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Abstract

We study existence of minimizers for problems of the type

inf

�Z

Ω

f (Du (x)) dx : u = uξ0 on ∂Ω

�

where f is non quasiconvex and uξ0 is an affine function. Applying some
new results on differential inclusions, we get sufficient conditions. We also
study necessary conditions. We then consider some examples.

1 Introduction

We discuss the existence of minimizers for the problem

(P ) inf
{∫

Ω

f (Du (x)) dx : u = uξ0 on ∂Ω
}

.

1



where Ω ⊂ Rn is a bounded open set, u : Ω → Rm (if m = 1 or, by abuse
of language, if n = 1, we will say that it is scalar valued while if m,n ≥ 2,
we will speak of the vector valued case) and Du denotes its Jacobian matrix,
i.e. Du =

(
∂ui

∂xj

)
seen as a real matrix of size m × n, f : Rm×n → R is lower

semicontinuous and uξ0 is a given affine map (i.e., Duξ0 = ξ0, where ξ0 ∈ Rm×n

is a fixed matrix).
If the function f is quasiconvex, meaning that

∫

U

f (ξ + Dϕ (x)) dx ≥ f (ξ) meas(U)

for every bounded domain U ⊂ Rn, ξ ∈ Rm×n, and ϕ ∈ W 1,∞
0 (U ;Rm), then the

problem (P ) trivially has uξ0 as a minimizer. We also recall that in the scalar
case (n = 1 or m = 1), quasiconvexity and ordinary convexity are equivalent.

The aim of the article is to study the case where f fails to be quasicon-
vex. The first step in dealing with such problems is the relaxation theorem,
first established in the vectorial case by Dacorogna (see [5]) and then further
generalized by many others. It has as a direct consequence (cf. Lemma 11) that
(P ) has a solution u ∈ uξ0 + W 1,∞

0 (Ω;Rm) if and only if

f (Du (x)) = Qf (Du (x)) , a.e. x ∈ Ω
∫

Ω

Qf (Du (x)) dx = Qf (ξ0) meas Ω

where Qf is the quasiconvex envelope of f , namely

Qf = sup {g ≤ f : g quasiconvex} .

The problem is then to discuss the existence or non existence of a u satisfying
the two equations. The two equations are not really of the same nature. The first
one is what is called an implicit partial differential equation, which has recently
received a lot of attention and we refer to Dacorogna-Marcellini [7] for some
bibliographical and historical comments. The second one is more geometric in
nature and has to do with some ”quasiaffinity” of the quasiconvex envelope Qf .

The scalar case (n = 1 or m = 1) has been intensively studied by many au-
thors including: Aubert-Tahraoui, Bauman-Phillips, Buttazzo-Ferone-Kawohl,
Celada-Perrotta, Cellina, Cellina-Colombo, Cesari, Cutri, Dacorogna, Ekeland,
Friesecke, Fusco-Marcellini-Ornelas, Giachetti-Schianchi, Klötzler, Marcellini,
Mascolo, Mascolo-Schianchi, Monteiro Marques-Ornelas, Ornelas, Raymond,
Sychev, Tahraoui, Treu and Zagatti. For precise references see [6] and [7].

The vectorial case has been investigated for some special examples notably
by Allaire-Francfort [1], Cellina-Zagatti [4], Dacorogna-Ribeiro [10], Dacorogna-
Tanteri [11], Mascolo-Schianchi [17], Müller-Sverak [18] and Raymond [20]. A
more systematic study was achieved by Dacorogna-Marcellini in [6], [7] and
[8]. Building on [6] and owing to the recent developments in the treatment of
implicit partial differential equations, we will obtain at the same time simpler
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and more general existence theorems. Several examples can be treated as a
direct consequence of the general and simple theorem obtained in Section 3. We
will concentrate on two of them (in Subsection 5.1 and 5.2) and we will mention
very briefly those classical examples that could be treated in the same way. We
will also devote some attention to necessary conditions.

2 Preliminaries

We recall the main notations that we will use throughout the article and we
refer, if necessary, for more details to Dacorogna [5] and Dacorogna-Marcellini
[7].

We start with one notation for matrices.

Notation 1 For ξ ∈ Rm×n we let

T (ξ) = (ξ, adj2ξ, . . . , adjm∧nξ) ∈ Rτ

where adjsξ stands for the matrix of all s× s subdeterminants of the matrix ξ,
1 ≤ s ≤ m ∧ n = min {m,n} and where

τ = τ (m,n) =
m∧n∑
s=1

(
m
s

)(
n
s

)
and

(
m
s

)
=

m!
s! (m− s)!

.

In particular if m = n = 2, then T (ξ) = (ξ,det ξ) .

We next define the main notions of convexity used throughout the article.

Definition 2 (i) A function f : Rm×n → R = R ∪ {+∞} is said to be poly-
convex if

f

(
τ+1∑

i=1

tiξi

)
≤

τ+1∑

i=1

tif (ξi)

whenever ti ≥ 0 and

τ+1∑

i=1

ti = 1, T

(
τ+1∑

i=1

tiξi

)
=

τ+1∑

i=1

tiT (ξi) .

(ii) A Borel measurable function f : Rm×n → R is said to be quasiconvex if
∫

U

f (ξ + Dϕ (x)) dx ≥ f (ξ) meas(U)

for every bounded domain U ⊂ Rn, ξ ∈ Rm×n, and ϕ ∈ W 1,∞
0 (U ;Rm).

(iii) A function f : Rm×n → R = R∪{+∞} is said to be rank one convex if

f (tξ1 + (1− t)ξ2) ≤ t f (ξ1) + (1− t) f (ξ2)
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for every ξ1, ξ2 ∈ Rm×n with rank {ξ1 − ξ2} = 1 and every t ∈ [0, 1].
(iv) A Borel measurable function f : Rm×n → R is said to be quasiaffine (or

equivalently polyaffine or rank one affine) if both f and −f are quasiconvex.
(v) The different envelopes of a given function f are defined as

Cf = sup {g ≤ f : g convex} ,

Pf = sup {g ≤ f : g polyconvex} ,

Qf = sup {g ≤ f : g quasiconvex} ,

Rf = sup {g ≤ f : g rank one convex} .

As well known we have that the following implications hold

f convex =⇒ f polyconvex =⇒ f quasiconvex =⇒ f rank one convex

and thus
Cf ≤ Pf ≤ Qf ≤ Rf ≤ f.

Remark 3 An equivalent characterization of polyconvexity can be given in terms
of Hahn-Banach theorem (cf. Theorem 1.3 page 107 in Dacorogna [5]). A func-
tion f : Rm×n −→ R is polyconvex if and only if for every ξ ∈ Rm×n there exists
λ = λ (ξ) ∈ Rτ(m,n) so that

f (ξ + η)− f (ξ)− 〈λ; T (ξ + η)− T (ξ)〉 ≥ 0, for every η ∈ Rm×n. (1)

We now give an important example that concerns singular values.

Example 4 Let 0 ≤ λ1 (ξ) ≤ ... ≤ λn (ξ) denote the singular values of a matrix
ξ ∈ Rn×n, which are defined as the eigenvalues of the matrix (ξξt)1/2. The
functions

ξ →
n∑

i=ν

λi (ξ) and ξ →
n∏

i=ν

λi (ξ) , ν = 1, ..., n,

are respectively convex and polyconvex (note that
∏n

i=1 λi (ξ) = |det ξ|). In
particular the function ξ → λn (ξ) is convex and in fact is the operator norm.

We finally recall the notations for various convex hulls of sets.

Notation 5 We let, for E ⊂ Rm×n,

FE =
{
f : Rm×n → R = R∪{+∞} : f |E ≤ 0

}

FE =
{
f : Rm×n → R : f |E ≤ 0

}
.

We then have respectively, the convex, polyconvex, rank one convex and (closure
of the) quasiconvex hull defined by

coE =
{
ξ ∈ Rm×n : f (ξ) ≤ 0, for every convex f ∈ FE

}

PcoE =
{
ξ ∈ Rm×n : f (ξ) ≤ 0, for every polyconvex f ∈ FE

}

RcoE =
{
ξ ∈ Rm×n : f (ξ) ≤ 0, for every rank one convex f ∈ FE

}

QcoE =
{
ξ ∈ Rm×n : f (ξ) ≤ 0, for every quasiconvex f ∈ FE

}
.
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We should point out that by replacing FE by FE in the definitions of co E
and Pco E we get their closures denoted by coE and PcoE. However if we do
so in the definition of Rco E we get a larger set than the closure of Rco E. We
should also draw the attention that some authors call the set

{
ξ ∈ Rm×n : f (ξ) ≤ 0, for every rank one convex f ∈ FE

}

the lamination convex hull, while they reserve the name of rank one convex hull
to the set

{
ξ ∈ Rm×n : f (ξ) ≤ 0, for every rank one convex f ∈ FE

}
.

We think however that our terminology is more consistent with the classical
definition of convex hull.

In general we have, for any set E ⊂ Rm×n,

E ⊂ Rco E ⊂ Pco E ⊂ co E

E ⊂ RcoE ⊂ QcoE ⊂ PcoE ⊂ coE.

We now turn our attention to differential inclusions. We will need the fol-
lowing definition introduced by Dacorogna-Marcellini (cf. [7]), which is the key
condition to get existence of solutions.

Definition 6 (Relaxation property) Let E, K ⊂ Rm×n. We say that K has
the relaxation property with respect to E if for every bounded open set Ω ⊂ Rn,
for every affine function uξ satisfying

Duξ (x) = ξ ∈ K,

there exist a sequence uν ∈ Affpiec

(
Ω;Rm

)
(the set of piecewise affine maps)

uν ∈ uξ + W 1,∞
0 (Ω;Rm) , Duν (x) ∈ E ∪K, a.e. in Ω

uν
∗
⇀ uξ in W 1,∞,

∫

Ω

dist (Duν (x) ; E) dx → 0 as ν →∞.

The main theorem, established in Dacorogna-Pisante [9], is then.

Theorem 7 Let Ω ⊂ Rn be open and bounded. Let E,K ⊂ Rm×n be such that
E is compact and K is bounded. Assume that K has the relaxation property
with respect to E. Let ϕ ∈ Affpiec

(
Ω;Rm

)
be such that

Dϕ (x) ∈ E ∪K, a.e. in Ω.

Then there exists (a dense set of) u ∈ ϕ + W 1,∞
0 (Ω;Rm) such that

Du (x) ∈ E, a.e. in Ω.
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Remark 8 This theorem was first proved by Dacorogna-Marcellini (see Theo-
rem 6.3 in [7]) under the further hypothesis that

E =
{
ξ ∈ Rm×n : Fi (ξ) = 0, i = 1, 2, ..., I

}

where Fi : Rm×n → R, i = 1, 2, ..., I, are quasiconvex. This hypothesis was
later removed by Sychev in [22] (see also Müller and Sychev [19]). Kirchheim
in [14] pointed out that using a classical result of function theory then the proof
of Dacorogna-Marcellini was still valid without the extra hypothesis on E; it is
this idea combined with the original proof of Dacorogna-Marcellini that is used
by Dacorogna-Pisante in [9].

We next give a sufficient condition that ensures the relaxation property.
In concrete examples this condition is usually much easier to check than the
relaxation property. We start with a definition.

Definition 9 (Approximation property) Let E ⊂ K (E) ⊂ Rm×n. The
sets E and K (E) are said to have the approximation property if there exists
a family of closed sets Eδ and K (Eδ), δ > 0, such that

(1) Eδ ⊂ K (Eδ) ⊂ intK (E) for every δ > 0;
(2) for every ε > 0 there exists δ0 = δ0 (ε) > 0 such that dist(η; E) ≤ ε for

every η ∈ Eδ and δ ∈ [0, δ0];
(3) if η ∈ intK (E) then η ∈ K (Eδ) for every δ > 0 sufficiently small.

We therefore have the following theorem (cf. Theorem 6.14 in [7] and for a
slightly more flexible one see Theorem 6.15).

Theorem 10 Let E ⊂ Rm×n be compact and Rco E has the approximation
property with K (Eδ) = Rco Eδ, then intRco E has the relaxation property with
respect to E.

3 Sufficient conditions

The problem under consideration is

(P ) inf
{

I (u) =
∫

Ω

f (Du (x)) dx : u ∈ uξ0 + W 1,∞
0 (Ω;Rm)

}

where Ω is a bounded open set of Rn, uξ0 is affine, i.e. Duξ0 = ξ0. We will
assume throughout the article that f : Rm×n −→ R is lower semicontinuous,
locally bounded and satisfies

f(ξ) ≥ 〈α;T (ξ)〉+ β, ∀ ξ ∈ Rm×n

and for some α ∈ Rτ(m,n) and β ∈ R.
With the help of the relaxation theorem and of Theorem 7 we are now in a

position to discuss some existence results for the problem (P ). The following
lemma (cf. [6]) is elementary and gives a necessary and sufficient condition for
existence of minima.
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Lemma 11 Let Ω, f and uξ0 be as above, in particular Duξ0 = ξ0. The problem
(P ) has a solution if and only if there exists u ∈ uξ0 + W 1,∞

0 (Ω;Rm) such that

f (Du (x)) = Qf (Du (x)) , a.e. x ∈ Ω (2)
∫

Ω

Qf (Du (x)) dx = Qf (ξ0) measΩ. (3)

Proof. By the relaxation theorem (cf. [5]) and since uξ0 is affine, we have

inf (P ) = inf (QP ) = Qf (ξ0) meas Ω.

Moreover, since we always have f ≥ Qf and we have a solution of (2) satisfying
(3), we get that u is a solution of (P ). The fact that (2) and (3) are necessary
for the existence of a minimum for (P ) follows in the same way.

The previous lemma explains why the set

K =
{
ξ ∈ Rm×n : Qf (ξ) < f (ξ)

}

plays a central role in the existence theorems that follow. In order to ensure
(2) we will have to consider differential inclusions of the form studied in the
previous section, namely: find u ∈ uξ0 + W 1,∞

0 (Ω;Rm) such that

Du (x) ∈ ∂K, a.e. x ∈ Ω.

In order to deal with the second condition (3) we will have to impose some
hypotheses of the type ”Qf is quasiaffine on K”.

The main abstract theorem is the following.

Theorem 12 Let Ω ⊂ Rn be a bounded open set, ξ0 ∈ Rm×n, f : Rm×n −→ R
a lower semicontinuous function and let

K =
{
η ∈ Rm×n : Qf (η) < f (η)

}
.

Assume that there exists K0 ⊂ K such that
• ξ0 ∈ K0,
• K0 is bounded and has the relaxation property with respect to K0 ∩ ∂K,
• Qf is quasiaffine on K0.

Let uξ0 (x) = ξ0x. Then the problem

(P ) inf
{

I (u) =
∫

Ω

f (Du (x)) dx : u ∈ uξ0 + W 1,∞
0 (Ω;Rm)

}

has a solution ū ∈ uξ0 + W 1,∞
0 (Ω;Rm).
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Proof. Since ξ0 ∈ K0 and K0 is bounded and has the relaxation property
with respect to K0 ∩ ∂K, we can find, appealing to Theorem 7, a map ū ∈
uξ0 + W 1,∞

0 (Ω;Rm) satisfying

Dū ∈ K0 ∩ ∂K, a.e. in Ω,

which means that (2) of Lemma 11 is satisfied. Moreover, since Qf is quasiaffine
on K0, we have that (3) of Lemma 11 holds and thus the claim.

The second hypothesis in the theorem is clearly the most difficult to verify,
nevertheless there are some cases when it is automatically satisfied. For example
if K is bounded we can prove that K has the relaxation property with respect
to ∂K.

We will see that, in many applications, the set K turns out to be unbounded
and in order to apply Theorem 12 we need to find some weaker conditions on
K that guarantees the existence of a subset K0 of K satisfying the requested
properties. With this aim in mind we give the following notations and defini-
tions.

Notation 13 Let K ⊂ Rm×n be open and λ ∈ Rm×n.

(i) For ξ ∈ K, we denote by LK(ξ, λ) the largest segment of the form
[ξ + tλ, ξ + sλ] , t < 0 < s, so that (ξ + tλ, ξ + sλ) ⊂ K.

(ii) If LK(ξ, λ) is bounded, we denote by t− (ξ) < 0 < t+ (ξ) the elements so
that LK(ξ, λ) = [ξ + t−λ, ξ + t+λ] . They therefore satisfy

ξ + t±λ ∈ ∂K and ξ + tλ ∈ K ∀t ∈ (t−, t+).

(iii) If H ⊂ K, we let

LK(H, λ) = ∪
ξ∈H

LK(ξ, λ).

Definition 14 (Boundedness and stable boundedness in a direction λ). Let
K ⊂ Rm×n be open, ξ0 ∈ K and λ ∈ Rm×n.

(i) We say that K is bounded at ξ0 in the direction λ if LK(ξ0, λ) is bounded.
(ii) We say that K is stably bounded at ξ0 in the rank-one direction λ =

α⊗β (with α ∈ Rm and β ∈ Rn) if there exists ε > 0 so that LK(ξ0+α⊗Bε, λ) is
bounded, where we have denoted by

ξ0 + α⊗Bε =
{
ξ ∈ Rm×n : ξ = ξ0 + α⊗ b with |b| < ε

}
.

Clearly a bounded set K is bounded at every point ξ ∈ K and in any
direction λ and consequently it is also stably bounded.

We now give an example of a globally unbounded set which is bounded in
certain directions.

Example 15 Let m = n = 2 and

K =
{
ξ ∈ R2×2 : α < det ξ < β

}
.
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The set K is clearly unbounded.
(i) If ξ0 = I then K is bounded, and even stably bounded, at ξ0, in a direction

of rank one, for example with

λ =
(

1 0
0 0

)
or λ =

(
0 0
0 1

)
.

(ii) However if ξ0 = 0, then K is unbounded in any rank one direction, but
is bounded in any rank two direction.

In the following result we deal with sets K that are bounded in one rank-one
direction only. This corollary says, roughly speaking, that if K is bounded at
ξ0 in a rank-one direction λ and this boundedness (in the same direction) is
preserved under small perturbations of ξ0 along rank-one λ-compatible direc-
tions, then we can ensure the relaxation property required in the main existence
theorem.

Corollary 16 Let Ω ⊂ Rn be a bounded open set, f : Rm×n −→ R a lower
semicontinuous function and let ξ0 ∈ K where

K =
{
ξ ∈ Rm×n : Qf (ξ) < f (ξ)

}
.

If there exist a rank-one direction λ ∈ Rm×n such that
(i) K is stably bounded at ξ0 in the direction λ = α⊗ β,
(ii) Qf is quasiaffine on the set (cf. Definition 14) LK(ξ0 + α⊗Bε, λ),

then the problem

(P ) inf
{

I (u) =
∫

Ω

f (Du (x)) dx : u ∈ uξ0 + W 1,∞
0 (Ω;Rm)

}

has a solution ū ∈ uξ0 + W 1,∞
0 (Ω;Rm).

To prove the corollary we will need the following result. It is due to Müller-
Sychev [19] and is a refinement of a classical result.

Lemma 17 (Approximation lemma) Let Ω ⊂ Rn be a bounded open set.
Let t ∈ [0, 1] and A,B ∈ Rm×n such that

A−B = a⊗ b

with a ∈ Rm and b ∈ Rn. Let b3, . . . , bk ∈ Rn, k ≥ n, such that 0 ∈
int co{b,−b, b3, . . . , bk}. Let ϕ be an affine map such that

Dϕ(x) = ξ = tA + (1− t)B, x ∈ Ω

(i.e. A = ξ + (1− t) a ⊗ b and B = ξ − ta ⊗ b). Then, for every ε > 0, there
exists a piecewise affine map u and there exist disjoint open sets ΩA, ΩB ⊂ Ω,
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such that




|meas ΩA − t meas Ω| , |meas ΩB − (1− t) meas Ω| ≤ ε
u(x) = ϕ(x), x ∈ ∂Ω
|u(x)− ϕ(x)| ≤ ε, x ∈ Ω

Du(x) =
{

A in ΩA

B in ΩB

Du(x) ∈ ξ + {(1− t) a⊗ b,−ta⊗ b, a⊗ b3, . . . , a⊗ bk}, a.e. in Ω.

Proof. (Corollary 16). We divide the proof into two steps.
Step 1. Assume that |β| = 1, otherwise replace it by β/ |β| , and, for j ≤ k

and some k ≥ n, let βj ∈ Rn, with |βj | = 1, be such that

0 ∈ H := int co{β,−β, β3, . . . , βk} ⊂ B1 (0) = {x ∈ Rn : |x| < 1} .

Let then, for ε > 0 as in the hypothesis,

K0 := (ξ0 + α⊗ εH) ∪ [
∂K ∩ LK(ξ0 + α⊗ εH, λ)

]
.

We therefore have that ξ0 ∈ K0 and, by hypothesis, that K0 is bounded,
since

K0 ⊂ K0 ⊂ LK(ξ0 + α⊗Bε, λ).

Furthermore we have

K0 ∩ ∂K = ∂K ∩ LK(ξ0 + α⊗ εH, λ).

In order to deduce the corollary from Theorem 12, we only need to show that
K0 has the relaxation property with respect to K0 ∩ ∂K. This will be achieved
in the next step.

Step 2. We now prove that K0 has the relaxation property with respect to
K0 ∩ ∂K. Let ξ ∈ K0 and let us find a sequence uν ∈ Affpiec

(
Ω;Rm

)
so that

uν ∈ uξ + W 1,∞
0 (Ω;Rm) , Duν (x) ∈ (

K0 ∩ ∂K
) ∪K0, a.e. in Ω

uν
∗
⇀ uξ in W 1,∞,

∫

Ω

dist
(
Duν (x) ; K0 ∩ ∂K

)
dx → 0 as ν →∞.

(4)

If ξ ∈ ∂K ∩ LK(ξ0 + α ⊗ εH, λ), nothing is to be proved; so we assume that
ξ ∈ ξ0 + α⊗ εH. By hypothesis (i), we can find t− (ξ) < 0 < t+ (ξ) so that

ξ± := ξ + t±λ ∈ ∂K and ξ + tλ ∈ K ∀t ∈ (t−, t+)

and hence ξ± ∈ K0 ∩ ∂K. We moreover have that

ξ =
−t−

t+ − t−
ξ+ +

t+
t+ − t−

ξ− with ξ± ∈ K0 ∩ ∂K.

Furthermore, since ξ ∈ ξ0 + α⊗ εH, we can find γ ∈ εH such that

ξ = ξ0 + α⊗ γ.
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The set H being open we have that Bδ (γ) ⊂ εH, for every sufficiently small
δ > 0. Moreover since for every δ > 0, we have

0 ∈ δH = int co{±δβ, δβ3, . . . , δβk}
and since for every sufficiently small δ > 0, we have

±δβ ∈ co{± (t+ − t−) β} ⊂ co{± (t+ − t−) β, δβ3, . . . , δβk},
we get that

0 ∈ δH = int co{±δβ, δβ3, . . . , δβk} ⊂ int co{± (t+ − t−)β, δβ3, . . . , δβk}.
We are therefore in a position to apply Lemma 17 to

a = α, b = (t+ − t−)β, bj = δβj for j = 3, ..., k, t =
−t−

t+ − t−
,

A = ξ+ = ξ +
t+

t+ − t−
α⊗ (t+ − t−) β = ξ + (1− t) a⊗ b,

B = ξ− = ξ +
t−

t+ − t−
α⊗ (t+ − t−)β = ξ − ta⊗ b

and find uδ ∈ Affpiec

(
Ω;Rm

)
, open sets Ω+,Ω− ⊂ Ω, such that





|meas (Ω+)− tmeas Ω| , |meas (Ω−)− (1− t)meas Ω| ≤ δ
uδ(x) = uξ(x), x ∈ ∂Ω
|uδ(x)− uξ(x)| ≤ δ, x ∈ Ω
Duδ(x) = ξ± a.e. in Ω±
Duδ(x) ∈ ξ + {t+α⊗ β, t−α⊗ β, α⊗ δβ3, . . . , α⊗ δβk}, a.e. in Ω.

(5)

Since ξ± ∈ K0 ∩ ∂K and

ξ+α⊗δβj ∈ ξ+α⊗δH = ξ0+α⊗(
γ + δH

) ⊂ ξ0+α⊗εH ⊂ K0 for j = 3, ..., k,

we deduce, by choosing δ = 1/ν as ν → ∞, from (5), the relaxation property
(4). This achieves the proof of Step 2 and thus of the corollary.

We finally want to point out that as a particular case of Corollary 16 we find
the existence theorem (Theorem 3.1) proved by Dacorogna-Marcellini in [6].

4 Necessary conditions

Recall that we are considering the minimization problem

(P ) inf
{

I (u) =
∫

Ω

f (Du (x)) dx : u ∈ uξ0 + W 1,∞
0 (Ω;Rm)

}

where Ω is a bounded open set of Rn, uξ0 is affine, i.e. Duξ0 = ξ0 and f :
Rm×n −→ R is a lower semicontinuous function. In order to avoid the trivial
case we will always assume that

Qf (ξ0) < f (ξ0) .
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Most non existence results for problem (P ) follow by showing that the re-
laxed problem (QP ) has a unique solution, namely uξ0 , which is by hypothesis
not a solution of (P ). This approach was strongly used in Marcellini [16] and
Dacorogna-Marcellini [6]. We will here extend this idea in order to handle more
general cases. However we should point out that we will give an example (see
Proposition 36 in Section 5.2) related to minimal surfaces, where non existence
occurs, while the relaxed problem has infinitely many solutions, none of them
being a solution of (P ).

The right notion in order to have uniqueness of the relaxed problem is

Definition 18 A quasiconvex function f : Rm×n −→ R is said to be strictly
quasiconvex at ξ0 ∈ Rm×n, if for some bounded domain U ⊂ Rn and every
ϕ ∈ W 1,∞

0 (U ;Rm) such that
∫

U

f (ξ0 + Dϕ (x)) dx = f (ξ0) meas(U)

then ϕ ≡ 0.

We will see below some sufficient conditions that can ensure strict quasicon-
vexity, but let us start with the elementary following non existence theorem.

Theorem 19 Let f : Rm×n −→ R be lower semicontinuous, ξ0 ∈ Rm×n with
Qf (ξ0) < f (ξ0) and Qf be strictly quasiconvex at ξ0. Then the relaxed problem
(QP ) has a unique solution, namely uξ0 , while (P ) has no solution.

Proof. The fact that (QP ) has only one solution follows by definition of the
strict quasiconvexity of Qf and the fact that the definition of strict quasicon-
vexity is independent of the choice of the domain U . Assume for the sake of
contradiction that (P ) has a solution u ∈ uξ0 + W 1,∞

0 (Ω;Rm). We should have
from Lemma 11 that (writing u (x) = ξ0x + ϕ (x))

f (ξ0 + Dϕ (x)) = Qf (ξ0 + Dϕ (x)) , a.e. x ∈ Ω
∫

Ω

Qf (ξ0 + Dϕ (x)) dx = Qf (ξ0) meas Ω.

Since Qf is strictly quasiconvex at ξ0, we deduce from the last identity that
ϕ ≡ 0. Hence we have, from the first identity, that Qf (ξ0) = f (ξ0), which is in
contradiction with the hypothesis.

We now want to give some criteria that can ensure the strict quasiconvexity
of a given function. The first one has been introduced by Dacorogna-Marcellini
in [6].

Definition 20 A convex function f : Rm×n −→ R is said to be strictly convex
at ξ0 ∈ Rm×n in at least m directions if there exists α =

(
αi

)
1≤i≤m

∈ Rm×n,
αi 6= 0 for every i = 1, ..., m, such that: if for some η ∈ Rm×n the identity

1
2
f (ξ0 + η) +

1
2
f (ξ0) = f

(
ξ0 +

1
2
η

)

12



holds, then necessarily 〈
αi; ηi

〉
= 0, i = 1, ...,m.

In order to understand better the generalization of this notion to polyconvex
functions (cf. Proposition 26), it might be enlightening to state the definition
in the following way.

Proposition 21 Let f : Rm×n −→ R be a convex function and, for ξ ∈ Rm×n,
denote by ∂f (ξ) the subdifferential of f at ξ. The two following conditions are
then equivalent:

(i) f is strictly convex at ξ0 ∈ Rm×n in at least m directions
(ii) there exists α =

(
αi

)
1≤i≤m

∈ Rm×n with αi 6= 0 for every i = 1, ...,m,
so that whenever

f (ξ0 + η)− f (ξ0)− 〈λ; η〉 = 0

for some η ∈ Rm×n and for some λ ∈ ∂f (ξ0) , then
〈
αi; ηi

〉
= 0, i = 1, ...,m.

Proof. Step 1. We start with a preliminary observation that if

1
2
f (ξ0 + η) +

1
2
f (ξ0) = f

(
ξ0 +

1
2
η

)
(6)

then, for every t ∈ [0, 1] , we have

tf (ξ0 + η) + (1− t) f (ξ0) = f (ξ0 + tη) . (7)

Let us show this under the assumption that t > 1/2 (the case t < 1/2 is handled
similarly). We can therefore find α ∈ (0, 1) such that

1
2

= αt + (1− α) 0 = αt.

From the convexity of f and by hypothesis, we obtain

1
2
f (ξ0 + η) +

1
2
f (ξ0) = f

(
ξ0 +

1
2
η

)
≤ αf (ξ0 + tη) + (1− α) f (ξ0) .

Assume, for the sake of contradiction, that

f (ξ0 + tη) < tf (ξ0 + η) + (1− t) f (ξ0) .

Combine then this inequality with the previous one to get

1
2f (ξ0 + η) + 1

2f (ξ0) <

α [tf (ξ0 + η) + (1− t) f (ξ0)] + (1− α) f (ξ0)

= 1
2f (ξ0 + η) + 1

2f (ξ0)

13



which is clearly a contradiction. Therefore the convexity of f and the above
contradiction implies (7). This also implies that

f ′ (ξ0, η) := lim
t→0+

f (ξ0 + tη)− f (ξ0)
t

= f (ξ0 + η)− f (ξ0) .

Applying Theorem 23.4 in Rockafellar [21], combined with the fact that ∂f (ξ0)
is non empty and compact, we get that there exists λ ∈ ∂f (ξ0) so that f (ξ0 + η)−
f (ξ0) = 〈λ; η〉 and hence

f (ξ0 + tη)− f (ξ0)− t 〈λ; η〉 = 0, ∀t ∈ [0, 1] . (8)

We have therefore proved that (6) implies (8). Since the converse is obviously
true, we conclude that they are equivalent.

Step 2. Let us show the equivalence of the two conditions.
(i) =⇒ (ii): We first observe that for any µ ∈ Rm×n we have

1
2f (ξ0 + η) + 1

2f (ξ0)− f
(
ξ0 + 1

2η
)

=

1
2 [f (ξ0 + η)− f (ξ0)− 〈µ; η〉]− [

f
(
ξ0 + 1

2η
)− f (ξ0)− 1

2 〈µ; η〉] .
(9)

Assume that, for λ ∈ ∂f (ξ0) , we have

f (ξ0 + η)− f (ξ0)− 〈λ; η〉 = 0.

From (9) applied to µ = λ, from the definition of ∂f (ξ0) and from the convexity
of f, we have

0 ≤ 1
2f (ξ0 + η) + 1

2f (ξ0)− f
(
ξ0 + 1

2η
)

= − [
f

(
ξ0 + 1

2η
)− f (ξ0)− 1

2 〈λ; η〉] ≤ 0.

Using the above identity, we then are in the framework of (i) and we deduce
that

〈
αi; ηi

〉
= 0, i = 1, ...,m, and thus (ii).

(ii) =⇒ (i): Assume now that we have (6), namely

1
2
f (ξ0 + η) +

1
2
f (ξ0)− f

(
ξ0 +

1
2
η

)
= 0

which, by Step 1, implies that there exists λ ∈ ∂f (ξ0) so that

f (ξ0 + tη)− f (ξ0)− t 〈λ; η〉 = 0, ∀t ∈ [0, 1] .

We are therefore, choosing t = 1, in the framework of (ii) and we get
〈
αi; ηi

〉
=

0, i = 1, ..., m, as wished.
Of course any strictly convex function is strictly convex in at least m direc-

tions, but the above condition is much weaker. For example in the scalar case,
m = 1, it is enough that the function is not affine in a neighborhood of ξ0, to
guarantee the condition (see below).

We now have the following result established by Dacorogna-Marcellini in [6],
although the concept of strict quasiconvexity does not appear there.

14



Proposition 22 If a convex function f : Rm×n −→ R is strictly convex at
ξ0 ∈ Rm×n in at least m directions, then it is strictly quasiconvex at ξ0.

Theorem 19, combined with the above proposition, gives immediately a sharp
result for the scalar case, namely

Corollary 23 Let f : Rn −→ R be lower semicontinuous, ξ0 ∈ Rn with
Cf (ξ0) < f (ξ0) and Cf not affine at ξ0. Then (P ) has no solution.

Remark 24 In the scalar case this result has been obtained by several authors,
in particular Cellina [3], Friesecke [12] and Dacorogna-Marcellini [6]. It also
gives, combined with the result of the preceding section, that, provided some
appropriate boundedness is assumed, a necessary and sufficient condition for
existence of minima for (P ) is that f be affine on the connected component of
{ξ : Cf (ξ) < f (ξ)} that contains ξ0.

Before proceeding with the proof of Proposition 22 we need the following
lemma whose proof is elementary (see Step 2 of Theorem 5.1 in [6]).

Lemma 25 Let Ω be a bounded open set of Rn and ϕ ∈ W 1,∞
0 (Ω;Rm) be such

that 〈
αi; Dϕi (x)

〉
= 0, a.e. x ∈ Ω, i = 1, ...,m

for some αi 6= 0, i = 1, ..., m, then ϕ ≡ 0.

Proof. (Proposition 22). Assume that for a certain bounded domain U ⊂ Rn

and for some ϕ ∈ W 1,∞
0 (U ;Rm) we have
∫

U

f (ξ0 + Dϕ (x)) dx = f (ξ0) meas(U)

and let us show that ϕ ≡ 0.
Since f is convex and the above identity holds, we find

f (ξ0) meas(U) =
∫

U

[
1
2
f (ξ0) +

1
2
f (ξ0 + Dϕ (x))

]
dx

≥
∫

U

f

(
ξ0 +

1
2
Dϕ (x)

)
dx ≥ f (ξ0) meas(U),

which implies that
∫

U

[
1
2
f (ξ0) +

1
2
f (ξ0 + Dϕ (x))− f

(
ξ0 +

1
2
Dϕ (x)

)]
dx = 0.

The convexity of f implies then that for almost every x in U , we have

1
2
f (ξ0) +

1
2
f (ξ0 + Dϕ (x))− f

(
ξ0 +

1
2
Dϕ (x)

)
= 0.
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The strict convexity in at least m directions leads to
〈
αi;Dϕi (x)

〉
= 0, a.e. x ∈ U , i = 1, ..., m.

Lemma 25 gives the claim.
We will now generalize Proposition 22. Since the notations in the next result

are involved, we will first write the proposition when m = n = 2.

Proposition 26 Let f : Rm×n −→ R be polyconvex, ξ0 ∈ Rm×n and λ =
λ (ξ0) ∈ Rτ(m,n) so that

f (ξ0 + η)− f (ξ0)− 〈λ; T (ξ0 + η)− T (ξ0)〉 ≥ 0, for every η ∈ Rm×n.

(i) Let m = n = 2 and assume that there exist α1,1, α1,2, α2,2 ∈ R2, α1,1 6=
0, α2,2 6= 0, β ∈ R, so that if for some η ∈ R2×2 the following equality holds

f (ξ0 + η)− f (ξ0)− 〈λ; T (ξ0 + η)− T (ξ0)〉 = 0

then necessarily
〈
α2,2; η2

〉
= 0 and

〈
α1,1; η1

〉
+

〈
α1,2; η2

〉
+ β det η = 0.

Then f is strictly quasiconvex at ξ0.
(ii) Let m,n ≥ 2 and assume that there exist, for every ν = 1, ...,m,

αν,ν , αν,ν+1, ..., αν,m ∈ Rn, αν,ν 6= 0, βν,s ∈ R
(
n
s

)
, 2 ≤ s ≤ n ∧ (m− ν + 1)

so that if for some η ∈ Rm×n the following equality holds

f (ξ0 + η)− f (ξ0)− 〈λ; T (ξ0 + η)− T (ξ0)〉 = 0

then necessarily

m∑
s=ν

〈αν,s; ηs〉+
n∧(m−ν+1)∑

s=2

〈βν,s; adjs (ην , ..., ηm)〉 = 0, ν = 1, ..., m.

Then f is strictly quasiconvex at ξ0.

Remark 27 (i) The existence of a λ as in the hypotheses of the proposition
is automatically guaranteed by the polyconvexity of f (see (1) in Section 2, it
corresponds in the case of a convex function to an element of ∂f (ξ0)).

(ii) We have adopted the convention that if l > k > 0 are integers, then∑k
l = 0.

Example 28 Let m = n = 2 and consider the function

f (η) =
(
η2
2

)2
+

(
η1
1 + det η

)2
.

This function is trivially polyconvex and according to the proposition it is also
strictly quasiconvex at ξ0 = 0 (choose λ = 0 ∈ R5, α2,2 = (0, 1), α1,2 = (0, 0),
α1,1 = (1, 0), β = 1).

16



Proof. We will prove the proposition only in the case m = n = 2, the general
case being handled similarly.

Assume that for a certain bounded domain U ⊂ R2 and for some ϕ ∈
W 1,∞

0

(
U ;R2

)
we have

∫

U

f (ξ0 + Dϕ (x)) dx = f (ξ0) meas(U)

and let us prove that ϕ ≡ 0. This is equivalent, for every µ ∈ Rτ(2,2), to
[∫

U

f (ξ0 + Dϕ (x))− f (ξ0)− 〈µ; T (ξ0 + Dϕ (x))− T (ξ0)〉
]

dx = 0.

Choosing µ = λ (λ as in the statement of the proposition) in the previous
equation and using the polyconvexity of the function f , we get

f (ξ0 + Dϕ (x))− f (ξ0)− 〈λ; T (ξ0 + Dϕ (x))− T (ξ0)〉 = 0, a.e. x ∈ U.

We hence infer that, for almost every x ∈ U , we have
〈
α2,2; Dϕ2

〉
= 0 and

〈
α1,1; Dϕ1

〉
+

〈
α1,2; Dϕ2

〉
+ β det Dϕ = 0.

Lemma 25, applied to the first equation, implies that ϕ2 ≡ 0. Using this result
in the second equation we get

〈
α1,1; Dϕ1

〉
= 0

and hence, appealing once more to the lemma, we have the claim, namely ϕ1 ≡
0.

Summarizing the results of Theorem 19, Proposition 22 and Proposition 26,
we get

Corollary 29 Let f : Rm×n −→ R be lower semicontinuous, ξ0 ∈ Rm×n with

Qf (ξ0) < f (ξ0) .

If either one of the two following conditions hold
(i) Qf (ξ0) = Cf (ξ0) and Cf is strictly convex at ξ0 in at least m directions;
(ii) Qf (ξ0) = Pf (ξ0) and Pf is strictly polyconvex at ξ0 (in the sense of

Proposition 26);
then (QP ) has a unique solution, namely uξ0 , while (P ) has no solution.

Proof. The proof is almost identical under both hypotheses and so we will
establish the corollary only in the first case. The result will follow from Theorem
19 if we can show that Qf is strictly convex at ξ0. So assume that

∫

Ω

Qf (ξ0 + Dϕ (x)) dx = Qf (ξ0) measΩ
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for some ϕ ∈ W 1,∞
0 (Ω;Rm) and let us prove that ϕ ≡ 0. Using Jensen inequality

combined with the hypothesis Qf (ξ0) = Cf (ξ0) and the fact that Qf ≥ Cf ,
we find that the above identity implies

∫

Ω

Cf (ξ0 + Dϕ (x)) dx = Cf (ξ0) meas Ω.

The hypotheses on Cf and Proposition 22 imply that ϕ ≡ 0, as wished.

5 Examples

We now consider two examples of the form studied in the previous sections,
namely

(P ) inf
{

I (u) =
∫

Ω

f (Du (x)) dx : u ∈ uξ0 + W 1,∞
0 (Ω;Rm)

}

where Ω is a bounded open set of Rn, uξ0 is affine, i.e. Duξ0 = ξ0 and f :
Rm×n −→ R is a lower semicontinuous function.

1) We consider in Subsection 5.1 the case where m = n and

f(ξ) = g(λ2(ξ), ..., λn−1(ξ), det ξ)

where 0 ≤ λ1(ξ) ≤ · · · ≤ λn(ξ) are the singular values of ξ ∈ Rn×n. Functions
of the above type are simplified versions of stored energy functions that appear
in nonlinear elasticity.

2) In Subsection 5.2 we deal with the minimal surface case, namely when
m = n + 1 and f(ξ) = g(adjnξ). One should note that if u : Rn −→ Rn+1 is a
surface in parametric form, then adjnDu is the normal to this surface. In this
sense the minimisation problem is of minimal surface type.

The same analysis could be applied to the following examples that have been
treated by other authors.

– Integrands of the form

f (ξ) = g (Φ (ξ))

where Φ : Rm×n −→ R is quasiaffine. This problem has first been considered
by Mascolo-Schianchi [17] and later by Dacorogna-Marcellini [6] for the case
of the determinant (m = n, Φ(ξ) = det ξ). The general case was studied by
Cellina-Zagatti [4] and later by Dacorogna-Ribeiro [10]. We remark that the
result of Subsection 5.1 includes the case f(ξ) = g(det ξ).

– The Saint Venant-Kirchhoff energy functional (here m = n and ν ∈ (0, 1/2)
is a parameter):

f(ξ) =
∣∣ξξt − I

∣∣2 +
ν

1− 2ν

(
|ξ|2 − n

)2
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or in terms of the singular values 0 ≤ λ1(ξ) ≤ · · · ≤ λn(ξ) of ξ ∈ Rn×n

f(ξ) =
n∑

i=1

(
λ2

i (ξ)− 1
)2

+
ν

1− 2ν

(
n∑

i=1

λ2
i (ξ)− n

)2

.

This case has been studied by Dacorogna-Marcellini [6] with the help of a repre-
sentation formula due to Le Dret-Raoult. With the present theory it is possible
to establish more general results, but we do not discuss the details here.

– Optimal design problem (with m = n = 2):

f (ξ) =
{

1 + |ξ|2 if ξ 6= 0
0 if ξ = 0.

This problem was introduced by Kohn-Strang [15]. The existence of minimizers
was then established by Dacorogna-Marcellini in [6] and [7] and in a different
manner by Dacorogna-Tanteri [11].

5.1 The case of singular values

In this section we let m = n and we denote by λ1(ξ), ..., λn(ξ) the singular
values of ξ ∈ Rn×n with 0 ≤ λ1(ξ) ≤ · · · ≤ λn(ξ) and by Q the set

Q = {x = (x2, ..., xn−1) ∈ Rn−2 : 0 ≤ x2 ≤ · · · ≤ xn−1}

which is the natural set where to consider (λ2(ξ), ..., λn−1(ξ)) for ξ ∈ Rn×n.
The functions under consideration are functions depending not only on some

singular values, but also on the determinant.

Theorem 30 Let g : Q× R −→ R be a function such that g(·, s) is continuous
and bounded from below for all s ∈ R. Let f : Rn×n −→ R be defined by

f(ξ) = g(λ2(ξ), ..., λn−1(ξ), det ξ)

then
Pf(ξ) = Qf(ξ) = Rf(ξ) = Ch(det ξ),

where h : R −→ R is given by h(s) = inf
x∈Q

g(x, s).

Remark 31 We remark that if some dependence on λ1 or λn is allowed, then
no simple and general expression for the envelopes is known; see Proposition 32
below, when there is dependence on λ1, and Theorem 3.5 in Buttazzo-Dacorogna-
Gangbo [2], when there is dependence on λn.

Proof. Firstly we remark that, using Theorem 3.1 of Dacorogna-Ribeiro [10],
we can easily obtain the following assertion. Let

E = {ξ ∈ Rn×n : λi(ξ) = mi, i = 2, ..., n− 1, det ξ = c}
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for some 0 < m2 ≤ · · · ≤ mn−1, c ∈ R, then

Rco E = {ξ ∈ Rn×n : det ξ = c}.
We now prove the result. Since we always have

Ch(det ξ) ≤ Pf(ξ) ≤ Qf(ξ) ≤ Rf(ξ),

we only need to prove that Rf(ξ) ≤ Ch(det ξ) which follows if Rf(ξ) ≤ h(det ξ).
In fact, if we get Rf(ξ) ≤ h(det ξ) then the rank-one convex envelope of each
member preserves the inequality and since the rank-one convex envelope of
h(det ξ) is Ch(det ξ) we get Rf(ξ) ≤ Ch(det ξ). Let ξ ∈ Rn×n and let xk =
(xk

2 , ..., xk
n−1) ∈ Q be a sequence such that

h(det ξ) = inf g(·, det ξ) = lim g(xk, det ξ).

For each k ∈ N we define

Gk(η) = Rf(η)− g(xk,det ξ)

which is a rank one convex function. We will prove that Gk(ξ) ≤ 0 for all k ∈ N
and the result follows by passing to the limit.

There are two different cases to consider. For fixed k let s ∈ {1, ..., n − 1}
be such that xk

2 = · · · = xk
s = 0 and xk

s+1 > 0.
Case 1: s = 1. Consider the set

Ek = {η ∈ Rn×n : λi(η) = xk
i , i = 2, ..., n− 1, det η = det ξ}.

Since in Ek, Gk(η) = Rf(η)− f(η) then Gk is non positive in this set. Besides,
the rank one convexity of Gk implies that Gk is also non positive in Rco Ek. By
the remark made above we obtain Gk(ξ) ≤ 0 since ξ ∈ Rco Ek.

Case 2: s > 1. Let, for t > 0,

Ht
k(η) = Rf(η)− g

(
xk

s+1

t
, ...,

xk
s+1

t
, xk

s+1, ..., x
k
n−1,det ξ

)

(write xk
s+1 = 1 in the case s = n− 1) and let

Et
k =





η ∈ Rn×n :
λi(η) =

xk
s+1

t
, i = 2, ..., s,

λj(η) = xk
j , j = s + 1, ..., n− 1,
det η = det ξ





.

As before, Ht
k is non positive in this set. Since ξ ∈ Rco Et

k and Ht
k is rank one

convex we obtain that Ht
k(ξ) ≤ 0:

Rf(ξ) ≤ g

(
xk

s+1

t
, ...,

xk
s+1

t
, xk

s+1, ..., x
k
n−1, det ξ

)
.

Passing to the limit as t → +∞, we get Gk(ξ) ≤ 0 as wished.
We next see that the previous result is not true for functions depending also

on λ1.
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Proposition 32 Let f : R2×2 −→ R be defined by f(ξ) = |λ1(ξ)− 1|+ |det ξ| .
Then Pf(ξ) 6= |det ξ|.

Proof. Let us suppose for the sake of contradiction that Pf(ξ) = |det ξ|. Then,
for ξ such that λ1(ξ) = 0, Pf(ξ) = |det ξ| = 0. From the representation formula
for the polyconvex envelope (see Theorem 5.1.1 in Dacorogna [5]), we therefore
get that there exist An

i ∈ R2×2, tni ∈ [0, 1] and
∑6

i=1 tni = 1 such that

lim
n→∞

6∑

i=1

tni f(An
i ) = 0 with

6∑

i=1

tni (An
i , detAn

i ) = (ξ, det ξ).

In particular, tni |λ1(An
i )− 1| → 0 and tni |det An

i | → 0, i = 1, ..., 6. Up to a
subsequence, tni → ti ∈ [0, 1] with

∑6
i=1 ti = 1. So, there is some j such that

tj 6= 0 and thus
∣∣λ1(An

j )− 1
∣∣ =

1
tnj

tnj
∣∣λ1(An

j )− 1
∣∣ → 0

and ∣∣detAn
j

∣∣ =
1
tnj

tnj
∣∣det An

j

∣∣ → 0.

The first condition implies that λ1(An
j ) → 1, which contradicts the second one,

since then we would have
∣∣detAn

j

∣∣ ≥ (λ1(An
j ))2 → 1.

We next apply the theory of Section 3 to get the following existence result.

Theorem 33 Let

f(ξ) = g(λ2(ξ), ..., λn−1(ξ)) + h(det ξ)

where g and h are lower semicontinuous functions such that g : Q −→ R verifies

inf g = g(m2, ..., mn−1), with 0 < m2 ≤ · · · ≤ mn−1

and h : R −→ R verifies

lim
|t|→+∞

h(t)
|t| = +∞. (10)

Then (P ) has a solution.

Proof. We note that, by Theorem 30, Qf(ξ) = inf g + Ch(det ξ). Letting

K =
{
ξ ∈ Rn×n : Qf (ξ) < f (ξ)

}

we see that
K = L1 ∪ L2

where
L1 =

{
ξ ∈ Rn×n : Ch(det ξ) < h(det ξ)

}

L2 =
{
ξ ∈ Rn×n : Ch(det ξ) = h(det ξ), inf g < g(λ2(ξ), ..., λn−1(ξ))

}
.
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We first observe that hypothesis (10) allows us to write

S = {t ∈ R : Ch(t) < h(t)} =
⋃

j∈N
(αj , βj),

Ch being affine in each interval (αj , βj); thus

L1 =



ξ ∈ Rn×n : det ξ ∈

⋃

j∈N
(αj , βj)



.

Note that Qf is quasiaffine on K.
We now prove the result. Clearly, if ξ0 /∈ K then uξ0 is a solution of (P ).

Let us suppose that ξ0 ∈ K. There are three different cases to consider.
Case 1: ξ0 ∈ L1. Let (αj , βj) be an interval as above such that det ξ0 ∈

(αj , βj). We get the result applying Theorem 12 with

K0 =

{
ξ ∈ Rn×n : det ξ ∈ (αj , βj) ,

n∏

i=ν

λi(ξ) <

n∏

i=ν

mi, ν = 2, ..., n

}
,

where mn is chosen sufficiently large so that

mn−1 ≤ mn, (11)
n∏

i=ν

λi(ξ0) <

n∏

i=ν

mi, ν = 2, ..., n, (12)

max {|αj | , |βj |} < m2

n∏

i=2

mi. (13)

Clearly K0 ⊂ L1 ⊂ K, moreover (12) ensures that ξ0 ∈ K0 and (13) ensures
the relaxation property of K0 with respect to

E =
{
ξ ∈ Rn×n : det ξ ∈ {αj , βj} , λν(ξ) = mν , ν = 2, ..., n

} ⊂ K0 ∩ ∂K

through Theorem 10 and the family of sets

Eδ =
{
ξ ∈ Rn×n : det ξ ∈ {αj + δ, βj − δ} , λi(ξ) = mi − δ, i = 2, ..., n

}
,

(cf. the proof of Theorem 1.1 of Dacorogna-Ribeiro [10] for details). Conse-
quently K0 has the relaxation property with respect to K0 ∩ ∂K.

Case 2 : ξ0 ∈ L2 and det ξ0 6= 0. We consider in this case the set

K1 =

{
ξ ∈ Rn×n : det ξ = det ξ0,

n∏

i=ν

λi(ξ) <

n∏

i=ν

mi, ν = 2, ..., n

}
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where mn satisfies the conditions (11) and (12) of the first case (with strict
inequality for the first one: mn > mn−1). It was shown by Dacorogna-Tanteri
[11] that K1 has the relaxation property with respect to

E =
{
ξ ∈ Rn×n : det ξ = det ξ0, λν(ξ) = mν , ν = 2, ..., n

}

and the existence of u ∈ uξ0 +W 1,∞
0 (Ω,Rn) such that Du ∈ E, a.e. in Ω. Since

Qf = f in E and Qf(ξ0) = Qf(Du), we can apply Lemma 11 and get the
result.

Case 3: ξ0 ∈ L2 and det ξ0 = 0. Since any matrix ξ ∈ Rn×n can be de-
composed in the form RDQ, where R, Q ∈ O(n) and D = diag(λ1(ξ), ..., λn(ξ))
(cf. [13]) we can reduce ourselves to the case of ξ0 = diag(λ1(ξ0), ..., λn(ξ0)). In
particular, as det ξ0 = 0, we have λ1(ξ0) = 0 and thus the first line of ξ0 equal
to zero. Let mn ≥ mn−1 and define

K =

{
ξ ∈ R(n−1)×n :

n−1∏

i=ν

λi(ξ) <

n−1∏

i=ν

mi+1, ν = 2, ..., n− 1

}
,

E =
{

ξ ∈ R(n−1)×n : λi(ξ) = mi+1, i = 1, ..., n− 1
}

.

It is then easy to show, by use of the approximation property, that K has the
relaxation property with respect to E (cf. Dacorogna-Marcellini in [7, Theorem
7.28] for more details).

Using the above, if we define

K1 =

{
ξ ∈ Rn×n : ξ1 = 0,

n∏

i=ν

λi(ξ) <

n∏

i=ν

mi, ν = 2, ..., n

}

E =
{
ξ ∈ Rn×n : ξ1 = 0, λi(ξ) = mi, i = 2, ..., n

}

we get that K1 has the relaxation property with respect to E. If we chose mn

sufficiently large such that ξ0 ∈ K1 we can apply Theorem 7 to get the existence
of u ∈ uξ0 + W 1,∞

0 (Ω,Rn) such that Du ∈ E. Finally, as Qf = f in E and
Qf(ξ0) = Qf(Du), applying Lemma 11, we conclude the result.

5.2 The minimal surface case

We now deal with the case where m = n + 1 and

f(ξ) = g(adjnξ).

The minimization problem is then

(P ) inf
{∫

Ω

g(adjn(Du(x))) dx : u ∈ uξ0 + W 1,∞
0 (Ω;Rn+1)

}

where Ω is a bounded open set of Rn, Duξ0 = ξ0 and g : Rn+1 −→ R is a lower
semicontinuous non convex function.
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It was proved by Dacorogna (see [5]) that

Qf(ξ) = Cg(adjnξ).

We next set
S = {y ∈ Rn+1 : Cg(y) < g(y)}

and assume, in order to avoid the trivial situation, that adjnξ0 ∈ S. We also
assume that S is connected, otherwise we replace it by its connected component
that contains adjnξ0.

Observe that

K = {ξ ∈ R(n+1)×n : Qf(ξ) < f(ξ)} =
{

ξ ∈ R(n+1)×n : adjnξ ∈ S
}

.

Theorem 34 If S is bounded, Cg is affine in S and rank ξ0 ≥ n− 1, then (P )
has a solution.

Remark 35 (i) The fact that Cg be affine in S is not a necessary condition
for existence of minima, as seen in Proposition 36.

(ii) We will apply Corollary 16 to obtain the above result. If instead we
apply Theorem 12 we could also obtain the existence of solution to (P ) with no
restriction on the rank of ξ0.

Proof. The result follows if we choose a convenient rank-one direction λ =
α ⊗ β ∈ R(n+1)×n satisfying the hypothesis of Corollary 16. We remark that,
since we suppose Cg affine in S, Qf is quasiaffine in LK(ξ0 + α ⊗ Bε, λ) (cf.
Definition 14) independently of the choice of λ. So we only have to prove that
K is stably bounded at ξ0 in a direction λ = α⊗ β.

Firstly we observe that we can find (cf. Theorem 3.1.1 in [13]) P ∈ O (n + 1) ,
Q ∈ SO (n) and 0 ≤ λ1 ≤ ... ≤ λn, so that

ξ0 = PLQ, where L =
(
λi

j

)1≤i≤n+1

1≤j≤n
with λi

j = λjδij , 1 ≤ i ≤ n+1, 1 ≤ j ≤ n;

in particular when n = 2 we have

L =




λ1 0
0 λ2

0 0


 .

Since rank ξ0 ≥ n− 1 we have that λ2 > 0. We also note that

adjnξ0 = adjnP . adjnL and adjnL =




0
...
0

(−1)n
λ1...λn


 .

Without loss of generality we assume ξ0 = L. We then choose λ = α ⊗ β
where α = (1, 0, ..., 0) ∈ Rn+1 and β = (1, 0, ..., 0) ∈ Rn. We will see that
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LK(ξ0 + α⊗Bε, λ) is bounded for some ε > 0. Let η ∈ LK(ξ0 + α⊗Bε, λ) then
we can write η = ξ0 + α⊗ γε + tλ for some γε ∈ Bε and t ∈ R. By definition of
LK(ξ0 + α⊗Bε, λ) we have adjnη ∈ S. Since S is bounded and

|adjnη| =
∣∣λ1 + γ1

ε + t
∣∣ λ2...λn

it follows, using the fact that rank ξ0 ≥ n− 1, that |t| is bounded by a constant
depending on S, ξ0 and ε. Consequently |η| ≤ |ξ0|+ |α⊗ γε|+ |t| |λ| is bounded
for any fixed positive ε and we get the result.

As already alluded in Section 4, we obtain now a result of non existence
although the integrand of the relaxed problem is not strictly quasiconvex. We
will consider the case where m = 3 , n = 2 and f : R3×2 → R is given by

f (ξ) = g (adj2ξ)

where g : R3 → R is defined by

g (ν) =
(
ν2
1 − 4

)2
+ ν2

2 + ν2
3 .

We therefore get Qf (ξ) = Cg (adj2ξ) and

Cg (ν) =
[
ν2
1 − 4

]2
+

+ ν2
2 + ν2

3

where

[x]+ =
{

x if x ≥ 0
0 if x < 0.

We will choose the boundary datum as follows

uξ0 (x) =




u1
ξ0

(x) = α1x1 + α2x2

u2
ξ0

(x) = 0

u3
ξ0

(x) = 0




and hence

Duξ0 (x) = ξ0 =




α1 α2

0 0
0 0


 , adj2Duξ0 (x) = adj2ξ0 =




0
0
0


 .

The problem is then

(P ) inf
{

I (u) =
∫

Ω

f (Du (x)) dx : u ∈ uξ0 + W 1,∞
0 (Ω;R3)

}
.

Note also that Qf (ξ0) = 0 < f (ξ0) = 16.
In terms of the preceding notations we have

S = {y ∈ R3 : Cg(y) < g(y)} = {y = (y1, y2, y3) ∈ R3 : |y1| < 2}
K = {ξ ∈ R3×2 : Qf(ξ) < f(ξ)} =

{
ξ ∈ R3×2 : adj2ξ ∈ S

}
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and we observe that Cg is not affine on S, which in turn implies that Qf is not
quasiaffine on K.

The following result shows that the hypothesis of strict quasiconvexity of
Qf is not necessary for non existence.

Proposition 36 (P ) has a solution if and only if uξ0 ≡ 0. Moreover Qf is not
strictly quasiconvex at any ξ0 ∈ R3×2 of the form

ξ0 =




α1 α2

0 0
0 0


 .

Proof. Step 1. We first show that if (P ) has a solution then uξ0 ≡ 0. If
u ∈ uξ0 + W 1,∞

0 (Ω;R3) is a solution of (P ) we necessarily have, denoting by
ν (ξ) = adj2ξ,

|ν1 (Du)| = 2 , ν2 (Du) = ν3 (Du) = 0 ,

since
Qf (Duξ0) = Cg (adj2Duξ0) = Cg (0) = 0.

The three equations read as




∣∣u2
x1

u3
x2
− u2

x2
u3

x1

∣∣ = 2

u1
x1

u3
x2
− u1

x2
u3

x1
= 0

u1
x1

u2
x2
− u1

x2
u2

x1
= 0.

(14)

Multiplying the second equation of (14) first by u2
x1

, then by u2
x2

, using the third
equation of (14), we get

0 = u2
x1

u1
x1

u3
x2
− u2

x1
u1

x2
u3

x1
= u2

x1
u1

x1
u3

x2
− u1

x1
u2

x2
u3

x1
= u1

x1

(
u2

x1
u3

x2
− u2

x2
u3

x1

)

0 = u2
x2

u1
x1

u3
x2
− u2

x2
u1

x2
u3

x1
= u2

x1
u1

x2
u3

x2
− u2

x2
u1

x2
u3

x1
= u1

x2

(
u2

x1
u3

x2
− u2

x2
u3

x1

)
.

Combining these last equations with the first one of (14), we find

u1
x1

= u1
x2

= 0, a.e.

We therefore find that any solution of (P ) should have Du1 = 0 a.e. and hence
u1 ≡ constant on each connected component of Ω. Since u1 agrees with u1

ξ0
on

the boundary of Ω, we deduce that u1
ξ0
≡ 0 and thus uξ0 ≡ 0, as claimed.

Step 2. We next show that if uξ0 ≡ 0, then (P ) has a solution. It suffices to
choose u1 ≡ 0 and to solve





∣∣u2
x1

u3
x2
− u2

x2
u3

x1

∣∣ = 2 a.e. in Ω

u2 = u3 = 0 on ∂Ω.

This is possible by virtue of, for example, Corollary 7.30 in [7].
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Step 3. We finally prove that Qf is not strictly quasiconvex at any ξ0 ∈ R3×2

of the form given in the statement of the proposition. Indeed let 0 < R1 <
R2 < R and denote by BR the ball centered at 0 and of radius R. Choose
λ, µ ∈ C∞ (BR) such that

1) λ = 0 on ∂BR and λ ≡ 1 on BR2 .

2) µ ≡ 0 on BR�BR2 , µ ≡ 1 on BR1 and
∣∣µ2 + µ (x1µx1 + x2µx2)

∣∣ < 2 for every x ∈ BR .

This last condition (which is a restriction only in BR2�BR1) is easily ensured
by choosing appropriately R1, R2 and R.

We then choose u (x) = uξ0 (x) + ϕ (x) where

ϕ1 (x) = −λ (x)u1
ξ0

(x) , ϕ2 (x) = µ (x)x1 and ϕ3 (x) = µ (x)x2 .

We therefore have that ϕ ∈ W 1,∞
0 (BR;R3), adj2Du ≡ 0 on BR�BR2 , while on

BR2 we have
adj2Du =

(
µ2 + µ (x1µx1 + x2µx2) , 0, 0

)
.

We have thus obtained that Cg (adj2Du) ≡ 0 and hence

Qf (ξ0 + Dϕ) ≡ Qf (ξ0) = 0.

This implies that (QP ) has infinitely many solutions. However since ϕ does not
vanish identically, we deduce that Qf is not strictly quasiconvex at any ξ0 of
the given form.
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