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Abstract

Background: Since the emergence of diffusion tensor imaging, a lot of work has been done to better understand the
properties of diffusion MRI tractography. However, the validation of the reconstructed fiber connections remains
problematic in many respects. For example, it is difficult to assess whether a connection is the result of the diffusion
coherence contrast itself or the simple result of other uncontrolled parameters like for example: noise, brain geometry and
algorithmic characteristics.

Methodology/Principal Findings: In this work, we propose a method to estimate the respective contributions of diffusion
coherence versus other effects to a tractography result by comparing data sets with and without diffusion coherence
contrast. We use this methodology to assign a confidence level to every gray matter to gray matter connection and add this
new information directly in the connectivity matrix.

Conclusions/Significance: Our results demonstrate that whereas we can have a strong confidence in mid- and long-range
connections obtained by a tractography experiment, it is difficult to distinguish between short connections traced due to
diffusion coherence contrast from those produced by chance due to the other uncontrolled factors of the tractography
methodology.
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Introduction

Due to its ability to probe the tissue microstructure, Diffusion

MRI is known to be a very powerful tool to infer brain anatomical

connectivity [1]. Diffusion Tensor Imaging (DTI) [2], which models

the diffusion as a first-order tensor, is probably the most used

technique to study brain neuronal circuitry. However, due to the

limited angular resolution of DTI the interest towards higher

angular resolution diffusion MRI methodologies is increasing. One

of these methodologies is the Diffusion Spectrum Imaging (DSI)

[3,4,5], which allows to map the diffusion of water molecules by

reconstructing the spectrum of the spin displacement. Let us also

mention the existence of other high resolution techniques not

discussed in this work, such as Q-ball [6] or spherical deconvolution

[7]. The increased interest in Diffusion MRI has led to the

development of various tractography algorithms, whose aim consists

in inferring from the diffusion measurement the trajectories of the

axonal bundles in the brain, allowing the study of the fiber tract

architecture. We can divide these numerous tractography method-

ologies into two main classes, the probabilistic (e.g. [8–10])

algorithms providing connection probability maps, and the

deterministic ([11–13]) algorithms generating virtual fibers.

Diffusion MRI data contain noise that systematically affects the

tractography [14,15], regardless of the method used to generate

fiber tracts. Angular and spatial resolution, brain shape and of

course the MRI acquisition methodology, as well as the

tractography algorithm itself, are potential sources of errors in

the mapping of brain connectivity [16–18]. This immediately

raises the question of validation of the results. There exist several

approaches to address this difficult problem. First, the tractogra-

phy algorithms can be tested on synthetic data, where all the

parameters of the underlying model are known [14]. Another

approach is to correlate the reconstruction of a small set of tracts

with some gold standard methods [14,19,20]. These methods are

nonetheless partial validation and therefore complementary

studies which analyze other aspects of the problem, such as the

reliability of computed white matter connections across the whole

brain, are welcome. In this study, we address the following

question: How do we know that a given tractography solution is a

result of the underlying diffusion coherence and not of some other

effect? Indeed, performing tractography on a data set with

completely random and incoherent diffusion would produce many

fibers that look improbable, but may also produce some fibers that,

by chance or due to the brain geometry or a limited resolution,
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look ‘‘real’’. In this context, it is essential to identify and to quantify

the source of error, not only for a specific tract, but for a whole

brain tractography experiment.

A straightforward way to tackle this issue is to evaluate the effects

of noise on the diffusion MR data. For example, several studies focus

on the impact of noise on diffusion tensor eigenvalues, as well as on

the derived fiber trajectories [15,18,21]. Others try to model the

eigenvector dispersion by assuming various probability density

functions [22,23]. Another approach consists in measuring the

uncertainty associated with the reconstructed fiber trajectories.

Probabilistic algorithms particularly well suit this task, since they

allow to assign a probability to the produced tracts, either by

integrating a cost-function along the paths [8], or by counting the

occurrence of the paths obtained using a Monte Carlo random walk

[9,10]. In contrast, deterministic algorithms suffer from the lack of

information on the probability of the reconstructed trajectories. In

[24], a bootstrap approach is proposed to estimate the dispersion

associated with tractography results. Recently, this method was

extended to use any deterministic tractography algorithm in a

probabilistic way [25].

In this study, as in [25], we try to address the shortcomings of

the deterministic approach. However, instead of transforming

deterministic algorithms into probabilistic ones, we rather add

some information about the reliability of the produced tracts. To

this purpose, we present a method specifically aiming at

differentiating connections likely to be built by diffusion coherence

contrast from those potentially resulting from non-diffusion effects,

such as noise, resolution or brain geometry. We proceed by

comparing the fiber density of every connection with a set of

equivalent connections generated in systems where diffusion

coherence contrast is removed by randomly reshuffling the

orientation distribution functions (ODFs). First, we study the

statistical differences between connections in data sets with and

without diffusion coherence contrast. We show that on an

individual basis some connections are clearly different in the two

types of data sets, while others cannot be differentiated. Then, we

define a confidence level in order to quantify the difference

between the data sets with and without diffusion coherence

contrast. We show that the confidence level greatly varies from one

connection to another. We analyze the factors responsible for this

high variability and emphasize the fact that one cannot trust all

fibers equally in tractography.

Finally, we propose a method to reduce the computation time of

the estimation of the confidence level, based on the apparent

correlation between confidence level and connection distance.

This methodology is expected to add useful information to any

tractography study, deterministic [26] or probabilistic [27].

Materials and Methods

This research was conducted in agreement with the ethics

comity for clinical research of the University of Lausanne (http://

www.unil.ch/fbm/page36053.html) and informed written consent

was obtained from the subjects before performing the study, in

accordance with institutional guidelines. The proposed method

consists of six steps, as described in Figure 1, and is identical to the

method used in [26]. First, we acquire the diffusion MR images

and process them in order to get a map of the diffusion in the brain

(A). Next, we perform the tractography in the brain white matter

(WM) (B). Independently from the tractography solution, we

partition the WM-gray matter (GM) interface, i.e., the cortex for

simplification, into small regions of interest (ROIs) (C). Once these

steps are performed, we build a graph in which every ROI of the

WM-GM interface constitutes a node. If there are some fibers

linking a pair of ROIs, we build an edge between the

corresponding nodes of the graph. That way, we obtain a graph

reflecting the connectivity of the brain, that we call graph of brain

connectivity (D). Next, we use a similar procedure (steps B to D) to

construct randomized versions of the connectivity graph (the same

partition into ROIs is used); the only difference is that now the

diffusion map is randomized by reshuffling arbitrarily the ODFs.

Finally, we compute the confidence level of the connections using

the graphs derived from both the original and reshuffled data sets.

We describe each of these steps below.

A Diffusion MRI acquisition
The images from a diffusion MRI experiment of a human brain

are acquired on four healthy volunteers with an Achieva 3T

Philips scanner. We use a diffusion weighted single shot EPI spin

echo sequence with the following timing parameters: TR/TE/D/

d= 4200/89/43.5/32.5 ms, where D is the diffusion time interval

and d the diffusion gradient duration [28]. With maximal diffusion

gradient intensities of 80 mT/m this yields a maximal b-value of

9000 s/mm2. Q-space is sampled over a hemisphere using 129

different encoding gradients, and the data are reconstructed

following a classical DSI scheme (see Material and Methods S1)

[4], producing a 3D diffusion probability density function (pdf) in

every voxel. The acquisition block is made of 36 slices of a

1126112 matrix, with a spatial resolution of 26263 mm3. The

acquisition time is approximately 18 minutes. Next, we simplify

the data by computing for each voxel the ODF, a radial

integration of the resulting diffusion pdf [4] (see Material and

Methods S1). Moreover, a high resolution T1-weighted (MP-

RAGE) MRI is performed on the same volunteer. This acquisition

is then registered on the diffusion images using the affine

registration method based on maximization of mutual information

of Maes et al. [29], and used to identify both the WM and GM

Figure 1. Overview of the whole process. Overview of the whole
process. (A) Acquisition of the diffusion MR images. (B) Tractography in
the brain WM. (C) Partitioning of the WM-GM interface into small
regions of interest (ROIs). (D) Creation of the original brain connectivity
graph using the results of steps B and C. (E) Construction of randomized
versions of the original brain connectivity graph (the same partition into
ROIs is used). (F) Computation of the confidence level of every edge in
the original brain connectivity graph.
doi:10.1371/journal.pone.0004006.g001
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with a T1w-based segmentation algorithm [30,31], which allows

us to define the WM-GM interface.

B White Matter tractography
DSI tractography is performed in WM using an algorithm

especially designed for DSI data [13,16,32]. Note that any

tractography algorithm can be used to generate the fibers, as long

as it uses a deterministic approach. First, the ODF of each voxel is

reduced into a set of normalized direction vectors corresponding

to the local maxima of the ODF. Then, we choose a set of

initialization points uniformly distributed in each brain WM voxel.

The number of points is proportional to the number of direction

vectors in the corresponding voxel. Next, from each of these points

a fiber starts growing with a fixed step size (arbitrarily chosen to be

1 mm) in two opposite directions, locally following the direction of

the diffusion maximum which is the closest to the fiber trajectory.

If this results in a change of direction sharper than a fixed

threshold (0.25 rad/mm), the fiber is stopped. The growing

process ends when the end-points of the fiber have reached the

WM-GM interface. Fibers that do not reach the WM-GM

interface are eliminated. In this work, approximately 1 million

fibers are generated in the brain WM. For more information about

the tractography algorithm please see Material and Methods S1.

C WM-GM interface partition into ROIs
The aim of this step is to partition the WM-GM interface into

small ROIs. A simple approach would be to partition this interface

according to a 3D regular grid. However, this method would result

in regions with variable sizes, which is not acceptable, since we will

work later with the density of fibers connecting ROIs. Moreover,

we want the ROIs to be placed in the same anatomical location

such that the connectivity can be compared locally.

The proposed procedure is based on an atlas-based cortical

registration method using the curvature information, i.e. sulcus

and gyrus [33,34,35]. This method has been directly implemented

in the Freesurfer software (http://surfer.nmr.mgh.harvard.edu),

which provides an automatic labelling of the cortex into 66 gyral-

based parcels, which are defined using curvature-based informa-

tion on 40 manually labelled brains [35]. The proposed procedure

consists of three steps. First, we use Freesurfer to register a labelled

mesh from an average brain onto the brain of each subject, where

each label corresponds to one of the 66 anatomical regions,

providing for every subject a standardized partition of the cortex

into 66 anatomical cortical regions. Second, we subdivide each

gyral-based parcel of the atlas into many small ROIs, in order to

build a new atlas containing approximately one thousand ROIs.

Finally, we register the obtained subdivision on the brain of each

subject using the same transformation as for the 66 regional areas,

thus maintaining the topological constraints of mapping. For more

information on the partitioning process please see Material and

Methods S1.

Using this procedure, we divided the cortex into 998 ROIs,

compact and of similar size, and with a surface of about 140 mm2.

An example of the obtained parcellation can be seen in Figure S1.

D Construction of the original brain connectivity graph
GO

In what follows, we will use the term fiber when referring to a

single tractography fiber connecting two ROIs. The abstract link

between two nodes in a graph will be denoted by the term edge.

We create the original brain connectivity graph GO by

combining the output of the two previous steps (B and C)

[32,36,16]. Every ROI becomes a node of the graph. We build an

edge e between every pair of nodes and define its weight as follows:

ve~

P
f [Fe

1
lf

SizSj

, ð1Þ

With Fe the set of fibers contributing to the edge e, i.e., the fibers

whose end-points lie in the corresponding ROIs (denoted by i and j),

lf the length of the fiber f, and Si, Sj the surface of the ROIs i and j

respectively. If no fiber exists between two ROIs, a zero weight is

assigned to the corresponding edge. The edge weight captures the

fiber density between two nodes, in terms of number of fibers per

unit surface. lf is a correction term needed to suppress the linear bias

towards longer fibers introduced by the tractography algorithm

[32]. Indeed, due to the initialization process which chooses a fixed

number of fiber starting points per orientation in each voxel, the

number of fibers generated along a given path is proportional to the

length of this path. Therefore, we have to normalize the

contribution of each fiber by its length when computing the edge

weight. Finally, we introduce the edge distance le, defined as the

geodesic distance in the brain WM (i.e., the shortest path being

confined in the WM mask) separating the two ROIs corresponding

to the end-nodes of the edge in the graph.

E Construction of the randomized brain connectivity
graphs GRi

Remember that we want to compare the original tractography

solution with others where diffusion coherence contrast has been

lost. This is achieved as follows. Starting from the original

acquisition data set, we find and randomly reshuffle the voxels

corresponding to the brain WM, i.e., we randomly permute the

ODFs of these voxels. In other terms, this is a re-sampling of the

data, or more particularly of the WM voxels, without replacement.

Note that the reshuffling we perform is fundamentally different

from the bootstrapping method used for example in [25]. Indeed,

bootstrapping techniques are generally used in order to assess the

accuracy of an estimator. In this work, we perform a re-sampling

only in order to loose the diffusion coherence contrast in the data.

It results in a data set whose geometrical properties, such as the

WM tractography mask and the WM-GM interface, are identical

to the original one. Similarly, the number and orientation of the

main diffusion directions are preserved, but, what is crucial, the

information about diffusion coherence is lost. We generate 30

reshuffled data sets (this choice will be discussed in the following).

Next, we perform tractography to generate a solution on every

reshuffled data set. Finally, as in D, we construct the connectivity

graphs GRi based on the randomized tractography results and the

same partition into ROIs as obtained for the original data set (C).

F Confidence level computation
Let ve,O and ve,Ri denote the weight of the edge e in GO and GRi,

respectively. Considering the set of randomized brain connectivity

graphs GR~ GR1
, . . . ,GRI

f g, for every edge e we have a set of edge

weights We,R~ ve,R1
, . . . ,ve,RI

f g coming from a specific distribu-

tion. This set of edge weights We,R provides us with an empirical

distribution, which is an estimate of the true underlying distribution.

Let Y~y1,y2, . . . ,yn be some real data and let p be a

proportion between 0 and 1. A quantile q̂q pð Þ is a value such

that a proportion p of the observations Y is smaller than q̂q pð Þ. In

our case, Y is replaced by the set of edge weights in GR, that is We,R.

The edge weight in GO can be interpreted as a quantile of We,R,

with ve,O~q̂qe peð Þ. We define the confidence level ce as the

proportion of We,R being smaller than ve,O, that is ce~pe.

Conf. Level of WM Connections
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The confidence level is computed for every edge whose weight

in GO is strictly positive (called a non-zero edge in the following).

The maximum for the confidence level is the unity, it indicates

that ve,O is higher than all the values in We,R. Similarly, the

minimum is zero and means that ve,O is lower than all the values

in We,R. It is important to note that the confidence level is

computed for each edge, independently from the other edges in

the graph.

Results

This section is divided in four parts. In the first one, we compare

the original brain connectivity graphs GO with a set of randomized

equivalents GR, in terms of node degree, node strength, number of

connections, edge distance and edge weight, hence analyzing the

structural differences between these two types of data sets. Next,

we analyze, with the help of the constructed confidence level, the

contribution of the diffusion coherence contrast to every

connection. In the third part, we show as an illustration how to

integrate the confidence level into the connectivity matrix. Finally

in the last part, introduce a way to optimize the computation.

A Comparison of GO with GR

In what follows, the plots compare the original graph GO with a

single randomized brain connectivity graph GRi. Since the

variations observed among the set of randomized graphs GR are

not significant (data not shown), these plots are valid for the set of

randomized graphs GR. Therefore, we will speak of GRi to refer to

any single randomized brain connectivity graph. It is also

important to note that all these experiments have been performed

for one subject at three different scales of the connectivity graph:

500, 1000 and 2000 nodes. As the results were similar for the three

scales, we decided to only work with the graphs with 1000 nodes.

In order to compare the original and randomized graphs, we

first turn our attention to the nodes of the graphs. We focus on two

basic node characteristics: the degree dn, i.e., the number of edges

incident on the node n, and the strength sn, which is the sum of

weights of all edges incident on the node n [37]. In Figure 2, we

report the node degree (A) and node strength (B) distributions for

both GO and GRi. We also look at two edge statistics: the edge

distance le distribution (C) and the edge weight ve distribution (D)

(computed on non-zero edges only). We can see that GO presents a

node degree distribution with a heavier tail than GRi, indicating

that some nodes are more connected in the original brain

connectivity graph. This is explained by the fact that the number

of connections is higher in GO (9926 edges in average) than in GRi

(5686 edges). In Figure 2C, we can see that the edge distance is

much shorter in GRi than in GO, indicating a loss of long-range

connectivity in GRi, which explain this difference in the number of

connections. In Figure 2B, we can see that there are slightly more

nodes with a high node strength in GRi than in GO. This can be

explained by the fact that the edge weight is higher in GRi than in

GO, as shown in Figure 2D. A more complete evaluation of these

brain connectivity graphs can be found in [32].

Figure 2. Node and edge statistics for GO and GR. Node and edge statistics for GO and GR. A: Node degree distribution. B: Node strength
distribution. C: Edge distance distribution. D: Edge weight distribution.
doi:10.1371/journal.pone.0004006.g002
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Next, we focus on the evolution of the connectivity with respect

to the edge distance. In Figure 3A, we plot the number of non-zero

edges as a function of the edge distance. Figure 3B represents the

mean edge weight as a function of the edge distance. These plots

lead us to the following observations.

a) Short connections. The tractography algorithm produces

quite accurately the same number of short non-zero edges

(typically below 40 mm) in both GO and GRi (Figure 3A), and the

mean edge weight for edges of short edge distance is almost

identical (Figure 3B). Since a fiber between two given ROIs is

found by the tractography algorithm only if a path of coherently

aligned directions of maximal diffusion exists, we deduce that for

two closely located ROIs the chance of finding such a path of

coherent diffusion in the reshuffled data set is non negligible. It is

also important to note that for short connections the standard

deviation of the edge weight is almost identical in both GO and GRi,

and the edge weight distribution for a given edge distance is similar

in both cases (data not shown). Furthermore, in Figure 3B, in the

short range, there seems to be a clear dependence between mean

edge weight and edge distance.

b) Mid- and long-range connections. Unlike for short

connections, it seems that for mid- and long-range connections

some fundamental differences appear between the original and the

reshuffled data sets. We remember that the tractography is run in

exactly the same way and with the same parameters in all cases

(particularly with the same number of fiber initializations).

However, we see that the original brain connectivity graph GO

contains more non-zero edges than GRi, and that these additional

edges are mid- and long-range. Similarly as in the short range, the

mean edge weight in GRi continues to decrease with increasing

distance, following an exponential law. This is because when the

edge distance le increases, the chance of finding a path of coherent

diffusion sharply decreases. On the other hand, the mean edge

weight in GO changes its behavior at around an edge distance of

40 mm by decreasing very slowly with increasing edge distance.

The fiber density (i.e. edge weight) of an edge in GO seems thus not

to be dependent from its distance. Interestingly, it turns out that the

limit of 40 mm is consistent across the subjects and is not dependent

on the scale of the connectivity graphs, since similar results were

found for graphs with 500, 1000 and 2000 nodes (data not shown),

but might change with other parameters as we discuss below.

B Confidence level analysis
In this part, we focus on the analysis of the confidence level.

Remember that every non-zero edge obtained in the original brain

connectivity graph GO has a confidence level, that depends on two

factors: (i) its edge weight in the original data set ve,O, and (ii) the

set of weights obtained for the same edge e in the randomized

brain connectivity graphs We,R~ ve,R1
, . . . ,ve,RI

f g. This measure

is thus independent from the other edges of the graph, and is to

some extent independent from the brain geometry, since the

position of the nodes is exactly the same in both GO and GR.

First, we show in Figure 4A the distribution of the confidence

levels. According to the definition of the confidence level, a zero

value ce~0 means that the edge has a lower weight than all the

realizations of the same edge in GR. On the other hand, ce~1
corresponds to edges whose weight is higher than all the

realizations of the same edge in GR. In the middle range,

ce~0:5 indicates that the edge weight obtained in GO is

comparable to the median of the measures obtained in GR. We

can see in Figure 4A that most of the distribution is close to the

maximum value, meaning that the tractography globally produces

tracts that are the result of the measured diffusion coherence

contrast. However, the peak near the minimum value indicates

that some of the edges produced by the tractography have a

stronger weight in GR than in GO, and are thus probably due to

non-diffusion effects.

Next, we investigate the evolution of the confidence level with

respect to the edge distance. In Figure 4B, we plot the mean

confidence level as a function of the edge distance. We can see that

the confidence level rapidly increases with the edge distance. From

a distance of around 60 mm the mean confidence level reaches the

maximum value and stays constant. We can then say that short

edges globally present a low confidence level. In contrast, we can

have a strong confidence in mid- and long-range connections.

C Example of application
A representative example of a high-resolution structural

connection matrix of an individual human brain is shown in

Figure 5. The matrix is organized as follows: the upper left block

represents the connections in the right hemisphere and the lower

right block shows the connections in the left hemisphere. The off-

Figure 3. Distribution of non-zero edges and mean edge
weight vs. edge distance. (A) Distribution of non-zero edges in GO

and GR as a function of the edge distance le. (B) Mean edge weight in GO

and GR as a function of the edge distance le.
doi:10.1371/journal.pone.0004006.g003
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diagonal blocks map the inter-hemispheric connections. The color

bar at the left and bottom of the matrix help to make the

correspondence between the matrix entries and the cortical parcels

as displayed on the left part of the figure. Since the connections are

not oriented the matrix is symmetric. Therefore, we can show

simultaneously two parameters for every connection in the matrix.

The upper triangular part of the matrix represents fiber densities

between pairs of single ROIs. The lower triangular part shows the

confidence levels associated to the connections. The confidence

level which is added in this matrix is a valuable help towards the

interpretation and the assessment of the whole brain connectivity.

We can see that the connections which present a low confidence

level are mainly located very close to the diagonal, which

corresponds to intra-parcel connections. This is not surprising

since those connections are mainly composed of short fibers. On

the contrary, longer connections such as the inter-hemispheric

connections (off-diagonal blocks of the matrix) present a very high

confidence level.

D Optimization of the computation
As mentioned in the methodology, the confidence level

introduced in this work is based on the set of edge weights

obtained with GR, that is We,R~ ve,R1
, . . . ,ve,RI

f g. For a given

edge e, the more samples we have in We,R, the better the estimation

of the true underlying distribution, and thus the more accurate the

confidence level. Therefore, one would be tempted to create a lot

of randomized brain connectivity graphs, but unfortunately their

generation is computationally very expensive. In this context, there

is a need for optimization of the computation.

In Figure 3B we see that the mean edge weight in GRi depends

on the edge distance le. Let us suppose for a while that the other

factors, such as the brain geometry or the tractography algorithm,

do not significantly influence the mean edge weight in GRi, or at

least affect the edges uniformly regardless of the edge distance le. In

this case, the sets of edge weights We1,R and We2,R produced by

two different edges, e1 and e2 with the same edge distance le, are

sampled from the same underlying distribution. Therefore, by

grouping the edges according to their edge distance le, we increase

the number of samples that constitute the empirical distributions of

Figure 4. Confidence level distribution and mean confidence
level vs. edge distance. (A) Distribution of the confidence level
computed for non-zero edges. (B) Mean confidence level as a function
of the edge distance le.
doi:10.1371/journal.pone.0004006.g004

Figure 5. High-resolution structural connection matrix. High-resolution structural connection matrix, representing the fiber density (upper
triangular part) and the confidence level (lower triangular part). The matrix is organized as follows: the upper left block represents the connections in
the right hemisphere and the lower right block shows the connections in the left hemisphere. The off-diagonal blocks map the inter-hemispheric
connections. The color bar at the left and bottom of the matrix help to make the correspondence between the matrix entries and the cortical parcels
as displayed on the left part of the figure.
doi:10.1371/journal.pone.0004006.g005

Conf. Level of WM Connections
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the edge weights. From a practical point of view, this means that

instead of generating 30 reshuffled data sets which is very time-

consuming, producing for each edge e a set of 30 edge weights

We,R, we create only one reshuffled data set. Next, we group the

edge weights having a similar edge distance le and create sets of

edge weights dependent on the edge distance only. Denote by Wd,R

the set of all edges whose edge distance le is close to d, that is

Wd,R~ ejle[ d{e; dze½ �f g, with e a tolerance value. The

confidence level is then computed as described above, by replacing

We,R with Wd,R.

We compare the confidence level computed on the set of 30

reshuffled data sets GR, called standard confidence level, with the

proposed method, denoted by optimized confidence level. In

Figure 6 we report the mean confidence level as a function of the

edge distance, for both methods and for a single subject (the results

obtained with the other subjects are similar, data not shown). It

turns out that the mean confidence level is very similar for both the

standard and the optimized methods. This observation is

confirmed by a correlation of 0.79 (averaged over the four

subjects) between the standard and optimized confidence levels. In

Figure 7, we report the matrix containing the absolute value of the

differences between the two confidence levels. We can see that the

difference is only rarely higher than 0.2, which is confirmed by a

distribution very close to zero, as shown in the insert of Figure 7.

Discussion

A The rational behind the method
How can we be sure that a given computed connection is due to

diffusion coherence contrast (i.e., underlying neuronal anatomy)

and not to noise, limited resolution (aliasing), brain geometry or to

the properties of the tractography algorithm itself? In other words,

how can we know that a given image feature (i.e., a connection)

comes from a specific physical process (diffusion) and not from

other uncontrolled imaging parameters? Given that we have an

adequate image model, the straightforward method is to study the

behavior of the imaging feature in an identical data set from which

the specific physical process has been removed (i.e. in which the

diffusion coherence contrast is removed). In practice, we can

obtain such a data set by randomly reshuffling the voxels in the

WM mask with their associated ODFs. Then, we can perform the

tractography and compute the associated connectivity graph. By

creating a large number of reshuffled data sets, we can finally

compute the confidence level of a given edge in GO with respect to

the estimate of the weight distribution of the same edge obtained

in GR. This method provides us with a measure of how unlikely it is

that the measured edge weight comes from something else than

diffusion coherence contrast.

However, we have to keep in mind that tractography is a

method that maps lines of diffusion coherence inside the white

matter. The relation between real or anatomical fibers and

pseudo-fibers produced by the tractography is conceptual and

experimental to some extent [14,19]. Consequently, the confi-

dence level does not give information about the existence of fibers.

Instead, as mentioned in [25], it refers to the ‘‘amount of

confidence we can place in the tract realization not being a

spurious one off occurrence that has been unusually corrupted by

noise, motion, or other sporadic artifacts’’. We also insist on the

fact that the confidence level does not improve the tractography

Figure 6. Standard vs. optimized confidence levels: mean
confidence level vs. edge distance. Mean standard and optimized
confidence levels as a function of the edge distance le.
doi:10.1371/journal.pone.0004006.g006

Figure 7. Matrix of the differences between standard and optimized confidence level. High-resolution matrix, representing the difference
between the standard and optimized confidence level (absolute values). In the insert: distribution of the differences between standard and optimized
confidence level (absolute values), computed for non-zero edges.
doi:10.1371/journal.pone.0004006.g007
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quality. It just gives additional information about the tractography

solution in order to help its interpretation.

One of the issues of this work is related to the number of reshuffled

data sets. Indeed, the more reshuffled data sets we produce, the more

accurate the empirical quantiles, and thus the more accurate the

confidence level. This raises the following question: Are the 30

reshuffled data sets used in this work sufficient to have an accurate

estimate of the confidence level? Since the reshuffled data sets are

generated independently, the samples constituting the set of edge

weights We,R are also independent. This means that the empirical

distribution provided by We,R is an unbiased estimate of the true

underlying distribution. The confidence levels are thus not biased by

the number of reshuffled data sets. Consequently, increasing the

number of data sets would of course improve the accuracy of the

confidence level, but would not significantly modify the results we

obtained. Finally, we should insist on the fact that generating a

reshuffled data set is very time-consuming. Thus, generating more

than 30 data sets is practically not reasonable.

B The effect of the spatial resolution
When we consider the relation between the mean edge weight

and the edge distance in the original data set (Figure 3B), we notice

that it is bimodal. In the range of short distances (below 40 mm),

the plot follows a similar behavior as the reshuffled data set, while

for longer distances the mean edge weight decreases very slowly.

The relative constancy of the mean edge weight with respect to the

edge distance is a very important observation. It tells us that our

way of measuring connectivity is not biased by distance. The initial

bump for edges shorter than 40 mm may be explained in two

ways. First, we know that the brain performs most communication

locally (functionally associated cortical areas are nearby) [38,39],

yielding possibly stronger connectivity in a short range. Second,

which is in our opinion the most likely explanation, is that for

short-range edges there is no big difference between principal

diffusion orientations that are coherently versus randomly oriented

given the small number of tracking steps. This difference is a

consequence of a low spatial resolution. Indeed, the shorter the

distance between two distinct ROIs, the lower the number of

voxels separating these ROIs, and thus the higher the probability

of finding a path of coherent diffusion linking these ROIs by

chance. Therefore, the only way to keep track of the short-range

connections would be to increase the spatial resolution of the

diffusion MRI acquisition, which would in turn decrease the

chance of connection at random. This also means that we

potentially overestimate the number of short connections due to

the additional effect of true and ‘‘by chance’’ diffusion coherence

over short distances.

Considering Figure 3B, one may be tempted to consider the

ratio between the mean edge weight in the original and the

reshuffled data sets as a measure of the signal to noise ratio (SNR).

Presented that way, we directly notice that the SNR is too low for

fibers below 40 mm to make any statement. In particular, a low

confidence level in these connections does not mean that they do

not exist, but only that they cannot be faithfully distinguished from

connections created by the unpredictable effects.

C Optimized versus standard confidence level
The optimized confidence level is based on the assumption that

the mean edge weight in GR depends mainly on the edge distance

le. The other factors, such as the brain geometry or the

tractography algorithm parameters, are supposed to have only a

minor influence on the edge weight, or at least to affect the edges

uniformly regardless of le. Of course, this assumption is very

restrictive, and practically not really verifiable. However, the

similar results produced by both the standard and the optimized

method seem to confirm the hypothesis. We do not pretend that

the brain geometry does not play a role on the edge weight, but we

believe that its effect is limited. Thus, we think that the optimized

confidence level is an adequate method to dramatically reduce the

computation time, although more investigations have to be

performed to confirm our results.

As stated before, the probability of finding a path of coherent

diffusion is rather low in a reshuffled data set, and therefore a large

proportion of edges in GR have a zero weight. Due to the limited

number of reshuffled data sets, the confidence level of long-range

connections tends to be slightly over-estimated. Apart from the

computation time, another advantage of the optimized confidence

level is that the grouping of edges increases the number of samples

per estimated distribution. Consequently, the optimized confi-

dence level partially solves the issues raised by the limited number

of reshuffled data sets.

D Advantages, drawbacks and future work
In this article we present a method to associate a confidence

level with a connection measured with tractography. This

confidence level allows us to quantify the contribution of the

diffusion coherence contrast to the produced tracts. We observe

that tractography maps well the diffusion coherence contrast over

long distances but that for short-range trajectories it is impossible

to say whether their source is the diffusion coherence or chance.

The direct consequence is important for all studies that aim at

mapping and characterizing short-range connections; their results

should be interpreted with enormous care.

However, it is worthwhile to point out that very important

contributors to aberrant connectivity mapping are not filtered out

with the presented methodology. Indeed, even if the diffusion MRI

experiment is performed properly, i.e. ideally without susceptibility

artifacts or other systematic biases, there are in our opinion, two

sources of errors: noise and aliasing or insufficient resolution. The

effect of noise is rather straightforward: it produces unwanted

principal directions of diffusion, yielding aberrant and missing

connections [24,25]. The question of aliasing is more difficult to

analyze and would justify an article on its own. Schematically,

insufficient angular and spatial resolutions yield 1) biased principal

directions of diffusion (e.g. smoothing of two diffusion peaks into one)

2) partial volume effects [40] which can be the cause of constructing

aberrant fiber tracts. Indeed, when the spatial resolution is insufficient

relatively to the maximal curvature radius of fiber bundles, tracts that

cross in reality may kiss in the tractography reconstruction and vice

versa, thus creating aberrant solutions.

The confidence level computed in this work is based on the edge

weight only. However, it is highly likely that other features could

help in the evaluation of short-range connections. A possible way

to improve the quality of the confidence level would be to include

a measure of the dispersion of the trajectories, as follows. Let us

consider an edge connecting two close ROIs. In the reshuffled

data sets the fibers constituting this specific edge should present

various trajectories, which can be captured by a high variability of

the fiber length. In contrast, in the original data set, if a path of

maximal diffusion exists between the two ROIs, most of the fibers

constituting the corresponding edge should roughly have the same

trajectory, and therefore have the same length. Consequently, the

variance of the fiber length could help in the evaluation of the

confidence level of short-range connections.

E Conclusions
In this work, we propose a method to evaluate the confidence

level of every connection obtained by tractography, in order to
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discriminate the fibers resulting from the diffusion signal itself from

those due to some non-diffusion effects. According to the

presented results we can say that the tractography, as it is

performed in this work, is well suited to map mid- and long-range

connections with a high confidence level. On the contrary, the low

confidence level found for the short-range connections indicates

that some precautions must be taken when mapping the brain

short-range connectivity. In our opinion spatial resolution is one of

the main factors that affect the accuracy of short-range

connections in tractography.
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