size, neutrons are capable of interacting strongly 
with all atoms, including very light ones. Neutrons cannot only ‘see’ hydrogen, but they 
can differentiate between hydrogen isotopes, as well as between other chemical elements; 

3) Atomic nuclei being some 104 to 106 times smaller than typical neutron wavelengths, the 
nuclei act as point scatters and neutron scattering is spherically symmetric. Atomic 
diameters being 0.1 to 10 times typical X-ray wavelengths, the use of X-rays results in a 
decrease of the scattering intensity with increasing scattering angle; 

4) The interaction of neutrons with matter is weak, and the absorption of neutrons by most 
materials is correspondingly small. Therefore, neutrons are very penetrating; 

5) Neutrons have a small magnetic moment that can interact with the spin and orbital 
magnetic moments present in a sample containing atoms with unpaired electrons, giving 
rise to an additional scattering mechanism; 

6) The neutron refractive indices of materials being slightly less than unity, this allows 
neutrons to be totally externally reflected from surfaces (provided the angle of incidence 
is less than some critical angle), a property that has spawned an entire field of research: 
neutron reflectometry (NR). This technique has been proven to be a powerful means of 
investigating surfaces and interfaces. 
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1.3.2 Small angle neutron scattering 

In this technique a neutron radiation is scattered by a sample (an aqueous solution, a solid, a 
powder or a crystal) and the resulting scattering pattern is analyzed to provide information 
about the nature, size, shape, orientation and number density of certain components of the 
sample (e.g cavities, precipitates). This technique allows the resolution of objects between 
0.5 and 200 nm in diameter, and the scattering signal increases with the sample thickness. 
Typical samples for SANS measurements have a surface of about 1 cm2 and a thickness of 
about 1 mm. 

Neutron scattering is classified into elastic and inelastic scattering. In the case of inelastic 
scattering, the wavelength of the scattered neutrons is different from that of the incident 
neutrons. In the case of elastic scattering, the neutrons transfer a small part of their kinetic 
energy T to the atoms as the following [83]: 

 

  

T =
4M

n
M

M
n
+ M( )

2
E sin

2
!

2
 (1.3.2.1), 

where Mn and M are the neutron mass and the atom mass, respectively, θ is the scattering 
angle, as shown in Fig.1.3.2.1, and E is the incident neutron energy. When sin(θ/2) is equal to 
0.1, the neutron energy loss is less than 1%. The wavelength of the scattered neutrons is 
approximately unchanged. 
 

 
 

Figure 1.3.2.1: Schematics of neutron elastic scattering [83]. 
 
There exist four different neutron scattering modes, i.e., elastic coherent scattering, elastic 
incoherent scattering, inelastic coherent scattering and inelastic incoherent scattering. The 
elastic coherent scattering at small angles is the most useful mode for the microstructural 
investigation of materials. Since the other three kinds of scattering reduce the coherence of 
the scattered neutron beam, it is very important to design a SANS experiment to reduce the 
contributions of the elastic incoherent scattering and the inelastic scattering and to subtract 
these interferences at the time of data analysis. 

Thus, SANS is ascribed to small angle elastic coherent neutron scattering, which is an 
isotropic scattering mode, and the behavior of the SANS intensity versus the employed 
diffraction vectors can be analyzed using the relevant coherent scattering law, such as the 
Guinier law, the Porod law, etc. 
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1.3.3 Cross section of neutron scattering by one atom 

Neutrons are scattered by the nuclei because of the nuclear force. As the range of the nuclear 
force is very short (10-13-10-12 cm) and the size of the nuclei is much smaller than that of an 
atom (∼10-8 cm), most of the materials appear very ‘dilute’ for the ‘eye’ of a neutron, as 
schematically illustrated in Figure 1.3.3.1 [84]. 
 

 
 

Figure 1.3.3.1: Schematics of neutron scattering [84]. 

 

When a monochromatic, collimated and uniform neutron beam with an intensity I0 and an 
energy E0 bombards a homogeneous sample, as illustrated in Figure 1.3.3.2, the beam 
intensity is attenuated at dx as [85, 86]: 

 
 
dI = I ! N V( ) !" ! dx  (1.3.3.1), 

where dI is the attenuated intensity after having passed through dx, I is the incident intensity 
at x, N is the number of atoms in the sample volume V, and σ is the interaction cross section. 
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Figure 1.3.3.2: Schematics of attenuation of a neutron flux [85, 86]. 

 

The macro-cross section is defined as Σ = (N/V)σ [85, 86]. The total cross section, σT, 
includes the coherent scattering cross section, σcoh, the incoherent scattering cross section, 
σinc, and the absorption cross section, σabs. Correspondingly, they have a macro-cross section 
equal to Σtotal = (N/V)σT, Σcoh = (N/V)σcoh, Σinc = (N/V)σinc and Σabs = (N/V)σabs [85, 86]: 
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 (1.3.3.2). 

By integrating over the sample thickness d, the transmission T is equal to: 
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The scattered intensity Is is equal to: 
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If the scattering is isotropic, the scattering cross section (σs = σcoh + σinc) is given by: 
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where b is the scattering length. 

The scattered intensity for an assembly of N atoms can be calculated by accounting for the 
phase of scattered waves in the context of the Born approximation [87]: 
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where Ω is the solid angle of the detector element, and bi and ri are the scattering length and 
position vector of the atom i, respectively. <…> denotes the average. (dσ/dΩ) is called the 
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differential cross section, and q is the magnitude of the momentum transfer (or scattering 
vector) given by: 
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where θ is the scattering angle. q is the most important variable describing the structure of the 
matter. The differential cross section may be divided into two terms [85, 86]: 
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where the relation <bibj> = <bi><bj> ≡ <b>2 was assumed for j≠i. 
This means that there is no correlation between bi and bj. By defining the dispersion of the 
scattering length as [85, 88]: 

 
  

!b( )
2

" b # b( )
2

= b
2
# b

2

 (1.3.3.9), 

one may rewrite the equation (1.3.3.8) as [85]: 
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 (1.3.3.10). 

The first term of the equation (1.3.3.10), which is relative to the structure of the matter, is 
called coherent scattering. The second term is the incoherent scattering, which is constant and 
independent of the structure of the matter. Thus [85]: 
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Thus, the coherent and incoherent scattering cross sections, σcoh and σinc, for an atom are 
respectively given by [88, 89]: 
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The incoherent scattering is ascribed to the different isotopes or species of the nuclei. It does 
not depend on q and is considered as an internal background originating from the sample. 
The magnitude of the incoherent scattering must be measured and subtracted before the 
coherent differential scattering cross-section (microstructure-relevant term) is further 
analyzed. No incoherent scattering is expected from isotropically pure samples. However, 
hydrogen (1H) has an extraordinarily large incoherent scattering cross section. This is due to 
the nuclear spin incoherence. A neutron has two quantum spin states, +1/2 and -1/2, each of 
which having a scattering length of b+ and b-, respectively. The neutron interacts with the 
nuclear spin of the atom. If the nucleus has a spin number of I, one obtains [89, 90]: 
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Substituting b+ = 1×10-12 cm, b- = -4.7×10-12 cm, and I = 1/2, one obtains σinc = 4π<(Δb)2> = 
78×10-24 cm2 for hydrogen, which is larger than σcoh = 2×10-24 cm-2. 

 

1.3.4 Theory of small angle neutron scattering 
The coherent cross section is obtained by accounting for the scattering length of nuclei and 
the phase difference. The intensity scattered by a one-component system may be then written 
as [85, 91]: 
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where I(q) is the absolute scattered intensity with the unit of the inverse of length. I(q) is also 
called the differential cross section. The vector quantity rij is given by rij = ri-rj. Here, we 
treat the diffracting objects as point scatters. As only the coherent scattering is considered, 
<b>2 may be written as b2 and the relation <bibj> = <bi><bj> ≡ <b>2 is assumed for j ≠ i. 
Therefore, a structure factor S(q) may be defined as [85, 91]: 
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The quantity S(q) does not depend on the scattering method, e.g. X-rays, neutrons, or light, 
but on the structure of the system itself. The SANS intensity I(q) is then given by [85, 91]: 
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where v0 is the volume of a scattering object, defined by: 

 
  
V = v

0
N  (1.3.4.4). 

In most cases, the scattering objects are regarded as very dilute objects in a system consisting 
of N scattering objects in a volume V, each scattering element having a scattering length b. 
Therefore, the scattered intensity is given by [85, 91]: 
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where Δn(r) is the fluctuation in the number density of scattering objects from the mean value 
at a position r. Thus, 
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and 
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r" = 0  (1.3.4.7). 

<Δn(r)Δn(r’ - r)> refers to the density correlation of the objects, where <…> denotes the 
average over the space. A correlation function, G(r), can be then introduced [85, 91]: 
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In comparing equations (1.3.4.7) and (1.3.4.8), it can be seen that the equation (1.3.4.7) is a 
Fourier transform of G(r). A Fourier transform of Δn(r) gives the scattering amplitude, f(q): 
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By multiplying f(q) with its Fourier conjugate, f*(q), the scattering intensity can be obtained:  
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 (1.3.4.10). 

By using equations (1.3.4.4), (1.3.4.6) and (1.3.4.8), S(q) can be written as [85, 91]: 
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Figure 1.3.4.1 shows the relationship between the density fluctuation function, Δn(r), the 
correlation function, G(r), the scattering amplitude, f(q), and the structure factor, S(q) [85]. 
When a monochromatic neutron beam of wavelength λ bombards a sample, the incident 
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neutrons are transmitted, scattered or absorbed by the sample. Scattered neutrons at positions 
P and Q interfere with each other because of the phase difference related to q · r, where q is 
the scattering vector as already defined in the equation (1.3.4.7). The space described by q is 
called the Fourier space or reciprocal space (q-space). The term ‘reciprocal’ originates from 
the fact that q has the unit of a reciprocal length, i.e., 1/λ. On the other hand, the space 
defined by r vectors is called the real space. The structure in the real space, as observed 
through G(r), is related to the structure factor S(q) in the q-space by the Fourier transform 
given by the equation (1.3.4.11). Therefore, the information on large objects appears in the 
region of low q values and that on small objects appears in the region of large q values. 
 

 
 
Figure 1.3.4.1: Schematic representation of the scattering principle and the relationship between the 
density fluctuation function, Δn(r), the correlation function, G(r), the scattering amplitude, f(q), and 
the structure factor, S(q) [85]. 
 
The goal of an elastic coherent scattering experiment is to get knowledge about the static 
structures existing in a sample, Δn(r), by analyzing the scattered intensity, I(q), from the 
sample. G(r) can be obtained by calculating the inverse Fourier transform of I(q) or S(q) [85, 
91]: 
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It is not possible, however, to evaluate f(q) from I(q) because information on the phase in f(q) 
is missing. Therefore, in many cases, a model describing Δn(r) is first constructed. Then, 
comparison of the experiment with theory (model) is made in terms of G(r) or I(q). 
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1.3.5 Scattered intensity for a mixing of (p+1) (≥  3) species 

Equation (1.3.4.1) can be easily extended to the case of a two-components mixture with Nα 
objects of scattering length bα (α = 1 or 2). The scattered intensity in the unit solid angle is 
then given by [85]: 
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or 

 

   

I
!
q( ) =

b
1

2

v
0

S
11

!
q( ) +

2b
1
b

2

v
0

S
12

!
q( ) +

b
2

2

v
0

S
22

!
q( )

=
1

v
0

b
1

( b
2
)

S
11

S
12

S
21

S
22

!

"
#

$

%
&

b
1

b
2

!

"
#

$

%
&

 (1.3.5.2), 

where S12 = S21.Sαβ is the partial structure factor defined by: 
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In order to examine the inter-relationships between Sαβ(q) values, the following identity has 
to be considered [85]: 

 

   

exp !i
!
q "
!
r '!
!
r( )#

$
%
& 'n

1

!
r( ) + 'n

2

!
r( )#

$
%
&'n

1

!
r '( ) d

!
rd
!
r '

V '

(
V

(

= S
11

!
q( ) + S

12

!
q( )

 (1.3.5.4). 

In the case of an incompressible system, which states that the density of the whole system is 
constant, the left-hand side of the above equation becomes zero because: 
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A similar argument leads to: 
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Therefore, the scattered intensity function, I(q), for an incompressible binary system having 
two different scattering lengths, b1 and b2, is given by [85]: 
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The scattered intensity function for a mixture of (p+1) (≥ 3) species can be obtained by 
generalizing the argument of equation (1.3.5.1): 
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where 0 ≤ α ≤ p and 0 ≤ β ≤ p. Equation (1.3.5.9) can be rewritten with respect to a reference 
component. For example, in the case of an alloy containing more than two kinds of defect 
clusters, i.e., (p+1) (≥ 3), the alloy matrix is denoted as α = 0, and one may rearrange the 
equation (1.3.5.9) as: 
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where α = 1 to p represent the different types of defect clusters, such as precipitates, voids, 
bubbles, and dislocation loops. 

 
1.3.6 Intra- and inter-species interferences 
In the preceding sections the diffracting objects or species were treated as point scatters. 
Species, however, cannot be treated as point scatters. The typical size of a nano-species is of 
the order of a few nanometres or a few tens of nanometers, which is much larger than the 
wavelength of neutrons. It is essential, therefore, to decompose the structure factor into intra-
species and inter-species interference functions [85, 91]. Let us start with a one-component 
macro-species system of N species in a volume V. Each species consists of z segments with a 
scattering length b. A segment can be the statistical unit of a macro-species. In that case, the 
structure factor is given by [85]: 
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where rα,i refers to the position of the segment i of species α. Equation (1.3.6.1) can be 
decomposed into two functions [85]: 
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where P(q) and Q(q) are the normalized intra-species and inter-species interference functions, 
respectively, given by: 
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The average <…> has to be made over all orientations and configurations. Figure 1.3.6.1 
shows the relationship between the q and r vectors, where α is the polar angle between the 
two vectors. 
 

 
 

Figure 1.3.6.1: Relationship between the q and r vectors, α being the polar angle between the two 
vectors. 

 

For an isotropic system, the average over all orientations can be achieved by doing [85]: 
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Thus, 
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Here, the average is made only on the distances rij. Recalling the Taylor expression for sinx/x: 
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one obtains [85]: 
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The average over rij
2 is related to the radius of gyration, Rg, one of the most important 

parameters describing the size of a diffracting object. The square of the radius of gyration is 
given by [85]: 
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where rG refers to the position of the center of the gravity of the object. We simply write the 
‘average over Rg

2’ as Rg
2 hereafter unless the kind of average has to be specified. Rg

2 can be 
also written as [85]: 
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where the following identity was used: 
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By substituting equation (1.3.6.10) to equation (1.3.6.8), one obtains [85]: 
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or for qRg << 1:  
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Equation (1.3.6.13) is called the Law of Guinier [92]. 

The square of the radius of gyration, Rg
2, for a given shape of diffracting objects can be easily 

obtained by using the following equation [85]: 
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For example, for a rod of length L: 
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For a sphere of radius R: 
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For a disk of radius R: 
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For a disk of radius R and length L: 
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For an ellipsoid of half-axes a, b and c: 
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When the shape of the scattering objects is known and the objects are dispersed in a medium 
with a low concentration, Rg

2 can be evaluated by using the Law of Guinier [93]. 

For a dilute and dispersed system, the inter-objects interference term, Q(q), can be neglected 
and the scattered intensity is simply given by [85]: 
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where φ is the volume fraction of the scattering objects. Therefore, by plotting the logarithm 
of I(q) as a function of q2, Rg

2 is easily evaluated from the slope of the curve in the region of 
low q values. This plot is called a Guinier plot. The intercept with log I is proportional to the 
product of the number of segments for all species, z, with the volume fraction, φ, of the 
scattering objects. 

The intra-species interference function, P(q), can be calculated for some limited cases. For 
objects with a well-defined shape P(q) can be calculated analytically to some extent. Since 
P(q) represents the shape of the objects, it is also referred to as a ‘form factor’. We list here 
the exact expression of the form factor of various objects, which may take all orientations 
with the same probability [92]: 

For a sphere of radius R, where J3/2(x) is the Bessel function of order 3/2: 
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 (1.3.6.21). 
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For an ellipsoid with axes of 2a, 2a, and 2µa [94], where ψ is the angle between the main 
axis of the ellipsoid and the scattering vector: 
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For a cylinder of diameter 2R and height 2H [95], where J1(x) is the Bessel function of order 
1, and ψ is the angle between the main axis of the cylinder and the scattering vector: 
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For a rod of infinitesimal transverse dimensions and length 2H [96], where Si(x) is the sine 
integral: 
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For a disk of infinitesimal thickness and diameter 2R [97]: 
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1.3.7 Asymptotic behavior of scattering  
In small angle neutron scattering, the asymptotic behavior of the scattered intensity function 
provides useful information about the geometry of the scattering objects. As for a dilute and 
dispersed system the inter-object interference can be neglected, i.e., Q(q) ≈ 0, the structure 
factor of the system, S(q), is given by [85]: 
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where φ and M are the volume fraction (φ ∼ NM/V) and the mass (M ∼ z) of the scattering 
objects, respectively, and x (≡ qRg) is a dimensionless variable. P(x) is quite general and 
represents an object structure factor. Since the characteristic size of the system, i.e., the 
gyration radius of species, is given by Rg, P(x) can be written as [85]: 
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 (1.3.7.2) 

for large qRg or x values, where γ is the scattering exponent. The gyration radius can be 
written as Rg ∼ Mα. In two-phases systems in which each phase is homogeneous, the 
scattering function becomes sensitive to the interface structure at large q values (q >> 1/Rg). 
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For an assembly of two-dimensional objects, the structure factor is proportional to the total 
area of two-dimensional objects, AT = NA. Since the molar mass M is proportional to A for 
two-dimensional objects, the structure factor can be written as [85]: 
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Here, S(q) is assumed to become independent of A at large q values. Hence, one obtains γ = 2 
and S(q)  ∼ ATq−2 (surface scattering from an assembly of two-dimensional objects). 

For three-dimensional objects, where the mass M is proportional to A3/2 and the total area of 
the objects AT = NA, the structure factor has the following form [85]: 
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If S(q) becomes independent of A at large q values, one obtains γ = 4 and S(q) ∼ ATq−4 
(surface scattering from an assembly of three-dimensional objects). This relation, i.e., the q−4 
power dependence of the structure factor (or of the scattered intensity), is called the Porod 
law [98, 99]. The exact form of the Porod equation is given by: 
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where L is a proportional constant having the unit of length. A modification regarding the 
contrast factor had to be made here to suit SANS, because the original equation was derived 
for small-angle X-ray scattering. The asymptotic behavior for objects having a large aspect 
ratio and a preferential orientation is highly dependent on their orientation distribution, as 
discussed by Shibayama et al. [92]. 

Deviations from the Porod law when a finite interface thickness is accounted for were 
investigated by Ruland [100] and Vonk [101]. The interface curvature was investigated by 
Tomita [102, 103]. The principles derived have been applied to determine the interface 
thickness and the interface curvature (area-averaged scattering mean curvature) [104, 105]. 

 
1.3.8 Fractal objects 

Small angle neutron scattering is a powerful technique to study materials with a random 
structure, such as fractal objects [106]. A pioneering work describing `fractals` or `fractal 
geometry` has been reported by Mandelbrot [107]. Hereafter, we present the scattering law 
for fractal objects. Fractal objects exhibit dilution symmetry (or self similarity). In other 
words, they look similar in spite of zooming-out or zooming-in the view. There are two types 
of fractals: mass fractals and surface fractals [107]. 

We introduce the fractal dimension for mass fractals, Dm, and for surface fractals, Ds. These 
dimensions are different from the space dimension, d. 
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The fractal dimension of a topologically (d-1)-dimensional surface is given by [85]: 

   A ~ R
D

s  (1.3.8.1), 

where A is the (d-1)-dimensional Euclidean measure of the surface area. The lower limit of 
Ds is (d-1). This is the case of a perfectly smooth minimal surface like the one of a soap 
bubble. The upper limit of Ds is d. This value can be achieved by a highly convoluted surface 
that fills the d-dimensional space. Therefore, 

 
  
d !1< D

s
< d  (1.3.8.2). 

Percolation, gels and porous media can be described by mass fractals, for which the 
following relation holds [85, 91]: 

   M ~ R
D  (1.3.8.3). 

The scattering intensity (or structure factor) becomes extensive depending on the total surface 
area AT for surface fractals and on the total mass M for mass fractals. Hence, for surface 
fractals: 
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and for mass fractals: 
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On the other hand, the asymptotic behavior of the scattered intensity has the following 
scaling form [85, 91]: 
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Thus, by substituting equation (1.3.8.5) into equation (1.3.8.6) and by rearranging, one 
obtains: 
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This gives γ = D. Hence, for mass fractals: 
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Similarly, for surface fractals: 
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As γ = 2d-Ds for surface fractals, one may write: 
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Note that equation (1.3.8.10) can be reduced to the Porod equation by introducing d = 3 
(three dimensions) and Ds = 2 (smooth surface), i.e., 
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In the above discussion, it was assumed that the masses are uniform in the system. However, 
in many cases, the masses of the objects are not uniform but are distributed in size. If the 
distribution is narrow (weak polydispersity), it does not change the asymptotic behavior, i.e., 
I(q) ~ q-D. On the contrary, objects having a polydispersity of power law type (strong 
polydispersity) are often found in random structures, e.g. in percolation models and in sols 
near the gelation threshold. In that case, the number distribution of objects of mass M is given 
by [85, 91]: 
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where τ is the polydispersity exponent, h(M/Mz) is a scaling function for the polydispersity, 
which decays rapidly for M > Mz [108], and Mz is the z-averaged mass that is given by [85, 
91]: 
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 (1.3.8.13). 

Note that τ = 2.2 for three-dimensional percolation model and τ = 2.5 for Bethe lattice. The 
polydispersity averaged scattered intensity I(q) is given by [85]: 
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The asymptotic behavior of I(q) for polydispersed mass and surface fractals is then given by 
[85, 91]: 
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for mass fractals, and by: 
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for surface fractals. 

The relation between the scattering exponent γ = -[logI(q)/logq] and τ is shown in 
Figure 1.3.8.1 [85]. 
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Figure 1.3.8.1: Relation between the scattering exponent γ = -[logI(q)/logq] and τ [85, 106]. 

 

To summarize, SANS allows obtaining quantitative information from a specimen such as the 
nature, size distribution, number density, geometry and orientation of scattering objects, even 
if these objects are of fractal nature. 

 

 

1.4 Practical use of the SANS technique 
 

Scattering of a neutron beam by a sample is illustrated in Figure 1.4.1 [85]. ki and kf are the 
wave vectors of the transmitted beam and the diffracted beam, respectively. Their magnitudes 
are equal to 2π/λi and 2π/λf, respectively, where λi and λf are the wavelengths of the 
transmitted beam and the diffracted beam, respectively. Small angle approximation yields 
λi ≈ λf ≈ λ. θ is the scattering angle and q is the diffraction vector. Small angle approximation 
also yields sinθ ≈ θ. Therefore, the Bragg’s law 2d sin(θ/2) = nλ may be written as d ∝ λ/θ, 
where d is the diffraction length scale in the real space of the scattering objects of interest. On 
the other hand, as |q| = sinθ |kf| ≈ sinθ 2π/λ ≈ θ 2π/λ one obtains: 
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Figure 1.4.1: Scattering of a neutron beam by a sample [85]. 
 

In SANS the magnitude of scattering is described by a cross section σ. The differential cross 
section of scattering of a macroscopic sample is (dσ/dΩ)(q), where Ω is the scattering solid 
angle, which describes quantitatively the interaction between the neutrons and the sample and 
contains complete information on the microstructure of the sample. When the differential 
cross section can be normalized by a scattering volume the scattering intensity per unit 
volume may be written as [85]: 
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where N and V are the number and volume of the diffracting objects, respectively. A typical 
SANS experiment is illustrated in Figure 1.4.2, and the various interaction modes between 
the neutrons and the sample are represented in Figure 1.4.3. 

 

 
 

Figure 1.4.2: Schematics of a SANS experiment. 
 

 
 

Figure 1.4.3: Schematics of the interaction modes between the neutrons and the sample. 
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Most of the incident neutrons are transmitted, some are absorbed and some are scattered 
(θ > 0). In general, there are some energy transfer (ΔE ≠ 0), but in the case of elastic small 
angle scattering it is very small, i.e., ΔE ≈ 0 and θ ≤ 10°. The scattered intensity, I, is a 
function of θ and ε (detector efficiency, < 1) [85]: 
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A SANS experiment allows measuring the scattered intensity, I, at a distance L and an angle 
θ, in comparison to the incident intensity, I0, to get the differential scattering cross section per 
unit solid angle [85]: 
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The incident intensity, I0, is equal to φ0⋅A⋅ε, where φ0 is the incident flux, A is the sample 
aperture size and ε is the detector efficiency that depends on the neutron wavelength λ. The 
wavelengths of interest are in the range of 10-5000 Å. The diffraction length scale, d’, is 
proportional to 2π/q or to λ/θ (see Figure 1.4.1.). 

SANS can handle various forms of material (liquids, gels and solids). Typical SANS samples 
have an area of about 1 cm2, but their optimal thickness, d, is actually determined by the 
features of the material to be measured. As shown in Figure 1.4.3, the incident beam, I0, 
entering the sample may be subject to coherent scattering, incoherent scattering, absorption 
and/or multiple coherent scattering. As previously mentioned, the elastic coherent scattering 
at small angle is the most useful interaction mode for microstructural investigation of the 
materials. Since the other three kinds of interaction reduce the coherence of the scattered 
neutron beam, it is very important to optimize the thickness of sample, in order to obtain 
sufficient signal and to minimize the contributions of the incoherent scattering, absorption 
and multiple coherent scattering, and to make a series of measurements on reference 
materials and samples to be able to subtract these interferences at the time of data analysis. 

As previously mentioned, if the number density of scattering objects is N/V, the scattering per 
unit volume, dΣ/dΩ, is equal to (N/V)dσ/dΩ. When a scattering event occurs at 0 ≤ x ≤ d with 
a probability dσ/dΩ, the attenuation of the incident neutron beam before the collision is 
exp (-ΣTx) and the attenuation after the event is exp(-ΣT(d-x))/cosθ, where ΣT is the total 
scattering cross section given by [85]: 
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Integration of the scattered intensity, I(θ), along x, i.e. through the sample, with cosθ ≈ 1 
(small angle approximation), yields [85]: 

 

  

I(!) = "
i
#$%Ad exp &'

T
d( )(

)
*
+ N V( )

d,

d%

= "
i
#$%Ad exp &'

T
d( )(

)
*
+

d'

d%

 (1.4.7). 



32 LITERATURE SURVEY CHAPTER 1 

 

Transmission is defined as the attenuation of the incident beam intensity due to scattering and 
absorption. The attenuation of the beam intensity, -dI, through dx is equal to [85]: 
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By integrating over the sample thickness, one obtains [85]: 
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The transmission, T, is given by [85]: 

 
  

I

I
0

= transmission = e
!"

T
#t  (1.4.11), 

or 
  

T =
I
!=0( )

I
0

= exp("#
T
d)  (1.4.12). 

The scattered intensity, Is, is given by [85]: 
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The relation between Is and d is shown in Figure 1.4.4. It can be seen that Is reaches a 
maximum for d = 1/ΣT. At this point the transmission is equal to 37%. However, this 
thickness value is optimal only when Σcoh << ΣT ≈ Σinc + Σabs. When Σcoh ≈ ΣT, the thickness 
value d = 1/ΣT is too large, as in that case the specimen undergoes severe multiple scattering 
problems. Therefore, it is necessary to reduce the specimen thickness in order to increase the 
transmission value so that T ≥ 90%. 
 

 
 

Figure 1.4.4: Relation between the scattered intensity and the specimen thickness. 
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1.5 Examples of applications of the SANS technique 
 

A number of SANS investigations of the microstructure of ferritic/martensitic steels, in the 
as-annealed or irradiated condition, have been reported. 

 
1.5.1 As-annealed steels 

The microstructure of a modified version of the ferritic/martensitic steel referred to as 
MANET has been investigated using small- and wide-angle polarized neutron scattering 
[109]. The specimens were measured in the ferromagnetic state at room temperature, 
magnetized to saturation in a vertical magnetic field of 1 T. With respect to the conventional 
SANS technique, the use of polarized neutron beams provides additional microstructural 
information through the analysis of the interference term. Furthermore, it has the advantage 
of eliminating spurious background contributions to SANS. Finally, the availability of SANS 
data for a Q-range extended over three orders of magnitude, as it was the case in this study, is 
extremely useful to properly characterize complex steels such as ferritic/martensitic steels. 
SANS measurements were performed on two specimens that were heat-treated at two 
different austenization temperatures, namely 1075°C and 1200°C, for 0.5 h followed by rapid 
air quenching (3600°C/min). The nuclear-magnetic interference term and the comparison of 
the size distribution functions obtained from the nuclear and magnetic scattering components 
allowed identification of three kinds of microstructural inhomogeneities for an austenization 
temperature below 1200°C: (1) tiny C-Cr elementary aggregates (1 nm or less in size), (2) 
larger (1-25 nm) Fe-carbides, and (3) much larger inhomogeneities arising either from M23C6 
carbides or from fluctuations in the Cr distribution. 

 

1.5.2 Irradiated steels 
It was already demonstrated, in the case of stainless steels, that the irradiation-induced 
defects can be clearly distinguished in SANS, and that SANS results well correlate to TEM 
results in the case of defects larger than about 1 nm [110]. 

On the other hand, a series of RAFM steels with a Cr content ranging between 7 and 12 wt.% 
were investigated by SANS following neutron irradiation between 250 and 400°C to doses 
between 0.7 and 2.9 dpa [111]. SANS measurements were performed at room temperature in 
a saturating magnetic field of 2 T perpendicular to the incident neutron beam direction, in 
order to separate the magnetic and nuclear scattering cross-sections. It is difficult by using 
TEM to detect and study the α-α' phase separation, because of the very weak difference in 
electron scattering contrasts of Fe and Cr. Furthermore, in ferritic/martensitic steels, the 
ferromagnetic character of the matrix and the high density of interfaces limit the possibilities 
of fine structure analysis by TEM. SANS is much more powerful to characterize the mean 
size, shape and number density of precipitates, because of the large difference between the 
neutron coherent scattering lengths of Fe and Cr. In addition, since the ferrite is ferro-
magnetic, the ratio of the magnetic and nuclear SANS contrasts is different for the matrix and 
the precipitates and can provide information on their chemical composition. This study 
showed that when the Cr content of the bcc ferritic matrix is larger than a critical threshold 
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value (about 7.2 at% at 325°C), the ferrite separates under neutron irradiation into two 
isomorphous phases, Fe-rich (α) and Cr-rich (α'). The kinetics of phase separation was found 
much faster than under thermal aging. The quantity of α'-phase precipitates, which contribute 
significantly to the irradiation-induced hardening of the 9-12 wt.% Cr steels, was observed to 
increase with the Cr content, the irradiation dose and when the irradiation temperature is 
reduced. The influence of Ta and W added to the RAFM steels was found negligible. In the 
case of the low Cr content F82H RAFM steel irradiated at 325°C to 2.9 dpa, where α' phase 
does not form, a small SANS intensity was detected, which was attributed to irradiation-
induced point defect clusters of vacancy-type. 

The α-α' phase separation has been also studied in detail by SANS in thermally aged [112] 
and, to a lesser extent, in irradiated binary [113] Fe-Cr model alloys. SANS has also revealed 
the precipitation of nano-sized M2C carbides, responsible for the first stages of secondary 
hardening in a Fe-9Cr-1Mo alloy, particles which were too small to be detected using TEM 
[114]. The SANS technique was also used to determine the composition and structure of 
nano-sized precipitates in irradiated reactor pressure vessel steels [115]. A careful analysis of 
an extensive SANS database showed clearly that the precipitates that form in aged and 
irradiated Fe-Cu alloys are essentially pure Cu. These precipitates are believed to be the 
dominant hardening feature resulting in severe embrittlement of irradiated reactor pressure 
vessel steels. 

SANS has been also used to study the growth of helium bubbles in the F82H RAFM steel 
[115]. Specimens have been homogeneously implanted at 250°C with 400 appm He and then 
annealed at temperatures up to 975°C. SANS measurements were performed at room 
temperature in an horizontal magnetic field applied perpendicular to the incoming neutron 
beam in order to fully align the magnetic moments in the specimens. Thus, only nuclear 
scattering occurs in the horizontal plane, while nuclear and magnetic scattering occur in the 
vertical one. In that case the purely magnetic scattering is given by the difference between the 
vertical and horizontal macroscopic differential SANS cross-sections. The helium bubble 
volume distribution functions obtained showed that a dense population of small bubbles, 
1 nm or less in size, is accompanied by a secondary distribution of bubbles, one order of 
magnitude larger, as expected from results of TEM observations performed after post-
implantation annealing. The microstructure evolution was found to be temperature 
dependent. The uniform bubble distribution produced by low temperature implantation 
evolves into a bimodal one when the post-implantation annealing temperature is increased. In 
a more recent investigation, Henry et al. [76] have studied with both TEM and SANS the 
microstructure resulting from implantation of helium (as 23 MeV α particles) at 250°C and 
550°C into two 9%Cr ferritic/martensitic steels (T91 and EM10). Of particular interest are 
the results of the implantation at 250°C. By applying a magnetic field during the SANS 
measurements, helium bubbles were evidenced, their mean size was determined (1.15-
1.2 nm) as well as their volume fraction (0.95-0.79%), which corresponds to a very high 
number density of helium bubbles (1.17×1024 m-3 in T91 and 8.5×1023 m-3 in EM10), while 
only a high density of small dislocation loops was observed in TEM. 
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1.6 Introduction to simulation methods 
 

Multiscale simulations constitute nowadays a major tool in the investigation of radiation 
damage and effects, as it allows establishing solid foundations for understanding the 
relationship between radiation damage and the induced mechanical response of the target 
material, starting at the atomic scale. Molecular dynamics simulations is one of the 
techniques that is largely used in this field as it allows an atomistic description of the 
generation of the damage by irradiation and of the interaction of mobile dislocations with 
irradiation-induced defects. 

 

1.6.1 Molecular Dynamics (MD) simulations 
Molecular dynamics is a method that allows simulation of the dynamics of an N-body system, 
that is to say its evolution in time. It is a mean to probe the dynamic properties but also the 
static properties of a system. It is based on a deterministic interpretation of nature where the 
behavior of a system can be computed if we know the initial conditions and forces of 
interaction between the atoms in the system. The methodology consists in identifying or 
constructing a model describing the interaction forces between the atoms, computing the 
trajectories of the atoms using the discretized laws of classical Newton mechanics, and 
finally analyzing those trajectories to obtain observables. The method used to describe the 
interaction forces characterizes the simulation. Chemists usually use the idea of ‘force field’, 
whereas physicists prefer to use the idea of ‘interaction potential’ from which the forces are 
derived. In the case of classical MD, the electronic information on the binding between atoms 
is implicitly included in an analytic function through empirical parameters fitted on known 
physical properties of the material of interest. ab-initio methods can be also used to calculate 
the potential energy of the system. In that case, one speaks of ab-initio or quantum MD. 

Atomic displacement cascades take place in length and time scales of the order of the 
nanometer and the picosecond [116], respectively, and can be ideally studied by MD 
simulations [117]. It should be noted that there is at present no direct experimental 
information on the structure and dynamic energetics of atomic displacement cascades that 
last less than 25 ps in volumes smaller than thousands cubic nanometers. The development of 
computer technology allows using sufficiently large simulation box sizes and time scales to 
simulate the time evolution of a cascade to its complete cool down and to avoid self-
annealing effects due to periodic boundary conditions. Furthermore, due to their highly 
inhomogeneous and non-equilibrium nature, binary-collision approaches such as the linear 
transport theory [118] and Monte-Carlo simulations do not provide information regarding the 
cooling stage of the cascade during which many-body effects are important. 

In principle, a very simple method to implement foundations of MD simulations relies on 
classical mechanics, classical non-linear dynamics, kinetic rate theory, statistical mechanics, 
sampling theory, conservation principles and solid-state physics, as summarized below. 

Newton’s second law of motion relates the acceleration of an atom to the force acting on it: 
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where m is the mass of the atom. The acceleration of the atom is given by: 
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 (1.6.2), 

where ri is the position vector of the atom i. For an N-body system, 3N second-order, 
ordinary differential equations of motion may be derived from the Newton’s second law of 
motion. If the system of N atoms is an isolated system, the total energy of the system is 
conserved, i.e., the sum of the potential energy and kinetic energy is kept constant. In that 
case, the Hamiltonian of the system may be written as [119]: 
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where Pi is the momentum of the atom i. The potential energy U arises from interactions 
between atoms. By deriving the equation 1.6.3, one obtains [119]: 

 

  

!p
k
=
!H

!r
k

!r
k
=
!H

! p
k

 (1.6.4). 

The Hamilton’s equations of motion are equivalent to the Newton’s second law of motion 
[119]: 
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 (1.6.5). 

The Hamiltonian above is only valid for an isolated system. If the system is not isolated 
additional terms appear and the value of the Hamiltonian is no more equivalent to the total 
energy of the system. In a non-isolated system the Hamiltonian is conserved but not the total 
energy of the system. 

As previously mentioned, the goal of MD simulations is to obtain the trajectories of a set of N 
atoms interacting with each other through a potential function U by solving the above 
equations of motion. In an isolated system the derivative of the potential with respect to the 
atom positions gives the forces acting on these atoms. Given the force values, the new 
positions of the atoms can be calculated using the Newton’s second law of motion. Therefore, 
the key component of MD simulations is the interatomic potential, since it characterizes the 
properties of the system. 

An interatomic potential U(rN) can be approximated as the sum of two-body to N-body 
contributions of the form [120]: 
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where the first term represents external forces and the other ones refer to interactions between 
atoms. The most important term is the second one: the pair potential. This pair potential 
depends only on the separation between two atoms, rij. 

Lennard-Jones [121] introduced a soft-sphere pair potential of the form: 
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 (1.6.7), 

which includes both a short-range, repulsive force and a longer-range attractive force. The 
short-range force prevents the system from collapsing and the long-range attractive 
interaction maintains the structure bonded. The range and strength of the forces depend on 
the values of n and m. The usual choice is m = 6 and n = 12. The value of m = 6 comes from 
the London’s theory for dispersion [121-125], but there is no justification for the value of 
n = 12. The Lennard-Jones potential (also know as the 6-12 potential) may be then written as 
[125]: 
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 (1.6.8). 

This potential is well adequate for noble gases, and it has been used also for metals. For 
example, in the case of Fe-Fe the parameters to be used are σ = 2.209 Å and ε = 40.00×10-21 J 
[126]. Figure 1.6.1 shows the potential energy in reduced unit (u* = u/ε and r* = r/σ) versus 
the distance between two atoms for the Lennard-Jones potential. 
 

 
 

Figure 1.6.1: Lennard-Jones pair potential in reduced unit [127]. 
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In the case of metals, an interatomic potential developed by Daw and Baskes in 1984 [128] is 
probably the most widely used and successful. This potential considers that a metallic bond 
occurs due to the immersion of an ion into a free electron gas. Under this assumption, the 
energy of N atoms is given by: 
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This so-called ‘embedded atom potential’ (EAM) consists of two terms. The first term is a 
two-body potential that represents the repulsion between the ion of interest and the rest of the 
ions in the system. The second term is a multi-body function that represents the energy to 
embed an atom i with an electron density ρh,i that arises from the linear superposition of 
spherically averaged atomic electron densities. One of the main advantages of this potential is 
environmental dependent, since a change in the coordination number of an atom results in a 
different electron density, which changes the bond energy. The embedding function, electron 
density and pair potentials can be obtained either from ab-initio calculations or from fitting to 
experimental properties, such as the atomic volume, the elastic constants or the ground state 
structure. 

When angular-dependent interactions contribute significantly to the bonding, pair potentials 
like those described above are not sufficient and three-body or higher-order terms must be 
included in the potential energy. This was done in the case of covalently bonded systems like 
silicon [129, 130], carbon [131, 132] and transition metals [133]. 

MD simulations of radiation damage and effects on ferritic/martensitic steels are presently 
limited by the availability and accuracy of empirical interatomic potentials capable to 
describe the alloying elements present in such materials. Radiation damage and effects on bcc 
Fe (α-Fe) and Fe-base model steels (e.g. Fe-C, F-Cr, Fe-Cr-C) were recently addressed in a 
comprehensive manner from a computational perspective, using large-scale MD simulations, 
with an emphasis on both the qualitative and quantitative aspects of the processes under study 
by identifying the operating mechanisms and extracting numerical information that allowed 
the quantification of the relevant parameters [134]. All the MD simulations were performed 
following a logical sequence of events, encompassing the pertinent time and space scales 
from the formation of small interstitial clusters in atomic displacement cascades to the 
determination of the irradiation-induced yield stress increase (radiation hardening), useful for 
micromechanical estimations. Examples of recent results are reported just below. 

Dislocation loops in ferritic/martensitic steels exhibit both 1/2 a0 <111> and a0 <100> 
Burgers vectors in TEM, with a predominance of a0 <100> loops. It is believed, but not 
confirmed, that these loops are interstitial in nature [47, 135-137]. Both experimental 
observations [47, 135-137] and atomistic simulations [117, 138] have confirmed the stability 
of 1/2 a0 <111> and a0 <100> loops in ferritic/martensitic steels. Molecular dynamics 
simulations of high-energy atomic displacement cascades in Fe have revealed the formation 
of small, one-dimensionally mobile 1/2 a0 <111> self-interstitial atom clusters following the 
thermal stage of high-energy displacement cascades collapse, within a few picoseconds after 
the initiation of the event, as a consequence of cooperative phenomena without long-range 
diffusion [117, 139]. The a0 <100> loops have been recently proposed to form from the direct 
interaction of these small, cascade-produced, 1/2 a0 <111> clusters [136, 140] and grow by 
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the biased absorption of 1/2 a0 <111> loops to sizes visible in TEM, i.e., ≥ 1 nm [140]. 
Therefore, the population of a0 <100> loops is directly related to the fate of 1/2 a0 <111> 
clusters produced in atomic displacement cascades and, in this sense, the effect of impurities 
and solute atoms, or other foreign inclusions, on the formation, evolution and migration of 
these clusters may provide critical insight into the understanding of how the population of 
a0 <100> loops evolves as a function of the specific irradiation parameters. However, the 
1/2 a0 <111> clusters are sub-nanometer in size and their detection by experimental means is 
limited by the time and spatial scales involved. In addition, the kinetics governing the 
nucleation and growth of a0 <100> loops occur over time scales that cannot be easily 
captured experimentally. 

Fe-Cr potentials are needed to model radiation damage in ferritic/martensitic steels. Recently, 
two different interatomic potentials for Fe-Cr were developed [141, 142], which reproduce 
the change in sign of the heat of mixing of the Fe-Cr system occurring at 10% Cr [59]. One 
of these potentials [141] was used to simulate the damage production in Fe-Cr alloys [143]. It 
was found that the content in Cr does not cause drastic changes in the cascade efficiency 
relatively to pure Fe. No clustering of Cr was observed. A fraction of Cr atoms remains in 
interstitial position after the cool down of the cascade, an effect that could influence the long-
term evolution of the microstructure.  

Molecular dynamics simulations of the primary state of damage in Fe-He showed that the 
presence of He in interstitial sites promotes the formation of self-interstitial atom clusters 
[144]. Their size and number density are drastically increased as compared to the case of pure 
Fe or Fe with He in substitutional sites [144, 145]. When He is in interstitial sites, it tends to 
combine with self-interstitial atom clusters [144]. This feature may drastically reduce the 
mobility of interstitial clusters relatively to pure Fe, with a significant impact on the 
subsequent evolution of irradiation-induced defects in the alloy, as vacancy clusters may 
grow more easily due to the reduced annihilation rate, and then on its mechanical properties. 

In bcc metals, the propagation mechanism of screw dislocations dictates the plastic response 
at low temperatures and their behavior in the presence of irradiation-induced defects (e.g. 
small dislocation loops) and the dynamics of their interaction are the key for understanding 
radiation hardening in conditions relevant to fusion power reactors. For instance, a high 
number density of irradiation-induced defects in the appropriate temperature range can result 
in radiation hardening by dislocation pinning, leading to a characteristic yield stress increase 
that can be measured experimentally using standard methods (e.g. tensile tests). However, the 
atomistic nature of the interaction makes these processes very difficult to study using 
conventional experimental techniques, whereas MD has been successfully applied to a 
number of scenarios involving mobile dislocations and various types of lattice defects [146-
153]. Note that, akin to atomic displacement cascade simulations, such MD simulations are 
dependent on the used interatomic potential [154, 155]. A major issue in simulating by MD 
the dislocation glide in bcc structures is the mobility of the screw dislocation with its three-
fold symmetry core [155, 156]. Voids appear to be strong obstacles to moving dislocations 
[151, 153, 157]. A 2 nm void presents an obstacle strength of 590 MPa to the passage of an 
edge dislocation [157]. He in solid solution doesn’t have a significant effect on the yield 
stress before it reaches 1.0 at.% He [157]. A 2 nm He bubble is a weaker obstacle than a 2 nm 
void when the He content is low, at 1 to 2 He atoms per vacancy [157]. Beyond 2 He atoms 
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per vacancy, a content at which the bubble is the weakest, the resistance of the He bubble 
increases with He content. At 5 He atoms per vacancy, the He bubble becomes a much 
stronger obstacle than the void, which is due to significant loop punching [157], whose 
stochastic nature induces scatter in the resulting obstacle strength [158]. With increasing the 
temperature the cavity obstacle strength decreases [159]. In the literature there is 
experimental evidence of gas bubble induced loop punching, such as for H bubbles in Cu 
[160] and He bubbles in Al-0.4Li [161]. ab-initio calculations suggest that such an effect 
might be also effective in Fe [162], which would lead to pressurized He bubbles that could 
release their pressure by emitting self interstitial atoms. This so-called self-trapping of He 
[163] was however to our knowledge never observed experimentally in ferritic/martensitic 
steels. 

 
1.6.2 Transmission Electron Microscopy (TEM) image simulations 

From the atomistic perspective, the difficulty associated with results of MD studies is their 
lack of experimental confirmation, resulting from the sample sizes that can be treated with 
the current computing capabilities and the non-trivial relation between the defects generated 
with MD and their equivalent TEM images. This has led to the development of special tools 
to investigate the correlation between defect structures produced by atomistic simulations and 
their observation in TEM [164]. These tools partially bridge the gap existing between 
simulations and experimental observations and help in assessing experimental limitations in 
the observation of small defect clusters. The weak beam TEM imaging technique [165] is the 
most appropriate technique for observing and analyzing irradiation-induced defect clusters 
with a size ≥ 1 nm, as it provides an improved spatial resolution and signal-to-background 
ratio over the usual bright/dark field TEM imaging mode. However, as there exists a non-
trivial relation between the actual configuration of defect clusters (size and geometry) and 
their TEM image, whatever the imaging technique being used, TEM image simulations of all 
possible types of irradiation-induced defect clusters created by MD simulations are 
indispensable to interpret results of experimental TEM observations and to close the gap 
between experimental TEM images and MD simulations [166-168].  

Such a procedure has been already extensively applied to irradiated fcc metals. In such 
materials, beside SFTs and voids originating from vacancy clusters, small defect clusters are 
in the form of faulted dislocation loops (Frank loops) that have a Burger’s vector equal to 
b = a0/3 <111>, where a0 is the lattice parameter, and can be either vacancy or interstitial in 
nature [169-172]. The correlation between the features of defect clusters created by MD and 
their corresponding TEM image was investigated by simulating conventional TEM images of 
pre-defined defect clusters, using a novel technique [164], in terms of: (1) the visibility or 
image contrast of the defect clusters, (2) the limits to which they can be identified on the 
basis of their TEM image features, and (3) the correlation between their real size and their 
TEM image size. The study focused on interstitial Frank loops in Al and SFTs in Cu, which 
are smaller than about 3 nm. It was shown that this virtual microscopy allows not only 
addressing the above-mentioned points, but also assessing experimental TEM limitations for 
observing small defect clusters. It appeared that a defect cluster of Frank loop-type in Al 
would in principle be visible experimentally down to surprisingly small sizes (from two 
interstitials upwards), provided that the specimen preparation is optimized, while SFTs in Cu 
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would be difficult to identify below a size of 19 vacancies. The defect clusters obtained by 
MD simulations of high-energy displacement cascades in Al and Ni were also studied by 
means of TEM image simulations via the multislice method [166]. 
 

1.6.3 SANS signal simulations 
Analysis of the SANS signal provided by irradiation-induced defect clusters, in terms of type, 
size and number density of the defects, is a non-trivial task. Therefore, simulations of the 
SANS signal of all possible types of irradiation-induced defect clusters created by MD 
simulations would be needed for interpreting the results of SANS experiments. However, to 
my knowledge, only analytical solutions have been published, but no such simulations. 
Therefore, within the framework of this thesis I have developed a new method for simulating 
the SANS signal of defects created by MD. The method developed is described in Chapter 2. 

 
 

1.7 Motivation of the thesis 
 
The importance of obtaining detailed information about the irradiation-induced 
microstructure has been recently demonstrated by the fact that the resistance to radiation 
damage of a material can be modeled and quantified from a set of parameters that include the 
structure of the material, the type and size distribution of the irradiation-induced defects and 
their accumulation rate as a function of the irradiation dose [173]. In recent investigations 
using TEM [174], a certain number of characteristics of the defect accumulation in the 
primary damage state have been established: 

(i) a linear increase in the defect number density with dose in body centered cubic metals, up 
to a saturation value which corresponds to the onset of the cascade overlap process; 

(ii) a difference of three orders of magnitude in the accumulation rate of defect clusters 
between face centered cubic and body centered cubic metals. 

However, the irradiation-induced microstructure is very difficult to assess by means of TEM, 
as this method samples a very small volume of material. Moreover, the annealing of the 
defect microstructure, which provides important information on its kinetic behavior, can 
hardly be studied with TEM, where due to the small thickness of the specimen the surface 
controls the annealing behavior. In addition, the attempts to quantify such a microstructure 
with TEM are limited by the spatial resolution of the method, which only allows the direct 
observation of defects whose size is larger than about 1 nm in weak beam TEM imaging. 
However, it is thought that a number of irradiation-induced defects have a size below 1 nm, 
which actually contribute to the hardening and/or embrittlement behavior of materials under 
irradiation. 

The SANS technique under applied magnetic field appears to be a very powerful technique, 
complementary to TEM, for studying irradiation-induced defects at the nanometer scale in 
ferromagnetic RAFM steels, either when the irradiation-induced defects are very small 
(< 1 nm), or because of a more favorable difference in the contrasts provided by the defects 
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and the matrix [175]. Indeed, it was clearly demonstrated that, in addition to the basic 
parameters (size, number density, geometry), SANS can provide information on the 
composition of the scattering objects on the basis of the magnetic to nuclear scattering ratio, 
and then it allows distinguishing metallic precipitates from voids or helium bubbles, for 
instance [76]. For a magnetically saturated Fe matrix, this ratio is governed by the square of 
the difference between the average scattering length of the scattering objects and that of the 
surrounding Fe matrix [176]. Therefore, the use of polarized neutron beams provides 
additional and unique microstructural information through analysis of the nuclear-magnetic 
interference term. It has also the advantage of eliminating spurious background contributions 
to SANS [109]. In addition, the possibility of obtaining SANS data over an extended Q-range 
(Q being the magnitude of the diffraction vector) is extremely useful to properly characterize 
complex steels, where various inhomogeneities of quite different sizes are present [109, 177]. 
Finally, SANS examines a much larger volume of material than TEM. 

On the other hand, MD simulations have proven to be very useful in understanding the 
production and evolution of defects during irradiation [117]. Since the great advantage of the 
MD treatment is that unequivocal determination of irradiation-induced defects is possible, 
due to its fully atomic resolution [178], MD simulations may be used to create a number of 
microstructural features typical of the irradiation-induced damage in pure metals. 

Therefore, the aim of this Thesis was to investigate very small irradiation-induced defects in 
RAFM steels for fusion reactor application by combing SANS experiments on RAFM steels 
with MD simulations of a number of possible irradiation-induced defects in pure Fe, as a 
model materials for RAFM steels and simulations of their corresponding SANS signal. TEM 
image simulations of the defects created by MD were also performed in order to help closing 
the gap between TEM experimental images [166, 167] and MD simulations [168] of 
irradiation-induced defects. 
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CHAPTER 2: EXPERIMENTAL AND SIMULATION TOOLS 
 
 
2.1 Materials 
 

The main material investigated in this Thesis work is the EUROFER 97 RAFM steel, heat 
E83697, produced by Böhler AG. Its composition is given in Table 2.1.1 [179]. This material 
was normalized at 1253 K for 0.5 hour and tempered at 1033 K for 1.5 hour. Therefore, it 
exhibits a tempered martensitic microstructure, as illustrated in Figure 2.1.1 [180]. In 
addition to the EUROFER 97 RAFM steel, a few specimens from the F82H (a Japanese 
material) and OPTIMAX A (a Swiss material) alloys have been also investigated, for 
comparison purposes. The chemical composition of the F82Hmod RAFM steel is also 
reported in Table 2.1.1. The chemical composition of the OPTIMAX A RAFM steel is 
reported in Table 2.1.2. 
 

 
 
Table 2.1.1: Chemical composition of the EUROFER 97 and F82Hmod RAFM steels [179]. Target 
values are given in parentheses. (a) Main alloying elements, (b) radiologically undesired elements in 
wt.% and ppm. 
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Figure 2.1.1: TEM image of the microstructure of the EUROFER 97 RAFM steel showing martensite 
laths joining one pre-austenite grain (PAG) boundary running across the image from the top right of 
the image to the bottom right [2]. Carbides (dark regions) decorate PAG boundaries and martensite 
lath boundaries. A few carbides are visible inside the laths. 
 

Element Fe Cr W Mn V C Mo Ta 

Content 
[wt.%] balance 9.24 0.96 0.56 0.24 0.094 0.093 0.08 

Element Ce Ni P B Nb O2 S N2 

Content 
[wt.%] 0.036 0.01 0.007 0.0061 0.005 0.00105 0.0002 0.00035 

 
Table 2.1.2: Main chemical elements contained in the OPTIMAX A RAFM steel. 

 
 

2.2 Irradiation experiments 
 

2.2.1 Specimens 
Series of small flat tensile specimens, 5.5 mm in gauge length, 20 mm in total length, 5 mm 
in width all along the gauge length and 0.3 mm in thickness, were cut out by spark erosion 
from the RAFM steels. Their geometry is illustrated in Figure 2.2.1.1. The two main surfaces 
of specimens were polished with papers of successively finer grades up to grade 1000. Some 
of these specimens have been kept apart for SANS measurements on reference specimens. 
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Figure 2.2.1.1: Geometry of small flat tensile specimens. 

 

2.2.2 Irradiation facility 
As no intense source of 14 MeV neutrons is presently available on earth, it is necessary to 
simulate irradiation by 14 MeV neutrons, by using for instance fission neutrons or high-
energy protons or heavy ions. The present Thesis work is based on the investigation of flat 
tensile specimens that were irradiated with 590 MeV protons in the PIREX (Proton 
Irradiation Experiment) facility, at the Paul Scherrer Institute (Switzerland), in various 
irradiation campaigns that took place between 2000 and 2003, i.e., before the start of this 
work. The PIREX facility was decommissioned at the end of 2003. 

As 14 MeV neutrons, 590 MeV protons produce atomic displacement cascades and 
transmutation nuclear reactions within the irradiated materials. However, it should be noted 
that while fission neutrons produce not enough helium and hydrogen, with respect to the 
amounts of gas atoms that will be produced in a fusion power reactor, 590 MeV protons 
produce too large amounts of impurities, including metallic impurities (Table 2.2.2.1). In 
particular, 590 MeV protons produce about 130 appm He/dpa and 800 appm H/dpa (in 
steels). The damage rate (in dpa/year) produced by 590 MeV protons is also slightly different 
from the one expected to occur in a fusion power reactor. Only the future International 
Fusion Materials Irradiation Facility (IFMIF) will actually provide irradiation conditions 
close to the ones expected to occur in a fusion power reactor at the level of the first wall. 
 

Defect 
production 
(in steels) 

Fusion neutrons 
(3-4 GW reactor, 

first wall conditions) 

Fission neutrons 
(BOR 60 reactor) 

High energy 
protons (PIREX) 

IFMIF (high-flux 
test module) 

Damage rate 
[dpa/year] 20-30 ~ 20 ~ 10 20-55 

Helium 
[appm/dpa] 10-15 ≤ 1 ~ 130 10-12 

Hydrogen 
[appm/dpa] 40-50 ≤ 10 ~ 800 40-50 

 
Table 2.2.2.1: Defect production in steels for various irradiation facilities [181]. 
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In the PIREX facility, six flat tensile specimens could be irradiated simultaneously in similar 
conditions of dose and temperature. The six specimens were mounted two by two, face to 
face, in three specimen holders (Figure 2.2.2.1). The three specimen holders were then 
inserted into three irradiation tubes. The three tubes were then fixed to the bottom extremity 
of the irradiation head (Figure 2.2.2.2). 
 

 
 

Figure 2.2.2.1: PIREX specimen holder for two flat tensile specimens. 
 

  
 
Figure 2.2.2.2: Left: Schematics of the PIREX irradiation head (only one irradiation tube is drawn 
instead of three). Right: Picture of the bottom part of the irradiation head: (A) shows the three tubes 
containing the six specimens, (B) shows a pipe belonging to the helium loop. The proton beam 
direction is perpendicular to the picture. 
 
A large amount of heat, between 2’000 and 11’000 W.cm-3, depending on the type of 
irradiated material, was deposited in the volume of the specimens by the proton beam. One of 
the main problems encountered in this type of irradiation is the cooling of the specimens. In 
the PIREX installation, a helium gas flowing through the system and the irradiation tubes was 
used as coolant. The helium gas circulated at a pressure of up to 50 bars and its temperature 
was regulated by a heat exchanger, cooled with liquid nitrogen, which cooled the gas at the 
exit of the specimen region, and a 9 kW electrical heater that preheated the input gas. 
Depending on the helium gas pressure being used and the helium gas temperature, the 
specimens could be more or less strongly cooled. As a consequence, the temperature of the 
specimens could be controlled to any desired value between 50°C and 350°C with a 
fluctuation of ±20°C. The temperature of the specimens was measured by means of a 
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thermocouple welded on either of the two central specimens. In the PIREX facility the beam 
intensity was around 15 µA and the damage rate was approximately 10-7 dpa/s. By assuming 
a practical irradiation time of about 60 hours per week, about 1 and 10 dpa (in steels) could 
be reached in one month and one year, respectively, accounting for the winter shutdown of 
the proton accelerator. 

The 590 MeV proton beam had a two-dimensional Gaussian-distribution profile. The beam 
size was set to 3×4 mm2, using small magnets, for most of the irradiation experiments. Then, 
using a wobbling device, the beam was made to move continuously along the gauge length of 
the specimens in order to achieve homogeneous irradiation conditions. 

 

2.2.3 Irradiation conditions 
Specimens of RAFM steels have been irradiated at various temperatures to various doses. 
The irradiation matrix of the specimens investigated in this work is reported in Table 2.2.3.1. 
 

Material EUROFER 97 F82H OPTIMAX A 

Temperature [°C] 50, 250, 350 50 50 

Dose [dpa] 0.3, 1.0, 2.0 0.3, 1.47 0.3 
 

Table 2.2.3.1: Irradiation conditions of specimens of RAFM steels. 
 

2.2.4 Dosimetry 
The dose achieved by the irradiated specimens was calculated using a method developed by 
D. Gavillet [182], which is based on the measurement of the activity (or amount of gamma 
ray emission) stemming from the radioisotopes formed in the irradiated specimens by nuclear 
transmutations. In the case of RAFM steels the main radioisotopes produced and measured 
are 54Mn, 51Cr, 57Co, 56Co and 46Sc. In this method, the dose is calculated by using a modified 
NRT formula (see § 1.2.1): 
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where 

D: Displacement damage or irradiation dose [dpa]  
δED: Damage energy cross section [eV.cm2] 
Ed: Threshold energy for displacement damage [eV] 
σi: Production cross section of the isotope i [cm2] 
λi: Decay constant of the isotope i [s-1]  
∆t: Decay time (time between the end of irradiation and the γ-counting) [s] 
ρm: Specimen mass density [g.cm-3] 
ρa: Specimen atomic density [cm-3]  
Aim: Measured activity of the isotope i after a cooling time ∆t [Bq] 
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Ai: Activity of the isotope i after the end of irradiation [Bq] 
Pt: Weight of the specimen [g] 

The variation of dose value all along the gauge of a tensile specimen lies within 20%. 

 

 

2.3 SANS experiments 
 

2.3.1 Specimens 
As mentioned under § 1.3.2, the usual size of a SANS specimen is about 1 cm2 by about 
1 mm in thickness. However, as mentioned under § 1.4, the thickness has actually to be 
optimized for each kind of material, in order to obtain a sufficient SANS signal and to 
minimize the contributions of the incoherent scattering and the absorption and multiple 
coherent scattering. In order to achieve this compromise it is necessary to calculate Σcoh and 
ΣT. In the case of the EUROFER 97 RAFM steel, the macroscopic cross-sections are given 
by: 

 
  

!
coh

= n
i
"

coh

i

i=1

k

# , !
inc

= n
i
"

inc

i

i=1

k

# , !
abs

= n
i
"

abs

i

i=1

k

#  (2.3.1.1), 

where ni is the number density of the element i, which is equal to fi⋅ρi⋅NA/Ai, where fi, ρi and 
Ai are the weight concentration, the density and the atom mass per mole of the element i, 
respectively. NA is the Avogadro number, and k refers to the number of chemical elements 
contained in the material. The values of these parameters are reported in Table 2.3.1.1 for the 
main chemical elements contained in the EUROFER 97 RAFM steel. 

It was found that Σcoh = 0.8618 cm-1 and ΣT = 1.1377 cm-1 for the EUROFER 97 RAFM steel. 
Therefore, Σcoh ≈ Σ,. This indicates that the thickness has to satisfy T ≥ 90%. The 
corresponding thickness value is d ≤ 0.9 mm. The flat tensile specimens that were irradiated 
in the PIREX facility well satisfy this condition and were directly used as specimens for the 
SANS measurements. 
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Element Fe Cr W Mn V Ta C He 

fi (wt.%) 89.1 8.9 1.07 0.46 0.2 0.15 0.12  

ρ i (g/cm3) 6.98 6.3 17.6 5.95 5.5 15.0 2.1  

Ai (g) 55.847 51.996 183.85 54.938 50.996 180.948 12.011 4.003 

ni (×1023) 0.7520 0.0807 0.0027 0.0039 0.0018 0.0004 0.0047  

bc (fm) 9.452 3.6357 4.7552 3.7502 0.4413 6.917 6.6484 3.263 

σcoh (barn) 11.225 1.6606 2.972 1.752 0.0184 6.0012 5.5512  

σ inc (barn) 0.4011 1.832 1.636 0.402 5.086 0.0117 0.0014  

σabs (barn) 2.563 3.056 18.32 13.32 5.084 20.65 0.0035  

Σ coh (cm-1) 0.8441 0.0134 0.0008 0.0007 0.000034 0.0002 0.0026  

Σ inc (cm-1) 0.0302 0.0148 0.0004 0.0002 0.0009 4.57×10-7 6.59×10-7  

Σabs (cm-1) 0.1927 0.0247 0.0050 0.0053 0.0009 0.0008 1.65×10-6  

 
Table 2.3.1.1: Typical values for the main chemical elements contained in the EUROFER 97 RAFM 
steel. 
 

2.3.2 Specimen holders 
Two specimen holders were designed and constructed for the SANS experiments that were 
performed in this work. One was dedicated to reference (unirradiated) specimens and the 
other one to irradiated specimens. A picture of such a specimen holder is shown in Figure 
2.3.2.1(left). It can be seen that a single specimen holder may contain up to eight specimens. 
In such a specimen holder each tensile specimen is actually located in between a series of 
plates including metallic fixing/alignment plates, a Cd plate that allows selecting precisely 
the specimen area to be measured, Cd being a neutron blocker element, and Al foils aimed at 
avoiding radioactive contamination of the other pieces by the irradiated specimens, as 
illustrated in Figure 2.3.2.1(right). 

 
 

  
 
Figure 2.3.2.1: Left: picture of a specimen holder. Right: example of the fixation system of a single 
tensile specimen.  
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In addition to unirradiated tensile specimens of the three RAFM steels investigated in this 
work, the specimen holder for reference specimens contained an empty place and a place 
with a Cd plate, for background measurements, as well as a standard specimen having a well-
known differential cross section, namely a water specimen, for calibration of the SANS 
intensity provided by the specimens of RAFM steels. Indeed, water provides isotropic 
neutron scattering, and furthermore coherent scattering can be neglected in the case of water. 
The differential cross section of a specimen of RAFM steel could be then calibrated by using 
the following equation: 
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where S and W stand for the specimen of RAFM steel and the water specimen, respectively, 
and I is the intensity measured at the pixel (i,j) of the detector.  

In what concerns the irradiated specimens, they were inserted into the series of plates and the 
eight assemblies were mounted into the specimen holder dedicated to irradiated specimens. 
This procedure was conducted in a hot cell at the hot laboratory of the Paul Scherrer Institute, 
using a remote handling system, due to the relatively important residual radioactivity 
provided by the irradiated specimens. This procedure is illustrated in Figure 2.3.2.2(left). In a 
further step, the specimen holder was inserted into a Pb bottle, as shown in Figure 
2.3.2.2(right), which was transported to the SANS-I line of the SINQ facility. Once the 
SANS measurements on irradiated specimens were achieved, the specimen holder was 
transported back to the hot cell for dismantling of the irradiated, i.e., radioactive specimens. 

 

  
 
Figure 2.3.2.2: Left: mounting of the irradiated specimens into the series of plates and the specimen 
holder. Right: Pb transport bottle. 
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2.3.3 SANS facility 
All SANS experiments have been performed in the SANS-I facility at the Paul Scherrer 
Institute (PSI). The SANS-I facility uses neutrons that are being produced by the Swiss 
Spallation Neutron Source (SINQ), as shown in Figure 2.3.3.1(left). The SINQ target is made 
of lead. Under irradiation by 570 MeV protons, which are produced by the PSI proton 
accelerator, the lead atoms emit neutrons via spallation nuclear reactions. 

 

  
 
Figure 2.3.3.1: Left: picture of the SINQ facility at the PSI. Right: picture of the SANS-I facility at 
the PSI. 
 

The design of the SANS-I instrument follows the classical concept of the D11-instrument at 
the Institut Laue-Langevin (ILL) in Grenoble (France). Installed at a cold neutron guide of 
the SINQ facility, it uses in its basic configuration a mechanical velocity selector for 
monochromatization and a straight pin-hole collimation system for the primary beam 
tailoring. Behind the specimen, in the secondary flight path, a two-dimensional position 
sensitive detector is used to register the neutrons scattered around the primary beam. Apart 
the velocity selector, the instrument is located in the guide hall of the SINQ facility, as shown 
in Figure 2.3.3.1(right), stretching to a total length of about 40 m with a secondary flight path 
of up to 20 m. The main components of the SANS-I facility are illustrated in Figure 2.3.3.2 
and described more in detail just below [183]. 

Neutron beam and wavelength selection: The neutron guide, facing the cold D2-moderator of 
the SINQ facility at its entrance, is curved to filter epithermal and higher energy neutrons. 
Coated with isotopically enriched 58Ni in the curved section, its lower cut-off wavelength 
(characteristic wavelength) is 0.42 nm. The cross section is a square of 50 × 50 mm2. Inside 
the bunker, the guide has a gap of 43 cm in which the beam shutter, a primary beam monitor, 
and the mechanical velocity selector are placed. A Dornier velocity selector [184] is used, 
rotating at a maximum speed of 28300 rpm for neutrons with a wavelength of 0.45 nm. The 
standard wavelength spread is 10%. 
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Collimation: The collimator allows for the adjustment of the collimation length, i.e., the 
distance between the two pinholes at the guide exit and at the specimen position, in discrete 
steps between 1 and 18 m, which then matches the Q-range chosen by selecting a certain 
specimen-to-detector distance. Mechanically, this flexibility is achieved by a system of eight 
collimator segments between 1 and 4 m long, mounted in sequence with vacuum-tight 
connections. Each section is a revolving device with three tubes. The aperture sizes at the 
beginning and at the end of the collimation system can be freely chosen up to the cross 
section of the neutron guide of 50×50 mm2. 
 

 
 

Figure 2.3.3.2: Main components of the SANS-I facility at the PSI. 
 
Detection: The secondary flight path is enclosed by a steel vacuum tube with a diameter of 
2.7 m. It houses a two-dimensional 3He multi-wire proportional counter with a sensitive area 
of 96×96 cm2 and 128×128 detection elements of 7.5×7.5 mm2 each. The detector is mounted 
on a rail-guided trolley such that it may be positioned with its detection plane at any distance 
between 1.50 m and 20 m from the specimen. Further, an increase in the Q-range at any 
detector distance can be achieved by an optional lateral displacement of the detector of up to 
50 cm, combined with a rotation around the central vertical axis to minimize parallax effects. 
Immediately in front of the detector, a beamstop of B4C-plates is mounted on a thin-walled 
Al tube, moveable in vertical and horizontal directions. 
Performance: The momentum transfer, Q, which corresponds to a given spot on the detector, 
is given by: 
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where λ is the neutron wavelength, r is the radial distance of the spot from the beam center, 
and D is the specimen-to-detector distance. If it is assumed that the closest distance to the 
beam center at which reliable data may be recorded is rmin = 5 cm, which is half the size of the 
largest beam stop, then the minimum Q value at D = 20 m and λ = 2 nm is Qmin = 8×10-3 nm-1. 
The maximal Q value at D = 1.5 m and λ = 0.45 nm with the detector centered to the beam 
axis (rmax = 48 cm) is Qmax = 4.3 nm-1 or, for a 50 cm lateral detector displacement 
(rmax = 96 cm), Qmax = 8 nm-1. The neutron flux data measured for various collimation 
distances, D, and wavelengths, λ, are shown in Figure 2.3.3.3. 
 

 
 
Figure 2.3.3.3: Neutron intensity at specimen position versus neutron wavelength for a 1 mA proton 
current entering the SINQ facility [183]. 
 

The main features of the SANS-I facility are summarized in Table 2.3.3.1 [183]. 
 

Neutron wavelength 0.45-4 nm 
Beam collimation 1-20 m 

Specimen-to-detector distance 1-20 m 
2D 3He detector 7.5×7.5 mm2, 128×128 pixels 

Accessible Q-range 6×10-3-10.5 nm-1 
Spatial resolution 0.5-400 nm 

Neutron flux in the specimen position for 4 m 
collimation and λ = 0.45 nm 30'000 n/cm2.s.mrad2.mA 

 
Table 2.3.3.1: Main features of the SANS-I facility at the PSI [183]. 
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2.3.4 Measurement procedure 
In order to obtain the SANS intensity provided by a given specimen of a given material, the 
following procedure was applied [185]: 

1. Beam alignment: The center of the specimen is aligned with the incident neutron beam 
using a laser beam and a neutron camera. 

2. Transmission factor measurements: The scattered intensities arising from a specimen, I, 
and from an empty place, I0, are measured at θ = 0, where θ is the scattering angle, in 
exactly the same conditions, and circularly averaged. The transmission factor of the 
specimen is then given by TS = I/I0 at θ = 0. In the case of a specimen located in a 
container, the transmission factor of the specimen is given by TS = TS+SB/TSB = IS+SB/ISB at 
θ = 0, where S refers to the specimen and S+SB refers to the specimen plus its container. 
The incident beam intensity has eventually to be attenuated to avoid saturation of the 
detector. This procedure was applied to all kinds of specimens, including irradiated and 
reference (unirradiated) specimens of RAFM steels, specimen holders, empty place, water 
specimen and water specimen holder. 

3. Background measurements: 

a. Measurements from an empty place: The scattered signal IEMP arises from scattering by 
the container, the windows and the collimation slits, and from air scattering: 
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where C0 = Φi A d ΔΩ ε t, Φi is the incident neutron flux, A is the illuminated specimen 
area, d is the specimen thickness, ΔΩ is the solid angle of each pixel, ε is the detector 
efficiency, and t is the counting time.  

b. Blocked beam measurements: A Cd specimen that absorbs all neutrons is used. The 
measured intensity, IBDG, arises from the detector dark current, stray neutrons and 
cosmic radiation: 
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4. Measurements of the intensity scattered by a given specimen: 

The raw scattered intensity is given by: 

 

  

I
S
= C

0
T

S +SB

d! Q( )
d"

#

$
%

&

'
(

sample

+
d! Q( )

d"

#

$
%

&

'
(

EMP

#

$
%
%

&

'
(
(
+ I

Blocked )beam
 (2.3.4.3). 

The corrected scattered intensity is given by: 

 
 
I

cor
= I

S
! I

BDG
( ) ! T

S +SB
T

SB
( ) I

EMP
! I

BGD
( )  (2.3.4.4). 

The corrected scattered intensity is then calibrated with the detector sensitivity: 
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Therefore: 
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There exist several methods for obtaining (dΣ(Q)/dΩ)S [85]. We used the direct beam flux 
method to obtain (dΣ(Q)/dΩ)W for the water specimen. Then, we applied the standard sample 
calibration method to obtain (dΣ(Q)/dΩ)S for the specimens of RAFM steels by using 
(dΣ(Q)/dΩ)W as a reference. 

a. Direct beam flux method: One measures the intensity from a direct beam with nothing 
along the beam, to the exception of an attenuator, in order to get IDirect: 
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b. Standard sample calibration method: One measures the intensity scattered by a specimen 
with a known absolute scattering cross-section (standard specimen), i.e., a water 
specimen in our case, at θ = 0 and in exactly the same conditions than in the case of other 
specimens, in order to get ISTD at θ = 0: 
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where dSTD is the thickness of the standard specimen and TSTD+SB is the transmission factor 
of the standard specimen plus its container. The scattering differential cross section of the 
specimen to be measured, (dΣ(Q)/dΩ)S, is then given by: 
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 (2.3.4.10). 

Examples of a SANS intensity pattern and corresponding (dΣ(Q)/dΩ)S values versus Q values 
are shown in Figure 2.3.4.1 [186]. The Q-resolution function is given by: 
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In the above equation δθ/θ refers to the accuracy of collimation, which depends on the 
parameters reported in Table 2.3.3.1, and on the detector resolution. The term δλ/λ refers to 
the wavelength spread. 
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Figure 2.3.4.1: Left: intensity scattered by a specimen, as recorded by the 2D detector. Right: 
circularly averaged dΣ(Q)/dΩ values versus Q values, Q being the magnitude of the scattering vector. 
Each annulus on the left corresponds to a single data point on the right [186]. 
 

2.3.5 Measurement conditions 
The SANS instrument is computer controlled by the SINQ instrument control software SICS 
[185] developed at the PSI. In practice, at the beginning of a campaign of SANS 
measurements on a series of specimens being part of a given specific holder, the beam was 
made to stay at each specimen position for about 1 minute, using a beam collimation distance 
of 3 m and a specimen-to-detector distance of 2 m, in order to measure the beam center 
position for all the specimens. Then, the transmission factor for all the specimens was 
measured during 5 minutes using a beam collimation distance of 18 m and a specimen-to-
detector distance of 18 m. Finally, the main measurement procedure was launched to get the 
SANS signal from all the specimens, including all kinds of reference specimens. During this 
procedure, each specimen was measured three times, for 30 to 100 minutes each time, 
depending on the intensity of the SANS signal obtained at the occasion of the first 
measurement. 

SANS measurements on the various specimens were performed with a neutron wavelength of 
λ = 0.47 nm and using a beam collimation distance of 3 m and a specimen-to-detector 
distance of 2 m, which allowed measurements over the Q-range 0.35 < Q < 4.7 nm-1, where 
Q is the scattering vector magnitude. The measurements were performed at room temperature 
with a horizontal, saturating magnetic field (H = 0.6 Tesla) applied to the specimen to be 
measured, using the device shown in Figure 2.3.5.1, perpendicularly to the incident neutron 
beam, in order to fully align the magnetic moments in the specimen. Thus, only nuclear 
scattering occurs in the horizontal plane, while nuclear and magnetic scattering occur in the 
vertical one. The purely magnetic scattering can be then obtained by calculating the 
difference between the vertical and horizontal macroscopic differential SANS cross sections. 
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Figure 2.3.5.1: Device generating a horizontal, saturating magnetic field (H = 0.6 Tesla) 
perpendicular to the neutron beam. 

 

2.3.6 Reduction of the raw data 
The BerSANS software package from Hans-Meier Institute (HMI) in Berlin (Germany) has 
been used for performing raw data reduction. This software is composed of a series of 
programs whose functions are listed in Table 2.3.6.1. 
 

Program Function 
SANSInit Initialization of the BerSANS programs 
SANSTrans Calculation of the transmission factors 
SANSArea Determination of the beam center 
SANSAni Background correction and data normalization 
SANSIso Reduction to 1D spectrum 
SANSIsoPlot Plotting of 1D spectrum 
corr,corr2 Projection of water file to another distance/collimation 

 
Table 2.3.6.1: Description of BerSANS software package functions. 

 
As described under § 2.3.4, the transmission factors for all the specimens were calculated by 
using the SANSTrans program of Table 2.3.6.1, and then the raw data have been corrected by 
first subtracting off the background and parasitic scattering and second accounting for the 
anisotropy of the detector by normalizing the scattered signal from a specimen of RAFM 
steel with the SANS signal from a water reference specimen with a known isotropic cross 
section, by using the SASNAni programs of Table 2.3.6.1. 

In a further step, SANSAni has been also used to treat the data in order to calculate the 
absolute scattering cross section dσ/dΩ. In this program the data treatment is done for each 
detector cell (i,j) individually. The raw intensities Iij-Measured were first corrected to account for 
the detector dead time τ by using the following formula: 



58 EXPERIMENTAL AND SIMULATION TOOLS CHAPTER 2 

 

 
  

I
ij!Corrected

= I
ij! Measured

1!
"

t
I

ij! Measured
i, j

#  (2.3.6.1). 

In the above equation, I refers to each data type, i.e., cadmium, water, water background, 
specimen background, and specimen, and t is the total measurement time used for obtaining 
the corresponding data type. After this treatment, the intensities were normalized to the 
individual monitor values recorded in the data files. 

In the standard case, the program calculates the absolute scattering cross section, dσ/dΩ, 
from the treated and normalized intensities obtained for the data of the types cadmium (Cd), 
water (W), water background (WB), specimen background (SB), and specimen (S), for each 
cell (i,j), according to the formula: 
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 (2.3.6.2), 

where T parameters are the transmission factors associated with the various data types, and A 
(A ≥ 1) and p (0 ≤ p ≤1) are the attenuation factor and the scattering probability of the 
specimen data type, respectively. The absolute error Δ(dσ/dΩ) was calculated from the errors 
of the various data types, using partial derivatives of equation (2.3.6.2), according to the 
formula: 
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When the two-dimensional data were reduced to one-dimensional data (e.g. through spherical 
averaging), one needed to determine the beam center. Finally the reduced SANS 1D spectra 
were calculated by using the SANSIso program of Table 2.3.6.1. 

 



CHAPTER 2 EXPERIMENTAL AND SIMULATION TOOLS 59 

 

2.4 Simulation tools 
 

2.4.1 MD simulations 
Interatomic potentials: MD simulations have been performed using the MDCASK code [187] 
with the Ackland 97 [188] and Ackland 04 [189] versions of the Finnis-Sinclair potential to 
describe the atomic interactions in Fe. The Ackland 97 and Ackland 04 potentials are 
embedded atom method (EAM) potentials developed within the Finnis-Sinclair framework. 
Then, the total energy of the simulation cell may be expressed using the equation (1.6.9). The 
Wilson-Johnson potential [190] and the Beck potential [191], which were used to describe 
Fe-He and He-He atomic interactions, respectively, include only pair-wise interactions. The 
Wilson-Johnson potential is purely repulsive and derived from Hartree-Fock-Slater (HFS) 
calculations using the modified Wedepohl method [190-193]. The Olsson potential [141], 
which was used to describe in Fe-Cr and Cr-Cr atomic interactions, is also an EAM potential 
developed within the Finnis-Sinclair framework. All the potentials were smoothly connected 
to the short-range, universal Ziegler-Biersack-Littmark (ZBL) potential [194] that is adequate 
at high energy (short interatomic distances). Note that these potentials were fitted to quantum 
physics calculation results in order to describe exactly the materials physical properties, like 
the lattice parameters the elastic constants, etc. 

Following a common practice [195], all presented results were obtained by working in the 
NVT canonical ensemble with periodic boundary conditions. Ensembles refer to 
thermodynamic systems with certain quantities kept constant and corresponding to different 
physical situations. Generally, systems can be described by three quantities (a fact arising 
from thermodynamics). The ensembles the most often used in MD simulations include the 
NVE (micro-canonical), the NVT (canonical for the common laboratory condition of fixed 
temperature), the NPT (isothermal-isobaric for the common laboratory conditions of fixed 
pressure and temperature) and the µPT (grand-canonical for the common laboratory 
condition of a fixed source of atoms or chemical potential) ensembles, where N, V, E, µ, P 
and T are the fixed atom number, volume, energy, chemical potential, pressure and 
temperature, respectively. Temperature control was made through boundary regions, which 
mimic a thermal bath. The final atomic configuration was analyzed using the Wigner-Seitz 
cell method (described later in this chapter) in the aim to detect and count defects. An empty 
cell corresponds to a vacancy and two atoms in the same cell correspond to an interstitial 
atom. 

Integration algorithms (predictor-corrector algorithms): Predictor-corrector algorithms are 
commonly used for integrating the equations of motion. The fourth-order Gear predictor-
corrector algorithm [196] was used in the present calculations. It includes three steps: 

1. Predictor: From the atom positions and their time derivatives up to a certain order, q, all 
known at a time t, one may predict the same quantities at a time t+Δt by means of a 
Taylor expansion. 

2. Force evaluation: The force is computed using the gradient of the potential at the 
predicted positions. The resulting acceleration will be in general different from the 
predicted acceleration. The difference between the two constitutes an error signal. 



60 EXPERIMENTAL AND SIMULATION TOOLS CHAPTER 2 

 

3. Corrector: The error signal is used to correct the positions and their derivatives. All the 
corrections are proportional to the error signal, the coefficient of proportionality being a 
‘magic number’ determined to maximize the stability of the algorithm. 

As explained under § 1.6.1, the goal of MD simulations is to compute the phase-space 
trajectories of a set of atoms. Given the interatomic potential, the force acting on each atom is 
calculated. From the force value and using the Newton’s second law of motion the 
acceleration of each atom is determined. By integrating these equations the next atom 
position due to the applied force is obtained. One of the standard methods to solve these 
ordinary differential equations is the finite difference approach. It is based on the idea that, 
given a set of positions, velocities and accelerations of atoms at a time t, the positions, 
velocities and accelerations of atoms at a time t+Δt can be computed, i.e., predicted, with a 
certain accuracy: 
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where x(t) = coordinate, u1 = x’(t) Δt, u2 = (1/2) x’’(t) Δt2, and u3 = (1/6) x’’’(t) Δt3, Δt being 
the time step. The correct atom trajectories cannot be obtained using these predicted values, 
as the equations of motion were not accounted for. However, using the predicted values of 
the atom positions at a time t+Δt the new values of acceleration can be calculated and 
compared to the calculated ones just above to estimate the error in the predicted values. 
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Using the error value the predicted values of positions, etc., can be then corrected: 
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 (2.4.1.3). 

The coefficients c0, c1, and c2 were calculated by Gear [196]. The values depend on the 
number of derivatives included and the order of the differential equation being solved. For 
example, in the case of the predictor-correction algorithm of 4th order presented just above, 
the values of the coefficients are: c0 = 19/120, c1 = 3/4, c2 = 1, c3 = 1/2, and c4 = 1/12. This 
type of algorithm is called a predictor-corrector algorithm. The MD procedure that is based 
on the use of this algorithm then consists in: 

1. Predicting the atom positions, velocities and accelerations at a time t+Δt, 
2. Evaluating the forces required for obtaining the new atom positions, 
3. Correcting the predicted atom positions using the new acceleration values. 
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Boundary conditions: Even with the most powerful computers only a small number of atoms 
can be followed using MD simulations. In addition, the atoms on the surfaces of the 
simulation box will experience very different forces than those present inside the bulk. In 
many situations it is important to avoid surface effects on the variables computed. In order to 
solve that problem, in the present work it was chosen to immerse the system into an infinite 
medium. This was achieved using periodic boundary conditions. This method consists in 
making infinite replicas of the original simulation box. Implementation is very simple: the 
atoms leaving the simulation box re-enter the box on its opposite side. 

As shown in Figure 2.4.1.1, the central box is the original simulation box and the surrounding 
boxes are replicas of it. When an atom leaves the simulation box on the one side of it, one of 
its images re-enters the box on the other side, keeping always the total number of atoms 
constant in the central box. At the same time, when energies or forces acting on each atom 
are computed, the periodic images must be taken into account. 

 

 
 

Figure 2.4.1.1: Schematic illustration of periodic boundary conditions for a simulation box. 
 
When a short-range interatomic potential is used, a cut-off radius is defined such that for 
distances far larger than the cut-off radius the interaction between atoms is zero. Therefore, 
the idea of periodic boundary conditions can be used to compute the interactions between the 
atoms in the central simulation box and all the surrounding images. This is done using the 
minimum image convention: each atom interacts only with atoms in a region equal in size to 
the main simulation box and centered around that atom. When the interatomic potential is not 
a short-range one, this approximation cannot be used and the total contribution of all images 
must be included. This is the case of Coulomb-type interatomic potentials. 

It is important to understand the limits of this approximation. When using short-range 
potentials the dimensions of the simulation box can be set such that a given atom does not 
feel the presence of its periodic image. However, in the case of long-range interatomic 
potentials, this is not true. Periodicity can be also a problem for modeling amorphous systems 
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and inhibits the occurrence of long wavelength fluctuations. If the side length of the 
simulation box is equal to L, no density waves with a wavelength larger than L will exist. 
However, periodic boundary conditions are still appropriate for short-range interactions and 
equilibrium thermodynamic properties. Repeating the simulations for different box sizes may 
provide an assessment of the validity of periodicity. 

Neighbor lists: In order to compute the forces acting over a set of N atoms, one has to account 
for the j neighbors of each atom i being part of the N atoms. In that case, if the distance 
between two atoms is smaller than the cut-off radius of the interatomic potential, one has to 
go to the next atom. This implies a total of N2 calculations. There are techniques to improve 
the calculation of the neighbors of each atom in the case of short-range interatomic potentials, 
where a cut-off radius for the interaction is well defined. One of these algorithms is the ‘link 
cell list’. This method consists in computing a set of cells on the top of the simulation box, 
with dimensions such that the side length of these link cells are as close as possible to the cut-
off radius of the interatomic potential. Once these cells are defined, the number of neighbors 
of a given atom is obtained by taking into account only the atoms inside its link cell and those 
in the nearest neighbor link cells. For example, in Figure 2.4.1.2 a system is divided into 25 
cells. In order to find the neighbors of atoms located inside cell 13, one should look only at 
those located inside cells 7, 8, 9, 12, 14, 17, 18, and 19 and inside the cell 13. By using this 
method in three dimensions 27⋅N⋅Nc interactions have to be computed, where Nc is the 
number of atoms in each cell. The number of calculations is reduced significantly by this 
way. 
 

21 22 23 24 25 

16 17 18 19 20 

11 12 13 14 15 

6 7 8 9 10 

1 2 3 4 5 

 
Figure 2.4.1.2: Example of a link cell map: eight neighbor cells (7, 8, 9, 12, 14, 17, 18, 19) have to be 
accounted for around cell 13. 
 
Common neighbor analysis method: The method of common neighbor analysis [197] was 
employed to characterize local atomic environments inside the defect clusters. This code 
calculates the number of vacancies, interstitial atoms and replacement atoms by using the 
Wigner-Seitz cell for fcc and bcc lattices. The nearest neighbors of a given atom are those 
that are closer to it than an appropriately chosen distance, rc, taken from the Wigner-Seitz 
cell, midway between the nearest and next-nearest neighbor shells. Results from such an 
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analysis are insensitive to the precise value of rc. One speaks of each pair of nearest neighbor 
atoms as being bonded and being connected by a bond, but this merely denotes a geometrical 
relationship and not a chemical one. Each of a bond’s two atoms has a set of nearest 
neighbors, the intersection of these two sets including the neighbors that the two atoms have 
in common. The bond can be characterized by examining this set of common neighbors and 
specifying three numbers: the total number of atoms inside the set, the total number of bonds 
between atoms inside the set, and the number of bonds inside the largest continuously bonded 
subset. While, in general, a given bond type may correspond to more than one possible 
common-neighbor configuration, this problem was not part of the present work. 
Simulation conditions: 

(1) MD calculations were performed to investigate the damage produced by atomic 
displacement cascades in pure Fe and in Fe containing either 0.1 or 1 at.% He uniformly and 
randomly distributed in either interstitial or substitutional sites. The interatomic potentials 
employed were the Ackland 97 potential [188], the Wilson-Johnson potential [190] and the 
Beck potential [191] to describe Fe-Fe, Fe-He and He-He atomic interactions, respectively. 
Prior to the cascade, a simulation box containing 0, 0.1 or 1.0 at.% interstitial or 
substitutional He in a uniform random distribution was equilibrated for 0.4-1.3 ps at the 
chosen temperature. Each cascade was realized in imparting a specified kinetic energy, EMD, 
to the selected PKA along a high-index crystallographic direction to avoid channeling. Each 
cascade was followed by a defect and cluster analysis using the tool described just above. 
Simulation conditions for atomic displacement cascades are summarized in Table 2.4.1.1. 
 

Sample types He sites Temperature 
(K) EMD (keV) Time (ps) Box size 

(nm3) 
Fe, Fe-0.1He,  

Fe-1.0He 
Substitutional, 

Interstitial 10, 300, 523 3, 5, 7, 10 25 18×18×18 

10×10×80* 

 
Table 2.4.1.1: Summary of MD simulation conditions for atomic displacement cascades in pure Fe, 
Fe-0.1 at.% He and Fe-1.0 at.% He with He either in interstitital of substitutional positions. * The cell 
size and orientation were fitted to the TEM image simulation conditions. 
 
(2) The most commonly observed interstitial dislocation loops (I-loops) in α-Fe using TEM 
were created by means of MD simulations. MD simulations were performed using the moldy 
code [187] with the Ackland 97 [188] version of the Finnis-Sinclair empirical potential to 
describe the Fe-Fe atomic interactions. The simulation cell was created with the I-loop 
located at different depths corresponding respectively to a zone close to the surface, at a 
quarter of the depth and in the middle of the foil. The procedure to create I-loops was the 
following: (1) 1/2 a0 <111>{110} and 1/2 a0 <110>{110} loops were generated by inserting 
one platelet of atoms, with a circular shape and a diameter of 1 or 2 nm, in between two 
adjacent {110} planes. This allowed us obtaining the appropriate Burgers vector of 
b = 1/2 a0 <110> or b = 1/2 a0 <111>; (2) a0 <100>{100} I-loops were generated by inserting 
two consecutive platelets of atoms, with a circular shape and a diameter of 2 nm, in between 
two adjacent {100} planes. Since the unit cell of a bcc structure has a stacking sequence of 
the type ‘ABAB’ along the <100> direction, the introduction of two consecutive {100} 
planes ensures that the normal stacking sequence is conserved. After having inserted the 
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platelets of atoms the simulation cell was equilibrated by performing a conjugate-gradient 
relaxation. Simulation conditions for I-loops are summarized in Table 2.4.1.2. 
 

Burgers vector b Habit plane Loop diameter (nm) Box size (nm3) 

a0 <100> {100} 2.0 
10×10×80, 
23×23×23** 

1/2 a0 <110> {110} 1.0, 2.0 10×10×80 

1/2 a0 <111> {110} 2.0 10×10×80 

 
Table 2.4.1.2: Summary of MD simulation conditions for I-loops in α-Fe. Note that all the cell sizes 
and orientations were fitted to the TEM image simulation conditions, except ** that was fitted to the 
SANS signal simulation conditions. 
 
(3) Cavities (voids and helium bubbles) were also created in α-Fe by MD simulations. The 
interatomic potentials employed were the Ackland 97 potential [188], the Wilson-Johnson 
potential [190] and the Beck potential [191] to describe Fe-Fe, Fe-He and He-He atomic 
interactions, respectively. The cavities had a spherical shape and a diameter of 2.0 nm. The 
procedure to create such nano-sized cavities was the following: (1) the void was created by 
removing a certain number of atoms in the central part of the simulation cell; (2) the helium 
bubble was created by replacing a certain number of Fe atoms by helium atoms in the central 
part of the simulation cell. After having applied such a procedure the simulation cell was 
equilibrated by performing a conjugate-gradient relaxation. Simulation conditions for cavities 
are summarized in Table 2.4.1.3. 

 
Cavity type Ratio of He/vacancy Cavity diameter (nm) Box size (nm3) 

Void 0 2.0 10×10×80, 
23×23×23** 

He bubble 0.5, 1, 2, 3 2.0 10×10×80, 
23×23×23** 

 
Table 2.4.1.3: Summary of MD simulation conditions for cavities in α-Fe. Note that all the cell sizes 
and orientations were fitted to the TEM image simulation conditions, except ** that were fitted to the 
SANS signal simulation conditions. 
 
 (4) Cr precipitates were also created in α-Fe by MD simulations. The interatomic potentials 
employed were the Ackland 04 potential [189] and the Olsson potential [141] to describe Fe-
Fe and Fe-Cr and Cr-Cr atomic interactions, respectively. The Cr precipitates had a spherical 
shape and a diameter of 2.0 nm. Such nano-sized Cr precipitates were created by replacing a 
certain number of Fe atoms by Cr atoms in the central part of the simulation cell. After 
having applied such a procedure the simulation cell was equilibrated by performing a 
conjugate-gradient relaxation. Simulation conditions for Cr precipitates are summarized in 
Table 2.4.1.4. 
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Defect type Ratio of 
Cr/vacancy Precipitate diameter (nm) Box size (nm3) 

Cr precipitates 1 2.0 10×10×80, 
23×23×23** 

 
Table 2.4.1.4: Summary of MD simulation conditions for Cr precipitates in α-Fe. Note that all the 
cell sizes and orientations were fitted to the TEM image simulation conditions, except ** that was 
fitted to the SANS signal simulation conditions. 
 

2.4.2 TEM image simulations 
Simulations of TEM images were achieved by using the Electron Microscopy Software 
(EMS) developed by P.A. Stadelmann [198]. The scattering wave function Ψ for electrons 
may be expressed as: 
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where fi is the electron scattering factor of atom i, which depends on q, the wave vector 
transfer (diffraction vector) defined by q = k - k’, Ri is the distance from the scattering center 
(or atom) i, and ϕ is the phase factor, as illustrated in Figure 2.4.2.1. 
 

 
 

Figure 2.4.2.1: Illustration of electron scattering by a single atom [82]. 
 
The multislice method [199] was also used that is illustrated in Figure 2.4.2.2. In this method 
the sample created by MD simulations is cut into n slices, and the electron wave propagates 
from one slice to the next one such that: 
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where Ψi(r) is the wave function entering the slice i+1, qi is the transmission function of the 
slice i, and pii+1 is the function of propagation (propagator) from the slice i to the slice i+1 
[199]. 
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Figure 2.4.2.2: Illustration of the multislice method. 
 
In practice, the sample created by MD simulations was cut perpendicular to the electron beam 
direction, z, in a certain number of 0.2 nm-thick slices. The sampling for slices was chosen in 
all cases to be 1024×1024. As the multislice method is based on Fourier transforms the slices 
have to be periodic, i.e., of the same thickness, in the cut plane. In order to comply with this 
rule, the cutting direction was chosen to be a crystallographic direction. The diffraction 
condition was selected via the choice of the electron beam direction, which is also the cutting 
direction, in order to isolate the systematic row containing the desired diffraction vector, g. 
For optimal TEM imaging using diffraction contrast, a single systematic row of diffraction 
vectors should be highlighted. The use of a crystallographic direction as cutting direction 
introduces secondary families of diffracting vectors that may disturb the TEM image contrast. 
In order to reduce the amount of these secondary systematic rows, relatively high order 
crystallographic directions are usually selected. It should be noted that one of the advantages 
of the use of the multislice approach over the classical beam calculation, which uses the 
defect displacement field described within the framework of the elasticity of the continuum 
(see for instance [200]), is that it allows one to avoid the deformable ion approximation [201] 
that may be detrimental for defects as small as the ones that are considered here. In addition, 
the multislice technique allows avoiding the column approximation that is generally used in 
classical two- or many-beam calculations. The parameters that were used to simulate TEM 
images of defects are close to those of modern microscopes, which usually are operated at an 
acceleration voltage of 200 kV. The beam semi-convergence, the defocus spread and the 
spherical aberration of the TEM were set to zero in order to avoid extraneous effects from 
parameters that are generally not controlled in the TEM imaging mode based on diffraction 
contrast. In addition, absorption (both normal and anomalous) was not considered. For 
instance, in the case of a MD sample containing a a0 <100>{100} I-loop, the following TEM 
image simulation conditions have been used:  
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• g·b ≠ 0, g·z = 0, θ ≅ 90° (angle between b and z). 
• The sample created by MD simulations was cut into 402 slices perpendicular to the z 

direction. The slices were roughly square, each one having a side length of 10 nm and a 
thickness of 0.2 nm and containing approximately 2000 atoms. 

• The dislocation loop was imaged edge-on using the g(4.1g) weak beam TEM diffraction 
condition, with g = (200), and assuming 200 keV electrons. 

TEM images of all the defects created by MD simulations have been simulated. The defects 
considered included atomic displacement cascade damage, interstitial dislocation loops, 
voids, He bubbles and Cr precipitates. An objective aperture size of 2.5 nm-1 was used for all 
TEM image simulations. Other TEM image simulation conditions for the various types of 
defects are reported in Table 2.4.2.1. 

 
Defect type I-loop Others* 

Sample thickness (nm) 40, 80 80 80 
Electron beam direction z [015] [-115] [015] 

Diffraction conditions g(4.1g), g(3.1g), 
g(2.1g), g(1.3g) 

g(4.1g), g(3.1g), 
g(2.1g), g(1.3g) 

g(4.1g), 
g(2.1g) 

Diffraction vector g (200) (110) (200) 
Deviation parameter to 
the Ewald sphere (nm-1) 

0.18313, 0.12208, 
0.061042, 0.018313 

0.091565, 0.061043, 
0.030522 0.0091565 

0.18313, 
0.061042 

Effective extinction 
distance (nm) 

5.4323, 8.0962, 
15.660, 38.158 

10.469, 14.964, 
24.462, 34.850 

5.4323, 
15.660 

Number of slices 200, 400 400 400 
Slice dimensions (nm2) 10×10 10×10 10×10 

 
Table 2.4.2.1: TEM image simulation conditions for the simulated defects. Others* refer to 
displacement cascade damage, voids, He bubbles and Cr precipitates.  
 

2.4.3 SANS signal simulations 
The original EMS software, which was developed for electrons, had to be modified to 
account for neutrons instead of electrons. Then, the modified EMS software was used for 
simulating the SANS signal of structural defects. The scattering wave function for neutrons is 
given by: 
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where bi
c
 is the neutron scattering length of the atom i. Contrary to the case of electrons, the 

neutron scattering length is constant for a given atomic species, as reported in Table 2.3.1.1. 

Neutron diffraction patterns obtained using the modified EMS software appear composed of 
diffraction spots with different intensities (Figure 2.4.3.1). To identify these diffraction spots, 
one has to know the neutron beam direction (zone axis) and the direction normal to the 
simulated cell (foil normal). To obtain the neutron scattering intensity provided by a 
polycrystalline sample (Figure 2.3.4.1), which depends only on the distance from the centre 
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of the diffraction pattern, the intensities of the diffraction spots located inside rings were 
summed, as illustrated in Figure 2.4.3.1. Two methods were used: either the ring area was 
chosen constant or the circle diameter was increased linearly. In the latter case the summed 
intensity was then normalized to the area of the ring. Results from the two different ring 
constructions were found very similar. So, linear increment of the circle diameter was finally 
used. A Fortran77 program was written for performing such calculations (see APPENDIX). 

In fact, this procedure corresponds to the rotation of a singly crystalline sample by an 
arbitrary angle around the incident neutron beam. In this manner all different grain 
orientations in a polycrystalline sample are accounted for. However, the incident beam 
direction is still fixed. To even better simulate a polycrystalline sample, various orientations 
of the incident neutron beam have to be considered. In the present work, the sample 
orientations (001), (012), (011) and (043) have been used, and the obtained intensity was 
averaged. The resulting SANS pattern is then comparable to the experimental one. 

In this work, the SANS signal of all the defects created by MD simulations has been 
simulated. The defects considered included atomic displacement cascade damage, interstitial 
dislocation loops, voids, helium bubbles and Cr precipitates. The SANS signal simulation 
conditions that were used for the various types of defects are the following:  

• Neutron wavelength = 0.45 nm. 
• Diffraction length = 2000 mm, which represent the specimen-to-detector distance as 

described under § 2.3.3. 
• Area to record the diffraction spots = 150×150 cm2, which represents the sensitive area as 

described under § 2.3.3. 
• Pixel size = 7.5×7.5 mm2. 
• The equation (2.3.3.1) was used to calculate the wave vector transfer, q, which represents 

the momentum transfer as described under § 2.3.3. 
 

  
 
Figure 2.4.3.1: Neutron diffraction patterns of a perfect sample of pure Fe, obtained using the 
modified EMS program. Left: rings of the same area. Right: rings with linear increment of their 
diameter. Neutron wavelength = 0.45 nm, diffraction length = 2000 mm, zone axis = [001], foil 
normal = [001]. 
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CHAPTER 3: RESULTS 
 

 

3.1 SANS experiments 
 

All SANS spectra presented below refer to corrected SANS intensities, in the sense that the 
raw data counts on the detector were corrected by subtracting off the background and the 
parasitic scattering and by accounting for the anisotropy of the detector by normalizing the 
corrected scattered signal with the measurement obtained from a water reference specimen 
with a known isotropic cross-section. For more details, see § 2.3.4. 
 

3.1.1 Examples of SANS spectra 
Typical SANS spectra, i.e., SANS intensities versus scattering vector Q values, which were 
obtained for an unirradiated specimen of the OPTIMAX A RAFM steel and a specimen of 
the OPTIMAX A RAFM steel irradiated at 50°C to 0.3 dpa are shown in Figure 3.1.1. It can 
be seen that the SANS intensity decreases with increasing Q values, Q being the magnitude 
of the scattering vector, for both types of specimen. In addition, it appears that a significant 
additional scattered intensity, with respect to the unirradiated specimen, is measured for the 
irradiated one for Q values larger than about 0.7 nm-1. This additional scattered intensity 
arises from the irradiation-induced defect microstructure. 
 

 
 
Figure 3.1.1: Examples of SANS spectra for an unirradiated specimen of OPTIMAX A and a 
specimen of OPTIMAX A irradiated at 50°C to 0.3 dpa  
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3.1.2 Effects of irradiation dose 
F82H RAFM steel 

The SANS spectra obtained for an unirradiated specimen of the F82H RAFM steel and two 
specimens of the F82H RAFM steel irradiated at about 50°C to two different doses of about 
0.3 and 1.47 dpa are shown in Figure 3.1.2.1. As in the case of the OPTIMAX A RAFM 
steel, it can be seen that the SANS intensity decreases with increasing Q values and that a 
significant additional scattering intensity, with respect to the unirradiated specimen, is 
measured for the irradiated specimens for Q values larger than about 0.7 nm-1. This additional 
scattered intensity increases with irradiation dose. However, the amount of increase tends to 
decrease with increasing irradiation dose. 
 

 
 
Figure 3.1.2.1: SANS spectra for an unirradiated specimen of F82H and specimens of F82H 
irradiated at about 50°C to about 0.3 and 1.47 dpa. 
 
EUROFER 97 RAFM steel 

The SANS spectra obtained for unirradiated specimens of the EUROFER 97 RAFM steel and 
three specimens of the EUROFER 97 RAFM steel irradiated at about 50°C, 250°C or 350°C 
to three different doses of about 0.3, 1.0 or 2.0 dpa are shown in Figure 3.1.2.2. As in the case 
of the OPTIMAX A and F82H RAFM steels, it can be seen that the SANS intensity decreases 
with increasing Q values and that a significant additional scattered intensity, with respect to 
the unirradiated specimen, is measured for the irradiated specimens. The effects of irradiation 
dose appear strongly dependent on the irradiation temperature. 

• At 50°C, the SANS intensity clearly increases with irradiation dose. This phenomenon 
takes place for Q values above about 0.6 nm-1 in the case of the smallest dose of 0.3 dpa, 
while it takes place over the whole Q-range investigated in the case of the doses of 1.0 
and 2.0 dpa. However, like in the case of the F82H RAFM steel, the amount of increase 
tends to decrease with increasing irradiation dose, at least at large Q values. The fact that 
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the additional scattered intensity extends over different Q-ranges, depending on the dose, 
indicates that larger defects are also present at higher doses, with respect to those present 
at the smallest one. 

• At 250°C, the scattered intensity still clearly increases with irradiation dose. However, 
this effect is much less marked than at 50°C. The additional scattered intensity takes place 
for Q values above about 0.6 nm-1, whatever the irradiation dose. 

• At 350°C, one observes no significant effects of dose on the scattered intensity, although 
the scattered intensity of irradiated specimens appears slightly larger than that of the 
unirradiated specimen at very large Q values. 

 

  

 
 
Figure 3.1.2.2: SANS spectra for unirradiated specimens of EUROFER 97 and specimens of 
EUROFER 97 irradiated at about 50, 250, 350°C to about 0.3, 1.0 and 2.0 dpa. 
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3.1.3 Effects of irradiation temperature 

The SANS spectra obtained for unirradiated specimens of the EUROFER 97 RAFM steel and 
specimens of the EUROFER 97 RAFM steel irradiated at about 50°C, 250°C or 350°C to 0.3, 
1.0 or 2.0 dpa are shown in Figure 3.1.3.1. It can be seen that, while the scattered intensity of 
irradiated specimens appears always larger than that of unirradiated specimens, this effect 
increasing with irradiation dose, as previously mentioned, the additional scattered intensity 
actually decreases with increasing irradiation temperature and tends to reach the intensity 
scattered by the unirradiated specimen at 350°C, at least for the two smallest doses of 0.3 and 
1.0 dpa. The presence of larger irradiation-induced defects at the highest doses, in addition to 
the small ones evidenced at the lowest dose, is confirmed, at least at low temperatures. 
 

  

 
 
Figure 3.1.3.1: SANS spectra for unirradiated specimens of EUROFER 97 and specimens of 
EUROFER 97 irradiated at about 50, 250, 350°C to about 0.3, 1.0 and 2.0 dpa. 
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3.1.4 Analysis model for the SANS spectra 

In order to characterize the size distribution of irradiation-induced scattering objects, the 
equation relating the differential coherent small angle cross-section, dΣ/dΩ, which is 
proportional to the scattered intensity, to a dilute distribution of a single type of spherical 
scattering objects, was used [202]: 
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where N(R)dR is the number of scattering objects per unit volume having a radius between R 
and R+dR, Vp(R) is the volume of a scattering object, and P(Q,R) is the form factor of the 
scattering objects. Δρ is the difference between the scattering length density of the objects 
and that of the matrix: ρ = b/Ωa, with b being the average scattering length and Ωa being the 
corresponding average atomic volume. Δρ is the so-called contrast.  

In the following and in order to proceed with a qualitative discussion, we assume that we deal 
with a single distribution of spherical scattering objects. This last assumption constitutes a 
simplification of the more complex real distribution of different types of nano-sized 
irradiation-induced defects but allows assessment of the general trend of the evolution of the 
defect size distribution with irradiation dose and temperature. The distribution function is 
reflected by N(R) in equation (3.1.4.1). A log-normal function is used for this distribution, 
which is written as: 
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where R0 and s are the so-called scale and shape parameters and N is the number density. In 
order to better assess the evolution trend of N and R0 with irradiation dose and temperature, a 
value of 0.2 for s was selected. 

 
3.1.5 Size distribution of irradiation-induced defects 
The additional scattering intensity evidenced for irradiated specimens was determined by 
subtracting off the scattering intensity of the unirradiated specimens to that of the irradiated 
ones. With the previous assumptions, it was possible to satisfactorily fit the scattered 
intensities of the irradiated specimens by adjusting two parameters of the log-normal 
distribution function, namely R0 and N. The size distribution functions, i.e., the density (in 
arbitrary units) versus the radius of scattering objects, which were obtained for irradiated 
specimens of the three kinds of RAFM steels are reported below. Due to the non-uniqueness 
in the fitted parameters, the slight variations in the position of the peak at the different doses 
and irradiation temperatures are not necessarily representative of a specific physical 
mechanism of the defect accumulation. For the sake of consistency, each Figure below 
includes only data arising from the same irradiation campaign. 
OPTIMAX A RAFM steel 

The size distribution function of irradiation-induced defects in a specimen of the 
OPTIMAX A RAFM steel irradiated at about 50°C to a dose of about 0.3 dpa is shown in 
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Figure 3.1.5.1. It can be seen that the size distribution function is of Gaussian type and peaks 
at about 0.6 nm. 
 

 
 
Figure 3.1.5.1: Size distribution function for the irradiation-induced defects in a specimen of the 
OPTIMAX A RAFM steel irradiated at about 50°C to a dose of about 0.3 dpa. 
 
F82H RAFM steel 

The size distribution function of irradiation-induced defects in two specimens of the F82H 
RAFM steel irradiated at about 50°C to two different doses of about 0.3 dpa and 1.47 dpa are 
shown in Figure 3.1.5.2. As in the case of the OPTIMAX A RAFM steel, it can be seen that 
the size distribution function peaks at about 0.6 nm. In addition, it appears that at the 
irradiation temperature of 50°C the number density of irradiation-induced defects increases 
strongly with irradiation dose, while the mean size of the defects remains constant. 
 

 
 
Figure 3.1.5.2: Size distribution function for the irradiation-induced defects in two specimens of the 
F82H RAFM steel irradiated at about 50°C to two different doses of about 0.3 and 1.47 dpa. 
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EUROFER 97 RAFM steel 

The size distribution function of irradiation-induced defects in specimens of the 
EUROFER 97 RAFM steel irradiated at about 50°C, 250°C or 350°C to three different doses 
of about 0.3, 1.0 or 2.0 dpa are shown in Figures 3.1.5.3 and 3.1.5.4. Effects of irradiation 
dose are emphasized in Figure 3.1.5.3, while effects of irradiation temperature are 
emphasized in Figure 3.1.5.4. As in the case of the OPTIMAX A and F82H RAFM steels, a 
family of small irradiation-induced defects was evidenced. They behave as follows: 

• The size distribution functions peak at a value below 1 nm. 
• At a given irradiation temperature, the number density of irradiation-induced defects 

increases with the irradiation dose. 
• At a given irradiation dose, the number density of irradiation-induced defects decreases 

with increasing the irradiation temperature, at least for the two lowest investigated dose 
of 0.3 and 1.0 dpa. The number density doesn’t seem to vary between 50°C and 250°C 
for the irradiation dose of 2.0 dpa. 

• The mean size of irradiation-induced defects seems to decrease with increasing the 
irradiation dose: for instance, for an irradiation temperature of 50°C, it is equal to about 
0.4 nm at 0.3 dpa and to about 0.25 nm at 2.0 dpa. 

• The mean size of irradiation-induced defects seems to increase with the irradiation 
temperature, at least for the two lowest investigated dose of 0.3 and 1.0 dpa: for instance, 
for an irradiation dose of 0.3 dpa, it is equal to about 0.4 nm at 50°C and to about 0.9 nm 
at 350°C. The mean size doesn’t seem to vary between 50°C and 250°C for the irradiation 
dose of 2.0 dpa. 

In addition to this family of small irradiation-induced defects, a second family of larger 
irradiation-induced defects was evidenced at all irradiation doses and temperatures. For the 
sake of clarity, the size distribution functions corresponding to this second family of defects 
are reported only in two plots of the Figures 3.1.5.3 and 3.1.5.4. Their characteristics are as 
follows: 

• The height of the size distribution functions is much lower for the larger irradiation-
induced defects than for the smaller ones. 

• The width of the size distribution function is much larger for the larger irradiation-
induced defects than for the smaller ones. 

• As in the case of the smaller irradiation-induced defects, at a given irradiation 
temperature, the number density of the larger irradiation-induced defects increases with 
the irradiation dose. 

• As in the case of the smaller irradiation-induced defects, at a given irradiation dose, the 
number density of the larger irradiation-induced defects decreases with increasing the 
irradiation temperature. 

• As in the case of the smaller irradiation-induced defects, the mean size of the larger 
irradiation-induced defects seems to decrease with increasing the irradiation dose: for 
instance, for an irradiation temperature of 50°C, it is equal to about 1.8 nm at 1.0 dpa and 
to about 0.5 nm at 2.0 dpa. 
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• As in the case of the smaller irradiation-induced defects, the mean size of the larger 
irradiation-induced defects seems to increase with the irradiation temperature: for 
instance, for an irradiation dose of 2.0 dpa, it is equal to about 0.5 nm at 50°C and to 
about 1.4 nm at 250°C. 

 

  

  
 

Figure 3.1.5.3: Size distribution function for the irradiation-induced defects in specimens of the 
EUROFER 97 RAFM steel irradiated at about 50°C, 250°C or 350°C to doses of about 0.3, 1.0 or 
2.0 dpa. 
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Figure 3.1.5.4: Size distribution function for the irradiation-induced defects in specimens of the 
EUROFER 97 RAFM steel irradiated to doses of about 0.3, 1.0 or 2.0 dpa at about 50°C, 250°C or 
350°C. 
 
The dose and temperature dependence of the number density and mean size (mean radius) of 
the smaller irradiation-induced defects evidenced in specimens of the EUROFER 97 RAFM 
steel irradiated at about 50°C, 250°C or 350°C to three different doses of about 0.3, 1.0 or 
2.0 dpa are summarized in Figures 3.1.5.5 and 3.1.5.6, respectively. Four main general 
tendencies can be extracted from these Figures: 

1. The number density increases with irradiation dose 
2. The number density decreases with increasing irradiation temperature 
3. The mean size decreases with increasing irradiation dose 
4. The mean size increases with irradiation temperature 
However, these tendencies may more or less strongly differ depending on the doses and 
temperatures investigated and appear no more fully correct for the highest investigated dose 
of 2.0 dpa. 
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Figure 3.1.5.5: (Left) number density versus dose, and (right) number density versus temperature for 
the smaller irradiation-induced defects evidenced in specimens of the EUROFER 97 RAFM steel 
irradiated at about 50°C, 250°C or 350°C to doses of about 0.3, 1.0 or 2.0 dpa. 
 

  
 
Figure 3.1.5.6: (Left) mean size versus dose, and (right) mean size versus temperature for the smaller 
irradiation-induced defects evidenced in specimens of the EUROFER 97 RAFM steel irradiated at 
about 50°C, 250°C or 350°C to doses of about 0.3, 1.0 or 2.0 dpa. 
 
3.1.6 Magnetic versus nuclear scattering 

It is possible to get additional information about the nature of the scattering objects by 
splitting the magnetic and nuclear cross-sections. When a saturating magnetic field 
(horizontal and perpendicular to the neutron beam) is applied to a specimen, the coherent 
small angle neutron scattering arises from variations in the scattering length density in 
nuclear contrast as well as in magnetic contrast so that: 
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where φ is the angle between the applied magnetic field direction and the projected 
observation direction onto the plane perpendicular to the neutron beam. In the case of voids 
or helium bubbles, Δρn and Δρm can be written as: 
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The general equation for the differential cross section in the case of a magnetic plus nuclear 
scattering can then be written as: 
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For a given Q value, the equation 3.1.6.5 can be reduced to an equation of the form 
y = b + x m, where x = sin2(φ). This allows splitting the scattering patterns into nuclear and a 
magnetic components by choosing sin2(φ) as the independent variable.  

Such a splitting may be useful for distinguishing magnetic scattering objects from non-
magnetic ones: contrary to Fe-base precipitates, voids and helium bubbles are magnetic holes 
in the saturated ferromagnetic matrix. In addition, voids and helium bubbles may be a priori 
distinguished from each other as they exhibit different nuclear contrasts, Δρn

2. 

In order to separate nuclear and magnetic cross sections, a standard least-squares linear 
regression for successive Q values was performed. When doing such calculations, it is 
important to check the correlation coefficients of each fit, i.e., to evaluate the quality of the fit 
for each Q value. If the correlation coefficients are larger than 0.9 over a significant Q-range, 
it is considered that the data analysis has a physical meaning, and the decomposition into two 
components can be considered as reliable. 

The intensity scattered by a specimen of the EUROFER 97 RAFM steel irradiated at 250°C 
to 1 dpa is reported in Figure 3.1.6.1 versus Q values. In this Figure the scattered intensity 
was averaged over angular sectors, 10° wide, and the angle indicated refers to the sector 
center. A radial and angular average was done in selecting all the cells of the detector that fall 
into the same radial range and into the same angular sector. For each sector, the scattered 
intensity was calculated as a function of the radial distance. As expected, it can be seen in 
Figure 3.1.6.1 that the scattered intensity increases with the angle φ, going from pure nuclear 
scattering at 0° to nuclear plus full magnetic scattering at 90°. Unfortunately, it was possible 
to separate both contributions only for Q values ranging between 0.3 and 1 nm-1. In this Q-
range, the correlation coefficients of the fit provided by the equation (3.1.6.5) were above 
0.8, but at larger Q values the correlation coefficients rapidly decreased below 0.5. In 
addition, the scattered intensity for φ = 0° was quite noisy above 1 nm-1. Thus, it was not 
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possible to fully analyze the data in terms of only nuclear or only magnetic scattering, since 
the additional scattering intensity arising from the irradiation-induced defects appears mainly 
for Q values larger than about 1 nm-1 (see for instance Figure 3.1.1.1). However, the data 
obtained in the 90° sector were analyzed by considering the sum of the nuclear and magnetic 
scattering, as described just below. Qualitatively, the same behavior was obtained for the 
specimens of the EUROFER 97 RAFM steel irradiated in other conditions. 
 

 
 
Figure 3.1.6.1: Scattered intensity versus Q values, averaged over different angular sectors of 10° in 
width, for a specimen of the EUROFER 97 RAFM steel irradiated at 250°C to 1 dpa. 
 
It is possible to get additional information about the nature of scattering objects by splitting 
the magnetic and nuclear cross sections, in averaging the scattered intensity over angular 
sectors of 10° in width, and calculating the ratio of the total scattered intensity to the nuclear 
scattered intensity, namely the so-called A ratio, which was found not to depend on Q for Q 
values in the range 0.3-1 nm-1: 
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 (3.1.6.6). 

Values of the A ratio versus sin2φ values were determined in the case of two specimens of the 
EUROFER 97 RAFM steel irradiated at 250°C to two different doses of 0.3 and 1.0 dpa. 
Results are reported in Figure 3.1.6.2. It can be seen that, as expected, the A ratio increases 
with the angle φ. More interestingly, a slight increase in the slope of the fit (A - sin2φ) takes 
place with increasing irradiation dose. 
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Figure 3.1.6.2: A = (dΣtot/dΩ)/(dΣ/dΩn) ratio versus sin2φ values for two specimens of the 
EUROFER 97 RAFM steel irradiated at 250°C to two different doses of 0.3 and 1.0 dpa. 
 
The behavior of the A ratio versus Q values was first determined for an uniradiated specimen 
of the EUROFER 97 RAFM steel for Q values ranging between 0.426 and 1.914 nm-1. 
Results are reported in Figure 3.1.6.3. The averaged A value was found to be 1.4549. 
However, it appears that two regions can be clearly distinguished: one for Q values in the 
range 0.426-0.70 nm-1, corresponding to an A ratio around 2, and another one for Q values in 
the range 0.75-1.914 nm-1, corresponding to an A ratio of about 1.4. This indicates that at 
least two kinds of defects were detected in this range of Q values. 
 

 
 
Figure 3.1.6.3: A = (dΣtot/dΩ)/(dΣ/dΩn) ratio versus Q values for an unirradiated specimen of the 
EUROFER 97 RAFM steel. Analysis was made for the angular sector centered around 90°. 
 
The behavior of the A ratio versus Q values was also determined for specimens of the 
EUROFER 97 RAFM steel irradiated at 50°C to doses of 0.3, 1.0 or 2.0 dpa or at 250°C to 
2.0 dpa. Results are shown in Figure 3.1.6.4. The averaged A values were found to be equal 
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to 2.198, 2.117, 1.964, 1.901, respectively. It appears that a single type of irradiation-induced 
defects was detected in each irradiated specimen using Q values ranging between 0.426 and 
4.826 nm-1. 
 

Specimen irradiated at 50°C to 0.3 dpa. 
 

Specimen irradiated at 50°C to 1 dpa. 

 
Specimen irradiated at 50°C to 2 dpa. Specimen irradiated at 250°C to 2 dpa. 

 
Figure 3.1.6.4: A = (dΣtot/dΩ)/(dΣ/dΩn) ratio versus Q values for specimens of the EUROFER 97 
RAFM steel irradiated at about 50°C to about 0.3, 1.0 or 2.0 dpa, or at about 250°C to about 2.0 dpa. 
Analysis was made for the angular sector centered around 90°. 
 

3.2 Simulations 
 
3.2.1 MD simulations 
We present hereafter the results of MD simulations of the effect of He on the damage 
produced by atomic displacement cascades and MD simulations of the main defects that are 
expected to be produced by irradiation in RAFM steels, namely interstitial dislocation loops 
(I-loops), cavities (voids and He bubbles) and Cr precipitates. All MD simulations were 
performed in bcc Fe, as a model material for RAFM steels, using the method described under 
§ 2.4.1. 
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Atomic displacement cascades 

The properties of the Ackland 97 potential [188], the Wilson-Johnson potential [190] and the 
Beck potential [191] to describe interactions between Fe-Fe, Fe-He and He-He, respectively, 
are summarized in Tables 3.2.1.1 and 3.2.1.2. It can be seen that the employed empirical 
potentials overestimate the formation energy for a He atom in the tetrahedral interstitial 
position (Figure 3.2.1.1.), which should be the most favorable interstitial site for He 
according to ab-initio calculations. They give instead the octahedral site as the most 
favorable one (Figure 3.2.1.1). These empirical potentials however do predict the same self-
trapping behavior of He as that predicted by ab-initio calculations, and do also predict the 
substitutional site as the most favorable one. 

 
Atom type Equilibrium lattice parameter (Å) Cohesive energy per atom (eV) 

Perfect bcc Fe 2.8665 – 4.316 

Perfect fcc He 3.2523 – 0.00714 
 
Table 3.2.1.1: Equilibrium lattice parameter and corresponding cohesive energy per atom for the 
employed interatomic potentials [188, 191]. 
 

Formation energy (eV) 
Site position 

Combined potentials ab-initio calculations 

Substitutional 3.25 4.22 

Tetrahedral 5.34 4.39 

Octahedral 5.29 4.58 
 
Table 3.2.1.2: Formation energy for a He atom in a perfect bcc Fe single crystal, determined using 
either the combined interatomic potentials [203] or ab-initio calculations [162]. 
 

  
 
Figure 3.2.1.1: Tetrahedral (left) and octahedral (right) interstitial sites in pure Fe. : Fe atoms, : 
He interstitial atoms. 
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Simulation conditions for atomic displacement cascades are summarized in Table 3.2.1.3. 
Prior to the cascade, the typical simulation box (side length = 18 nm), containing 0, 0.1 at.% 
or 1.0 at.% He either in interstitial or in substitutional position, was maintained in equilibrium 
state for 0.4 to 1.3 ps (picoseconds) at the selected temperature. Each box contained about 
half million atoms. Each cascade was started in imparting a specified kinetic energy, EMD, to 
the selected primary knock-on atom (PKA), along a high-index crystallographic direction to 
avoid channeling. It should be noted that due to this procedure many Fe-He dumbbells 
aligned along <100> directions are found. These Fe-He dumbbells are composed of an Fe 
atom close to its perfect lattice position and an interstitial He atom in octahedral position, as 
it is the most stable interstitial site predicted by the employed interatomic potentials. In the 
following, a Fe-He dumbbell will systematically refer to this configuration. Typical results of 
MD simulations of an atomic displacement cascade in pure Fe and in Fe containing 0.1 at.% 
He either in interstitial or substitutional position are shown in Figure 3.2.1.2. 

 
Number of cascades Other parameters 

T 
(K) 

EMD 
(keV) Fe Fe-

0.1He(I) 
Fe-

1.0He(I) 
Fe-

0.1He(S) 
Fe-

1.0He(S) 
Time 
(ps) 

Box size 
(nm3) 

10 3  10    25 18×18×18 

 5  10 2 1  25 18×18×18 

 7  10    25 18×18×18 

 10 1 10 1 1  25 18×18×18 

 10 1   1 1 25 10×10×80* 

300 3  10    25 18×18×18 

 5  10 2 1  25 18×18×18 

 7  10    25 18×18×18 

 10  10  1  25 18×18×18 

523 3 1 10    25 18×18×18 

 5 1 10 2 1  25 18×18×18 

 7 1 10    25 18×18×18 

 10 2 10 1 1  25 18×18×18 

 
Table 3.2.1.3: Summary of MD simulation conditions of atomic displacement cascades in pure bcc 
Fe and bcc Fe containing 0.1 at.% or 1.0 at.% He atoms either in interstitital (I) of substitutional (S) 
position. * The cell size and crystallographic orientation are fitted to the TEM image simulation 
conditions. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 3.2.1.2: Typical results of a MD simulation of an atomic displacement cascade in pure Fe (a), 
Fe-0.1 at.% He(I) (b) and Fe-0.1 at.% He(S) (c): number of atoms = 500’094, 500’600 and 500’094, 
respectively, temperature = 10 K, PKA energy = 10 keV. Only interstitial Fe or He atoms and 
vacancies are shown. 

 

Analysis of the defects generated by atomic displacement cascades: 

Each MD simulation of an atomic displacement cascade was followed by defect and defect 
cluster analyses, as described under § 2.4.1. The standard statistical errors of the cascade 
output variables could not be determined, as in most cases only one or two cascades were 
simulated per condition. In typical cascades the errors lie in the 25 - 35% range. The cluster 
analysis was based on a simple radius criterion. If two individual defects are closer than a 
given cutoff radius, they belong to the same defect cluster. Number distributions of defect 
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clusters, in terms of number of individual defects contained in a given defect cluster, were 
obtained by considering either the distance to the third nearest neighbor (3-nn) or the sixth 
nearest neighbor (6-nn). As it was found that the size distribution obtained for the 3-nn 
criterion is close to the one obtained for the 6-nn criterion, as shown in Figures 3.2.1.3, the 
later radius criterion was applied in further defect cluster analyses. It allows avoiding 
defining a cluster made of loose interstitials as several smaller clusters. 

 

 
(a) 

 
(b) 

 
Figure 3.2.1.3: Number distribution of defect clusters, in terms of number of interstitial atoms in a 
given defect cluster, for the 3-nn (a) and 6-nn (b) criterion, respectively, resulting from a MD 
simulation of an atomic displacement cascade in Fe-0.1 at.% He(I), number of atoms = 500094, 
temperature = 10 K, PKA energy = 10 keV. 

 
Traditionally, the number of Frenkel pairs produced by an atomic displacement cascade is 
estimated using the NRT formula [33], as reported in equation (1.2.1.4) under § 1.2.1, where 
TD is the PKA energy and Td is the threshold energy for atomic displacement damage, 
averaged over all crystallographic directions. TD is the fraction of recoil energy that produces 
displacement damage, after having subtracted the fraction dissipated by electron excitation. 
Since in the present MD simulations the interaction between ions and electrons was not 
accounted for, it was assumed that TD = EMD. The production efficiency of Frenkel pairs is 
defined as the ratio of the surviving Frenkel pairs, resulting from MD simulations, to the 
number of NRT Frenkel pairs: NFP/NNRT. For the sake of comparison, we selected Td = 40 eV 
[204] to estimate the number of Frenkel pairs with the NRT formula. 

The average number of surviving Frenkel pairs (NFP), resulting from MD simulations of 
atomic displacement cascades in pure bcc Fe at 523 K, is reported in Figure 3.2.1.4(a) as a 
function of EMD. The corresponding production efficiency of Frenkel pairs (NFP/NNRT) is 
reported in Figure 3.2.1.4(b) as a function of EMD. The average number of surviving Frenkel 
pairs (NFP), resulting from MD simulations of atomic displacement cascades in Fe-
0.1 at.% He(I), is reported in Figure 3.2.1.5(a) as a function of EMD and in Figure 3.2.1.5(b) 
as a function of temperature. The corresponding production efficiency of Frenkel pairs 
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(NFP/NNRT) is reported in Figure 3.2.1.5(c) as a function of EMD. It can be seen from Figures 
3.2.1.4 and 3.2.1.5 that: 

• For a given temperature, the number of surviving Frenkel pairs strongly increases with 
EMD (PKA energy). 

• For a given EMD (PKA energy), the number of surviving Frenkel pairs slightly decreases 
with increasing temperature. 

• The production efficiency of Frenkel pairs decreases with increasing EMD and 
temperature, down to a more or less asymptotic value of about 0.33 at 10 K and 0.26 at 
523 K. These values are slightly higher in Fe-0.1 at.% He than in pure Fe. This effect can 
be explained by the additional stress induced by He interstitials in the lattice, which may 
help to kick out a lattice atom in self-interstitial position. 

The data points in Figures 3.2.1.4(a) and 3.2.1.5(a) have been interpolated using the empirical 
power law proposed by Bacon et al. [38], as reported in equation (1.2.1.5) under § 1.2.1. The 
A factor and m exponent values obtained are in agreement with a previous work on Fe [204]. 
In the case of the Fe-0.1 at.% He(I) material, the A value decreases with increasing 
temperature, from 6.15 at 10 K down to 3.66 at 525 K, while the m value increases with 
temperature, from 0.72 at 10 K up to 0.86 at 523 K. This indicates that the number of 
surviving Frenkel pairs is more sensitive to PKA energy at 523 K than at 10 K. 
 

 
(a) 

 
(b) 

 
Figure 3.2.1.4: (a) Number of surviving Frenkel pairs versus EMD, and (b) production efficiency of 
Frenkel pairs versus EMD, resulting from MD simulations of atomic displacement cascades in pure bcc 
Fe at 523 K. In (a) the data were fitted using the power law reported in equation (1.2.1.5). 
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(a) 

 
(b) 

 
(c) 

 
Figure 3.2.1.5: Number of surviving Frenkel pairs versus EMD (a) and temperature (b), respectively, 
and production efficiency of Frenkel pairs versus EMD (b), resulting from MD simulations of atomic 
displacement cascades in Fe-0.1 at.% He(I). In (a) the data were fitted using the power law reported in 
equation (1.2.1.5). 
 
The average number of surviving Frenkel pairs (NFP), resulting from MD simulations of 
atomic displacement cascades in Fe-0.1 at.% He(S), is reported in Figure 3.2.1.6 as a function 
of EMD and temperature. Results obtained for the Fe-0.1 at.% He(S) material are 
approximately the same as in the case of the Fe-0.1 at.% He(I). However, the number of 
surviving Frenkel pairs after the PKA event appears slightly less than in the case of the Fe-
0.1 at.% He(I) material. This means that the presence of substitutional He atoms induces a 
lower defect production. Indeed, during the first stage of an atomic displacement cascade, a 
substitutional He atom is easily kicked out from its position to form a vacancy and an 
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interstitial He atom, as only about 2 eV are needed to free the He atom. Besides that, a self-
interstitial atom (SIA) can easily recombine with a substitutional He atom by a kick-out 
mechanism [205], leading to a significant energy gain and leaving a free interstitial He atom. 
With the set of potentials we used the energy gain amounts to about 3 eV. Consequently, the 
number of SIA clusters tends to decrease in presence of substitutional He atoms, as many 
potential vacancies are made available for recombination. 
 

 
(a) 

 
(b) 

 
Figure 3.2.1.6: Number of surviving Frenkel pairs versus (a) EMD and (b) temperature, resulting from 
MD simulation of atomic displacement cascades in Fe-0.1 at.% He(S). 
 
The average number of surviving Frenkel pairs (NFP), resulting from MD simulations of 
atomic displacement cascades in Fe-1.0 at.% He(I), is reported in Figure 3.2.1.7 as a function 
of EMD and temperature. Results obtained for the Fe-1.0 at.% He(I) material appear 
significantly different from those obtained for the other materials. Indeed, the number of 
surviving defects is significantly less than in the Fe-0.1 at.% He(I) material, for instance, and 
the behaviors of the number of surviving defects versus EMD and temperature appear also 
very different from those obtained for the other materials. While the number of surviving 
Frenkel pairs appears to increase slightly with PKA energy at 10 K, it decreases strongly with 
increasing PKA energy at 523 K. In addition, for a given PKA energy the number of 
surviving Frenkel pairs increases slightly with temperature. However, due to the limited 
number of data, no definitive conclusion can be drawn from these observations. 
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(a) 

 
 (b) 

 
Figure 3.2.1.7: Number of surviving Frenkel pairs versus (a) EMD and (b) temperature, resulting from 
MD simulation of atomic displacement cascades in Fe-1.0 at.% He(I). 
 
A comparison of the numbers of surviving Frenkel pairs in Fe-0.1 at.% He(I) and Fe-
0.1 at.% He(S) is reported in Figure 3.2.1.8 as a function of EMD and temperature values. It 
can be seen that the number of surviving Frenkel pairs is systematically larger in Fe-
0.1 at.% He(I) than in Fe-0.1 at.% He(S), whatever the PKA energy in the range of 3-10 keV 
and the temperature in the range of 10-523 K.  

The orientation of Fe-He dumbbells is mainly along <100> in Fe-0.1 at.% He(I) and along 
<110> in Fe-0.1 at.% He(S), as shown in Figures 3.2.1.9 and 3.2.1.10, respectively. The 
orientation of Fe-Fe dumbbells is mainly along <110> in both Fe-0.1 at.% He(I) and Fe-
0.1 at.% He(S), as also shown in Figures 3.2.1.9 and 3.2.1.10, which is in agreement with ab-
initio calculations for SIAs in pure bcc Fe [206]. 
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Figure 3.2.1.8: Numbers of surviving Frenkel pairs versus EMD and temperature values, resulting 
from atomic displacement cascades in Fe-0.1 at.% He(I) and Fe-0.1 at.% He(S). 
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(a) 

 
(b) 

 
Figure 3.2.1.9: Orientation of (a) Fe-He and (b) Fe-Fe interstitial dumbbells, analyzed using the 3-nn 
criterion, resulting from atomic displacement cascades in Fe-0.1 at.% He(I): number of 
atoms = 500094, temperature = 10 K, PKA energy = 10 keV. 
 

 
(a) 

 
(b) 

 
Figure 3.2.1.10: Orientation of (a) Fe-He and (b) Fe-Fe interstitial dumbbells, analyzed using the 3-
nn criterion, resulting from atomic displacement cascades in Fe-0.1 at.% He(S): number of 
atoms = 500094, temperature = 10 K, PKA energy = 10 keV. 
 
Previous studies of atomic displacement cascades in pure bcc Fe showed that very little in-
cascade vacancy clustering occurs in this material, while sizeable interstitial clusters are 
found [38, 195, 204, 206, 207]. Our results agree with these findings. 

The total number of interstitials in clusters as a function of EMD and temperature, resulting 
from MD simulation of atomic displacement cascades in Fe-0.1 at.% He(I), is shown in 
Figure 3.2.1.11. Results have been obtained for a distance between neighbors of 0.573 nm (6-
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nn criterion). 10 atomic displacement cascades per each MD simulation condition have been 
performed, and results have been summed. Defects containing more than 2 interstitials were 
considered as defect clusters. It can be seen in Figure 3.2.1.11 that the total number of 
interstitials in clusters increases significantly with PKA energy and temperature values. 

 

 
(a) 

 
(b) 

 
Figure 3.2.1.11: Total number of interstitials in clusters versus (a) EMD and (b) temperature, 
for the 6-nn criterion, resulting from MD simulations of atomic displacement cascades in Fe-
0.1 at.% He(I). 
 
The number distribution of defect clusters, in terms of number of interstitial atoms in a given 
defect cluster, resulting from MD simulation of atomic displacement cascades in Fe-
0.1 at.% He(I), is shown in Figure 3.2.1.12 for various EMD and temperature values. Results 
have been obtained for a distance between neighbors of 0.573 nm (6-nn criterion). 10 atomic 
displacement cascades per each MD simulation condition have been performed, and results 
have been summed. Defects containing more than 4 interstitials were considered as defect 
clusters. It can be seen in Figure 3.2.1.12 that the number distribution of defect clusters peaks 
at about 7 interstitials per cluster, whatever the PKA energy and the temperature. The number 
of interstitial clusters also appears to increase with PKA energy and temperature, although 
not in a systematic way. In addition, the size of the large clusters is observed to increase with 
PKA energy and temperature. 
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(a) 

 
(b) 

 
Figure 3.2.1.12: Number distribution of defect clusters, in terms of number of interstitial atoms in a 
given defect cluster, for the 6-nn criterion, resulting from MD simulation of atomic displacement 
cascades in Fe-0.1 at.% He(I), (a) at 523 K, and (b) for an EMD value of 7 keV. 
 
The ratio of interstitials in clusters to the total number of interstitials, resulting from atomic 
displacement cascades in Fe-0.1 at.% He(I), is reported in Figure 3.2.1.13 as a function of 
EMD and temperature. Results have been obtained for a distance between neighbors of 
0.573 nm (6-nn criterion). 10 atomic displacement cascades per each MD simulation 
condition have been performed, and results have been summed. Defects containing more than 
2 interstitials were considered as defect clusters. It can be seen that this ratio increases with 
PKA energy and temperature values, like the total number of interstitials in clusters (Figure 
3.2.1.11) and the number of interstitial clusters (Figure 3.2.1.12). 
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(a) 

 
(b) 

 
Figure 3.2.1.13: Ratio of interstitials in clusters (minimal size: 2) to the total number of interstitials 
versus (a) EMD and (b) temperature, resulting from atomic displacement cascades in Fe-0.1 at.% He(I). 
 
As the temperature increases the mobility of point defects also increases, therefore enhancing 
recombination and reducing the number of surviving Frenkel pairs. At the same time the 
probability of interstitials meeting with each other increases, thus enhancing the number and 
size of interstitial clusters. The number and size of interstitial clusters is also much higher in 
Fe-0.1 at.% He(I) than in Fe-0.1 at.% He(S) and in pure Fe. Indeed, in the former material, 
when point defects meet with interstitial He atoms, which are already present prior to the 
cascade, they do not only form interstitial dumbbells, but also bring some kinetic energy to 
these dumbbells, which prompts their mobility and enhances the probability of He-SIA 
clustering. Actually, the interstitial He atoms tend to aggregate at the periphery of the self-
interstitial clusters and to stabilize them due to a strong binding energy of about 1.2-1.4 eV 
[208, 209]. As the temperature increases the He-SIA clustering is enhanced. Therefore, the 
number and size of interstitial clusters increase with temperature and the presence of He in 
interstitial position does influence the fraction of point defects in interstitial clusters.  

It is expected that the formation of Fe-He interstitial clusters, which are stabilized by He, will 
have a large impact on the subsequent evolution of radiation damage. These Fe-He interstitial 
clusters may act as obstacles to dislocation motion, leading to hardening associated with 
embrittlement effects (loss of fracture toughness, decrease in DBTT and upper shelf energy) 
for irradiation temperatures below than about 400°C [210]. At higher irradiation temperatures 
(> 450°C) the Fe-He interstitial clusters may become unstable, evolving to bubbles or voids 
by release of some He atoms [211].  
The number of interstitial clusters versus the fraction of the total number of interstitial He 
atoms to the total number of interstitial atoms in clusters, resulting from atomic displacement 
cascades in Fe-0.1 at.% He(I) at 523 K, is reported in Figure 3.2.1.14. It can be seen that the 
number of interstitial clusters increases with PKA energy, but not in a systematic way, and 
peaks for a fraction of about 0.5. This indicates that most of the interstitial clusters contain 
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one He atom per Fe atom. However, in large-sized clusters the number of He atoms is much 
smaller than the number of Fe atoms. For example, by using a 10 keV PKA at 523 K, one 
obtains a cluster containing 36 self-interstitials and a cluster consisting of 9 self-interstitials 
and 3 He atoms. By using a 10 keV PKA at 300 K, one obtains a cluster containing 10 self-
interstitials and 1 He atom. There are no vacancies near the clusters, neither substitutional He 
atoms. No detailed analysis was conducted to detect a possible preferential association of 
vacancies and vacancy clusters with He atoms and self-interstitials. However, according to 
the conventional cascade picture, vacancies and self-interstitials tend to be physically 
separated with vacancies dominating in the core of the cascade and interstitials at its 
periphery [212], making the formation of small SIA-He-vacancy complexes rather unlikely. 
 

 
 
Figure 3.2.1.14: Number of interstitial clusters versus the fraction of the total number of interstitial 
He atoms to the total number of interstitial atoms in clusters, resulting from atomic displacement 
cascades in Fe-0.1 at.% He(I) at 523 K. 
 

Creation of interstitial dislocation loops (I-loops) 

All possible types of interstitial dislocation loops (I-loops) in bcc Fe have been created by 
MD simulations, namely a0<100>{100}, 1/2a0<110>{110} and 1/2a0<111>{110} I-loops. 

Figure 3.2.1.15 shows three MD samples, each containing one of the three types of I-loops 
having a diameter of 2 nm, as defined by results of TEM observations. The axes of the 
sample correspond to a typical experimental observation in TEM using a diffraction vector 
g=(110) in a TEM operated at 200 kV. The axes x, y and z are along [5-52], [110] and [-115], 
respectively. The y-axis corresponds to the operating diffraction vector orientation. The z-axis 
is actually about 10° away from the [001] direction, as observation along a zone axis is 
detrimental for proper TEM imaging. The sample thickness was 80 nm and the defect depth 
was 40 nm, which corresponds to the centre of the thin foil. 
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(a) 

 
(b) 

 
(c) 

 
Figure 3.2.1.15: 2 nm-thick cut along [-115] of a 0.8 million atoms MD sample containing (a) a 
1/2a0[110] I-loop in a (110) plane, (b) a 1/2a0[111] I-loop in a (110) plane, and (c) a a0[100] I-loop in 
a (100) plane. All loops have a diameter of 2 nm. 
 

Voids 

A sample containing a spherical void in its centre, 2 nm in diameter, has been created by MD 
simulation, as shown in Figure 3.2.1.16. The sample contained about 1 million atoms. 
 

 
 
Figure 3.2.1.16: 1 nm-thick cut of a 1 million atoms MD sample containing a spherical void, 2 nm in 
diameter, in its centre. : atoms in the front, : atoms in the back. 
 

Helium bubbles 

Samples containing a spherical He bubble in their centre, 2 nm in diameter, and different He 
concentrations have been created by MD simulations, as shown in Figure 3.2.1.17. He 
concentrations investigated were 50% (1:2), 100% (1:1), 200% (2:1) and 300% (3:1). These 
values refer to the ratio of the number of He atoms relative to the number of vacancies in the 
cavity before filling it with He. The samples contained about 1 million atoms. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3.2.1.17: 1.0 nm-thick cuts of MD samples containing a spherical He bubble, 2 nm in 
diameter, in their centre, and a He concentration of (a) 50%, (b) 100%, (c) 200%, and (d) 300% inside 
the bubble. : Fe atoms in the front, : Fe atoms in the back. : He atoms in the front, : He atoms in 
the back. 
 
Chromium precipitates 

A sample containing a spherical Cr precipitate in its centre, 2 nm in diameter, has been 
created by MD simulations, as shown in Figure 3.2.1.18. The sample contained about 
1 million atoms. 

 
 
Figure 3.2.1.18: 1.0 nm-thick cut of a MD sample containing a spherical Cr precipitate, 2 nm in 
diameter, in its centre. : Fe atoms in the front, : Fe atoms in the back. : Cr atoms in the front, : 
Cr atoms in the back. 
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3.2.2 TEM image simulations 

We present here the results of TEM image simulations of all the defects created by MD 
simulations in pure bcc Fe and Fe-He materials. TEM image simulations were performed 
using the method described under § 2.4.2. 

Damage induced by atomic displacement cascades: 

One would expect that the TEM image contrast arising from the damage produced by atomic 
displacement cascades is rather weak because it stems from tiny clusters of self-interstitial 
atoms (SIAs) and/or vacancies and/or He. Helium by itself won't induce any significant 
contrast in TEM images, as the scattering factor of He for the electrons is weak relatively to 
the one of Fe. However, there might be some TEM image contrast arising from the strain in 
the surrounding matrix, induced by the possible clustering of these He atoms. 

Figures 3.2.2.1, 3.2.2.2 and 3.2.2.3 show the resulting simulated TEM dark field images of 
the damage produced by a 10 keV atomic displacement cascade in pure Fe and in Fe 
containing either 0.1 or 1 at.% He atoms in substitutional position, respectively, for two 
diffraction conditions, namely g(2.1g) and g(4.1g), and using the diffraction vector g = (200). 
The sample thickness was 80 nm in all cases, and the cascade was produced approximately in 
the middle of the sample. The contrast, minimum, maximum and average intensities in the 
image as a function of the depth are also displayed in Figures 3.2.2.1, 3.2.2.2 and 3.2.2.3. In 
these Figures, the vertical left axis refers to the amplitude of minimum (Min), maximum 
(Max) and average intensities (Mean), while the vertical right axis refers to the contrast. 

It appears that there is some contrast in the simulated TEM images arising from cascade 
damage, for the three materials and all the diffraction conditions investigated. However, the 
contrast features cannot be clearly resolved and identified, as e.g. Ashby-Brown contrasts 
[213]. They appear as background variations and at most as well identified bright dots. These 
bright dots relate to the largest clusters obtained in MD simulations of atomic displacement 
cascades. When comparing the intensities as a function of depth, it appears that the cascade 
damage in pure Fe induces a slightly stronger TEM image contrast than the cascade damage 
in both Fe-He(S) materials. 
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Figure 3.2.2.1: Simulated TEM dark field images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample of pure Fe containing the damage produced by an atomic displacement cascade, and 
corresponding simulated intensity as a function of depth, for different diffraction conditions and using 
a diffraction vector g = (200), z = [015]. 
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Figure 3.2.2.2: Simulated TEM dark field images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample of Fe-0.1 at.% He(S) containing the damage produced by an atomic displacement 
cascade, and corresponding simulated intensity as a function of depth, for different diffraction 
conditions and using a diffraction vector g = (200), z = [015]. 
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Figure 3.2.2.3: Simulated TEM dark field images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample of Fe-1.0 at.% He(S) containing the damage produced by an atomic displacement 
cascade, and corresponding simulated intensity as a function of depth, for different diffraction 
conditions and using a diffraction vector g = (200), z = [015]. 

 

Interstitial dislocation loops (I-loops): 

The contrast, σ, of a TEM image is defined by the following standard deviation: 
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where Ii is the intensity of the pixel i and Im is the average intensity. The contrast of a TEM 
image relates to the effective extinction distance, ξg

eff, as the following [201]: 
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where ξg is the extinction distance, which depends on both the material and the selected 
operating diffraction beam, g, and sg is the deviation parameter to the Ewald’s sphere, which 
characterizes the excitation of the imaging diffraction vector, and can be calculated as: 

 
  
s

g
= n(n ! m)g

2 "

2
 (3.2.2.3), 

where λ is the electron wavelength, and n characterizes the weak beam diffraction condition 
in g(ng). It indicates where the systematic row, defined by the operating diffraction beam, g, 
is intersected by the Ewald’s sphere. Therefore, in this work, the contrast variations may be 
explained by the different apparent thicknesses seen by the beam due to the different sample 
orientations. As an example, for a sample thickness of 80 nm, the g(4.1g) condition with 
g = {200} or g = {110} seems favorable for qualitative imaging of I-loops in steels, as it 
allows both the Burgers vectors and habit planes to be detected and differentiated. 

a0 <100> I-loops: 

Figure 3.2.2.4 shows simulated dark field TEM images, about 10×10 nm2 in size, of a MD 
sample containing a a0 [100](100) I-loop, 2 nm in diameter, for three different diffraction 
conditions, namely g(2.1g), g(3.1g) and g(4.1g), and using the diffraction vector g = (200). 
The specimen was 80 nm thick. The simulation cell was created with the I-loop located at a 
depth of 10 nm, corresponding to a zone close to the surface of the foil. The contrast, 
minimum, maximum and average intensities in the image as a function of the depth are also 
displayed in Figure 3.2.2.4, together with the corresponding image. 

Simulated TEM images show that the I-loop exhibits a bright double bean contrast over a 
dark background, typical of dislocation loops observed in dark field TEM imaging [213]. 
This contrast is described here for convenience as two half moons. Figure 3.2.2.4 shows that 
with increasing the diffraction condition, i.e., with increasing the deviation parameter to the 
Ewald’s sphere, sg, the width of the contrast decreases, as expected when going towards a 
weak beam TEM imaging condition, such as g(4.1g). This is clearly seen when comparing 
the g(2.1g) image to the g(4.1g) one. 
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Figure 3.2.2.4: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a a0 [100] (100) I-loop, 2 nm in diameter, and corresponding simulated 
intensities as a function of depth, for three different diffraction conditions and using the diffraction 
vector g = (200), z = [015]. 
 

The average intensity as a function of depth shows the classical thickness oscillations, whose 
periodicity should be equal to the effective extinction distance, ξg

eff. It appears that as the 
diffracted beam meets the defect in the foil, at a depth of 10 nm, the maximum intensity 
suddenly increases and the minimum intensity decreases. Both induce a corresponding rise in 
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contrast. This feature indicates that the observed contrast in the center of the simulated TEM 
images actually originates from the I-loop. More precisely, the contrast originates from the 
defect-induced displacement field in the surrounding atomic planes and not so much from the 
core of the dislocation delineating the interstitial platelet [201].  

Another feature of the dislocation image contrast is its orientation relative to the operating 
diffraction beam. In the case of the a0 [100](100) I-loop imaged with g = (200), the two half 
moons are perpendicular to it. In other words, the line joining the two half moons is 
perpendicular to the diffraction beam. This contrast feature, characteristic of dislocation loops 
observed edge-on, i.e., with their habit plane perpendicular to the image, is commonly used to 
identify their habit plane in experimental weak beam TEM images.  

Effect of depth on the I-loop image contrast: Figures 3.2.2.5 and 3.2.2.6 show a series of 
simulated TEM images of the faulted specimen as a function of depth in the foil for two 
different diffraction conditions, namely g(2g) and g(4g), respectively. Note that the 
intensities are normalized to the absolute minimum and maximum intensities found in the 
series. It allows a visual comparison of the images. In particular, a clear beating of the 
background intensity with depth can be seen, which relates to the thickness oscillations, as 
quantified by the graphs showing the intensities as a function of depth in e.g. Figure 3.2.2.4. 

As mentioned earlier, there is a related oscillation in the TEM image contrast of the I-loop. It 
appears that only at specific thicknesses, over a short depth range, does the I-loop exhibit a 
strong contrast, with white features over a dark background. In between these the I-loop 
contrast is decreased. The I-loop either exhibits a very low or no contrast, and would be thus 
invisible experimentally, or in some cases presents an inverted contrast, i.e., a contrast darker 
than the background. In the case of the diffraction conditions g(2g) and g(4g), invisibility or 
very weak visibility starts occurring at 14.8 and 17.2 nm and repeats each 7.3 and 5.3 nm, 
which corresponds to minima in the thickness contrast oscillations, while contrast inversion 
starts occurring at 22.0 and 14.8 nm and repeats each 7.3 and 5.3 nm, respectively. 

In addition, the contrast features in the simulated TEM images and the contrast at maximum 
amplitude, in other words at depths corresponding to peaks in intensities, do not vary with 
defect depth. Interestingly, it appears that the contrast propagates without any significant loss 
through the specimen, besides the thickness oscillations (Figure 3.2.2.4). Although there is no 
significant loss in contrast with depth, the peaks in contrast do vary a little bit with depth, but 
in a non-monotonous way. This shows the benefit of weak beam imaging technique, as in the 
latter cases a strong variation of contrast features and contrast maximum amplitude occurs 
with defect depth [213]. 

It should noted that, experimentally, in this series of images as a function of depth, one would 
typically only consider the I-loop images that appear white and exhibit the highest contrast 
and brightest intensity, for obvious reasons of visibility. This implies that, experimentally, 
one would implicitly neglect a part of the population of I-loops. This should be taken into 
account when measuring the number density of I-loops. 

In addition, the two half moons may exhibit contrast intensities that are inverted relatively to 
each other, that is to say that one may appear bright while the other appears dark. This is 
clearly seen in Figure 3.2.2.6, which presents the same defect and sample configuration than 
in Figure 3.2.2.5 but for the diffraction condition g(4g) instead of g(2g). This occurs at a 
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depth of 11.6, 18.8, … , and 76.4 nm, for instance. Moreover, the neglect of a part of the 
population of I-loops due to poor visibility or invisibility, as mentioned in the previous 
paragraph, would be more pronounced in this diffraction condition. 
 

 
 
Figure 3.2.2.5: Series of simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million 
atoms MD sample containing a a0 [100](100) I-loop, 2 nm in diameter, and located at a depth of 
10 nm, as a function of depth in the foil, starting at the bottom left and going towards the right and 
upwards and finishing at the top right, for the diffraction condition g(2g) and using the diffraction 
vector g = (200), z = [015]. Note that the intensities are normalized to the absolute minimum and 
maximum intensities to allow for visual comparison. 
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Figure 3.2.2.6: Series of simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million 
atoms MD sample containing a a0 [100](100) I-loop, 2 nm in diameter, and located at a depth of 
10 nm, as a function of depth in the foil, starting at the bottom left and going towards the right and 
upwards and finishing at the top right, for the diffraction condition g(4g) and using the diffraction 
vector g = (200), z = [015]. Note that the intensities are normalized to the absolute minimum and 
maximum intensities to allow for visual comparison. 
 
Effect of operating diffraction beam: Figure 3.2.2.7 shows simulated dark field TEM images, 
about 10×10 nm2 in size, of a MD sample containing a a0[100](100) I-loop, 2 nm in diameter, 
for three different diffraction conditions, namely g(1.3g), g(2.1g) and g(4.1g), and using the 
diffraction vector g = (110). The specimen was 80 nm thick. The simulation cell was created 
with the I-loop located at a depth of 20 nm, corresponding to the first quarter of the depth of 
the foil. The contrast, minimum, maximum and average intensities in the image as a function 
of the depth are also displayed in Figure 3.3.3.7, together with the corresponding image. 
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It appears that the I-loop exhibits a light and dark bean contrast over a dark background, 
similar to the so-called Ashby-Brown contrast defined for precipitates [213]. In that case, one 
can define one bright half moon and one dark half moon. This is different from the contrast 
obtained with g = (200), for which two bright half moons are usually observed. In addition, 
the orientation of the I-loop, defined by the line joining the two beans, is not perpendicular to 
the diffraction beam because with g = (110) the loop is not observed edge-on. However, the 
I-loop image contrast exhibits a similar behavior with depth as for g = (200), and the increase 
in diffraction condition or deviation parameter, sg, also decreases the width of the I-loop 
image contrast. 
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Figure 3.2.2.7: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a a0 [100](100) I-loop, 2 nm in diameter, and corresponding simulated 
intensities as a function of depth, for three different diffraction conditions and using the diffraction 
vector g = (110), z = [-115]. 
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1/2 a0 <110>{110} I-loops: 

Figure 3.2.2.8 shows simulated dark field TEM images, about 10×10 nm2 in size, of a MD 
sample containing a 1/2 a0 [110](110) I-loop, 2 nm in diameter, for two different diffraction 
conditions, namely g(1.3g) and g(4.1g), and using the diffraction vector g = (110). The 
specimen was 80 nm thick. The simulation cell was created with the I-loop located at a depth 
of 40 nm, corresponding to the middle of the foil. The contrast, minimum, maximum and 
average intensities in the image as a function of the depth are also displayed in Figure 3.2.2.8, 
together with the corresponding image. 
The I-loop image contrast appears as two half moons. The features of the image contrast and 
intensities as a function of depth and diffraction conditions were found similar to those 
obtained for the a0 [100](100) I-loops. The change in the width of the image contrast with 
diffraction conditions was also found similar to the one obtained for the a0 [100](100) I-
loops. As the 1/2 a0 [110](110) I-loop simulated using the diffraction vector g = (110) is seen 
edge-on, the line joining the half moons is perpendicular to the diffraction beam, as in the 
case of the a0 [100]{100} I-loop simulated using g = (200). However, the image contrast of 
the 1/2 a0 [110](110) I-loop appears less sharp than the one of the a0 [100](100) I-loop, as can 
be seen when comparing Figures 3.2.2.8 and 3.2.2.4 in the g(4.1g) condition. 
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Figure 3.2.2.8: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a 1/2 a0 [110](110) I-loop, 2 nm in diameter, located at a depth of 40 nm, and 
corresponding simulated intensities as a function of depth, for two different diffraction conditions and 
using the diffraction vector g = (110), z = [-115]. 
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Effect of I-loop depth: Figure 3.2.2.9 shows the evolution of the image intensities as a 
function of depth for the case of a 1/2 a0 [110](110) I-loop located at two different depths of 
10 and 40 nm, the specimen thickness being equal to 80 nm. One observes a strong image 
contrast for the loop located at 10 nm, as expected [213]. At the depth of 40 nm the contrast 
is still significant, contrary to what is said usually [213]. The I-loop depth in the foil was 
found to have no significant influence on the simulated TEM image contrasts. This 
observation has been made for all the defects simulated in this work and for all image 
simulation conditions. 
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Figure 3.2.2.9: Simulated intensities as a function of depth for a 0.8 million atoms MD sample 
containing a 1/2 a0 [110](110) I-loop, 2 nm in diameter, located at a depth of (a) 10 nm and (b) 40 nm, 
for the diffraction condition g(4.1g) and using the diffraction vector g = (110). 
 

Effect of I-loop size: Figure 3.2.2.10 shows simulated dark field TEM images, about 
10×10 nm2 in size, of a MD sample containing a 1/2 a0 [110](110) I-loop, 1 nm in diameter, 
for two different diffraction conditions, namely g(2.1g) and g(4.1g), and using the diffraction 
vector g = (110). The specimen was 40 or 80 nm thick with the I-loop located at a depth of 10 
or 40 nm, respectively, corresponding to a zone close to the first quarter of the foil and to the 
middle of the foil. The contrast, minimum, maximum and average intensities in the image as 
a function of the depth are also displayed in Figure 3.3.3.10.  

The I-loop image contrast appears as a light and dark bean contrast over a dark background in 
the g(2.1g) condition, similar to the so-called Ashby-Brown contrast defined for precipitates 
[213], the operating diffraction beam being perpendicular to the line joining the two beans. 
However, the I-loop image contrast appears rather as a single moon in the g(4.1g) condition. 
The features of the image contrast and intensities as a function of depth and diffraction 
conditions were found similar to those obtained for the a0 [100]{100} and 1/2 a0 [110](110) I-
loops with a diameter of 2 nm. The change in the width of the image contrast with diffraction 
conditions was also found similar to the one obtained for the a0 [100]{100} and 1/2 a0 [110] 
(110) I-loops with a diameter of 2 nm. However, the 1 nm I-loop exhibits a smaller TEM 
image contrast than the 2 nm I-loops, in direct relation to the smaller size of the I-loop. 
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Figure 3.2.2.10: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a 1/2 a0 [110](110) I-loop, 1 nm in diameter, located at a depth of 10 or 40 nm 
in a specimen 40 or 80 nm thick, respectively, and corresponding simulated intensities as a function of 
depth, for two different diffraction conditions and using the diffraction vector g = (110), z = [-115]. 

 
Effect of operating diffraction beam: Figure 3.2.2.11 shows simulated dark field TEM 
images, about 10×10 nm2 in size, of a MD sample containing a 1/2 a0 [110](110) I-loop, 
2 nm in diameter, for four different diffraction conditions, namely g(1.3g), g(2.1g), g(3.1g) 
and g(4.1g), and using the diffraction vector g = (200). The specimen was 80 nm thick. The 
contrast, minimum, maximum and average intensities in the image as a function of the depth 
are also displayed in Figure 3.2.2.11, together with the corresponding image. The I-loop 
image contrast appears as two overlapping half moons, not so well defined however, and the 
operating diffraction beam is not perpendicular to the line joining the two half moons. The 
features of the image contrast and intensities as a function of depth and diffraction conditions 
were found similar to those obtained in previous cases. The change in the width of the image 
contrast with diffraction conditions was also found similar to the one obtained in previous 
cases. 
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Figure 3.2.2.11: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a 1/2 a0 [110](110) I-loop, 2 nm in diameter, located at a depth of 10 nm, and 
corresponding simulated intensities as a function of depth, for four different diffraction conditions and 
using the diffraction vector g = (200), z = [015]. 
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1/2 a0 <111>{110} I-loops: 

Figure 3.2.2.12 shows simulated dark field TEM images, about 10×10 nm2 in size, of a MD 
sample containing a 1/2 a0 [111](110) I-loop, 2 nm in diameter, for two different diffraction 
conditions, namely g(1.3g) and g(4.1g), and using the diffraction vector g = (110). The 
specimen was 80 nm thick. The contrast, minimum, maximum and average intensities in the 
image as a function of the depth are also displayed in Figure 3.2.2.12, together with the 
corresponding image. 

It can be seen that the image contrast of the 1/2 a0 [111](110) I-loop does not appear anymore 
clearly as two half moons but rather as a single big bright spot. This indicates that, 
experimentally, the habit plane and Burgers vector of the I-loop might be difficult to 
determine. The features of the image contrast and intensities as a function of depth and 
diffraction conditions were found similar to those obtained in previous cases. The change in 
the width of the image contrast with diffraction conditions was also found similar to the one 
obtained in previous cases. 
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Figure 3.2.2.12: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a 1/2 a0 [111](110) I-loop, 2 nm in diameter, located at a depth of 40 nm, and 
corresponding simulated intensities as a function of depth, for two different diffraction conditions and 
using the diffraction vector g = (110), z = [-115]. 
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Effect of the operating diffraction vector: Figure 3.2.2.13 shows simulated dark field TEM 
images, about 10×10 nm2 in size, of a MD sample containing a 1/2 a0 [111](110) I-loop, 
2 nm in diameter, for four different diffraction conditions, namely g(1.3g), g(2.1g), g(3.1g) 
and g(4.1g), and using the diffraction vector g = (200). The specimen was 80 nm thick. The 
contrast, minimum, maximum and average intensities in the image as a function of the depth 
are also displayed in Figure 3.2.2.13, together with the corresponding image.  

The I-loop image contrast appears as two overlapping half moons, not so well defined 
however, and the operating diffraction beam is not perpendicular to the line joining the two 
half moons. The features of the image contrast and intensities as a function of depth and 
diffraction conditions were found similar to those obtained in previous cases. The change in 
the width of the image contrast with diffraction conditions was also found similar to the one 
obtained in previous cases. By comparing TEM image contrasts provided by the 
1/2 a0 [110](110) and 1/2 a0 [111](110) I-loops, 2 nm in diameter, using the diffraction beam 
g = (200), it can be seen that they exhibit no significant difference, whatever the exact 
imaging condition being used. This indicates that, experimentally, these two kinds of I-loops 
cannot be distinguished from each other using a diffraction beam equal to g = (200). 
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Figure 3.2.2.13: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a 1/2 a0 [111](110) I-loop, 2 nm in diameter, located at a depth of 10 nm, and 
corresponding simulated intensities as a function of depth, for four different diffraction conditions and 
using the diffraction vector g = (200), z = [015]. 
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Voids: 

Figure 3.2.2.14 shows simulated dark field TEM images, about 10×10 nm2 in size, of a MD 
sample containing a spherical void, 2 nm in diameter, for two different diffraction conditions, 
namely g(2.1g) and g(4.1g), and using the diffraction vector g = (200). The specimen was 
80 nm thick. The contrast, minimum, maximum and average intensities in the image as a 
function of the depth are also displayed in Figure 3.2.2.14, together with the corresponding 
image. 

It can be seen in Figure 3.2.2.14 that the TEM image contrast of this small void appears as an 
intense bright spot. This contrast does not result so much from void-induced strain of the 
matrix, although some is expected, but rather from the lack of material in the cavity, which 
induces a strong contrast of the void with respect to the one of the matrix, due to a gap in 
thickness oscillations through the void. 
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Figure 3.2.2.14: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a spherical void, 2 nm in diameter, located at a depth of 40 nm, and 
corresponding simulated intensities as a function of depth, for two different diffraction conditions and 
using the diffraction vector g = (200), z = [015]. 
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Helium bubbles: 

Figure 3.2.2.15 shows simulated dark field TEM images, about 10×10 nm2 in size, of a MD 
sample containing a spherical He bubble, with a concentration of 100% (1:1) and 2 nm in 
diameter, for two different diffraction conditions, namely g(2.1g) and g(4.1g), and using the 
diffraction vector g = (200). The specimen was 80 nm thick. The contrast, minimum, 
maximum and average intensities in the image as a function of the depth are also displayed in 
Figure 3.2.2.15, together with the corresponding image. 

It can be seen in Figure 3.2.2.15 that the TEM image contrast of this small He bubble appears 
as an intense bright spot. This contrast does not result from the He contained in the cavity, as 
scattering of electrons by He is very weak. Like in the case of voids, the contrast does not 
result so much from void-induced strain of the matrix, although some is expected, but rather 
from the lack of material in the cavity, which induces a strong contrast with respect to the 
matrix due to a gap in thickness oscillations through the void. The width of the TEM image 
contrast of a He bubble was found to increase significantly with the He concentration. 
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Figure 3.2.2.15: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a spherical He bubble, with a concentration of 100% (1:1) and 2 nm in 
diameter, located at a depth of 40 nm, and corresponding simulated intensities as a function of depth, 
for two different diffraction conditions and using the diffraction vector g = (200), z = [015]. 
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Cr precipitates: 

Figure 3.2.2.16 shows simulated dark field TEM images, about 10×10 nm2 in size, of a MD 
sample containing a spherical Cr precipitate, 2 nm in diameter, for two different diffraction 
conditions, namely g(2.1g) and g(4.1g), and using the diffraction vector g = (200). The 
specimen was 80 nm thick. The contrast, minimum, maximum and average intensities in the 
image as a function of the depth are also displayed in Figure 3.2.2.16, together with the 
corresponding image. 

One would expect that the TEM image contrast of this small Cr precipitate exhibits the 
typical Ashby-Brown contrast arising from the strong precipitate-induced strain of the matrix, 
with its characteristic nearly symmetrical bright and dark lobes [214]. However, the Ashby-
Brown contrast is partially hidden in Figure 3.2.2.16, due to a strong background noise made 
of periodic bright and dark fringes. 

 
Diffraction 
condition Simulated TEM image Simulated intensities as a function of depth 

g(2.1g) 

  

g(4.1g) 

  
 
Figure 3.2.2.16: Simulated dark field TEM images, about 10×10 nm2 in size, of a 0.8 million atoms 
MD sample containing a spherical Cr precipitate, 2 nm in diameter, located at a depth of 40 nm, and 
corresponding simulated intensities as a function of depth, for two different diffraction conditions and 
using the diffraction vector g = (200), z = [015]. 
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3.2.3 SANS signal simulations 

We present here the results of simulations of the SANS signal provided by the defects created 
by MD simulations, for interpreting the results of SANS experiments. The simulations of the 
SANS signal were performed using the method described under § 2.4.3. 

Figure 3.2.3.1 shows examples of simulated electron and neutron diffraction patterns for a 
perfect α-Fe sample containing 0.1 million atoms, which were obtained using a wavelength 
of electrons and neutrons of 0.00251 nm and 0.0350 nm, respectively, and a neutron 
scattering constant, bc, equal to 9.452, 3.263 and 3.6357 fm for α-Fe, He and Cr, respectively 
(see Table 2.3.1.1). Note that the neutron wavelength that was used in the further SANS 
signal simulations is the one of the SANS facility at the PSI, namely λ = 0.450 nm. 
 

 
(a) 

 
(b) 

 

Figure 3.2.3.1: Simulated (a) electron and (b) neutron diffraction patterns of a perfect α-Fe sample. 

 

Figure 3.2.3.2 shows simulated neutron diffraction intensity data versus Q values, which 
were obtained from the 2D neutron diffraction patterns of a perfect MD specimen of pure Fe 
and MD specimens containing the damage produced by atomic displacement cascades in pure 
Fe, Fe-0.1 at.% He(I) and Fe-0.1 at.% He(S), using a simulation cell of 18×18×18 nm3, a 
temperature of 10 K and a PKA energy of 10 keV. It can be seen that the simulated SANS 
intensity decreases with increasing Q values. It can be also seen that the SANS intensity is 
the lowest for the perfect, i.e., uniradiated, specimen. Irradiated specimens exhibit a much 
larger SANS intensity. At very small Q values (< 0.4 nm-1), pure Fe exhibits the highest 
SANS signal, while at larger Q values Fe-0.1 at.% He(S) exhibits a much larger SANS signal 
than pure Fe and Fe-0.1 at.% He(I). At very large Q values (≥ 5.4 nm-1), no differences in the 
SANS intensity are detected any more. 
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These results indicate that the size of defect clusters produced by atomic displacement 
cascades is much larger in pure Fe than in He-containing specimens, revealing that small-
sized defect clusters are actually stabilized by the presence of He, hindering subsequent 
diffusion, agglomeration and growing of defect clusters. In addition, it appears that the 
number density of small irradiation-induced effects is significantly larger in Fe-
0.1 at.% He(S) than in pure Fe and in Fe-0.1 at.% He(I). Indeed, as already pointed out, 
during the first stage of an atomic displacement cascade, a substitutional He atom can be 
easily kicked out from its position to form a vacancy and an interstitial He atom. 
 

 
 
Figure 3.2.3.2: Simulated SANS intensity data versus Q values for a perfect MD specimen of pure Fe 
and MD specimens containing the damage produced by atomic displacement cascades in pure Fe, Fe-
0.1 at.% He(I) and Fe-0.1 at.% He(S), using a simulation cell of 18×18×18 nm3, a temperature of 
10 K and a PKA energy of 10 keV. 

 

Figure 3.2.3.3 shows simulated neutron diffraction intensity data versus Q values, which 
were obtained from the 2D neutron diffraction pattern of a MD specimen of pure Fe 
containing a spherical void, 2 nm in diameter, for four different incident beam directions. It 
can be seen that the SANS intensity decreases with increasing Q values, whatever the 
incident beam direction. The final SANS intensity data versus Q values were obtained by 
performing a rotational average of the 2D neutron diffraction pattern, i.e., by averaging the 
data obtained for the four incident beam directions. Results are shown in Figure 3.2.3.4. 

The theoretical SANS intensity versus Q values, which was calculated analytically using the 
equation (3.1.4.1), is also reported in Figure 3.2.3.4 for comparison purposes. It appears that 
there is a good agreement between the two approaches. The scatter in the simulated SANS 
intensity, relative to the calculated one, stems from the limited sampling of the 2D neutron 
diffraction pattern. 
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Figure 3.2.3.3: Simulated SANS intensity data versus Q values for a MD specimen of pure Fe 
containing a spherical void, 2 nm in diameter, using four different incident beam directions: (001), 
(012), (011), and (043). 

 

 
 
Figure 3.2.3.4: Comparison between the averaged simulated SANS intensity data versus Q values, for 
a MD specimen of pure Fe containing a spherical void, 2 nm in diameter, and the theoretical SANS 
intensity, calculated using the equation (3.1.4.1), versus Q values. 
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The neutron intensity scattered by a population of small dislocation loops with an isotropic 
distribution of orientations was calculated using a continuum approach by A. Seeger and M. 
Rühle [215]. More recently, it was shown that the neutron intensity scattered by dislocation 
loops is three orders of magnitude smaller than the neutron intensity scattered by an He-
implanted sample containing mainly He bubbles [76]. 

Figure 3.2.3.5 shows simulated neutron diffraction intensity data versus Q values, which 
were obtained from 2D neutron diffraction patterns of a perfect MD specimen of pure Fe and 
MD specimens of pure Fe containing a spherical void, 2 nm in diameter, or a a0 <100>{100} 
I-loop, 2 nm in diameter. It can be seen that the simulated SANS signal provided by a simple 
void is much higher than the one provided by a dislocation loop. In fact, there is almost no 
difference between the simulated SANS signal arising from a perfect crystal and the one 
arising from a dislocation loop. Therefore, in practice, the SANS signal provided by 
dislocation loops will be hidden by the experimental noise. 

 

 
 
Figure 3.2.3.5: Simulated SANS intensity data versus Q values for a perfect MD specimen of pure Fe 
and MD specimens of pure Fe containing a void, 2 nm in diameter, or a a0 <100>{100} I-loop, 2 nm 
in diameter. 
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Figure 3.2.3.6 shows simulated neutron diffraction intensity data versus Q values, which 
were obtained from 2D neutron diffraction patterns of a perfect MD specimen of pure Fe and 
MD specimens of pure Fe containing a spherical He bubble, 2 nm in diameter, with different 
He concentrations: 0% (void), 50% (1:2), 100% (1:1), 200% (2:1), 300% (3:1). It can be seen 
that the SANS signal provided by a He bubble is much higher than the one provided by a 
perfect crystal but significantly lower than the SANS signal provided by a void. In addition, 
the SANS signal of a He bubble decreases with increasing He concentration inside the cavity 
and tends to saturation for a He concentration of 200% (2:1). 
 

 
 
Figure 3.2.3.6: Simulated SANS intensity data versus Q values for a perfect MD specimen of pure Fe 
and MD specimens of pure Fe containing a He bubble, 2 nm in diameter, with different He 
concentrations: 0% (void), 50% (1:2), 100% (1:1), 200% (2:1), 300% (3:1).  
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Figure 3.2.3.7 shows simulated neutron diffraction intensity data versus Q values, which 
were obtained from 2D neutron diffraction patterns of a perfect MD specimen of pure Fe and 
MD specimens of pure Fe containing a spherical void, 2 nm in diameter, or a spherical Cr 
precipitate, 2nm in diameter. It can be seen that the SANS signal provided by the Cr 
precipitate is much higher than the SANS signal provided by a perfect crystal. However, it 
appears significantly lower than the SANS signal provided by a void. It is actually more or 
less similar to the SANS signal provided by a He bubble with a He concentration of 100% 
(1:1), as expected, the neutron scattering constant, bc, for chromium being very close to the 
one for helium. 

Therefore, in practice, apart dislocation loops, all other possible types of irradiation-induced 
defects in pure Fe can be detected by mans of the SANS technique. However, as there is only 
a very small difference between the SANS signal provided by a Cr precipitate and the one 
provided by a He bubble, these two kinds a defects appear difficult to distinguish from each 
other by using the SANS technique. 
 

 
 
Figure 3.2.3.7: Simulated SANS intensity data versus Q values for a perfect MD specimen of pure Fe 
and MD specimens of pure Fe containing a void, 2 nm in diameter, or a Cr precipitate, 2 nm in 
diameter. 

 

Note that in the cases of voids, He bubbles and Cr precipitates the sharp decrease of the 
scattering intensity occurring at a Q value about 2.50 nm-1 is due to statistical errors arising 
from the used spherical averaging method. 
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CHAPTER 4: DISCUSSION 
 

 

4.1 SANS experiments 
 

4.1.1 Size of irradiation-induced defects 
The mean size (radius) of small and large irradiation-induced effects in the EUROFER 97 
RAFM steel is summarized in Table 4.1.1.1 as a function of irradiation dose and temperature. 
It can be seen that the mean size decreases with increasing dose, whatever the irradiation 
temperature and the type of defects (small versus large). This indicates that defects mostly 
accumulate but not coarsen during the course of irradiation at a given temperature. 

The mean size of small irradiation-induced defects evidenced in specimens irradiated to 0.3 
or 1.0 dpa increases with temperature, while the mean size of small irradiation-induced 
effects evidenced in samples irradiated to 2.0 dpa shows no significant dependence on 
temperature between 50 and 250°C. This indicates that small defects irradiated to a given low 
dose tend to coarsen when the temperature is increased. It seems that small defects are quite 
unstable at low doses and reach some size stability at larger doses. 

The mean size of large defects evidenced in specimens irradiated to 2.0 dpa appears to 
increase with temperature between 50 and 250°C. Like in the case of small defects, this 
indicates that large defects tend to coarsen when the temperature is increased. 

It has to be noted that a large part of the small defects evidenced in SANS have a size well 
below the TEM resolution limit in weak beam imaging, i.e., about 1 nm. 

 

Mean size at 50° C 

(nm) 

Mean size at 250° C 

(nm) 

Mean size at 350° C 

(nm) 
Dose 

(dpa) 
R1 R2 R1 R2 R1 R2 

0.3 0.42673 - 0.88559 - 1.0230 - 

1.0 0.40178 2.7262 0.80770 - 0.86787 - 

2.0 0.29309 0.70306 0.28525 2.1798 - - 

 

Table 4.1.1.1: Mean size (radius) of small (R1) and large (R2) irradiation-induced defects in the 
EUROFER 97 RAFM steel as a function of irradiation dose and temperature. 
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4.1.2 Number density of irradiation-induced defects 

The number density of small and large irradiation-induced effects in the EUROFER 97 
RAFM steel is summarized in Table 4.1.1.2 as a function of irradiation dose and temperature. 
As the number density is expressed in arbitrary units the absolute values have no real sense. 
Only the tendencies with dose and temperature are actually meaningful. 

It can be seen that the number density increases with dose, whatever the irradiation 
temperature and the type of defects (small versus large). This confirms the behavior of the 
mean size versus dose and the idea that defects mostly accumulate but not coarsen during the 
course of irradiation at a given temperature. 

The number density of small irradiation-induced defects evidenced in specimens irradiated to 
a given dose tends to decrease with increasing temperature. This effect is much less important 
at 2.0 dpa than at 0.3 and 1.0 dpa, however. This confirms the idea that small defects tend to 
disappear with increasing temperature, probably by coarsening phenomenon, as shown by 
mean size measurements, and that small defects are quite unstable at low doses and reach 
some size and number density stability at larger doses. 

The number density of large defects evidenced in specimens irradiated to 2.0 dpa appears to 
decrease with increasing temperature between 50 and 250°C. Like in the case of small 
defects, this indicates that large defects tend to disappear by coarsening phenomenon when 
the temperature is increased. 
 

Number density N 

50°C 

Number density N  

250°C 

Number density N 

350°C 
Dose 

(dpa) 
N1 N2 N1 N2 N1 N2 

0.3 0.0121 - 0.9760×10-4 - 1.99×10-5 - 

1.0 0.0202 1.5793×10-6 2.6216×10-4 - 2.88×10-5 - 

2.0 0.1337 2.4632×10-4 0.1294 0.5553×10-5 - - 

 

Table 4.1.2.1: Number density (in arbitrary units) of small (N1) and large (N2) irradiation-induced 
defects in the EUROFER 97 RAFM steel as a function of dose and temperature. 
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4.1.3 Geometry of irradiation-induced defects 

In SANS the asymptotic behavior of the scattered intensity provides useful information about 
the geometry of scattering objects. Assuming a dilute and dispersed system of scattering 
objects, the scattered intensity is then proportional to Q-γ for large Q values (Q being the 
magnitude of the diffraction vector), according to the Porod law [84, 98, 99], as described in 
§ 1.3.7 and § 1.3.8. γ = 4 corresponds to three-dimensional scattering objects, γ = 2 to two-
dimensional scattering objects (surface scattering), γ = 1 to elongated scattering objects and 
γ < 1 to fractal objects. In the latter case, the number distribution of scattering objects of mass 
M is given by equation (1.3.8.12), where τ is the polydispersity exponent, Mz is the z-
averaged mass, as given by equation (1.3.8.13) and h(M/Mz) is a scaling function for the 
polydispersity, which decays rapidly for M > Mz. τ = 2.2 for three-dimensional percolation 
model and τ = 2.5 for Bethe lattice. The polydispersity averaged scattered intensity I(q) is 
given by equation (1.3.8.14). The asymptotic behavior of I(q) for polydispersed mass fractals 
is given by equation (1.3.8.15). When τ > 2.5 , D(3-τ) < 1, where D is the fractal dimension 
[84]. 

Figure 4.1.3.1 shows a plot of ln I(Q) versus ln Q over the Q-range 1-4.7 nm-1 for an 
unirradiated specimen of the EUROFER 97 RAFM steel. The obtained results can be divided 
into two regions: (1) for Q values above about 1.87 nm-1 the ln I(Q) values appears more or 
less constant, typical of a uniform matrix with no nano-sized defects; (2) for Q values below 
about 1.87 nm-1 the ln I(Q) values decrease with increasing ln Q values, which corresponds to 
a γ value of about 4.0772. This value is indicative of three-dimensional objects, such as 
precipitates, having a size larger than the nanometer. 
 

 
 

Figure 4.1.3.1: ln I(Q) versus ln Q for an unirradiated specimen of the EUROFER 97 RAFM steel. 
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Figure 4.1.3.2 shows plots of ln I(Q) versus ln Q over the Q-range 1-4.7 nm-1 for specimens 
of the EUROFER 97 RAFM steel irradiated either at 50°C to 0.3, 1.0 or 2.0 dpa or at 250°C 
to 2.0 dpa. It can be seen that the ln I(Q) values decrease with increasing ln Q values, over 
the whole Q-range investigated. Corresponding γ values are equal to 0.2652, 0.6377, 0.5254 
and 0.3195. Therefore, at the given temperature of 50°C the γ value is maximal for the dose 
of 1.0 dpa. At the given dose of 2.0 dpa the γ value decreases with increasing temperature 
from 50 to 250°C. The obtained γ values are indicative of fractal irradiation-induced defects, 
such as helium bubbles, with a nanometer size or above. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 4.1.3.2: ln I(Q) versus ln Q for specimens of the EUROFER 97 RAFM steel irradiated at 50°C 
to (a) 0.3 dpa, (b) 1.0 dpa, and (c) 2.0 dpa, and at (d) 250°C to 2.0 dpa. Corresponding γ values are 
equal to 0.26523, 0.63774, 0.52536 and 0.31946. 
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4.1.4 Type of irradiation-induced defects 

A variety of small irradiation-induced defects may contribute to the additional SANS 
intensity scattered by irradiated specimens of RAFM steels at large Q values. These include 
cascade damage (vacancies, interstitials, clusters of vacancies, clusters of interstitials) 
nanometer-sized cavities (voids and/or helium bubbles), precipitates and dislocation loops. 

Although SANS experiments provided us important information about the mean size, relative 
number density and geometry (via the γ value) of the irradiation-induced defects, their actual 
type is more difficult to assess with certainty. 

Our simulations of the SANS signal arising from either cascade damage or various types of 
dislocation loops, or a void, or a helium bubble, or a precipitate, revealed that the 
contribution of cascade damage and dislocation loops to the SANS signal can be considered 
as negligible. 

Fe-rich (α) and Cr-rich (α’) precipitates have not been observed in RAFM steels in the 
unirradiated state. On the contrary, such precipitates are frequently observed by means of 
TEM in RAFM steels having a Cr content above a critical threshold value (about 7.2 at% at 
325°C). However, they usually exhibit a mean size well above 1 nm. The relatively low 
irradiation doses investigated in the present study are not expected to lead to phase separation 
in RAFM steels and then to the formation of α-α’ precipitates. However, their production 
under the irradiation conditions investigated in the present work cannot be totally excluded. 

Therefore, the small irradiation-induced evidenced in RAFM steels using the SANS 
technique could be either nano-sized cavities (voids and/or helium bubbles) and/or 
precipitates. In order to clarify this point, the A parameter has been calculated for a large 
number of possible, nano-sized, irradiation-induced defects in RAFM steels. 

Indeed, when applying a saturating magnetic field to the sample during SANS experiments, it 
is possible to obtain information about the nature of the scattering objects by calculating the 
A parameter that is the ratio of the magnetic plus nuclear scattering to the nuclear scattering. 
In the case of a system composed of a matrix and one type of defects, the A parameter can be 
written as: 
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 (4.1.4.1), 

where bm
matrix and bn

matrix are the coherent magnetic and nuclear scattering lengths of the 
matrix, respectively, bm

defect and bn
defect are the coherent magnetic and nuclear scattering 

lengths of the defects, respectively, and Ωmatrix and Ωdefect are the average atomic volumes of 
the matrix and the defects, respectively. 

In the case of voids, equation (4.1.4.1) reduces to: 
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 (4.1.4.2). 
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In the case of helium bubbles, equation (4.1.4.1) reduces to: 
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 (4.1.4.3). 

ΩHe (r) is directly related to the helium pressure inside a bubble, which is expected to depend 
on the bubble size (r). bn

matrix was calculated from the coherent nuclear scattering lengths of 
the different elements in solid solution in the matrix of the EUROFER 97 RAFM steel:  
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!  (4.1.4.4), 

where bn
i is the coherent nuclear scattering length of the element i and fi is the atomic 

percentage of the element i in the matrix. bn
matrix was determined to be 8.7828 fm and 

Ωmatrix
 = 11.8170 Å3 for the matrix of the EUROFER 97 RAFM steel. bn

He was determined to 
be 3.263 fm and ΩHe = 39.50 Å3 (Van der Waals atomic volume of He). Therefore: 
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bm
matrix was determined using the following equation: 
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 (4.1.4.7), 

where γm is the magnetic moment of neutrons, e and m0 are the electron charge and mass, 
respectively, f(q) is the atomic form factor, which is equal to 1 at small angle, and µm is the 
mean magnetic moment per matrix atom, which was calculated as follows [216]: 
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 (4.1.4.8), 

where CCr is the chromium concentration in the matrix of the EUROFER 97 RAFM steel. M0 
and M1 are equal to 2.20 and 2.39 µB per atom, respectively, where µB is the Bohr magnetron. 
bm

matrix was determined to be 5.2388 fm. Therefore, for all non-magnetic defects, like voids, 
pure helium clusters or bubbles, pure chromium carbides and so on: 
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$2  (4.1.4.9). 

The neutron and magnetic scattering length density, ρn and ρm, the neutron and magnetic 
scattering contrast, Δρn and Δρm, and the A value for for a large number of possible, nano-
sized, irradiation-induced defects in the EUROFER 97 RAFM steel are listed in Table 
4.1.4.1. 
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Type of nano-sized 
irradiation-induced defects 

Neutron 
scattering 

length 
density ρn 
(1010 cm-2) 

Neutron 
scattering 
contrast 
Δρn 

(1010 cm-2) 

Magnetic 
scattering 

length 
density ρm 
(1010 cm-2) 

Magnetic 
scattering 
contrast 
Δρm 

(1010 cm-2) 

A ratio 

Void 0 7.4322 0 4.4333 1.3558 

He bubble 0.8261 6.6063 0 4.4333 1.4503 

He clusters (substitutional) 2.7613 4.6709 0 4.4333 1.9008 

He clusters (interstitial) 3.4516 3.9807 0 4.4333 2.2403 

CrHe (Cr3He3, Cr4He4, etc.) 2.6525 4.7798 0 4.4333 1.8603 

FeHe (Fe3He3, Fe4He4, etc.) 5.035 2.3973 2.2924 2.1409 1.7978 

Cr95 Fe5 (α’) 2.8712 4.5610 0.1608 4.2725 1.8775 

Cr2FeHe3 3.4334 3.9990 0.4580 3.9753 1.9882 

CrHe2C 3.5327 3.8995 0 4.4333 2.2924 

Cr2HeC 3.6947 3.7375 0 4.4333 2.40687 

Cr3C 3.8483 3.5839 0 4.4333 2.5301 

(FeHeCrHe)7C3 4.1169 3.3154 0.7976 3.6357 2.2026 

(FeHeCr)7C3 4.7021 2.7302 1.1566 3.2766 2.4407 

(FeHe)4C 5.2790 2.1532 1.9895 2.4438 2.2882 

(FeHe)3C 5.3537 2.0786 1.9030 2.5303 2.4818 

(FeHe)2C 5.4979 1.9344 1.7472 2.6861 2.9282 

(FeCr)7C3 5.7051 1.7272 1.8114 2.6219 3.3045 

FeHeC 5.8821 1.5502 1.3838 3.0495 4.8697 

Fe2HeC 6.3686 1.06374 2.2924 2.1409 5.049 

Fe3C 7.8129 -0.38066 3.6553 0.7780 5.1776 

Fe2C 7.7736 -0.34126 3.2009 1.2324 14.04 
 

Table 4.1.4.1: Neutron and magnetic scattering length density, ρn and ρm, neutron and magnetic 
scattering contrast, Δρn and Δρm, and A value for a large number of possible, nano-sized, irradiation-
induced defects in the EUROFER 97 RAFM steel. 
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It can be seen in Table 4.1.4.1 that the A values are the smallest, equal to about 1.36 and 1.45, 
in the case of voids and helium bubbles, respectively. The A values are ranging between 1.80 
and 5.05 for helium-containing Fe-rich or Cr-rich precipitates. The A value is equal to about 
2.53 for pure chromium carbides, 1.88 for Cr-rich precipitates (α’) and are ranging between 
5.18 and 14.04 for pure Fe carbides. 

Unirradiated EUROFER 97 RAFM steel: By combining the A value (about 2) reported under 
§ 3.1.6 with the γ value (about 4.08) reported under § 4.1.3, as deduced from results of SANS 
experiments, it appears that the defects evidenced by SANS in unirradiated specimens of the 
EUROFER 97 RAFM steel could be small carbides. Indeed, voids and/or helium bubbles are 
not expected in unirradiated specimens, as well as helium-containing precipitates. In addition, 
such carbides are three-dimensional objects, as suggested by the obtained γ value of about 
4.08, and fit well the A value of about 2 which was obtained over the Q-range of 0.426-
0.70 nm-1, suggesting that these precipitates have a size larger than the nanometer. On the 
other hand, such carbides are in good agreement with results reported in the literature (see 
§ 1.5.1). 

Irradiated EUROFER 97 RAFM steel: By combining the A values reported under § 3.1.6 
with the γ values reported under § 4.1.3, as deduced for results of SANS experiments, it 
appears that the defects evidenced by SANS in irradiated specimens of the EUROFER 97 
RAFM steel could be nano-sized helium bubbles. Indeed, the obtained γ values, which are in 
all cases well below 1 in the Q-range of 1-4.7 nm-1, suggest that the irradiation-induced 
effects are fractal objects with a nanometer size. In addition, the A values of about 2, which 
were obtained in the Q-range of 0.426-4.826 nm-1, are relatively close to the A value of 
1.4503 obtained for helium bubbles and to the A values obtained for helium-containing Cr-
rich precipitates. However, such precipitates are three-dimensional objects and do not fit very 
well the small γ values obtained. On the other hand, nano-sized helium bubbles are in good 
agreement with results reported in the literature (see § 1.5.2). 

As a result from atomic displacement cascades, a central depleted zone forms and He 
impurities are expected to remain in this area to produce interstitial He and vacancy clusters 
by He pinning effect and kick out mechanism. This area having an undefined 3D shape, the 
interstitial He and vacancy clusters may result in a fractal distribution of nano-sized He 
bubbles. Moreover, as a result from MD simulations, one may see that the shape of such 
nano-sized He bubbles is fractal [208]. 

The larger defects evidenced by means of SANS experiments have been analyzed less in 
detail. However, they could correspond to the interstitial defect clusters evidenced in TEM, 
commonly referred to as ‘black dot’ damage and usually identified as interstitial dislocation 
loops or to second-phase precipitates at larger doses. 
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4.2 Simulations 
 
4.2.1 MD simulations 

Atomic displacement cascades up to 10 keV were simulated by means of MD in Fe and Fe-
He materials using fitted and validated EAM many-body potentials. A content of 0.1 at.% He 
in interstitial or substitutional position does not seem to affect the collisional stage of the 
cascade, but it does influence the distribution of dumbbell species during the post-collisional 
stage. Most of the interstitials belong to mixed Fe-He dumbbells in Fe-0.1 at.% He(I), mostly 
oriented along <100>,  and to Fe-Fe dumbbells in Fe-0.1 at.% He(S), mostly oriented along 
<110>. The size and number density of interstitial clusters is much higher in Fe-
0.1 at.% He(I) than in Fe-0.1 at.% He(S) and in pure Fe. The defect production efficiency is 
also slightly higher in Fe-0.1 at.% He(I) than in Fe-0.1 at.% He(S) and in pure Fe. The 
formation of Fe-He dumbbells seems to reduce recombination phenomena. The interstitial 
clusters of small and medium size contain a large percentage (50%) of He atoms, which 
stabilize them. This feature may drastically reduce the mobility of interstitial clusters in Fe-
0.1 at.% He(I), as compared to pure Fe, with significant impact on the mechanical properties 
of the material. The size and number density of interstitial clusters increase with the PKA 
energy and temperature in the range 10-523K. There are no vacancies neither substitutional 
He nearby the interstitial clusters. 
 
4.2.2 TEM image simulations 

Cavities are usually observed using bright field TEM imaging in defocusing mode. However, 
in the present work we used dark field/weak beam TEM imaging for simulating all kinds of 
defects, for comparison purposes, as the dark field/weak beam TEM imaging mode provides 
the best image contrast and spatial resolution for most of the nano-sized defects of interest in 
this work, even if voids are sometimes easier highlighted using bright field TEM imaging in 
defocusing mode. 
Figure 4.2.2.1 shows the contrast, as defined by the standard deviation of the image intensity, 
as a function of depth of the simulated TEM images of most defects created in Fe by MD. 
The specimen was 80 nm thick with the defect being located in the middle of the foil. The 
imaging conditions were g(2g) and g(4g) using g = (200). It was shown in chapter 3 that all 
dislocation loops, whatever their Burgers vector and habit plane, actually exhibit nearly the 
same contrast for a given imaging condition. Therefore, there are represented by a single and 
common curve per imaging condition in Figure 4.2.2.1. It can be seen that, when using the 
g(2g) imaging condition (Figure 4.2.2.1, left), the dislocation loops and He bubbles with a He 
concentration of 200% (2:1) exhibit a similar contrast. In addition, these two kinds of defects 
exhibit a much higher contrast, by a factor of about 4, than all the other ones. These 
observations still hold for the g(4g) imaging condition (Figure 4.2.2.1, right). However, in 
that case, the contrast presented by the dislocation loops and He bubbles with a He 
concentration of 200% (2:1) is higher by a smaller factor of about 2 than the contrast 
provided by cascade damage in pure Fe, cascade damage in Fe-0.1 at.% He(S), voids, and He 
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bubbles with a He concentration of 100% (1:1), while it is still higher by a factor of about 4 
than the contrast provided by cascade damage in Fe-1.0 at.% He(S) and Cr precipitates. 
 

  

  

  
 

Figure 4.2.2.1: Contrast, as defined by the standard deviation of the image intensity, as a function of 
depth of the simulated TEM images of most defects created in Fe by MD. The specimen was 80 nm 
thick with the defect being located in the middle of the foil. The imaging conditions were (left) g(2g) 
and (right) g(4g), using g = (200). 

 
It can be concluded for these observations that the phase defects present much less image 
contrast than the structural defects in TEM. Structural defects are here defined as defects 
producing a lattice deformation of the surrounding Fe matrix. They include dislocation loops 
as well as He bubbles with a He concentration of 200% (2:1). Indeed, the inner pressure 
provided by the latter defects also engenders some lattice deformation of the surrounding 
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matrix, like dislocation loops. Corresponding simulated TEM images of He bubbles with a 
He concentration of 200% (2:1) clearly show that the image contrast of the He bubbles 
extends well beyond the region defined by the bubbles itself, so delineating the deformed 
region of the surrounding lattice. In the g(4g) imaging condition, the image contrast provided 
by voids and He bubbles with a He concentration of 100% (1:1) are increased, leading to a 
smaller difference in image contrast with structural defects. 
The Cr precipitates exhibit much less TEM image contrast that the structural defects because 
the scattering factor of Cr is close to the one of Fe, and because of the similarity of the 
structures, bcc, and of the lattice parameters, which inherently produce Cr precipitates that 
are fully coherent with the matrix and yield limited lattice deformation of the surrounding 
matrix. This results in a limited structural contrast, which actually appears as a weak Ashby-
Brown contrast. The image contrast of the Cr precipitates is close to the one of the voids in 
the g(2g) imaging condition, but it is much less than the ones of the voids in the g(4g) 
imaging condition. 
The cascade residues present a relatively weak TEM image contrast in all cases studied here, 
be it in pure Fe, or in Fe-0.1 at.% He(S) or Fe-1.0 at.% He(S). Among them it appears that 
the residues in pure Fe present the highest contrast, a contrast that is similar to the one of the 
voids in both g(2g) and g(4g) conditions. It is however slightly less in the g(4g) condition. 
This could stem from the fact that the cascade residues include vacancy clusters that are 
smaller than the 2 nm voids considered here. In the case of the Fe-He materials, the increase 
in the imaging condition to g(4g) does not allow distinguishing them. This suggests that He 
prevents the formation of vacancy clusters. 
These simulations provide indications to the microscopist for the best TEM imaging 
conditions allowing the distinction between the different types of nano-sized defects. It 
appears that the use of a rather dynamical dark field condition, g(2g), with g = {200}, allows 
separating the structural defects from the phase defects considered here. They will appear 
with a much brighter contrast than the other ones. This should be done in comparison with an 
image taken with a true weak beam dark field condition, here g(4g), as this image will reveal 
all defects with a brighter contrast, even those that might be invisible in the g(2g) condition. 
In addition, the g(4g) condition may allow distinguishing voids from Cr precipitates, the 
latter presenting a very weak contrast in all imaging conditions. 

 
4.2.3 SANS signal simulations 

He bubbles 
Figure 4.2.3.1 shows cut views of MD specimens of pure Fe, which contain a He bubble with 
various He concentration, before and after relaxation, as well as their corresponding SANS 
signal, in comparison to the ones provided by a perfect crystal and voids. It can be seen that 
the SANS signal of the He bubble with a He concentration of 100% (1:1) is unaffected by the 
relaxation process. However, the SANS signal of the He bubbles with a He concentration of 
200% (2:1) or 300% (3:1) is strongly improved at low Q values (below about 3 nm-1) by the 
relaxation process, the effect increasing with the He content in the cavity. 

Closer examination of the atomic positions shows that in the relaxed MD specimens there is 
always a void gap around the He bubble, resulting from the strong He-Fe repulsion, and this 
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void gap is responsible for the observed increase in SANS intensity. Otherwise, i.e., without 
the gap, as the scattering factor of about three He atoms is equal to that of one Fe atom, one 
obtains almost the same SANS signal from a perfect crystal of pure Fe and a He bubble with 
a He concentration of 300% (3:1). 
 

He concentration 100% He concentration 200% He concentration 300% 

   

   

   
 
Figure 4.2.3.1: Cut views of MD specimens of pure Fe, containing a He bubble with various He 
concentration, before (middle part) and after (bottom part) relaxation, as well as their corresponding 
SANS signal (upper part), in comparison to the ones provided by a perfect crystal and voids. 
 
Cr precipitates 
Figure 4.2.3.2 shows a comparison of cut views of MD specimens of pure Fe, which contain 
either a He bubble with a He concentration of 100% (1:1) or a Cr precipitate, before and after 
relaxation, as well as their corresponding SANS signal, in comparison to the ones provided 



CHAPTER 4 DISCUSSION 137 

 

by a perfect crystal and voids. It can be seen that, although the scattering length of Cr is 
almost equal to the one of He, relaxation does not yield any increase in the SANS signal of 
Cr precipitates. Indeed, relaxation does not lead the formation of any gap in between the Cr 
precipitate and the surrounding matrix, the Cr precipitate maintaining its full coherency with 
the surrounding lattice. 

 
He concentration 100% Cr precipitate 

  

  

  
 
Figure 4.2.3.2: Comparison of cut views of MD specimens of pure Fe, containing either a He bubble 
with a He concentration of 100% (1:1) or a Cr precipitate, before (middle part) and after (bottom part) 
relaxation, as well as their corresponding SANS signal (upper part), in comparison to the ones 
provided by a perfect crystal and voids. 
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4.3 General discussion 
 
4.3.1 TEM/SANS comparison 

Generally speaking it appears from our simulations that TEM is most adapted to investigate 
structural defects, such as dislocation loops and He bubbles with high He concentration, 
while SANS is most adapted to investigate phase defects, such as voids, He bubbles with low 
He concentration and Cr precipitates. The latter ones provide a high contrast in SANS, 
contrary to the one obtained in TEM, because of the significant difference between scattering 
of neutrons by Fe and Cr, contrary to the case of electrons. SANS provides a poor signal from 
structural defects, because a distortion of the lattice does not induce a significant perturbation 
in the neutron wave, contrary to the electron wave. The two techniques are thus not 
competing in the investigation of the same types of defects, but are truly complementary 
investigation tools, as even in the same material they are sensitive to very different types of 
nano-size defects, which is a remarkable outcome of those simulations. 

There are other differences worth mentioning here. TEM, on the one hand, remains the 
method of choice in the case of the investigation of the spatial configuration of an individual 
defect, of any type, as it allows a direct visualization of it. This of course is valid when one 
has access to the tools to interpret the observed contrast in the TEM image, an interpretation 
that relies mainly on simulation tools. TEM is however limited by the fact that all 
observations have to be performed in samples that are transparent to electrons, which energy 
at about 200 keV limits its thickness to about 100 nm. In addition, in order to have access to 
sufficient spatial resolution, the observed area is limited to a few square microns due to the 
significant magnification and the limited area of the image acquisition systems, be it a 
photographic negative or a CCD camera. This imposes serious limitations on the defect 
densities that are accessible by TEM. Indeed, below a density of about 1019 defects per cubic 
meters, the actual number of defects in the TEM image reduces to about 1 for the relevant 
image dimension and specimen thickness. This means that defect densities of this order of 
magnitude or below cannot be measured by TEM. The thickness of the TEM specimen 
introduces bias in the measurement by the proximity of free surfaces. These will act as strong 
sinks to point defects such as interstitials and vacancies and present strong image forces to 
dislocations, such as nano-sized dislocation loops. These surfaces may subsequently absorb 
defects or modify their configurations. 

SANS, on the other hand, remains the method of choice in the investigation of phase defects. 
In addition, it allows probing cubic millimeters, if not centimeters, because of the deep 
penetration of the neutrons in any type of material, contrary to electrons. This makes SANS 
the method of choice for the measurement of defect densities, down to densities much lower 
than 1019 defects per cubic meters. SANS on the other suffers from a strong limitation, which 
is the fact that with SANS one cannot observe individual defects. The base of SANS is 
diffraction, which in essence provides an average signal of the defect population present in 
the specimen. In order to interpret the signal one has to provide blindly a model for the defect 
population. This model includes the nature or chemical composition and structure of the 
defect, its shape and its size distribution, be it bimodal for instance. 
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4.3.2 Summary of main results available for RAFM steels 

Rate of damage accumulation 

Irradiation-induced defects in RAFM steels are known to accumulate to a lesser rate than in 
other metals. When compared to fcc pure metals, for instance, the irradiation-induced defect 
density, for defects observable in TEM, is two to three orders of magnitude lower in RAFM 
steels for the same irradiation dose, as shown in Figure 4.3.2.1 [217]. In other terms, the 
irradiation dose needed to reach the same defect density as in fcc metals, such as Cu or Pd, is 
three to four orders of magnitude higher. This primarily relates to the bcc structure of RAFM 
steels, as also observed in irradiated pure Fe [218]. 
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Figure 4.3.2.1: Defect cluster density as a function of irradiation dose in pure metals, an austenitic 
stainless steel (SSteel) and the F82H RAFM steel (p: irradiation with 590 MeV protons, n: irradiation 
with fission neutrons). Irradiations have been performed at various temperatures between 50°C and 
250°C [217]. 

 

TEM observations 

The first contrasts to appear in TEM in irradiated RAFM steels are black dots of about 1 nm, 
which correlate with irradiated-induced clusters of point defects with sizes of about 1 nm or 
slightly less [164]. These black spots are formed by diffraction contrast. High-energy proton 
and fission neutron irradiation give rise at low doses to similar black spots, which quantify to 
similar sizes and densities [219]. When the dose is increased the black dots grow in size and 
can generally be resolved above 2 dpa as dislocation loop contrasts [219] or second phase 
precipitate contrasts. In addition, when the irradiation dose is sufficiently high, the 
defocusing technique [220] reveals cavity contrasts. 
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Small angle neutron scattering measurements 

As shown in the present work, a relatively large fraction of irradiation-induced defects in 
RAFM steels have a size below the TEM resolution limit in weak beam imaging, equal to 
about 1 nm, which are expected to contribute to radiation hardening and/or embrittlement 
effects of RAFM steels occurring at irradiation temperatures below about 400°C. 

Positron annihilation spectroscopy measurements 

In order to investigate possible sites for the location of irradiation-produced helium, the 
evolution of vacancy clusters has been studied by performing positron annihilation 
spectroscopy measurements on unirradiated and high-energy proton- or neutron-irradiated 
specimens (at 50-350°C to 0.2-0.3 dpa) of pure Fe and the F82H RAFM steel. It was found 
that in pure Fe and steels cavities with sizes around 1 nm (voids or helium bubbles) form in 
the whole temperature range investigated [221]. At both 250 and 350°C, the cavity density in 
the F82H RAFM steel is appreciably lower than in pure Fe. The results obtained for 
specimens of pure Fe irradiated in the PIREX facility (high helium production rate) do not 
differ significantly from those obtained for neutron-irradiated specimens (low helium 
production rate), which indicates that the irradiation-produced helium is being accumulated 
in the cavity microstructure. 

Radiation hardening 

The irradiation hardening following proton irradiation at 250°C was measured by means of 
tensile tests carried out on the F82H RAFM steel at a temperature identical to that of 
irradiation [217]. Specimens irradiated at different doses ranging from 0.26 dpa up to 2.5 dpa 
were tested. It is well established that the increase in the yield stress with dose strongly tracks 
the microstructural changes induced by irradiation. In order to relate this irradiation-induced 
hardening, measured from the tensile tests, to the irradiation-induced defects observed in 
TEM, the number density, N, and diameter, d, of the defect clusters evidenced in TEM were 
determined as a function of dose from the TEM micrographs. The spacing between these 
obstacles was expressed as (Nd)-1/2, whose dose dependence is reported in Figure 4.3.2.2. 
Note that (Nd)-1/2 was determined for 590 MeV proton- and neutron-irradiated specimens as 
well as for specimens irradiated in the SINQ facility with a mixed spectrum of 570 MeV 
protons and spallation neutrons. Interestingly, no effect of the irradiation mode was found on 
the dose dependence of (Nd)-1/2 and all the data points fall along the same curve. It can be 
seen that the mean spacing between the loops decreases strongly for doses below 2 dpa and 
tends to a constant value of about 70 nm. Taking into account the uncertainty in the 
determination of (Nd)-1/2 and the lack of data between 2.5 and 5 dpa, it was not possible to 
draw a firm conclusion on the dose at which the saturation level is actually reached. 
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Figure 4.3.2.2: Mean obstacle spacing as a function of dose in the F82H RAFM steel irradiated at 
250°C in various facilities [217]. 
 

Having determined the irradiation-induced dislocation defect cluster density, N, and the mean 
diameter, d, an attempt to correlate these data to the radiation hardening measured by tensile 
tests, Δσy, was done [217]. Assuming that these defect clusters act as dispersed obstacles for 
moving dislocations in their glide plane, they are then are responsible for a short distance 
interaction with the moving dislocations and yield a radiation hardening Δσy. This local 
interaction constitutes the basis for the so-called dispersed-barrier hardening model [222] and 
the associated equation reads: 
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y
= #Mµb Nd( )

1/ 2

 (4.3.2.1), 

where M is the Taylor factor, α is a dimensionless constant, µ is the shear modulus, b is the 
Burgers vector of the moving dislocations and (Nd)-1/2 is the mean discrete obstacle spacing. 
The following values are commonly used for RAFM steels: M = 3 [223], µ = 80’000 MPa 
[224] and b = 0.268 nm [225]. Considering the irradiation-induced defect clusters as weak 
obstacles, the α value was taken equal to 0.1 [222]. In Figure 4.3.2.3, the experimental data 
are reported along with the calculated contribution according to equation 4.3.2.1 above. A 
significant discrepancy can be seen between the experimental data and the calculated Δσy 
with α = 0.1. A good fit of the data could be obtained by increasing α to 0.3. However, such 
a high α value may not be relevant to characterize the strength of the irradiation-induced 
defects, since it has been observed in TEM that they can be readily destroyed by the moving 
dislocations, leading to localized deformation and then to channel formation [173], for 
instance. The measured radiation hardening is likely to stem not only from irradiation-
induced defect clusters evidenced in TEM but from a variety of defects evidenced in TEM 
and/or SANS and/or PAS and whose relative strength and importance is not yet precisely 
determined. 
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Figure 4.3.2.3: Radiation hardening, Δσy, versus dose for the F82H RAFM steel, as measured by 
means of tensile tests at T = 250°C [217]. 
 

4.3.3 Radiation hardening of the EUROFER 97 RAFM steel 
Results of tensile tests 

Typical tensile stress-strain curves obtained for the EUROFER 97 RAFM steel irradiated 
with 590 MeV protons in the PIREX facility at 50 and 350°C to various doses and tensile 
tested at the same temperature as the irradiation one are presented in Figure 4.3.3.1, along 
with the reference curves of unirradiated specimens [226]. One salient observation is the fact 
that at 350°C the uniform elongation increases in comparison to the unirradiated curve. This 
occurs typically for doses of about 0.3-0.4 dpa, beyond which the uniform elongation is 
strongly reduced. A careful look at the tensile curves at these low doses reveals that the initial 
strain hardening tends to be more linear than that of the unirradiated specimen, which 
presents a more pronounced curvature or equivalently a stronger strain-hardening reduction 
with strain. That strain-hardening behavior at small doses combined with a relative moderate 
increase of the overall flow stress results in an increase of the uniform elongation. 
The tensile data obtained for specimens of the EUROFER 97 RAFM steel irradiated at 50, 
250 or 350°C to various doses ranging between 0.16 and 1.36 dpa are summarized in Table 
4.3.3.1 [227]. 
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(a) 

 
(b) 

 
Figure 4.3.3.1: Typical tensile stress-strain curves obtained for unirradiated specimens and specimens 
of the EUROFER 97 RAFM steel irradiated at (a) 50°C and (b) 350°C to various doses [226]. 
Ttest = Tirrad, the stain rate was 5×10-4 s-1. 
 

Tirrad (°C) Dose (dpa) Δσ0.2 (MPa) UTS (MPa) UE 

50 0.22 191 766 0.014 
50 0.62 97 714 0.0127 
50 0.62 197 762 0.025 
50 0.62 116 749 0.014 
50 1.27 219 772 0.011 
50 1.27 230 823 0.0175 
250 0.28 39 592 0.043 
250 0.28 76 588 0.039 
250 0.63 138 661 0.018 
250 1.36 94 638 0.010 
350 0.16 20 557 0.0650 
350 0.16 25 555 0.0820 
350 0.68 25 529 0.0260 
350 0.68 26 549 0.0350 

 
Table 4.3.3.1: Tensile data obtained for specimens of the EUROFER 97 RAFM steel irradiated at 50, 
250 or 350°C to various doses ranging between 0.16 and 1.36 dpa. Ttest = Tirrad. Δσ0.2 = radiation 
hardening, UTS = ultimate tensile strength, UE = uniform elongation. 
 

The radiation hardening, Δσ0.2 (Δσy measured at 0.2% plastic strain), is presented in Figure 
4.3.3.2 against the square root of the dose, where a significant large dispersion of the results 
was measured. At these small doses, the radiation hardening increases fast with dose so that 
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any uncertainty in the dose determination translates into a significant variation of the yield 
stress. It is reminded that the doses reported here carry an uncertainty of the order of ±20%. 
Note also that the irradiation temperature fluctuations of ±30°C, associated with the proton 
beam instability, add to the overall scatter in the data. Despite these uncertainties in 
irradiation dose and temperature, it was possible to extract a general trend in the variation of 
the radiation hardening with irradiation dose and temperature. The initial rate of radiation 
hardening is commonly modeled by Δσ0.2 = k(Tirrad) dpa1/2, see for instance [228, 229]. The 
coefficient k was calculated from the data and its temperature dependence is shown in Figure 
4.3.3.3. The indicated error bars correspond to the fluctuations in the real irradiation 
temperatures and from the uncertainties in the calculated doses. 

 

 
 
Figure 4.3.3.2: Radiation hardening versus (dose)1/2 for specimens of the EUROFER 97 RAFM steel 
irradiated at 50, 250 or 350°C to various doses and tensile tested [226]. Ttest = Tirrad. 
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Figure 4.3.3.3: Temperature dependence of the coefficient k, determined for specimens of the 
EUROFER 97 RAFM steel irradiated at 50, 250 or 350°C to various doses and tensile tested [226]. 
Ttest = Tirrad. 
 

Mean obstacle spacing 

As reported above, it was shown in [217] that the radiation hardening cannot be satisfactorily 
described by using the dispersed-barrier hardening model by taking into account only the 
density of defects visible in TEM. Thus, the nano-sized defects evidenced by SANS in the 
present study have to be taken into account for modeling the radiation hardening of RAFM 
steels. The key parameter to be used would be the inter-defect spacing, L, which can be 
calculated with the following equation [222]: 
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 (4.3.3.1), 

where d is the diameter of the scattering defects. Clearly, L is dependent on the distribution 
function N(R). We recall that the shape parameter, s, of the presented size distributions was 
not fitted but that a fixed value of 0.2 was chosen. A number of parameter fits were actually 
performed and it was observed, on the one hand, that the fitted value of s falls in the range 
0.1-0.3 and, on the other hand, that various sets of three parameters (N, R0, s) can actually 
yield good fitting. However, even if different distributions are possible, all of them peak 
below one nanometer. The inter-defect spacing, L, was calculated for three distribution 
functions N(R) obtained respectively with s = 0.1, 0.2 and 0.3, and it was found that the 
uncertainty on s yields an error bar on L of maximum 30%. The inter-defect spacing remains 
comparable independently of the distribution used and the associated error bar is of the same 
order as the one that would be expected on the α constant characterizing the strength of the 
obstacle in the Orowan's equation [222]. Finally, it should be noted that using another 
distribution function like the normal distribution affects only little the mean inter-defect 
spacing. 
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Evaluation of the number density 

TEM images of irradiation-induced defects in the EUROFER 97 RAFM steel irradiated in the 
conditions investigated in the present work are not yet available. However, one may assume 
that they should be similar to those observed in the F82H RAFM steel irradiated in the same 
conditions of dose and temperature.  

Therefore, for the EUROFER 97 RAFM steel irradiated with 590 MeV protons in the PIREX 
facility at 250°C, the mean spacing of the defects visible in TEM, (Nd)-1/2, has been estimated 
from the equation of the fit with α = 0.1 in Figure 4.3.2.3 and by inverting equation 4.3.2.1. 
The corresponding contribution to the total radiation hardening was also deduced from Figure 
4.3.2.3. The obtained values are reported in Table 4.3.3.2. As can been seen in Table 4.3.3.2, 
the radiation hardening arising from the defects visible in TEM is not sufficient to explain the 
measured one. The difference is believed to be due to the nano-sized irradiation-induced 
defects evidenced by using the SANS technique, which also contribute to the overall increase 
of the yield stress. Provided that the strength of the defects is similar for both types of defects 
and given by α = 0.1 (weak defects), the superposition of the two short-range obstacle-
dislocation interactions, namely from the defects visible in TEM and the defects detected 
with SANS, is given by: 
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Tirrad 
(°C) 

Dose 
(dpa) 

Measured Δσ0.2 
(MPa) 

TEM 
contribution 

to Δσ0.2 
(MPa) 

(Nd)-1/2 
for the 
TEM 

defects 
(nm) 

SANS 
contribution 

to Δσ0.2 
(MPa)  

N of the 
SANS 
defects    
(m-3) 

d of the 
SANS 
defects 
(nm) 

(Nd)-1/2 
for the 
SANS 
defects 
(nm) 

250 0.28 39 11 460 36 1.81E+22 1.77 176 

250 0.28 76 27 460 74 7.62E+22 1.77 86 

250 0.63 138 27 226 135 2.59E+23 1.7 47 

250 1.36 94 27 128 79 9.57E+22 1.6 80 

 

Table 4.3.3.2: Calculated contributions to radiation hardening measured at 0.2% plastic strain (Δσ0.2) 
versus mean size and number density of irradiation-induced defects in the EUROFER 97 RAFM steel 
irradiated with 590 MeV protons in the PIREX facility at 250°C to various doses. 

 
The number density, N, of the nano-sized irradiation-induced defects evidenced by SANS 
was finally calculated by using equation 4.3.2.1 with Δσ = ΔσSANS. The number density of the 
SANS defects and corresponding mean spacing are reported in Table 4.3.3.2. One may see 
that the number density and mean spacing of the SANS defects, assumed to be small helium 
bubbles, are quite comparable to the number density and mean spacing of the TEM defects, 
usually assumed to be small interstitial clusters at low doses, which transform into interstitial 
dislocation loops at larger doses. 
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CHAPTER 5: CONCLUSIONS AND PERSPECTIVES 
 

 

The Small Angle Neutron Scattering (SANS) technique has been proven to be a very 
powerful tool for detecting nano-sized irradiation-induced defects and a tool well 
complementary to Transmission Electron Microscopy (TEM) for characterizing such very 
small irradiation-induced defects. It was found in particular that: 

• A large part of the defects produced in RAFM steels by high-energy proton irradiation, at 
temperatures in the range 50-350°C to doses in the range 0.3-2.0 dpa, have a size below 
1 nm, i.e., below the resolution limit of the week beam TEM imaging technique. 

• The mean radius of these small irradiation-induced defects is ranging between 0.25 and 
0.9 nm, depending on the irradiation dose and temperature. It tends to decrease with 
increasing the irradiation dose and to increase with the irradiation temperature, at least for 
the two lowest investigated doses of 0.3 and 1.0 dpa. 

• The number density of these small irradiation-induced defects increases with the 
irradiation dose and decreases with increasing the irradiation temperature, at least for the 
two lowest investigated doses of 0.3 and 1.0 dpa. No absolute number density values 
could be determined by using the SANS technique. 

• It was possible to get information about the nature of the small irradiation-induced defect 
by applying a strong magnetic field to the specimens during SANS experiments. The so-
called A ratio, which represents the ratio of the total scattered intensity to the nuclear 
scattered intensity, was determined from the SANS spectra to be equal to about 2.05±0.15 
and compared to the A ratio values calculated for a large number of possible irradiation-
induced defects in RAFM steels.  

• It was possible to get information about the geometry of the small irradiation-induced 
defect by analyzing the SANS spectra using the Porod law. The obtained value for the 
exponent γ < 1 indicates that these small defects could exhibit a fractal geometry. 

• The SANS signal provided by a large number of possible irradiation-induced defects in 
pure Fe and Fe-He alloys, as model materials for RAFM steels, has been simulated for the 
first time. 

• TEM is most adapted to investigate structural defects, defined here as defects producing 
lattice deformation of the surrounding matrix, such as dislocation loops and He bubbles 
with high He concentration, while SANS is most adapted to investigate phase defects, 
such as voids, He bubbles with low He concentration and Cr precipitates. 

• By combining the results of SANS experiments with those of MD simulations, TEM 
image simulations and SANS signal simulations, the nano-sized irradiation-induced 
defects were tentatively identified as small helium bubbles.  

• While the radiation hardening measured for RAFM steels cannot be explained by 
accounting only for the defects observed in TEM, it could be successfully modeled by 
accounting also for a reasonable number density of the nano-sized defects evidenced 
using the SANS technique. 
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In order to assess definitively the nature of the nano-sized irradiation-induced defects 
evidenced using the SANS technique, three types of additional experiments could be 
envisaged: 

(1) Small Angle X-ray Scattering (SAXS) experiments, as precipitates can be clearly 
distinguished experimentally from cavities by using the SAXS technique, although it is 
not sure that helium bubbles could be distinguished from voids if the He concentration in 
the cavities is too low; 

(2) SANS experiments on unirradiated and irradiated specimens of pure Fe, as the 
irradiation-induced formation of Cr precipitates in this material can be excluded; 

(3) SANS experiments on specimens of pure Fe and RAFM steels irradiated with fission 
neutrons instead of high energy protons, for instance, in order to vary the amount of 
helium produced by nuclear transmutation reactions in the specimens. 
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APPENDIX 
 
c      calculate intensity versus scattering vector q (linear) 
program intq 
parameter (pi=3.1415927) 
      parameter (det=7.50000000) 
      parameter (nbinmax=81) 
character*80 infile,outfile,header 
      double precision nbin(nbinmax),scaint(nbinmax) 
      integer i,j,h,k,l,m,n 
      double precision x,y,wlnm,cam,screen,scaint1,q,rq 
c     open the files containing the datas and read. 
print*, 'input file (e.g. posint)' 
      read*, infile  
      open(unit=4,file=infile,status='unknown') 
print*,'name of output file:' 
      read*, outfile 
      open(unit=5,file=outfile,status='unknown') 
      write(5,*) 'Q,I' 
read(4,*) header 
      read(4,*) wlnm,cam,screen 
c     calculate intensity with the radial distance of the spot 
from the center 
do 80 m=1,nbinmax 
       scaint(m)=0 
       nbin(m)=det*(m-1) 
 80   continue  
       do 70 while(k.eq.0) 
        read (4,*,err=1000,iostat=k) h,n,l,x,y,rq,scaint1 
        m=0 
        do 60 while (rq.ge.nbin(m+1)) 
         m=m+1 
 60     continue 
       scaint(m)=scaint(m)+scaint1  
 70    continue 
      do 90 m=1,nbinmax-1 
      scaint(m)=scaint(m)/(4*pi*(nbin(m+1)*nbin(m+1)-
nbin(m)*nbin(m))) 
      q=(4*pi/wlnm)*sin(atan((nbin(m)+nbin(m+1))/2/cam)/2) 
      write(5,*) q,scaint(m) 
 90   continue 
      close (4) 
      close (5) 
 1000 end 
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