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Abstract

This article is dedicated to Jean Jacques Moreau for his 80th birthday.
He is a master of convex analysis.

When dealing with differential inclusions of the form

Du (x) ∈ E, a.e. in Ω

together with some boundary data u = ϕ on ∂Ω, one is lead to consider
several types of convex hulls of sets. It is the aim of the present article to
discuss these matters.

1 Introduction
We start in this introduction with the analytical motivations for studying some
extensions of the notion of convex hull of a given set. In the remaining part of the
article we will however only discuss geometrical and algebraic aspects of these
notions. Therefore the reader only interested on these aspects can completely
skip the introduction, since we will not use any of the notions discussed now.
We let Ω ⊂ Rn be a bounded open set, u : Ω ⊂ Rn → Rm and therefore

the gradient matrix Du belongs to Rm×n and finally we let E ⊂ Rm×n be a
compact set.
We are interested in solving the following Dirichlet problem

(D)

½
Du (x) ∈ E, a.e. x ∈ Ω
u (x) = ϕ (x) , x ∈ ∂Ω

where ϕ : Ω→ Rm is a given map.
In the scalar case (n = 1 or m = 1) a sufficient condition for solving the

problem is
Dϕ (x) ∈ E ∪ int coE, a.e. in Ω (1)

where int coE stands for the interior of the convex hull of E. This fact was
observed by several authors, with different proofs and different levels of gener-
ality; notably in (1), (3), (6), (7), (9), (13) or (14). It should be noted that this
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sufficient condition is very close from the necessary one, which, when properly
formulated, is

Dϕ (x) ∈ coE, a.e. in Ω, (2)

where coE denotes the closure of the convex hull of E.
When turning to the vectorial case (n,m ≥ 2) the problem becomes con-

siderably harder and conditions (1) and (2) are not anymore appropriate. One
needs to introduce several extensions of the notion of convex hull, namely the
polyconvex, quasiconvex and rank one convex hulls. We will define these no-
tions precisely in the next section, but let us quote first an existence theorem
involving the quasiconvex hull, QcoE.
We start with the following definition introduced by Dacorogna-Marcellini

in (8) (cf. also (9) and (10)), which is the key condition to get existence of
solutions.

Definition 1 (Relaxation property) Let E ⊂ Rm×n. We say that QcoE
has the relaxation property if for every bounded open set Ω ⊂ Rn, for every
affine function uξ satisfying

Duξ (x) = ξ ∈ intQcoE,

there exists a sequence {uν} of piecewise affine functions in Ω, so that

uν ∈ uξ +W 1,∞
0 (Ω;Rm) , Duν (x) ∈ intQcoE, a.e. in Ω

uν
∗
- uξ in W 1,∞,

Z
Ω

dist (Duν (x) ;E) dx→ 0 as ν →∞.

The main existence theorem is then

Theorem 2 Let Ω ⊂ Rn be open. Let E ⊂ Rm×n be such that E is compact.
Assume that QcoE has the relaxation property. Let ϕ be piecewise C1

¡
Ω;Rm

¢
and verifying

Dϕ (x) ∈ E ∪ intQcoE, a.e. in Ω.
Then there exists (a dense set of) u ∈ ϕ+W 1,∞

0 (Ω;Rm) such that

Du (x) ∈ E, a.e. in Ω.

Remark 3 The theorem was first proved by Dacorogna-Marcellini in (8) (cf.
also Theorem 6.3 in (9)) under an extra further hypothesis. This hypothesis
was later removed by Sychev in (22) (see also Müller-Sychev (21)), using the
method of convex integration of Gromov as revisited by Müller-Sverak (20), and
Kirchheim (17). As stated it has been recently proved by Dacorogna-Pisante
(10).
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2 The different types of convex hulls
We now discuss the central notions of our article, for more background we refer
to Dacorogna-Marcellini (9).
We will discuss the different notions of hulls by dual considerations on func-

tions; we therefore start with the following definitions.

Definition 4 (i) A function f : Rm×n → R = R∪{+∞} is said to be polyconvex
if

f

Ã
τ+1X
i=1

tiξi

!
≤

τ+1X
i=1

tif (ξi)

whenever ti ≥ 0 and
τ+1X
i=1

ti = 1, T

Ã
τ+1X
i=1

tiξi

!
=

τ+1X
i=1

tiT (ξi)

where for a matrix ξ ∈ Rm×n we let

T (ξ) = (ξ, adj2ξ, . . . , adjm∧nξ)

where adjsξ stands for the matrix of all s× s subdeterminants of the matrix ξ,
1 ≤ s ≤ m ∧ n = min {m,n} and where

τ = τ (m,n) =
m∧nX
s=1

µ
m
s

¶µ
n
s

¶
and

µ
m
s

¶
=

m!

s! (m− s)!
.

(ii) A Borel measurable function f : Rm×n → R is said to be quasiconvex ifZ
U

f (ξ +Dϕ (x)) dx ≥ f (ξ) meas(U)

for every bounded domain U ⊂ Rn, ξ ∈ Rm×n, and ϕ ∈W 1,∞
0 (U ;Rm).

(iii) A function f : Rm×n → R = R∪ {+∞} is said to be rank one convex if

f (tξ1 + (1− t)ξ2) ≤ t f (ξ1) + (1− t) f (ξ2)

for every ξ1, ξ2 with rank {ξ1 − ξ2} = 1 and every t ∈ [0, 1].
(iv) The different envelopes of a given function f are defined as

Cf = sup {g ≤ f : g convex} ,
Pf = sup {g ≤ f : g polyconvex} ,
Qf = sup {g ≤ f : g quasiconvex} ,
Rf = sup {g ≤ f : g rank one convex} .

We are now in a position to define the main notions of the article.
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Definition 5 We let, for E ⊂ Rm×n,

FE =
©
f : Rm×n → R = R∪ {+∞} : f |E ≤ 0

ª
FE =

©
f : Rm×n → R : f |E ≤ 0

ª
.

We then have respectively, the convex, polyconvex, rank one convex, rank one
convex finite and (closure of the) quasiconvex hull defined by

coE =
©
ξ ∈ Rm×n : f (ξ) ≤ 0, for every convex f ∈ FE

ª
PcoE =

©
ξ ∈ Rm×n : f (ξ) ≤ 0, for every polyconvex f ∈ FE

ª
RcoE =

©
ξ ∈ Rm×n : f (ξ) ≤ 0, for every rank one convex f ∈ FE

ª
Rco fE =

©
ξ ∈ Rm×n : f (ξ) ≤ 0, for every rank one convex f ∈ FE

ª
QcoE =

©
ξ ∈ Rm×n : f (ξ) ≤ 0, for every quasiconvex f ∈ FE

ª
.

Remark 6 The definition of rank one convex hull RcoE that we adopted is
called, by some authors, lamination convex hull of E; while the same authors
call Rco fE the rank one convex hull of E.

We start by pointing out several important facts.

1) The definition of convex hull is equivalent to the classical one, i.e. the
smallest convex set that contains E. In fact it is enough to consider only one
function: the convex envelope, CχE (= χcoE), of the indicator function of the
set E, namely

χE (ξ) =

⎧⎨⎩ 0 if ξ ∈ E

+∞ if ξ /∈ E.

2) If we replace FE by FE in the definition of coE, we get coE the closure
of the convex hull.

3) Similar considerations apply to the polyconvex hull, in particular it is
sufficient to consider the polyconvex envelope, PχE , of the indicator function
of the set E.

4) If the set E is compact then so are coE and PcoE.

5) We also have as a consequence of Carathéodory theorem

Proposition 7 Let E ⊂ Rm×n, then the following representation hold

coE =

(
ξ ∈ Rm×n : ξ =

mn+1X
i=1

tiξi, ξi ∈ E, ti ≥ 0 with
mn+1X
i=1

ti = 1

)

PcoE =

(
ξ ∈ Rm×n : T (ξ) =

τ+1X
i=1

tiT (ξi), ξi ∈ E, ti ≥ 0 with
τ+1X
i=1

ti = 1

)
.
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6) Matters are however very different with the other definitions, but let us
first start with some resemblances.

Proposition 8 Let E ⊂ Rm×n and set R0 coE = E, and let for i ∈ N

Ri+1 coE = {ξ ∈ Rm×n : ξ = tξ1 + (1− t)ξ2,

ξ1, ξ2 ∈ Ri coE, rank {ξ1 − ξ2} = 1, t ∈ [0, 1]}.

Then
RcoE = ∪

i∈N
Ri coE.

7) The rank one convex hull is equivalently defined through the rank one
convex envelope, RχE , of the indicator function of the set E and it is the
smallest rank one convex set that contains E.

We now turn our attention to some differences of behaviour among these
notions.

8) Contrary to coE and PcoE, if the set E is compact then RcoE is not
necessarily compact as was pointed out by Kolar (18).

9) Contrary to coE and PcoE, the set Rco fE is, in general (see below for
an example), strictly larger than the closure of RcoE, i.e.,

RcoE $ Rco fE.

10) There is no good definition of the quasiconvex hull if we replace FE
by FE , since quasiconvex functions with values in R = R∪ {+∞} are not yet
well understood. In particular if E = {ξ1, ξ2} ⊂ Rm×n, then QχE = χE ,
independently of the fact that ξ1 − ξ2 is of rank one or not.

11) For any set E ⊂ Rm×n we have

E ⊂ RcoE ⊂ PcoE ⊂ coE

E ⊂ RcoE ⊂ Rco fE ⊂ QcoE ⊂ PcoE ⊂ coE.
We now discuss two examples that might shed some light on some differences

between these new hulls and the convex one. In both examples we will consider
the case m = n = 2 and denote by R2×2d the set of 2× 2 diagonal matrices, we
will write any such matrix as a vector of R2.

Example 9 The first example is by now classical and is due to Tartar and
a very similar one by Casadio (cf. Example 2 page 116 in (5)). It shows the
difference between Rco fE and RcoE. Let E = {ξ1, ξ2, ξ3, ξ4} ⊂ R2×2d be defined
by

ξ1 = (2, 1) , ξ2 = (1,−2) , ξ3 = (−2,−1) , ξ4 = (−1, 2) .
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It is easy to see that since rank {ξi − ξj} = 2 for every i 6= j, then E = RcoE.
However

Rco fE =
n
ξ ∈ R2×2d : ξ = (x, y) ∈ [−1, 1]2

o
∪
©
ξ ∈ R2×2d : ξ = (x, 1) , x ∈ [1, 2]

ª
∪
©
ξ ∈ R2×2d : ξ = (1, y) , y ∈ [−2,−1]

ª
∪
©
ξ ∈ R2×2d : ξ = (x,−1) , x ∈ [−2,−1]

ª
∪
©
ξ ∈ R2×2d : ξ = (−1, y) , y ∈ [1, 2]

ª
.

The second example exhibits another peculiarity of the rank one convex hull
that is very different from the convex one. It is also a phenomenon that one
wants to avoid when applying the results to the analytical problem discussed in
the Introduction.

Example 10 Let E = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6} ⊂ R2×2d be defined by

ξ1 = (1, 0) , ξ2 = (1,−1) , ξ3 = (0,−1) , ξ4 = (−1, 0) , ξ5 = (−1, 1) , ξ6 = (0, 1) .

It is easy to find that

RcoE = {ξ : ξ = (x, y) ∈ [0, 1]× [−1, 0]} ∪ {ξ : ξ = (x, y) ∈ [−1, 0]× [0, 1]}

and its interior (relative to R2×2d ) is given by

intRcoE = {ξ : ξ = (x, y) ∈ (0, 1)× (−1, 0)}∪{ξ : ξ = (x, y) ∈ (−1, 0)× (0, 1)} .

However there is no way of finding a set Eδ with the following "approximation
property" (cf. (9) and (10) for more details concerning the use of this property):
(1) Eδ ⊂ RcoEδ ⊂ intRcoE for every δ > 0;
(2) for every � > 0 there exists δ0 = δ0 (�) > 0 such that dist(η;E) ≤ � for

every η ∈ Eδ and δ ∈ [0, δ0];
(3) if η ∈ intRcoE then η ∈ RcoEδ for every δ > 0 sufficiently small.
In fact RcoEδ will be reduced, at best, to four segments and will have empty

interior (and condition (3) will be violated).

3 The singular values
One of the most general example of such hulls concern sets that involve singular
values. Let us first recall that the singular values of a given matrix ξ ∈ Rn×n,
denoted by 0 ≤ λ1 (ξ) ≤ ... ≤ λn (ξ), are the eigenvalues of (ξξt)

1/2.
We will consider three types of sets, letting 0 < γ1 ≤ ... ≤ γn and α ≤ β

with α 6= 0,
E =

©
ξ ∈ Rn×n : λi (ξ) = γi, i = 1, ..., n

ª
Eα =

©
ξ ∈ Rn×n : λi (ξ) = γi, i = 1, ..., n, det ξ = α

ª
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Eα,β =
©
ξ ∈ Rn×n : λi (ξ) = γi, i = 2, ..., n, det ξ ∈ {α, β}

ª
where, since |det ξ| =

Qn
i=1λi (ξ) and the singular values are ordered as 0 ≤

λ1 (ξ) ≤ ... ≤ λn (ξ), we should respectively impose in the second and third
cases that

nY
i=1

γi = |α|

γ2

nY
i=2

γi ≥ max {|α| , |β|} .

Note that the third case contains the other ones as particular cases. Indeed
the first one is deduced from the last one by setting β = −α and

γ1 = β

"
nY
i=2

γi

#−1
while the second one is obtained by setting β = α and

γ1 = |α|
"

nY
i=2

γi

#−1
in the third case.
Our result (cf. (9), (12) for the two first ones and for the third case:

Dacorogna-Ribeiro (11)) is then

Theorem 11 Under the above conditions and notations the following set of
identities holds

coE =

(
ξ ∈ Rn×n :

nX
i=ν

λi (ξ) ≤
nX
i=ν

γi, ν = 1, ..., n

)

PcoE = QcoE = RcoE =

(
ξ ∈ Rn×n :

nY
i=ν

λi (ξ) ≤
nY
i=ν

γi, ν = 1, ..., n

)
.

PcoEα = RcoEα =

(
ξ ∈ Rn×n :

nY
i=ν

λi (ξ) ≤
nY
i=ν

γi, ν = 2, ..., n, det ξ = α

)
.

PcoEα,β = RcoEα,β =

(
ξ ∈ Rn×n :

nY
i=ν

λi (ξ) ≤
nY
i=ν

γi, ν = 2, ..., n, det ξ ∈ [α, β]
)
.

As it was pointed out by Buliga (2) there is a surprising formal connection,
still not well understood, between the above theorem (with α = β) and some
classical results of H. Weyl, A. Horn and C.J. Thompson (see (15), (16) page
171 or (19)). The result states that if we denote, as above, the singular values
of a given matrix ξ ∈ Rn×n by 0 ≤ λ1 (ξ) ≤ ... ≤ λn (ξ) and its eigenvalues,
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which are complex in general, by µ1 (ξ) , ..., µn (ξ) and if we order them by their
modulus (0 ≤ |µ1 (ξ)| ≤ ... ≤ |µn (ξ)|) then the following result holds

nY
i=ν

|µi (ξ)| ≤
nY
i=ν

λi (ξ) , ν = 2, ..., n

nY
i=1

|µi (ξ)| =
nY
i=1

λi (ξ)

for any matrix ξ ∈ Rn×n.
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