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Abstract. We present the design and implementation of a debugging tool that 
displays a message-passing graph of the execution of an MPI application. Parts 
of the graph can be hidden or highlighted based on the stack trace, calling 
process or communicator of MPI calls. The tool incorporates several features 
enabling developers to explicitly control the ordering of message-passing 
events during the execution, and test that reordering these events does not 
compromise the correctness of the computations. In particular, we describe an 
automated running mode that detects potential races and enables the developer 
to choose which execution path should be followed by the application. 

1   Introduction 

Parallel applications are subject to errors that do not occur in single-threaded 
sequential applications. Such errors include deadlocks, when conflicts over resources 
prevent the application from moving forward, and message races, when changing the 
order of reception of messages changes the result of the computation. Parallel 
application debuggers should therefore enable explicitly testing and analyzing such 
errors and provide multiple abstraction levels that filter and aggregate the large 
amount of information displayed to the developer. 

Several contributions, e.g. [4], [6], focus on record and replay techniques to enable 
reproducing a race once it has been detected. For instance, Retrospect [4] enables the 
deterministic replay of MPI applications, but the lack of control on the application 
execution may force the developer to run its application many times until an error is 
revealed. To our knowledge, ISP [11] is the only tool that explicitly tests different 
orderings of events within MPI applications. While it could produce a suitable trace 
for a replay tool, being able to replay an erroneous execution deterministically is only 
a first step in identifying a bug. The ability to visualize and to test slightly different 
executions may help understanding the origin of an error and correcting it. 

Full-featured parallel debuggers such as TotalView [10] and DDT [1] support the 
isolation of specific processes, the inspection of message queues and are able to attach 
a sequential debugger to remote application instances. The debugger for the Charm++ 
framework [7] takes advantage of its integration within the Charm++ parallel runtime 
to provide higher-level features such as setting breakpoints on remote entry points. 
While these tools provide the developer with detailed information about the running 



processes, none of them provides an instantaneous high-level picture of the current 
state of the application execution. 

In previous work, we described a debugger targeting applications developed using 
the Dynamic Parallel Schedules (DPS) parallelization framework [2]. The parallel 
structure of these applications is described as an acyclic directed graph that specifies 
the dependencies between messages and computations. The debugger may therefore 
display the current state of the graph very naturally and provides the application 
developer with much information in a compact form. Different event orderings can be 
explicitly tested by reordering messages in reception queues or by setting high level 
breakpoints. 

The present contribution applies the concepts presented in [2] to MPI applications, 
and introduces a few MPI specific features. A graphical user interface displays the 
message-passing graph of the application and provides a high-level view of its 
communication patterns. Within the message-passing graph, we can hide or highlight 
MPI calls based on various criteria such as the originating process, the communicator 
on which the communication occurred, or the source code file or function that 
generated the call. We propose various types of high-level breakpoints to control the 
evolution of the participating processes. Execution scenarios that occur only rarely in 
actual executions can thereby be explicitly tested. Variants may be executed using an 
interactive replay functionality. The debugger is able to provoke and detect potential 
conflicts over MPI_ANY_SOURCE receives. Possible matches are drawn on the 
message-passing graph, enabling the developer to decide which execution path must 
be followed by the application. The debugger also integrates object visualization 
support for the autoserial library [3], which provides MPI function wrappers that are 
able to send and receive regular C++ objects. 

The paper is organized as follows. Section 2 describes the general architecture of 
the debugger and Section 3 describes features for controlling the application 
execution. Scalability issues and performance measurements are presented in Section 
4. Section 5 discusses directions for future improvements and draws the conclusions. 

2   Architecture 

The debugging functionality is provided via two independent components. The first, 
the interception layer, is a library that intercepts the MPI function calls performed by 
the application using the MPI Profiling Interface (PMPI [5]). When the MPI 
initialization function MPI_Init is intercepted, every process opens a TCP connection 
to the debugger, a standalone Java program that receives and displays information 
about the current state of the application. 

Processes first identify themselves to the debugger by sending their rank and their 
process identifier. During the application execution, the interception layer then sends 
a notification to the debugger for every point-to-point and collective MPI function 
called. Notifications are also generated for the various MPI_Wait and MPI_Test 
functions, as well as for functions creating new communicators. With the exception of 
the message content, each notification contains a copy of all the parameters of the 
called function. These parameters may be MPI defined constants, such as 
MPI_COMM_WORLD, MPI_INT or MPI_ANY_SOURCE, whose actual value is 



specific to MPI implementations. The debugger therefore also receives a copy of 
these constants when the application starts, so as to be able to translate parameter 
values into human readable form when displaying information to the developer. 

Notifications are sent before calling the actual MPI function. Once it has sent a 
notification, a process suspends its execution and waits for an acknowledgment from 
the debugger. By withholding specific acknowledgments, the debugger may thus 
delay the execution of the associated processes while letting the rest of the application 
execute. Since a process cannot send more than one notification at a time to the 
debugger, the order in which the debugger receives notifications from a given process 
matches the order of occurrence of events within that process. 

Receive calls that specify MPI_ANY_SOURCE as the source of the expected 
message may potentially match send calls from multiple sources. In this paper, we 
refer to such calls as wildcard receives. Since in the general case the debugger cannot 
automatically determine which source is actually matched by a wildcard receive, this 
information is provided separately by the interception layer via a matched 
notification. If the wildcard receive is blocking, the matched notification is sent 
immediately after the reception of the message by the receive function call. For non-
blocking wildcard receives, the matched notification is sent when an MPI_Wait or 
MPI_Test call successfully queries the status of the non-blocking receive. In both 
cases, the rank of the matched source is read from the MPI_Status parameter of the 
appropriate call.  

The user interface of the debugger consists of a single window that provides 
control elements to influence the application execution, and displays the current status 
of the application as a message-passing graph. The vertices of the graph represent the 
MPI calls performed by the application. Unlike most tracing tools that display time 
from left to right, our representation matches the one used within the MPI standard, 
where time flows from top to bottom. Vertices associated to notifications from a same 
process are therefore displayed one below the other, similarly to successive lines of 
code within a source file. 

The debugger draws edges between successive vertices from a same process. It 
also draws edges of a different color between vertices associated to matching send 
and receive calls. For this purpose, the debugger maintains one unmatched sends and 
one unmatched receives queue. Upon receiving a notification for a send (resp. 
receive) call, the debugger looks for a matching receive (resp. send) call within the 
unmatched receives (resp. unmatched sends) queue. If none is found, the incoming 
notification is pushed at the end of the corresponding queue. When looking for 
matches, the queues are explored in a FIFO manner in order to respect the FIFO 
property of MPI communication channels. New vertices and edges are dynamically 
added to the graph as the debugger receives new notifications from the application. 
When the debugger receives a notification for a wildcard receive from a process p, it 
stops matching send calls destined to p until the reception of the corresponding 
matched notification. For non-blocking wildcard receives, graph updates are therefore 
delayed until the application successfully queries the status of the receive call. 

On Linux, the interception layer is able to determine the stack trace of every MPI 
call. A panel in the debugger window displays a tree containing the files, functions 
and line numbers from which the MPI functions were called. Selecting a node of the 
tree then highlights all the associated vertices in the message-passing graph, 



 
  Fig. 1. Debugger window. The left panes contain the list of processes and the stack trace tree. 
Tooltips display detailed information about MPI calls. 

illustrating how and when the selected file or function is used within the application. 
Another panel displays the list of processes involved in the computation and enables 
hiding the graph vertices belonging to specific processes. When the application uses 
multiple communicators, the list of processes belonging to each one of them appears 
in additional tabs. When switching to a given communicator tab, the developer may 
choose to display a partial message-passing graph that includes only the vertices 
associated to MPI calls performing communications on the selected communicator. 

We provide the ability to zoom in and out of the graph in order to adapt its level of 
detail to the needs of the developer. The label and color of every vertex indicates the 
type of MPI operation executed, and tooltips display detailed information about call 
parameters, as well as its stack trace if available. Collective operations are grouped 
into a single vertex and are represented as a rectangle that spans all participating 
processes. When the developer double-clicks the graph vertex of a suspended MPI 
call, the debugger attaches a user-specified sequential debugger to the calling 
application process, and uses the stack trace information to set a breakpoint to the 
source code line that immediately follows the MPI function call. The debugger then 
acknowledges the notification, the process is resumed and the new breakpoint is hit, 
enabling the developer to inspect the application code. 

The autoserial [3] library provides wrappers around the MPI_Send and MPI_Recv 
functions that allow sending and receiving complex C++ objects instead of simple 
memory buffers. When these functions are used, the interception layer sends the full 
serialized object to the debugger, which may then display its content using a tree view 
similar to the ones found in traditional sequential debuggers. For objects to be 
understood by the debugger, the serialization is performed by a specialized textual 



serializer which includes the necessary variable name and type information within the 
serialized data. The interception layer also provides functions for registering 
serializable objects representing the user-space state of the running application. The 
developer may retrieve and display these objects when a process is suspended by the 
debugger. The request is piggybacked on the acknowledgment for the pending 
notification of the selected process, causing the interception layer to send a copy of 
the registered objects.  

3   Controlling the application execution 

A global breakpoint may be activated. It causes the debugger to withhold all 
acknowledgments, thereby suspending all processes. Clicking a button then 
simultaneously acknowledges the pending notification of every process, which then 
resumes execution up to the next MPI call. The global breakpoint allows quickly 
stepping through the execution of all processes at the message-passing level rather 
than at the instruction level, while maintaining the opportunity to take action on every 
notification. Process breakpoints cause the debugger to systematically withhold the 
notifications sent by particular processes. This feature may be used to arbitrarily delay 
specific processes and attempt to provoke message races. The developer may 
explicitly test different execution orderings by breakpointing multiple processes and 
by resuming them in different orders. A finer control is provided via conditional 
breakpoints. They enable withholding acknowledgments for notifications matching 
one or several criteria such as the rank of the calling process, the type of MPI call, the 
message size or data type, or the destination rank for send calls. Moreover, the 
developer can specify a hit count to indicate how many times the breakpoint must be 
hit before it becomes active. 

The use of wildcard receives leads to non-determinism within the application 
execution. It may be difficult to identify potential conflicts, and manually controlling 
the application execution may be error prone. We therefore implemented a procedure 
that detects potential ordering variations on wildcard receives and allows the 
developer to choose the send call that matches a specific wildcard receive. When this 
mode is active, the debugger automatically acknowledges all notifications that are not 
associated to send calls. Upon receiving a notification for a send call, the debugger 
checks whether it already received a notification for a matching receive call. If not, it 
holds the send notification until it receives a matching receive notification. If the 
matching receive explicitly specifies the source of the expected receive, the debugger 
acknowledges the send notification, thereby resuming the process execution. If the 
matching receive is a wildcard receive, the debugger draws one large arrow between 
the graph vertices corresponding to the potentially matching send and the wildcard 
receive. Since the other processes keep running, more arrows may be added as the 
debugger receives other potentially matching send notifications. Clicking on a send 
vertex then acknowledges the associated notification. The resumed process then sends 
its message, which matches the wildcard receive under consideration. 

Since this scheme makes no assumption about whether calls should be blocking or 
not, it is able to reveal potential message races stemming from the buffering of 
messages within MPI calls. In Fig. 2a, the debugger will acknowledge the broadcast 
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  Fig. 2. (a) Send calls from both process 0 and process 2 may match any of the wildcard 
receives from process 1 if broadcast and send calls are buffered; (b) the debugger cannot 
receive the notification for the first receive from process 0 without previously acknowledging 
the non-blocking send from process 0. Numbers between brackets respectively indicate the 
rank of the destination, source or root process depending on the type of MPI call. A ‘*’ 
denotes a wildcard receive. 

notification from process 0. If process 0 buffers the broadcasted message, the 
debugger will eventually receive a notification for the subsequent send call, which 
may match the first wildcard receive of process 1 if process 2 is delayed. 

On the other hand, some executions involving non-blocking or buffered sends 
cannot be enforced. For instance, in Fig. 2b the debugger cannot detect that a race 
could occur if the non-blocking send from process 0 is not acknowledged. In such 
cases, reliably enforcing different orderings would require the ability to reorder 
incoming messages within MPI reception queues. Automatically holding all send calls 
may also lead to deadlock-like situations when non-blocking sends are used. This is 
the case in Fig. 2b, where both processes are suspended by the debugger. The 
developer must then click on one of the send vertices (in this example, on the Isend 
call from process 0) to acknowledge the associated notification and resume the 
execution. 

At any moment, the developer has the possibility of generating a trace file. When 
the application restarts, loading the trace file causes the debugger to set internal 
breakpoints that will reproduce the traced (and potentially incorrect) execution. 
During replay, the developer may set additional breakpoints to test execution variants.  

4   Scalability issues 

Since it must process all the notifications sent by the processes, the debugger 
becomes a bottleneck when the rate of incoming notifications increases. We 
performed measurements on the Pleiades cluster at EPFL, which consists of 132 
single-processor nodes connected with a Fast Ethernet switch. 

We ran the High Performance Linpack (HPL [8]) benchmark on four nodes, with 
one process per node and a 100x100 matrix decomposed into 10x10 blocks. This run 
called 664 MPI communication functions during its running time of 0.03 seconds, 
leading to a call rate of 22 thousand calls per second. Once connected to the debugger, 
the same application ran in 30 seconds, or about 1000 times slower. For this test, the 
debugger was therefore able to process and display about 22 notifications per second. 
While such a display rate is sufficient to manually step through the application 
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  Fig. 3. Debugger overhead when the display of the graph is disabled. The call rate of MPI 
functions is computed when the application is not connected to the debugger. Results for 4, 8 
and 16 nodes are well approximated with a linear function. 

execution, in many cases the developer wants the application to execute quickly up to 
the point where he wants to start his analysis. 

The major portion of the slow down is due to the display of the events to the 
application developer however. If we run the debugger without layouting and 
displaying the graph, the running time falls to 0.16 seconds, reducing the overhead 
compared to the original application running time to a factor of 5. Figure 3 presents 
the running time overheads as a function of the average number of MPI calls per 
second performed by all processes during the execution. It displays results for HPL 
running on 4, 8 and 16 nodes with one process per node for various matrix and block 
sizes (from 2000 to 8000 and from 25 to 500 respectively). For a given number of 
nodes, the running time overhead can be approximated fairly well using a linear 
function. The slope becomes less steep as the number of nodes increases, due to the 
fact that the debugger uses one thread per MPI process to receive and acknowledge 
the notifications. Since the notifications are well balanced between the processes, the 
multithreading improves the overlapping of processing and communication within the 
debugger. 

These results show that high notification rates may occur, and it is therefore crucial 
that we optimize our layout and display code to achieve better performance. The 
performance can currently be slightly improved by disabling the live updating of the 
message-passing graph, which is then refreshed at once when a breakpoint is hit and 
when the developer explicitly requests an update. 

In addition to increasing the running time overhead, high notification rates lead to 
large graphs that are difficult to analyze. The interception layer implements the 
MPI_Pcontrol function to enable and disable the sending of notifications to the 
debugger. The developer may therefore reduce both the application running time and 
the size of the message-passing graph by disabling notifications during non-critical 
parts of the execution. The scheme could be extended in order to provide a finer grain 
of control over the types of MPI calls that should be transferred to the debugger. The 
ability to collapse parts of the graph, e.g., between two barrier synchronizations, 
would also facilitate the visualization of large graphs. 

5   Conclusion and future work 

We have presented a debugger for MPI applications. By dynamically drawing the 
message-passing graph representing the application execution, the debugger provides 



the developer with a graphical view of the current status of the execution. Graph 
vertices can be highlighted according to specific criteria in order to ease the analysis. 
Several types of breakpoints enable controlling the execution of the parallel 
application. All breakpoints operate at the level of message-passing calls rather than 
code instructions. They enable the developer to focus on the communication patterns 
of the application, and provide entry points for attaching a sequential debugger to 
individual processes. The debugger is also able to run the application such that the 
developer is able to choose how send and receive calls should be matched in the 
presence of wildcards. 

The ability to influence the application by suspending processes and reordering 
message matches provides the developer with full control over its execution. This 
control can be used to execute cases that occur only rarely in practice, for example for 
testing the presence of message races or deadlocks within the parallel application. 

The integration of checkpoint/restart capabilities ([4], [9]) into the message-passing 
graph based debugger would add significant value. Combined with the provided 
control on the application execution, this feature would enable interactively testing 
multiple execution scenarios without requiring reexecuting the application from the 
beginning. 
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